

The CIP4 JDF Editor
– Visualization of JDF

– Design and implementation of a Graphical Viewer
for JDF, combined with a Study of the Status of JDF

Today

CIP4 JDF Editor
- visualisering av JDF

– Design och implementering av ett grafiskt verktyg
för visualisering av JDF, kombinerat med en

undersökning av statusen av JDF idag

Master’s Thesis in Publishing Technology at Media Technology and Graphic

Arts, Nada, KTH, June 2003

Master´s Thesis by Evelina Thunell, evelina@kth.se, +46 736 26 60 85

Project assigner:
International Cooperation for Integration of Processes in Prepress, Press and

Postpress, CIP4

Supervisors:
Björn Hedin, Media Technology and Graphic arts, Nada, KTH

Dr Rainer Prosi, CIP4/Heidelberger Druckmaschinen AG

Examiner:
Professor Nils Enlund, Media Technology and Graphic Arts, Nada, KTH

Abstract

The CIP4 JDF Editor – Visualization of JDF
– Design and Implementation of a Graphical Viewer for JDF,
combined with a Study of the Status of JDF Today

This master project includes the design and development of a viewer for visualization
of JDF files, the CIP4 JDF Editor. JDF is an XML schema based XML format for the
printing industry with the main purpose to enable automation and integration of multi
vendor systems in a graphical environment. The project is sponsored by CIP4, the
organisation responsible for the development and maintenance of JDF. The master
project also includes the arrangement of an interoperability matrix, in order to give an
opinion of how far the development of JDF has come today. The matrix will also be
used for matchmaking by CIP4, to find possible test partners for interoperability test
events. Almost every important actor in the graphic arts industry is a member of CIP4
and it is therefore likely that JDF will become the standard format for workflow
automation in the future. The specification is very complex and comprehensive though,
this is the main problem of JDF. The complexity makes it necessary for CIP4 to
publish cookbooks to help vendors start implementations. JDF has not been so widely
used in practice so there is not much experience from end-users yet.

Sammanfattning

CIP4 JDF Editor – visualisering av JDF
– Design och implementering av ett grafiskt verktyg för
visualisering av JDF, kombinerat med en undersökning av statusen
av JDF idag

Det här examensarbetet har gått ut på att designa och utveckla den del av CIP4 JDF
Editor som visualiserar JDF filer. JDF är ett XML-schemabaserat XML-format för
tryckindustrin med huvudsyfte att möjliggöra automatisering och integration av system
från olika leverantörer. Projektet har sponsrats av CIP4, vilken är den organisation som
är ansvarig för utvecklingen och underhållet av JDF. Examensarbetet består också av
att sammanställa en interoperabilitets-matris. Detta för att sedan kunna uttala sig om
hur långt utvecklingen av JDF har kommit. Matrisen ska också användas för att hitta
potentiella testpartners för interoperabilitets-evenemang. Nästan alla viktiga aktörer i
den grafiska industrin är medlemmar i CIP4 vilket gör att det är troligt att JDF blir
standardformat för arbetsflödesautomatisering i framtiden. Specifikationen är dock
väldigt komplex och omfattande, vilket är det största problemet idag. Komplexiteten
gör det nödvändigt för CIP4 att publicera kokböcker, för att hjälpa leverantörerna att få
igång implementeringen. JDF har inte testats i så stor omfattning i verkligheten så det
finns ännu inte många erfarenheter från slutanvändare.

Preface
This report is a master project at Media Technology and Graphic Arts, Nada, KTH. The
assigner of the project is CIP4 and it has been performed in close collaboration with
Anna Andersson. For a full understanding of the project I recommend the reader of this
paper to read Anna Andersson’s report “The CIP4 JDF Editor, the editing part” as well.
The supervisor at KTH is Björn Hedin and the supervisor at CIP4 is Dr Rainer Prosi.

I would like to thank Anna Andersson for good cooperation, Dr Rainer Prosi for
guidance, support and taking the time to supervise us, Kai Mattern, Dagmar Sclenz and
Dietrich Mucha for advices and help during the project, Koen Van De Poel and Tom
Hastings for feedback and advices, Tim Donahue, Frank Theede and Eckhard Bölke for
information and Björn Hedin for support and feedback.

List of contents

1 Introduction... 1
1.1 Background on CIP4... 1
1.2 Background on JDF and JMF ... 2
1.3 Problem... 2
1.4 Delimitations... 3
1.5 Purpose ... 4
2 Method.. 5
3 Result .. 6
3.1 The JDF Concept .. 6
3.1.1 XML and JDF ... 6
3.1.2 JDF Nodes... 6
3.1.3 Resources and Resource Links ... 7
3.1.4 Intent ... 8
3.1.5 Components .. 8
3.1.6 MIS ... 8
3.1.7 JMF... 8
3.1.8 JDF Extensibility .. 10
3.1.9 The JDF Workflow ... 10
3.2 The CIP4 JDF Editor .. 12
3.2.1 Evaluation of XML Editors - What User Aspects should be Considered for

the CIP4 JDF Editor? .. 12
3.2.2 Which Information in the JDF file shall be Visualized and How is it Done in

the Best Way? ... 13
3.2.3 What Differs Between a JDF Editor and an XML Editor? 13
3.2.4 The CIP4 JDF Editor in General... 13
3.2.5 The Graphical User Interface.. 14
3.2.6 The Validation .. 17
3.2.7 Other Features... 18
3.2.8 Testing .. 18
3.2.9 What does the CIP4 JDF Editor not Handle?.. 19
3.2.10 Bugs .. 19
3.2.11 User Test ... 19
3.3 The need for JDF and JMF ... 21
3.3.1 State of the Industry Before JDF and JMF.. 21
3.3.2 Why is the Standard Needed and What does it Mean for the Vendor and the

Print Shop, respectively? .. 21
3.4 Status of the JDF and JMF Development Today .. 22
3.4.1 Interoperability Matrix.. 22
3.4.2 Newspaper Production .. 23
3.4.3 MIS ... 24
3.4.4 Digital Printing ... 25
3.4.5 Time Perspective... 26
3.4.6 Problems ... 26
3.4.7 JDF Version 1.2 .. 27
4 Conclusions... 28
4.1 CIP4 JDF Editor.. 28
4.2 Status of JDF and JMF Today... 28
5 Recommendations... 30
6 List of References ... 31
6.1 Interviews.. 31
7 Appendixes ... 32
7.1 Appendix A – A JDF Sample File .. 32
7.2 Appendix B – A JMF Sample File.. 34
7.3 Appendix C – Evaluation of XML Editors ... 35
7.4 Appendix D – The Interoperability Matrix ... 37

Master Project at Nada Evelina Thunell

1 Introduction
This chapter shortly describes the technologies Job Definition Format (JDF) and its
complement part, Job Messaging Format (JMF). It also includes a description on how
the development and maintenance of these technologies are handled. Chapter 3.1 will
discuss JDF and JMF further.

1.1 Background on CIP4

Four prominent companies in the graphic arts industry, Adobe, Agfa, Heidelberg and
MAN Roland, originally took the initiative to JDF. In 1999 they handed over the
development of JDF to the International Cooperation for Integration in Prepress, Press
and Postpress (CIP3), an association that supports the development of digital standards
for the graphic arts industry. In July 2000 CIP3 became International Cooperation for
Integration of Processes in Prepress, Press and Postpress (CIP4), see Figure 1.1. The
new word in the name, Processes, represents the ability to connect the production
systems with the Management Information Systems (MIS).

Figure 1.1 The CIP4 logotype

CIP4 has currently 156 vendors, other industry associations, end-users and research
institutes as members. There are three different membership levels: partner, full
member and associate member, which offer different influence over the development
process and different membership fees. The members themselves decide how much
work they want to do for CIP4. The development of JDF and JMF is carried out in
working groups responsible for different areas. There are currently 18 working groups:

• Advertising / Magazine publishing
• Capabilities
• Color Workflow
• Conventional printing
• Device messaging / Job tracking
• Digital Printing
• eCommerce
• Finishing
• Gravure
• Newspaper
• Origination and Prepress
• Packaging & Label
• Process resources and definitions
• System Behavior and Interoperability
• Tools and infrastructure
• Framework
• User Group
• Web/Rotary printing

1

Master Project at Nada Evelina Thunell

1.2 Background on JDF and JMF

The primary reason why the initiative to JDF was taken is the increasingly more
complex workflows the graphic arts industry is facing today. Steering systems,
economic systems and management systems from different vendors are used to handle
these workflows. In order to do so efficiently, and to avoid problems, they need a
common language for information exchange. JDF is that language; it is one step
towards a more automated workflow, which would make the printing processes more
productive, flexible and transparent through the increased control of the production.
The JDF specification intends to cover the whole production chain, from order, via the
creative phase, prepress, press and postpress to delivery. In the graphic arts industry,
there is no standard workflow and therefore automation is quite complex. JDF and JMF
make it possible for equipment from different vendors to work together and will
therefore make the production more flexible. JDF provides primarily the following
benefits to the printing industry:

• Ability to carry a print job from genesis through completion. This includes a
detailed description of the creative, prepress, press, postpress and delivery
processes.

• Ability to bridge the communication gap between production and
Management Information Services. This ability enables instantaneous job and
device tracking as well as detailed pre- and post-calculation of jobs in the
graphic arts.

• Ability to bridge the gap between the customer's view of product and the
manufacturing process by defining a process independent product view as well
as a process dependent production view of a print job.

• Ability to define and track any user defined workflow without constraints on
the supported workflow models. This includes serial, parallel, overlapping and
iterative processing in arbitrary combinations and over distributed locations.

• Ability to do the above mentioned under nearly any precondition. [1]

JDF is an XML-based format and proposed industry standard based on the technologies
of CIP3´s Print Production Format (PPF) and Adobe’s Portable Job Ticket Format
(PJTF). eXtensible Markup Language (XML), is a descriptive computer language,
which is used in JDF and JMF to describe information. The JDF specification was
presented at the Seybold fair in February 2000. Version 1.0 was released in April 2001
and version 1.1 in April 2002. CIP4 is working on the next version of the specification,
which is planned to be released in the third quarter of 2003.

JMF, is the messaging format of JDF and functions as an interface between the
production equipment and the Management Information Systems (MIS) to establish a
dynamic interaction in a JDF workflow system. JMF provides a job tracking
functionality and could, for example, be used to establish a queue, find out the
capabilities of a JDF-enabled component or determine its status. [1]

1.3 Problem

This master project includes two primary parts. The first part is the development of a
tool for visualizing JDF files, as a part of the CIP4 JDF Editor. The second part is a
study of the JDF development today and summary of JDF supporting products. This is
done with focus on the development, status and problems of JDF in newspaper
production, digital printing and MIS.

2

Master Project at Nada Evelina Thunell

There are no products, such as the CIP4 JDF Editor, available on the market today.
Viewing and editing of JDF files are often done in Microsoft Internet Explorer or in
regular XML-editors, such as XMLSpy [2]. But these editors are not adjusted to the
information JDF incorporates. JDF files describe processes and relations between
resources and processes - functions that are not available in any XML editor. Anna
Andersson’s part, editing and validation after editing, will be other features of the
application. This master project deal with the development of an application that
handles the above described features:

• What user aspects should be considered for the viewer in the CIP4 JDF
Editor?

• What is the difference compared to ordinary XML editors?
• Which information in a JDF file shall be visualized?
• How is a JDF file best visualized?
• The developments of the graphical user interface, what design and features

shall the CIP4 JDF Editor have?
• A description of the viewer.
• Result from the user test.

Since the JDF specification is rather new it is interesting to find out how far the
development of the standard has reached, how widely adopted it has been and how
many products that supports it. The study of the status of the JDF development today
will deal with and discuss the following issues:

• The state of the industry before JDF, why is JDF needed?
• What will JDF do for the vendor and the print shop, respectively?
• Status of the JDF and JMF development?
• Study of the JDF development in the areas digital printing, newspaper

production and MIS.
• Time perspective.
• Problems.
• Presentation of the interoperability matrix – how far has the development

come?

The focus will be on describing the development, status and problems newspaper
production, digital printing and MIS are dealing with in the JDF context. Newspaper
production is interesting because of the widely spread opinion that JDF is more focused
on conventional printing. In digital printing I will try to describe how JDF is used to
handle personalized printing and variable data. MIS and JMF are close to each other,
could the reason why the development of JMF not has reached so far be due to the lack
of MIS vendors involved?

1.4 Delimitations

Due to the time limit there are some features of JDF the CIP4 JDF Editor does not
support; schema validation, refElements and partition display. There are also some
general features that are left out: drag and drop, undo, redo, a source view, printing and
the ability to hide and show the attributes in the tree view.

We have delimited the investigation of JDF-supported products to the vendors who are
CIP4 members. It is important to mention that the interoperability matrix does not give
a complete overview because it is likely that a lot of products are under development
and the companies do not want to contribute information about them yet.

3

Master Project at Nada Evelina Thunell

1.5 Purpose

The purpose of developing the CIP4 JDF Editor is to enable visualization of JDF and
JMF files in a suitable way, and to be able to follow processes and display the errors.
The user interface shall be simple and user friendly. The JMF file is something that will
never be seen by the user, and the possibility to create and modify JMF files has been
implemented for an educational purpose. The CIP4 JDF Editor will also be a tool for
validation and editing of JDF. There is no such application available on the market
today that provides the features described above.

The purpose of the study of the JDF development today is to find out how far the
development of the standard has reached, how many companies that actually have
adopted it, how many products that support it and on which production areas the focus
is. Another function of the interoperability matrix will be matchmaking, to find
possible test partners for interoperability testing events.

I will also try to give the reader an understanding for the JDF and JMF technologies
and give the background on why they were developed.

4

Master Project at Nada Evelina Thunell

2 Method
Since JDF is a rather new specification, there is not much literature about JDF and JMF
today, and most of the information has been found in the JDF specification and through
interviews with CIP4 members.

The CIP4 JDF Editor is based on the CIP4 Java JDF Library, an open source Java
library that contains classes for creation, modification and validation of JDF and JMF
files. The application was to be developed in Java to realize the requirements of
platform independence and in order to be able to make use of the CIP4 Java JDF
Library. Java Version 1.4.1 has been used. The library was diligently used but a
thorough study had to be done in order to find and make use of the right methods. The
development was done in Eclipse 2.0 [3], a development environment used by the Java
developers at Heidelberg. ClearCase [4] was used for version handling and merging
since we were two developers on the project. JProfiler [5] was used to find
performance problems of the editor.

The first step, to decide the requirements and guidelines of the application, was done
through discussions with the developers of the CIP4 Java JDF Library, GUI experts
and the members of the CIP4 working group Tools and Infrastructure. This group is
responsible for defining, implementing and supporting open source tools. An
evaluation of various XML editors was also done to further decide the look and the
features of the application. The CIP4 requirements and the result of the evaluation gave
the guidelines for the interface of the application. As window manager Swing, AWT
and SWT were considered. Swing was chosen because of previous experience. The
validation in the CIP4 JDF Editor is done programmatically and is based on an existing
CIP4 open source application, CheckJDF.

The project was performed in close cooperation with Anna Andersson, although we
were responsible for different parts. We had discussions on decision-making and
problem solving during the entire project. The project was monthly presented during
the teleconferences of the CIP4 Tools and Infrastructure working group for feedback
and checking. Problems that arisen were solved in collaboration with experts within
CIP4 and Heidelberg. The members of CIP4 had the possibility to test the application
and come with error reports and input.

In order to find out how user friendly the final user interface of the application turned
out, the CIP4 JDF Editor was compared, in form of a user test, to three of the XML
editors that were evaluated in the beginning of the project. The test did not cover any
JDF specific features; only the features that could be compared to the other editors
were tested.

To find out the status of the JDF development today an interoperability matrix was put
together. In order to get data to the matrix all vendors within CIP4 was contacted and
asked to fill in a form that was arranged in collaboration with Anna Andersson and the
System behavior and interoperability working group. The data supplied concerned their
products and what kind of information those could exchange, expressed in processes
produced and consumed, and what JDF versions and JMF level they supported.
Another important source of information has been interviews with representatives from
CIP4 members. The interoperability matrix has been done in collaboration with Anna
Andersson.

5

Master Project at Nada Evelina Thunell

3 Result
3.1 The JDF Concept

This chapter will shortly summarize the basic features of JDF. It also includes a part of
what happens to the JDF job during execution.

3.1.1 XML and JDF

JDF is used to describe how a printing job is to be executed; it includes job parameters
and instructions. The JDF file is a job ticket. The JDF schema establishes the rules for
how the information in the file shall be described. A job is the sum of a JDF project and
contains all information needed to complete the job. The information is stored in XML
elements, called nodes. A job often contains more than one node and they are arranged
in a tree structure. The node at the top, the JDF root, describes the overall intention of
the job, the intermediate nodes describe the increasingly process-oriented aspects of the
job, and the nodes at the bottom describe a single process. An XML element is an
XML syntactic construct and refers in the JDF specification to the subparts of JDF
nodes. An attribute is also an XML syntactic construct, describing the characteristics of
an element. An example of a JDF file is available in Appendix A.

3.1.2 JDF Nodes

There are three kinds of JDF nodes, Product, Process and ProcessGroup nodes, and
they describe accordingly a process, a product or a combination of the previous two.
The Product node includes information about the intent of the job, the ProcessGroup
node describes groups of processes and the Process node defines individual workflow
steps. Examples of processes are ColorCorrection, Imposition and
ConventionalPrinting. The Product node on top in Figure 3.1 can for example describe
the entire book, while the other two Product nodes describe the content and cover,
respectively. The ProcessGroup nodes describe for example the production of the cover
pages and the content pages. The Process nodes could describe printing of cover,
printing of content, finishing and binding of the entire book.

Product nodes

ProcessGroup nodes

Process nodes

Figure 3.1 Hierarchical tree structure [1]

The structure of JDF nodes can be described in two different ways, hierarchical and
lateral. The hierarchical structure is a nested structure with parent nodes containing
child nodes, the node at the top describes the whole job and its children nodes at the
bottom describe a single process, see Figure 3.2.

6

Master Project at Nada Evelina Thunell

(Picture of hierarchical structure, prepress, press and postpress)

Process 1 Process 2 Process 3

Process 4 Process 5 Process 6

Process 7

Parent JDF Node

Process Group

Figure 3.2 Hierarchical tree structure of JDF nodes

The lateral structure shows the relation between nodes when following resource links.
The output resource of one node is often the input resource of another node. Nodes
often share resources. Figure 3.3 is an example of lateral workflow.

 Process
Proce
1

2

Process
3

ss Resource
1

Resource
3

Resource
7

Resource
4

Resource
5

Process
4

Process
5

Process
6

Process
7

Process Group

 Figure 3.3 Lateral structure of JDF nodes accomplished by resource linking

3.1.3 Resources and Resource Links

Resources are the things to be produced, modified, consumed or used by processes.
Examples of resources are inks, plates, files or device settings. A process is defined by
its input and output resources. The resources a process uses for input and output are

7

Master Project at Nada Evelina Thunell

defined in the element ResourceLinks within that process. The input and output
resources of processes make it possible to determine process dependencies. The
resources are stored in the ResourcePool element of a node. A node can only reference
resources within its own ResourcePool or in ResourcePools within nodes closer to the
JDF root. A process cannot be executed until all of its input resources are available.

ResourceLinks describe what resources a node uses and how it uses them. All logical
and chronological dependencies within a node are specified using ResourceLinks. The
ResourceLinks are stored in the ResourceLinkPool of a node, the ResourceLink define
if the resource is an input or an output resource. The ResourceLink element can also
contain optional attributes in order to select a part of a resource, this is called resource
partitioning.

3.1.4 Intent

A job always begins with a goal of how the product will look like when the job is
completed. In JDF these goals are described by using product intents, represented by
intent resources. In contrast to process resources that describe specific values, intent
resources define the details of the product to be produced without defining the process
to produce it.

The agent initiating a job defines product intents. The product intent is defined in
Product nodes and these are required to contain a resource that represents the physical
result specified by the node.

3.1.5 Components

The JDF specification defines four components to create, modify, route, interpret and
execute a JDF job:

• Agents, an agent is writing JDF and has the ability to create a job and to add
and modify existing nodes. An agent can for example be a software process or
an automated tool.

• Controllers, a controller route the JDF job to the correct device. A controller
has to be able to initiate processes on at least one device and be able to work
together with other controllers and must therefore support the JDF file-
exchange protocol. A controller has to be able to determine which nodes that
are executable and route them to the right device.

• Devices, a device must be able to execute the information specified by the
agent and routed by the controller and initiate machines that can perform the
execution.

• Machines, a machine will execute the process.

3.1.6 MIS

The Management Information System (MIS) oversees the relations between all parts in
a workflow; it controls scheduling, execution and control of work in progress. To
accomplish this feedback JMF messaging or audit records within JDF can be used.
Data feed back during production is continually prepared for checking by the MIS.
These checks include parameters concerning deadlines, output, quantities, costs and
quality assessments. The quality and completeness of the data are decisive for the
integration capability of the network planning and control. [6]

3.1.7 JMF

JMF provides means for real time communication with MIS and for interactive control
of elements in a workflow system. This is needed to make the workflow run efficiently.

8

Master Project at Nada Evelina Thunell

The structure of a JMF message is seen in Figure 3.4. A JMF message contains one or
more of the following five high level elements, called message families:

• A Query is a message that retrieves information from a controller without
changing the state of that controller. A Query is sent and a Response is
returned.

• A Command not only retrieves information, it also causes a state change in the
device it was sent to.

• A Response is returned after a Query or a Command is sent from a controller.
• A Signal message is a unidirectional message sent to other controllers, it used

to automatically broadcast status changes.
• An Acknowledge is an asynchronous answer to a Command. It is

unidirectional and is generated if Commands with long latency have been
executed in order to inform the Command sender the results.

Figure 3.4 The JMF Message families [1]

There are five JMF messaging levels that a controller can support.

• No messaging, the controller does not support messaging at all. To record
data, JDF includes Audit records for the process.

• Notification, this is the most basic level of support. A notification message
from a device informs the controller when it begins executing or completes a
process. They can also provide notice of some error conditions

9

Master Project at Nada Evelina Thunell

• Query support, controllers that support queries respond to requests from other
controllers by communicating their status.

• Command support, if a controller supports this level of messaging it has the
ability to process commands. The controller can receive commands to
interrupt a job, restart a job or to change status of a job in a queue.

• Submission support, this is the highest level of messaging. A controller that
has submission support can accept a JDF job via an http post request to the
messaging channel. [1]

The sending controller creates a JMF message. A JMF file with a message of the
message family Response is available in Appendix B.

3.1.8 JDF Extensibility

One of the main benefits of JDF is the flexibility it supplies through its extensibility.
Extensibility means that a vendor can add their own elements etc. to their application in
order for it to include all data needed. These so-called private extensions are
implemented by using XML namespaces. Private extensions that have become widely
used are in the future intended to be included in the next version of the specification.

3.1.9 The JDF Workflow

A JDF job is normally created by one agent and is then modified by other agents during
execution. A job is modified during execution, for example will the status of a process
or the availability of a resource change.

A controller can route the JDF job first when all input resources and parameters of a
node in that very job, are available. The controller routes it to a device, which will
execute the process. After the process is completed, the agent or controller will modify
the node to record the results of the process, as shown in Figure 3.5 and 3.6.

<JDF>
…
 <AuditPool>

<Created Author="Agent" TimeStamp="2003-05-07T15: 32:05+01:00"/>
 </AuditPool>
</JDF>
Figure 3.5 The file before modification by the agent [1]

<JDF>
…
 <AuditPool>
 <Created Author="Agent" TimeStamp="2003-05-07T15: 32:05+01:00"/>
 <Modified Author="SecondAgent: task=*" TimeStamp="2003-05-07T17: 46:54+01:00"/>
 <PhaseTime End="2003-05-07T16: 58:50+01:00" Start="2003-05-07T16: 56:20+01:00" Status="Setup"

TimeStamp="2003- 05-07T16: 58:50+01:00"/>
 <PhaseTime End="2003-05-07T17: 35:23+01:00" Start="2003-05-07T16: 58:50+01:00" Status="InProgress"

TimeStamp="2003-05-07T17: 35:23+01:00"/>
 <PhaseTime End="2003-05-07T17: 46:54+01:00" Start="2003-05-07T17: 36:40+01:00" Status="Cleanup"

TimeStamp="2003-05-07T17: 46:54+01:00"/>
 <ProcessRun End="2003-05-07T17: 46:54+01:00" Start="2003-05-07T16: 56:20+01:00" End-Status="Completed"

TimeStamp="2003-05-07T17: 46:54+01:00"/>
 </AuditPool>
</JDF>
Figure 3.6 Code after modification by the agent [1]

10

Master Project at Nada Evelina Thunell

JDF supports four kinds of process sequences:

• Serial processing, where the nodes are executed sequentially with no overlap.
• Overlapping processing means that a process can start to execute before

another process producing one of its input resources has completely finished
producing them. This is accomplished by using a method called pipes.

• Parallel processing makes it possible to run more than one process at once. A
part of the job is spawned off and executed individually. When the process has
completed, the spawned node is merged back into the job.

• Iterative processing is more suitable for some processes where serial or
parallel processing cannot be used. Iterative processing means that the
production is carried out iteratively in cycles, for example when a page is not
approved and needs to be edited and approved again.

To detect errors in a JDF job, it could go through a test run before it is executed. The
test run could be routed through all the devices and controllers just like it is during
execution. The devices and controllers that receive the job during a test run read and
analyse it without initiating execution.

All nodes and resources have a unique identifier, an ID. This makes it possible to keep
track of individual components of a job. The ID is also used for resource linking. The
creating agent is responsible for providing an ID that is unique within the file as long as
it is used.

The device capabilities description makes it possible for a device to report what parts of
JDF it can and cannot handle. An individual JDF job description can be compared to
the device capabilities of the device. The job can be executed if all job parameters are
within the ranges specified by the device capabilities. [1]

Figure 3.7 shows what the interaction between MIS and production can look like.

Figure 3.7 JDF and JMF workflow interaction [1]

11

Master Project at Nada Evelina Thunell

3.2 The CIP4 JDF Editor

The CIP4 JDF Editor has been developed in close cooperation with Anna Andersson.
This thesis describes the development of the viewer part, and the design of the user
interface whereas Anna’s thesis includes the development of the editing features of the
application. This chapter shortly describes the application and the implementation.

3.2.1 Evaluation of XML Editors - What User Aspects should be
Considered for the CIP4 JDF Editor?

The first draft of the application was made after an evaluation of six XML editors, three
of them commercial and three of them open source or freeware. There are many XML
editors available and these six were chosen after tips from competent users, they were
all considered good. The three commercial editors were also chosen since it was
possible to get a free testing period. The open source editors could be of value if some
feature that would be suitable in the CIP4 JDF editor was found in the code. The six
editors were:

• XMLSpy [2] (commercial)
• Morphon [7] (commercial)
• XMLPro [8] (commercial)
• Pollo [9] (open source)
• XML Operator [10] (open source)
• XML Notepad [11] (freeware)

They were evaluated after the following aspects; view, editing concept, schema
validation, namespace handling, source view, handle of invalid / not well formed XML,
help, programming language, window manager and finally a general overview.

The commercial editors were in general better; they had more functions and were more
user friendly. All of them, except XMLSpy [2], had some kind of tree view. XMLSpy
[2] was the most complex and the best according to the writer of this thesis. A
summary of the evaluation is available in Appendix C.

The evaluation resulted in the following guidelines of the design and features of the
CIP4 JDF Editor:

• Tree view with editing functions
• Source view
• View for visualizing the process relations
• Error view
• Search function
• Cut, copy and paste
• Undo and redo
• Drag and drop
• Insert elements and attributes
• Schema validation when opened, saved, closed and edited. Possibility to

switch it on and off
• Namespace handling
• Ability to open an invalid file with error messages, mark the errors
• Help – tool tip help and a long help
• Swing as window manager
• Pluggable look and feel
• Internationalization
• Mac and PC compatible
• Easy and simple interface

12

Master Project at Nada Evelina Thunell

These general guidelines were to be modified on the way due to the time limit. There
was no time to implement source view, schema validation, drag and drop, undo and
redo and the namespace handling is limited to the possibility to highlight foreign and
private elements and attributes.

3.2.2 Which Information in the JDF file shall be Visualized and
How is it Done in the Best Way?

There are two general ways to visualize the information in a JDF file. The first way is
the hierarchical tree structure, which corresponds to the hierarchical workflow model.
The other way is to see the processes that it describes through resource linking as in the
lateral workflow model. The two ways complement each other, and should therefore
both be present in the CIP4 JDF Editor. The hierarchical structure of a JDF file can be
viewed in any XML editor or in Internet Explorer. It was decided that it should be
implemented as a tree, a common way to describe hierarchical structures and is
therefore well known to the user. It is the lateral workflow model that will make the
application unique and it was decided that it would be best done in two complementary
ways. In the first view, the input and output view, only the relationships of one process
or resource at a time are displayed in detail. In the other view, the process view, one
process with all the processes it includes is displayed.

3.2.3 What Differs Between a JDF Editor and an XML Editor?

As mentioned before there are some features of JDF that an ordinary XML editor
cannot handle. JDF can be seen as an ordinary XML file but also as a description of
how the processes links to each other. Both these views should be available in the
application. The tree view represents XML and the process view displays how the
resources and processes described in the file are linked. Also, the input and output view
displays these relations in another way. The errors messages are adjusted to JDF since
the validation is made programmatically.

3.2.4 The CIP4 JDF Editor in General

To easily run the application, an executable application was created. When the
application is initially launched no file is opened and only relevant menu items and
buttons are displayed. A file can be opened through a file dialog or through the open
recent files menu, where the four most recently opened files are shown. When choosing
to open a file, an instance of JDFDocument, a class in the CIP4 JDF Library, is created
and the file is parsed through methods in that class. The program checks whether it is a
JDF or a JMF file. The file is then sent to a method that creates and displays the tree.
The tree is displayed collapsed from start in order to make the opening process less
time consuming. The file name is shown in the border of the application. Only one file
can be open at a time. If the user chooses to open a completely new file, she/he gets to
choose from opening a JDF or JMF file, which gets created through methods in the
CIP4 JDF Library.

The automatic validation is switched off by default. The user can switch on and off the
automatic validation at any time. If the automatic validation is switched off the validate
button is enabled and the user can validate the whole file at any time. When switching
it on the whole file is validated. Before opening a file the user can chose to open a file
as “read only” by switching off the editing mode.

If an existing file has being modified or a new file has been created and the close or
exit button has been pushed the user always gets the question if she/he wants to save
the file. The saving of the file is also done through methods in the CIP4 JDF Library.

13

Master Project at Nada Evelina Thunell

3.2.5 The Graphical User Interface

It was decided that the CIP4 JDF Editor, like most editor applications, should have a
menu bar and a button bar at the top. The menus needed were: File, Edit, Insert, Tools,
Validate and Help. Only currently valid menu items and buttons are enabled in order to
help the user to make the right choice. The menu bar and the button bar is available in
Figure 3.8.

Figure 3.8 The menu and button bars

Some menu options, such as Open,
New, Save, Copy, Cut and Paste are

available from the button bar as well.
Some button icons were downloaded
from the Java Look and Feel Graphics
Repository. Every icon needed was not
available and were created in
Photoshop following the guidelines in
the Repository. [12]

In order to have all the views in a well-
arranged way, tabbed panes were used.
The attribute, input and output and
process view all share the same space.
To display the desired view, the user
only has to select the corresponding tab
at the top.

Tree view
The tree view is the main view and it
displays the hierarchical structure of
the XML file. It also displays the
attributes of an element as sub-nodes of
the tree node, see Figure 3.9. This will
make the attributes easy accessible for
modification. To distinct the elements
and attributes from each other they are
represented with different icons. To
achieve this the tree renderer had to be
overridden. The tree view has
connections to all of the other views in
the application in order to make it easy
to follow links and still keep track of
where in the file the user is currently
positioned. Editing is only available
from this view and could be done by a
right mouse click menu or from the
Edit menu.

Figure 3.9 The Tree View

14

Master Project at Nada Evelina Thunell

Error view
When the file is validated the error messages are exposed in the error view, see Figure
3.10. Every error message is connected to the tree node it belongs to in order to make it
possible to find where the error occurred and more easily make corrections. The error
view is a list that contains list elements that store both the error message, which is a
string, and a tree node. The list element is stored in the tree node itself. When a list
element is selected a search algorithm using depth first enumeration searches the tree
for that same tree node, when it is found it gets selected. When selecting a tree node in
the tree view the error messages for that particular JDF element and all its children are
shown, the search method searches the tree for invalid nodes and displays the list
elements they contain. This means that clicking on the top-level node will reveal all the
errors of that file.

Figure 3.10 The Error View

Attribute view
In the attribute view the attributes of an element are listed. This is the only function of
this view. The attribute view remains from a stage in the development where the
attributes were to be optionally displayed in the tree view. They are an important part
of the file and needs to be easily accessible. Initially the intention was to make it
possible to hide the attributes in the tree view to get a better overview of the file and
then view them in the attribute view instead. Since the attributes also are Java-tree
nodes as well as the elements, it is a quite complex task to hide only some of the
children of a tree node, it is non-standard behavior. The decision was taken to
concentrate on other parts of the application instead of implementing the optional
hiding of attributes in the tree view.

Input & output view
In the input and output view, either a certain resource with its JDF consumer and
producer or a JDF node with the resources it inputs and outputs, can be displayed.
Clicking on a resource in the tree view will therefore show that particular resource in
the center of the view with the JDF node that produces it on the left side and the JDF
node that consumes it on the right side. When clicking on a resource link in the tree
view, the link is followed to the resource it links to, and that same resource is centered
in the view. When clicking on a JDF node, that JDF node will appear in the center,
with the input resource(s) on the left and the output resource/resources on the right.

15

Master Project at Nada Evelina Thunell

Figure 3.11 The Input and Output View

The resources and JDF nodes displayed in this view are displayed as small trees, with
their attributes as children, see Figure 3.11. If an element inherits attributes from its
parent the text is bold in order to separate them from each other. A left mouse click
(which correspond to CTRL and mouse click on Mac) on an element or an attribute in
the input and output view results in that the corresponding element or attribute gets
selected in the tree view. Doing a right mouse click on one of the elements displayed
on the sides will result in that this element is displayed in the center and the elements it
relates to are displayed on the sides. This feature will help the user to follow links and
see how the processes relate to each other.

In the CIP4 JDF Library there are methods for finding the target of a resource link. So
it is not difficult to find the resources a JDF node consumes and produces, it is just to
follow the links stored in the ResourceLinkPool. To find the JDF nodes that consumes
or produces a resource, all the ResourceLinkPools in the file has to be searched to see if
they contain a link to that particular resource. The most difficult task with the input and
output view was to position the components within the panel that stores them. To solve
this the layout manager was removed and the components were instead positioned by
stating the exact point in the view where they should be located.

Process view
Another way to follow the processes is in the process view, which displays the process
or product a JDF node describes and the processes it contains. The resources are
displayed as green rectangles and the JDF nodes as blue rectangles with round corners,
see Figure 3.12.

Clicking on a JDF node will always activate the input and output view first. To see the
process view the user has to select that tab. Well inside the user can navigate the file.
By clicking on the “Go up one level in process view” button located in the button bar,
the user can go up to the process that is described by the parent JDF node of the current
JDF node. By clicking on a process with the left mouse button the user will expand that
process view, hence one level down in the hierarchy. If a JDF node is selected in the
tree view, the processes of that node are displayed, otherwise the process view for the
top node is displayed. Clicking on a resource or a JDF node in the process view will
also select the corresponding node in the tree.

16

Master Project at Nada Evelina Thunell

Figure 3.12 The Process View

When displaying the process view the input resources of the current JDF node are
drawn, and then the algorithm looks at the JDF nodes inside the current node. First the
JDF nodes inside have to be sorted. The sorting algorithm sorts the JDF nodes after the
resources it inputs and outputs, so that they could be drawn in the right order, as a
chain. JDF nodes that do not share resources with other nodes are put at the end of the
vector storing the sorted nodes. When the sorting is done the process chain is drawn
from left to right. When the nodes and resources inside are drawn, the parent JDF node
is drawn outside so that the processes it contains also are shown inside. Finally the
output resources of the current node are drawn. The most complex task was the sorting
algorithm and to keep track of the position of where to start draw the next resource or
JDF node. This could be especially hard when many different JDF nodes use the same
resource.

The connections between the different views
In order to be able to navigate the file the error view, the process view and the input
and output view are all connected to the main view, the tree view. Clicking on an
element in one of these views will result in that the corresponding tree node gets
selected. This also works the other way around. Selecting a node in the tree view will
load the current data in all the other views, including the attribute view.

3.2.6 The Validation

The validation is done programmatically and is based on algorithms in an existing CIP4
Java application, CheckJDF. There are methods in the CIP4 JDF Library for finding
unlinked resources, dangling links, missing attributes etc.

The first thing the application does when a file is being validated is that it checks the
whole file for unlinked resources. All errors found from this check are stored in a
vector. The tree is built recursively and when a tree node is to be created from the
current element, the element is checked for missing elements and attributes, unknown
elements and attributes and missing elements and attributes, dangling resource links,
missing links among others. The element is also checked against the elements in the
vector containing the result from the first check for unlinked resources. If an error is
found a Boolean within the tree node is set to be false, which means that it this node is
invalid. The tree node gets a special icon in the renderer telling that this element or
attribute is invalid. A list element for the error view is created and also stored within
the node. If a JDF element has invalid children it shall be displayed as invalid as well,
therefore a check is done after the validation of an element to see if the parent element
shall be marked as invalid too.

17

Master Project at Nada Evelina Thunell

3.2.7 Other Features

Internationalization
The application is available in five different languages: English, French, German,
Spanish and Swedish. Only menus, tool tip help, dialogs and titles are
internationalized. The result after validation in the error view and the long help are in
English. The language can be changed under the tools menu. After choosing another
language the user has to restart the application for it to update.

Look & Feel
The user can chose from the look and feels available on the computer. The look and
feel can be changed in the Tools menu and is updated during run time.

Search function
Searching can be done in the tree view, the attribute view, the input and output view
and the error view. To make the search in the right view it has to be activated through
clicking in that view. The searching is not case sensitive and can be done forward or
backward. The search starts from the selected position in the view. It is not possible to
search in the process view.

The search always starts with finding the selected position to be able to start the search
from there. The string at the position is compared to the search string, if it is a match it
gets selected. The user then has the possibility to press the Find Next button to go to
the next match. If the search ends without finding the string, the message “The string
could not be found” is displayed in the search dialog. The search dialog remains
opened until the user presses the Cancel button. In the tree a preorder enumeration is
used for searching. This algorithm was chosen to get the result in the same order as it is
displayed in the tree view, form top to bottom. In the attribute view and the error view
the search algorithm just steps through all the list elements. The hardest part was the
search in the input and output view, keeping track of the position when, stepping
through the different trees. A preorder enumeration is used also here.

Help
In the Help menu there are two menu items, About CIP4 JDF Editor and Help.
Choosing the first item will activate a pop-up window with general information about
the application. The Help item will activate a frame with help about the application
including how to get started, about the different views, the editor, the validation and
known bugs. There are also suggestions of further development of the CIP4 JDF
Editor.

Open with
The application also has a function for opening files, including the application itself,
through the file explorer. If the user does a right mouse click and choose the Open With
option, she/he can then chose to open the file with the CIP4 JDF Editor. The
application is launched and the file is opened.

3.2.8 Testing

During the development the application was tested both by the CIP4 members and
people at Heidelberg, who found it to be a useful tool for displaying JDF files and
tracking errors during development.

There were some performance problems that were tracked with JProfiler [5] and were
attended to. One of the most time consuming actions was the expanding of all the
nodes in the tree that was done after the tree had been created. Therefore it was decided
to display the tree collapsed when opened.

18

Master Project at Nada Evelina Thunell

The application has been tested on both PC and Mac. The version for Mac has not been
tested properly and some features were found to be wrong, these have not been
attended to due to time limitations.

3.2.9 What does the CIP4 JDF Editor not Handle?

As mentioned in the beginning of this chapter undo, redo and drag and drop are
features that are not supported in the application. Printing of the representations of the
file in the different views is not either supported.

The application does not handle foreign and private namespaces. For the viewer this
means that elements that belong to foreign or private namespaces are not displayed in
the input and output view and the process view. The foreign and private namespaces
can be highlighted in the tree view so that they can be easily detected.

Partition display and refElements are not supported by the application. A partitioned
resource is a structured resource that represents multiple physical or logical entities,
such as separated plates. refElements are used for inter-resource linking when it is
necessary to reference resource elements directly from other resources in order to reuse
information.

Combined processes cannot be viewed in the process view. A combined process is a
group of processes that can be executed by a single device.

3.2.10 Bugs

When the input and output view is created the elements to be displayed there should be
validated if the automatic validation is on. This validation is not done correctly.

There are some errors in the version of the CIP4 Java JDF Library used, which leads to
errors in the application.

Sometimes when trying to open a file for the first time it cannot be opened. The reason
why this happens is not known to the developers and has therefore not been corrected.
The user can try to save the file and try opening it again; this is a trick that usually is
successful.

3.2.11 User Test

The CIP4 JDF Editor was compared to the three commercial editors because they were,
as mentioned before, in general better than the freeware. Testing all six would have
been too time consuming. Four persons tested and compared the CIP4 JDF Editor with
three XML editors, XMLSpy [2], Morphon [7] and XMLPro [8]. The user test was put
together according to guidelines from the Society for Technical Communication (STC).
[13] Only general aspects, such as those the CIP4 JDF Editor has in common with the
XML editors, were tested. The test was performed so that the test user went through a
series of actions, like opening a file, creating a new file, saving, inserting and editing
attributes and elements, searching, navigation through the file, validation, finding the
errors etc. The same file was tested in all the applications. Detailed interviews were
done with the test users.

The test users were observed during the test session to see how she/he acted when
performing the different tasks. How long time the test user needed for the different
moments were also noted. In order to make the test user familiar with XML editors,
she/he first tested one of the freeware applications, XML Notepad [11]. Since the
interfaces of the applications to be tested were rather similar, the test user would
probably, after a couple of tests, increase the understanding of the standard behaviour.

19

Master Project at Nada Evelina Thunell

This could lead to that the test user would find the latest tested application to be the
easiest to use. To avoid this possible source of error the applications were tested in
different order.

After testing the editors the test user were asked the following questions about the CIP4
JDF Editor:

1. Is the system status always clear to the user?
2. Are the metaphors used recognizable?
3. Can the user easily navigate through the application?
4. Are the pictures used on the icons recognizable to users and do they facilitate

the understanding?
5. Any unsupported tasks? (I.e. printing, source view)
6. Can the application be used without documentation/help?
7. Is the feedback time acceptable?
8. General opinion of /comments on the interface?

All test users were well-experienced computer users. They all had a basic knowledge of
XML but they had not used an XML editor before. None of them were familiar with
JDF.

The general opinions of XMLSpy [2] were that it was too complex for beginners and
that it displayed too much information and too many options. One of the test users
assumed that it is how experienced users want it. The different views, especially the
graphical were appreciated for viewing, not for editing. The validation was easy to
perform and the error messages were easy to understand. The user has to choose from a
schema or DTD when creating a new file, which caused confusion.

The opinions of XMLPro [8] varied. All the test users agreed on that it was good for
beginners to understand the structure of XML but one test user, the most computer
experienced, found it simple but very unintuitive; especially inserting elements and
attributes. The others found it logical, easy and simple. Validation was unavailable, and
the user does not need to be concerned about schema or DTD’s.

Morphon [7] was harder to get started for some test users. The opening process takes
time because it introduces new notions. Inserting elements and attributes are done in
different ways, which causes confusion. The validation is only possible when the
source view is active and only one user figured that out after a quite long time. The test
users found it hard to understand what the error messages meant and they would have
preferred that the errors also were displayed graphically.

All the users found the CIP4 JDF Editor easy to get started with, partly because they
did not have to worry about schemas or DTD’s. Editing was found easy because it was
done in similar ways both for editing elements and attributes. The test users found it
hard to understand what the error messages meant but they found it helpful that the
errors also were presented graphically. The system status was always clear to the test
user, but it is worth mentioning that the file tested was relatively small. The metaphors
and icons used in all the tested applications were quite similar and the test users found
them easy to understand. One of the test users missed a source view, a search function
in the help and undo and redo. The Attribute view was found unnecessary, since the
attributes were displayed in the tree.

The interfaces felt familiar since their menus and buttons are designed as frequently
used applications, such as MS Word, was a comment from one of the test users. The
right mouse menu was frequently used for editing. When a test user was performing a
new task, she/he tried to do it in the same way as it was done in the previous tested
application. The help was very rarely used. One user preferred XMLSpy [2] because it
looked most professional.

20

Master Project at Nada Evelina Thunell

3.3 The need for JDF and JMF

3.3.1 State of the Industry Before JDF and JMF

Today’s print shops are facing more complex jobs with a tighter time schedule. To be
able to handle these new demands standards were developed. But these standards were
limited because they only addressed certain aspects of a print job. The standards that
existed, such as CIP3’s PPF and Adobe’s PJTF were limited and could not supply the
automation that was needed. PPF was created to make it possible to run between multi-
vendor products, so that a single job-ticket could control all those products. PJTF
supplied a limited but precise way of controlling processes in prepress and a control
over a variety of press processes. Even though they were insufficient they are the
predecessors of JDF. [14]

Another issue was the many proprietary interfaces that were used in the products from
different vendors. To make these products talk to each other new complex proprietary
equipment interfaces had to be implemented.

3.3.2 Why is the Standard Needed and What does it Mean for the
Vendor and the Print Shop, respectively?

Workflow automation can decrease the amount of operator interfaces required in the
workflow chain. Workflow auditing can be used to analyze the process, discover
systematical errors and bottlenecks. [15] Workflow automation is the main benefit of
JDF and will help the print shops to deal more efficiently with the various jobs they
face today.

Since JDF will make it possible for products from different vendors to communicate it
can be a way for small vendors to gain a larger and different market. But this is true
even for the larger vendors; if a customer, for example, is interested in a press from
Heidelberg but wants to have an Agfa workflow this would not be a problem with JDF.
And Heidelberg does not miss the sale of a press. That JDF is a sales argument is
something everybody seams to agree on.

An end-user, employed at the print shop, is not supposed to view or interact with JDF
files directly. The main benefit for them lies in is the possibility to track and steer the
production and the new statistics of the production that can be gained through the
stored information in the JDF file or through JMF. One other large benefit is the greater
range of products to choose from. This will also cause the vendors to be better since
they are exchangeable. The customer will usually need both MIS and production
equipment to use JDF in order to get the full leverage from using JDF.

21

Master Project at Nada Evelina Thunell

3.4 Status of the JDF and JMF Development Today

Most of the major vendors in the printing industry are members of CIP4. One exception
is Quark. The reason can be that automation is not so important in the creative phase,
where Quark is active; this is probably because it is hard to measure how time
consuming the creative work is when a large part is not actually done at the computer.
All the major press and prepress vendors are members. Of the prepress companies,
which often are smaller than the companies in the other areas, about half of them are
members. The MIS companies are also often small and many of them are not members
of CIP4.

At both Heidelberg and Agfa all new products that are being developed have JDF
support. Rainer Prosi [16] thinks that in general new products to a large extent will be
completely based on JDF, while older products, only will get a new interface based on
JDF. Using JDF for the internal system can be a good way for a company to
standardize their systems and not having to define an interface from scratch. Koen Van
De Poel [17] thinks that in the first phase JDF will mostly be used for communications,
as an interface. The focus of the JDF development at Agfa is today in the creative
phase and in the prepress area. They also have development that touches MIS and e-
commerce. In the future one focus will also be on newspaper production. Tim Donahue
[21] says that NexPress find adoption of open specifications and standards very
important, both for the company and their customers.

Rainer Prosi [16] thinks that the first companies that will use and gain from JDF are
conventional printing companies that earlier used PPF. JDF will replace PPF, but the
other old interfaces will still be supported until all components in the workflow have
been exchanged to components supporting JDF. Koen Van De Poel [17] says that it is
likely that larger commercial printing companies will be the first to start using JDF
compatible products. He also thinks that the last to adopt JDF are the small print shops
that do a lot of different types of printing jobs, because it is hard to automate when the
workflow differs widely.

The current version of JDF, JDF 1.1 is primary focused on the areas of prepress, press,
postpress and delivery. JDF is not ready to be implemented in a newspaper
environment yet. CIP4 is working on the JDF base conformance level Interoperability
Conformance Specification (ICS) to define different levels, each specifying which parts
of JDF and JMF that are supported. If two products conform to the same level they
should work well together. Koen Van De Poel [17] says that the specification needs
more management and for JDF to succeed it is more important to concentrate on
interoperability and clarifying the standard with examples than support of every
different value.

3.4.1 Interoperability Matrix

The interoperability matrix displays which processes a product can produce and
consume. It also includes which level of JMF the product supports and if it has support
for some special features of JDF, like partitioning and combined processes. If a certain
product produce a process and another product consumes it, those two products make a
testing pair. The interoperability matrix has been used during the test events in San Jose
in May 2003 for matchmaking, in order to find potential test partners. The intention is
that the matrix in the future shall be available on the CIP4 website and be updated by
the companies themselves so it will be kept up to date also for future test events. All
data in the matrix is not needed to draw conclusions about the JDF status but it was
included because it is needed for test preparations. The interoperability matrix is
available in Appendix D.

22

Master Project at Nada Evelina Thunell

The interoperability matrix form was sent out to 72 vendors, all vendors that were
members of CIP4 at the current date. 21 of the 72 vendors returned the form for one or
more products, 23 said that they for some reason could not participate and 21 did not
answer at all. The remaining 8 have either stated that they would send the information
to us soon or that they have not decided if they shall participate or not.

From those who answered that they did not want to participate the reason was that they
did not have any products ready for interoperability testing yet. They were either in the
beginning of the development cycle, they did not develop JDF enabled products at all
or they did not want to expose product data so long before release.

The matrix shows clearly that the development has primarily been focused on the
prepress area, 12 of the products in the matrix are for prepress and there are 2 press
products, 2 postpress products and 3 MIS or Production planning products. Many
products fall under several categories. The matrix contains 10 released products and the
rest of them were alfa or beta versions, the majority of the released products are
prepress products.

3.4.2 Newspaper Production

When the first approach to add newspaper production functionality to the JDF
specification was made, the newspaper working group tried to define JDF for all
processes and resources used in a newspaper production workflow. This means that all
the content should be described in JDF. That this approach is not suitable could be
explained by the fact that a single newspaper could have over 1000 ads. If these would
be described in JDF there would be as many resource nodes as ads, over 1000. This
method would cause too much data to be handled in the tight time schedule that
newspaper production has. Further on, if the newspaper has different ads for different
regions, which are common in the US, the number of resource nodes would increase
linearly. During the CIP4 technical conference in Barcelona in February 2003, the
newspaper working group decided, due to the problems to define JDF for all processes
and resources, to only concentrate on defining JDF for the interfaces between the
planning and mailroom systems and also between the planning and the plate room
systems. Doing it this way would mean that JDF would only partly be implemented in
a workflow for newspaper production. Frank Theede [18] says that this is an important
step to have set this delimitation. The reason why this approach was set is because only
ppi Media, Heidelberg, Agfa and Müller Martini were present at the meeting and for
these four companies this is the only area where JDF is needed at this stage.

One major difference from other printing forms is that newspaper production already is
quite automated due to the tight time schedule and the fact that the workflow always
looks pretty much the same. As mentioned before, Ifra has already taken one step
towards a more automated workflow in newspaper production with the specification
IfraTrack. The primary difference between IfraTrack and JDF is that IfraTrack only is
for messaging, and has therefore no process control. In IfraTrack the messaging format
is called IMF. One problem with JDF compared to IfraTrack is that the JDF
specification is so comprehensive; it is over 500 pages while the IfraTrack specification
is only 40 pages. Frank Theede [18] think that this could make it hard for small vendors
to implement a JDF interface to their products; due to the lack of resources they have
compared to larger companies. The interest in JDF from the vendors is greater than it
was for IfraTrack when that standard was as young as JDF. But Frank Theede [18] says
that if not JDF had existed there would be more IfraTrack implementations.

Björn Hedin and Fredrik Fällström [15] argues that for IfraTrack users that do not
intend to make use of the additional functionality JDF offers, there is no reason to
change to JDF. But they also conclude that the increased possibilities of workflow
automation that JDF can give can be one reason to start using JDF and that there will
be many products that support JDF in the future which will make it easier to integrate

23

Master Project at Nada Evelina Thunell

tracking functionality with new systems. For a print shop facing a decision to
implement either IfraTrack of JDF, the benefit with IfraTrack is that it is relatively easy
to implement and that it is proven in practice. On the other side JDF can do more than
just auditing. If JDF will become a success, the extra work will be worth it.

The CIP4 newspaper-working group has cooperation with Ifra to see whether it is
possible to translate IfraTrack to JDF. This will not be a problem since there is not
much content in IfraTrack. The opposite, translating JDF to IfraTrack, however will
cause loss in too much functionality. Converting an existing IfraTrack implementation
to JDF would require a lot of work today, but would hopefully be easier if or when
CIP4 publish guidelines for such a task. [15] Using JDF instead of IfraTrack would
bring great advantages to newspaper workflow systems but would require a completely
new architecture for these systems and the adding of additional chapters to the
specification. [19]

For ppi Media it was a natural step to use JDF as an interface to systems from other
vendors as they were looking for a standard to use for the interface when starting to
develop one of their new products. They found JDF useful for this purpose. IfraTrack is
used internally in this product while JDF is used for the interface. Frank Theede [18]
thinks that IfraTrack is going to disappear and JDF eventually will take its place. The
big problem here is the same as for IfraTrack when it came; the print shop is not
willing to pay extra for the functionality the new standard offers. [16]

The work with JDF for newspaper production has just started and many vendors are
waiting to see what the other ones are doing, nobody wants to take the first step. Frank
Theede [18] thinks that JDF puts a demand on the vendors to be better, since their
products will become more easily exchangeable and that having JDF compatible
products will become a sales argument.

3.4.3 MIS

European Print Managementsystem Association (Euprima) is an industry association of
European MIS vendors that has 21 members. The main purpose of Euprima is to
promote the data exchange using JDF between customers, vendors, subcontractors and
the production in network structures.

JDF is a very important marketing aspect also among the MIS vendors. Among
Euprima’s members one of them has JDF in an application and three of them develop
JDF solutions. Not so many MIS vendors are members of CIP4 though. Eckhard Bölke
[20] says that it is a very difficult market situation in Europe for the MIS vendors
today, which makes them very careful. The CIP4 open source libraries cannot be used
by many of the vendors because they develop in other programming languages than
those used in the open source libraries. Since the vendors often are small they do not
have enough resources for programming. For all MIS vendors go that they want to sell
more systems with the statement JDF enabled.

The problem for the MIS vendors lies within the complexity of the logical structure and
the correctness of data input. The complexity of the correctness of data input means
that it is the accuracy of the calculation or estimation that is the problem. For example
2.4 copies of a print sheet are correct as economical criteria but for JDF it is unsuitable.
The production and the MIS need hence different information.

Efficient MIS has the focal point on process optimization and therefore JDF is a very
important tool. JDF is a practical way to network technical and commercial systems in
order to increase the efficiency at print shops. [6]

Since September 2000 Euprima discussed the lack of MIS companies involved in CIP4,
but they have now started a constructive cooperation with CIP4 [20]. That JMF is not

24

Master Project at Nada Evelina Thunell

so widely implemented yet is no longer a big problem for the MIS vendors, because of
the cross-linking architecture Euprima developed. They also developed a target
suggestion regarding JMF. In the summer 2003 the IRD [20] will start a project, which
computes the economy of cross-linking solutions.

3.4.4 Digital Printing

A Variable Digital Printing (VDP) job comprises the definition of many customized
sets of pages where every set can be used to fill a series of sheets in a finished booklet.
The page content of one of these booklets is customized to appeal to the targeted end
recipient. These customized pieces can for example vary in number of pages, page
content and utilization of media. The workflow process requirements are evidently
relatively complex where both content and finishing differs. [21]

Tim Donahue [21] explains that there are many VDP oriented Page Description
Language (PDL) formats today, of which most are proprietary. The past few years it
was realized that the market growth in the area of digital printing was not advancing.
The reason was thought to be the lack of portability and interoperability among these
formats. Another reason was the difficulty for commercial printers to enter into VDP
because the current tools require the printer to be involved in all aspects of a job
authoring and also the print production. If these two aspects could be separated, growth
could be gained in the digital printing area. Authoring involves both database expertise
and graphic design expertise.

The Print On Demand initiative (PODi), a consortium of vendors, attempted to create a
non-proprietary VDP PDL, an XML based page layout format, known as Personalized
Print Markup Language (PPML). PPML is a layout technology designed to contain a
broad range of VDP RIP implementations with features that enable its support of
proprietary solutions.

Another standard developed in 2002, PPML/VDX, use chosen subsets of PPML for
specifying the page layout, PDF for specifying page content elements and JDF for
specifying the product intent. PPML, used in this way, is intended to meet the strictest
requirements of portability, interoperability and device independence in order to
separate the authoring and the print production. [21]

The PPML data can be equipped with elements called TICKET_REF. These reference
elements can refer to device parameter resources or to product intent resources. This
means that the DPL data refers to parts of the job ticket instead of the job ticket
referring to various documents and pages defined in the PDL data. This leads to
relatively complex processing requirements where many combinations of device
processing states may be established throughout the processing.

In JDF 1.1 the Digital Printing working group defined ResourceUpdate resources.
These provide a mechanism that allows the variable data PDL to refer to individual
resources or partitions of resources from within the PDL context. Tim Donahue [21]
says that it is more or less a data driven process finite state machine approach. The
problem with using this approach, ResourceUpdate for process control in a VDP
production workflow, is that it can get very complex. Another problem is that it is not
clear how imposition printing can be accomplished.

JDF does not make digital printing easier but it provides a more unified way for
producers and consumers to achieve commonality in the expression of product intent
and process control. The most complex aspect is the authoring of the VDP job and it
requires cooperation between client, designer, IT expert and printer. Tim Donahue [21]
says that it is likely that JDF will be extended to define this coordination. JDF will help
the users to focus on the requirements of the job instead of learning new vendor
proprietary tools.

25

Master Project at Nada Evelina Thunell

In JDF the model of a digital printing system usually includes combined processes
because the digital printer often handles many processes such as Imposition, Rendering
and DigitalPrinting. Some devices even have finishing devices integrated. The current
ICS2, Interoperability Conformance Specification level 2, is attempting to define a
preferred model for a digital printing system with integrated finishing.

3.4.5 Time Perspective

At the Drupa 2004 tradeshow many products that support JDF and JMF will be
presented. There will also be real-time feedback using JMF and different companies
will have done more integration efforts. It will take some time before modules can be
exchanged between different vendors without loosing some functionality, says Koen
Van De Poel [17].

Eckhard Bölke [20] says that at Drupa 2004, JDF will be an important topic, but only a
few practical examples of MIS solutions will be presented, and those will show only a
low cross linking level. By Drupa 2008 the MIS products will have fully integrated
high-level cross-linking solutions.

Another 5 years forward in time, at Drupa 2008, Rainer Prosi [16] expect one of four
scenarios

• The worst scenario is that JDF is forgotten because it was too complex.
• Some vendors have implemented it and some have not. JDF is just another

format.
• JDF version 1.x is like PDF, everybody use it.
• The last scenario would be that a simpler version of JDF, version 2.x, has been

developed, which reduces some of the problems with the complexity. CIP4
will try again with a simpler standard. Like SGML that became XML.

3.4.6 Problems

The flexibility of JDF is a great advantage but it could also be a problem. Defining
everything that is needed for every different area of the graphic arts industry is an
impossible task. Therefore JDF is extensible. This makes it necessary for systems,
which communicate with a system that have certain extensions, to also support them. If
a vendor needs to make certain extensions to the JDF schema, those extensions can
later on be included in the next version of JDF if they become broadly used. The
vendors interviewed for this thesis do not seem to think of this as a big problem but
emphasize the difficulties with multi dialects. If a system requires some optional parts
of JDF it is possible that it still cannot exchange information with systems that does not
support those parts. Problems with multi dialects can be solved with device
capabilities. Capabilities mean that a component in a workflow needs to be able to
communicate what it is capable of handling. Koen Van De Poel [17] says that one
major problem is that there are too many ways to describe product intent and that the
specification is very flexible for the producer of the JDF but gets very complex for the
JDF consumer, the ICS will help to solve this.

At this point it could be hard for especially small vendors to implement JDF to their
products because of the complexity of the standard. It takes time to understand the
specification. CIP4 is aware of this problem and therefore has an open source C++
library and a Java library for the members to use as help to make the implementation
easier. Larger vendors have more resources for this purpose. Koen Van De Poel [17] at
Agfa explains that the difficult task is not to generate JDF and that small MIS vendors
already do this. It is more complex though to interpret JDF correctly and provide real
time feedback. This is the part, which can be hard for small vendors.

26

Master Project at Nada Evelina Thunell

The two main reasons why JMF is not so widely implemented yet is because the lack
of MIS companies involved, and because there are not so many devices that can
understand http, which is the way the messages are sent. The MIS companies have
become more active this year though. Koen Van De Poel [17] says that another reason
why the implementation of JMF not has reached so far is because it touches the
internals of a product and therefore requires a lot more developing efforts.

There are no rules for what is demanded of a product to be called JDF compatible. A
product can be completely based on JDF, which means that it uses both JDF as an
internal format and for the interface. But it can also just use JDF for the interface,
which actually is all that is needed for it to communicate with other interfaces. The ICS
will make it possible for products to conform to different levels of JDF.

3.4.7 JDF Version 1.2

In the next version of JDF, version 1.2, CIP4 has defined JDF for preflight and
enhanced the capabilities constraints. The ICS is also new for version 1.2. Another
process defined is digital file transfer, enhancements of transport protocol which means
that SOAP has been defined as transport layer to send JDF and JMF within the
workflow. JDF for newspaper printing will not be defined for this version. CIP4 plan to
release version 1.2 in the third quarter of 2003 and at Drupa 2004 1.2 conforming
products will be demonstrated.

27

Master Project at Nada Evelina Thunell

4 Conclusions
4.1 CIP4 JDF Editor

The result from the user test showed that the interface was easy to grasp and well
arranged which imply that the interface of the CIP4 JDF Editor was designed and
implemented as intended. The metaphors and procedures used were similar to other
applications, which makes it easy to get started. There are still some bugs and
unsupported features, like printing and undo and redo, which would make the
application better if they were implemented. It is possible that more time should have
been reserved for testing, especially for the Mac version.

4.2 Status of JDF and JMF Today

It was very hard to get responses from most of the vendors, even after reminding them
repeatedly. There was a lot of detailed data to input, so completing the survey became a
quite time consuming task. I think that was discouraging for many of the vendors. That
may also be the reason why some them left a lot of open points. Another reason could
be that it is very sensitive to expose such detailed information about their products,
since it will be exposed to competitors. Therefore we gave them the opportunity to
supply the data anonymously, which some of the vendors did, but in general it did not
seem to make them give more complete answers. If the composition of the
interoperability matrix would not have coincided with the interoperability test events in
San Jose I think it is likely that many vendors would not have been participating at all.
I think that it would have been more interesting to see what the interoperability matrix
would have looked like if the participation among the CIP4 members were mandatory
and I also believe that it would have made a better base for making comments on the
status of JDF. It is known that some of the companies that chose not to participate have
products that are JDF enabled. Therefore it is hard to draw conclusions from the
matrix.

The interoperability matrix was used during the test events in San Jose and was found
useful for matchmaking. A total of 25 products were represented in the interoperability
matrix. This shows that JDF actually is ready to be implemented and that the vendors
themselves really stake on JDF. 4 of the products in the matrix have only planned
support for JDF. It is important to remember though that the JDF concept is not fully
proven in practice yet. It is hard to find negative voices about JDF today; the reason is
probably that JDF has not been so widely tested by the end-users yet and all the
information about the standard is to be found from the vendors, the developers of the
standard. That a test event actually is possible to realize proves that the development
has reached far and that JDF can be used in some areas of the printing industry.
Everyone seem to agree on that Drupa 2004 is an important event for JDF and that
many interoperable products will be presented then.

The companies that supplied data to the matrix were mainly companies developing
prepress products and the reason can either be that the development has primarily been
focused on the prepress area or that those companies just happened to answer. Only 7
of the 25 products in the matrix support some JMF level. The MIS vendors are
becoming more active and therefore it is likely that implementations of JMF will be
more common soon. JDF is ready to be used in some areas of the printing industry but
the full benefits of the standard will not be seen before JMF is supported in the
products. There is also a lot of cooperation between organizations and other standards,
like IfraTrack to make them compatible.

28

Master Project at Nada Evelina Thunell

The development of JDF has been going on for four years. CIP4 themselves seem to
think that the standard has reached far and has been more adopted than expected in that
time. Compared to IfraTrack many more companies are implementing JDF support in
their products than was done with IfraTrack when that standard was in the same stage
of development as JDF is today.

Almost every important actor in the graphic arts industry supports the development of
JDF, which makes it likely that it will be the standard format for workflow automation
in the future. But many voices say that the complexity is a problem, a problem that
CIP4 is aware of. To make this complexity easier to handle, especially for the small
developers, CIP4 should publish more examples, sample code and guidelines for how
to implement a JDF supporting system. Every interviewed vendor agrees on that JDF is
a sales argument; it is a buzzword in the printing industry.

29

Master Project at Nada Evelina Thunell

5 Recommendations
The following features have not been implemented in the CIP4 JDF Editor and are
suggested for the continued development:

• Schema validation
• Foreign and private namespaces
• refElements
• Partition display
• Undo and redo
• Drag and drop
• Source view
• Hide and show attributes in tree view

There have also been some problems with the Macintosh version that needs to be taken
care of. We did not have the time to test the Macintosh version properly.

One other feature that could be interesting in an application like the CIP4 JDF Editor is
the ability to execute the JDF process associated with the JDF file displayed in the
editor. This could be done with the return URL setup to notify the editor so that it could
be automatically reloaded after process execution. This would allow the user to see
how process execution modifies the JDF and allow a quick means for testing processes.
There are methods in the CIP4 Java JDF Library for submitting the JDF to process
execution.

Another suggestion is to give the CIP4 JDF Editor the ability to extract a table from the
content of a JDF file a certain product has generated. The table will contain information
about all the possible processes, resources, elements and attributes in the JDF file. This
table will be useful for interoperability purposes, a more automated way of putting
together information than the interoperability matrix.

Many users prefer to view the file in the process view. Therefore it would be helpful to
show the errors in that view as well. This could be done with a red border instead of a
black around the invalid resource or JDF node. The error message could appear in the
tool tip when dragging the cursor over that resource or JDF node.

The new version of the CIP4 Java JDF Library was not ready when our project ended,
but using that instead would make the application faster. It also contains improvements
to the validation, which will make it more correct.

The interoperability matrix will need to be updated, and it is intended that the CIP4
members shall do that themselves at the CIP4 website.

30

Master Project at Nada Evelina Thunell

6 List of References
[1] http://www.cip4.org, JDF Specification Version 1.1 Revision A, 2003-04-07

[2] http://www.xmlspy.com/, 2003-06-11

[3] http://www.eclipse.org, 2003-05-27

[4] http://www.rational.com/, 2003-06-11

[5] http://www.ej-technologies.com/, 2003-06-11

[6] The Euprima Story board summary, Version 1.1, http://www.euprima.org

[7] http://www.morphon.com/, 2003-06-11

[8] http://www.vervet.com/xmlpro.html, 2003-06-11

[9] http://sourceforge.net/projects/pollo/, 2003-06-11

[10] http://www.xmloperator.net/, 2003-06-11

[11] http://www.webattack.com/get/xmlnotepad.shtml, 2003-06-11

[12] http://developer.java.sun.com/developer/techDocs/hi/repository/, The Java Look
and Feel Repository, 2003-05-06

[13] http://www.stcsig.org/usability/, 2003-05-22

[14] http://www.cip4.org, JDF White Paper, 2003-05-07

[15] Hedin B., Fällström F., IfraTrack functionality using JDF methods and syntax,
http://www.tu.se, 2003

[19] Müller T., IfraTrack production using the Job Definition Format JDF,
http://www.ifra.com, January 2003

6.1 Interviews

[16] Rainer Prosi, Chief technical officer CIP4, Heidelberger Druckmaschinen AG,
2003-04-09

[17] Koen Van de Poel, chairman Prepress working group, Agfa, 2003-04-29

[18] Frank Theede, chairman Newspaper working group, ppi Media, 2003-03-05

[20] Eckhard Bölke, Euprima, IRD, 2003-05-08

[21] Tim Donahue, Chairman Digital Printing working group, NexPress Solutions,
2003-05-09

31

http://www.morphon.com/

Master Project at Nada Evelina Thunell

7 Appendixes
7.1 Appendix A – A JDF Sample File
<?xml version="1.0" encoding="UTF-8"?>
<JDF DescriptiveName="Example File" ID="id0123456789" Status="Waiting" Type="Product" Version="1.1" xmlns="http://www.CIP4.org/JDFSchema_1">

<AuditPool>
<Created Author="CIP4 JDFWriter" TimeStamp="2003-04-14T15: 13:10+01:00"/>

</AuditPool>
<JDF DescriptiveName="Teacher's Edition" ID="id1" JobPartID="0" Status="Waiting" Type="Product">

<ResourceLinkPool>
<ComponentLink Amount="100" Usage="Input" rRef="link1"/>
<ComponentLink Amount="100" Usage="Input" rRef="link2"/>
<ComponentLink Amount="100" ProcessUsage="Cover" Usage="Input" rRef="link3"/>

</ResourceLinkPool>
<JDF DescriptiveName="Teacher's Insert" ID="id2" JobPartID="2" Status="Waiting" Type="Product">

<ResourcePool>
<SizeIntent Class="Intent" ID="link4" Locked="false" Status="Unavailable">

<Dimensions DataType="XYPairSpan" Preferred="612 792" Range="576 756~648 828"/>
<Pages DataType="IntegerSpan" Preferred="240"/>

</SizeIntent>
</ResourcePool>
<ResourceLinkPool>

<SizeIntentLink Usage="Input" rRef="link4"/>
<ComponentLink Amount="100" Usage="Output" rRef="link2"/>

</ResourceLinkPool>
</JDF>
<ResourcePool>

<Component Amount="100" Class="Quantity" ComponentType="PartialProduct" DescriptiveName="Insert" ID="link3" Locked="false" Status="Unavailable"/>
</ResourcePool>

</JDF>
<ResourcePool>

<Component Amount="100" Class="Quantity" ComponentType="FinalProduct" DescriptiveName="Teacher's Edition Component" ID="link1" Locked="false" Status="Unavailable"/>
<Component Amount="2000" Class="Quantity" ComponentType="PartialProduct" ID="link3" Locked="false" Status="Unavailable"/>
<Component Amount="1000" Class="Quantity" ComponentType="FinalProduct" DescriptiveName="Student's Book" ID="link5" Locked="false" Status="Unavailable"/>

</ResourcePool>
<JDF DescriptiveName="Cover" ID="id3" JobPartID="1" Status="Waiting" Type="Product">

<ResourceLinkPool>
<ComponentLink Amount="2000" Usage="Output" rRef="link3"/>
<SizeIntentLink Usage="Input" rRef="link6"/>

</ResourceLinkPool>
<ResourcePool>

32

Master Project at Nada Evelina Thunell

<SizeIntent Class="Intent" ID="link6" Locked="false" Status="Unavailable">
<Dimensions DataType="XYPairSpan" Preferred="612 792" Range="576 756~648 828"/>

</SizeIntent>
</ResourcePool>

</JDF>
<JDF DescriptiveName="Student's Edition" ID="id4" JobPartID="3" Status="Waiting" Type="Product">

<ResourceLinkPool>
<ComponentLink Amount="1000" Usage="Output" rRef="link5"/>
<ComponentLink Amount="1000" Usage="Input" rRef="link7"/>
<ComponentLink Amount="1000" ProcessUsage="Cover" Usage="Input" rRef="link3"/>

</ResourceLinkPool>
<JDF DescriptiveName="Student's Insert" ID="id5" JobPartID="4" Status="Waiting" Type="Product">

<ResourceLinkPool>
<ComponentLink Amount="1000" Usage="Output" rRef="link7"/>
<SizeIntentLink Usage="Input" rRef="link8"/>

</ResourceLinkPool>
<ResourcePool>

<SizeIntent Class="Intent" ID="link8" Locked="false" Status="Unavailable">
<Dimensions DataType="XYPairSpan" Preferred="612 792" Range="576 756~648 828"/>
<Pages DataType="IntegerSpan" Preferred="198"/>

</SizeIntent>
</ResourcePool>

</JDF>
<ResourcePool>

<Component Amount="1000" Class="Quantity" ComponentType="PartialProduct" DescriptiveName="Student's Insert" ID="link7" Locked="false" Status="Unavailable"/>
</ResourcePool>

</JDF>
</JDF>

33

Master Project at Nada Evelina Thunell

7.2 Appendix B – A JMF Sample File

<?xml version="1.0" encoding="UTF-8"?>
<JMF SenderID="Controller1" TimeStamp="2003-05-06T19: 17:31+00:00" Version="1_1" xmlns="http://www.CIP4.org/JDFSchema_1_1">

<Response Class="Parameter" ID="Link0123456789" ReturnCode="0" Type="QueueStatus" refID="0815" xmlns="http://www.CIP4.org/JDFSchema_1_1">
<Queue DeviceID="Device1" PT:QueueEntryIDCnt="12" Status="Waiting" xmlns:PT="www.privateSchema.com">

<QueueEntry JobID="ID0123456789_1" PT:filename="File1.jdf" Priority="90" QueueEntryID="Device1_1" Status="Running" SubmissionTime="2003-02-17T09:18:50+00:00"/>
<QueueEntry JobID="ID0123456789_2" PT:filename="File2.jdf" Priority="0" QueueEntryID="Device1_2" Status="Held" SubmissionTime="2003-02-17T09:18:48+00:00"/>

</Queue>
</Response>

</JMF>

34

Master Project at Nada Evelina Thunell

7.3 Appendix C – Evaluation of XML Editors

 Morphon
(Commercial)

XMLSpy
(Commercial)

XMLPro
(Commercial)

Pollo
(Open source)

XML operator
(Open source)

XMLNotepad
(Freeware)

CIP4 JDF
Editor

Views Tree
Source (badly
arranged)

Source
Browser
Authentic
Schema
Grid

Tree
Source (in pop-up
window)

Tree
Source

Tree
Source

Tree
Source

Tree
Source?
Process
Error

Editing
concepts

Undo, redo
Cut, copy, paste
Drag & drop
Edit namespaces

Undo, redo
Cut, copy, paste
Insert

Undo (only 1 step)
Cut, copy, paste
Drag & drop
Right mouse menu

Undo
Cut, copy, paste
Drag & Drop
Insert tree node

Undo
Cut, copy, paste
Move, replace,
remove

Undo
Cut, copy, paste
Add, delete,
duplicate
Move, demote,
promote
Drag & drop

Undo, redo
Cut, copy, paste
Move, add,
duplicate
Drag & Drop
Editing from right
mouse click menu
and main menu

Schema
validation
(When?)

Only DTD
validation

Automatically when
open, save and
change view.
A validate button.
Re-validate button
after change.

Only DTD
validation

Only in tree view
when the validate
button is pressed
W.f check only in text
view

Only RELAX NG
schemas and DTD
validation.

Should be
validated when the
file is opened but
we have not been
able to get the
validation to work

Yes
When opened,
saved, closed and
choose from menu.
When entering a
new value?

Namespace
handling

Yes (for DTDs) Yes No Yes but does not
work completely,
problem with xsi.

RELAX NG supports
namespaces.

Yes according to
the spec. Have not
tested because no
validation.

Yes

Handle of
invalid/not
well formed
(w.f.) XML?

No validation: does
nothing abut
invalid files
Non w.f files
cannot be open,
gives error
message

Checks if w.f. when
opened and
highlights the
errors. Cant
validate if not w.f
Invalid files can be
saved, but gives a
warning.

Error message
when not w.f files
are opened, shows
the error clearly

Non w.f files opens in
text view, error
message shows when
trying to switch to
tree view or press
check w.f. button.
W.f errors are
highlighted.
Gives good error
message if invalid
after validation.

Error message
when non w.f. file
is opened. Only
text view can be
opened then but is
not editable

Cant open a not
w.f file. Gives error
message specifying
the error.

Should be able to
open an invalid file
but give a warning
and an error
message, highlight
the error.
Edit non w.f files
from source view?

Help Very good help Yes Yes No No Yes Tool-tip help
Long help

35

Master Project at Nada Evelina Thunell

 Morphon
(Commercial)

XMLSpy
(Commercial)

XMLPro
(Commercial)

Pollo
(Open source)

XML operator
(Open source)

XMLNotepad
(Freeware)

CIP4 JDF
Editor

Language Java Java Java Java Java ? Java

Source code No No No Yes Yes No, only code
samples

Window
Manager

Swing ? ? Swing Swing ? Swing

Comments Pluggable Look &
feel.
Chose layout.
3 languages.
Well arranged.

No tree view.
W.f. check button.
Very clear error
messages.
Spell check.
Code generator.
Takes time to learn
all features to fully
use XMLSpy.
Well arranged.
Can show the
schema.

Cannot edit in the
text window.
Only 1 step undo.
Find.

Badly arranged, no
clear overview.
W.f check button.
Error message
appears not in the
warning box, hard to
detect.

Pluggable look &
feel.
Can’t see file name
of open file.
Special move
menu.
Hard to
understand.

Very simple to
understand & get
started with.
Different icons for
elements.
Cant open if
invalid.
Can write schemas
but not DTD.
Good error
message when
opening an invalid
file.
Find.

Look & feel
Internationalization
Unlimited undo,
redo.
Cross platform
Search

36

Master Project at Nada Evelina Thunell

7.4 Appendix D – The Interoperability Matrix

R = Restricted Type of Product: 1: Prepress output management system
C = Consume 2: Production planning and control system
P = Produce 3: MIS
* = Combine 4: Prepress JDF consuming Device (Trapper, Color Matcher, RIP…)
PL = Planned 5: Press JDF Consuming device (Digital Press, Press Control System…)
 6: Postpress JDF Consuming device (Cutting, Binding, Folding…)

JMF messaging levels 0-4 corresponds to the levels No messaging, Notification, Query support, Command support and Submission support

Pr
od

uc
t

Ap
og

ee
Se

rie
s3

Ap
og

ee
X

JD
F

M
an

ag
er

M
ar

kz
N

et

an
on

ym
ou

s1

an
on

ym
ou

s2

N
or

m
al

iz
er

Fa
st

La
ne

Sh
in

oh
ar

a
M

ac
hi

ne
ry

El
ec

R
oc

Pr
in

tS
ap

ie
ns

D
AL

iM
 F

iC
EL

LE
 v

3.
0

D
AL

iM
 T

W
iS

T
v5

.0

Pr
in

tN
et

Vi
o

D
ig

ita
l W

or
kf

lo
w

 A
pp

lic
at

io
n

Su
ite

 /
4.

2

an
on

ym
ou

s3

JD
F-

Li
nk

an
on

ym
ou

s4

H
ag

en
 O

A
7.

1
w

ith
 P

re
ss

 C
on

ne
ct

or

an
on

ym
ou

s5

Be
st

 C
ol

or
pr

oo
f /

 S
cr

ee
np

ro
of

 4
.6

.3

O
S

AB
SY

S

Be
st

 R
em

ot
ep

ro
of

 1
.2

M
et

aD
im

en
si

on

Pr
in

ec
t P

rin
tR

ea
dy

 S
ys

te
m

JDF Features PL PL PL PL
Partitioning C, R C, R C, R P, R C P, R C, R C P,R C P/C
Combined Processes C, R C, R C C, R C, R P/C,R P, R C, R C C P/C
ProcessGroup Nodes C C, R C P/C,R C P, R P, R P/C
Capabilities C, R P, R
Product Intent Resources C, R C C, R P/C P/C P, R C, R
Process Resources and Processes C, R C, R C C, R P/C,R C P/C,R P, R P/C,R P/C P P, R C P/C
Audits P P, R P C C, R P, R P/C P/C C, R P P/C
Support for SOAP

37

Master Project at Nada Evelina Thunell

38

Pr
od

uc
t

Ap
og

ee
Se

rie
s3

Ap
og

ee
X

JD
F

M
an

ag
er

M
ar

kz
N

et

an
on

ym
ou

s1

an
on

ym
ou

s2

N
or

m
al

iz
er

Fa
st

La
ne

Sh
in

oh
ar

a
M

ac
hi

ne
ry

El
ec

R
oc

Pr
in

tS
ap

ie
ns

D
AL

iM
 F

iC
EL

LE
 v

3.
0

D
AL

iM
 T

W
iS

T
v5

.0

Pr
in

tN
et

Vi
o

D
ig

ita
l W

or
kf

lo
w

 A
pp

lic
at

io
n

Su
ite

 /
4.

2

an
on

ym
ou

s3

JD
F-

Li
nk

an
on

ym
ou

s4

H
ag

en
 O

A
7.

1
w

ith
 P

re
ss

 C
on

ne
ct

or

an
on

ym
ou

s5

Be
st

 C
ol

or
pr

oo
f /

 S
cr

ee
np

ro
of

 4
.6

.3

O
S

AB
SY

S

Be
st

 R
em

ot
ep

ro
of

 1
.2

M
et

aD
im

en
si

on

Pr
in

ec
t P

rin
tR

ea
dy

 S
ys

te
m

Intents Most, C
ArtDeliveryIntent P/C C, R
BindingIntent C, R P/C P, R
ColorIntent C P/C P, R
DeliveryIntent P/C P, R
EmbossingIntent P/C
FoldingIntent P/C
HoleMakingIntent P/C
InsertingIntent P/C
LaminatingIntent P/C
LayoutIntent C P/C P, R
MediaIntent C,R P/C P, R
NumberingIntent P/C
PackagingIntent P/C
ProductionIntent P/C
ProofingIntent P/C
ShapeCuttingIntent P/C
SizeIntent P/C

Process
Approval P, R
ColorSpaceConversion P/C,R P, R C P/C
ColorantZoneDetails
Combined RIPing P/C
ConventionalPrinting P/C P/C, R P P
DigitalDelivery P/C, R
DigitalPrinting P/C
IDPrinting P/C

Master Project at Nada Evelina Thunell

39

Pr
od

uc
t

Ap
og

ee
Se

rie
s3

Ap
og

ee
X

JD
F

M
an

ag
er

M
ar

kz
N

et

an
on

ym
ou

s1

an
on

ym
ou

s2

N
or

m
al

iz
er

Fa
st

La
ne

Sh
in

oh
ar

a
M

ac
hi

ne
ry

El
ec

R
oc

Pr
in

tS
ap

ie
ns

D
AL

iM
 F

iC
EL

LE
 v

3.
0

D
AL

iM
 T

W
iS

T
v5

.0

Pr
in

tN
et

Vi
o

D
ig

ita
l W

or
kf

lo
w

 A
pp

lic
at

io
n

Su
ite

 /
4.

2

an
on

ym
ou

s3

JD
F-

Li
nk

an
on

ym
ou

s4

H
ag

en
 O

A
7.

1
w

ith
 P

re
ss

 C
on

ne
ct

or

an
on

ym
ou

s5

Be
st

 C
ol

or
pr

oo
f /

 S
cr

ee
np

ro
of

 4
.6

.3

O
S

AB
SY

S

Be
st

 R
em

ot
ep

ro
of

 1
.2

M
et

aD
im

en
si

on

Pr
in

ec
t P

rin
tR

ea
dy

 S
ys

te
m

Process
ImageSetting C C C P
Imposition C C P/C, R C P
InkZoneCalculation P, R
Interpreting C C P/C, R
LayoutPreparation P/C, R
Preflight P, R P
Proofing P, R
PSToPDFConversion P/C,R P, R
Rendering C C P, R P/C, R
RIP'ing C C P, R C
Separation C C P, R
Screening C C P,R
Trapping C C P/C, R P/C
ResourceDefinition P/C,R
Group C
Combined C C
Collection C
CoverApplication C
EndSheetGlueing C
Folding P/C, R P, R
Gathering C
HoleMaking P/C, R
Inserting C
Stitching C P/C, R
Trimming C P/C, R
BoxPacking P, R
Cutting P, R

Master Project at Nada Evelina Thunell

40

Pr
od

uc
t

Ap
og

ee
Se

rie
s3

Ap
og

ee
X

JD
F

M
an

ag
er

M
ar

kz
N

et

an
on

ym
ou

s1

an
on

ym
ou

s2

N
or

m
al

iz
er

Fa
st

La
ne

Sh
in

oh
ar

a
M

ac
hi

ne
ry

El
ec

R
oc

Pr
in

tS
ap

ie
ns

D
AL

iM
 F

iC
EL

LE
 v

3.
0

D
AL

iM
 T

W
iS

T
v5

.0

Pr
in

tN
et

Vi
o

D
ig

ita
l W

or
kf

lo
w

 A
pp

lic
at

io
n

Su
ite

 /
4.

2

an
on

ym
ou

s3

JD
F-

Li
nk

an
on

ym
ou

s4

H
ag

en
 O

A
7.

1
w

ith
 P

re
ss

 C
on

ne
ct

or

an
on

ym
ou

s5

Be
st

 C
ol

or
pr

oo
f /

 S
cr

ee
np

ro
of

 4
.6

.3

O
S

AB
SY

S

Be
st

 R
em

ot
ep

ro
of

 1
.2

M
et

aD
im

en
si

on

Pr
in

ec
t P

rin
tR

ea
dy

 S
ys

te
m

JDF Process Resources All C
CuttingParams P, R
ByteMap P/C
ColorantZoneDetails C C
ColorantControl C C P/C P, R C, R P/C, R P/C, R P, R P/C, R P/C P/C
Color P/C P/C
ColorantParams C C
ColorantOrder C C
ColorPool C C P/C P/C
ColorSpaceConversionParams C P, R P/C, R P/C, R C P/C
ConventionalPrintingParams C, R P
Component P/C,R P/C, R P P,C P, R P/C
Device P P/C, R P, R
DigitalDeliveryParams P/C, R
DigitalPrintingParams P/C,R P/C
ExposedMedia C C C, R P/C, R P, R P/C, R P/C P/C
FileSpec Layout C C P/C P/C
FitPolicy C P/C
FoldingParams P/C, R
FontParams C P, R P, R
FontPolicy P, R
HoleMakingParams P/C, R
IDPrintingParams P/C
ImageCompressionParams C
ImageSetterParams P/C, R P, R P/C P/C
Ink C P/C
InkZoneCalculationParams P, R
InterpretingParams C C P/C
LayoutPreparationParams P/C, R C
Layout C C C, R C P/C
LayoutElement C C P/C P/C
Media C C P, R C, R P P/C P/C, R P, R P/C, R P/C P/C

Master Project at Nada Evelina Thunell

41

Pr
od

uc
t

Ap
og

ee
Se

rie
s3

Ap
og

ee
X

JD
F

M
an

ag
er

M
ar

kz
N

et

an
on

ym
ou

s1

an
on

ym
ou

s2

N
or

m
al

iz
er

Fa
st

La
ne

Sh
in

oh
ar

a
M

ac
hi

ne
ry

El
ec

R
oc

Pr
in

tS
ap

ie
ns

D
AL

iM
 F

iC
EL

LE
 v

3.
0

D
AL

iM
 T

W
iS

T
v5

.0

Pr
in

tN
et

Vi
o

D
ig

ita
l W

or
kf

lo
w

 A
pp

lic
at

io
n

Su
ite

 /
4.

2

an
on

ym
ou

s3

JD
F-

Li
nk

an
on

ym
ou

s4

H
ag

en
 O

A
7.

1
w

ith
 P

re
ss

 C
on

ne
ct

or

an
on

ym
ou

s5

Be
st

 C
ol

or
pr

oo
f /

 S
cr

ee
np

ro
of

 4
.6

.3

O
S

AB
SY

S

Be
st

 R
em

ot
ep

ro
of

 1
.2

M
et

aD
im

en
si

on

Pr
in

ec
t P

rin
tR

ea
dy

 S
ys

te
m

JDF Process Resources All C
ObjectResolution C C C P/C
PDFInterpretingParams C C
PDFToPSCoversionParams C P/C
PreflightProfile P, R
ProofingParams P, R P/C, R P/C, R
PSToPDFConversionParams C P, R
RenderingParams C C P/C, R P, R C P/C
RunList C C P/C P, R P/C P/C, R P/C, R P/C P/C
ScreeningParams C C P, R P/C
ScreenSelector C C P
SeparationControlParams C C P, R
SeparationSpec P
Sheet P, R C P/C
Signature C C
Surface C P/C
StitchingParams P/C, R
TransferCurvePool P, R
TrapRegion C C P/C
TrappingDetails P/C
TrappingParams C C P/C, R P/C
TrimmingParams P/C, R
Partitioned Resource and Keys
Separation P/C, R
SheetName C, R
Side P/C, R
AuditPool update in supplied JDF file by receiver
Notification P, R

Master Project at Nada Evelina Thunell

42

Pr
od

uc
t

Ap
og

ee
Se

rie
s3

Ap
og

ee
X

JD
F

M
an

ag
er

M
ar

kz
N

et

an
on

ym
ou

s1

an
on

ym
ou

s2

N
or

m
al

iz
er

Fa
st

La
ne

Sh
in

oh
ar

a
M

ac
hi

ne
ry

El
ec

R
oc

Pr
in

tS
ap

ie
ns

D
AL

iM
 F

iC
EL

LE
 v

3.
0

D
AL

iM
 T

W
iS

T
v5

.0

Pr
in

tN
et

Vi
o

D
ig

ita
l W

or
kf

lo
w

 A
pp

lic
at

io
n

Su
ite

 /
4.

2

an
on

ym
ou

s3

JD
F-

Li
nk

an
on

ym
ou

s4

H
ag

en
 O

A
7.

1
w

ith
 P

re
ss

 C
on

ne
ct

or

an
on

ym
ou

s5

Be
st

 C
ol

or
pr

oo
f /

 S
cr

ee
np

ro
of

 4
.6

.3

O
S

AB
SY

S

Be
st

 R
em

ot
ep

ro
of

 1
.2

M
et

aD
im

en
si

on

Pr
in

ec
t P

rin
tR

ea
dy

 S
ys

te
m

Act on Scheduling attributes supplied in NodeInfo Yes
Start C, R
End C, R
JMF: Responses to NodeInfo queries in the supplied JDF file P/C, PL P/C, PL
StatusQuery C, R

JMF: Capabilities report in response to a KnownDevices Query All P/C All P/C

JMF: Other Query & Response with Subscription/Signal
Events C, R
KnownMessages C, R
KnownJDFServices C,R
Status C, R
Signal-Response P/C,R P/C,R
JMF Queue Support Commands All C All C Yes, C Yes, P/C
SubmitQueueEntry C, R C, R
QueueStatus C, R

Execution Model
Serial Processing P/C,R
Parallel Processing P/C,R

Test Running
Support for test runs P/C, R

Others
output resource location etc. update in supplied JDF file P/C

Master Project at Nada Evelina Thunell

Product Company Product Status Type of Product
Produce Consume Produce Consume Produce Consume

Apogee Series3 Agfa-Gevaert N.V. 1.0 Released 1 & 4
:ApogeeX Agfa-Gevaert N.V. 1.0,1.1 Released 1 & 4
JDF Manager Müller Martini 1.1, 1.1A, 1.2 0 0 0 0 Alpha/Beta 6
MarkzNet, Current version is 1.6 Markzware Software 1.1, 1.1A 1.1, 1.1A Released 4
anonymous1 anonymous 1.1, 1.1A, 1.2(P) 1.1, 1.1A, 1.2(P) 1 0 P P Alpha/Beta 5
anonymous2 anonymous2 1.1, 1.1A Alpha/Beta 6
Normalizer Adobe Systems Incorporated 1.1 / 1.1A 1.1, 1.1A 0 0 0 0 Released 4
FastLane Esko-Graphics 1.0, 1.1, 1.1A 0 0 0 0 Alpha/Beta 1 & 4

SHINOHARA MACHINERY. CO., LTD.
ElecRoc Workflow Management System, (2.0 Beta Version) Beijing Founder Electronics Co., Ltd. 1.0 1.0 (Internally) N N To be determined Alpha/Beta 1 & 4
PrintSapiens Olive Inc. Released
DALiM FiCELLE v3.0 Dalim Software GmbH 1.2 1.2 4(R) 4(R) Alpha/Beta 1, 2 & 4
DALiM TWiST v5.0 Dalim Software GmbH 1.2 1.2 4(R) 4(R) Alpha/Beta 4
PrintNet ppi Media GmbH Alpha
Vio Digital Workflow Application Suite / 4.2 Vio Worldwide Limited
anonymous3 anonymous3 1.1, 1.1A Released 2 & 3
JDF-Link MAN Roland Druckmaschinen AG
anonymous4 anonymous4 1.0, 1.1, 1.1A, 1.2 2(3) 2(3) 2(3) 2(3) 5
Hagen OA 7.1 with Press Connector Printcafe Software, Inc. 1.1, 1.1A 1.1, 1.1A 4(R) 1 Alpha/Beta 3
anonymous5 anonymous5
Best Colorproof / Screenproof 4.6.3 Best GmbH, A division of EFI 1.0, 1.1, 1.1A 1.0, 1.1, 1.1A 0 0 0 0 Released 4
Best Remoteproof 1.2 Best GmbH, A division of EFI 1.0, 1.1, 1.1A 1.0, 1.1, 1.1A 0 0 0 0 Released 4
MetaDimension Heidelberger Druckmaschinen AG 1.1, 1.1A 4 (R) Alpha/Beta 1 & 4
Prinect PrintReady System Heidelberger Druckmaschinen AG 1.1, 1.1A 1.1, 1.1A 4(Internally) 4(Internally) Alpha/Beta 1 & 4
OS ABSYS Orga Soft HmbH 1.1, 1.1A Released 2 & 3

JMF Version and Levels
JDF Version JMF 1.1/JDF 1.1A JMF 1.2

43

