JDF Specification

Release: 1.7

Clrd
)

16 August 2020

ORGANIZATION

CIP4 THANKS ITS PARTNER LEVEL MEMBERS

Al AGFA @ O CloudLab

Adobe

HEIDELBZRG @ RICOH xXerox i\

&

Legal Notice

Use of this document is subject to the following conditions which are deemed accepted by any person or entity mak-
ing use hereof.

Copyright Notice

Copyright © 2000-2020, International Cooperation for the Integration of Processes in Prepress, Press and Postpress
(CIP4) with registered office in Zurich, Switzerland. All Rights Reserved. CIP4 hereby grants to any person or entity ob-
taining a copy of the Specification and associated documentation files (the “Specification”) a perpetual, worldwide,
non-exclusive, fully paid-up, royalty-free copyright license to use, copy, publish, distribute, publicly display, publicly
perform, and/or sublicense the Specification in whole or in part verbatim and without modification, unless otherwise
expressly permitted by CIP4, subject to the following conditions. This legal notice SHALL be included in all copies con-
taining the whole or substantial portions of the Specification. Copies of excerpts of the Specification which do not exceed
five (5) pages SHALL include the following short form Copyright Notice: Copyright © 2000-2020, International Coop-
eration for the Integration of Processes in Prepress, Press and Postpress (CIP4) with registered office in Zurich, Swit-
zerland.

Trademarks and Tradenames

International Cooperation for the Integration of Processes in Prepress, Press and Postpress, CIP4, Exchange Job Defini-
tion Format, XJDF, Exchange Job Messaging Format, XJMF, Job Definition Format, JDF, Job Messaging Format, JMF and
the CIP/ logo are trademarks of CIP4.

Rather than put a trademark symbol in every occurrence of other trademarked names, we state that we are using the
names only in an editorial fashion, and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

Except as contained in this legal notice or as allowed by membership in CIP4, the name of CIP4 SHALL not be used in
advertising or otherwise to promote the use or other dealings in this specification without prior written authorization
from CIP4.

Waiver of Liability

The JDF Specification is provided as is, without warranty of any kind, express, implied, or otherwise, including but
not limited to the warranties of merchantability, fitness for a particular purpose and non infringement. In no event
will CIP4 be liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise, arising
from, out of, or in connection with the JDF Specification or the use or other dealings in the JDF Specification.

JDF SPECIFICATION 1.7

JDF SPECIFICATION 1.7

Table of Contents

Chapter 1Introduction1

1.1 Further Information Lo e 1
TITINMTOKEN repository o o o e e e e e e e e e e e e e e e 1
T12Errata e e e e 1
1.2Background on IJDF L L L e e e e e e 1
T3 Useof XML. o e e e e e e e s e 2
1.3.1Useof XML Namespaces o o v i i it e e e e e e 2
1.3.2Useof XML Schema e e e 2
1.4 Conventions Used in this Specification o 0oL 2
1.4.1Document References L e 2
T4.2TextStyles e e e e e e e e e e e e 2
1.4.3 XPath Notation Used in this Specification., 2
1.4.4 Modification Notes L e e e 3
1.4.5 Specification of Cardinality 3
1.4.6 Template for Narrative Descriptionof Resources 4
1.4.7 Template for Tables that DescribeElements 4
TS5 GloSSary . . . o o e e e e e e e e e e e e e e e e e e e 5
1.6 Conformance L e e e e e e e 10
1.6.1 Conformance Terminology o o o e e e e e e e 10
1.6.2 Conformance Requirements for JDF Entities 10
1.6.3 Conformance to Settings Policy 12
1.7DataStructures L L e e e e e 12
1.7.0Units of measurement L L L e e e e 14
1.7.2Counting inJDF L L e e e e e 14
1.7.3 Human and Machine readable stringsandtokens 14

Chapter2Q0verview i v ...T

21 Introduction L L L L e e e e e e e e e e e e e 17
2.2SystemComponents. L L e e e e e e e e e e e e e e e 17
227JobComponents L e e e e e e e e e e e e e 17
2.2.2 Workflow ComponentRoles e e 18
2.23SystemInteraction.o e 19
23 IDFWorkflow L e e e e e e e e 20
23TJobStructure L L e e e e 20
2.4 Hierarchical Tree Structure and NetworksinJDF 22
25Roleof Messaging inJDF L e e e 24
2.6 Coordinate SystemsinJDF oL e e 24
2.6 Introduction L L L e e e e e e e e e e e 24
2.6.2 Coordinates and Transformations e 25
2.6.3 Coordinate Systems of Resourcesand Processes v v 26
2.6.4 Coordinate System Transformations oL o 26
2.6.5 Product Example: SimpleBrochure 27

JDF SPECIFICATION 1.7 iii

26.6 GeneralRules L e e e e e 31
2.6.7Homogeneous Coordinates L e e e e e e e e 32

Chapter3Structure35

3.1 Generic Contents of AllLElements L 35
3.2IDF . e e e e e e e e s e 36
3.2T1CS VersionsValue L e e e e e e e e e e e 41
33 CommonNodeTypes« . i e e e e e e e e e e e e e e e 41
3.31ProductintentNodes L e e e 42
3.3.2Process Group Nodes L e 42
3.3.3 Combined Process Nodes L e e e 44
3.3.4ProcessNodes e e e e e e e e e e e e e e 47
3.4 AncestorPool L L e e e e e e e e e e e 47
3A4TANCestor L e e e e e e e e e e e e e e 48
35AuditPool . . . L e e e e e e e e e 49
35TAudIt . . L e e e e e e e e e 50
3.5.2Created L L e e e e e e e e e 51
3.53Deleted L e e e e e 51
354 Merged L L L e e e e e e e e e e 52
355 Modified L e e e e e e e e e e e 52
3.5.6 Notification L e e e e e e e e e 52
3.5.7PhaseTime e e e e e e e e e e e e e e e 54
3.5.8 ProcessRun L L e e e e e e e e e e 56
3.5.9 ResourceAudit L L L e e e e e e e e e 57
3.510Spawned L L L e e e e e e e e e e 60
3.6 Customerinfo L L e e e e e e e e e e e e e 61
3. 7Nodelnfo L e e e e e e e e e e e e e e e e 61
3.8 ResourcePool and its Resource Children oL L0 61
3.8.1ResourcePool L e e e e e e e e 61
3.8.2ReS0UrCe e e e e e e e e e e e e e e e e e e 61
3.8.3Abstract Resource L e e e e e e e e e e 61
3.8.4ResourceClasses L e e e e e e 64
3.8.5 Position of Resources withinJDFNodes o 67
3.8.6 PipeResources L e e e e e 67
3.8.7ResourceUpdate L e e e e e e e e e e e 67
3.9 ResourcelinkPooland Resourcelink e 67
3.9.1 ResourcelinkPool e e e e e e e e 67
3.9.2Resourcelink L e e e e e e e e e 68
3.9.3 Identification of Physical Resources e 76
3.10 ResourcePool and ResourcelinkPool — Deep Structure 77
3.10.1 ResourceElement - SubelementofaResource. L. 77
3.10.2 ResourceRef - Element for Inter-Resource Linking and refelement 77
3.10.3 Set of Resources and Partitioned Subsets Thereof 79
370.4 Resource Amount L L L e 80
3.10.5 Description of Partitioned Resources Lo e 82

iv JDF SPECIFICATION 1.7

3.10.6 PartIDKeys Attribute and PartitionKeyso 0oL 0oL 89

3.10.7 Linkingto Resources L L L e e e e e e e e e e 99
3.10.8 Splitting and Combining Resourceso e e e 102
3MStatusPool e 104
312 IDF Extensibility L e e e e e e 104
3121 Namespacesin XML L e e e e e e e e e 104
312.2 Extending Process Types o i o e e e e e e e 105
3.12.3 Extending the Nodelnfo and CustomerinfoNodes 105
3.12.4 Extending Existing Resources L L Lo oL oL e 105
3125 Extending NMTOKEN Lists. o e 105
3.12.6 Creating New Resources o i e e e e e e 106
3.02.7 Future JDF Extensions L oL e e e e 106
3.12.8 Maintaining Extensions L L L Lo e e e e 106
3.12.9 Processing Unknown Extensions Lo Lo Lo 106
3.12.10 Derivation of Typesin XML Schema oo 107
313 IDFVersioning L L L e e e e e e e e 107
3.13.1JDF Versioning Requirements e e e e 107
3.13.2 IDF Version Definition L. 107
3133 IDF Version Policies Lo 107

Chapter4 LifeCycle 1M

4.1 Creation and Modification e e m
411 ProductiIntent Constructs L Lo e e m
4.1.2 Specification of Deliveryof End Products Lo 12
4.1.3 Specification of process Specifics for productintentnodes 12
4.2ProcessRouting e e e e e e e e e e 113
4.2.1 Determining Executablenodes L L L L e e e e e e 113
4.2.2 Distributing processing to Work Centersordevices 14
4.2.3 Device / Controller Selection. L 115
43 ExecutionModel. L e e e e 115
430Serialprocessing. L L e e e e e e 115
4.3.2 Partial processing of nodes with Partitionedresources. 116
4.3.3 Overlapping processing Using Pipes e 118
434 Parallel processing L e e e e e e e e e e e 122
435 Iterative processing L e e e e e e e e 123
4.3.6 Approval, Quality Control and Verification 123
4.4 Spawningand Merging L Lo Lo e e e e e e e 124
4.41 Standard Spawningand Merging L 0oL e e e e 125
4.4.2 Spawning and Merging with resource Copying 125
4.4.3 Parallel Spawning and Merging of Partitionedresources 126
4.4.4 Simultaneous Spawning and Merging of Multiplenodes 127
45Nodeand ResourcelDs L Lo Lo e e e 127
46ErrorHandling. L e e e e e e e e e e 127
4.6.1 Classification of Notifications Lo 128
4.6.2 Event Description L L e e 128

JDF SPECIFICATION 1.7 v

4.6.3 Error LoggingintheJDFFile Lo 128

4.6.4 Error Handling via Messaging JMF) e e 128
47 TestRunning e e e e e e e e e e e e e e e e e 128
4,71 Resource Status DuringaTestRun e 128

Chapter5Messaging129

S5TIMFE L o e e e e e e e 129
511Message e e e e e e e e 130
5.2 JMF Message Families e e 131
521Query . . .o e e e e e e e e 131
522Command L. L e e e e e e e e e 133
523Signal L e e e e e 134
5.24Response e e e e e e e e e e e e e e 136
5.25Acknowledge L L L e e e e e e e e 137
5.2.6 Registration L L e 139
53 JMFHandshaking L e e e 139
5.3.1Single Query/Command Response Communication 139
5.3.2 Signal and Acknowledge Handshakingo 139
5.3.3ReliableSignaling L e e e e e e e e 139
53.4 PersistentChannels Lo oL e e 140
5.3.5Subscription L L e e e e e e e e 140
5.3.6 Scope of Subscriptions L L e e e e 142
5.3.7 Deleting PersistentChannels e e e e e 142
5.4 JMF Messaging Levels L L e e e 142
55Errorand Event Messages o o o e e e e e e e e e 143
5.6 Message Template L L e e e e 143
5.6.10bject Type Column o e e e 144
57 Llistof AILJMF Messages.« o i v i i b i e e e e e 144
5.8 Messages for Events and Capabilities L Lo Lo 146
5.9 Messages to Query/Command a Job, Device or Controller 147
5.10 Messages for Pipe Control L e 148
5100 PipeParams L L e e e e e e e e e e e e e e e 148
51MQueueSupport L e e e e e e e e e e e e e 149
511.1Queue Entry ID Generation L e e e e e 149
5.12 Messages for Queue EntryHandling. L e 149
5.13 Messages for Global Handlingof Queues 00 152
513.1QueueEntryStatus L L e e e e 154
504 ElementsforQueues L L L e e e e e e e e 154
5140QueUe L e e e e e e e e e e e 154
514.2QueueEntry L. L L e e e e e e 155
5.14.3 QueueEntryDef L L e e 156
514.4 QueueFilter L L e e e e e e e e e e e e e 156
515Ganglobs L e e e e e e e e e e e e 158
5,16 Extending Messages e e e e e e e e e e e e e e e e e e 158
5061 fraTrack Support e e e e e e e e e e 159

vi JDF SPECIFICATION 1.7

507 AbortQueueEntry L L L e e e e e 159

5.17.1 AbortQueueEntryParams L L L L e e e e e e 160
518 CloseQueue L e e e e e e e e e e e e e e e e e e e 161
509EBvents L e e 161
5.20 FlushQueue L e e e e e e e e e e e e 161
5.20.1 FlushQueue Command e e e e e e e e e e 161
5.20.2 FlushQueue Query L e e e e e e e e e e 162
521FlushResources. L e e e 162
5.211 FlushResources Command Lo e 162
5.21.2 FlushResources Queryo e e e e e e e 163
522 ForceGang e e e e e e e e e 163
5221 GangCmdFilter L e e e e 164
523 GangStatus. L L e e e 164
5.231GangQuFilter L e e e e e e e e e e 164
5.23.2GangIinfo L L e e e e e e e 64
5.24 HoldQueue e e e e e e e e e e 64
5.25HoldQueueEntry e e e e e e e e e 165
5.25.1HoldQueueEntryParams. L L e e e e e e e e e e 165
5.26 KnownControllers L e e 165
527KnownDeviceso e e e e 165
5.271 DeviceFilter L L e e e 166
5.27.2Devicelist L e e e e e e 167
5.28 KnownlDFServices L e e e e e e e 167
529 KnownMessages L e e e e e e e e e 167
5.291KnownMsgQuParamso e e e e e 167
5.29.2 MessageService e e e e e e e e e e e e e e e e e e e 167
5.30 KnownSubscriptions L L L e e e e e e e 169
5.30.1SubscriptionFilter L e e e e e e e e 169
531 ModifyNode L e e e e 170
5.311 ModifyNode Command e e e e e e e 170
5.31.2 ModifyNode Signal L e 170
532NewlDF . . L e e e e e e e e e e 7m
5321 NewlDFQuery e e e e e e e e e m
5322 NewlDF Commando e e e e e e e e 172
533 Nodelnfo L e e e e e e 173
5.34 Notification e 173
5.34.1 NotificationFilter L 174
5.350ccupation L L e e e e e e e e e 174
536 0penQueue. L L e e e e e e e e e e e e e e e e e 175
537 PipeClose. e e e e e e e e e e e e e e e 175
5.38PipePause e e e e e e e e e e e e 175
539 PipePull e e e e e e 176
5,40 PipePush e e e e e e e e e e 176
541QueueStatus L L e e e e e e e e 177

JDF SPECIFICATION 1.7 vii

5.42 RemoveQueueEntry L L L e e e e e e 177

5.42.1RemoveQueueEntryParams L L L e e e e e e e e 178
5.43 RepeatMessages L e e e e e e e e e e e e e 178
5.44 RequestForAuthentication Lo e 178
5.44.1 RequestForAuthenticationCommand 000 178
5.44.2 RequestForAuthenticationQuery L L e 180
5.45 RequestQueueEntry L L L e e e e e 182
5.45.1 RequestQueueEntryParams L L e 182
5.6 RES0UICe L. e e e e e e e e e e e 183
5.46.1Resource Query L e e e e e e e e e e 183
5.46.2 Resource Command L Lo L oL e e e e e e e e e e 186
5.47ResourcePull L L L e e e e e 192
5.471ResourcePullParamso L e e e 193
5.48 ResubmitQueueEntry L L e e e e e e e e e 194
5.48.1 ResubmissionParams L oL Lo 195
5.49 ResumeQueue L e e e e e e e e e e s e 195
5.50 ResumeQueueEntry L e e e e e e 195
5.50.1ResumeQueueEntryParams L e 195
5.51ReturnQueueEntry L L e e e e e e 196
5.51.1 ReturnQueueEntryParams L L L L L 196
5.52 SetQueueEntryPosition L L L oL e 197
5.52.1QueueEntryPosParams L L e e 197
5.53 SetQueueEntryPriority L e e 197
5.53.1 QueueEntryPriParams L L oL e e 198
554ShutDown L L L e e e e e e e e e e 198
5.541ShutDownCmdParams e e e e 198
555Status L e e e 198
5.55.1StatusQuParams L e e e e e e e e e e 200
555.2Devicelnfo L e e e 201
5,553 JobPhase L e e e e 203
555.4 ModuleStatus L e e e e 205
5.56 StopPersistentChannel L e e e e 206
5.56.1StopPersChParams Lo e e 206
5.57SubmissionMethods Lo Lo 207
5.57.1SubmissionMethodso 207
5.58 SubmitQueueEntry L L e e e e e e e 208
5.58.1 QueueSubmissionParams L L L L L e e e e e e e 208
5.59 SuspendQueueEntry L L e e e e e e e e e e 210
5.59.1SuspendQueueEntryParams. L L e e e e e e 210
560Track. L e e e e e e e 21
5.61UpdatelDF L e e e e e e e e 21
5.61.1 UpdatelDF Commando e e e e e e e e e e e 211
5.61.2UpdatelDF Signal L e e e e e 211
5.62WakeUp L e e e e e e 214

viii JDF SPECIFICATION 1.7

5.62.1WakeUpCmdParams L e e e 214

Chapterb6Processeso 215

6.1 ProcessTemplate L e e e e e e e 215
6.2General Processes L Lo e e e e 216
B.2TApproval L e e e e e e e e e e e e e 216
6.22Buffer L e e e e 216
6.23Combine L e e e e e e 217
6.2.4Delivery e e e e e e e e e e 217
6.2.5 Manuallabor L e e e 217
6.2.60rdering e e e e e e e e e e e e e e e e e e e 218
6.2.7Packing e e e e e e e 218
6.2.8 QualityControl e e e e e e e e 218
6.2.9 ResourceDefinition L L e e e 219
6.210Split e e e e e e e e e 220
6.2.11 Verification Lo e e e 220
6.3 Prepress Processes Lo e e e e e e 221
6.3.1 AssetlistCreation Lo e e 221
6.3.2Bending e e e e e e e e e e e e e e e 221
6.3.3 ColorCorrection e e e e e e e e e 222
6.3.4 ColorSpaceConversion Lo e e e e e e e e 222
6.3.5ContactCopying e e e e e 223
6.3.6 ContoneCalibration Lo 224
6.3.7 CylinderlLayoutPreparation. s 224
6.3.8 DBDocTemplatelayout e e e e e e e e e e 224
6.3.9 DBTemplateMerging e e e e e e e 224
6.3.10 DieDesign L L e e e e e e e e 224
6.3.11 DieLayoutProductiono e e e 225
6.3.12 DigitalDelivery e e e e e e e e e 227
6.3.13 FilmToPlateCopying« .« o e e e e e e e e e e e e e e 228
6.3.14 FormatConversion L. oo e e e e e e e e 228
6.3.15ImageEnhancement L L L L L e e e e 228
6.3.16 ImageReplacement L L L L e 228
6.3.17 ImageSetting L L L e e 228
6.3.18 Imposition L L L L e e e e e e 229
6.3.19 InkZoneCalculation Lo e e e 238
6.3.20 Interpreting L L L e e e e e e e 239
6.3.21 LayoutElementProduction L 239
6.3.22 LayoutPreparationo 240
6.3.23 LayoutShifting L e 240
6.3.24 PageAssigning L L L L e e e e e e e e e 241
6.3.25 PDFToPSConversion o e e e e e e 241
6.3.26 PDLCreation e e e e e 241
6.3.27 Preflight e 242
6.3.28 PreviewGeneration L. L oL e e 242

JDF SPECIFICATION 1.7 ix

6.3.29 Proofing e e e e e e e 244

6.3.30 PSToPDFConversion o o o o e e e e e e e e e 244
6.3.31RasterReading L e e e e e e e e 245
6.3.32Rendering e e e e e e e e e e e e 245
6.3.33RIPINg e e e e e e e e e e e 246
6.3.34Scanning L L L L e e e e e e e e e 246
6.3.35Screening. L L L L e e e e e e 247
6.3.36Separation L L e e e e e e e e e e e e e 247
6.3.37 ShapeDefProduction L e e e e 247
6.3.38 SheetOptimizing e e e e e 248
6.3.39 SoftProofing e e e e e 248
6.3.40 Stripping L e e e e e 249
B.3.41TILNG e e e e e e e e e 250
6.3.42Trapping e e e e e e e e e e e e e e e e e e e 251
6.4 Press Processes e e e e e e e 251
6.4.1 ConventionalPrinting L L e e e e e 251
6.4.2 DigitalPrinting e e e e e e e 253
6.43 Varnishing L e e e e e e 254
6.4.4IDPrinting L L e e e e e e 255
6.5 Postpress Processes. L e e e e e e e e 255
6.5.1AdhesiveBinding L L e e e 255
6.5.2 BlockPreparation e e e e e e e 255
6.5.3BoxFolding. e e e e e e e e e e e e e e 256
6.5.4 BoxPacking L e e e e e e e 256
6.5.5Bundling L L e e e e e e 257
6.5.6 CaseMaking L L L e e e e e 257
6.5.7CasingIn L. L e e e e e e 258
6.5.8 ChannelBinding e e e e e e e e e e e 258
6.5.9 CoilBinding e e e e e e e e e 259
6.5.10 Collecting e e e e e e e e 259
6.5.11 CoverApplication L e e e e 260
6.5.12Creasing e e e e e e e e e e 260
6.513 Cutting L e e e e e e 260
6.5.14 DieMaking L e e e e e e e e 261
6.515Dividing e e e e e e e 261
B.5.16 EMbossing L L e e e e e e e 261
6.5.17 EndSheetGluing L e e e 262
6.5.1BFeeding L e e e e e e e e 262
6.519 Folding L e e e e e e e e e 264
6.5.20 Gathering. L e e e e e e e e e e e e 264
6.5.21Gluing. e e e e e e e e 265
6.5.22 HeadBandApplication L L e e e e e e e 265
6.5.23 HoleMaking. e e e e 266
6.5.24 Inserting L L L e e e e e e 266
6.5.25Jacketing L L L e e e e 267

X JDF SPECIFICATION 1.7

6.5.26 Labeling e e e e 268

6.5.27 Laminating L e e e e e e e e e e e e e e 268
6.5.28 LongitudinalRibbonOperations e 268
6.5.29 Numbering L e e e e e e e e 269
6.5.30 Palletizing e e e e e e e 269
6.5.31Perforating L e e 269
6.5.32 PlasticCombBinding oL e 269
6.5.33PrintRolling L e 270
6.5.34 RingBinding L L e e e e e e e e 270
6.5.35 SaddleStitching e e e e 271
6.5.36 ShapeCutting L e e 271
6.5.37Shrinking L L e e e e e 271
6.5.38SideSewing L L L e e e e e e e e e 272
6.5.39 SpinePreparation L e e e e e e e e 272
6.5.40SpineTaping e e e e e e e e e 272
B6.5.41Stacking L L e e e e e e e e e 272
6.5.42 StaticBlocking L L e e 275
6.5.43 Stitching L L e e e 275
B6.5.44 Strapping L. e e e e e e e 276
6.5.45StripBinding L L L L e e 276
6.5.46 ThreadSealing e e e e e e e e e 2717
6.5.47 ThreadSewing« . e e e e e e e e e 277
B.5.48Trimming. e e e e e e e e e 2717
6.5.49 WeblnlineFinishing e e 278
6.5.50Winding L e e e e e e 279
6.5.51 WireCombBinding e e e e e e e e e e 279
6.5.52Wrapping e e e e e e e e e e e e e e e 280
6.6 Postpress Processes Structure L L e e e e 280
6.6.1Block Production L e e e 280
6.6.2HoleMaking L L e e e e e 281
6.6.3Laminating L L e e e e e e e 281
6.6.4 Numbering L e e e 281
6.6.5 Packaging Processes. L e e e e e e e e e e 281
6.6.6 Processes in Hardcover Book Production 282
6.6.7Sheet Processes e e e 282
6.6.8 Tip-0Nn/in L e e e e e e e e e 282
6.6.9 Trimming e e e e e e e e 282
6.6. 10 Web Processes L e e e e e e 282

Chapter 7 Productintent285

7.0 Product Intent Descriptions L L e e e e e e 285
71 Intent Properties Template. e e e 286
700 AbstractSpanElement L L L L L L e e 287
70.2SpanElements L L L L L e e e e e 287
7.2 ArtDeliverylntent L L L 292

JDF SPECIFICATION 1.7 Xi

7.20 ArtDelivery L e e e e e e 293

7.3 Bindinglntent L L L L e e 295
7.31 AdhesiveNote L L e 297
7.3.2BindLlist L L e e 297
733Bindltem L L e e e 297
7.3.4 AdhesiveBinding L L L L e e e e 298
7.35BookCase L e e e e 298
7.3.6 ChannelBinding L e e e e e 299
737 CoilBinding e e e e e 299
7.3.8EdgeGluing e e e e e e e e e e e e 299
7.3.9HardCoverBinding e e e e 299
7.310 PlasticCombBinding L e e 301
731 RingBinding L L L e e e e 302
7.312SaddleStitching L L 303
7.313SideSewing L L e e e e e e e e e e e e e e e 303
7.3.14 SideStitching L L e e e e e 303
7.315SoftCoverBinding e e e e e e 303
7.316 StripBinding L L L L e e e e 304
7307 Tabs o e e e e e e e e 305
7318Tape e e e e e e e 305
7319 ThreadSealing e e e e e e e e 305
7.3.20 ThreadSewing o o e e e e e e e e e e e e 306
7.3.21WireCombBinding e e e e e e e e e 306
74 Colorintent L e e 306
7.5 Deliveryintent L L e e e e e e 308
7510 Droplntent L L L e e e e 310
7.5.2Dropltemintent L L L L e e e 3N
753 Pricing L e e e e e 312
T5.4Payment L L L e e e e e e e e e e e e e 312
755CreditCard L e e e e e e 312
7.6 Embossingintent L e 312
7.6.1Embossingltem. L L L e e e e e e e 312
7.7 Foldingintent L L e e e e e e e e e 313
771 Typical ProductFolds. e 314
7.8 HoleMakingintent L e e 316
79 Insertingintent L L L L e 317
7901 Insertlist. L L e e e e e e 317
7.9.21Insert L L e e e e 317
7.0 Laminatinglntent L L L L e 318
711 Layoutintent L Lo e e 318
712 Medialntent L L L e e 320
713 Numberinglntent L L L L e 324
714 Packinglntent L L L L L e e 324
715 Productionintent Lo L L e e 325
7.16 Proofinglntent L L e 326

xXii JDF SPECIFICATION 1.7

7.16.1 Preflightltem L L e 326

706.2Proofltem L L e e 326
707 Publishinglntent L e e e e e e e 327
718 Screeninglntent. L L L L L e e e e e e e e e e e 328
719 ShapeCuttinglntent L e e e e e e e 328
77910ShapeCut L e e e e e e 329
7.20Sizelntent L L L e e e 329
7.21Variablelntent L L 330

Chapter8Resources 30

8.1 AdhesiveBindingParams L L L L e e e e 331
8.2 ApprovalParams. L e e e e e e e 331
8.21 ApprovalPerson L L e e e e e e 331
8.3 ApprovalSuccess e e e e e e e 332
8.3 ApprovalDetails L e e 332
8.4 Assembly L e e e e e 332
8.4.1AssemblySection L L e e 333
8.4.2 PageAssignedList L e e e e e e e e e e e 335
8.5 AssetlistCreationParams L 336
8.6 BendingParams L L e e e e e e e e e e e e 336
8.7BinderySignature L L L L e e e e e e 337
8.71SignatureCell. L L e e e e e e e 340
8.720ntheuseofBleed 341
8.730ntheuseof Trim e e e e 341
8.7.4Webcellalignment L e e 342
8.8 BlockPreparationParams L. oL e 345
8.9 BoxFoldingParams L e e e e e 346
8.9.1 BoxFoldingType attributevalueso 346
8.9.2 BoxApplication L L e e e e e e e 349
8.9.3 BoxFoldAction L e 349
8.10 BoxPackingParams e e e e e e e e e e e 350
81 BufferParams L e e e e e 352
812Bundle e e e e e e s 352
8121 Bundleltem L e e 353
8.13 BundlingParams e e e e e e e e 355
814 ByteMap e e e e e e e e e e e e e 356
8141 Band L e e e e e e e e e e 357
8.14.2 PixelColorant L e 358
8.15 CaseMakingParams L L e e e e 358
8.16 CasinglnParams L L e e e e e e e 359
8.17 ChannelBindingParams L e e e 360
8.18 CoilBindingParams L L e e e e e 361
8.19 CollectingParams L e e 361
B.20C0lor. e e e e e e s e 362

JDF SPECIFICATION 1.7 xiii

8.20.1 DeviceNColor e e e e e e e e 365

8.20.2 Diecutting Data (DDES3) e e e e 366
8.20.3 PrintConditionColor e 366
8.21ColorantControl e e 369
8.21.1 ColorantConvertProcess e e 372
8.21.2 ColorantOrder e e e e e e 372
8.21.3 ColorantParams L e e e e 372
8.21.4 ColorSpaceSubstituteo 373
8.21.5 DeviceColorantOrder L e e 374
8.22 ColorCorrectionParams. L e e 374
8.23 ColorPool e 374
8.24 ColorSpaceConversionParams 0 0 v v v e e e e e e e e e e e e 375
8.25Component. L L e e e e e e e e e e e e e e e 376
8.26Contact L e e 382
8.26.1CoMPany e e e e e e e e e e e e e e e 382
8.26.2 OrganizationalUnit L e e e e e 383
8.27 ContactCopyParams e e e e e e e 383
8.28 Contentlist L L e e e e 383
8.281ContentData L e e 384
8.28.2 ContentMetadata e 384
8.29 ConventionalPrintingParams Lo e 387
8.30 CoverApplicationParams L. 390
8.30.1Score e e e e e e e 390
8.31CreasingParams L e e e e e e 391
8.32Customerinfo L e e 391
8.32.1CustomerMessage e e e e e e e e e e e e e e 392
8.33CutMark e e e 393
8.34 CuttingParams L e e e e e e e e e e 394
8.35Cylinderlayout L e e e e e e e e 394
8.35.1 CylinderPosition e e e e e e 395
8.36 CylinderLayoutPreparationParams e 397
8.37DBMergeParams e e e e e e e e e e e e e e e e e 397
8.38DBRules e e e e e e 397
8.39DBSchema L e e 397
8.40 DBSelection L L e e 397
8.41 DeliveryParams e e e e e e e e e e e e e e 397
BATIDrop . . . o e e e e e e e e e e e e 399
8.41.2D0ropltem L e e e e e e 399
8.42 DevelopingParams L L L e e e e e e e 400
843 Device L e e e e e e e e 401
8.43.01con . . L L e e e e e e e e e e 403
8.43.21conList L L e e e e e 403
8433 Module. L e e e e e e 403
8.44 Dielayout L L L e e e e e e e e e e e 404

Xiv JDF SPECIFICATION 1.7

84410 Rulelength L L 405

B.44.2Station L L L L e e e e e 405
8.45 DielayoutProductionParams L L e e e e e e e 406
8.45.1RepeatDesc e e e e e e e e e e 406
8.46 DigitalDeliveryParams e e e e e e e 410
8.47 DigitalMedia L L e e e e e e e an
8.48 DigitalPrintingParams L L e e 412
8.48.1 Coordinate systems in DigitalPrinting 0. 412
8.49 DividingParams e e e e e e e e e 415
8.50 ElementColorParams L e e 415
8.51EmbossingParams L e e e e e e e e 416
851 1EmMbOss L e e e e e e 417
852Employee L e e e 417
8.53 EndSheetGluingParams L oL e 418
8.53.1EndSheet L e e e 419
854 ExposedMedia L L L L e e e e e e e 419
8.55 ExternallmpositionTemplate oL 420
8.56 FeedingParams L L L e e e e e 421
8.56.1 Collatingltem L e e 421
8.56.2Feeder L e e e e 422
8.56.3 FeederQualityParams. L L e e e e e e e e e 423
857 FileSpec L e e e e e e e e e 423
8571 Container L L L e e e e e 428
8.57.2FileAlias e e e 429
8.57.3 NetworkHeader. L e 429
8.58 FoldingParams L L e e e e 429
8.59 FontParams L L e e e e 431
8.60 FontPolicy e e 432
8.61 FormatConversionParams L e e e 432
8.62 GatheringParams L L e 432
8.63 GlueApplication L e e e 433
8.64 GluingParams L L L e e e e e e 434
B8.64.TGlue . . . L e e e e e e e s e 434
8.65 HeadBandApplicationParams Lo 435
B.66 HoleList e e e 435
8.67 HoleMakingParams. L e e e 436
8.68 IdentificationField L L 437
8.68.1BarcodeDetails L. 440
8.68.2 ExtraValues L e 441
8.68.3 Usage of barcode attributes 441
8.69 IDPrintingParams L e e e e e e e 443
8.70 ImageCompressionParams L e e e e e 443
8.70.1 ImageCompression L. .o o e e e e e e e 443
8.70.2 CCITTFaxParams o e e e s e e e e e e e e e 445

JDF SPECIFICATION 1.7 Xv

8.70.3 DCTParams e e e e e e e e e e 446

8.70.4 FlateParams L L L e e e 446
8.70.5IBIG2Params e e e e e e e e e 447
8.70.6 JPEG2000Params e e e e e e e e e 447
8.70.7 LZWParams e e e e e e e e e e e 448
8.71ImageEnhancementParams Lo 448
8.71.1ImageEnhancementOp L L e 448
8.72 ImageReplacementParamso Lo Lo 449
8.721SearchPath e 450
8.73 ImageSetterParams L Lo e e 450
B.741Ink L e e e e e e e e e e 452
8.75 InkZoneCalculationParams 453
8.76 InkZoneProfile L e e e e e 453
8.77 InsertingParams L L L Lo e e e e e e 454
8.78 InterpretedPDLData Lo e 455
8.79 InterpretingParams L L L L Lo e e 455
8.79.1 InterpretingDetails L e e e e 457
8.79.2 PDFInterpretingParams L e e e e e e e e 457
8.79.3 ReferenceXObjParams L L e e e 458
8.80 JacketingParams L e e e e e e e 459
8.81LabelingParams e e e e e e e 460
8.82 LaminatingParams L L e e e e e e e 460
8.83Layout e e e e e e 461
8.83.1CIELABMeasuringField e e 464
8.83.2 ContentObject L e e e 465
8.83.3 DensityMeasuringField L 466
8.83.4 DynamicField. e e e e e e e 466
B.83.5FillMark e e e 467
8.83.6 LayerDetails e e e e 468
8.83.7LayerList L e e 468
8.83.8 LogicalStackParams L L Lo e e 468
8.83.9 MarkActivation L e e e 469
8.83.10 MarkObject e e e 470
8.83.11 PageCondition e e e e e e e e e 4
8.83.12 PlacedObject e e e e e 472
8.83.13 SheetCondition L e e e 475
8.83.14 Signature L L L e e e e e e e 475
8.83.15Stack L L e e e e e e 475
8.83.16 Moreabout Layout e e e e e e e e e 476
8.84 LayoutElement. L L e e e e e e e e e e 480
8.84.1Dependencies L e e e e e e e e e e e e e e e e e e 482
8.85 LayoutElementProductionParams L L L e 482
8.85.1LayoutElementPart L e 484
8.85.2 BarcodeProductionParams L Lo e 485

xvi JDF SPECIFICATION 1.7

8.85.3 PositionObj 485

8.86 LayoutPreparationParams oL 488
8.86.1PageCell e e e e e 495
8.86.2ImageShift e e e e e e 496
8.87 LayoutShift L e e e 499
8.87.1ShiftPoint e 499
8.88 LongitudinalRibbonOperationParams Lo oo 500
8.89 ManuallaborParams Lo 500
890 Media e e e e e e e 501
8.90.1 TabDimensions L L e e e e e e e 507
8.90.2 Moreabout Media Lo e 509
8.91 MediaSource L e e e e e e 51
8.92 MiscConsumable L e e 51
893 Nodelnfo L e e e e e e 513
8.94 NumberingParams L e 515
8.950rderingParams L L e e e e e e 515
8.96 PackingParams. L L L e e e 515
8.97 PageAssignParams L L Lo e e e e e e 516
8.98 Pagelist e e e e 516
8.981PageData L e e e e 517
8.98.2 PageElement L L e e e e e e e e 519
899 Pallet e e e e e 520
8.100 PalletizingParams L e e e e e e e e e e e 520
8.101 PDFToPSConversionParamso 520
8.102 PDLCreationParams Lo e e e e 523
8.103 PDLResourceAlias L e e e e e e 523
8.104 PerforatingParams L L o e e e e e e e e 524
8.105 PlaceHolderResource L Lo e e 524
8.106 PlasticCombBindingParams e e e e e e 524
8.107 PlateCopyParams e e e e e e e e e e 525
8.108 PreflightAnalysis« . . e e e e 525
8.109 Preflightlnventory. e e e e e e e 525
8.110 PreflightParams e e e e e 525
8.110.1 PreflightAction e e e e e e 526
8.110.2 BasicPreflightTest o e e e e 526
8.110.3 PreflightArgument L e e e 527
8.110.4 BoxArgument L L e e e e e e 527
8.110.5 BoxToBoxDifference e e 527
8111 PreflightProfile e 528
8.112 PreflightReport e e e 528
8M2APRItem e e e e e e e e e 529
B81M2.2PRError e e e e e e e e e 529
8M23PRGroup e e e e e e e e 529
8.112.4 Abstract PRGroupOccurrenceBaseo o 531

JDF SPECIFICATION 1.7 Xvii

8.112.5 PRGroupOccurrenceBase e e e e e 532

8.112.6 ArgumentValue e e e e e e e e e e 532
8.112.7 PRGroupOCCUrrence v v v e e e e e e e e e e e e e e e e e e e 532
8.112.8 StringlistValue L e e e e e 532
8. 1129 PROcCCUrrence o v e e e e e e e e e e e 532
8.113 PreflightReportRulePool e 533
81131PRRule e e e e e e e e e e 533
8113.2PRRuleAttr. e e e e e 533
8114 Preview L e e e e e e e 535
8.115 PreviewGenerationParams Lo 536
8.116 PrintCondition e e e e 538
8.117 PrintRollingParamso 539
8.118 ProductionPath L e e 539
8.118.1 FolderSuperstructureWebPath e 540
8.118.2 PostPressComponentPath o 540
8.118.3 PrintingUnitWebPath e 540
8.119 ProofingParams e e e e e e e e 541
8.120 PSToPDFConversionParams o i e e e e e 541
8.120.1 AdvancedParams L L L e e e e e e e 543
8.120.2 PDFXParams L e e e e e e e e 544
8.120.3 ThinPDFParams e e e e e 545
8.121 QualityControlParams L L e e e 546
8.121.1 BindingQualityParams L L e e e e e e e e 547
8.122 QualityControlResult e e e e e e 547
81221 Defect L e e e e e e e e 549
8.122.2 Inspection L L e e e e e e e e e e 551
8.122.3 QualityMeasurement L L L oL e e e 552
8.122.4 BindingQualityMeasurement Lo oo 552
8.123 RasterReadingParams L e e 552
8.124 RegisterMark L e e e e e e 553
8.124.1 MarkType AttributeValues oL 554
8.124.2 Combined Register Mark e e e e 554
8.125 RenderingParams L L e e e e e e e e e e e 555
81251 TIFFEmbeddedFile e 556
8125.2 TIFFFormatParams L e e e e 556
BIA25.3TIFFtag o e e e e e e e e e 557
8.126 ResourceDefinitionParams L L L e 557
8.126.1ResourceParam L L e e e e e e 558
8.127 RingBindingParams L L L L e e 558
8.128 RollStand L e e e e e 559
8129 RunList L e e e e e e e e e 560
8.129.1 Pages, Documents and Sets for commonPDLtypes. 564
8.129.2 Dynamiclnput L L e e e e e e e e e e 565
8.130 SaddleStitchingParams L e e e e e e 567

xviii JDF SPECIFICATION 1.7

8.131ScanParams L e e e e e e e s e e 567

8.132ScavengerArea L L L e e e e e e e 568
8.133 ScreeningParams L L L L L L L e e e e e e e 569
8.134 SeparationControlParams Lo e 569
8135Shape L L e e e e e e e 569
8.136 ShapeCuttingParams L e e e 570
8137 ShapeDef L e e e e e 571
8.138 ShapeDefProductionParams Lo 572
8.138.10bjectModel e e e e 572
8.138.2ShapeTemplate e e e e e e e e 573
8139 Sheet L e 574
8.140 SheetOptimizingParams e e 574
8.140.1GangElement L L e e e e e e e e e 575
8.140.2 SeparationListBack L oL 577
8.140.3 SeparationListFront L L. oL 577
8.141 ShrinkingParams L L L e 577
8.142 SideSewingParams L L L L L L e e e e e e 578
8.143 SpinePreparationParams L L L e e e e e e e 578
8.144 SpineTapingParams L L L L e e e e 579
8.145 StackingParams L L L L e e e 580
8.146 StaticBlockingParams L L L L oL e e 581
8.147 StitchingParams L L L e e e 582
BI48Strap e e e e e e e 584
8.149 StrappingParams L L L L e e e 585
8.150 StripBindingParams L L L L e e 586
8.151 StrippingParams L L L e e e e e e 586
81511 Position L L L e e e e e e e 589
8.151.2 StripCellParams e e e e e e e e e e e e e 590
81513 StripMark e e e e e e 592
8.152Surface L e e e e e e 596
8.153 ThreadSealingParams e e e e e e e e e 596
8.154 ThreadSewingParams e e e e e e e e e e e 596
8IA55Tile e e e e e e e e 598
8156 Tool e e e e e e e 598
8157 TransferCurve e e e e e e e e 599
8.158 TransferCurvePool e 600
8.158.1 TransferCurveSet e 600
8.159 TransferFunctionControl 601
8.160 TrappingDetails e e e e e 601
8.160.1 TrappingOrder e e e e e e e e 602
8.161 TrappingParams L e e e e e e e e 602
8.161.1 ColorantZoneDetails L e e 604
8.162 TrapRegion L e e e e e e 605

JDF SPECIFICATION 1.7 Xix

8.163 TrimmingParams e e e e e e 605

8.164 UsageCounter L e e e e e e e 606
8.165 VarnishingParams Lo e e e 607
8.166 VerificationParams L L e e e e 607
8.167 WeblnlineFinishingParamso 608
8.167.1 FolderProduction e 608
8.168 WindingParams e e e e e e e e e e e e e e 608
8.169 WireCombBindingParams e e e e e e 609
8.170 WrappingParams e e e e e e e e e e e e e e e e e e e 610

Chapter9Subelements.061"

91Address e e e e e e e 611
9.11AddressLine L L L L e e e 611
9.1.2 ExtendedAddress L L L e e e e e e e 612
9.2 AutomatedOverPrintParams L L 612
9.3 BarcodeCompParams e e e e e e e e e e e e e e e 612
9.4 BarcodeReproParams L L e e e e e e e e 613
9.5 Certification L e e e e e 614
9.6 ColorantAlias L e e e e e e e 614
9.7 ColorControlStrip e e e 615
9.70Patch e e e e e e e 616
9.8 ColorCorrectionOp e e e e e e e 617
9.9 ColorMeasurement L L e e e e e 618
9.10 ColorMeasurementConditions oL 618
911 ColorSpaceConversionOp o o o e e e e e 620
912 ColorsUsed L e e e e e 622
913 ComChannel e e e e e e 623
9.13.1 ChannelTypeDetails Attributeo 624
914 Comment L L L L e e e e e e e e e e e 624
9.15 ConvertingConfig L e e e e 626
916 CostCenter L e 627
917 Crease e e e e e e e e e e 627
918 Cut e e e e e e e e 628
919 CutBlock e e e e e e e 628
9.20 Cutlines L e e e e e e e e 629
9.21DeviceMark L L L o e e e e e e e 629
9.22 DeviceNSpace e e e e e e 631
9.23 Disjointing L L e e e e e e e 632
9.24 Disposition L L L L e e e e e 633
925 FitPolicy e e e e 634
926 Fold e e e e e e e e 635
9.27GangSource L L L L e e e e e e e e e e e 635
9.28GenerallD L L e e e e e e 636
9.29 Glueline L e e e e e e e e e 637

XX JDF SPECIFICATION 1.7

930 Hole e e e e e
9.3THoleLline L e e e e e e
9.321InsertSheet. L L e
9.33JobField oL e e e e e e e e e
934 MarkColor L e e e e e
9.35Medialayers L L e e e e e e e e
936 MetadataMap L e e e e
0.36.TEXPr . . . e
9.37MISDetails e e e e e e e e e
9.38 ObjectResolution e e e e e e e e e
9.390CGCoNntrol. e e e e
9.40Perforate L L e e e e e e
9.4T1Person e e e e e e e e
9.42RefAnchor L L e e e e e e
9.43 RegisterRibbon e e e e e e e
9.44 RegistrationQuality L L e e e e e e
9.45ScreenSelector L L L L e
9.46 SeparationSpec L L e e e e e e e e e e e e
9.47 Subscriptioninfo L L L e e e e

Chapter 10 Device Capabilities

10.1 Capability and Constraint Definitions 00
10.2 Device Capability Definitions e
10.270DeviceCap v e e e e e e e e e e e
10.2.2 ActionPool e e e
10.2.3 DevCapPool e e e e
10.2.4 ModulePool. e e e e
10.2.5DevCaps e e e e e e e e e e e e
10.2.6 DevCap o e e e e e e e e e e e e e e e
10.27State L e e e e e e e e
10.2.8 DisplayGroupPool. e e e e e
10.29 FeaturePool L e e e
10.210 MacroPool e e e
10.211 Performance o e e e e e e e e e e e e
10.212 TestPool e e e e e e e e e e e e
T10.203Term o o o e e e e e e e e e e e e e e e e
10.2.14 Examples of Device Capabilities oo
10.3 Concept of the Preflight Process e
10.3.10bject Classes o 0 e e e e e e e e s e
10.3.2 Properties L L e e e e e

Chapter 11 Building a System .

11.1 Implementation Considerations and Guidelines
1.2 JDF and JMF InterchangeProtocol
11.2.1 File-Based Protocol (JDF) o o e e e e e

JDF SPECIFICATION 1.7

11.2.2 HTTP-Based Protocol (JDF +JMF) o e e e e e e e e e e e e e e 717

11.2.3 HTTPS-Based Protocol - SSL with two-way authentication 77
11.2.4 Managing Persistent Channels L e 720
11.2.5 Deleting Persistent Channels e 720
T.3IDFPackaging e e e e e e e e e e e e 720
TM3IMIMEBASICS o e e e e e e e e e e e 721
11.3.2 MIME Types and File Extensions oL 721
1.4 MIS Requirements L L e e e e e e 724
11.5 Interoperability Conformance Specifications oo 724

Appendix ADataTypesandValues727

Al Notes AboutEncoding L e e e e e e e e 727
A1 Llist,Rangeand Range ListData Types e 727
Al2Whitespace e e e e e e e 727
Al3 Infinity Limits L e 727
A.2Simple Types — AttributeValues oL 727
A21boolean L e e e 727
A22CMYKColor o e e e e e e 727
A23date L e e e e e e e 728
A24dateTime e e e e e e e 728
A.25DateTimeRange L e e 728
A.2.6 DateTimeRangeList e 728
A27double L e e e e e 728
A.2.8Doublelist. L e e e e e e e 729
A.29DoubleRange L e e e e e e e e e e e e e e 729
A.210 DoubleRangelist e e e e e 729
A2Tduration L e e e e 729
A.212DurationRange L L L e e e e 729
A.213 DurationRangelist L 730
A214 gYearMonth L L e e e e e e e e e e e 730
A215hexBinary L e e e e e e e e e e e e e e e e e e e 730
A2T61ID e e e e e e e e 730
A2TT7IDREF o e e e e e e e s e e 730
A2IBIDREFS e e e e e e e s e e 731
A219integer L L L e e e e 731
A.2.20Integerlist L L e e e e e e e e e 731
A2.21IntegerRange e e e e e e e e e e 731
A.2.22 IntegerRangelist L e e e e e 731
A2.23 LabColor e e e e 732
A2241@N8UABE e e e e e e e e e e e 732
A2251anguages L e e e e e e e e e 732
A226matrix L e e e e e e e 732
A227NameRange e e e e e e e e e e e e e e e 733
A.2.28 NameRangelist e e e e e 733
A229 NMTOKEN L e e e e e e e e 733

xxii JDF SPECIFICATION 1.7

A230NMTOKENS o o e e e e e e e 733

A23TPDFPath e e e e e 733
A232rectangle L e e e e e e e e e e 734
A.2.33RectangleRange L L e e e e e e 734
A.2.34 RectangleRangelist L e e 734
A235regEXpP e e e e e e 734
A236shape e e e e e 735
A.2.37ShapeRange e e e e e e e e e e e e e e e 735
A.2.38ShapeRangelist e e e e e e e 735
A.239sRGBColor e e e e 735
A240string L e e e e e e 735
A241TimeRange e e e e 736
A242 TransferFunction. L L e e 736
A243URL e e e e e e e e e 736
A244URL o e e e e e 736
A245XPath e e 737
A2.46 XYPair o e e e e e e e e e e e 737
A247XYPairRange L e e e e 737
A.2.48 XYPairRangelist L L 738
A3 Enumerations L L L L L e e e e e 738
A3TAction L e e e e e 738
A3.2Activation L L e e 738
A33Anchor L e e e e e 739
A3.4 ArtHandling L e e e 740
A35 ArtTransfer L L e e e e e e 740
A3.6 Automation L L L L e e 740
A3BTAXIS . . o e e e e e e e e e e 741
A3.8 BinderMaterial L L 741
A3.9BindingType e e e e e e e e e e 741
A310BoxType e e e e e e e e 742
A3M BundleType e e e e e e e e 743
A312ChannelMode L L e e e 743
A313Coating e e e e e e e e e e e e 743
A3.14 Compensation L e e e e e e e e e e e e e e e e 744
A3d5DataType o e e e e e e e e 744
A3.16 DefaultPriority e e 745
A3.17DeliveryCharge o e e e e 745
A3IBDrying e e e e e e e e 745
A3I9Edge e e e e e e 745
A3.20 ElementType e e e e e e e e e e e e e e e e e 745
A3.21EmbossDirection L. L 746
A3.22Embosslevel L L e e e e e 746
A3.23EmbossType e e e e e e 747
A3B24FaCe e e e e e e e e e e 747
A3.25FeedQuality L e e e e e e e e e e e 747

JDF SPECIFICATION 1.7 xxiii

A3.26 FitPolicy o e e e e e e e 747

A.3.27GangPolicy e e e e e e e e e e e e e 748
A328Glue e e e e e e 748
A3.29IncludeResources L e e e e 748
A.3.30IS0PaperSubstrate e e e e e e e 748
A33TIDFIMFVersion o o e e e e e e e e 749
A332ListType e e e e e e e e 750
A.3.33 MappingSelection e e e e e e e e 750
A3.34 MediaDirection L. e e 750
A335MediaType e e e e e e e e e e e e e e 751
A3.36 NamedColor L e e e 752
A3370pacity e e e e e e e e e 753
A3380rientationo 753
A3.39Polarity e e e e e e e e e 753
A.3.40 PositionPolicy L e e e e e e 753
A.3.41 PreflightStatus e 754
A3.42PreviewlUsage L L L o e e e e e e e e e e 754
A.3.43 QueueEntryStatus L L L e e e 754
A3.44 Renderinglntent L L L L L e 755
A3.45ResourceClass L L L L e e e e 755
A3.46 ResourceStatus L L L L L e e 755
A3.47ResourcelUsage o e e e e e e e e e e e 756
A34BScope e e e e e e 756
A3.49Severity L L e e e e e 756
A3.50Sheetlay L e e e e 757
A351Side. e e e e e e e 757
A3.52Sides L L e e e e e e e e e 757
A.3.53SourceColorSpace L L e e e e e e e e e e 757
A.3.54 SourceObjects L e e e e e e e e 760
A.3.55SpreadType e e e e 761
A3.56 StapleShape L 761
A357Status . . . L L e e e e e e 761
A.3.58 StripMaterial L e e e e e e e e 762
A.3.59 SurplusHandling L e e e e e e 762
A3.60TightBacking L e e e e e 763
A3.61Usage e e e e e e e 763
A.3.62 WorkingDirection. L L e 764
A3.63WorkStyle e e e 764
A3.64 XYRelation L e e 764
A4 ReturnCodes L e e e 765
A5 Preferred NMTOKEN Values o o s 767
A5 1CombandCoilShapes e e e e e e 767
AS52ContactTypes e e e e e e e 768
AS53ContentTypes e e e e 768
A5.4 Delivery Methods L L 769

Xxiv JDF SPECIFICATION 1.7

A5.5Device Classes e e e e e e e e e e 770

AS5BFluteTypes e e e e e e e e e e e e e e e e e 772
AS5.7FoldCatalog e e e e 772
A5.8 Inkand Varnish Coatings e e e e e e e 774
A5.9 Input Tray and Output BinNames Lo 775
A.5.10 MediaType Details L 776
A5 Milestones L L e e 778
AS512 ModuleTypes. o e e e e e e e e e e e e e e e e e e 779
A5.13 Node Categories o e e e e e e e e e e e e 782
A.5.14 Notification Details Lo 783
AS515Pallet Types L o e e e e e 786
A.5.16 Printing Technologies L L 786
A.5.17 PrintStandard Characterization DataSets 786
AS518 ProcessUsage e e e e e e e e e e e 787
AS5T9 Product Types e e e e e e e e e e e e e e e 788
A.5.20 Quality Control Methods e 789
A5.21ServiceLevels L L L L e e e 790
A.5.22 Spine Operations L e e e e e e 790
A5.23Status Details Lo 791
AS524Texture e e e e 794
AS525Units L e e e e e e e e 795
ABIDFFileFormats L e 796
ABIPNGImageFormat e e e e e e e e 796

AppendixBSchema 000000197

Bl Using xsittype L e e e e 797
B.1.1Using xsi:type with JDF Nodes e e e e 797
B.1.2 Using xsi:type with JMF Messages« i v v e e e e e e 798

Appendix C Color Adjustment79

C1 Adjustment Using Direct Attributes L 799
C.2 Adjustment using ICC Profile Attributes o 800
C.3 Adjustment using an ICC Abstract Profile Attribute 800
C.4 Adjustment using an ICC Devicelink Profile Attribute 800
Appendix D MediaWeight80
D.1 North American MediaWeight« e e e e 801
D.2 Japanese MediaWeight e e e e e 802
D3 PaperGrade L e e e e e e e e e e e e e e e e 803
Appendix E MediaSize805
E.1 Architectural PaperSizes e 805
E.2Business Card Sizes Lo e e e e e e 805
E.3 International APaperSizes L L e e 806
E.4 International and Japanese B PaperSizeso Lo Lo 806
E.4.1International (ISO) B PaperSizes e e e 806

JDF SPECIFICATION 1.7 XXV

E.4.2)Japanese (JIS)BPaperSizes e e e e 807
E.43BPaperSizes e e e e e e e e e e e e 807
E.5 International CEnvelope Sizes e e e e e e e 808
E.6 RAand SRAPaperSizes e e e e e e 809
E.-7US ANSIPaperSizes e e e e e e e e e e e e e e e 809
E.BUSPaperSizes. e e e e e e e e e e e e e e 809
Appendix F MimeTypes . 811
Appendix G String Generation 817
GilTemplateVariables e e e e e e 817
G.2TemplateOperators e e e e e e e e e e e e 820
Appendix H Pagination Catalog . 821
H.1How tointerpretthediagrams Lo 821
HldLlegend o e e e e e e 821
H.1.2 Meaning of a PaginationScheme Lo 821
H.1.3 Settings that Modify the Pagination Schemes 822
H.1.4 Using the Settings to Find the Needed Scheme Transformation. 822
H.1.5 Examples of applying BindingOrientation. 824
H.2 Pagination Diagrams e e e e e 827
Appendix | Resolving Directory URL References 841
I.1 Semantics of the RunList/@Directory attribute 841
Appendix J Hole Pattern Catalog . 843
JINamingScheme L L e e e e e e 843
J2RingBinding-TwoHole e e e e 844
J3 RingBinding - ThreeHole« . e e e 844
J4RingBinding-FourHole e e e 845
J5RingBinding - FiveHole e e e 846
JL6Ring Binding - SixHole e e e 846
J7Ring Binding -SevenHole e 847
J.BRing Binding - ElevenHole L e 848
JOPlasticComb Binding L e e e e 848
JI0Wire Comb Binding e e e e e e e 849
JM Coiland Spiral Binding e e e e e e e 849
JA2Special Binding L . e e e e e 850
Appendix K FileSpec Use Cases . 851
K.1 Examples of Attribute Values of FileSpeco o Lo 851
K.2 Corresponding XML exampleso e e e e e 852
K.3 Additional examples showing Partitioning of FileSpec 854
K.4 Example of an Intent Job Ticket with a doubly nested ZIP packagingfile 859
Appendix L References . 861

Xxvi JDF SPECIFICATION 1.7

Appendix M ReleaseNotes00 875

JDF SPECIFICATION 1.7 Xxvii

Xxviii JDF SPECIFICATION 1.7

Preface

This specification is immense ... there is little doubt about that ... but it is also a keystone standard for the future of graph-
ic communications. The members of CIP4 believe that users and developers alike need to have a clear understanding of
what the objectives of the Job Definition Format (JDF) are as well as an understanding of its value and purpose. To that
end we thought you would find a “non-standard” preface and user overview helpful.

Before we get into the overview, we remind you that JDF is a living specification. We would value your comments and
input. There are several ways to contact the International Cooperation for the Integration of Processes in Prepress, Press
and Postpress (CIP4) and to receive ongoing information about CIP/ activities. To get a list of contacts, join the JDF de-
velopers form, or sign up for Email updates, visit the contact page at http://www.CIP4.org/. (Of course, we’d love to have
you as a CIP4 member too! Be sure to review the membership page when you visit the CIP4 Website.)

You will also find callouts throughout this document that are identified by three different icons. These callouts, provided
for your convenience, are not normative parts of the standard (i.e., they’re not technically a part of the standard). They
provide references to external sources, executive summaries of complex technical concepts, and some thoughts or strat-
egies to consider as you formulate your JDF implementation plan. Look for these callout icons:

Table Preface 1: Callout Icon Usage

ICON CALLOUT TYPE

External references to online resources, related standards, tutorials and helpful infor-
mation.

Executive-style summaries of technical concepts in easy-to-understand language.

Thoughts to ponder and strategy ideas for formulating JDF implementation programs.

o ® @

Value. This revision of JDF is significant because it builds upon all of the previous versions of JDF to deliver a fully func-
tional and mature standard. As such, this revision includes elements from which executives, shop managers and tech-
nicians will all benefit equally, though in different ways. In the next few years it is our belief that this specification will
positively effect everyone involved in the creation and production of printing; regardless of form (offset, digital, flexo-
graphic and so on) or function (direct mail, periodical publication, packaging and so on). Furthermore, JDF will be of
value to companies both large and small. Some of the benefits that JDF provides include:

A common language for describing a print job across

enterprises, departments and software and systems; & Implementation Strategy
A tool for verifying the accuracy and completeness of As you read this standard, consider how to
job tools; ;

) make JDF a part of your equipment evalu-

A systems interface language that can be used to ation and purchasing procedures. Do you add JDF
benchmark the performance of new equipment (hardware enabled systems slowly with equipment replacement
and software) and that can reduce the cost of expensive and upgrades, or aggressively as part of a plant re-
cuﬁtom integration for printers, prepress services and engineering pllocess’? What's your desired competi-
others; ; s ’

T) tive position?

A basis for total workflow automation that
incorporates all aspects of production: human, machine
and computer;

A standard that can be applied to eliminate wasteful re-keying and redundancy of information; and

A common computer language for printing and related industries as well as a platform for more effective
communication.
Most importantly, JDF provides an opportunity for users of graphic arts equipment to get a better return on their tech-
nology investment and an opportunity to create a print production and distribution workflow that is more competitive
with broadcast media in terms of time-to-market.

XML and Schema: Why? The Extensible Markup Language (XML) is the standard language that is employed by JDF is
also constructed to the World Wide Web Consortium’s (W3C) recommendation for the construction of schema. Why is
this important and, in layman’s terms, what does it do for you?

JDF SPECIFICATION 1.7 XXiX

http://www.CIP4.org/

First of all, it is helpful to understand how MIS professionals around the world use XML today. Although there are some
systems that manage and process XML directly, it is primarily used as an exchange language or “middleware” element
to create the “glue” that ties integrated systems together.

For instance, complex systems
such as enterprise resource plan-
ning (ERP), data warehousing or
E-commerce systems often tap
into numerous legacy databases
and application environments. A
manager might wish to have a
“view” of corporate information
that is actually an aggregate of
information that might come
from various sources such as bill-
ing and invoicing, sales manage-
ment, inventory and other
systems. Rather than merge these
systems into a single, monstrous
and centralized system, an oper-
ator queries the legacy systems
and the results are wrapped in Pricing &
XML. This allows programmers to Marketing Info
deal with one exchange language

or data format instead of a multitude of proprietary data formats.

XML is not a functional computer language like JAVA, C++ or FORTRAN—it is incapable of manipulating data in anyway;
rather, it is a descriptive computer language that can be used to describe your information including its structure, inter-
relationships, and to some extent, its intended usage. For this reason, modern program languages such as JAVA provide
intrinsic support for XML processing. Most modern database applications also provide methods for receiving and deliv-
ering XML.

Early XML, based solely upon the XML 1.0 specification, had a few limita-
tions that prevented it from being used widely as a transactional data format '@

entQry
3:\
"’2

~
HTML
Internet ‘Z,%

ue""J Web server
Browser

Accountlng
& Financial

XML Schema

across enterprises, as opposed to within enterprises (where it found its niche
as described above). For example, there is probably a database behind each ' i
of your major systems and applications. If your database has reserved a fixed Schema, including tools,
space a data particular field and a supplier provides a transaction with a data | US@ge; tutorials and other resources
element larger than that field, you have a problem. The data limitations of | €& » [XMLSchema Status].

XML 1.0 cannot effectively deal with this. The XML Schema specification
solved this problem and others.

The Plusses of Parsing. Schemas also provide one other feature that is perhaps the greatest benefit. Tagged documents
or transactions (called “instances” in XML parlance) are parsible. Schemas, such as JDF, establish rules for structuring
your information. A parser is a software application that reads those rules, checks documents and transactions, and then
validates that they conform to the rules as established in your schema ... sort of like preflighting but for XML instances
rather than your layout pages.

To learn more about XML

Parsers can play many roles. Like preflighting software, parsers can be run as
stand-alone applications, but they can also be found embedded into other r Free Parsers
applications. Some of the roles parsers can play in your JDF enabled workflow Q
include: The JDF schema was vali-
) L dated with the Xerces
1 Acceptance checking of client job tickets; parser. This parser, as well as other
2 Validation of JDF prior to or following transformation of data into XML tools, is available for free from
and out of databases; The Apache Software Foundation.
3 Ensuring that source job information is collected as a document is See » [Apache Foundation].
created (embedded in document layout software);

4 Determining if equipment reads and writes Job Messaging Format (JMF) commands, a subset of JDF, as part of
equipment benchmarking and testing software;

5 Controlling the movement of workflow information and controls within workflow software from process to
process and as a specific JDF job ticket requires;

6 Working as a middleware component to communicate between JDF enabled software and systems and your
legacy Management Information System (MIS) and corporate applications environments.
It is worth mentioning that parsing can be time consuming and computer intensive. But parsers don’t have to be the
gatekeepers everywhere in a JDF enabled workflow. Equipment that is JDF enabled and part of a company’s internal pro-
duction operations need not parse every communication. It can be limited to equipment evaluation and problem solving

XXX JDF SPECIFICATION 1.7

applications. The role of JDF parser-enabled software in a printing plant that uses tightly coupled JDF enabled print pro-
duction equipment might look like this:

Corporate Legacy Systems

Management

Reporting - I ! I

Suppliers

Customers

JDF JDF JDF
J T Parser Parser Parser l J

JDF JDF
Parser Parser

!

s

Other Document Sources
(Prepress services,
3 Party Designers, etc.)

Process Process Process Process

Distribution

JDF Enabled Prepress, Press, and Postpress Operations

Global Printing Company

The JDF Concept. The JDF specification is quite complex and detailed—something best left to programmers and XML
experts. But the concepts behind JDF are quite simple and straightforward. It provides an explanation of each of the com-
ponents of JDF, its meaning and intended usage. You will want to use the components of JDF that fit best with your work-
flow and the needs of your customers. To start, a basic understanding of the concepts behind JDF is in order. There are
four primary components that comprise the JDF environment:

1 JDF itself,
2 The Job Messaging Format (JMF)
3 JDF Capabilities and

/4 ICS Documents

JDF is an exchange format for instructions and job parameters. You can use PDF or its standard variant (PDF/X), to relay
content data files from one platform to another. You can do the same with JDF to relay job parameters and instructions.
JDF can be used to describe a printing job logically, as you would in exchanging a job description with a client within an
estimate. It can also be used to describe a job in terms of individual production processes and the materials or other pro-
cess inputs needed to complete a job.

There is no such thing as a standard print workflow. In fact, printing is the ultimate form of flexible manufacturing. This
makes process automation quite a challenge for our industry. What you’ll find in this standard are XML element defini-
tions that describe all the production processes and material types you’re likely to encounter, regardless of your work-
flow. These are the building blocks that you can use to emulate your workflow with JDF. Every process in the print
production workflow requires input resources starting with the client’s files or artwork and ending with the final bound,
packaged and labeled print product. For example, before you can print, you need paper, ink and plates, and before you
can send a document to a bindery line, you need printed and cut signatures.

JDF SPECIFICATION 1.7 XxXi

Process nodes and resources are the basic elements within JDF. They can be strung together to meet the requirements of
each job. The output of one process becomes the input of the following process, and a process doesn’t begin until its

input resources are available:

Node 1 output Resource input

Example:

Node 2

This specification provides details on how to use these building blocks to de-
scribe concurrent processes, spawned processes, dynamic processes and so on.
To realize the capabilities of JDF, there are two other things you will need: a way
of controlling the flow of process and a way of communicating commands to
equipment on the shop floor. JMF is a subset of JDF that handles communication

JMF

The Job Messaging For-
mat (JMF) functions as a

standard interface between your
equipment and your information
systems or other equipment already
on the shop floor. By buying only
equipment that supports JMF you
will reduce the cost and complexity
of integrating new equipment into
your production operations, and you
will improve the flexibility and adapt-
ability of your shop.

with equipment on the shop floor. This might include major equipment, such as
platesetters or subsystems, such as in-line color measurement devices. JMF can
be used to establish a queue, discover the capabilities of a JDF enabled device,
determine the status of a device (e.g., “RIPing,” “Idle” and so on).

Although, theoretically, you can string together equipment that supports JMF
directly to one another, in almost all cases you will want your production equip-
ment to communicate with your MIS or Production Control system. This way it
is the MIS system that controls the scheduling, execution and control of work in
progress. The role of the MIS system is described within this standard, but it
isn’t highly defined. In fact, the JDF standard does not dictate how a JDF system
is to be built. Many printers, prepress services and other graphic arts shops will
already have MIS systems in place. JDF enabled workflow and MIS systems, custom-tailored to print production require-
ments, will soon be available on the market. However, many printers already have MIS and workflow systems that have
been customized or developed for their own environments. In most cases these legacy systems can be modified to work
with the new JDF workflows and JDF enabled equipment.

Changes to JDF 1.6
JDF 1.6 is designed as the backwards compatible sibling of XJDF 2.0. It contains only incremental updates to JDF 1.5

ICS Documents and Certification

The concept of Interoperability Conformance Specification of “ICS” documents is introduced. No single device (i.e.,
printer, press, imagesetter, etc.) is likely to implement all that the JDF specification provides for. For instance, if you are
in the digital printing business, you might not care to process data used for case binding. A RIP is not a requirement for
facilitating JDF preflighting. A Stitcher probably doesn't need to handle image rendering data.

To specify exactly what individual classes of devices need to do with JDF CIP4 members are developing ICS document
that will provide the minimum expectations for individual classes of devices. ICS documents will later be used as the ba-
sis for certification testing. Once the certification program begins, you will start seeing products that are marked as “JDF
Certified” and this will be certification to identified levels of one or more specific ICS documents. An initial set of ICS
documents is freely available to the public, and we expect that they will become part of your buying practices. ICS doc-
uments for additional classes of devices are currently under development.

Xxxii JDF SPECIFICATION 1.7

1T Introduction

This document defines the technical specification for the Job Definition Format (JDF) and its counterpart, the Job Mes-
saging Format (JMF).

We will describe the components of JDF, both internal and external, and explain how to integrate the format components
to create a viable workflow. Ancillary aspects are also introduced, such as how to convert PJTF or PPF to JDF, and how
JDF relates to IfraTrack. It is intended for use by programmers and systems integrators. In this first chapter, we present
the concept of JDF, and its relationship to JDF and other industry standards.

1.1 Further Information
Additional information such as application notes and examples can be found on the CIP4 website at http://www.CIP4.org
and the CIP4 technical website at https://confluence.cip4.org.

1.1.1 NMTOKEN repository

Open lists are marked with a data type of NMTOKEN or NMTOKENS and contain a list of suggested values. The list of
values may be incomplete and sometimes needs to be extended with new values without updating the specification, e.g.
when a new domain ICS is developed.

Additional, suggested values are maintained in the CIP4 technical discussion area at https://confluence.cip4.org. In order
to avoid different extension values being used for the same purpose, vendors are encouraged to check this area prior to
using new values. In the event that no existing extension exists then vendors are further encourged to submit their ex-
tensions to CIP4 using the CIP4 issue tracking system at https://jira.cip4.org.

1.1.2 Errata

Although great care has been taken to ensure that this specification is correct and complete, some errors cannot be
avoided. CIP4 therefore maintains an online errata repository in its technical discussion area at
https://confluence.cip/.org. A copy of the original specification with annotations identifying the errata is also published
and can be found at https://confluence.cip/.org.

The corrections in the errata override the published specification.

1.2 Background on JDF

JDF is an extensible, XML-based format built upon the existing technologies of CIP3’s Print Production Format » [CIP3
- PPF] and Adobe’s Portable Job Ticket Format » [PJTF]. It provides three primary benefits to the printing industry:

1 The ability to unify the prepress, press and postpress aspects of any printing job, unlike any previous format;

2 The means to bridge the communication gap between production services and Management Information Sys-
tems (» MIS); and

3 The ability to carry out both of these functions no matter what system architecture is already in place and no
matter what tools are being used to complete the job. In short, JDF is extremely versatile and comprehensive.
JDF is an interchange data format to be used by a system of administrative and implementation-oriented components,
which together produce printed products. It provides the means to describe print jobs in terms of the products eventually
to be created, as well as in terms of the processes needed to create those products. The format provides a mechanism to
explicitly specify the controls needed by each process, which might be specific to the devices that will execute the pro-
cesses.

JDF works in tandem with a counterpart format known as the Job Messaging Format or JMF. JMF provides the means for
production components of a JDF workflow to communicate with system controllers and administrative components. It
relays information about the progress of JDF jobs and gives » MIS the active ability to query devices about the status of
processes being executed or about to be executed. JMF will provide the complete job tracking functionality that is defined
by IfraTrack messaging standard. Depending on the system architecture, JMF might also provide the means to control
certain aspects of these processes directly.

JDF and JMF are maintained and developed by CIP4 (http://www.CIP/.org). They were originally developed by four com-
panies prominent in the graphic arts industry—Adobe, Agfa, Heidelberg and MAN Roland — with significant contribu-
tion from CIP3, the IfraTrack working group, Fraunhofer IGD and the PrintTalk consortium.

JDF SPECIFICATION 1.7

https://confluence.cip4.org
https://confluence.cip4.org
https://jira.cip4.org
https://jira.cip4.org
https://jira.cip4.org
https://confluence.cip4.org
http://www.CIP4.org
https://confluence.cip4.org
http://www.CIP4.org

INTRODUCTION

1.3 Use of XML

JDF is encoded as XML and SHALL be a valid XML document according to » [XML].

Note: Most data in JDF is encoded in XML attributes; XML elements provide the hierarchical structure of the data.
Note: The data model does not require use of XML. Conceptually, any hierarchical data syntax could be used. XML was
chosen because it is in widespread use and in addition, leaving the choice of an underlying grammar open would lead to
non-interoperable implementations.

1.3.1 Use of XML Namespaces

JDF requires the use of XML namespaces. For details on using namespaces in XML, see » [XMLNS]. The namespace for
all version 1.0 of JDF (i.e. 1.0, 1.1, ... 1.n) is "http://www.CIP4.org/J[DFSchema_1_1" and SHALL be declared and SHOULD
use either the default namespace or a prefix of 'jdf'.

In a number of places JDF allows for the use of items from a foreign namespace. If the instance contains such items then
the foreign namespace SHALL be declared.

1.3.2 Use of XML Schema

The XML schema for JDF is designed to ensure that JDF documents are syntactically valid, thus JDF documents that are
successfully validated against the JDF schema SHALL be considered conformant to the syntax requirements described in
this specification.

1.4 Conventions Used in this Specification
This section contains conventions and notations used within this document.

1.4.1 Document References

Throughout this specification, references to other documents are indicated by short symbolic names inside square
brackets (e.g., » [ICC.1]). » Appendix L References lists all such references, with their full title, date, source and avail-
ability.

1.4.2 Text Styles
The following text styles are used to identify the components of a JDF job.

Elements and resources are written in blue sans serif bold italic.
Examples are Comment, Bundleltem and ResourceLink elements, and
Ink, Layout and ExposedMedia resources. This style is also used ’
when referring to the XML JDF or JMF root elements.

Extended Backus-Naur
Form

Attributes are written in dark blue sans serif italic. The Extended Backus-Naur Form

Examples are @Status, @ResourcelD and @ID. (EBNF) provides a compact notation that is
commonly used in the specifications of pro-

gramming languages. The official EBNF

)))) standard, » [1S014977:1996], is available
Enumerative and boolean values of attributes are written in red from 1SO.

sans serif.
Examples are "true", "Waiting", "Completed" and "Stopped".

Standard bold text is used to highlight defined items inside a table and definitions of local terms.
Examples are JDF and JMF which are used when discussing either the specification in general or an instance
document.

Glossary items are written in slightly bolder italic. These terms are define in the » Table 1.4 Glossary.
Examples are Controller and Device.

Internal cross-reference links are denoted by a red triangle followed by gray text.
An example is ‘see » Section 1.4.2 Text Styles’.

External hyperlinks are denoted by blue underlined text.
An example is http://www.CIP/.org.

Process types are written in purple sans serif bold.
Examples are ColorSpaceConversion and Rendering.

1.4.3 XPath Notation Used in this Specification
New in JDF 1.2

A simple subset of the XPath Language » [XPath] is used throughout this specification to describe the hierarchical struc-
ture of an XML document. The simple subset of XPath used is:

Element » Subelement hierarchy is indicated by a slash, e.g. “Element/Element”.
Element attribute hierarchy is indicated by a slash and an @ symbol, e.g. “Element/@Attribute.

The text styles above in Section 1.3.1 are used to indicate whether an element is a resource, process or other
element, or if the subject is an attribute or a value (ex., enumeration, string, etc.).

Paths beginning with a single slash: “/” indicate root elements, e.g. /JDF indicates the root » JDF Node.

2 JDF SPECIFICATION 1.7

http://www.CIP4.org
http://www.CIP4.org

CONVENTIONS USED IN THIS SPECIFICATION

Paths beginning with a double slash “//” indicate elements with any parent e.g. //GenerallD indicates a GenerallD
element in any element.

Paths containing square brackets that enclose an attribute="value" expression describe an element that contains
an attribute with the specified value. For instance, E[@A="V"] specifies an element € whose attribute A has the value V.

1.4.4 Modification Notes
New in JDF 1.2

To help the reader familiar with earlier versions of JDF, this specification indicates additions, deprecations and clarifi-
cations using the callouts described in » Table 1.1 Modification Notes. Please note that not all changes are identified with
modified callout flags. When modification occurs in multiple versions, only the most recent version is indicated. A few
changes have been made globally and are explained in the body of the document and only significant changes have been
flagged with callouts, as determined by CIP/4 Working Groups.

Note: Some items that have been deprecated have been removed from the current version of the specification. In such
cases it is not possible to link to the original description, however the normal text style as described in » Section 1.4.2
Text Styles is retained, e.g. PartStatus. If necessary the reader should refer to a previous version of the specification for
a full description.

Table 1.1: Modification Notes

EXAMPLE CALLOUT MEANING

New in JDF 1.x New sections, attributes/elements and attribute values.

Deprecated in JDF 1.x Deprecated sections, attributes/elements and attribute values.

Usually there is a deprecation note describing the mechanism that replaces the depre-
cated item.

Modified in JDF 1.x Changed syntax or semantics of sections or attributes/elements. Might include clarifi-
cation as well.

Frequently there is a modification note describing the change.

1.4.4.1 Location of Modification Notes

New in JDF 1.4

A callout occurs after one of the following document elements.
Section head: applies to entire section and the contained table (if any).
Attribute/Element name: applies to entire row for the designated attribute/element.
Attribute value: applies to attribute value.

1.4.5 Specification of Cardinality
The cardinality of JDF attributes and elements is expressed using a simple Extended Backus-Naur Form (EBNF) notation.

The symbol T in the table below represents an attribute or element. The symbol T consists of either a single name, such
as “RunList” or an element name followed by a parenthesized name, such as “RunList (Document)”. The name in paren-
theses "Document” identifies a particular element instance when several of the same type exist in some context. For fur-
ther details, see » Section 6.1 Process Template and » Section 1.4.7 Template for Tables that Describe Elements.

Table 1.2: Cardinality Symbols (Sheet 1 of 2)

NOTATION DESCRIPTION

T T SHALL occur exactly once and represents an attribute or element.

T is OPTIONAL or is REQUIRED only in the circumstances explained in the description
field. T represents an attribute or element. If T is an attribute, a default that is specified

?
T in the description will not be inserted into the XML by a schema aware parser if no
value is explicitly specified.
T+ T occurs one or more times, and represents an element.
T * T occurs zero or more times, and represents an element.

JDF SPECIFICATION 1.7 3

INTRODUCTION

Table 1.2: Cardinality Symbols (Sheet 2 of 2)

NOTATION DESCRIPTION

T is an OPTIONAL attribute, but has the specified default value vwhen T is not supplied.
T MAY be set to other values other than the default. A default that is specified as T = "V"
indicates a JDF default which SHALL be inserted into the XML by the JDF validator if no
T="V" value is explicitly specified. If no schema is used in validation, it is up to the application
to apply these defaults. See » Section 1.6.2.1 Conformance Requirements for Support of
Attributes and Attribute Values. This notation is only valid for XML attributes, not XML
elements.

1.4.6 Template for Narrative Description of Resources

Each section for a resource begins with a brief narrative description of the resource. Following that is a list containing
details about the properties of the resource, as shown below.

Resource Properties
Resource Class: Defines the resource class or specifies resource element if the element only exists as a re-
source subelement.

Resource referenced by: List of parent resources that may contain elements or references to elements (IDREF or
IDREFS attributes) of this type.

Example Partition List of recommended Partition Keys: For a complete list of Partition Keys, see the description
of @PartiDKeys in » Table 3.34 Partitionable Resource Element.
Note: Resources may be partitioned by keys that are not specified in this list.

Input of Processes: List of JDF node types that use the resource as an input resource.
Output of Processes: List of JDF node types that create the resource as an output resource.

The first item in the above list provides the class of the resource. As was described in » Section 3.8.4 Resource Classes,
all resources are derived from one of the following seven superclasses: Intent, Parameter, Implementation, Consumable,
Quantity, Handling and PlaceHolder. All resources inherit additional contents (i.e., zero or more attributes or zero or more
elements) from their respective superclasses, and those attributes and elements are not repeated in this section. Thus
those attributes associated with a resource of class Parameter, for example, can be found in » Table 3.21 Abstract
Resource Element. Note that this inheritance is only valid for atomic resources (i.e., resources that reside directly in a
ResourcePool).

Resource elements are listed in separate sections if they can be referenced by more than one resource. For an example,
see the resource element SeparationSpec. If the resource is not referenced by multiple resources, it is described inside
the resource section of the resource to which it belongs. For example, see the structure of the Bundleltem element of the
Bundle resource. If an element inside a resource section of the resource is needed to be referenced by multiple resources
in a revision of JDF, then that element is promoted to its own section. For example, ColorSpaceConversionOp was a sub-
element of ColorSpaceConversionParams in JDF/1.1. The resource class of an atomic resource also defines the superclasses
from which the resource inherits additional contents. The Consumable Resource, Quantity Resource and Handling Resource
inherit from the PhysicalResource element, which in turn inherits from the resource element. The Parameter Resource and
ImplementationResource elements inherit from the resource element directly. Non-atomic resources (i.e., resource sub-
elements) do not inherit contents from resource superclasses.

Examples for resources that can be used as atomic resources or resource elements are: Employee, InsertSheet,
LayoutElement and Media.

After the list describing the resource properties, each section contains tables that outline the structure of each resource
and, when applicable, the abstract or subelement information that pertains to the resource structure. The first column
contains the name of the attribute or element. In some cases, a resource will contain multiple elements of the same type.
If this is the case, the element name is listed as often as it appears, along with a term in parentheses that identifies the
occurrence. For an example, see » Section 8.53 EndSheetGluingParams. The following sections provide templates of the
tables.

1.4.7 Template for Tables that Describe Elements
Resources and elements are defined by their attributes and sub-elements.
Note: For tables that describe resources or elements:
the italicized text describes the actual text that would be in its place in an actual resource definition

Cardinality in the Name column refers to a cardinality symbol, which is either empty or consists of a symbol,
such as “?”. Examples described by the Name column include: “Media*” and “Component (Proof) ?”. For
further details, see » Section 1.4.5 Specification of Cardinality.

The text following a “Note:” in a table field gives further information about the specified table row.

4 JDF SPECIFICATION 1.7

GLOSSARY

Table 1.3: Template for Element Descriptions

NAME DATA TYPE DESCRIPTION
Attribute-Name Attribute- Information about the attribute.
Cardinality data-type
Element-Name element Information about the element.
Cardinality Note: The “element” data type means that the specified element SHALL be
an in-line subelement within the Resource.
Element-Name refelement Information about the element
Cardinality Note: The “refelement” data type means that the specified element is based

on other atomic resources or resource elements. The specified element SHALL
be either an in-line element or an instance of a ResourceRef element (see

» Section 3.10.2 ResourceRef — Element for Inter-Resource Linking and
refelement). In case of a ResourceRef element, a “Ref” SHALL be appended to
the name specified in the table column entitled “Name”.

FileSpec refelement Information about the FileSpec resource.
(som.eVal.ue) Note: FileSpec/ @ResourceUsage SHALL match the "someValue" value specified
Cardinality in the parentheses. When an element potentially contains multiple FileSpec

children, the value of FileSpec/@ResourceUsage is used to distinguish them.

Resource-Name refelement Information about the resource and the attribute whose value is "someValue".
(Som,eval.“e) Note: Some specified attribute in the specified resource SHALL match the
Cardinality "someValue" value specified in the parentheses. When a resource potentially

contains multiple children of the same resource type, the value of some attri-
bute distinguishes the resources.

1.5 Glossary

The following terms are defined as they are used throughout this specification. For more detail on job and workflow
components, see » Section 2.2 System Components.

Table 1.4: Glossary (Sheet 1 of 5)

TERM DEFINITION

Abstract is used as a modifier for Elements and Resources (e.g., Abstract Element,

Abstract Abstract Resource and Abstract Physical Resource).
An Abstract Element is an abstract data type with Attributes and Elements that are
inherited by a concrete subclass Element. For example, PlacedObject is an Abstract Ele-
Abstract Element

ment member of a Layout. MarkObject and ContentObject elements are concrete Ele-
ments of PlacedObject that are themselves potential members of Layout.

An Abstract Resource is an abstract data type with Attributes and Elements that are
inherited by all » Resources. For example, Media, as a Resource inherits all the Attri-
butes and Elements of the Abstract Resource. Abstract Resource has subclasses, such
as Abstract PhysicalResource and Abstract ImplementationResource.

Abstract Resource

An Acknowledge Message is a JMF Message that is delayed response to a Command

Acknowledge Message Message or Query Message.
Agent The component of a JDF based workflow that writes JDF.
. An XML syntactic construct describing an unstructured characteristic of an Element. See
Attribute .
» [XML] for details.
Attribute Value The value of an Attribute.

JDF SPECIFICATION 1.7 5

INTRODUCTION

Table 1.4: Glossary (Sheet 2 of 5)

TERM DEFINITION

Class

A set of complex data types with common content in an object-oriented sense. A com-
plex data type consist of zero or more Elements and zero or more Attributes.

Each Resource belongs to a Class: "Consumable”, "Handling", "Implementation”, "Intent",
"Parameter”, "PlaceHolder", "Quantity". See Consumable Resource, etc.

Each Notification Audit Element belongs to a Class: "Event’, "Information”, "Warning",
"Error", "Fatal".

Combined Process

A Process which is described by multiple simpler JDF processes.

Combined Process Node

A Node that represents a Combined Process that is described by multiple simpler JDF
processes. See Combined Process, Node and » Section 3.3 Common Node Types.

Command Message

A Command Message is a JMF Message that requests its recipient to change its state.

Consumable Resource

A Consumable Resource is consumed during a Process. See Resource, Physical
Resource and » Section 3.8.4.4 Consumable Resource.

The component of a JDF based workflow that initiates Devices, routes JDF , and com-

Controller municates status information.
Used to indicate the Attribute Value that a JDF Consumer SHALL use if an OPTIONAL
Default Attribute (as indicated by a “?” or @Attribute = "DefaultValue" in this specification) has
been omitted from a JDF instance. See » Section 1.6.2.1 Conformance Requirements for
Support of Attributes and Attribute Values.
. The phrase “Default behavior:” precedes a description of the default behavior for an
Default behavior

Attribute or Span » Element.

Default value is

The phrase “Default value is:” precedes the default value for an Attribute.

Default value is from

The phrase “Default value is from:” precedes a reference to a default value — usually
an XPath.

Deprecated

Indicates that a JDF Element is being phased out of JDF usually in favor of newer JDF

» Element(s). It is RECOMMENDED that an Agent does not include such a JDF Element in
a JDF instance. Such an indicated JDF Element might be removed from a future version of
the JDF specification. JDF Consumers SHOULD only support such JDF Elements for back-
ward compatibility with previous versions of JDF. Deprecated items are flagged with Depre-
cated in JDF 1.x in this specification.

Device

The component of a JDF workflow part that interprets JDF and executes the instruc-
tions. If a Device controls a Machine, it does so in a proprietary manner. For details, see
» Section 2.2.2.2 Device about devices in workflow components.

Document Set

A set of Instance Documents presumed to be related.

Element An XML-based syntactic construct describing structured data in JDF .

A page of a final product that normally has no folds inside. The folds of the finished
Finished Page product for packaging (e.g., folding letters into an envelope), or Z-fold of an oversized

book, have no effect on the Finished Page definition.

A Gray Box specifies a loose combination of several Processes with a specific goal. A Gray
Gray Box Box does not specify all Processes or all Resources - except for Output Resources.

In a JDF instance, a Process Group with an @Types attribute and no child Nodes represents
a Gray Box.

Handling Resource

A Handling Resource is used during a Process, but is not destroyed by that process. See
Resource, Physical Resource and » Section 3.8.4.6 Handling Resource.

Implementation Resource

An Implementation Resource defines a Device or operator that executes a given Node.
See Resource and » Section 3.8.4.3 ImplementationResource.

Input Resource

A resource is an input to a Process. See Resource.

JDF SPECIFICATION 1.7

GLOSSARY

Table 1.4: Glossary (Sheet 3 of 5)

TERM DEFINITION

Instance Document

A document that is part of the output of a job. This generally refers to personalized printing

jobs. Each of the individual documents produced from the same input template is referred to
as an Instance Document. For example, in a credit card statement run, each statement is an
Instance Document.

Intent Resource

An Intent Resource defines the details of products to be produced without defining the
process to produce them. See Resource and » Section 3.8.4.2 Intent Resource.

JDF

Job Definition Format. The overall name of this specification. There is also a JDF Ele-
ment, which is a top-level Element within JDF that encompasses a Node (see below).

JDF Consumer

A Device, Controller or Agent that consumes JDF instances.

JDF Node See Node.
Job Messaging Format. Transfers information between MIS, Controllers and Devices.
JMF X
See » Chapter 5 Messaging.
JMF Message A JMF Message is synonymous with Message.
A hierarchical tree structure comprised of Nodes. Describes the output that is desired by a
Job
customer.
Job Part One or more Nodes which comprise the smallest level of control of interest to MIS.
Link A pointer to information that is located elsewhere in a JDF document or that is located
in another document.
Machine The part of a device that does not know JDF and is controlled by a JDF Device in a propri-
etary manner.
The XML element that Devices and Controllers use to exchange queries, commands,
Message responses, etc. among themselves using HTTP as the underlying protocol and JMF
Message Family.
A Message Family is a set of messages. The 6 Message Families are Query Message,
Message Family Command Message, Registration Message, Response Message, Acknowledege Mes-
sage and Signal Message.
Management Information System. The functional part of a JDF workflow that oversees
all Processes and communication between system components and system control. MIS
MIS is assumed to be a role rather than an individual application. A single application may
fulfill various roles of an MIS and various roles of an MIS may be implemented by mul-
tiple applications. Typical MIS roles include estimation, costing, scheduling, process
planning and invoicing.
Node The JDF element type detailing the Resources and Process specification needed to pro-
duce a final or intermediate product or Resource. A Node is also called a JDF Node.
Operating Side Operating Side is the side of a Machine, where the operator works. Operating Side is

opposite to Gear Side.

Output Resource

A resource that is an output from a Process. See Resource.

Parameter Resource

A Parameter Resource defines the details of Processes, as well as any non-physical
computer data such as files used by a Process. See Resource and » Section 3.8.4.1
Parameter Resource.

Page

When Page occurs by itself, not in the context of Finished Page or Reader Page, it
means “Finished Page”.

JDF SPECIFICATION 1.7 7

INTRODUCTION

Table 1.4: Glossary (Sheet 4 of 5)

TERM DEFINITION

A Partition is a node of a Partitioned Resource structure. A leaf node Partition rep-
resents a single Resource. A non-leaf node Partition represents a set of Resources. Val-
ues of the @PartiDKeys Attribute in the Partitioned Resource root specify the Attributes
Partition used to identify the individual Resources in the Partitioned Resource. Each Partition
except the Partitioned Resource root has a Partition Key Attribute whose value identi-
fies the Partition. See » Table 3.34 Partitionable Resource Element.

A Partition Key is an enumeration value of the @PartIDKeys Attribute and a Partition Key
Partition Key is an Attribute that with can identify a Partition or can reference a Partition from
within a Part Element. See » Section 3.10.6 PartIDKeys Attribute and Partition Keys.

The verb to Partition means to construct a Partition Resource from a set of Resources

St 1) of the same Class. See » Section 3.10.5.4 Partitioning of Resource Subelements.

Partitionable Resource A Resource that can become a Partitioned Resource.

A Partitioned Resource is a structured Resource that describes a set of Resources, all of
Partitioned Resource the same Class and representing multiple physical or logical entities (e.g., a set of
ExposedMedia that represent multiple separated plates).

Page Description Language. A generic term for any language that describes pages that

PDL might be printed. Examples are PDF®, PostScript® or PCL®.

S IR A PhysicalResourc.:e is a resource whose Class is "Consumable", "Quantity" or "Handling" is
considered a PhysicalResource. See » Resource and » Section 3.8.4.7 PhysicalResource.

Process An individual step in the workflow.

Process Group A group of Processes. See Process and Process Group Node.

A Node that contains multiple child Nodes. See Process Group, Node and » Section 3.3

Process Group Node Common Node Types.

A Node that describes an individual Process. See Node and » Section 3.3 Common Node

Process Node Types.

Product Intent Describes the end result that a customer is requesting. See Product Intent Node.

A Node that describes intent rather than specifying the Process. See Node, Product

LRGN Intent and » Section 3.3 Common Node Types.

A Quantity Resource has been created by a Process from either a Consumable Resource
Quantity Resource or an earlier Quantity Resource. See Resource, PhysicalResource and » Section 3.8.4.5
Quantity Resource.

A Query Message is a JMF Message that requests its recipient to provide information,

Query Message but not change its state.
Alogical page as perceived by a reader, for example one RunList entry. One Reader Page

Reader Page might span more than one Finished Page (e.g., a centerfold). One » Finished Page might

8 contain contents defined by multiple Reader Pages (e.g., NUp imposition. Reader Pages

are defined independently of » Finished Pages).

Resistration Message A Registration Message is a JMF Message that requests its recipient to send a Com-

& & mand Message to some other recipient.

Resource A physical or conceptual entity that is modified or used by a Node. Examples include
paper, images or Process parameters.

ResourceLink An Element that links to a Resource. See Resource and » Section 3.9.2 ResourceLink.

Response Message A Response Message is a JMF Message that functions as a synchronous response to a

Command Message or Query Message.

8 JDF SPECIFICATION 1.7

GLOSSARY

Table 1.4: Glossary (Sheet 5 of 5)

TERM DEFINITION

Roll

A Roll is media that is mainly used in connection with Web printing. In British English
the name “reel” for “roll” is in widespread use. Roll is used as synonym of reel. Also,
see the term Web in this glossary.

Root Node

The top most JDF Node. See Node.

Sheet

The printer’s » Roll of paper or paper cut for press size, with “recto” and “verso” forms
for identification of orientation through the press (facing up versus facing down at the
feeder or off the » Roll).

» Sheets are press sheets which may be comprised of multiple folding signatures and
might also have “recto” and “verso” forms for identification of orientation through the
press (facing up versus facing down at the feeder or off the roll).

The term “cut sheet” refers to an individual Sheet, typically in a phrase, such as “sepa-
rately cut Sheets of an opaque material”. The term “Sheet-Fed” is used to describe a
press that consumes cut Sheets, typically in the phrase “Sheet-Fed Press”.

Signal Message

A Signal Message is a JMF Message that is sent asynchronously when some event
occurs.

Signature

A Signature is a set of printed Sheets that are folded or yet to be folded.

Note that there are multiple usages of the word Signature in the industry. A » Sheet
MAY contain multiple BinderySignature » Resources that are the input to folding. This is
the standard usage in conventional printing, where multi-page Sheets are printed and
potentially cut into multi-page imposition signatures before folding. The Layout
Resource, on the other hand, describes a Signature as a set of Sheets. This is appropri-
ate for digital printing, where typically only one or two pages are printed per Sheets-
Surface and multiple Sheets are gathered prior to folding.

Slave Controller

The component of a JDF workflow that accepts JDF as a Device from other Controllers
and/or Slave Controllers and sends JDF to other Slave Controllers and/or Devices.

Subelement

A child Element of some other Element.

Subnode

A Node that is a child of some other Node.

Support

A JDF Consumer Supports a JDF syntactic construct (Processes, Resources, Elements,
Attributes and Attribute Values) if the JDF Consumer performs the action defined in
this specification for the JDF construct when consuming a JDF instance that includes
the JDF syntactic construct. If the Machine that a Device is representing Supports a
feature which is represented by a JDF construct, then the Device SHOULD Support that
JDF syntactic construct.

Surface

A single side of a Sheet.

Tag

A syntactic XML construct that marks the start or end of an Element.

Web

A Web is media that comes from a Roll and is mainly used in connection with Web
printing. This specification uses the word “web-fed” instead of “roll-fed”. It uses the
phrase “Web Printing” and “Web Press” to describe printing presses that consume
media from a Roll.

Work Center

An organizational unit, such as a department or a subcontracting company, that can accomplish a
task.

Workstep

A workstep is an individual JDF process that can be processed on a single device in one
pass. A workstep is comprised of one or multiple phases such as setup, production or
cleanup.

JDF SPECIFICATION 1.7 9

INTRODUCTION

1.6 Conformance

1.6.1 Conformance Terminology

The words “SHALL”, “SHALL NOT”, “REQUIRED”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, “NEED
NOT” and “OPTIONAL” are used in this specification to define a requirement for the indicated » JDF Consumer as fol-
lows.

Table 1.5: Conformance Terminology

TERM MEANING

SHALL or Means that the definition is an absolute requirement of the specification.
REQUIRED
SHALL NOT Means that the definition is an absolute prohibition of the specification.
Means that there might exist valid reasons in particular circumstances for an imple-
SHOULD or . . . :
menter to ignore a particular item, but the implementer SHALL fully understand the
RECOMMENDED . C . - . .
implications and carefully weigh the alternatives before choosing a different course.
Means that there might exist valid reasons in particular circumstances when the partic-
SHOULD NOT or ular behavior is acceptable or even useful, but the implementer should fully understand
NOT RECOMMENDED the implications and then carefully weigh the alternatives before implementing any
behavior described with this label.
Means that an item is truly optional. If a » JDF Consumer is using a JDF parser, that
parser will supply the default values indicated in this specification, if any, for optional
» Attributes that the » Agent has omitted (indicated by @Attribute = "DefaultValue" in
this specification). See » Section 1.4.5 Specification of Cardinality.
For features that are optional for a » JDF Consumer to » Support, one vendor might
choose to » Support such an item because a particular marketplace requires it or
MAY, because the vendor feels that it enhances the product, while another vendor might omit
NEED NOT or » Support of that item. Similarly, one vendor of an » Agent might choose to supply such
OPTIONAL an item in a JDF instance, while another vendor might omit the same item in a JDF

instance. A » JDF Consumer implementation which does not include » Support of a par-
ticular option (element or attribute) SHALL be prepared to interoperate with an » Agent
implementation which does supply the option, though with reduced functionality. In
the same vein, a » JDF Consumer implementation which does include » Support for a
particular option SHALL be prepared to interoperate with an » Agent implementation
which does not supply the option in the JDF instance.

1.6.2 Conformance Requirements for JDF Entities

The subsections of this section define the general conformance requirements for the JDF entities: 1) » Attributes and
» Attribute Values, 2) » Resources, 3) » Processes, and 4) » Combined Processes.

1.6.2.1 Conformance Requirements for Support of Attributes and Attribute Values

If a » JDF Consumer supports an attribute, it SHALL support all of the values that this specification indicates are RE-
QUIRED for a » JDF Consumer to support (whether or not the attribute is REQUIRED for the » Agent to supply in that
context). If this specification is silent on which values are REQUIRED for support of an attribute, then the » JDF
Consumer SHALL support at least one value in order to claim support for the attribute.

Attributes that are OPTIONAL for an » Agent to include in a JDF instance are indicated by a “?” character following the
attribute name or by the notation @Attribute = "DefaultValue" as indicated in » Section 1.4.5 Specification of Cardinality.

A Special Note on the Handling of Defaults. Prior to JDF 1.2 many OPTIONAL attributes included either explicit default
values or the default value was indicated as "system specified" or the "SystemSpecified" enumeration or NMTOKEN value.
In JDF/1.2, the explicit default values are indicated as default values using the “=" followed by the “value” (See » Section
1.4.5 Specification of Cardinality). The "SystemSpecified" enumeration and NMTOKEN values have been removed and the
attribute remains as an OPTIONAL attribute indicated with a “?” with no default value. The JDF consuming application
SHALL supply the default value when the attribute is omitted from the JDF instance. Such an indicated default value
SHALL have the same semantic meaning as if an » Agent includes the attribute in the JDF instance with the same value.
If an OPTIONAL attribute does not have a default value indicated in its description and the JDF instance does not include
the attribute, then the » JDF Consumer can use a system-specified value.

See » Figure 1-1: Handling of default values of JDF attributes. below. Such a system-specified attribute value can be con-
figurable by a system administrator for the » JDF Consumer or can depend on the values of other supplied attributes and/

10 JDF SPECIFICATION 1.7

CONFORMANCE

or the current setting of the » JDF Consumer device or the actual » Machine for which the device is providing a JDF in-

terface.

Figure 1-

1: Handling of default values of IDF attributes.

Vendor A
implementation

Vendor B
implementation

Producer
Application
(Agent)

Consumer

JDF Parser Application

Interface

MAY
validate

MUST

apply
Schema
Defaults

Shows order
of application

@ ©) ®

JDF Schema JDF Specification Vendor B
including Specified System Specified
Schema Defaults Defaults Defaults

(not in the schema)

1.6.2.2 Conformance Requirements for Support of Elements
If a » JDF Consumer supports an element, it

1

SHALL support all of the attributes (see » Section 1.6.2.1 Conformance Requirements for Support of Attributes
and Attribute Values) defined for that element that an » Agent is REQUIRED to include in the element instance,
i.e. attributes with either no marks or a “+” as defined in » Section 1.4.5 Specification of Cardinality.

SHOULD support the @SettingsPolicy, @BestEffortExceptions, @MustHonorExceptions and
@OperatorInterventionExceptions (see » Section 3.1 Generic Contents of All Elements) attributes and all of
their defined values. These attributes control the policy that a » JDF Consumer SHALL follow when it encoun-
ters unsupported settings (i.e., » Subelements, attributes or attribute values in the resource).

1.6.2.3 Conformance Requirements for Support of Processes

All processes are OPTIONAL for a » JDF Consumer to support. However, a device SHALL support at least one process or
a » Combined Process. If a » JDF Consumer supports a process, it

1

2

SHALL support all of the input and output ResourceLink elements and referenced resources as described in
» Section 1.6.2.2 Conformance Requirements for Support of Elements that this specification defines for that
process,

MAY make its own assumptions regarding attributes and » Subelements of an OPTIONAL » Input Resource
(Resources with either a “?” or an “*” — see » Section 1.4.5 Specification of Cardinality) that an » Agent has
omitted from the process in the JDF instance; therefore, default attribute values defined in this specification are
not guaranteed when the » Agent omits the resource from the process in the JDF instance (see » Section 6.1
Process Template), and

SHOULD find the processes that it supports in a JDF instance and SHALL ignore all other processes, indepen-
dent of the @SettingsPolicy attribute for those other processes.

1.6.2.4 Conformance Requirements for Support of Combined Processes

All » Combined Processes are OPTIONAL for a » JDF Consumer to support. The rules for processes specified in » Section
1.6.2.3 Conformance Requirements for Support of Processes apply. If a » JDF Consumer supports a » Combined Process, it

1

3

SHALL support all of the » Input Resources as defined in » Section 1.6.2.2 Conformance Requirements for
Support of Elements that this specification defines for the first process in the » Combined Process Node (i.e., the
first process listed in the @Types attribute),

SHALL support all of the » Output Resources as defined in » Section 1.6.2.2 Conformance Requirements for
Support of Elements that this specification defines for the last process in the » Combined Process,

MAY support resources that are used as exchange resources between processes in the process chain of the
» Combined Process (i.e., resources that are both produced and consumed within the » Combined Process
Node),

JDF SPECIFICATION 1.7 n

INTRODUCTION

4 SHALL support resources in intermediate process steps that are not used as exchange resources between pro-
cesses in the process chain of the » Combined Process.

1.6.3 Conformance to Settings Policy

The @SettingsPolicy, @BestEffortExceptions, @ MustHonorExceptions and @ OperatorInterventionExceptions attributes
are defined in » Table 3.1 Any Element (generic content). They define the conformance policy of a device. A » JDF
Consumer SHOULD support these attributes and all of the defined values so that an » Agent can depend on the » JDF
Consumer following the policy requested by the » Agent in a JDF instance.

1.7 Data Structures Data Types
The following table describes the data C D

structures as they are used in this speci- & An important reason for using a W3C Schema is to make use
fication. For more details on JDF Schema of user-defined data types. Even data types that are defined in
and data types, see » Appendix A Data the Schema specification have been more narrowly defined in
Types and Values. JDF, including boolean (JDF doesn't permit 1, 0), double (JDF doesn't per-
mit NaN), duration (JDF has INF & -INF) and string (JDF doesn't permit
CRLF & FF). Be sure to check » Appendix A Data Types and Values for all
data type definitions.

In JDF 1.2, some data types have been en-
hanced to include unbounded values by
defining the explicit tokens "INF" and "-
INF". For instance, the IntegerRange "0 ~
INF" specifies all positive integers including o.

Table 1.6: JDF Data Types (Sheet 1 of 3)

DATA TYPE DESCRIPTION

boolean Binary-valued logic: (true | false).

CMYKColor Represents a CMYK color specification.

date Represents a time period that starts at midnight of a specified day and lasts for 24
Deprecated in JDF 1.6 hours.

Deprecation note: Unused.

dateTime Represents a specific instant of time. It SHALL be a UTC time or a local time that
includes the time zone.

DateTimeRange Two dateTime values separated by a “~” (tilde) character that define the closed interval
of the two.

DateTimeRangeList Whitespace-separated list of DateTimeRange values.

double Corresponds to » [IEEE754] double-precision, 64-bit floating point type, including

special tokens INF and -INF. This corresponds to the standard XML double with NaN
removed. For details, see » [XMLSchemal].

Note: Prior to JDF 1.2 the data type number was used. The double and number data types
are syntactically equivalent.

DoubleList Whitespace-separated list of double values.

New in JDF 1.2 Note: This data type was named NumberList before JDF 1.2.

DoubleRange Two double values separated by a “~” (tilde) character that define the closed interval of

New in JDF 1.2 the two.
Note: This data type was named NumberRange before JDF 1.2.

DoubleRangeList Whitespace-separated list of double and DoubleRange values.

New in JDF 1.2 Note: This data type was named NumberRangeList before JDF 1.2.

duration Represents a duration of time.

DurationRange Two duration values separated by whitespace. Describes a range of time durations. More
specifically, it describes a time span that has a relative start and end.

DurationRangeList Whitespace-separated list of DurationRange values.

element Structured data. The specific data type is defined by the element name.

enumeration Limited set of NVITOKEN values (see below).

12 JDF SPECIFICATION 1.7

DATA STRUCTURES

Table 1.6: JDF Data Types (Sheet 2 of 3)

DATA TYPE DESCRIPTION

enumerations

Whitespace-separated list of enumeration values.

gYearMonth
Deprecated in JDF 1.6

Represents a specific Gregorian month in a specific Gregorian year.
Deprecation note: Unused.

hexBinary Represents arbitrary hex encoded binary data.

hexBinaryList Whitespace-separated list of hexBinary values.

New in JDF 1.4

ID Unique identifier as defined by » [XML] (see » Section 1.4.1 Document References).
SHALL be unique within the scope of the JDF document.

IDREF Reference to an element holding the unique identifier as defined by [XML Specification
1.0].

IDREFS List of references (IDREF values) separated by white spaces as defined by » [XML].

integer Represents numerical integer values, including the special tokens INF and -INF. This
corresponds to the standard XML integer with INF and -INF added. Values greater than
+/-2*%*31 are not expected to occur for this data type. For details, see » [XMLSchema].

IntegerList Whitespace-separated list of integer values.

IntegerRange Two integer values separated by a “~” (tilde) character that define a closed interval.

IntegerRangeList Whitespace-separated list of integer values and IntegerRange values.

LabColor Represents a Lab color specification.

language Represents a language and country code (for example, en-US) for a natural language.
Values SHALL conform to » [RFC3066].

languages Whitespace-separated list of language values.

New in JDF 1.4

LongInteger Represents numerical integer values, including the special tokens INF and -INF. This
corresponds to the standard XML integer with INF and -INF added. Values greater than
+/-2%*31 are expected to occur for this data type. For details, see » [XMLSchema].

matrix Whitespace-separated list of six doubles representing a coordinate transformation
matrix.

NameRange Two NMTOKEN values separated by a “~” (tilde) character that define an interval of
NMTOKEN values.

NameRangeList Whitespace-separated list of NMTOKEN and NameRange values.

NMTOKEN A continuous sequence of special characters as defined by » [XML].

NMTOKENS Whitespace-separated list of NMTOKEN values.

PDFPath Whitespace-separated list of path operators as defined in PDF.

rectangle Whitespace-separated list of four doubles representing a rectangle.

refelement ResourceElement or a reference to an element. Used to define candidates for inter-
Resource linking in resources.

regExp Regular expression as defined by » [XMLSchemal.

New in JDF 1.2

shape Whitespace-separated list of three doubles representing a three-dimensional shape

consisting of a width, height and length. Unless specified otherwise in the attribute
description, these three numbers are an X-dimension, a Y-dimension and a Z-dimen-
sion, respectively.

JDF SPECIFICATION 1.7 13

INTRODUCTION

Table 1.6: JDF Data Types (Sheet 3 of 3)

DATA TYPE DESCRIPTION

ShapeRange Two shape values separated by a “~” (tilde) character that defines a 3-dimensional box
bounded by x1 y1 z1 ~ x2 y2 z2.

ShapeRangeList Whitespace-separated list of shape values or ShapeRange values.

SRGBColor Represents an sRGB color specification.

string Character strings without tabs or line feeds. Corresponds to the standard XML normal-

Modified in JDF 1.2

izedString data type » [XMLSchema].

text Text data contained in an XML element (between start and end tag). A few elements,
such as Comment, have text, e.g. <Comment>example text</Comment>.

TimeRange Two dateTime values separated by a “~” (tilde) character that defines the closed interval of

Deprecated in JDF 1.2 the two.
Deprecation note: Unused.

TransferFunction Whitespace separated list of an even number of doubles representing a set of XY coordi-
nates of a transfer function.

URI URI-reference. Represents a Uniform Resource Identifier (URI) Reference as defined in

Section 4 of » [RFC3986].. For the "file:" URL scheme, see » [RFC3987]. URI was modi-
fied in JDF 1.3 to include Internationalized Resource Identifiers (IRI).

Modified in JDF 1.3

URL URL-reference. Represents a Uniform Resource Locator (URL) Reference as defined in
Modified in JDE 1.3 Section 4 of » [RFC3986]. For the "file:" URL scheme, see » [RFC3987]. URL was modi-
fied in JDF 1.3 to include usage of Internationalized Resource Identifiers (IRI).

XPath Represents an XPath expression of an XML node set (attributes or elements), boolean,
double or string. » [XPath]

XYPair Whitespace-separated list of two doubles. Unless specified otherwise in the attribute
description, these two doubles are an X-dimension and a Y-dimension, respectively.

XYPairRange Two XYPair values separated by a “~” (tilde) character that defines a rectangle bounded
by X1 y1 ~ X2 y2.
XYPairRangeList Whitespace-separated list of XYPairRange values.

1.7.1 Units of measurement

JDF specifies most values in default units. This means that an implementation SHALL use the defined default units and
SHALL NOT use alternate units.

The supported default units are described in » Table A.5.25 Units which associates measurement types with the default
unit. If there is no suitable entry, i.e. when a new resource is defined that introduces a new measurement type not listed
in » Table A.5.25 Units, then the processor MAY introduce a new unit, and that unit SHALL be based upon metric units.
Speed shall be specified in units (as defined in the previous paragraph) per hour.

1.7.2 Counting in JDF

When accessing data using an index, zero-based indices SHALL be used in JDF. Thus the first index is 0, the second index
is 1, etc. Negative values SHALL specify a number that is counted from the back of the list. Thus the last item is at index
-1, the second to last item is at index -2 etc.

JDF also allows ranges of items to be sub-selected from lists by using a pair of integer values where the first item iden-
tifies the start of the selection and the second item identifies the end of the selection. Thus the range "0 -1" represents all
entries of a list and the range "-10" represents the same list in reverse order.

1.7.3 Human and Machine readable strings and tokens
Tokens and strings are defined using three data types within JDF, which are described in the following sections.

1.7.3.1 Enumeration data types
The data type in the tables is either ‘enumeration’ or ‘enumerations’.

These are designed to be machine readable values with a limited, well-defined, closed set of valid values. Enumeration
data types cannot be localized. Thus implementers can rely on the values of these data types to be from the known list.

14 JDF SPECIFICATION 1.7

DATA STRUCTURES

If the data type of the attribute in the tables is ‘enumeration’ then the description contains either the phrase “Allowed
values are:” to show a set of values, or “Allowed value is from:” to refer to a set of values defined elsewhere. In either
case one of the values from the indicated set SHALL be used as the value of the attribute.

If the data type of the attribute in the table is ‘enumerations’ then the phrase “Allowed values are from:” is used in the
description to show or refer to a set of values, one or more of which (whitespace separated) SHALL be used as the value
of the attribute.

If, in a later version of JDF, values are added or deprecated from the list of values for an enumeration data type, then
this will be called out in a modification note, see » Section 1.4.4 Modification Notes.

1.7.3.2 NMTOKEN data types
The data type in the tables is either ‘'NMTOKEN’ or ‘NMTOKENS’.

These are designed to be machine readable values with a limited set of recommended values but an an unlimited set of
valid values. NMTOKEN data types SHOULD NOT be localized. As the list of values is an open list, implementers cannot
rely on the values of these data types to be from a predetermined list.

If the data type of the attribute in the tables is ‘NMTOKEN’ or ‘string’ then the description contains either the phrase
“Values include:” to show a set of recommended values, or “Values include those from:” to refer to a set of values de-
fined elsewhere. In either case one of the values from the indicated set MAY be used as the value of the attribute. This
does not preclude the use of other values as required by vendor or customer extensions.

If the data type of the attribute in the table is ‘NMTOKENS’, ‘string’, ‘NameSpan’ or ‘StringSpan’ then the phrase “Values
include:” to show a set of recommended values, or “Values include those from:” to refer to a set of values defined else-
where. In either case one or more of the (whitespace separated) values MAY be used as the value of the attribute. This
does not preclude the use of other values as required by vendor or customer extensions.

If, in a later version of JDF, recommended values are added or deprecated from an NMTOKEN data type, this will be not
called out in a modification note. Modification to the list of suggested values will be provided at » [CIP4Names] and up-
dated with every specification release.

1.7.3.3 String data types

The data type in the tables is ‘string’.

These are designed to be human readable values with an unlimited set of valid values. String data types may be localized.
Thus implementers cannot rely on the values of these data types to be from a known list. No attempt is made to provide
a list of valid string values.

Note: In some cases, string data types are also designed to be machine readable. This is typically the case when the value
set is not defined by CIP4 and therefore a limitation to NMTOKEN is not possible without reducing functionality.

JDF SPECIFICATION 1.7 15

INTRODUCTION

16 JDF SPECIFICATION 1.7

/2 Overview

2.1 Introduction

This chapter explains the basic aspects of JDF . It outlines the terminology that is used and the components of a workflow
necessary to execute a printing job using JDF . Also provided is a brief discussion of JDF process structure and the role
of messaging in a JDF job.

2.2 System Components

This section defines unique terminology used in this specification for the job and workflow components of JDF. Links to
additional information are included for some terms.

2.2.1 Job Components
This terminology describes how JDF is described conceptually and hierarchically.

2.2.1.1 Jobs and Nodes

A » Jobis the entirety of a JDF project. Each » Job is organized in a tree structure containing all of the information needed
to complete the intended project. The information is collected logically into what is called a node. Each node in the tree
structure represents an aspect of the » Job to be executed.

The nodes in a » Job are organized in a hierarchical structure that resembles a pyramid. The node at the top of the pyr-
amid describes the overall intention of the » Job. The intermediate nodes describe increasingly process-oriented aspects
of the » Job, until the nodes at the bottom of the pyramid each describe a single, simple » Process. Depending on where
in the » Job structure a node resides, it can represent a portion of the product to be created, one or many processing steps
or other » Job parts. For more information about » Jobs and nodes, see » Section 3 Structure.

2.2.1.2 Elements

An element is a standard XML syntactic construct » [XML]. (See
also: » Section 2.2.1.3 Attributes.) Elements that are subparts of
other elements are often referred to as subelements. JDF elements
are used to contain other elements in an ordered hierarchy, to
contain a set of associated attributes and (in a few cases) to con-
tain text. For more information about elements, see » Section 3.2
JDF.

XML Crash Course

Need a crash course in XML?

XML101.com provides online tutorials
that non-programmers can easily follow. The site
includes examples. See » [XML Tutorial].

2.2.1.3 Attributes

An attribute is a standard XML syntactic construct » [XML]. (See also: » Section 2.2.1.2 Elements.) Attributes are defined
as various different data types, such as string, enumeration, dateTime and so on.

For more information about attributes, see » Section 3.2 JDF. Note that an attribute with an empty (zero length) value
string SHALL NOT be specified except when its data type allows an empty string (i.e., if not required, OPTIONAL attri-
butes are to be omitted rather than included as empty attributes).

2.2.1.4 Relationships
The hierarchical JDF structure implies relationships between nodes and elements within a JDF tree structure. The terms
used in this document to describe these relationships are defined below, and, in some cases, include a brief representa-
tion of the encoding that would express them.
Parent: An element that directly contains a child element.
<Parent><Child/></Parent>
Child: An element that resides directly in the parent element.
Sibling: An element that resides in the same parent element as another child element.
<Any>
<Sibling/>
</Any>

Descendent: An element that is a child or a child of a child, etc.

JDF SPECIFICATION 1.7

OVERVIEW

Ancestor: An element that is a parent or a parent’s parent, etc.
<Ancestor>
<Any>
<Descendent/>
<[/Any>
<MoreAnys>
<Descendent/>
</MoreAnys>
</Ancestor>

Root: The single element that contains all other elements as descendents.
Leaf: Element without further child elements.
Branch: An intermediate node in a hierarchy that contains at least one child node. A branch is never a leaf.

2.2.1.5 Links

There are two kinds of links in JDF: internal links and external links. Internal links are pointers to information that is
located elsewhere in a JDF document. The data that is referenced by the link is located in a target element. External links
are used to reference objects that are outside of the JDF document itself, such as content files or color profiles. These
objects are linked using standard URLs (Uniform Resource Locators).

JDF makes extensive use of links in order to reuse information that is relevant in more than one context of the » Job. The
same target can be referenced by multiple links. However, no link references more than one target. See » [URI].

2.2.2 Workflow Component Roles

The components that create, modify, route, interpret and execute a JDF job are known as agents, controllers, queues,
devices and machines. Overseeing the workflow created by these components is MIS or Management Information Sys-
tems. These five aspects of a JDF workflow are described in the sections that follow.

By defining these terms, this specification does not intend to dictate to manufacturers how to design, build or implement
a JDF /JMF system. In practice, it is very likely that individual system components will include a mixture of the roles
described in the following sections. For example, many controllers are also agents.

2.2.2.1 Machine

A machine is any part of the workflow system designed to ex- £
gcute a process. Most often, this term refers to apiece of phys “Agents”, “Controllers” and “Devices” are
ical equipment, such as a press or a binder, but it can also refer : . -
. . special, logical descriptions. You probably

to the software components used to run a particular machine , X

. . . won'’t ever buy one. An Agent (writes and reads JDF)
or perform a calculation. Computerized workstations, whether

. can be any software tool that can parse JDF. Con-

run through automated batch files or controlled by a human

. . . . trollers communicate instructions that Devices act
worker, are also considered machines if they have no JDF in- : .
terface. upon. They are functions that can be embedded into

your software, production equipment or MIS sys-

Agents, Controllers & Devices

2.2.2.2 Device

The most basic function of a device is to execute the information specified by an » Agent and routed by a » Controller.
Devices SHALL be able to execute » JDF Nodes and initiate » Machines that can perform the physical execution. The
communication between machines and devices is not defined in this specification. Handling of inconsistent process in-
tructions or product intent definitions by a device is implementation dependent and out of scope of this specification.
Devices SHOULD support » JMF messaging in order to interact dynamically with a » Controller.

2.2.2.3 Agent

» Agents in a JDF workflow are responsible for writing JDF. An » Agent has the ability to create or modify a JDF node. a
» Job, to add » Nodes to an existing » Job, and to modify existing nodes. » Agents can be software processes, automated
tools or even text editors. Anything that can be used in composing JDF can be considered an » Agent.

Actual implementations of » Devices or » Controllers will most often be able to modify JDF. These system components
have » Agent properties in the terms of this specification.

2.2.2.4 Queue

Whereas a » Device processes JDF to produce a result, queues provide a method of ordering, prioritizing and scheduling
queue entries that represent JDF processes. Every » Device that is capable of accepting JDF via JMF messaging SHALL
provide exactly one queue. This specification makes no assumptions on implementation limitations of a queue. Thus a
device that can only process a single queue entry and cannot store any waiting queue entries still implements an albeit
minimalistic queue.

18 JDF SPECIFICATION 1.7

2.2.2.5 Controller

» Agents create and modify JDF information; control-
lers route it to the appropriate » Devices. The minimum
requirement of a controller is that it can initiate

» Processes on at least one » Device, or at least one
other slave controller that will then initiate » Processes
on a » Device. In other words, a controller is not a con-
troller if it has nothing to control. In some cases, a pyr-
amid-like hierarchy of controllers can be built, with a
controller at the top of the pyramid controlling a series
of lower-level controllers at the bottom. The lowest-
level controllers in the pyramid, however, SHALL have

» Device capability. Therefore, controllers SHALL be
able to work in collaboration with other controller. In
order to communicate with one another, and to com-
municate with » Devices, controllers SHALL support
the JDF file-exchange protocol and MAY support

» JMF. Controllers can also determine » Process plan-
ning and scheduling data, such as » Process times and
planned production amounts.

2.2.2.6 Management Information System—MIS

SYSTEM COMPONENTS

Automating Data Flows

[&P

JDF-enabled workflow can require a tremendous

amount of information. This could seem daunting
to anyone who expects to have to enter information into a
system, but it need not be the case. From the style informa-
tion in a layout file, to automatically generated image file
header information, to the color profiles tagged onto images
automatically by digital cameras or image editing systems,
a great deal of information can be captured and passed
along from one JDF-enabled application to another. Fur-
thermore, where, in the specification, there are many
options, those options can be set to user-defined default
values that represents typical Jobs in your particular work-
flow. For instance, JDF provides a variety of staple folds. If
your plant only supports a crown fold, that becomes the
default in your JDF-enabled system and is rarely manually
specified or keyed.

The highest level » Controller in a workflow is known as a Management Information Systems or MIS. It is responsible
for dictating and monitoring the execution of all of the diverse aspects of the workflow. This task is facilitated by access
to production information, either in real time using » JMF messaging or retrospectively using the audit records within

a returned JDF.

2.2.3 System Interaction

An example of the interaction and hierarchical structure of the components considered in the preceding section is shown
in the following figure. Single arrows indicate unidirectional communication channels and double arrows indicate bidi-

rectional communication.

Figure 2-1: Example of IDF and JMF workflow interactions

Controller/
Agent 2

Controller/
Agent 1

Controller/Agent
(controller with agent properties)

Device 1.1

Controller/Agent 2.1

| Device 1 I| Device 2 l

|Device/Agent 2,11 I

Device 2.1.2

JDF SPECIFICATION 1.7 19

OVERVIEW

2.3 JDF Workflow

JDF does not dictate that a workflow must be constructed in any particular way. On the contrary, its flexibility has al-
lowed JDF to model existing custom solutions for the graphic arts, as well as those yet to be imagined. JDF is equally as
effective with a simple system using a single controller-Agent and device as it is with a completely automated industrial
press workflow with integrated prepress and postpress operations.

Because of workflow system construction in today’s industry, the principal subsection procedures of a printing » Job—
prepress, press and postpress—remain largely disconnected from one another. JDF provides a solution for this lack of
unity. With JDF, a print » Job becomes an interconnected workflow that runs from job submission through trapping,
RIPing, filmmaking, platemaking, inking, printing, cutting, binding, and sometimes even through shipping. JDF enables
an architecture that defines the process necessary to produce each intended result and identifies the elements necessary
to complete the processes. All processes are separated into nodes, and the entire » Job is represented by a tree of these
nodes. All of the nodes taken together represent a desired printed product.

Each individual node in JDF is defined in terms of inputs and outputs. The inputs for a node consist of the resources it
uses and the parameters that control it. For example, the inputs in a node describing the process parameters for imaging
the cover of a brochure might include requirements for trapping, raster image processing, and imposing the image. The
output of such a node might be a raster image.

Unless they represent the absolutely final product, resources that are produced by one node are in turn modified or con-
sumed by subsequent nodes. For instance, the output of the process described above—the raster image—becomes one
of the input resources for a node describing the printing process for the brochure. This input resource would be joined
in the node by other input resources such as inks, press sheets, plates and a set of parameters that indicate how many
sheets to produce. The output would be a set of printed press sheets that in turn would become the input resource for
postpress operations such as folding and cutting. And so on until the brochure is completed.

This system of interlinked nodes effectively unites the prepress, press and postpress processes, and even extends the
notion of where a » Job begins. A JDF job, like any printing job, is defined by the original intent for the end product. The
difference between a JDF » Job and a generic printing job, however, is that JDF allows the entire » Job, from prepress
through postpress, to be defined up front. All of the resources and processes necessary to produce an entire printed prod-
uct can be identified and organized into nodes before the first prepress process is set in motion. Furthermore, the Prod-
uct Intent specification can be extremely broad or extremely detailed, or anywhere in between. This means that a » Job
can be so well defined before production begins that the system administrator only has to set the wheels in motion and
let the » Job run its course. It might also mean that the person submitting the » Job has only a general idea of what the
final product will look like and that modifications to the intent will be made along the way, depending on the course of
the » Job.

For example, the person submitting the » Job specification for the brochure described above might know that she wants
400 copies, that she wants it done on a four-color press with no spot colors, that the cover will be on a particular paper
stock and the contents on another, that the binding will be stapled, and that she requires the » Job in two weeks. Another
person might know only that he wants the pages she’s designed to be put into some sort of brochure form, although she
doesn’t know exactly what. Either person’s request can be translated into a JDF Product Intent node that will eventually
branch into a tree structure describing each process needed to complete the brochure. In the first example, the prepress,
press and postpress processes will be well defined from the start. In the second example, information will be included
as it is gathered. The following sections describe the way in which nodes can combine to form a » Job.

2.3.1Job Structure

JDF » Jobs consist of a set of nodes that specify the production steps needed to create the desired end product. The nodes,
in addition to being connected through inputs and outputs, are arranged in a hierarchical tree structure. » Figure 2-2:
JDF tree structure, below, shows a simple example of a tree of nodes.

20 JDF SPECIFICATION 1.7

JDF WORKFLOW

Figure 2-2: JDF tree structure

Product nodes

Process group nodes

Individual Process nodes

The following table provides a hypothetical breakdown of the nodes in the tree structure shown above.

Table 2.1: Information contained in JDF Nodes, arranged numerically

NODE # MEANING

1 Entire book

2 Cover

3 Contents

4 Production of cover

5 Production of all color pages

6 Production of all black-and-white pages
7 Cover production Process 1

8 Cover production Process 2

9 Cover production Process 3

10 Cover Finishing Process

1 RIPing for color pages

12 Plate making for color pages

13 Printing for color pages

14 Color page finishing Process

15 RIPing for black-and-white pages

16 Printing for black-and-white pages on a digital press
17 Binding Process for entire book

The uppermost Nodes (1, 2, & 3) represent the Product Intent in general terms. These nodes describe the desired end
product and the components of that product, which, in this case, are the cover and the content pages. As the tree branch-
es, the information contained within the nodes gets more specific. Each subnode defines a component of the product
that has a unique set of characteristics, such as different media, different physical size or different color requirements.

JDF SPECIFICATION 1.7 21

OVERVIEW

The nodes that occur in the middle of the tree (4, 5, & 6) represent the groups of processes needed to produce each com-
ponent of the product. The nodes that occur closest to the bottom of the tree (7—17) each represent individual processes.

In this example, there are two subcomponents of the » Job, the cover and the contents, each with distinct requirements.
Therefore, two nodes—Nodes 2 and 3—are needed to describe the elements of the » Job in broad terms. Within the con-
tent pages there are some black-and-white pages and some color pages. Since fabricating each requires a different set
of processes, further branching is necessary. The following table arranges the nodes in groups according to the processes
they will be executing.

Table 2.2: Information contained in JDF Nodes, arranged by group

PROCESS GROUP NODE # MEANING
1 Entire book
Entire book
17 Assemble book
2 Cover
A Cover assembly Processes
7 Cover production Process 1
Cover
8 Cover production Process 2
9 Cover production Process 3
10 Finishing Process for cover
Contents 3 Contents
5 Production of all color pages
11 RIPing for color pages
Color Pages 12 Plate making for color pages
13 Printing for color pages
14 Color page finishing
6 Production of all black-and-white pages
Black-and-white 15 RIPing for black-and-white pages
pages
16 Printing for black-and-white pages on a digital press

This hierarchical structure is discussed in more detail in the following section.

2.4 Hierarchical Tree Structure and Networks in JDF

Output resources of JDF nodes are often the input resources for other JDF nodes. Nodes SHALL NOT begin executing until
all of their input resources are complete and available. This means that the nodes execute in a well defined sequence. One
process follows the next. For example, a process for making plates will produce, as output resources, press plates that
are needed by a ConventionalPrinting process.

In the hierarchical organization of a JDF » Job, nodes that occur higher in the tree represent high level, more abstract oper-
ations, while lower nodes represent more detailed process operations. More specifically, nodes near the top of the tree can
represent only intent regarding the components or assemblies that make up the product, while the leaf nodes provide explicit
instructions to a device to perform some operation. » Figure 2-3: Example of a hierarchical tree structure of JDF nodes
shows an example of a hierarchical structure.

22 JDF SPECIFICATION 1.7

HIERARCHICAL TREE STRUCTURE AND NETWORKS IN JDF

Figure 2-3: Example of a hierarchical tree structure of JDF nodes

Parent JDF
Node

(P|1) [Plz) (P3) (P7)

In addition to the hierarchical structure of the node tree, sibling nodes are linked in a process chain by their respective
resources. In other words, an output resource of one node ends up representing the input resource of the following node
(as represented in » Figure 2-4: Example of a process chain linked by input resources and output resources). This inter-
relationship is known as resource linking.

With resource linking, complex networks of processes can be formed. The » Figure 2-4: Example of a process chain
linked by input resources and output resources displays an alternate representation of the process described in » Figure
2-3: Example of a hierarchical tree structure of JDF nodes. Whereas » Figure 2-3: Example of a hierarchical tree structure
of JDF nodes represents a hierarchical structure, » Figure 2-4: Example of a process chain linked by input resources and
output resources shows an example of the linking mechanism of the same » Job. Note that there are many possible pro-
cess networks that map to the same node hierarchy.

Figure 2-4: Example of a process chain linked by input resources and output resources

ED¢P1)J-(R1 " (Pa}-{Ral{p5
—>(P3 HR3 R5 [

Key: ! P6 |

1 PA 1
Process | I
=Resource babagkvasic ik ithannat i houlb i

In the JDF specification, the linking of processes is not explicitly specified. In other words, nodes are not arranged in an
abstract chronology, dictating, for example, that the trapping node is to come before the RIPing node. Rather, the links
are implicitly defined in the exchange of input and output resources. Resource dependencies form a network of process-
es, and the sequence of process execution—that is, the routing of processes—can be derived from these dependencies.
One resource dependency might have the possibility of multiple process routing scenarios. It is up to MIS to define the
proper solution to meet local constraints. Note that the type of exchange resource effectively limits the processes that
can be linked.

The agent or set of agents employed by MIS to write the JDF » Job SHALL be familiar with these local constraints. They
SHALL take into account factors such as the control abilities of the applications that complete the prepress processes,
the transport distance between the prepress facility and the press itself, the load capabilities of the press, and the time
requirements for the » Job. All of the factors taken together build a process network representing the workflow of pro-
duction. To aid agents in defining the workflow, JDF provides the following four different and fundamental types of pro-
cess mechanisms, which can be combined in any way.

1 Serial processing that is subsequent production and consumption of resources as a whole, represented by a
simple process chain

2 Overlapping processing that is simultaneous production and consumption of resources by pipes

3 Parallel processing that involves the splitting and sharing of resources

JDF SPECIFICATION 1.7 23

OVERVIEW

/. Iterative processing that is a circular or back and forward processing for developing resources by repeated activity
These mechanisms are discussed in greater detail in » Section 4.3 Execution Model.

2.5 Role of Messaging in JDF

Whereas JDF provides a container to define a » Job, the Job Messaging Format — JMF, defined in Chapter 5, » Messaging
— provides a method to generate snapshots of » Job status and to interactively manipulate elements of a workflow sys-
tem.

JMF is specifically designed for communication between the production system controller and the work centers or de-

vices with which it interacts. It provides a series of queries and commands to check the status of processes and, in some
cases, to dictate the next course of action. For example, the KnownDevices query message allows the controller to deter-
mine what processes can be executed by a particular device or work center. These processes are likely to be determined
at system initialization time. The SubmitQueueEntry message provides a means for the controller to submit a » Job ticket
to individual work centers or devices. And the Status and Resource messages allow the device or work center to commu-
nicate quasi real-time! processing status to a controller. Depending on the system configuration, the message handler

can choose to record status changes in the history logs. The status message allows the controller to request status up-

dates from the controller.

JDF also provides mechanisms to define recipients for individual messages on a node-by-node basis. This enables con-
trollers to define the aspects and the parts of » Jobs that they want to track. For more information about messaging, see
» Chapter 5 Messaging.

2.6 Coordinate Systems in JDF

This chapter explains how coordinate systems are defined and used in JDF. It also shows how the matrices are used to
specify a certain transformation and how these matrices can be used to transform coordinates from one coordinate sys-
tem to another coordinate system.

2.6.1 Introduction

During the production of a printed product it often happens that one object is placed onto another object. During impo-
sition, for example, single pages and marks (like cut, fold or register marks) are placed on a sheet surface. Later, at image
setting, a bitmap containing one separation of a sheet surface is imposed on a piece of film. In a following step, the film
is copied to a printing plate that is then mounted on a press. In postpress, the printed sheets are gathered on a pile. The
objects involved in all these operations have a certain orientation and size when they are put together. In addition, one
has to know where to place one object on the other.

The position of an object (e.g., a cut mark) on a plane can be specified by a two-dimensional coordinate. Every digital or
PhysicalResource has its own coordinate system. The origin of each coordinate system is located in the lower left corner
(i.e., the X coordinate increases from left to the right, and the Y coordinate increases from bottom to top).

Figure 2-5: Standard coordinate system

Origin

Each page contained in a PDL file has its own coordinate system. In the same way a piece of film or a sheet of paper has
a coordinate system. Within JDF each of these coordinate systems is called a resource coordinate system.

If a process has more than one input resource with a coordinate system, it is necessary to define the relationship between
these input coordinate systems. Therefore, a process coordinate system is defined for each process. JDF tickets are written
assuming an idealized device that is defined in the process coordinate system for each process that the device imple-
ments. A real device SHALL map the idealized process coordinate system to its own device coordinate system.

1. Quasi real-time is the time-scale typically associated with production control systems. JMF is not intended
for true real-time, lower level machine control.

24 JDF SPECIFICATION 1.7

COORDINATE SYSTEMS IN JDF

The coordinate systems of the input resources are mapped to the process coordinate system. Each of those mappings is
defined by a transformation matrix, which specifies how a coordinate (or position) of the input coordinate system is
transformed into a coordinate of the target coordinate system. (See » Section 2.6.7 Homogeneous Coordinates for math-
ematical background information.) In the same way, the mapping from the process coordinate system to the coordinate
systems of the output resources is defined. The process coordinate system is also used to define the meaning of terms
like "Top" or "Left", which are used as values for parameters in some processes.

Figure 2-6: Relation between resource and process coordinate systems

resource coordinate system
of input resource 1

resource coordinate system
of input resource 2

ResourceLink/
@Transformation
\2

ResourceLink/
@Transformation
L2

resource coordinate system
of input resource n

ResourceLink/
) @Transformation

process coordinate system

identity transformation
\

identity transformation
\ 4

resource coordinate system
of output resource 1

resource coordinate system
of output resource 2

identity transformation
A

resource coordinate system
of output resource n

It is important that no implicit transformations (such as rotations) are assumed if the dimensions of the input resources
of a process do not match each other. Instead every transformation (e.g., a rotation) SHALL be specified explicitly by us-
ing the @Orientation or @ Transformation attribute of the corresponding ResourceLink.The same applies also to other ar-
eas in JDF (e.g., the Interpreting process). A FitPolicy element MAY define a policy for implied transformations.

2.6.1.1 Source Coordinate Systems

The source coordinate system of a referenced object is defined by the lower left of the object. X values are increasing to
the right, Y values are increasing towards the top. In case of PDF the lower left of the MediaBox defines the lower left of
the source coordinate system.

Note: Some object coordinate systems have optional tags to indicate internal transformations. These internal transfor-
mations SHALL be applied prior to defining the source coordinate system; for instance:

PDF: the rotation defined by the Rotate key SHALL be applied. The lower left of the MediaBox of the rotated PDF
defines the lower left of the PDF source coordinate system.

TIFF: the orientation defined by the Orientation tag SHALL be applied. The lower left of the rotated TIFF defines
the lower left of the TIFF source coordinate system.

2.6.2 Coordinates and Transformations

Table 2.3: Data types for specifying coordinates and transformation

DATA TYPE EXAMPLE

XYPair "612 792"
double "20.7"
rectangle "0 0595 843"
(Order of elements is “lower-left x, lower-left y, upper-right x, upper-right y” or “left,
bottom, right, top”.)
Matrix "100130.0235.3"
The ordering of elements is defined in » Section 2.6.7 Homogeneous Coordinates.
Orientation "Rotate180" or "Flip90"

JDF SPECIFICATION 1.7 25

OVERVIEW

Coordinates and transformations are used throughout JDF, to include:
Intent Resources, such as:

Layoutintent: specifies size of finished product

Medialntent: specifies size of media

Insertinglntent: specifies rotation and offset of inserts
Process Resources, such as:

Component: specifies coordinate system
CutBlock: specifies cut block coordinate system
FoldingParams: specifies folding operations

2.6.3 Coordinate Systems of Resources and Processes

Each physical input resource (e.g., Component) of a process has, by default, its own coordinate system, which is called
the resource coordinate system. The coordinate system also implies a specific orientation of that Resource. On the other

hand there is a coordinate system that is used to define various process-specific parameters. This coordinate system is
called a target or process coordinate system.

It is often necessary to change the orientation of an input resource before executing the operation. This can be done by
specifying a transformation matrix. It is stored in the @Orientation or @ Transformation attribute of the ResourceLink. This
provides the ability to specify different matrices for the individual resources of a process. For details on ResourceLink
elements, see » Section 3.9 ResourceLinkPool and ResourceLink.

2.6.3.1 Use of Preview to Display Resource Orientation

It is often necessary to load printed material into finishing equipment manually. Particularly in the case of imposed
sheets, the page orientation will not be unique and even the concept of "Front" or ""Back' can be confusing, since front
and back pages can be printed on the same surface of the imposed sheet. Preview resources with Preview/@ PreviewUsage
= "ThumbNail" or Preview/@PreviewUsage = "Viewable" SHOULD be provided to illustrate the desired orientation of the
input components with respect to the device.

2.6.3.2 Coordinate Systems of Combined Processes
New in JDF 1.2

Combined Processes (see » Section 3.3.3 Combined Process Nodes) combine multiple individual processes and thus also
the respective coordinate systems of those processes. The process coordinate systems are not modified by the fact that
the processes are part of a combined process, they are identical to the process coordinate systems of the processes, were
they defined in a linked chain of individual processes. The coordinate systems of an exchange resource can be modified
by defining it as a pipe by specifying Resource/@PipelD and Resource/@PipeProtocol = "Internal” (See » Section 4.3.3
Overlapping processing Using Pipes) and linking it to the combined process with both an input and output ResourceLink.
The input ResourceLink defines the coordinate transformation using the standard @ Transformation or @Orientation at-
tributes. Resource/ @ Status of the exchange resource SHALL be "Complete”.

2.6.4 Coordinate System Transformations

The following table shows some matrices that can be used to change the orientation of a PhysicalResource. Most of the
transformations require the width (w) and the height (h) of the Component as specified by X and Y in Component/
@Dimensions. If these are unknown, it is still possible to define a general orientation in Resourcelink/@ Orientation. The
naming of the attribute reflects the state of the resource and not necessarily the order of applied transformations. Thus
"Rotate90" and "FLip90" specify that the original Y axis as represented by the spine is on top. In the case of Flip90, the
Component is additionally flipped front to back.

Table 2.4: Matrices and Orientation values for describing the orientation of a Component (Sheet 1 of 2)

SOURCE TRANSFORMATION MATRIX TARGET
DB LS COORDINATE SYSTEM ACCORDING ACTION COORDINATE SYSTEM
Rotate0O 100100

A No Action A

26 JDF SPECIFICATION 1.7

COORDINATE SYSTEMS IN JDF

Table 2.4: Matrices and Orientation values for describing the orientation of a Component (Sheet 2 of 2)

SOURCE TRANSFORMATION MATRIX TARGET
DB LS COORDINATE SYSTEM ACCORDING ACTION COORDINATE SYSTEM
Rotate90 01-10ho
Y 90° Counterclockwise Rotation y
F L]
X
Rotate180 -1 0 0 -1 wh
A 180° Rotation v
Rotate270 0O -110 0w
Y 270° Counterclockwise Rotation v
F| L,
Flip0 100 -10 h
Y Flip around X Yo
F X 8 X
Flip90 0 -1 -1 0hw
Y 90° Counterclockwise Rotation v
F + Flip around X X
X X
Flip180 -1001WwWO
Y 180° Rotation + Flip around X v
F X B X
Flip270 011000
Y 270° Counterclockwise y
Rotation + Flip around X
F vell
X

2.6.5 Product Example: Simple Brochure

To illustrate the use of coordinate systems in JDF, a simple saddle stitched brochure with eight pages is used as an ex-
ample in » Table 2.5 JDF Processes used for the production of the simple brochure. The brochure is printed on two sheets
with front and back. The two sheets are then folded, collected on a saddle, and saddle stitched. Finally the brochure is
cut with a three-side trimmer.

JDF SPECIFICATION 1.7 27

OVERVIEW

Table 2.5: IDF Processes used for the production of the simple brochure

INPUT

RESOURCES

Layout
RunList (Document)
RunList (Marks)

PROCESS

Imposition

Runlist

OUTPUT RESOURCES

Runlist Interpreting RunlList (of interpreted PDL data)
RunlList (of inter- Rendering RunlList (of rasterized byte maps)
preted PDL data)

Media

RenderingParams

RunList (of raster- Screening RunList (of bit maps)
ized byte maps)

ImageSetterParams | ImageSetting | ExposedMedia (of film)
Media (of film) (to film)

RunlList (of bit

maps)

ExposedMedia (of ContactCopyi | ExposedMedia (of plate)
film) ng

ExposedMedia (of Conventional | Component

plate) Printing

ConventionalPrintin

gParams

FoldingParams Folding Component

Component

CollectingParams Collecting Component

Component

StitchingParams Stitching Component

Component

TrimmingParams Trimming Component

Component

At imposition, the layout describes a signature with two sheets, each having a front and a back surface. On each surface,

two content objects (i.e., pages, are placed).

Figure 2-7: Layout of simple saddle stitched brochure (product example)

Sheet 1 Front

Sheet 1 Back

Sheet 2 Front

Sheet 2 Back

Each surface has its own coordinate system, in which a surface contents box is defined. This coordinate system is also
referred to as the Layout coordinate system because the signature, sheet and surface elements are defined within the
hierarchy of the Layout resource by means of partitioning. The content objects are placed by specifying the CTM attribute
relative to the surface contents box. If the position of an object within a page is given in the page coordinate system, this
coordinate can be transformed into a position within the surface coordinate system:

Figure 2-8: Equation for surface coordinate system transformations

Psurface = Ppage X CTMpgge + [SurfaceContentsBoXyowerleft SurfaceContentsBoxyjowerleft O]

Please note, that the width and height of the surface NEED NOT be known at this point.

28 JDF SPECIFICATION 1.7

COORDINATE SYSTEMS IN JDF

Figure 2-9: Surface coordinate system

Content object (page 8)

L Content object (page 1)

1.

X

Origin 8

The sheet coordinate system is identical with the coordinate system of the front surface. This means that no transfor-
mation is needed to convert a coordinate from one system to the other. Instead, the coordinates are valid (and equal) in
both coordinate systems. The relation between the coordinate system of the front and the back surfaces depends on the
value of the Layout/@LockOrigins attribute. The sheet coordinate system is also identical with the signature coordinate
system, which in turn is identical with the coordinate system of the Imposition process.

The output resource of the Imposition process is a run list. Each element of the run list has its own coordinate system,
which is identical with the corresponding signature coordinate system. The interpretation, rendering and screening pro-
cesses do not affect the coordinate systems. This means that the coordinate systems of all these processes are identical.

At the ImageSetting process, the digital data is set onto film. The process coordinate system is defined by the Media input
resource. The width and height of the media are defined in the Media/@ Dimension attribute. The position of the signa-
tures (as defined by the RunList input resource) on the film is defined by the ImageSetterParams/@ CenterAcross attribute.

The coordinate system of the conventional and digital printing processes is called press coordinate system. It is defined by
the press: the X-axis is parallel to the press cylinder, and the Y-axis is going along the paper travel. Y = 0 is at begin of
print, X = 0 is at the left edge of the maximum print area. The front side of the press sheet faces up towards the positive
Z-axis. The relationship between the layout coordinate system and the press coordinate system is defined by the @CT™
attributes of the corresponding TransferCurveSet elements located in the TransferCurvePool.

Figure 2-10: Press coordinate system used for sheet-fed printing

A
Y
Orthoganal to cylinder axis
Maximum print area
Direction of
paper travel
Begin of Print X
Figure 2-11: Press coordinate system used for web printing

: ribbon :

‘\ 1 1

Y| |

Orthoganal to cylinder axis
1 H ‘k 1
< reel width >

1 n |

1 <= 1

! Maximum print area of é '

! onesingle impression & |

| g

: Direction of 3

()

Begin of Print : web travel 8)
> b va X
> ! >

1 1

1 1

The output of the printing process (e.g., a pile of printed sheets) is described as a Component resource in JDF. The coor-
dinate system of the printed sheets is defined by the transformation given in the TransferCurveSet/@CTM attribute
(where @Name = "Paper").

JDF SPECIFICATION 1.7 29

OVERVIEW

Each of the two sheets is folded in a separate Folding process. In this example, the orientation of the sheets is not changed
before folding. This can be specified by setting the @Orientation attribute of the Component input resource to "Rotate0"
or by setting the @ Transformation attribute to 10010 0". The Folding process changes the coordinate system. In this
example the origin of the coordinate system is moved from the lower left corner of the flat sheet (input) to the lower left
corner of the folded sheet (output) (i.e., it is moved to the right by half of the sheet width).

Figure 2-12: Coordinate systems after Folding (product example)

A Sheet1 A Sheet2

The two folded sheets are now collected. In this example, the orientation of the folded sheets is not changed before col-
lecting. This can be specified by setting the @Orientation attribute of the Component input resource to "Rotate0" or by set-
ting the @ Transformation attribute to "10 010 0". The Collecting process does not change the coordinate system.

Figure 2-13: Coordinate systems after Collecting (product example)

Y

The two collected and folded sheets are now trimmed to the final size of the simple brochure. In this example, the ori-
entation of the collected and folded sheets is not changed before trimming. This can be specified by setting the
@Orientation attribute of the Component input resource to "Rotate0" or by setting the @ Transformation attribute to "100
10 0". The Trimming process changes the coordinate system: the origin is moved to the lower left corner of the trimmed
product.

In looking at the whole production process, a series of coordinate systems is being involved. The relationship between
the separate coordinate systems is specified by transformation matrices. This allows transformation of a coordinate
from one coordinate system to another coordinate system. As an example, note the position of the title on page 1 of the
product example in » Figure 2-13: Coordinate systems after Collecting (product example). By applying the first trans-
formation, this position can be converted into a position of the surface (or layout) coordinate system. This position can
then be converted into the paper coordinate system by applying (in this order) the "Film", "Plate", "Press" and "Paper"
transformations stored in the TransferCurvePool.

From now on in the workflow, every process is using one or more Component resources as input and output resources.
The ResourceLink of each input and output Component contains a @ Transformation attribute or an @Orientation attribute.
The @ Transformation attribute SHALL be used if the width and the height of the Component are known or a non-orthog-
onal rotation is needed. Otherwise the @Orientation attribute SHOULD be used to specify a change of the orientation (e.g.,
an orthogonal rotation).

Since the Folding process changes the coordinate system depending on the fold type, the transformations specified in
the ResourceLink elements are not sufficient to transform a position given in the paper coordinate system to a position
in the coordinate system of the folded sheets (i.e., the resource coordinate system of the output component of the Folding
process). An additional transformation depending on the fold type and details of the individual folds has to be applied.
The corresponding transformation matrix is not explicitly specified in the JDF file.

The Collecting process does not change the coordinate system. Therefore, only the transformations specified in the
Resourcelink elements of the Component input and output resources (i.e., components have to be applied).

The Trimming process again changes the coordinate system depending on the trimming parameters. Therefore, a trans-
formation depending on the trimming parameters has to be applied in addition to the transformations specified in the

30 JDF SPECIFICATION 1.7

COORDINATE SYSTEMS IN JDF

ResourcelLink elements. The matrix for the additional transformation (depending on the trimming parameters) is not ex-
plicitly specified in the JDF file.

After having applied all transformations mentioned above, the resulting coordinate specifies the position of the title in
the coordinate system of the final product.

Figure 2-14: Examples of transformations and coordinate systems in JDF.

Page Coordinate System = Resource coordinate system of input Component

Surface:SurfaceContentsBox and CTM Page

Surface Coordinate System = Layout coordinate system = process coordinate
system of Imposition, Interpreting, Rendering, and Screening processes

TransferCurveSet:CTM (Name ="Film”")

Film Coordinate System = Process coordinate system of ImageSetting.
(ignored in a CTP or digital printing environment)

TransferCurveSet:CTM (Name ="“Plate”)

Plate Coordinate System = Process coordinate system of ContactCopying.
(ignored in a CTP or digital printing environment)

TransferCurveSet:CTM (Name ="Press”)

Press Coordinate System = Process coordinate system of
ConventionalPrinting process.

TransferCurveSet:CTM (Name ="“Paper”)

Paper Coordinate System = Resource coordinate system of output compo-
nent of ConventionalPrinting process = Resource coordinate system of input
component of Folding process

ResourceLink:Transformation (or ResourceLink: Orientation)

Process Coordinate System of Folding

Transformation according to type of fold & ResourceLink:Transformation
(or ResourceLink: Orientation)

Resource coordinate system of output component of Folding process =
Resource coordinate system of input component of Collecting process

L Z ResourceLink:Transformation (or ResourceLink: Orientation)

Process Coordinate System of Collecting

ResourceLink:Transformation (or ResourceLink: Orientation)

Resource coordinate system of output component of Collecting process =
Resource coordinate system of input component of Trimming process

A ResourcelLink:Transformation (or ResourceLink: Orientation)

Process Coordinate System of Trimming

Transformation according to trimming parameters and
ResourceLink:Transformation (or ResourceLink: Orientation)

Resource coordinate system of output component of Trimming process =
coordinate system of final product

2.6.6 General Rules

The following rules summarize the use of coordinate systems in JDF .
Every individual piece of material (film, plate, paper) has a resource coordinate system.
Every process has a process coordinate system.

Terms like top, left, etc., are used with respect to the process coordinate system in which they are used and are
independent of orientation (i.e., landscape or portrait), and the human reading direction.

JDF SPECIFICATION 1.7 3

OVERVIEW

The coordinate system of each input component is mapped to the process coordinate system.
The coordinate system might change during processing (e.g., in Folding).

The description of a product in JDF is independent of the particular » Machine used to produce this product.
When creating setup information for an individual » Machine, it might be necessary to compensate for certain
» Machine characteristics. At printing, for example, it might be necessary to rotate a landscape job because the
printing width of the press is not large enough to run the job without rotation.

2.6.7 Homogeneous Coordinates

A convenient way to calculate coordinate transformations in a two-dimensional space is by using so-called homoge-
neous coordinates. With this concept, a two-dimensional coordinate P=(x,y) is expressed in vector form as [x y 1]. The
third element “1” is added to allow the vector being multiplied with a transformation matrix describing scaling, rotation,
and translation in one shot. Although this only requires a 2*3 matrix (e.g., as it is used in PostScript) in practice 3*3 ma-
trices are much more common, because they can be concatenated very easily. Thus, the third column SHALL be set to "0
o1

Table 2.6: Coordinate Transformation Examples

MATRIX JDF VALUE DESCRIPTION
b o 'abcdef" General transformation case.
cdo
le f 1]
L od "100100" Identity transformation.
010
00 1
L 00 "1001dxdy" Translation by dx, dy.
0 10
dx dy 1
G S © "cos¢ sing —sing cose 00" Rotation around the origin by ¢ degrees counter-clockwise.
sin(P cos(p o Note: Since the rotation is around the origin in the lower left
e ¢ hand corner, an additional translation will typically be re-
vl quired to shift the object back to its original position.

2.6.7.1 Transforming a point

In this example, the position P given in the coordinate system A is transformed to a position of coordinate system B. The
relationship between the two coordinate systems is given by the transformation matrix Trf.

Figure 2-15: Transforming a point (example)

A A
Y Y
P
Origin of coordinate |,.|____|100 ;»_/

system A ‘
. . 130 X
Origin of coordinate 60 T >

system B Lo
_\4E—EM>

Transformation sequence

P = Starting position
A [30 100 1] P, = (30, 100)
Py = P, x Trf Transformation

32 JDF SPECIFICATION 1.7

COORDINATE SYSTEMS IN JDF

Expanded translation trans-
1 0 O| formation. In JDF, Trf is writ-
Py = [30 100 1] X| 0 1 0| tenasan attribute with a data

type of matrix, e.g. @CTM="10
40 60 1] 14060

_ Result position
Py = [70 160 1] Pg = (70, 160)

JDF SPECIFICATION 1.7 33

OVERVIEW

34 JDF SPECIFICATION 1.7

3 Structure

This chapter describes the structure of JDF nodes and how they interrelate to form a job. As described in » Section 2.2.1
Job Components, a node is a construct, encoded as an XML element, that describes a particular part of a JDF job. Each
node represents an aspect of the job in terms of:

1 A process necessary to produce the end result, such as imposing, printing or binding;
2 A product that contributes to the end result, such as a brochure; or

3 Some combination of the previous two.
In short, a node describes a product intent or a process step.

In addition to describing the structure of an individual JDF node, this chapter examines in what way those nodes interact
to form a coherent job structure. The visual correlative of this structure resembles a family tree with a single node de-
scribing the entire job at the top, and a number of nodes at the bottom that each describes only one specific process. JDF
supported, leaf-level processes are described in » Chapter 6 Processes.

Resource linking specifies the transformation of input resources into output resources, which in turn might become in-
puts of other nodes. It also allows nodes to share the same resource. The combination of hierarchical nesting of nodes
and resource linking allows complex process networks to be constructed. In a simple case, however, a JDF instance MAY
contain only one node. The only way that a JDF node can identify its input and output resources is by using ResourceLink
elements.

The hierarchical structure of a JDF job achieves a functional grouping of processes. For example, a job might be split into
a prepress node, a press node and a finishing node that contain the respective process nodes. Each and every node in
turn contains attributes that represent various characteristics of that node. Nodes also contain subelements of certain
types, such as resources, process information, customer information, audits, logging information and other JOF nodes.
Some elements, such as those that deal with customer information, typically occur in the root structure, while other el-
ements, such as resources, MAY occur anywhere in the tree. Where the elements can reside depends on their type and
their usage scope.

This chapter describes the elements, subelements and attributes commonly found in JDF nodes, and provides the char-
acteristics necessary to understand where each belongs and how it is used. Many of these characteristics are presented
in tables, and each of these tables includes the following three columns.

Name — Identifies the element being discussed.

Data Type — Refers to the data type, all of which are described in » Section 1.7 Data Structures. Only the data
types element and text are applied to elements. All other types are attributes.

Description — Provides detail about the element or attribute being discussed.

The JDF workflow model is based on a resource/consumer model. JDF nodes are the consumers that are linked by input
resources and output resources. The ordering of siblings within a node, however, has no effect on the execution of a node.
All chronological and logical dependencies are specified using Resourcelink Resource elements, which are defined in

» Section 3.9 ResourceLinkPool and ResourceLink » Section 3.8.2 Resource.

3.1 Generic Contents of All Elements

JDF contains a set of generic structures that MAY occur in any element of a JDF or JMF document. Some of these are
provided as containers for human-readable comments and descriptions and are described below. Others define the usage
policy for attributes and subelements.

Table 3.1: Any Element (generic content) (Sheet 1 of 2)

NAME DATA TYPE DESCRIPTION

BestEffortExceptions | NMTOKENS The names of the attributes in this element that are to have the best effort
? policy applied when @SettingsPolicy is not "BestEffort".

New in JDF 1.1

CommentURL ? URL URL to an external, human-readable description of the element. Note that
@CommentURL MAY be specified within a Comment.

JDF SPECIFICATION 1.7

STRUCTURE

Table 3.1: Any Element (generic content) (Sheet 2 of 2)

NAME

DescriptiveName ?

DATA TYPE

string

DESCRIPTION

Human-readable descriptive name of the JDF element (e.g., a descriptive
name of a resource, process or product intent). It is strongly RECOMMENDED
to supply @DescriptiveName in all JOF nodes, Quantity Resources (for example:
Component resources) and Handling Resources (for example, ExposedMedia)
for communication from applications to humans in order to reference the
process or resource.

MustHonorException
?
S ¢

New in JDF 1.1

NMTOKENS

The names of the attributes in this element that are to have the "MustHonor"
policy applied when @SettingsPolicy is not "MustHonor".

Operatorintervention
Exceptions ?

New in JDF 1.1

NMTOKENS

The names of the attributes in this element that are to have the operator
intervention policy applied when @SettingsPolicy is not "Operatorintervention".
If a device has no operator intervention capabilities, @Operatorintervention is
treated as "MustHonor".

SettingsPolicy ?
New in JDF 1.2

enumeration

The policy for this element indicates what happens when unsupported set-
tings (i.e., subelements, attributes or attribute values) are present in the ele-
ment.

Default value is from: parent’s @SettingsPolicy. If not specified in the parent ele-
ment or further superior elements, the default value is "BestEffort".

Allowed values are:

BestEffort — Substitute or ignore unsupported attributes, attribute values,
default attribute values or elements, and continue processing the job.
MustHonor — Reject the job when any unsupported attributes, attribute values

or elements are present.

Operatorintervention — Pause job and query the operator when any unsup-
ported attributes, attribute values or elements are present. If a device has
no operator intervention capabilities, "Operatorintervention" is treated as
“MustHonor".

Note: For additional details on @SettingsPolicy, see » Section 1.6.3

Conformance to Settings Policy.

Comment *

element

Any human-readable text. The Comment element is different from an XML
comment <!-- XML Comment -->. The JDF Comment is meant for display in a
user interface whereas the XML comment is used to add developers com-
ments to the underlying XML.

Comments SHALL NOT be nested within Comment elements.

GenerallD *
New in JDF 1.4

element

Additional identifiers related to the element.
Creation note: Starting with JDF 1.4, GenerallD has been promoted from being
only in a resource to being in any JDF element.

Preview *
New in JDF 1.4

refelement

Provides a Preview resource for thumbnails or other images. The element
SHALL NOT contain multiple Preview resources with the same Preview/
@PreviewUsage values.

Creation note: Starting with JDF 1.4, Preview has been moved from » Table 6.1
Template for Input Resources.

3.2 JDF

The top-level element of a JDF instance is a JOF element. JOF elements MAY also be nested within other JDF elements.
The individual JDF elements are referred to as “nodes” and nodes, in turn, contain various attributes and further sub-
elements, including nested JDF nodes.

The following table presents the attributes and elements likely to be found in any given JDF node. Three of the attributes
in » Table 3.4 JDF, below, SHALL appear in every JOF node. Although the rest are designated as OPTIONAL, some OP-
TIONAL attributes become REQUIRED under circumstances described in the Description column.

The most important of the attributes is the @Type attribute, which defines the node type. The value of the @Type attri-
bute defines the product intent or process the JDF node represents. As is detailed in » Section 3.3 Common Node Types,
all nodes fall into one of the following four general categories: Process, Process Group, Combined Processes and Product
Intent. Each node is identified as belonging to one of these categories by the value of its @ Type attribute, as described
in the table below. For example, if @ Type = "Product”, the node is a product intent node. Each of these categories is de-
scribed in greater detail in the sections that follow.

36 JDF SPECIFICATION 1.7

JDF

Each attribute/element in » Table 3.4 JDF has a scope. The scope provides further details about the valid range of the
attribute/element content, how the content is inherited by descendents (children, grandchildren, etc.), and where the
attribute/element can reside in the JDF tree.

The scope is specified by the first line of each Description cell in » Table 3.4 JDF. The first line is always: “Scope and
Position is XXX” where the meaning of XXX is defined in » Table 3.2 Definition of Scope and Position.

Table 3.2: Definition of Scope and Position

XXX

Descendent

DESCRIPTION

The content is valid locally within its node and in all descendent nodes, unless a
descendent contains an identical attribute that overrides the content.

Local

The content is only valid locally, within the node where the content is defined.

Root

The attribute SHALL be specified only in the root node. An exception from the localiza-
tion only in the root node occurs if the spawning and merging mechanism for indepen-
dent job tickets is applied as described in » Section 4.4 Spawning and Merging. All
attributes and elements listed in subsequent chapters SHOULD be considered local
unless otherwise noted.

Table 3.3: Behavior for Activation Enumeration Values

ACTIVATION TEST NODE EXECUTE NODE
Inactive false false
Informative false false
Held false false
Active false true
TestRun true false
TestRunAndGo true true

Table 3.4: IDF (Sheet 10f 5)

NAME

Activation ?
Modified in JDF 1.1

DATA TYPE

enumeration

DESCRIPTION

Scope and Position is Descendent.

Describes the activation status of the JDF node. Allows for a range of activity,
including deactivation and test running.

A child node inherits the value of the @Activation attribute from its parent.
The value of @Activation corresponds to the least active value of @Activation
of any ancestor, including itself. Therefore, if any ancestor has an @Activation
of "Inactive", the node itself is "Inactive".

If no ancestor is "Inactive" but any ancestor is "Informative", the node is
"Informative" unless the node itself is "Inactive". If no ancestor is "Informative"
but any ancestor is "TestRun", the node is "TestRun" unless the node itself is
"Informative". If no ancestor has a value of "Inactive" or "TestRun" and any
ancestor has a value of "TestRunAndGo", the node has a value of
"TestRunAndGo" unless that node is "Inactive" or "TestRun" and so on. » Table
3.3 Behavior for Activation Enumeration Values illustrates the actions to be
applied to a node depending on the value of @Activation.

Allowed value is from: » Activation.

JDF SPECIFICATION 1.7

STRUCTURE

Table 3.4: IDF (Sheet 2 of 5)

NAME

Category ?
New in JDF 1.2
Modified in JDF 1.4

DATA TYPE

NMTOKEN

DESCRIPTION

Scope and Position is Local.

Named category of this node. Used when @ Type = "Combined" or @ Type =
"ProcessGroup" to identify the general node category. This allows processors
to identify the general purpose of a node without parsing the @ Types field.
For instance, a RIP for final output and a RIP for proof process have identical
@Types attribute values, but have @Category = "ProofRIPing" or @Category =
"RIPing", respectively.

Values include those from: » Node Categories.

Note: @Category MAY also be the name of a gray box defined by an ICS docu-
ment.

ICSVersions ¢
New in JDF 1.2

NMTOKENS

Scope and Position is Descendent.

@ICSVersions SHALL list all CIP4 Interoperability Conformance Specification
(ICS) Versions that this JDF node complies with. The value of @ISCVersions
SHALL conform to the value format described in » Section 3.2.1 ICS Versions
Value.

ID

Scope and Position is Local.
Unique identifier of a JDF node. This ID is used to refer to the JDF node.

JobID ?

string

Scope and Position is Descendent.

Job identification used by the application that created the JDF job. Typically, a
job is identified by the internal order number of the MIS system that created
the job.

JobPartID ?

string

Scope and Position is Descendent.

Identification of a JDF node within a job, used by the application that created
the job. Typically, @JobPartID is internal to the MIS system that created the
job and specifies a process or set of processes. Note that a product that is pro-
duced by a process or set of processes is identified by Resource/@Product/D
and not by @JobPartID.

Max\Version ?
New in JDF 1.2

enumeration

Scope and Position is Descendent.

Maximum JDF version to be written by an agent that modifies this node. If
not specified, an agent that processes the node MAY write any version it is
capable of writing. See » Section 3.13 JDF Versioning for a discussion of ver-
sioning in JDF.

Allowed value is from: » JDFJMFEFVersion.

NamedFeatures ?
New in JDF 1.2
Deprecated in JDF 1.5

NMTOKENS

Scope and Position is Local.

@NamedFeatures represents an implementation dependent set of parameters
for setting up a device that a device SHALL apply to the JDF ticket. It is for-
matted as an ordered list of name value pairs with an even number of entries.
The @NamedFeatures names supported by the device MAY be specified in
DeviceCap elements. See » Section 10.2.1 DeviceCap. @NamedFeatures SHALL
be placed only in combined nodes, process group nodes or product intent
nodes . For process group nodes, the @Types attribute is typically supplied.
See » Section 3.3.2.2 Use of NamedFeature in Product and Process Group
Nodes for details.

Deprecation note: Starting with JDF 1.5, use JOF/
GenerallD[@ DateType="NamedFeature"].

ProjectID ?
New in JDF 1.1

string

Scope and Position is Descendent.

Identification of the project context that this JDF belongs to. @ProjectiD
SHOULD be used by a controller to group a set of JDF jobs.

RelatedJobID ?
New in JDF 1.2

string

Scope and Position is Descendent.

Job identification of a related job. Used to identify the @JobID of a previous
run of this job or job with very similar settings. It MAY be used to retrieve
additional job and device specific settings from a data store.

38

JDF SPECIFICATION 1.7

Table 3.4: IDF (Sheet 3 of 5)

JDF

NAME DATA TYPE DESCRIPTION

RelatedJobPartID ? string Scope and Position is Descendent.

New in JDF 1.2 Job identification of a related job part. Used to identify the @JobPartID of a
previous run of this job or job with very similar settings. It MAY be used to
retrieve additional job and device specific settings from a data store.

RelatedProjectID ? string Scope and Position is Descendent.

New in JDF 1.6 Identification of a related project context that this JDF belongs to.
@RelatedProjectlD SHOULD be used by a controller to group a set of JDF jobs.

SpawnID ? NMTOKEN Scope and Position is Descendent.

New in JDF 1.1 Identification of a spawned part of a job. Typically this is used to map Audit
elements and JMF messages to a spawned processing step in the workflow.
For details on job spawning, see » Section 4.4 Spawning and Merging.

Status enumeration | Scope and Position is Local.

Modified in JDF 1.3 Identifies the status of the node.

Derivation of the @Status of a parent node from the @Status of child nodes is
non-trivial and implementation-dependent.
Allowed value is from: » Status.

StatusDetails ? string Scope and Position is Local.

New in JDF 1.2 Description of the status phase that provides details beyond the enumerative
values given by the @Status attribute.

Values include those from: » Status Details.

Template = "false" boolean Scope and Position is Root.

New in JDF 1.1 Indicates that this JDF node (or instance) is a template that is used to gener-
ate JDF elements but SHALL NOT be exchanged as a job definition. A device
SHALL reject a job ticket that contains @ Template = "true".

TemplatelD ? string Scope and Position is Descendent.

New in JDF 1.2 Name or ID that identifies a JDF template. Can be used to differentiate
between various templates. If @Template = "false", @ TemplatelD identifies the
template that was used to generate this JDF.

TemplateVersion ? string Scope and Position is Descendent.

New in JDF 1.2 Provides the version of the JDF template. Can be used to differentiate
between various template versions. If @ Template = "false", @ TemplateVersion
identifies the version of the template that was used to generate this JDF.

Type NMTOKEN Scope and Position is Local.

Identifies the type of the node. Any JDF process name is a valid type. The pro-
cesses that have been predefined are listed in » Chapter 6 Processes,
although the flexibility of JDF allows anyone to create processes.

In addition to these, there are three values which are described in greater
detail in the sections that follow.

Values include:

Combined

ProcessGroup

Product — Identifies a product intent node.

Values include those from: » Chapter 6 Processes.

JDF SPECIFICATION 1.7 39

STRUCTURE

Table 3.4: IDF (Sheet 4 of 5)

NAME

Types ?
Modified in JDF 1.2

DATA TYPE

NMTOKENS

DESCRIPTION

Scope and Position is Local.

List of the @Type attributes of the nodes that are combined to create this
node. This attribute is REQUIRED if @Type = "Combined", OPTIONAL when
@Type = "ProcessGroup”, and is ignored if @ Type equals any other value. For
details on using combined process nodes, see » Section 3.3.3 Combined
Process Nodes. If the @Types attribute is specified, that JDF node SHALL NOT
contain child JDF nodes. For details on using process group nodes, see

» Section 3.3.2 Process Group Nodes.

If @Type = "ProcessGroup", the tokens MAY also be the name of a gray box
that needs expansion. See @Category for more details.

Values include those from: » Chapter 6 Processes.

Version ¢
Modified in JDF 1.2

enumeration

Scope and Position is Root and Descendent.

Text that identifies the version of the JDF node. The @Version attribute is
REQUIRED in the JDF root node but OPTIONAL in child nodes. The version of a
JDF node is defined by the highest version of the JDF node itself or any child
JDF node or element or any directly or indirectly linked resources. For details
on JDF versioning see » Section 3.13 JDF Versioning.

Allowed value is from: » JDFJMFEVersion.

xsitype ¢
New in JDF 1.2

NMTOKEN

Scope and Position is Local.

Informs schema aware validators of the JDF node type definition that the
containing node is to be validated against. The schema for this version

includes definitions for all the JDF nodes defined in Section 6. If omitted,
then a general definition for JDF nodes will be used. See » Section 3.2 JDF.

AncestorPool ?

element

Scope and Position is Root.

If this element is present, the current JDF node has been spawned, and this
element contains a list of all Ancestor elements prior to spawning. See
» Section 3.4 AncestorPool.

AuditPool ?

element

Scope and Position is Local.

List of elements that contains all relevant audit information. AuditPool ele-
ments are intended to serve the requirements of MIS for evaluation and post
calculation. See » Section 3.5 AuditPool.

Customerinfo ?
Deprecated in JDF 1.3

element

Scope and Position is Descendent.

Container element for customer-specific information. See » Section 3.6
CustomerlInfo.

In JDF 1.3 and beyond, Customerinfo is a resource that is referenced through a
Customerinfolink in the ResourcelinkPool.

IDF *

element

Scope and Position is Local.
Child JDF nodes. The nesting of JDF nodes defines the JDF tree.

Nodelnfo ?
Deprecated in JDF 1.3

element

Scope and Position is Local.

Container element for process-specific information such as scheduling and
messaging setup. Scheduling affects the planned times when a node is to be
executed. Actual times are saved in the AuditPool. See » Section 3.5 AuditPool.

In JDF 1.3 and beyond, Nodelnfo is a resource that is referenced through a
Nodelnfolink in the ResourcelinkPool.

ResourcelinkPool ?

element

Scope and Position is Local.

Container element for ResourceLink elements, which describe the input and
output resources of the node. See » Section 3.9 ResourceLinkPool and
ResourceLink.

40

JDF SPECIFICATION 1.7

COMMON NODE TYPES

Table 3.4: IDF (Sheet 5 of 5)

NAME DATA TYPE DESCRIPTION

ResourcePool ? element Scope and Position is Local.

Container element for resources. See » Section 3.8 ResourcePool and its
Resource Children.

Note: Resources are local in a ResourcePool but MAY be referenced from
ResourcelLink elements in descendent nodes. For details see » Section 3.9
ResourceLinkPool and ResourceLink.

StatusPool ? element Scope and Position is Local.

Deprecated in JDF 1.3 Container for PartStatus elements that specify the details of a node’s parti-
tion dependent @Status related attributes if the @Status of the node is "Pool".
Deprecation note: Starting with JDF 1.3, StatusPool/PartStatus/@Status is re-
placed by Nodelnfo/ @NodeStatus in the respective partition of Nodelnfo.

3.2.11CS Versions Value

To assist with interoperability conformance the JDF can refer to one or more CIP4 Interoperability Conformance Spec-
ification documents. Each document is referenced by using an NMTOKEN that complies with the following:

Value format: <ICSName>_ L<ICSLevel>-<ICSVersion>.
Example: "MISPRE_L1-1.3" for the MIS to Prepress ICS. If there is a revision to that ICS: "MISPRE_L1-1.3.1". See » Section 11.5
Interoperability Conformance Specifications for more information on ICS documents.

3.3 Common Node Types

As was noted in the preceding section, the @ Type of a node can fall into four categories. The first is comprised of the
specific processes of the kind delineated in » Chapter 6 Processes, known simply as process nodes. The other categories
are made up of three enumerative values of the @ Type attribute: "ProcessGroup", "Combined" and "Product", which is also
known as Product Intent. These three node types are described in this section.

The figure below, which was also presented as an illustration in Chapter 2, represents a theoretical job hierarchy com-
prised of product intent nodes, process group nodes and nodes that represent individual or combined processes. the di-
agram is divided into three levels to help illustrate the difference between the three kinds of nodes, but these levels do
not dictate the hierarchical nesting mechanism of a job. Note, however, that an individual process node MAY be the child
of a product intent node without first being the child of a process group node. Likewise, a process group node MAY have
child nodes that are also process groups.

Figure 3-1: Job hierarchy with Process, Process Group and Product Intent nodes

Product nodes

Process group nodes

5500 Hob DoE D

Individual Process nodes

JDF SPECIFICATION 1.7 41

STRUCTURE

3.3.1 Product Intent Nodes

Except in certain specific circumstances, the agent assigned to begin writ- | fZ== Product Intent
ing a JDF job will very likely not know every process detail needed to pro-
duce the desired results. For example, an agent that is a job-estimating or
job-submission tool might not know what devices can execute various “Product Intent” is another way of saying “Job

steps or even which steps will be needed. Specifications”. Rather than describing how a
If this is the case, the initiating agent creates a set of top-level nodes to job will be made, Product Intent describes
specify the product intent without providing any of the processing details. jwhat a finished product (or some aspect of a
Subsequent agents then add nodes below these top-level nodes to provide [Product) will look like when it is completed.

the processing details needed to fulfill the intent specified. Product Intents can initiate with the customer
and in rather vague terms, and they might be

These top-level nodes SHALL have a @Type attribute value of "Product” to §|ater fleshed out or completed by a printer's
indicate that they do not specify any processing, (and are referred to as customer service representative, estimating
“Product Intent nodes”). All processing needed to produce the products department or production planners.
described in these nodes SHALL be specified in process nodes, which exist
lower in the job hierarchy.

Product intent nodes include Intent Resources that describe the end results the customer is requesting. The Intent
Resources that have already been defined for JDF are easily recognizable, as they contain the word “intent” in their titles.
Examples include Colorintent and Foldingintent. All Intent Resources share a set of common subelements, which are de-
scribed in » Section 7.1 Intent Properties Template. These resources do not attempt to define the processing needed to
achieve the desired results; instead they provide a forum to define a range of acceptable possibilities for executing a job.

Each product intent node SHOULD contain at most one Resourcelink for one type of Intent Resource. If multiple product

parts with different intents are needed, each part has its own product intent node. Deliveryintent resources are a notable

exception. Specifying multiple Deliveryintent resources effectively requests multiple options of a quote. A product intent

node produces one or more Component resources as output resources. For more information about product intent, see
» Section 4.1.1 Product Intent Constructs.

3.3.2 Process Group Nodes

Intermediate nodes in the JDF job hierarchy (i.e., nodes 4, 5 and 6 in » Figure 3-1: Job hierarchy with Process, Process
Group and Product Intent nodes) describe groups of processes. The @ Type attribute value of these kinds of nodes is
"ProcessGroup”, (and they are referred to as “Process Group Nodes”). These nodes are used to describe multiple steps in
a process chain that have common resources or scheduling data.

Since the agent writing the job has the option of grouping processes in any way that seems logical, custom workflows
MAY be modeled flexibly. Process group nodes MAY contain further process group nodes, individual process nodes or a
mixture of both node types. Sequencing of process group nodes SHOULD be defined by linking resources of the appro-
priate child JDF nodes.

The higher the level of the process group nodes within the hierarchy, the larger the number of processes the group con-
tains. A high level process group node (e.g., prepress, finishing or printing processes) might include lower level process
group nodes that define a set of individual steps which are executed as a group of steps in the individual workflow hier-
archy. For example, all steps performed by one designated individual MAY be grouped in a lower level process group
node.

3.3.2.1 Use of the Types Attribute in Process Group Nodes - Gray Boxes

New in JDF 1.2

Process group nodes MAY contain an OPTIONAL @ Types attribute that allows a controller (e.g., an MIS system) to specify
a minimum set of processes to be executed without specifying the complete list of processes or the exact structure or
grouping of these processes into individual JDF nodes. Process group nodes that contain a @ Types attribute are com-
monly referred to as ‘Gray Boxes’. Additional processes that are not included in @ Types MAY be added during expansion
of a gray box. A ResourceLink/@ CombinedProcessindex is used to map Resourcelink elements to JOF/@ Types in the Pro-
cessGroup. Process group nodes with a non-empty @ Types attribute SHALL NOT be executed. A device that receives the
process group node SHALL define the exact structure of the process group node by executing the following steps until
the @Types list referenced by the process group node is empty:

Step 1 — Select at least one of the process types defined in @Types and remove these values from the @Types list of
values referenced by the process group node.

Step 2 — Create one new JDF child node within the ProcessGroup that either:
Has a @Type attribute matching the removed @Types entry value, or

Is a JDF node with a @Type attribute value of "Combined" or "ProcessGroup" that contains the removed @Types
value or values.

Step 3 — Link the appropriate resources that were predefined in the original process group node to the newly created
subordinate JDF node(s). The ResourceLink SHALL either be retained or deleted from the process group node. If it is re-

42 JDF SPECIFICATION 1.7

COMMON NODE TYPES

tained, the process group node SHALL NOT be executed before the resource that is linked by that ResourceLink is avail-
able. Otherwise, the process group node MAY be executed, even if the resource is not available.

Step 4 — Add missing @Types to the subordinate JDF node where appropriate. For instance, the original @ Types attri-
bute list referenced by process group node might have specified "Interpreting Rendering" or simply "RIPing", but the newly
created RIP node would specify "Interpreting Rendering Trapping Screening".

Step 5 — Finalize the newly created subordinate JDF node by adding any missing resources and resource parameters.
Note that newly created resources SHALL NOT be linked to the process group node but only to the subordinate JDF node
created in this process.

An agent SHALL instantiate all of the processes in the @Types attribute of the gray box before releasing the created JDF
nodes for processing and production. The ordering of the processes in the @ Types attribute SHALL be maintained when
instantiating the child nodes. JDF process group nodes that contain both a non-empty @ Types attribute and child JDF

nodes are not supported, although a process group node MAY contain child process group nodes that have non-empty
@Types attribute.

3.3.2.2 Use of NamedFeature in Product and Process Group Nodes
New in JDF 1.2
Modified in JDF 1.5
Combined, process group and product intent nodes MAY contain zero or more GenerallD[@Datatype="NamedFeature"] el-
ements. These GenerallD elements that are referred to as “NamedFeatures” in this paragraph allow a controller (e.g., an
MIS system) to define a named set of parameters for processes that SHALL be executed without defining the details or
even the resources for the individual JDF nodes. The agent (e.g., a prepress control system) populates the JDF node with
the values implied by named features in an implementation-defined manner. This procedure MAY include the addition
of additional JDF subnodes. The precedence of parameters (attributes or elements) is as follows in order of decreasing
precedence:
Explicitly supplied parameters
Parameters supplied by the device agent that are associated with the supplied named features closest to the
process.
Parameters supplied by the device agent that are associated with the supplied named features supplied by the
device agent at node levels closer to the root.
An individual named feature is selected by the GenerallD/ @IDUsage and GenerallD/@IDValue that matches entries from
DeviceCap/FeaturePool/EnumerationState/@Name and DeviceCap/FeaturePool/EnumerationState/ @AllowedValuelist (see
» Section 10.2.1 DeviceCap), where GenerallD/@IDUsage defines the name of the parameter set name (e.g., “Screening”),
and GenerallD/ @IDValue defines the selected parameter set value (e.g., “AM_ HighRes”). Multiple named features MAY
be selected. Names and values are implementation dependent. Each GenerallD/@IDUsage SHALL occur only once in the
named features list.

Use of named features is commonly combined with the use of @ Types in process group nodes as described in » Section
3.3.2.1 Use of the Types Attribute in Process Group Nodes — Gray Boxes. JOF/@ Types abstractly specifies the set of pro-
cesses to execute, whereas named features abstractly specifies the set of resources for the processes specified in @ Types.

3.3.2.3 Resourcelink Structure in Process Group Nodes
New in JDF 1.2

The contents of the ResourceLinkPool of a process group node define the resources that SHALL be available for the pro-
cess group node itself to be executed.

Example 3.1: Resourcelink Structure for a ProcessGroup

The following example shows the ResourceLink structure for a "ProcessGroup” digital printing with near-line finishing
node. The input Media is available and the output Component is of interest to the submitting controller. The Parameter
Resources are assumed to be supplied by the sub-controller that executes the process group node.

JDF SPECIFICATION 1.7 43

STRUCTURE

Note: The presence of intermediate component links that link the individual processes. The corresponding ResourcePool
elements and resource elements have been omitted for brevity.

<JDF ID="J1" JobPartID="ID300" Status="Waiting" Type="ProcessGroup"
Version="1.6" xmlns="http://www.CIP4.0org/JDFSchema 1 1">
<!-- the Resourcelink Elements in the ProcessGroup define the Input
Resources that are to be available for the ProcessGroup to be
submitted and the Output Resources that are produced by the ProcessGroup
-—>
<ResourcePool>
<DigitalPrintingParams Class="Parameter" ID="L1" Status="Available"/>
<Media Class="Consumable" ID="L2" Status="Available"/>
<RunList Class="Parameter" ID="L8" Status="Available"/>
<Component Class="Quantity" ComponentType="Sheet" ID="L3" Status="Unavailable"/>
<GatheringParams Class="Parameter" ID="L4" Status="Available"/>
<Component Class="Quantity" ComponentType="Sheet" ID="L5" Status="Unavailable"/>
<StitchingParams Class="Parameter" ID="L6" Status="Available"/>
<Component Class="Quantity" ComponentType="Sheet" ID="L7" Status="Unavailable"/>

</ResourcePool>

<ResourcelLinkPool>
<!-- print input media -->
<MediaLink Usage="Input" rRef="L2"/>
<!-- gathered output components -->

<ComponentLink Usage="Output" rRef="L7"/>

</ResourceLinkPool>

<JDF ID="J2" JobPartID="ID301" Status="Waiting" Type="DigitalPrinting">
<ResourcelLinkPool>

<!-- digital printing parameters -->
<DigitalPrintingParamsLink Usage="Input" rRef="L1"/>
<!-- input sheets -->

<MedialLink Usage="Input" rRef="L2"/>
<RunListLink Usage="Input" rRef="L8"/>
<!-- printed output components -->
<ComponentLink Usage="Output" rRef="L3"/>
</ResourceLinkPool>
</JDE>
<JDE ID="J3" JobPartID="ID302" Status="Waiting" Type="Gathering">
<ResourcelLinkPool>

<!-- gathering parameters -->
<GatheringParamsLink Usage="Input" rRef="1L4"/>
<!-- printed output components -->
<ComponentLink Usage="Input" rRef="L3"/>

<!-- gathered output components -->

<ComponentLink Usage="Output" rRef="L5"/>
</ResourcelLinkPool>
</JDF>
<JDEF ID="J4" JobPartID="ID303" Status="Waiting" Type="Stitching">
<ResourceLinkPool>
<!-- Stitching parameters -->
<StitchingParamsLink Usage="Input" rRef="L6"/>
<!-- gathered output components -->
<ComponentLink Usage="Input" rRef="L5"/>
<!-- stitched output components -->
<ComponentLink Usage="Output" rRef="L7"/>
</ResourcelLinkPool>
</JDF>
</JDF>

3.3.3 Combined Process Nodes

The processes described in » Chapter 6 Processes define individual workflow steps that are assumed to be executed by a

single-purpose device. Many devices, however, are able to combine the functionality of multiple single-purpose devices

and execute more than one process. For example, a digital printer might be able to execute the Interpreting, Rendering and
DigitalPrinting processes. To accommodate such devices, JDF allows processes to be grouped within a node whose @Type
= "Combined", (referred to as “Combined Process Nodes”). Such a node SHALL also contain a @ Types attribute, which in
turn contains an ordered list of the @ Type values of each of processes that the node specifies. The ordering of the process
names in the @ Types attribute specifies the ordering in which the processes SHOULD be executed. If the final product re-

44 JDF SPECIFICATION 1.7

COMMON NODE TYPES

sult would be indistinguishable, the device MAY change the execution order of the processes from that given in the @ Types
attribute.

Furthermore, Resourcelink elements in combined process nodes SHOULD specify a @CombinedProcessindex attribute in
order to define the subprocess to which the resource belongs. Combined process nodes are leaf nodes and SHALL NOT
contain further nested JDF nodes.

A device with multiple processing capabilities is able to recognize the combined process node as a single unit of work
that it can execute. All input and output resources that are consumed and produced externally by the process SHALL be
specified in the ResourcelinkPool element of the node. This includes all REQUIRED Parameter Resources as well as the
initial input resources and final output resources. Intermediate resources that are internally produced and consumed
NEED NOT be specified.

In a combined process node, the information defined by the various resources linked as input to the various subprocesses
are logically available to all processes of the combined process node. In situations where the Parameter Resource of more
then one subprocess specifies the mapping of sheet surface content to media, the subprocess that specifies such a map-
ping that is defined earliest in the @ Types attribute list SHALL be used, and any other mappings specified by any down-
stream subprocess resource SHALL be ignored.

3.3.3.1 Combined Process Nodes with Multiple Processes of the Same Type

A combined process node MAY contain multiple instances of the same process type (e.g., @ Types = "Cutting Folding
Cutting"). In this case, the ordering and mapping of links processes is significant — the parameters of the first Cutting
process are most likely to be different from those of the second Cutting process. Mapping is accomplished using the
@ CombinedProcessindex attribute in the respective Resourcelink.

Example 3.2: Combined Process Node

<JDE ID="J1" JobPartID="ID345" Status="Waiting" Type="Combined"
Types="Cutting Folding Cutting" Version="1.6" xmlns="http://www.CIP4.o0rg/JDFSchema 1 1">

<!--Resources (incomplete...) -->
<ResourcePool>
<!-- parameters of the first Cutting Process-->
<CuttingParams Class="Parameter" ID="L1" Status="Available"/>
<!-- Folding parameters -->
<FoldingParams Class="Parameter" ID="L2" Status="Available"/>
<!-- parameters of the second Cutting Process-->
<CuttingParams Class="Parameter" ID="L3" Status="Available"/>
<!-- raw input components -->
<Component Class="Quantity" ComponentType="Sheet" ID="L4" Status="Available"/>
<!-- completed output components -->
<Component Class="Quantity" ComponentType="Sheet" ID="L5" Status="Unavailable"/>
</ResourcePool>
<!-- Links -->
<ResourcelLinkPool>
<!-- parameters of the first Cutting Process-->
<CuttingParamsLink CombinedProcessIndex="0" Usage="Input" rRef="L1"/>
<!-- Folding parameters -->
<FoldingParamsLink CombinedProcessIndex="1" Usage="Input" rRef="L1L2"/>
<!-- parameters of the second Cutting Process-->
<CuttingParamsLink CombinedProcessIndex="2" Usage="Input" rRef="L3"/>
<!-- raw input components -->
<ComponentLink Usage="Input" rRef="L4"/>
<!-- completed output components -->

<ComponentLink Usage="Output" rRef="L5"/>
</ResourceLinkPool>
</JDF>

Example 3.3: ResourcelinkPool for Combined Process Node

The following example of the ResourceLinkPool of a JDF node describes digital printing with in-line finishing and in-
cludes the same processes as the previous ProcessGroup example. The node requires the Parameter Resources and
Consumable Resources of all three processes as inputs, and produces a completed booklet as output. The intermediate

JDF SPECIFICATION 1.7 45

STRUCTURE

printed sheets and gathered piles are not declared, since they exist only internally within the device and cannot be ac-
cessed or manipulated by an external controller.

<JDF ID="J1" JobPartID="ID200" Status="Waiting" Type="Combined" Version="1.6"
Types="DigitalPrinting Gathering Stitching" xmlns="http://www.CIP4.0rg/JDFSchema 1 1">
<ResourcelLinkPool>

<!-- digital printing input RunList -->

<RunListLink CombinedProcessIndex="0" Usage="Input" rRef="L1"/>

<!-- digital printing parameters -->

<DigitalPrintingParamsLink CombinedProcessIndex="0" Usage="Input" rRef="L2"/>
<!-- gathering parameters -->

<GatheringParamsLink CombinedProcessIndex="1" Usage="Input" rRef="L3"/>
<!-- Stitching parameters -->

<StitchingParamsLink CombinedProcessIndex="2" Usage="Input" rRef="14"/>
<!-- input sheets -->

<MediaLink CombinedProcessIndex="0" Usage="Input" rRef="L5"/>

<!-- stitched output components -->

<ComponentLink CombinedProcessIndex="2" Usage="Output" rRef="L6"/>
</ResourceLinkPool>
<ResourcePool>
<RunList Class="Parameter" ID="L1" Status="Available"/>
<DigitalPrintingParams Class="Parameter" ID="L2" Status="Available"/>
<GatheringParams Class="Parameter" ID="L3" Status="Available"/>
<StitchingParams Class="Parameter" ID="L4" Status="Available"/>
<Media Class="Consumable" ID="L5" Status="Available"/>
<Component Class="Quantity" ComponentType="Sheet" ID="L6" Status="Unavailable"/>
</ResourcePool>
</JDF>

3.3.3.2 Specifying non-linear dependencies in a Combined Process Node

A combined process node typically specifies a linear execution chain of the individual process steps defined in JDF/
@Types. A device that executes a combined process node MAY execute a more complex network of individual work steps.
For instance, a cover might be printed from one tray and an insert printed from another tray. Both are to be bound to
produce a single output bound component. This behavior is modeled by explicitly declaring the exchange resource and
by defining it as a pipe by specifying Resource/@PipelD and Resource/@PipeProtocol = "Internal". The exchange resource
is then linked to the correct processes in the combined process node by using both an input and an output ResourceLink
element. Multiple input ResourceLink elements and/or multiple output ResourceLink elements MAY be declared.
Resource/@Status of the exchange resource SHALL allow execution of the node.

Figure 3-2: Combined Process node dependencies

i

46 JDF SPECIFICATION 1.7

ANCESTORPOOL

Example 3.4: Complex Combined Process Node
The following example specifies an inline combined folder and collector and gatherer.

<JDF ID="ID" JobPartID="ID345" Status="Waiting" Type="Combined"
Types="Collecting Gathering Folding" Version="1.6" xmlns="http://www.CIP4.0org/JDFSchema 1 1">
<ResourcePool>
<GatheringParams Class="Parameter" ID="gpl" Status="Available"/>
<FoldingParams Class="Parameter" ID="fpl" Status="Available"/>
<Component Class="Quantity" ComponentType="Sheet" ID="inl" Status="Available"/>
<Component Class="Quantity" ComponentType="Sheet" ID="in2" Status="Available"/>
<Component Class="Quantity" ComponentType="Sheet" ID="in3" Status="Available"/>
<Component Class="Quantity" ComponentType="Sheet" ID="exl"
PipeID="ex1l" PipeProtocol="Internal" Status="Unavailable"/>
<Component Class="Quantity" ComponentType="Sheet" ID="ex2"
PipeID="ex2" PipeProtocol="Internal" Status="Unavailable"/>
<Component Class="Quantity" ComponentType="Sheet" ID="Out" Status="Unavailable"/>
</ResourcePool>
<ResourceLinkPool>
<GatheringParamsLink Usage="Input" rRef="gpl"/>
<FoldingParamsLink Usage="Input" rRef="fpl"/>
<ComponentLink CombinedProcessIndex="0" Usage="Input" rRef="inl"/>
<ComponentLink CombinedProcessIndex="0" Usage="Input" rRef="in2"/>
<ComponentLink CombinedProcessIndex="2" Usage="Input" rRef="in3"/>
<ComponentLink CombinedProcessIndex="0" Usage="Output" rRef="exl1l"/>
<ComponentLink CombinedProcessIndex="2" Usage="Output" rRef="ex2"/>
<ComponentLink CombinedProcessIndex="1" Usage="Input" rRef="ex1"/>
<ComponentLink CombinedProcessIndex="1" Usage="Input" rRef="ex2"/>
<ComponentLink CombinedProcessIndex="1" Usage="Output" rRef="Out"/>
</ResourcelLinkPool>
</JDFE>

3.3.4 Process Nodes

Process nodes represent the very lowest level in a job hierarchy. They SHALL NOT contain further nested JDF nodes, as
every process node is a leaf node. These nodes define the smallest work unit that can be scheduled and executed indi-
vidually within the JDF workflow model. In » Figure 3-3: Nodes linked by a resource below, nodes 7-17 represent process
nodes. The various individual process node types are specified in » Section 6 Processes.

3.4 AncestorPool

When a job is spawned, an AncestorPool is created in the spawned JDF to iden-
tify its parents and grandparents. This allows storing of information about job
context in a spawned node as well as allowing the job to be correctly merged
with its parent after it is completed. The AncestorPool element is only RE-
QUIRED in the root of a spawned JDF. Spawning and merging are described in

» Section 4.4 Spawning and Merging. The AncestorPool element contains an
ordered list of one or more Ancestor elements, which reflect the family tree of
a spawned JDF. Each Ancestor element identifies exactly one ancestor node.
The ancestor nodes reside in the original job where the job with the AncestorPool has been spawned off. The position of
the Ancestor element in the ordered list defines the position in the family tree. The first element in the list is the original
root element, the last element in the list is the parent, the last but one, the grandparent and so on. The following table
lists the contents of an AncestorPool element.

Ancestor Pool

An ancestor pool
contains the job’s context
when the job is spawned. This
includes scheduling information and
possibly customer information.

Table 3.5: AncestorPool Element

NAME DATA TYPE DESCRIPTION
Ancestor + element Ordered list of one or more Ancestor elements, which reflect the family tree
of a spawned JDE.
Part * element List of parts that this node was spawned with. Used in case of parallel spawn-
New in JDF 1.1 ing of a node. This defines the aggregated Part(s) in the case of nested

spawns (i.e., a logical AND of all spawned Part(s)). For instance, the JDF that
was spawned with a @SheetName partition and subsequently spawned with a
@Separation would contain both @SheetName and @Separation within Part.

JDF SPECIFICATION 1.7 47

STRUCTURE

3.4.1 Ancestor

An Ancestor element SHALL contain read-only copies of all the attributes of the node that it represents with the excep-
tion of the @ID attribute, which SHALL be copied to the @NodelD attribute of that Ancestor element. Ancestor elements
MAY contain further read-only references to Customerinfo and Nodelnfo. The attributes and elements of Ancestor ele-

ments are described below.

Table 3.6: Ancestor Element (Sheet 1 of 2)

NAME DATA TYPE DESCRIPTION
Activation ? enumeration | Copy of the @Activation attribute from the ancestor node. For details, see
» Table 3.4 JDF.
Allowed value is from: » Activation.
Category ? NMTOKENS Copy of the @Category attribute from the original ancestor node. For details,
New in JDF 1.2 see » Table 3.4 JDF.
Values include those from: » Node Categories.

FileName ? URL The URL of the JDF file where the ancestor node resided prior to spawning.
Note: Despite the name of this attribute, @URL NEED NOT refer to a physical
file. @ URL MAY refer to any url scheme where the original JDF can be accessed,
e.g. http.

ICSVersions ? NMTOKENS Copy of the @ICSVersions attribute from the original ancestor node. For

New in JDF 1.2 details, see » Table 3.4 JDF, and also refer to » Section 3.2.1 ICS Versions
Value.

JobID ? string Copy of the @JobID attribute from the original ancestor node. For details, see

» Table 3.4 JDF.

JobPartiD ? string Copy of the @JobPartID attribute from the original ancestor node. For detalils,
see » Table 3.4 JDF.

MaxVersion ? enumeration | Copy of the @MaxVersion attribute from the original ancestor node. For

New in JDF 1.2 details, see » Table 3.4 JDF.

Allowed value is from: » JDFJMFEFVersion.

NamedFeatures ? NMTOKENS Copy of the @NamedFeatures attribute from the original ancestor node. For

N ia R details, see » Table 3.4 JDF.

Deprecated in JDF 1.5

NodelD NMTOKEN Copy of the @ID attribute of the ancestor node.

Note: NMTOKEN is used as the datatype and not ID because the ancestor node
and thus @ID does not reside in the spawned JDF. The corresponding @ID at-
tribute resides in the original JDF.

ProjectID ? string Identification of the project context that this JDF belongs to. Used by the
application that created the JDF job.

RelatedJobID ? string Copy of the @RelatedJoblD attribute from the original ancestor node. For

New in JDF 1.2 details, see » Table 3.4 JDF.

RelatedJobPartID ? string Copy of the @RelatedJobPartID attribute from the original ancestor node. For

New in JDF 1.2 details, see » Table 3.4 JDF.

RelatedProject!D ? string Copy of the @RelatedProjectID attribute from the original ancestor node. For

New in JDF 1.6 details, see » Table 3.4 JDF.

SpawnID ? NMTOKEN Copy of the @SpawnID attribute of the ancestor node.

New in JDF 1.1

Status ? enumeration | Copy of the @Status attribute from the original ancestor node. For details, see

» Table 3.4 JDF.
Allowed value is from: » Status.

48

JDF SPECIFICATION 1.7

Table 3.6: Ancestor Element (Sheet 2 of 2)

AUDITPOOL

NAME DATA TYPE DESCRIPTION
StatusDetails ? string Copy of the @StatusDetails attribute from the original ancestor node. For val-
New in JDF 1.2 ues and details, see » Table 3.4 JDF.
Values include those from: » Status Details.
Template = "false" boolean Copy of the @ Template attribute from the original ancestor node. For details,
New in JDF 1.1 see » Table 3.4 JDF.
TemplatelD ? string Copy of the @ TemplatelD attribute from the original ancestor node. For
New in JDF 1.2 details, see » Table 3.4 JDF.
TemplateVersion ? boolean Copy of the @ TemplateVersion attribute from the original ancestor node. For
New in JDF 1.2 details, see » Table 3.4 JDF.
Type ? NMTOKEN Copy of the @ Type attribute from the original ancestor node. For details, see
» Table 3.4 JDF.
Allowed values include:
Combined
ProcessGroup
Product
And those from: » Chapter 6 Processes.
Types ? NMTOKENS Copy of the @ Types attribute from the original ancestor node. For details, see
» Table 3.4 JDF.
Values include those from: » Chapter 6 Processes.
Version ? enumeration | Copy of the @Version attribute from the original ancestor node. For details,
see » Table 3.4 JDF.
Allowed value is from: » JDEJMFVersion.
Customerlnfo ? refelement Reference to or copy of the Customerinfo element or resource from the origi-
New in JDF 11 nal node. In JDF 1.3 and beyond, Customerinfo SHOULD be a resource refer-
Modified in JDF 1.3 ence. For details, see » Table 3.4 JDF.
Nodelnfo ? refelement Reference to or copy of the Nodelnfo element or resource from the original
New in JDF 1.1 node. In JDF 1.3 and beyond, Nodelnfo SHOULD be a resource reference. For

Modified in JDF 1.3

details, see » Table 3.4 JDF.

3.5 AuditPool

Audit elements contain the recorded results of a process such as the exe-
cution of a JDF node or modification of the JDF itself. Audit elements be-
come static after a process has been finished. They SHALL NOT be modified
after the process has been aborted or completed. Therefore, if PhaseTime
or ResourceAudit audit elements link to resources, those resources
SHOULD be locked in order to inhibit accidental modification of audited in-
formation, which is why JDF includes a locking mechanism for resources.

AuditPool Elements

Audit information is the job’s
history and can support your
daily, quality control and troubleshooting
management reporting needs.

Audit elements record any event related to the following situations:
The creation of a JDF node by a Created audit.
Spawning and merging, including resource copying by spawned and merged audits.

Errors such as unnecessary ResourceLink audits, wrongly linked resources, missing resources or missing links,
which might be detected by agents during a test run or by a Notification audit.

Actual data about the production and resource consumption by a ResourceAudit audit.

Any process phase times. Examples include setting up a device, maintenance and washing, as well as down-times
as a result of failure, breaks or pauses. Changes of ImplementationResource usage, such as a change of operators
by a PhaseTime audit, would also constitute an example of a phase time.

Actual execution data. For example, the process start and end times, as well as the final process state, as
determined by a ProcessRun audit.

Any modification of a JDF node not covered by the preceding items, as recorded by a Modified or Deleted audit.

JDF SPECIFICATION 1.7 49

STRUCTURE

Audit information might be used by MIS for operations such as evaluation or invoicing. AuditPool entries are ordered
chronologically, with the last entry in the AuditPool representing the newest. A ProcessRun containing the scheduling
data finalizes each process run. All subsequent entries belong to the next run.

The following table defines the contents of the AuditPool element.

Table 3.7: AuditPool Element

NAME DATA TYPE DESCRIPTION
rRefs ? IDREFS List of all resources that are referenced from within the AuditPool. In JDF 1.2
Deprecated in JDF 1.2 and beyond, it is up to the implementation to maintain references.
Audit * element Chronologically ordered list of Audit elements.
Audit elements are abstract and serve as placeholders for any actual element
derived from the abstract Audit element.

3.5.1 Audit
All actual Audit elements inherit content from the abstract Audit element, described in the following table.

Table 3.8: Abstract Audit Element

NAME DATA TYPE DESCRIPTION
AgentName ? string The name of the agent application that added the Audit element to the
New in JDF 1.2 AuditPool (and was responsible for the creation or modification). Both the

company name and the product name MAY appear, and SHOULD be consis-
tent between versions of the application.

AgentVersion ¢ string The version of the agent application that added the Audit element to the

New in JDF 1.2 AuditPool (and was responsible for the creation or modification). The format
of the version string MAY vary from one application to another, but SHOULD
be consistent for an individual application.

Author ? string Text that identifies the person who made the entry. Prior to JDF 1.2, @Author
Modified in JDF 1.2 also contained information that is now encoded in @AgentName and
@Agent\Version.

Deprecated in JDF1.4 Deprecation note: Starting with JDF 1.4, use Employee.

ID? ID @ID of the Audit. @ID SHALL be specified if there is support to subsequently
New in JDF 1.2 create correction Audit elements.

QueueEntryID ? string @QueuetntryID of the QueueEntry during which this Audit was generated.

New in JDF 1.4

refID ? IDREF Reference to a previous Audit that this Audit corrects. The referenced Audit
New in JDF 1.2 SHALL reside in the same AuditPool.

SpawnID ? NMTOKEN Text that identifies the spawned processing step when the entry was gener-
New in JDF 1.1 ated. This is a copy of the @SpawnID attribute of the root JDF node of the pro-

cess that generates the Audit at the time the Audit is generated.

TimeStamp dateTime For Audit elements Created, Modified, Spawned, Merged and Notification, this
attribute records the date and time when the related event occurred. For Audit
elements PhaseTime, ProcessRun and ResourceAudit, the attribute describes
the time when the entry was appended to the AuditPool.

Employee ? element Employee who created this Audit element.
New in JDF 1.4

The following table lists all the actual Audit elements that are derived from the abstract Audit element.
Table 3.9: List of Audit Elements (Sheet 1 of 2)

DESCRIPTION

Created page 51 Logs creation of JDF node or resource

50 JDF SPECIFICATION 1.7

AUDITPOOL
Table 3.9: List of Audit Elements (Sheet 2 of 2)

NAME PAGE DESCRIPTION
Deleted page 51 Logs deletion of JDF node or resource
Merged page 52 Logs the merging of a spawned node
Modified page 52 Logs modifications affecting a JDF node or its subelements when the modifi-
cation is not covered by other Audit elements
Notification page 52 Logs individual events that occurred during processing
PhaseTime page 54 Logs start and end times of any process states and sub-states, denoted as

phases. Phases can reflect any arbitrary subdivisions of a process.

ProcessRun page 56 Summarizes one complete execution run of a node or delimits a group of
Audit elements for each individual process run.

ResourceAudit page 57 Describes the usage of resources during execution of a node or the modifica-
tion of the intended usage of a resource

Spawned page 60 Logs the spawning of a node.

3.5.2 Created

This element allows the creation of a JDF node or resource to be logged. If the element refers to a JDF node, it can be
located in the AuditPool element of the node that has been created or in any ancestor node. If the element refers to a
resource, it SHALL be located in the node where the resource resides so that the spawning and merging mechanism can
work effectively.

Table 3.10: Created Audit Element

NAME DATA TYPE DESCRIPTION
ref ¢ IDREF Represents the ID of the created element. Defaults to the ID of the local JDF
Deprecated in JDF 1.2 node. Replaced with @XPath in JDF 1.2 and beyond.
TemplatelD ? string Defines the template JDF that was used as the template to create the node.
New in JDF 1.2
TemplateVersion ? string Defines the version of template JDF that was used as the template to create
New in JDF 1.2 the node.
XPath ? XPath Location of the created elements or attributes relative to the parent JDF node
New in JDF 1.2 of the Created element.

3.5.3 Deleted
New in JDF 1.2

This element allows any deletions of a JDF node or element to be logged. If the corresponding Created element was not
deleted (e.g., in the AuditPool of a deleted JDF node), the Deleted element SHOULD reside in the same AuditPool as the
corresponding Created element, otherwise it SHOULD reside in an ancestor of the deleted attribute or element.

Table 3.11: Deleted Audit Element

NAME DATA TYPE DESCRIPTION

XPath ? XPath Location of the deleted elements or attributes relative to the parent JDF node
p
of the Deleted element.

JDF SPECIFICATION 1.7 51

STRUCTURE

3.5.4 Merged
This element logs a merging event of a spawned node. For more details, see » Section 4.4 Spawning and Merging.
Table 3.12: Merged Audit Element

NAME DATA TYPE DESCRIPTION
Independent = boolean Declares that independent jobs are merged into a big job for common pro-
"false" duction. If it is set to "true”, the attributes @jRefSource and @rRefsOverwritten
Deprecated in JDF 1.5 have no meaning and SHOULD be omitted.

Deprecation note: Starting with JDF 1.5, use SheetOptimizing.

jRef IDREF ID of the JDF node that has been returned or merged.
jRefSource ? NMTOKEN ID of the JDF root node of the big job from which the spawned structure has
Deprecated in JDF 1.5 been returned.

Note: The data type is NMTOKEN and not IDREF because the attribute refers
to an external ID.
Deprecation note: Starting with JDF 1.5, use SheetOptimizing.

MergelD NMTOKEN Copy of the @SpawnID of the merged node. Note that a Merged element MAY
New in JDF 1.1 also contain a @SpawniD attribute, which is the @SpawnID of the node that
this Audit is being placed into prior to merging.

rRefsOverwritten ¢ IDREFS Identifies the copied resources that have been overwritten during merging.
Resources are usually overwritten during return if they have been copied
during spawning with read/write access.

URL ? URL Locator that specifies the location of the merged node prior to merging by the
New in JDF 1.1 merging process.
Part * element Specifies the selected parts of the resource that were merged in case of paral-

lel spawning and merging of partitionable resources. See » Section 3.10.5
Description of Partitioned Resources.

3.5.5 Modified

This element allows any modifications affecting a JDF node or its subelements to be logged. Changes that can be logged
by a more specialized Audit element (e.g., ResourceAudit for resource changes) SHALL NOT use this common log entry.
The modification can be described textually by adding a generic Comment element to the Modified element. The Modified
element SHALL reside in the same AuditPool as the corresponding Created element.

Table 3.13: Modified Audit Element

NAME DATA TYPE DESCRIPTION
jRef ? IDREF The ID of the modified node. The Modified element resides in the modified
Deprecated in JDF 1.2 node. Defaults to the ID of the local JDF node. Replaced with @XPath in JDF
1.2 and beyond.
XPath ? XPath Location of the modified elements or attributes relative to the parent JDF
New in JDF 1.2 node of the Modified element.

3.5.6 Notification

This element contains information about individual events that occurred during processing. For a detailed discussion of
event properties, see » Section 4.6 Error Handling.

52 JDF SPECIFICATION 1.7

AUDITPOOL

Table 3.14: Notification Audit Element (Sheet 1 of 2)

NAME

Class

DATA TYPE

enumeration

DESCRIPTION

Class of the notification.

Allowed values are: (in order of severity from lowest to highest):

Event — Indicates that a pure event due to certain operation-related activity
has occurred (e.g., machine events, operator activities, etc.). This class is
used for the transfer of conventional event messages. In case of @Class =
"Event", further event information is to be provided by the @Type attri-
bute and Notification Details element. See » Appendix A.5.14 Notification
Details.

Information — Any information about a process which cannot be expressed by
the other classes (e.g., the beginning of execution). No user interaction is
needed.

Warning — Indicates that a minor error has occurred, and an automatic fix
was applied. Execution continues. The node’s @Status is unchanged. This
appears in situations such as A4-Letter substitutions when toner is low
or when unknown extensions are encountered in a REQUIRED resource.

Error — Indicates that an error has occurred that requires user interaction.
Execution cannot continue until the problem has been fixed. The node’s
@Status is "Stopped". This value appears in situations such as when
resources are missing, when major incompatibilities are detected, or
when the toner is empty.

Fatal — Indicates that a fatal error led to abortion of the process. The node’s
@Status is "Aborted". This value is seen with most protocol errors or when
major device malfunction has occurred.

CombinedProcessind
ex?

New in JDF 1.4

IntegerList

@ CombinedProcessindex attribute specifies the indices of individual processes
in the @Types attribute to which a Netificationin a combined process node or
process group node belongs. Multiple entries in @ CombinedProcessindex spec-
ify that the module specified by Notification is executing the respective mul-
tiple processes in the combined process node.

JobID ?
New in JDF 1.3

string

@JobID that this Netification applies to. @JobID SHALL NOT be specified when
Notification is used as an Audit element. Notification/@JobID MAY be specified
within a JMF message.

JobPartID ?
New in JDF 1.3

string

@JobPartID that this Notification applies to. @JobPartID SHALL NOT be speci-
fied when Notification is used as an Audit element. Notification/@JobPartID
MAY be specified within a JMF message.

ModulelD ?
New in JDF 1.4

string

@ModulelD of the Module that this Notification relates to.

Modulelndex ?
New in JDF 1.4

Inte-
gerRangeList

0-based indices of the module or modules. The list is based on all modules of
the device. If multiple module types are available on one device, each SHALL
be unique in the scope of the device.

Constraint: At least one of @ModulelD or @Modulelndex SHALL be specified.

ModuleType ?
New in JDF 1.4

NMTOKEN

Module description.

Values include those from: » Module Types.
Note: The allowed values depend on the type of device. Each type of device has
a separate table of values.

Type ?

NMTOKEN

Identifies the type of notification. Also defines the name of the Notification
Details element.

Note: @ Type allows parsers that do not have access to the schema to find the
instance of Notification Details.

Values include those from: » Notification Details.

Comment *

element

A Comment element contains a verbose, human-readable description of the
event. If the value of the @Class attribute is one of "Information", "Warning",
"Error" or "Fatal", at least one Comment element SHOULD be specified. Other-
wise (including for @Class = "Event"), Comment elements are OPTIONAL.

CostCenter ?

element

The cost center to which this event is related to.

JDF SPECIFICATION 1.7 53

STRUCTURE

Table 3.14: Notification Audit Element (Sheet 2 of 2)

NAME DATA TYPE DESCRIPTION

Employee * refelement The employees associated with this event.

Notification Details | element Notification Details is an abstract element that is a placeholder for additional

? structured information. It provides additional information beyond the @Class
and @Type attribute and beyond the Comment element. See » Appendix A.5.14
Notification Details.
For derived elements see » Appendix A.5.14.2 Notification Details.

Part * element Describes which parts of a process this Notification belongs to. If Part is not

New in JDF 11 specified for a Notification, it refers to all parts. For example, imagine a print

job that is to produce three different sheets. All sheets are described by one
partitioned resource. The Part elements define, unambiguously, the sheet to
which the Audit refers.

3.5.7 PhaseTime

This element contains audit information about the start and end times of any process states and sub-states, denoted as
phases. Phases can reflect any arbitrary subdivisions of a process, such as maintenance, washing, plate changing, fail-
ures and breaks. PhaseTime elements SHOULD be closed whenever a significant status change that is detected.

PhaseTime elements MAY also be used to log the actual time spans when ImplementationResources are used by a process.
For example, the temporary usage of a fork lift can be logged if a PhaseTime element is added that contains a link to the
fork lift device resource and specifies the actual start and end time of the usage of that fork lift.

PhaseTime elements that apply to identical partitions and contain at least one identical ModulePhase SHALL NOT overlap
in time. PhaseTime elements that apply to different partitions MAY overlap in time in order to indicate parallel process-
ing. PhaseTime elements that apply to different modules MAY overlap in time in order to indicate independent processing
with individual modules.

Table 3.15: PhaseTime Audit Element (Sheet 1 of 2)

NAME

End ?
Modified in JDF 1.3

DATA TYPE

dateTime

DESCRIPTION

Date and time of the end of the phase. If not specified, the PhaseTime is
ongoing and the end of the phase has not yet occurred. This will generally be
the case in the last PhaseTime of a snapshot JDF in a status JMEF. See » Section
5.55 Status for details.,

Start

dateTime

Date and time of the beginning of the phase.

Status
Modified in JDF 1.3

enumeration

Status of the phase.

Allowed values are: (a subset of JDF/@Status)

TestRunInProgress

Setup

InProgress

Cleanup

Spawned — Deprecated in JDF 1.3

Suspended — New in JDF 1.3

Stopped

Note: The values of this @Status attribute are a subset of the possible state
values JOF/@Status. For all possible states of a JDF node see » Table 3.4 JDF.

StatusDetails ¢

string

Description of the status phase that provides details beyond the enumerative
values given by the @Status attribute.

Values include those from: » Status Details.

Activity *
New in JDF 1.5

element

Operator and device activities that are related to a specific job or job phase.

Device *

refelement

Links to Device resources that are working during this phase. If one or more
Device resource(s) was used during this phase, this refelement SHOULD link
to that/those Device resource(s).

54

JDF SPECIFICATION 1.7

AUDITPOOL

Table 3.15: PhaseTime Audit Element (Sheet 2 of 2)

NAME

Employee *

DATA TYPE

refelement

DESCRIPTION

Links to Employee resources that are working during this phase. If one or
more Employee resources was active during this phase, this refelement
SHOULD link to that/those Employee resource(s). The first employee refer-
enced in this list is the employee who created this Audit PhaseTime element.

MiSDetails ?
New in JDF 1.2

element

Definition how the costs for the execution of this PhaseTime are to be
charged.

ModulePhase *

element

Additional phase information of individual device modules, such as print
units.

Part *

element

Describes which parts of a job is currently being logged. If a Part is not speci-
fied for a node that modifies partitioned resources, @PhaseTime refers to all
parts. For example, imagine a print job that is to produce three different
sheets. All sheets are described by one partitioned resource. In order to sepa-
rate the different print phases for each sheet, the Part elements define,
unambiguously, the sheet to which the Audit PhaseTime refers.

Resourcelink *
New in JDF 1.1

element

These Resourcelink elements specify the actual consumption/usage or pro-
duction of resources during this production phase. All attributes apply to
production and consumption within this PhaseTime only, thus Resourcelink/
@ActualAmount specifies the actual amount produced or consumed.

3.5.7.0.1 ModulePhase

It is possible to monitor the states of individual modules of a complex device, such as a press with multiple print units,
by defining ModulePhase elements. One PhaseTime element MAY contain multiple ModulePhase elements and can,
therefore, record the status of multiple units in a device. ModulePhase elements describe the set of modules that a given
PhaseTime audit element applies to. ModulePhase elements are defined in the following table.

Table 3.16: ModulePhase Element (Sheet 1 of 2)

NAME

CombinedProcessind
ex?
New in JDF 1.3

DATA TYPE

IntegerList

DESCRIPTION

@ CombinedProcessindex attribute specifies the indices of individual processes
in the @Types attribute to which a ModulePhase in a combined process node
or process group node belongs. Multiple entries in @CombinedProcessindex
specify that the module specified by ModulePhase is executing the respective
multiple processes in the combined process node.

DevicelD

string

ID of the device that the module described by this ModulePhase belongs to.
This SHALL be the @DevicelD attribute of one of the Device elements specified
in the PhaseTime.

DeviceStatus ¢
Modified in JDF 1.3

enumeration

Status of the device module.

Allowed values are:

Unknown — The module status is unknown.

Idle — The module is not used (e.g., a color print module that is inactive
during a black-and-white print).

Down — The module cannot be used. It might be broken, switched off etc.

Setup — The module is currently being set up.

Running — The module is currently executing.

Cleanup — The module is currently being cleaned.

Stopped — The module has been stopped, but running might be resumed later.
This status can indicate any kind of break, including a pause, mainte-
nance or a breakdown, as long as running can be easy resumed.

Note: These states are analog to the device states of » Table 5.107

ModuleStatus Element.

End ?
Modified in JDF 1.3
Deprecated in JDF 1.4

dateTime

Date and time of the end of the module phase. If not specified, the
ModulePhase is ongoing and the end of the phase has not yet occurred.
Deprecation note: Starting with JDF 1.4, all status information is recorded in
PhaseTime. ModulePhase selects only the set of modules that a particular
PhaseTime applies to.

JDF SPECIFICATION 1.7 55

STRUCTURE

Table 3.16: ModulePhase Element (Sheet 2 of 2)

NAME DATA TYPE DESCRIPTION
ModulelD ? string @ModulelD of the module that this ModulePhase refers to.
New inJDF 1.3 If not specified, the module is specified in @Modulelndex.
Constraint: at least one of @ModulelD or @Modulelndex SHALL be specified.
Modulelndex ? Inte- 0-based indices of the module or modules. The list is based on all modules of
Modified in JDF 1.3 gerRangeList | the device. If multiple module types are available on one device, each SHALL

be unique in the scope of the device.
Constraint: At least one of @ModulelD or @Modulelndex SHALL be specified.

ModuleType ? NMTOKEN Module description.

Modified in JDF 1.5 Values include those from: » Module Types.

Note: The allowed values depend on the type of device. Each type of device has
a separate table of values.

Modification note: Starting with JDF 1.5, @ModuleType is optional.

Start dateTime Date and time of the beginning of the module phase.
Modified in JDF 1.3 Deprecation note: Starting with JDF 1.4, all status information is recorded in
PhaseTime. ModulePhase selects only the set of modules that a particular

Bjpttarzaitzs] [DI PhaseTime applies to.

StatusDetails ? string Description of the module status phase that provides details beyond the enu-
merative values given by the @DeviceStatus attribute.

Values include those from: » Status Details.

Employee * refelement References to Employee resources that are working during this module phase
Deprecated in JDF 1.5 on this module. (The module is specified by the attributes @Modulelndex and
@ModuleType).

Deprecation note: Starting with JDF 1.5, employees SHOULD only be specified
in the parent PhaseTime.

3.5.8 ProcessRun
This Audit element serves two related functions.

The first function is to summarize one complete execution run of a node. It contains attributes that record the date and
time of the start, the end time, the final process state when the run is finished and, possibly, the process duration of the
process run. These attributes are described in » Table 3.17 ProcessRun Audit Element.

The second function is to delimit a group of Audit elements for each individual process run. Every group of Audit elements
terminates with a ProcessRun element, which contains the information described in » Table 3.17 ProcessRun Audit
Element. If a process is repeated (e.g., as a result of a late change in the order), all Audit elements belonging to the new
run SHALL be appended after the last ProcessRun element that terminates the Audit elements of the previous run. The
number of ProcessRun elements is, therefore, always equivalent to the number of process runs. If a node describes par-
titioned resources, one ProcessRun MAY be specified for each individual part.

Table 3.17: ProcessRun Audit Element (Sheet 1 of 2)

NAME DATA TYPE DESCRIPTION

Duration ? duration Time span of the effective process runtime without intentional or uninten-
tional breaks. That time span is the sum of all process phases when the
@Status is "InProgress", "Setup” or "Cleanup".

End dateTime Date and time at which the process ended.

EndStatus enumeration | The @Status of the process at the end of the run. For a description of process

Modified in JDF 1.3 states, see » Table 3.4 JDF.

Allowed values are:

Aborted

Completed

FailedTestRun

Ready

Stopped — The execution of the node is stopped and might commence at a
later time. In JDF 1.3 and beyond, "Stopped" is not an end state. Deprecated
inJDF1.3

56 JDF SPECIFICATION 1.7

AUDITPOOL

Table 3.17: ProcessRun Audit Element (Sheet 2 of 2)

NAME DATA TYPE DESCRIPTION
ReturnTime ? dateTime Date and time of the ReturnQueueEntry submission. If the JDF was returned
New in JDF 1.4 via a Hot Folder, this time corresponds to the time when the JDF was placed
into the Hot Folder.
Start dateTime Date and time at which the process started.
SubmissionTime ¢ dateTime Date and time of the SubmitQueueEntry submission. This value SHOULD be
New in JDF 1.4 identical with QueueEntry/@SubmissionTime. If the JDF was submitted via a

Hot Folder, this time corresponds to the time when the JDF was extracted
from the Hot Folder.

Part * element Describes which parts of a process this ProcessRun belongs to. If Part is not
New in JDF 11 specified for a ProcessRun, it refers to all parts. For example, imagine a print
job that is to produce three different sheets. All sheets are described by one
partitioned resource. The Part elements define, unambiguously, the process-
ing of the sheet to which the ProcessRun refers.

3.5.9 ResourceAudit

The ResourceAudit element describes the usage of resources during execution of a node or the modification of the in-
tended usage of a resource (i.e., the modification of a ResourceLink). It logs consumption and production amounts of any
quantifiable resources, accumulated over one process run or one part of a process run.

It contains one or two abstract ResourceLink elements. The first is REQUIRED and specifies the actual consumption/usage
or production of the resource. The second ResourceLink is OPTIONAL and used to store information about the original
Resourcelink, which also refers to the original resource. If the original resource does not need to be saved, a Boolean

@ ContentsModified attribute in the ResourceAudit SHOULD be specified as "true" to indicate that a change has been made.

Table 3.18: ResourceAudit Audit Element (Sheet 1 of 2)

NAME DATA TYPE DESCRIPTION

ContentsModified ¢ boolean Specifies that a modification has occurred but that the original resource has
been deleted.

NodeStatus ? enumeration | Status of the node that was executed during production or consumption of
N i IETLE! the resource.

Allowed values are:

TestRunInProgress

Setup

InProgress

Cleanup

Suspended

Stopped

Note: The above values are a subset of » Status and thus are a subset of the
possible state values JDF/@Status. For all possible states of a JDF node see
» Table 3.4 JDF.

Reason ? enumeration Reason for the modification.

New in JDF 1.1 Allowed values are:

Operatorlnput — Human update that corrects inconsistencies from automated
data collection.

PlanChange — The resource was modified due to a change of plan before actual
processing.

ProcessResult — The actual consumption.

MiSDetails ? element Specifies how the costs associated with this ResourceAudit are to be charged.

New in JDF 1.3

Part * element Describes which parts of a job is currently being logged. If a part is not speci-
fied for a node that modifies partitioned resources, ResourceAudit refers to all
parts.

JDF SPECIFICATION 1.7 57

STRUCTURE

Table 3.18: ResourceAudit Audit Element (Sheet 2 of 2)

NAME DATA TYPE DESCRIPTION

Resourcelink element The first Resourcelink specifies the actual consumption/usage or production
of a resource. This current resource after modification NEED NOT be set to
@Locked="true".

ResourcelLink ? element The second Resourcelink, which is OPTIONAL, logs the modification of a
ResourcelLink and the modification of the resource it refers to. It holds the
planned ResourcelLink which also refers to the planned resource. The planned
and actual resource MAY be the same.

For details on ResourcelLink elements and ResourceLink Subclasses, see » Section 3.9 ResourceLinkPool and
ResourceLink. The partitioning of resources using Part elements is defined in » Section 3.10.5 Description of Partitioned
Resources.

3.5.9.0.1 Logging Machine Data by Using the ResourceAudit

If a resource is modified during processing, any nodes that also reference the resource MAY also be affected. The follow-
ing logging procedure is RECOMMENDED in order to track the resource modification and to insure consistency of the job.
1 Create a copy of the original resource with a new ID.
2 Modify the original resource to reflect the changes.

3 Insert a ResourceAudit element that references the modified original resource with the first ResourcelLink and
the copied resource with the second ResourcelLink attribute

Example 3.5: ResourceAudit: Before Logging

The following example describes the logging of a modification of the media weight and amount. The JDF document be-
fore modification requests 400 copies of 80 gram media.

<JDE ID="J1" JobPartID="ID234" Status="Waiting"
Type="ConventionalPrinting"” Version="1.6" xmlns="http://www.CIP4.0rg/JDFSchema 1 1">
<ResourcelLinkPool>
<MediaLink Amount="400" Usage="Input" rRef="RLink"/>
<ConventionalPrintingParamsLink Usage="Input" rRef="RO1"/>
<ComponentLink Usage="Output" rRef="R02"/>
</ResourceLinkPool>
<ResourcePool>
<Media Amount="400" Class="Consumable" ID="RLink" Status="Available" Weight="80"/>
<ConventionalPrintingParams Class="Parameter" ID="R01" Status="Available"/>
<Component Class="Quantity" ComponentType="Sheet" ID="R02" Status="Unavailable"/>
</ResourcePool>
</JDE>

58 JDF SPECIFICATION 1.7

AUDITPOOL

Example 3.6: ResourceAudit: Logging of Consumption
The JDF after modification specifies that 421 copies of 90-gram media have been consumed.

<JDEF ID="J1" JobPartID="ID234" Status="Waiting"

Type="ConventionalPrinting" Version="1.6" xmlns="http://www.CIP4.org/JDFSchema 1 1">

<ResourcelLinkPool>
<!-- Note that ActualAmount has been added to the ResourcelLink -->
<MediaLink ActualAmount="421" Amount="400" Usage="Input" rRef="RLink"/>
<ConventionalPrintingParamsLink Usage="Input" rRef="RO1"/>
<ComponentLink Usage="Output" rRef="R02"/>

</ResourcelLinkPool>

<ResourcePool>
<Media Amount="400" Class="Consumable" ID="RPrev" Status="Available" Weight="80"/>
<!--Copy of the original resource-->
<Media Amount="421" Class="Consumable" ID="RLink" Status="Available" Weight="90"/>
<ConventionalPrintingParams Class="Parameter" ID="R01" Status="Available"/>
<Component Class="Quantity" ComponentType="Sheet" ID="R02" Status="Unavailable"/>
<!--modified resource-->

</ResourcePool>

<AuditPool>
<ResourceAudit TimeStamp="2008-08-28T18:20:00Z">

<MediaLink ActualAmount="421" Amount="400" Usage="Input" rRef="RLink"/>
<MediaLink Amount="400" Usage="Input" rRef="RPrev'"/>

</ResourceAudit>

</AuditPool>

</JDF>

3.5.9.0.2 Logging Changes in Product Descriptions by Using the ResourceAudit

ResourceAudit elements MAY also be used to store the original Intent Resources of a product specification in a change
order or request for requote. The mechanism is the same as above.

JDF SPECIFICATION 1.7 59

STRUCTURE

Example 3.7 ResourceAudit: Logging Changes

The following example shows the structure of a Medialntent with @ Option partitions, where a late change of options from
Option1 (80 gram paper) to Option2 (90 gram paper) is requested.

<JDF ID="J1" JobPartID="ID234" Status="Waiting" Type="Product"

Version="1.6" xmlns="http://www.CIP4.0org/JDFSchema 1 1">
<ResourcelLinkPool>

<MediaIntentLink Usage="Input" rRef="id">

<Part Option="Option2"/>

</MediaIntentLink>

<ComponentLink Usage="Output" rRef="R02"/>
</ResourcelLinkPool>

<ResourcePool>
<MediaIntent ID="id" PartIDKeys="Option" Status="Complete" Class="Intent">
<!-- the common MedialIntent resource details -->

<MedialIntent Option="Optionl">
<Weight DataType="NumberSpan" Preferred="80"/>
</Medialntent>
<Medialntent Option="Option2">
<Weight DataType="NumberSpan" Preferred="90"/>
</Medialntent>
</MedialIntent>
<Component Class="Quantity" ComponentType="Sheet" ID="R02" Status="Unavailable"/>
</ResourcePool>
<AuditPool>
<ResourceAudit TimeStamp="2020-01-01T14:42:00">
<!-- the actual MedialIntent ResourcelLink -->
<MedialIntentLink Usage="Input" rRef="id">
<Part Option="Option2"/>
</MedialntentLink>
<!-- the original MediaIntent ResourcelLink -->
<MedialIntentLink Usage="Input" rRef="id">
<Part Option="Optionl"/>
</MediaIntentLink>
</ResourceAudit>
</AuditPool>
</JDE>

3.5.10 Spawned

This element allows a node that has been spawned to be logged in the AuditPool of the parent node of the spawned node
or in the AuditPool of the node that has been spawned in case of spawning of individual partitions. For details about
spawning and merging, see » Section 4.4 Spawning and Merging.

Table 3.19: Spawned Audit Element (Sheet 1 of 2)

NAME DATA TYPE DESCRIPTION
Independent = boolean Declares that independent jobs that have previously been merged into a big
"false" ? job are spawned. If it is set to "true", the attributes @jRefDestination,
Deprecated in JDF 1.5 @rRefsROCopied and @rRefsRWCopied have no meaning and SHOULD be
omitted.

Deprecation note: Starting with JDF 1.5, use SheetOptimizing.

jRef IDREF ID of the JDF node that has been spawned.

jRefDestination ? NMTOKEN ID of the JDF node to which the job has been spawned. This attribute SHALL

Deprecated in JDF 1.5 be specified in the parent of the original node if independent jobs are
spawned.

Note: The data type is NMTOKEN and not IDREF because the attribute refers
to an external ID.
Deprecation note: Starting with JDF 1.5, use SheetOptimizing.

NewSpawnID NMTOKEN Copy of the @SpawnID of the newly spawned node. Note that a spawned Audit
New in JDF 1.1 MAY also contain a @SpawnlD attribute, which is the @SpawnID of the node
that this Audit is being placed into prior to spawning.

60 JDF SPECIFICATION 1.7

CUSTOMERINFO
Table 3.19: Spawned Audit Element (Sheet 2 of 2)

NAME DATA TYPE DESCRIPTION

rRefsROCopied ? IDREFS List of IDs separated by whitespace. Identifies the resources copied to the
ResourcePool element of the spawned JDF during spawning. These resources
SHOULD NOT be modified by the spawned JDF.

rRefsRWCopied ? IDREFS List of IDs separated by white spaces. Identifies the resources copied to the
ResourcePool element of the spawned JDF during spawning. These resources
MAY be modified by the spawned JDF and SHALL be copied back into their
original location by the merging agent.

Resource copying is REQUIRED if resources are referenced simultaneously
from spawned nodes and from nodes in the original JDF document.

Status ? enumeration | Status of the spawned node at the time of spawning.

New in JDF 1.1 Allowed value is from: » Status.

URL? URL Locator that specifies the location where the spawned node was stored by the

New in JDF 1.1 Spawning process.

Part * element Identifies the parts that were selected for spawning in case of parallel spawn-
ing of partitionable resources. See » Section 3.10.5 Description of Partitioned
Resources.

3.6 Customerinfo
Deprecated in JDF 1.3

Starting with JDF 1.3, Customerinfo is deprecated in its use as a direct child of a JDF node, and is now a resource (which
is a child of some ResourcePool; see » Section 3.8 ResourcePool and its Resource Children).

3.7 Nodelnfo
Deprecated in JDF 1.3

Starting with JDF 1.3, Nodelnfo is deprecated in its use as a direct child of a JDF node, and is now a resource (which is a
child of some ResourcePool; see » Section 3.8 ResourcePool and its Resource Children).

3.8 ResourcePool and its Resource Children

3.8.1 ResourcePool

All resources are contained in the ResourcePool element of some node. The ResourcePool element is described in the fol-
lowing table.

Table 3.20: ResourcePool Element

DATA TYPE DESCRIPTION

Resource * element List of Resource elements. The Resource elements are abstract and serve as
placeholders for any resource type.

3.8.2 Resource

Resources represent the “things” that are produced or consumed by processes. They might be physical items such as
inks, plates or glue; electronic items such as files or images; or conceptual items such as parameters and device settings.
Processes describe what resources they input or output through ResourcelLink elements, discussed in » Section 3.9
ResourceLinkPool and ResourceLink. By examining the input and outputs of a set of processes, it is possible to determine
process dependencies, and therefore job routing.

3.8.3 Abstract Resource

Like the @Type attribute in abstract JDF nodes, the @Class attribute in Resource elements helps to identify how partic-
ular resources are to be used. These values are listed in » Table 3.21 Abstract Resource Element, below, and are described
in greater detail in the sections that follow.

Modification note: GenerallD has moved to » Table 3.1 Any Element (generic content).

JDF SPECIFICATION 1.7 61

STRUCTURE

Table 3.21: Abstract Resource Element (Sheet 1of 3)

NAME DATA TYPE DESCRIPTION

AgentName ? string The name of the agent application that created the resource. Both the com-

New in JDF 1.2 pany name and the product name MAY appear, and SHOULD be consistent
between versions of the application.

AgentVersion ¢ string The version of the agent application that created the resource. The format of

New in JDF 1.2 the version string MAY vary from one application to another, but SHOULD be
consistent for an individual application.

Author ? string Text that identifies the person who generated the resource.

New in JDF 1.2

CatalogDetails ? string Additional details of a resource in a catalog environment.

Deprecated in JDF 1.4 Deprecation note: Starting with JDF 1.4, use GenerallD.

CatalogID ? string Identification of the resource (e.g., in a catalog environment). Defaults to the

Deprecated in JDF 1.4 value of @ProductiD.)

Deprecation note: Starting with JDF 1.4, use GenerallD.

Class enumeration | Defines the abstract resource type. For details, see the sections that follow.

Modified in JDF 1.5 @Class SHALL be specified in the resource root, SHALL NOT be specified in a
resource leaf and SHOULD NOT be specified in an inline resource subelement.
Allowed value is from: » ResourceClass.

Expires ? dateTime Date and time beyond which the resource SHOULD NOT be used.

New in JDF 1.7

ID ID Unique identifier of a resource. @/D SHALL be specified in the resource root,
SHALL NOT be overwritten in a resource leaf and SHOULD NOT be specified
in an inline resource subelement.

Locked ="false" boolean If "true", the resource SHALL NOT be modified (e.g., because it resides in a
spawned ticket that is spawned in read-only mode or referenced by an Audit
and SHALL NOT be modified without invalidating the Audit).

PartUsage = enumeration | Description of the interpretation of partitions.

"Explicit® @PartUsage SHALL NOT be specified outside of the root of a resource. For

New in JDF 1.1 details on @PartUsage and partitioning, see » Section 3.10.7.4 Implicit, Sparse

Modified in JDF 1.3 and Explicit PartUsage in Partitioned Resources.

Allowed values are:

Explicit — Require explicit partition matches. All referenced partitions refer-
enced in Part SHALL exist, otherwise it is an error.

Implicit — The closest matching partition with no non-matching Partition Keys
is returned. If keys with non-matching values exist, the first partition
element that is closer to the root than the referenced partition and has no
non-matching keys is returned.

Sparse — The closest matching partition with no non-matching Partition Keys
is returned. If keys with non-matching values exist the link is in error.
@PartUsage = "Sparse" is typically used to describe versioned resources,
where not all nodes are fully partitioned (e.g., only the black Separations
of a 4 color resource are versioned). New in JDF 1.3

Modification note: @PartUsage was moved to this table from » Table 3.34

Partitionable Resource Element in JDF 1.2.

PipelD ? string If this attribute exists, the resource is a pipe. @PipelD is used by JMF pipe-

control messages to identify the pipe. For more information, see » Section
£.3.3 Overlapping processing Using Pipes.

62

JDF SPECIFICATION 1.7

RESOURCEPOOL AND ITS RESOURCE CHILDREN

Table 3.21: Abstract Resource Element (Sheet 2 of 3)

NAME

PipeProtocol ?
New in JDF 1.2
Modified in JDF 1.5

DATA TYPE

NMTOKEN

DESCRIPTION

Defines the protocol use for pipe handling. "JMF" and "Internal" are the only

non-proprietary piping protocols that are supported. Proprietary pipe proto-

cols MAY be specified in addition to those defined below but will not neces-

sarily be inter-operable.

Values include:

IdentificationField - For barcode push.The pipe data is provided by barcodes
that are defined in IdentificationField elements.

Internal — Internal or virtual pipe used within a combinded process.

JMF — JMF-based PipePush/PipePull messages. The sequence of pipe initial-
ization is undefined. See next two values: "JIMFPush" and "JMFPull".

JMFPush — JMF based PipePush/PipePull protocol. The producing device initi-
ates the protocol. New in JDF 1.5

JMFPull — JMF based PipePush/PipePull protocol. The consuming device initi-
ates the protocol. New in JDF 1.5

None — No pipe support.

PipeURL ?
New in JDF 1.2
Deprecated in JDF 1.5

URL

Pipe request URL. Dynamic pipe requests to this resource SHOULD be made to
this URL. Note that this URL is only used for initiating pipe requests.
Responses to a pipe request are issued to the URL that is defined in the
PipePush or PipePull message. For details on using @PipeURL, see » Section
£4.3.3 Overlapping processing Using Pipes.

Note: In most cases @PipeURL is the URL of the controller of the other end of
the pipe. This might seem counterintuitive, but it allows parallel spawning and
merging of processes that represent a dynamic pipe without having to include
the node that describes the other end in the spawned file.

Deprecation note: Starting with JDF 1.5, use ResourceLink/@PipeURL.

ProductID ?

string

An ID of the resource as defined in the MIS system. For instance item codes or
article numbers or identifiers on semi-finished products or Handling
Resources.

rRefs ?
Deprecated in JDF 1.2

IDREEFS

Array of IDs of internally referenced resources.
In JDF 1.2 and beyond, it is up to the implementation to maintain references.

Skipindex ?
New in JDF 1.5

integer

Number of indexed partition leaves to omit when evaluating the respective
XXXIndex partitions. Valid only on partition leaves or branches where the Par-
tition Key is one of the XXXIndex keys (e.g., @SetIndex). Used when an index
range comprises every Nth index. For example, a range of @Sheetindex =
"1000 ~ 2000" with @SkipIndex = "1" would comprise a list starting at
@Sheetindex = "1000" including every other index (1000, 1002, 1004, etc.) with
a maximum value of @Sheetindex = "2000".

SpawnlIDs ?
New in JDF 1.1

NMTOKENS

List of @SpawnID values. This is used as a reference count for how often the
resource has been spawned.

SpawnStatus =
"NotSpawned"

enumeration

The spawn status of a resource indicates whether or not a resource has been
spawned, and under what circumstances. The @SpawnStatus of a resource
that has ResourceRef elements is defined as the maximum @SpawnStatus
(whose values are ordered) of all recursively linked resources.

Value are ordered from lowest to highest

Allowed values are:

NotSpawned — Indicates that the resource has not been copied to another
process.

SpawnedRO — Indicates that the resource has been copied to another process
where it cannot be modified. The “RO” stands for read-only.

SpawnedRW — Indicates that the resource has been copied to another process
where it can be modified. The “RW” stands for read/write.

JDF SPECIFICATION 1.7 63

STRUCTURE

Table 3.21: Abstract Resource Element (Sheet 3 of 3)

NAME DATA TYPE DESCRIPTION

Status enumeration | The status of a resource indicates under what circumstances it can be pro-

Modified in JDF 1.2 cessed or modified. @Status SHALL be specified in the resource root, SHALL
NOT be specified in an inline resource subelement and MAY be overwritten in
a resource leaf.
The values listed below are assumed to be ordered so that the @Status of a
resource that references further resources can be defined as the minimum
@Status of all recursively linked resources.
Allowed value is from: » ResourceStatus.

UpdatelD ? NMTOKEN Unique ID that identifies the Resource or resource partition. Note that only

New in JDF 1.1 one Resource, resource partition or ResourceUpdate with a given value of

. @UpdatelD MAY occur per JDF document, even though the scope of the

Heprecatedingliet= ResourceUpdate is local to the resource that it is defined in.

QualityControlResul | refelement Results of quality measurements which were performed during or after the

t* production of this resource.

New in JDF 1.2

SourceResource * element List of resources that were or SHOULD be taken into account to populate this

New in JDF 1.3

resource.

3.8.3.1 SourceResource

Table 3.22: SourceResource Element

NAME

Resource

DATA TYPE

refelement

DESCRIPTION

Reference to resources that were or SHOULD be taken into account to popu-

late this Resource. Resource is an abstract element that MAY reference either
process resources or Intent Resources that contain information that is used to
populate this resource. Note that resource is an abstract type and designates

any valid JDF resource (e.g., StrippingParams or Colorintent).

This element SHALL NOT be an inline Resource.

3.8.4 Resource Classes

The following sections describe the functions of each of the seven
values of the @Class attribute. All resources fall into one of these
classes. In » Chapter 7 Product Intent and » Chapter 8 Resources,
the class of each resource is indicated in the resource properties

subheading.

3.8.4.1 Parameter Resource

Parameter Resources define the details of processes, as well as
any non-physical computer data such as files used by a process.
They are usually associated with a specific process. For example,

Parameter & Intent Resources

£
‘ Parameter and Intent Resources are
information about the job. Intent
Resources might originate in the customer's RFQ
and might include information such as trim size,
the number of colors and so on. Later on in the
process of estimating and scheduling the job,
these intents might be transformed into parame-
ters for production process.

a REQUIRED input resource of the DigitalPrinting process is the
DigitalPrintingParams resource. Most predefined Parameter Resources contain the suffix “Params” in their titles. Exam-
ples of Parameter Resources include FoldingParams and ConventionalPrintingParams.

JDF SPECIFICATION 1.7

RESOURCEPOOL AND ITS RESOURCE CHILDREN

3.8.4.1.1 Abstract Parameter Resource

Table 3.23: Abstract Parameter Resource Element

NAME DATA TYPE DESCRIPTION
NoOp = "false" boolean A value of "true" indicates that the process step that is parameterized by this
New in JDF 1.1 Resource or resource partition SHALL NOT be executed. If "false” or not spec-

ified, the Resource is operational and that the process step that is parameter-
ized by this Resource or resource partition SHALL be executed. The @NoOp
attribute SHALL only be used for processes that input and output exchange
resources of identical resource types (e.g., RunList or Component).

3.8.4.2 Intent Resource

Intent Resources define the details of products to be produced without defining the process to produce them. In addition,
they provide structures to define sets of allowable options and to match these selections with prices. The details of all

Product Intent are described in » Chapter 7 Product Intent. The abstract Intent Resource element contains no attributes
or elements besides those contained in the Abstract Resource element.

3.8.4.3 ImplementationResource

ImplementationResources define the devices and operators that execute a given node. Only two ImplementationResource
types are defined: Employee (see » Section 8.52 Employee) and Device (see » Section 8.43 Device)

ImplementationResources can only be used as input resources and MAY be linked to any process. The abstract
ImplementationResource element contains no attributes or elements besides those contained in the Abstract Resource el-
ement. An example demonstrating how to use ImplementationResources is provided in » Section Example 3.8:
EmployeeLink.

Note that if a node links to a Device resource in order to specify that the device is intended to execute the node, the Device
resource SHOULD NOT specify the capabilities of the device.

3.8.4.4 Consumable Resource

A Consumable Resource is consumed during a process. Examples include Ink and Media. Consumable Resources are the
unmodified inputs in a process chain. A Consumable Resource is a PhysicalResource and inherits the contents of the
Abstract PhysicalResource element.

3.8.4.5 Quantity Resource

A Quantity Resource has been created by a process from either a Consumable Resource or an earlier Quantity Resource. For
example, printed sheets are cut and a pile of cut blocks is created. A Component resource is an example of a Quantity
Resource. A Quantity Resource is a PhysicalResource and inherits the contents of the Abstract PhysicalResource element.

3.8.4.6 Handling Resource

A Handling Resource is used during a process, but is not destroyed by that process. The ExposedMedia and Tool resources
are examples of such a resource, although it does describe various kinds of items such as film and plates. A Handling
Resource MAY be created from a Consumable Resource. A Handling Resource is a PhysicalResource and inherits the con-
tents of the Abstract PhysicalResource element.

3.8.4.7 PhysicalResource

) . . Automating Inventory
A PhysicalResource is a Resource that is a Consumable / ’ Mana gemen t
Resource, a Quantity Resource 0Or a Handling Resource

(whose @Class is "Consumable”, "Quantity" or "Handling", re-

spectively): JDF’s handling of PhysicalResources pro-

vides a bridge between your JDF enabled systems and
inventory management, ordering and replenishing sys-

3.8.4.7.1 Abstract PhysicalResource . S
)) tems. This opens the door to just-in-time inventory man-
» Table 3.24 Abstract PhysicalResource Element, defines agement driven by real-time scheduling and

the additional attributes and elements that can be defined consumption data.
for PhysicalResources. The processes that consume

PhysicalResources—any kind of PhysicalResource—have
the option of using these attributes and elements to determine in what way the resources are to be consumed.

JDF SPECIFICATION 1.7 65

STRUCTURE

Table 3.24: Abstract PhysicalResource Element

NAME DATA TYPE DESCRIPTION

AlternateBrand ? string Information, such as the manufacturer or type, about a resource compatible
to that specified by the @Brand attribute, which is described below.

Amount ? double Actual amount of the resource that is available. Note that the amount of con-
sumption and production of a node is specified in the corresponding
ResourcelLink element. For details on amount handling, see » Section 3.10.4
Resource Amount. For the unit of measurement, see the @Unit attribute
below.

AmountProduced ? double Total amount of the resource that has been produced by all nodes that refer-

New in JDF 1.2 ence this resource as output. This corresponds to the sum of all
@ActualAmount values of output ResourceLink elements of leaf JDF nodes
with @Status = "Completed” that reference this resource. For the unit of mea-
surement, see the @Unit attribute below.

AmountRequired ? double Total amount of the resource that is referenced by all nodes that will con-
sume this resource. This corresponds to the sum of all @Amount values of
input ResourcelLink elements of all processes that consume this resource. In
case the resource is the last resource in a process chain, @AmountRequired
specifies the sum of all @Amount values of all output ResourcelLink elements
that produce this resource. For the unit of measurement, see the @Unit attri-
bute below.

BatchID ? string ID of a specific batch of the PhysicalResource

Brand ? string Information, such as the model, part number and/or type, about the resource

Modified in JDF 1.3 being used. Some examples are as follows.

Premium InkProp Glossy 6x642A
Premium Multipurpose 1234, 88 Bright 24 lb. Bond, 8-1/2 x 11, White
Copy Paper Reorder 4711
Prior to JDF 1.3, @Brand included details of the @Manufacturer, which
SHOULD be specified in @Manufacturer.

GrossWeight ? double Gross weight of a single resource, as counted in @Amount, in grams.

New in JDF 1.3

LotControl ? enumeration | Specifies whether the resource is lot controlled.

New in JDF 1.3 Allowed values are:

Controlled — Resource is lot controlled, lot usage SHOULD be reported in
resourceAudit elements.
NotControlled — Resource is not lot controlled.

Manufacturer ? string Specifies the manufacturer of the resource.

New in JDF 1.3

ResourceWeight ? double Net weight of a single resource, as counted in @Amount, in grams.

New in JDF 1.1

Unit ? NMTOKEN Unit of measurement for the values of @Amount, @AmountProduced and
@AmountRequired.

Values include those from: » Units.
Note: Units other than those defined in the above table SHOULD NOT be spec-
ified.

Contact ? refelement If this element is specified, it describes the owner of the resource.

IdentificationField * | refelement If this element is specified, a bar code or label is associated with this

New in JDF 1.1 PhysicalResource.

Location ? element Description of details of the location of this resource.

Note, in order to describe multiple locations, resources MAY be partitioned by
the @Location Partition Key as described in » Section 3.10.5 Description of
Partitioned Resources.

66

JDF SPECIFICATION 1.7

RESOURCELINKPOOL AND RESOURCELINK

3.8.4.7.2 Location

Table 3.25: Location Element

NAME DATA TYPE DESCRIPTION
LocationName ? string Name of the location (e.g., in MIS). This allows the user to describe distrib-
New in JDF 11 uted resources.

Values include those from: » Input Tray and Output Bin Names.
Note: The specified values are for printer locations.

LocID ? string Location identifier (e.g., within a warehouse system).
Address element Address of the storage facility. For more information, see » Section 9.1
Address.

3.8.4.8 PlaceHolder Resource
Deprecated in JDF 1.5
The PlaceHolder Resource has been deprecated starting with JDF 1.5.

3.8.5 Position of Resources within JDF Nodes

Resources MAY exist in any JDF node, but JDF nodes SHALL reference only local or global resources. In other words, JDF
nodes SHALL reference resources only in the two kinds of locations: in the node’s own ResourcePool element, or in JDF
nodes that are hierarchically closer to the JDF root. An exception to this rule, however, occurs if two independent jobs
are merged for a process step and are to be separated afterwards, as is the case when two independent jobs are printed
on the same web press.

It is good practice to put resources into the closest node that references the resource. For example, the RenderingParams
resource SHOULD be located in the Rendering node, unless it is used by multiple Rendering processes, in which case it
SHOULD be located in the process group node that contains the Rendering process nodes. Resources that link more than
one node SHOULD be placed in the parent node of the siblings that are linked by the resource.

A process that needs additional detailed process information specifying the creation of a resource SHALL infer this in-
formation by explicitly linking to the appropriate Parameter Resource.

3.8.6 Pipe Resources

A pipe describes the resource dependency in which a process begins to consume a resource while it is being produced by
another process (e.g., stacking components while they are being printed) or consuming a data stream while it is being
written by an upstream process. Note that defining a pipe resource does not automatically set up communication be-
tween processes. The controllers/agents that execute the process SHALL still implement the protocol that defines the
pipe.

Using dynamic pipe control, a downstream process can control the total quantity produced by an upstream process, and/
or the quantity buffered by an inter-Process transport device (i.e., conveyor belt). Additional description of pipes and
process communication via pipes is provided in » Section 4.3.3 Overlapping processing Using Pipes.

Resources MAY contain a string attribute called @PipelD that declares the resource to be a pipe, and identifies it in a dy-
namic-pipe messaging environment. A pipe that is also controlled by JMF pipe messages is called dynamic pipe. For
more information about dynamic pipes, see » Section 4.3.3.1 Dynamic Pipes.

3.8.7 ResourceUpdate
New in JDF 1.1,
Deprecated in JDF 1.3

3.9 ResourcelinkPool and ResourcelLink

3.9.1 ResourcelLinkPool

Each JDF node contains a ResourcelinkPool element that in turn contains all of the ResourceLink elements that link the
node to the resources it uses. The following table shows the contents of a ResourceLinkPool element.

JDF SPECIFICATION 1.7 67

STRUCTURE

Table 3.26: ResourcelinkPool Element

DATA TYPE DESCRIPTION

Resourcelink * element List of ResourcelLink elements. A ResourceLink element is abstract and is a
placeholder for a concrete Resourcelink element, such as MediaLink.

3.9.2 Resourcelink

ResourcelLink elements describe what resources a node uses, and how it uses them. They also define whether the resourc-
es are inputs or outputs. These inputs and outputs provide conceptual links between the execution elements of JDF
nodes. Outputs of one node can in turn become inputs of another node, and a given node SHALL NOT be executed before
@Status all specified input resources is greater than or equal to ResourcelLink/@MinStatus or Resourcelink/
@MinLateStatus.! The figure below shows two processes that are linked by a resource. The resource represents the output
of ‘Node 1’, which in turn becomes an input for ‘Node 2’.

Figure 3-3: Nodes linked by a resource

mm Resource m

Example:

ResourcelLink elements also allow node dependencies to be calculated. The following diagram summarizes resource link-
ing within a JDF node. In this example there are two resources, A and B, which are placed in the node’s ResourcePool. To
reference the resources, the node has two Resourcelink elements, ALink and BLink, in the ResourceLinkPool. A
ResourceLink is named by appending “Link” to the type of resource referenced. Resource B also contains a reference to
resource A, called ARef. References to resources from within resources are named by appending “Ref” to the type of re-
source referenced (see » Section 3.10.2 ResourceRef — Element for Inter-Resource Linking and refelement).

Figure 3-4: Resourcelink elements and ResourceRef elements

The previous section describes resources used by the node in which it resides. This section describes how resources can
serve as links between nodes. As was described in » Section 2.3 JDF Workflow, any resource that is the output of one pro-
cess will very likely serve as an input of a subsequent process. Furthermore, some resources are shared between ancestor
nodes and their child nodes.

1. The availability of a resource that is consumed as a whole is given by the Resource attribute
@Status = "Available". In the case of pipe resources, the availability depends on the individual parameter
defining the dynamics of a pipe. For details see » Section 4.3.3 Overlapping processing Using Pipes.

68 JDF SPECIFICATION 1.7

RESOURCELINKPOOL AND RESOURCELINK

ResourcelLink elements MAY also contain attributes to select a part of a resource, such as a single separation. A detailed
description of resource partitioning is given in » Section 3.10.5 Description of Partitioned Resources.

Because implementation ResourceLink elements define the usage of a specific device during the course of a job, situations
can arise where that resource is not needed during the whole processing time. For instance, a forklift that only has to
transport the completed components need not be available during the entire process run, only during the times when it
is needed. This means that, contrary to the general rule that all resources SHALL be "Available" for node execution to
commence, a node can commence when ImplementationResources are still "InUse" by other processes if @Start or
@StartOffset are specified.ResourceLink elements always have a @Usage of "Input".

ProcessGroup and product intent nodes can be defined without the knowledge of the individual process nodes that define
a specific workflow. In this case, these intermediate nodes will contain Resourcelink elements that link the appropriate
resources. For example, a prepress node might be defined that produces a set of plates. When the processes for creating
the plates are defined in detail, the agent that writes the nodes might remove the ResourcelLink elements from the in-
termediate node. Removing the Resourcelink specifies that the intermediate node can execute (i.e., it can be sent to the
appropriate controller or department), even though the specific resources are not yet available. If the Resourcelink ele-
ments are not removed, the intermediate node cannot execute until the linked input resources become available.

ResourcelLink elements MAY be used for process control. For example, if a proof input resource is needed for a print pro-
cess, a print run can commence only when the proof is signed. The JDF format specification also includes a complete
specification of how resources are managed when JDF tickets are spawned and merged.

In some cases, determining whether to store information in an input or an output resource can be difficult, as the dis-
tinction can be ambiguous. For example, is the definition of the color of a separation in the RIP process a property of the
output separation or a parameter that describes the RIP process? In order to reduce this ambiguity, the following rules
have been defined for input and output resources of processes (see » Chapter 6 Processes and » Chapter 8 Resources).

Product intent and process parameters are generally input resources, except when one process defines the
parameters of a subsequent process.

Consumable Resources SHALL always be input resources.
Ouantity Resources and Handling Resources are used both as input resources and output resources. Their usage is

defined by the “natural” process usage. For example, a printing plate is described as a resource that is the output
of a process and the input of a process.

Processed material is exchanged from node to node using the Component resource. Product intent nodes also
create Component output resources.

Every detailed process description SHALL be defined as an input parameter of the first process where it is
referenced. This means that a device SHALL NOT infer process parameters from its output resources. For
example, paper weight in grams MAY be defined in the Component output resource of the printing process but
SHALL be defined as an input parameter of the Media of the printing process.

Any resource parameter that is used SHALL be referenced explicitly. Resource parameters cannot be inferred by
following the chain of nodes backwards. This would make spawning of nodes non-local.

The last process in a chain of processes SHALL define the output resource of its parent process.

In case of parallel processing, the sum of the outputs of all parallel subnodes SHALL define the output of the
parent node.
Like Resource elements, Resourcelink elements are an abstract data type. The class tree of abstract Resourcelink ele-
ments is further subdivided into classes defined by the @Class attribute of the resource that it references. Individual in-
stances of ResourcelLink elements are named by appending the suffix “Link” to the name of the referenced resource. For
example, the link to a Component resource is entitled ComponentLink and the link to a ScanParams resource is entitled
ScanParamslink.
It is important to note that the order of occurrence of links to PhysicalResources MAY be significant. For example, a
Gathering process might have among its inputs links to three Component resources. The order of these links indicates the
order in which the Component resources are to occur in the new, gathered output Component.

Note: Starting with JDF 1.5 Consumablelink, Handlinglink, ImplementationLink, ParameterLink, PlaceHolderLink and
OQuantityLink have been removed and all their attributes and subelements moved to ResourcelLink.

The following table lists the possible contents of all ResourcelLink elements.

Table 3.27: Resourcelink Element (Sheet 1 of 5)

NAME DATA TYPE DESCRIPTION
ActualAmount ? double Total amount of the resource that has been produced (in a ResourceLink with
New in JDF 1.2 @Usage = "Output") or consumed (in a ResourceLink with @Usage = "Input") by
this node in every execution. For details see » Section 3.10.4 Resource
Amount.
Note: In JDF 1.5 @ActualAmount was moved from deleted abstract
Physicallink.

JDF SPECIFICATION 1.7 69

STRUCTURE

Table 3.27: Resourcelink Element (Sheet 2 of 5)

NAME

Amount ?

DATA TYPE

double

DESCRIPTION

For a link with a @Usage of "Input”, specifies the amount of the resource that
is needed by the process, in units as defined in the resource. For a link with a
@Usage of "Output", specifies the amount of the resource that is to be pro-
duced by the process, in units as defined in the resource. Allows resources to
be only partially consumed or produced (see » Section 3.10.4 Resource
Amount). If not specified, ResourceLink/@Amount defaults to Resource/
@Amount.

Note: In JDF 1.5 @ActualAmount was moved from the deleted abstract
Physicallink.

CombinedProcessind
ex?

New in JDF 1.1

IntegerList

Combined process nodes and process group nodes MAY contain resources
from multiple process nodes. The @ CombinedProcessindex attribute specifies
the indices of individual processes in the @ Types attribute to which a
ResourcelLink in a combined process nodes or process group node belongs.
Multiple entries in @CombinedProcessindex specify that the ResourceLink is
used by the respective multiple processes in the combined process node. It
SHALL be specified when multiple resources of the same name and
Resourcelink/@Usage are specified in one JDF node. If
@CombinedProcessindex is not specified, even though multiple processes in
the combined process node or process group node MAY link to the resource,
the ResourceLink applies to all of these processes.

CombinedProcessTy
pe ?
Deprecated in JDF 1.1

NMTOKEN

Combined process nodes contain input resources from multiple process
nodes. The @CombinedProcessType attribute specifies the name individual
process to which a Resourcelink in a combined process node belongs. It
SHALL match one of the entries in the @Types attribute of the node.
Deprecation note: @ CombinedProcessType was replaced by
@CombinedProcessindex in JDF 1.1.

DraftOK ?
Deprecated in JDF 1.3

boolean

If "true", the process can commence with a draft resource. Default = "false".
Replaced with @MinLateStatus and @MinStatus in JDF 1.3 and beyond.

Duration ?¢
Modified in JDF 1.4

duration

Estimated duration during which the resource will be used.
Modification note: Starting with JDF 1.4, @Duration is moved from abstract
ImplementationLink table, which was then deleted in JDF 1.5.

MaxAmount ?
New in JDF 1.3

double

Defines the planned @Amount including the maximum overage. If not speci
fied, defaults to a system specified value based on @Amount.

Note: In JDF 1.5 @MaxAmount was moved from the deleted abstract
Physicallink.

MinAmount ?
New in JDF 1.3

double

Defines the planned @Amount including the maximum underage that the
customer is willing to accept. If not specified, defaults to a system specified
value based on @Amount.

Note: In JDF 1.5 @MinAmount was moved from the deleted abstract
Physicallink.

MinlLateStatus ?
New in JDF 1.3

enumeration

Minimum value of Resource/@ Status for the execution of this node to com-
mence when deadlines are endangered (i.e., when the time defined by
Nodelnfo/@LastStart or implied by Nodelnfo/@LastEnd is approaching).

Default value is from: @MinStatus.
Allowed value is from: » ResourceStatus.

MinStatus ?
New in JDF 1.3

enumeration

Minimum value of Resource/@ Status for the execution of this node to com-
mence.

Default value is: "Available" if @Usage = "Input" and "Unavailable" if @Usage =
"Output".

Allowed value is from: » ResourceStatus.

70

JDF SPECIFICATION 1.7

RESOURCELINKPOOL AND RESOURCELINK

Table 3.27: Resourcelink Element (Sheet 3 of 5)

NAME

Orientation ?
New in JDF 1.1

DATA TYPE

enumeration

DESCRIPTION

Named orientation describing the transformation of the orientation of a
PhysicalResource relative to the ideal process coordinate that uses this
resource as input or output. If @Orientation is specified for an output
resource, the node that processes the PhysicalResource is to manipulate the
resource in such a way as to reflect the transformation. The coordinate sys-
tem of the resource itself is not modified. At most one of @ Orientation or
@Transformation SHALL be specified. For details on coordinate systems, see
» Section 2.6 Coordinate Systems in JDF.

Note: In JDF 1.5 @Orientation was moved from the deleted abstract
Physicallink.

Allowed value is from: » Orientation

PipePartIDKeys ?
Deprecated in JDF 1.6

enumerations

Defines the granularity of a dynamic pipe for a partitioned resource. For
instance, if a resource were partitioned by @SheetName, @Side and
@Separation and if the ResourceLink/@PipePartIDKeys = "SheetName Side",
then pipe requests would be issued only once per surface. The contents of
@PipePartIDKeys SHALL be a subset of the @PartIDKeys attribute of the
resource that is linked by this ResourcelLink.

Default value is from: the implied or explicit value of @PipePartIDKeys of the
referenced resource.

Allowed values are from: » Table 3.35 PartIDKey Attribute Values.
Deprecation note: Starting with JDF 1.6, use Resource/@PipePartIDKeys.

PipePause ?

double

Parameter for controlling the pausing of a process if the resource amount in
the pipe buffer passes the specified value. For details on using @PipePause,
see » Section 4.3.3 Overlapping processing Using Pipes.

Note: In JDF 1.5 @PipePause was moved from the deleted abstract PhysicalLink.

PipeProtocol ?

New in JDF 1.1
Modified in JDF 1.2
Deprecated in JDF 1.5

NMTOKEN

Defines the protocol use for pipe handling. See » Section 4.3.3 Overlapping

processing Using Pipes. "JMF" and "Internal" are the only non-proprietary pip-

ing protocols that are supported. Proprietary pipe protocols MAY be specified

in addition to those defined below but will not necessarily be interoperable.

Default value is: "JIMF" (if @PipeURL is specified); otherwise referenced
Resource/@PipeProtocol.

Values include:

Internal — Internal or virtual pipe used within a combinded process. New in JDF
1.2

JMF — JMF based PipePush [PipePull messages.

None — No pipe support.

Deprecation note: Starting with JDF 1.5, use Resource/@PipeProtocol.

PipeResume ?

double

Parameter for controlling the resumption of a process if the resource amount
in the pipe buffer passes the specified value. For details on using
@PipeResume, see » Section 4.3.3 Overlapping processing Using Pipes.

Note: In JDF 1.5 @PipeResume was moved from the deleted abstract
Physicallink.

PipeURL ?
Modified in JDF 1.2

URL

Pipe request URL. Dynamic pipe requests from this end of a pipe SHOULD be
made to this URL. In most cases this URL is the URL of the controller of the
other end of the pipe. This might seem counterintuitive, but it allows parallel
spawning and merging of processes that represent a dynamic pipe without
having to include the node that describes the other end in the spawned file.

Default value is: referenced Resource/@PipeURL

Note: @PipeURL is only used for initiating pipe requests. Responses to a pipe
request are issued to the URL that is defined in the PipePush or PipePull mes-
sage. For details on using @PipeURL, see » Section 4.3.3 Overlapping
processing Using Pipes.

JDF SPECIFICATION 1.7 n

STRUCTURE

Table 3.27: Resourcelink Element (Sheet 4 of 5)

NAME DATA TYPE DESCRIPTION
ProcessUsage ? NMTOKEN Identifies a process’s usage of a resource if multiple resources of the same
Modified in JDF 1.4 type can be supplied. For example, this attribute appears when two
e Component resources—one cover and one book block—are used in
Modified in JDF 1.6 .
CoverApplication.
Values include those from either: » Process Usage.
Or from any additional values in: ICS documents. New in JDF 1.4
Note: The values of @ProcessUsage can be derived from the appropriate pro-
cess descriptions in » Section 6 Processes. » Section 6.1 Process Template de-
fines the parenthesized notation for denoting the value of @ProcessUsage
(e.g., Component (Cover)).
Recommendation ? boolean If "true" and the request cannot be fulfilled, the change MAY be logged as a
Deprecated in JDF 1.2 Modified audit and the job can continue. If "false", an error occurs if the
request is not fulfilled. In JDF 1.2 and beyond use @SettingsPolicy instead.
Note: In JDF 1.5 @Recommendation was moved from the deleted abstract
ImplementationLink.
RemotePipeEndPaus | double Parameter for controlling the pausing of a process at the other end of the pipe
e? if the resource amount in the pipe buffer passes the specified value. For
Deprecated in JDF 1.5 details on using @RemotePipeEndPause, see » Section 4.3.3 Overlapping
processing Using Pipes.
Note: In JDF 1.5 @RemotePipeEndPause was moved from the deleted abstract
Physicallink.
Deprecation note: Starting with JDF 1.5, use @PipePause.
RemotePipeEndResu | double Parameter for controlling the resumption of a process at the other end of the
me ? pipe if the resource amount in the pipe buffer passes the specified value. For
Deprecated in JDF 1.5 details on using @RemotePipeEndResume, see » Section 4.3.3 Overlapping
processing Using Pipes.
Note: In JDF 1.5 @RemotePipeEndResume was moved from the deleted abstract
Physicallink.
Deprecation note: Starting with JDF 1.5, use @PipeResume.
rRef IDREF Link to the target resource.
rSubRef ? IDREF Link to a subelement within the resource. In JDF 1.2 and beyond, a
Deprecated in JDF 1.2 Resourcelink is able to reference a resource only if it is a direct child of a
ResourcePool.
Start ? dateTime Time and date when the usage of the resource starts.
Modified in JDF 1.4 Note: In JDF 1.4, @Start was moved from the deleted abstract
ImplementationLink, which was deleted in JDF 1.5.
StartOffset ¢ duration Offset time when the resource is needed after processing has begun. If both
Modified in JDF 1.4 @Start and @StartOffset are specified, @Start has precedence.
Note: In JDF 1.4 @StartOffset was moved from the deleted abstract
ImplementationLink, which was deleted in JDF 1.5.
Usage enumeration | Resource usage within this JDF node.
Allowed value is from: » ResourceUsage.
Transformation ? matrix Matrix describing the transformation of the orientation of a PhysicalResource

New in JDF 1.1

relative to the ideal process coordinate using this resource as input or output.
If @Transformation is specified for an output resource, the node that pro-
cesses the PhysicalResource is to manipulate the resource in such a way as to
reflect the transformation. The coordinate system of the resource itself is not
modified. At most one of @Orientation or @ Transformation SHALL be speci-
fied. For details on coordinate systems, see » Section 2.6 Coordinate Systems
in JDF.

Note: In JDF 1.5 @ Transformation was moved from the deleted abstract
Physicallink.

72

JDF SPECIFICATION 1.7

RESOURCELINKPOOL AND RESOURCELINK

Table 3.27: Resourcelink Element (Sheet 5 of 5)

NAME DATA TYPE DESCRIPTION
AmountPool ? element Definition of partial amounts and pipe parameters for this ResourceLink. The
New in JDF 1.1 allowed contents of the AmountPool are described for the various subclasses

of Resourcelink in the sections below. If AmountPool is specified,
ResourceLink SHALL NOT contain any of @Amount, @ActualAmount,
@MaxAmount or @MinAmount

Modified in JDF 1.2

Lot * element Group of identifiers that uniquely identifies one lot of a resource. If multiple
N i IETLE! resource lots are planned to be consumed by a process, this element MAY
appear multiple times to identify each resource lot. Examples of resource lots
are individual rolls of paper, boxes of paper, cans of ink, etc. See » Section
3.9.3 Identification of Physical Resources for details.

For resources that are solely identified by @ProductID, Lot element(s) NEED
NOT be specified.

Note: @Lot was moved from abstract Physicallink which was deleted in JDF
1.5.

Deprecation note: Use AmountPool/PartAmount/Part/ @ LotID.

Deprecated in JDF 1.6

Part * element The Part elements identify the parts of a partitioned resource that are refer-
enced by the ResourceLink. The structure of the Part element is defined in

» Table 3.36 Part Element. For details on partitioned resources, see » Section
3.10.5 Description of Partitioned Resources.

Example 3.8: Employeelink

The following example shows how the operator Smith is linked to a ConventionalPrinting process as the only valid oper-
ator.

<ResourcePool>
<Employee Class="Implementation" ID="L1" PersonalID="007" Status="Available">
<Person FamilyName="Smith" JobTitle="Press Operator"/>
</Employee>
</ResourcePool>
<ResourcelLinkPool>
<EmployeelLink Usage="Input" rRef="L1"/>
</ResourceLinkPool>

3.9.2.1 AmountPool and PartAmount
New in JDF 1.1

Whereas Resourcelink/Part identifies the Resource that the process is consuming or producing, AmountPool is a con-
tainer for the amount-related metadata of the resource. Thus process routing is described by ResourceLink/PartAmount/
Part whereas tracking of amount related attributes are described by AmountPool/PartAmount. AmountPool/PartAmount/
Part SHALL refer to existing partitions or non-existing sub-partitions of existing partitions that are implicitly or
explicitly referred to by ResourceLink/Part. For instance, if a ResourceLink refers to a partition with
@SheetName="Sheet1", AmountPool/PartAmount MAY refer to Sheet1 or any existing or non-existing child of Sheet1, but
NOT to Sheet2 or any existing or non-existing child of Sheet2.

3.9.2.1.1 AmountPool

The following table lists the generic contents of an AmountPool element. Further parameters of the AmountPool are de-
scribed in the sections below.

Table 3.28: AmountPool Element

DATA TYPE DESCRIPTION
PartAmount * element Element that defines the amounts and pipe parameters for a partitioned
resource. The contents of a PartAmount depends on the type of the
Resourcelink.

3.9.2.1.2 PartAmount

The following table lists the generic contents of a PartAmount element. Note that PartAmount inherits values from its
parent Resourcelink.

JDF SPECIFICATION 1.7 73

STRUCTURE

Table 3.29: PartAmount Element (Sheet 1 of 3)

NAME

ActualAmount ?
New in JDF 1.2

DATA TYPE

double

DESCRIPTION

Total amount of the resource that has been produced (in a ResourceLink with
@Usage = "Output”) or consumed (in a ResourceLink with @Usage = "Input") by
this node in every execution. For details see » Section 3.10.4 Resource
Amount.

Note: In JDF 1.5 @AcutalAmount was moved from the deleted abstract
Physicallink.

Amount ?

double

For a link with a @Usage of "Input”, specifies the amount of the resource that
is needed by the process, in units as defined in the resource. For a link with a
@Usage of "Output”, specifies the amount of the resource that is to be pro-
duced by the process, in units as defined in the resource. Allows resources to
be only partially consumed or produced (see » Section 3.10.4 Resource
Amount). If not specified, ResourceLink/@Amount defaults to Resource/
@Amount.

Note: In JDF 1.5 @Amount was moved from the deleted abstract PhysicalLink.

DraftOK ?

Deprecated in JDF 1.3

boolean

If "true”, the process can commence with a draft resource partition.
Replaced with @MinLateStatus and @MinStatus in JDF 1.3 and beyond.

Duration ?

Modified in JDF 1.4

duration

Estimated duration during which the resource will be used.
Note: In JDF 1.4 @Duration was moved from ImplementationLink, which was
deleted in JDF 1.5.

MaxAmount ?
New in JDF 1.3

double

Defines the planned @Amount including the maximum overage. If not speci-
fied, defaults to a system specified value based on @Amount.

Note: In JDF 1.5 @MaxAmount was moved from the deleted abstract
Physicallink.

MinAmount ?
New in JDF 1.3

double

Defines the planned @Amount including the maximum underage that the
customer is willing to accept. If not specified, defaults to a system specified
value based on @Amount.

Note: In JDF 1.4 @MinAmount was moved from the deleted abstract
Physicallink.

MinlLateStatus ?
New in JDF 1.3

enumeration

Minimum value of Resource/@Status for the execution of this node to com-
mence when deadlines are endangered (i.e., when the time defined by
Nodelnfo/@LastStart or implied by Nodelnfo/ @LastEnd is approaching).

Default value is from: @MinStatus.
Allowed value is from: » ResourceStatus.

MinStatus ?
New in JDF 1.3

enumeration

Minimum value of Resource/@Status for the execution of this node to com-
mence.

Default value is: "Available" if @Usage="Input" and "Unavailable" if @Usage =
"Output”.

Allowed value is from: » ResourceStatus.

Orientation ?
New in JDF 1.1

enumeration

Named orientation describing the transformation of the orientation of a
PhysicalResource relative to the ideal process coordinate that uses this
resource as input or output. If @Orientation is specified for an output
resource, the node that processes the PhysicalResource is to manipulate the
resource in such a way as to reflect the transformation. The coordinate sys-
tem of the resource itself is not modified. At most one of @Orientation or
@Transformation SHALL be specified. For details on coordinate systems, see
» Section 2.6 Coordinate Systems in JDF.

Note: In JDF 1.5 @Orientation was moved from the deleted abstract
Physicallink.

Allowed value is from: » Orientation.

PipePause ?

double

Parameter for controlling the pausing of a process if the resource amount in
the pipe buffer passes the specified value. For details on using @PipePause,
see » Section 4.3.3 Overlapping processing Using Pipes.

Note: In JDF 1.5 @PipePause was moved from the deleted abstract PhysicalLink.

74

JDF SPECIFICATION 1.7

RESOURCELINKPOOL AND RESOURCELINK

Table 3.29: PartAmount Element (Sheet 2 of 3)

NAME

PipeResume ?

DATA TYPE

double

DESCRIPTION

Parameter for controlling the resumption of a process if the resource amount
in the pipe buffer passes the specified value. For details on using
@PipeResume, see » Section 4.3.3 Overlapping processing Using Pipes.

Note: In JDF 1.5 @PipeResume was moved from the deleted abstract
Physicallink.

PipeURL ?

URL

Pipe request URL for this partition. Dynamic pipe requests from this end of a
pipe SHOULD be made to this URL. Note that this URL is only used for initiat-
ing pipe requests. Responses to a pipe request are issued to the URL that is
defined in the PipePush or PipePull Message. For details on using @PipeURL,
see » Section 4.3.3 Overlapping processing Using Pipes.

Note: In most cases @PipeURL is the URL of the controller of the other end of
the pipe. This might seem counterintuitive, but it allows parallel spawning and
merging of processes that represent a dynamic pipe without having to include
the node that describes the other end in the spawned file.

RemotePipeEndPaus
?
ecr

Deprecated in JDF 1.5

double

Parameter for controlling the pausing of a process at the other end of the pipe
if the resource amount in the pipe buffer passes the specified value. For
details on using @RemotePipeEndPause, see » Section 4.3.3 Overlapping
processing Using Pipes.

Note: In JDF 1.5 @RemotePipeEndPause was moved from the deleted abstract
Physicallink.

Deprecation note: Starting with JDF 1.5, use @PipePause.

RemotePipeEndResu
me ?

Deprecated in JDF 1.5

double

Parameter for controlling the resumption of a process at the other end of the
pipe if the resource amount in the pipe buffer passes the specified value. For
details on using @RemotePipeEndResume, see » Section 4.3.3 Overlapping
processing Using Pipes.

Note: In JDF 1.5 @RemotePipeEndResume was moved from the deleted abstract
Physicallink.

Deprecation note: Starting with JDF 1.5, use @PipeResume.

Start ?
Modified in JDF 1.4

dateTime

Time and date when the usage of the resource starts.
Note: In JDF 1.4 @Start was moved from the abstract ImplementationLink,
which was deleted in JDF 1.5.

StartOffset ?
Modified in JDF 1.4

duration

Offset time when the resource is needed after processing has begun. If both
@Start and @StartOffset are specified, @Start has precedence.

Note: In JDF 1.4 @StartOffset was moved from the abstract
ImplementationLink, which was deleted in JDF 1.5.

Transformation ?
New in JDF 1.1

matrix

Matrix describing the transformation of the orientation of a PhysicalResource
relative to the ideal process coordinate using this resource as input or output.
If @ Transformation is specified for an output resource, the node that pro-
cesses the PhysicalResource is to manipulate the resource in such a way as to
reflect the transformation. The coordinate system of the resource itself is not
modified. At most one of @Orientation or @ Transformation SHALL be speci-
fied. For details on coordinate systems, see » Section 2.6 Coordinate Systems
in JDF.

Note: In JDF 1.5 @ Transformation was moved from the deleted abstract
Physicallink.

Lot *
New in JDF 1.3
Deprecated in JDF 1.6

element

Group of identifiers that uniquely identifies one lot of a resource. If multiple
resource lots are planned to be consumed by a process, this element MAY
appear multiple times to identify each resource lot. Examples of resource lots
are individual rolls of paper, boxes of paper, cans of ink, etc. See » Section
3.9.3 Identification of Physical Resources for details.

For resources that are solely identified by @ProductID, Lot element(s) NEED
NOT be specified.

Note: In JDF 1.5 @Lot was moved from the deleted abstract PhysicalLink.
Deprecation note: From JDF 1.6 use Part/@LotID.

JDF SPECIFICATION 1.7 75

STRUCTURE

Table 3.29: PartAmount Element (Sheet 3 of 3)

NAME DATA TYPE DESCRIPTION
Part + element Specifies the selected parts that the PartAmount is valid for. The granularity
Modified in JDF 1.3 of Part SHALL be at least that of a leaf partition of the Resource. For instance,

a Component MAY be partitioned by @ SheetName and PartAmount could refer
to @SheetName and @ Condition. Multiple Part elements specify that the ref-
erenced elements have been processed in one step, for instance two separa-
tions on a press run of a two color press.

Example 3.9: PartAmount
The following example shows an InkLink with an AmountPool.

<ResourcePool>
<Ink Brand="NoName" Class="Consumable" ID="Link0015"
PartIDKeys="Separation" Status="Available">
<Ink ColorName="Cyan" Separation="Cyan"/>
<Ink ColorName="Magenta" Separation="Magenta"/>
<Ink ColorName="Yellow" Separation="Yellow"/>
<Ink ColorName="Black" Separation="Black"/>
<Ink ColorName="Heidelberg Spot Blau" Separation="Heidelberg Spot Blau"/>
</Ink>
</ResourcePool>
<ResourcelLinkPool>
<InkLink Usage="Input" rRef="Link0015">
<AmountPool>
<PartAmount Amount="1000">
<Part Separation="Cyan"/>
</PartAmount>
<PartAmount Amount="1200">
<Part Separation="Magenta"/>
</PartAmount>
<PartAmount Amount="700">
<Part Separation="Yellow"/>
</PartAmount>
<PartAmount Amount="3000">
<Part Separation="Black"/>
</PartAmount>
<PartAmount Amount="300">
<Part Separation="Heidelberg Spot Blau"/>
</PartAmount>
</AmountPool>
</InkLink>
</ResourcelLinkPool>

3.9.3 Identification of Physical Resources
New in JDF 1.3

MIS systems frequently include functionality for managing inventory. Many PhysicalResources that are consumed by
production processes are things that are tracked for inventory management purposes. This allows estimating the value
of the resources, ensuring that sufficient quantities are on hand, and tracking which specific resources are used in pro-
duction of which jobs. At the most basic level, these PhysicalResources MAY be identified in JDF with Resource/
@ProductiD.

Some MIS systems track these resources at lower levels of detail, tracking individual resource lots. An example of this
might include tracking the individual rolls or boxes of paper. While it is theoretically possible to track individual resource
lots using a single identifier, many MIS users choose to track them with more than one identifier. Examples of some of
these identifiers include roll numbers, lot numbers, purchase order numbers, receipt dates.

Because the required identifiers may be different from site to site, or even from one type resource to another, it is not
possible to track these resources with multiple identifiers using JDF. Conveying the identification requirements to de-
vices would be too complex. Instead, a single identifier is used in JDF. In cases where multiple identifiers are normally
used, the MIS SHALL generate a unique identifier for each unique resource lot. This unique identifier SHALL then be
mapped back to the correct unique resource lot by the MIS.

3.9.3.0.1 Lot
Deprecated in JDF 1.6

76 JDF SPECIFICATION 1.7

RESOURCEPOOL AND RESOURCELINKPOOL - DEEP STRUCTURE

3.10 ResourcePool and ResourcelinkPool — Deep Structure

This section describes the deep structure of a ResourcePool and ResourcelLinkPool. In particular, this section describes
the ResourceRef which references a resource from within another resource. This section also describes resource sets and
the partitioning of them.

3.10.1 ResourceElement — Subelement of a Resource

3.10.1.1 ResourceElement
A ResourceElement is always a subelement of a resource or subelement of a JMF message

3.10.1.2 Abstract ResourceElement

An Abstract ResourceElement is defined in the » Table 3.30 Abstract ResourceElement below. A ResourceElement does not
inherit from the Abstract Resource. Examples of ResourceElement resources are SeparationSpec and MiSDetails.

Table 3.30: Abstract ResourceElement

DATA TYPE DESCRIPTION
ID? ID Unique identifier of a Resource element. In JDF 1.2 and beyond, an element
Deprecated in JDF 1.2 that is not a direct child of a ResourcePool SHOULD NOT contain an @ID. This

@ID SHALL NOT be referenced by ResourceRef/@rRef or ResourceLink/@rRef
because a ResourceRef or ResourceLink element is able to reference a Resource
only if it is a direct child of a ResourcePool.

3.10.2 ResourceRef - Element for Inter-Resource Linking and refelement

3.10.2.1 ResourceRef

In some cases, it is necessary to reference a Resource element directly from another element in order to reuse informa-
tion. Such a reference is a ResourceRef element. A ResourceRef element’s name is generated by appending the string
“Ref” to the element’s name. Candidate elements for inter-Resource linking have a data type of refelement in the con-
tent description tables of this chapter and » Chapter 8 Resources. A data type of refelement allows either a ResourceRef
or an inline Resource element. In the latter case, the Resource element inherits attributes and elements from the Abstract
Resource and (where appropriate) from the Abstract Parameter Resource or the Abstract PhysicalResource. Note that
some attributes and elements in these abstract elements have rules for inline resource subelements that differ from the
rules for a resource root.

3.10.2.2 Abstract ResourceRef

The following table defines the attributes of the Abstract ResourceRef element (see also ResourceElement in » Table 3.21
Abstract Resource Element).

The Part element in a ResourceRef defines the part of the target that this ResourceRef references. If both the Resource
that contains ResourceRef element and the target Resource are partitioned, the ResourceRef does not implicitly reference
the part of the target with the same partitioning attributes, but rather the parts of the target Resource that are explicitly
specified by the Part element within the ResourceRef.

When a ResourceRef references a partitioned resource node that is not a resource leaf, the children of the referenced re-
source are ignored. See » Example 3.10: MediaRef to Partitioned Media and » Example 3.11: Equivalent Inline Media for
an illustration of this equivalence. Otherwise, the referenced structure would be a partitioned element and thus invalid
when inlined. See » Example 3.12: Invalid Inline Partitioned Media.

Table 3.31: Abstract ResourceRef Element

NAME DATA TYPE DESCRIPTION

rRef IDREF Reference to the resource. The linked resource SHALL be a direct child of a
ResourcePool.

rSubRef ? IDREF Reference to a subelement of the Resource. In JDF 1.2 and beyond, a

Deprecated in JDF 1.2 ResourceRef element is able to reference a Resource only if it is a direct child
of a ResourcePool

Part ? element Definition of the partition that this ResourceRef references.

New in JDF 1.1

JDF SPECIFICATION 1.7 77

STRUCTURE

Example 3.10: MediaRef to Partitioned Media
MediaRef references Media and its children are ignored:

<Media Class="Consumable" Dimension="72 72" ID="MedialD"
PartIDKeys="Location" Status="Available">
<Comment Name="foo">bar</Comment>
<Media Location="desk"/>
<Media Location="drawer"/>

</Media>

<Layout Class="Parameter" ID="Sheet" Status="Available">
<MediaRef rRef="MedialID"/>

</Layout>

Example 3.17: Equivalent Inline Media

Media is inline in Layout. This is equivalent to the preceding » Example 3.10: MediaRef to Partitioned Media with
MediaRef:

<Layout Class="Parameter" ID="Sheet" Status="Available">
<Media Dimension="72 72">
<Comment Name="foo">bar</Comment>
</Media>
</Layout>

Example 3.12: Invalid Inline Partitioned Media

This example takes the Media from » Example 3.10: MediaRef to Partitioned Media and make it be inline in Layout. The
result is an invalid partition:

<Layout Class="Parameter" ID="Sheet" Status="Available">
<Media Dimension="72 72" PartIDKeys="Location">
<Comment Name="foo">bar</Comment>
<Media Location="desk"/>
<Media Location="drawer"/>
</Media>
</Layout>

3.10.2.3 ResourceRef Elements in the AncestorPool/Ancestor Element

ResourceRef elements MAY also occur in the AmountPool/PartAmount element of a JDF node. Resources that are refer-
enced SHALL reside in a ResourcePool. The restrictions on locations of resource elements described in » Section 3.8.5
Position of Resources within JDF Nodes that apply to ResourcelLink elements similarly apply to ResourceRef elements.

3.10.2.4 Status of a Resource that Contains an rRef Reference

The @Status of a resource that contains an @rRef attribute is defined by the lowest @Status of all recursively referenced
resources. The ordering is defined in » Table 3.21 Abstract Resource Element:

Thus, if any referenced resource has a @Status of "Incomplete", the complete resource has a calculated @Status of
"Incomplete", even though its own @Status attribute might be "Unavailable", "Draft", "Available", etc.

3.10.2.5 Alignment of Resourcelink and ResourceRef
New in JDF 1.1A

ResourceRef elements SHALL NOT contain any of the attributes and elements that are specified in the ResourceLink as
defined in » Section 3.9 ResourceLinkPool and ResourceLink. The value of these properties is implied from the value of
the properties for the appropriate part in the AmountPool of the Resourcelink.

78 JDF SPECIFICATION 1.7

RESOURCEPOOL AND RESOURCELINKPOOL - DEEP STRUCTURE

Example 3.13: MedialLink and MediaRef

The following example illustrates the alignment of a Medialink and MediaRef in a DigitalPrinting node.

<JDF ID="n20020626134204" JobPartID="ID345" Status="Waiting"
Type="DigitalPrinting" Version="1.6" xmlns="http://www.CIP4.org/JDFSchema 1 1">
<ResourcePool>
<!-- Media is partitioned so that it can be referenced
from the AmountPool
-—>
<Media Class="Consumable" ID="r0006" PartIDKeys="RunIndex" Status="Available">
<Media RunIndex="0 -1"/>
<Media RunIndex="1 ~ -2"/>
</Media>
<DigitalPrintingParams Class="Parameter" ID="r0007"
PartIDKeys="RunIndex" Status="Available">
<DigitalPrintingParams RunIndex="0 -1">
<!-- PartAmount with <Part RunIndex="0 -1"/> contains
the partition details for this MediaRef -->
<MediaRef rRef="r0006">
<Part RunIndex="0 -1"/>
</MediaRef>
</DigitalPrintingParams>
<DigitalPrintingParams RunIndex="1 ~ -2">
<!-- PartAmount with <Part RunIndex="1 ~ -2"/>
contains the partition details for this MediaRef
-—>
<MediaRef rRef="r0006">
<Part RunIndex="1 ~ -2"/>
</MediaRef>
</DigitalPrintingParams>
</DigitalPrintingParams>
<RunList Class="Parameter" ID="r0008" Status="Available"/>
<Component Class="Quantity" ComponentType="Sheet" ID="c0008" Status="Unavailable"/>
</ResourcePool>
<ResourceLinkPool>
<MedialLink Usage="Input" rRef="r0006">
<!-- the AmountPool contains the Resourcelink partition details -->
<AmountPool>
<PartAmount Orientation="F1ipl80">
<Part RunIndex="0 -1"/>
</PartAmount>
<PartAmount Orientation="RotateO">
<Part RunIndex="1 ~ -2"/>
</PartAmount>
</AmountPool>
</MediaLink>
<DigitalPrintingParamsLink Usage="Input" rRef="r0007"/>
<RunListLink Usage="Input" rRef="r0008"/>
<ComponentLink Usage="Output" rRef="c0008"/>
</ResourcelLinkPool>
</JDF>

3.10.3 Set of Resources and Partitioned Subsets Thereof

In many cases, a set of similar resources—such as separation films, plates or RunList resources—is produced by one pro-
cess and consumed by another. When this occurs, it is convenient to define one resource element that describes the com-
plete set and allows individual subsets to be referenced. This mechanism also removes process ambiguity if multiple

input Resourcelink elements and multiple output ResourceLink elements exist that are to be unambiguously correlated.

In other cases, there can be a need to change some attribute of a Parameter Resource for some subset of the processing to
be done by a device. For instance, when printing a document using DigitalPrinting, it would be a common application to
change the dimensions of the media to be selected based on the actual media box changes in a PDF file.

Resource elements and ResourcelLink elements have OPTIONAL attributes that enable an agent to specify an explicit part
of a structured resource. There are two ways to reference a subset of a resource. The first is by quantity (i.e., by specifying
an amount in a ResourcelLink that is less than the resource’s amount). The second is to select certain parts of a partitioned
resource by supplying a filtering Part element in the ResourceLink.

JDF SPECIFICATION 1.7 79

STRUCTURE

3.10.4 Resource Amount

Yet another flexible feature of resources is that they can be only partially consumed. For example, in a scenario in which
various versions of a product share identical parts—such as versioned books that all have the same cover—each version
will only use as many copies of the cover as it needs to fulfill its job requirement, even though all of the covers can be
printed in one step for all versions. This feature is specified in the @Amount attribute of the ResourceLink elements and
allows multiple JDF nodes to share resources. It allows both the sharing of output resources (when a binding process
consumes identical sheets from multiple press lines) and the sharing of input resources (when the covers for multiple
jobs are identical and are all printed in one press run).

The @Amount attribute of a PhysicalResource element contains the actual amount of a given resource. It is adjusted by
the production or consumption amount of every process that is executed and refers to that amount in the corresponding
ResourcelLink element. Thus the value of the @Amount attribute of a resource that is consumed as an input SHOULD be
reduced by the amount that is consumed. It is up to the agent that writes a JDF job to ensure that the @Amount attributes
of resources and the ResourceLink elements that reference them are consistent. The units used in the @Amount attribute
of a Resourcelink element is defined by the unit of the resource element to which the link refers. The definition of
@Amount for partitioned resources is explained in detail in » Section 3.10.5 Description of Partitioned Resources.

Note that for resources which are the output of processes, the @Amount attribute on the ResourceLink determines the
quantity of the resource to be produced. For example, in a DigitalPrinting process that included a RunlList as its input with
16 pages to be printed and a ComponentLink to its output, the @Amount and @AmountProduced attributes would indicate
the number of copies of those 16 pages that the process would produce.

NodelnfoLink/ @Amount and Nodelnfolink/AmountPool/PartAmount/ @Amount describe the amount to be produced in
general. This amount describes the number of products to be produced. For instance, on a conventional sheet-fed offset
press, this would be press runs, and on a saddle stitcher it would be finished brochures.

3.10.4.1 Evaluating and Updating Amount-Related Attributes in a Device
ResourcelLink/@Amount specifies the planned amount whereas ResourceLink/@ActualAmount specifies the actual produc-
tion amount. When a device executes a JDF node that consumes and produces PhysicalResources with an amount, it
SHALL calculate the needed production amount in the following order: Production Amount(Output)=
1 Nodelnfolink/AmountPool/PartAmount/@Amount -
Nodelnfolink/AmountPool/PartAmount/@ActualAmount

2 NodelnfoLink/@Amount -
NodelnfoLink/@ActualAmount

3 ComponentLink("Output")/AmountPool/PartAmount/@Amount -
ComponentLink("Output")/AmountPool/PartAmount/@ActualAmount

4 ComponentLink("Output")/@Amount -
ComponentLink("Output")/ @ActualAmount

5 Component("Output")/@Amount -
ComponentLink("Output")/ @ActualAmount

6 ResourceLink("Input")/AmountPool/PartAmount/@Amount -
ResourcelLink("Input")/AmountPool/PartAmount/@ActualAmount

7 Resourcelink("Input")/@Amount -
ResourcelLink("Input")/ @ActualAmount

8 PhysicalResource("Input")/@Amount -
ResourcelLink("Input")/ @ActualAmount

9 Implied amount from consuming the complete input resource.

It is strongly RECOMMENDED for MIS systems to explicitly specify the desired production amount of a process by spec-
ifying ComponentLink("Output")/@Amount or ComponentLink("Output")/AmountPool/PartAmount/@Amount in case of par-
titioned resources. The device SHOULD increment ResourceLink/@ActualAmount or Resourcelink/AmountPool/
PartAmount/@ActualAmount by the amount of actual consumption and production. An MIS system that receives a com-
pleted process from a device SHALL update Resource/@Amount by summing over all Resourcelink elements that are
linked from leaf nodes:

ComponentLink("Output")/AmountPool/PartAmount/@Amount

- ComponentLink("Output")/AmountPool/PartAmount/@ActualAmount

or

ComponentLink("Output")/@Amount - ComponentLink(Output)/@ActualAmount
and subtracting all links that are linked from leaf nodes:
ComponentLink("Input")/AmountPool/PartAmount/@Amount

- ComponentLink("Input")/AmountPool/PartAmount/@ActualAmount

or

ComponentLink("Output")/@Amount - ComponentLink("Input")/@ActualAmount

80 JDF SPECIFICATION 1.7

RESOURCEPOOL AND RESOURCELINKPOOL - DEEP STRUCTURE

ComponentLink elements from intermediate nodes ("ProcessGroup” or "Product”) SHALL be ignored when summing, since
they redundantly link to the same resources without specifying any additional production amount.

3.10.4.2 Specifying Amount for a Partially-Completed Process
New in JDF 1.2

A process can be interrupted before the requested amount of output has been produced. When the job is re-submitted
from the controller to the device, it SHALL produce only the remaining @Amount. The following figure shows the various
processes, resources and ResourceLink elements and their corresponding entries in » Table 3.32 Example of actual
amount and amount handling which summarizes the values of the @Amount, @AmountProduced and @AmountRequired
attributes in the Component, the @Amount and @ActualAmount of ComponentLink in various steps of the process. All
planned amounts are multiples of 1000, whereas all actual amounts are randomly adjusted for waste and production
overrun or underrun.

Figure 3-5: Amount handling

Amount=A11 Amount=A12
ActualAmount=C11 Process 1 ActualAmount=C12 |
Media

Amount=A1
AmountProduced=P1
AmountRequired=R1

Status=S1

Amount=A21 Amount=A22
ActualAmount=C21 ActualAmount=C22

Table 3.32: Example of actual amount and amount handling (Sheet 1 of 2)

Component
Amount=A2 Amount=A13
AmountProduced=P2 | A tyalAmount=C13
AmountRequired=R2
Status=S2

Following
Process

PROCESS STEP

Original JDF, no processing has commenced. 500000 110000 100000 0 —
A large Amount of Media (500000) is available. — 0 0 0 —
Plan 10% waste. 110000
The following Processes are not yet setup. Available — — —
— — Unavailable
Break after producing exactly 30,000 good 467043 110000 100000 30000 —
copies. — 32957 30000 30000 —
Actual waste = 2957 110000 —
Available — — Available
Break after producing exactly an additional 423455 110000 100000 70000 —
40,000 coples — 76545 70000 70000 —
Accumulated actual waste = 6545 110000 .
Available — — Available
Completed 390677 110000 100000 101234 —
Overrun = 1234 — 109323 101234 101234 —
Accumulated actual waste = 9323 110000 —
Available — — Available

Consumption of the output by a subsequent process

JDF SPECIFICATION 1.7 81

STRUCTURE

Table 3.32: Example of actual amount and amount handling (Sheet 2 of 2)

PROCESS STEP

A following Process consumes 50,010 copies 390677 110000 100000 51224 50000
— 109323 101234 101234 50010

110000 50000

Available — — Available

Additional Copy Request

A total of 120,000 copies are requested 390677 132000 120000 51224 50000
— 109323 101234 101234 50010
110000 50000
Available — — Available
The 20,000 copies are produced(- underrun) 367877 132000 120000 69989 50000
Accumulated actual waste = 12123 — 132123 119999 119999 50010
132000 50000
Available — — Available

Parallel Production by a second Device

30,000 additional copies of the same Resource 367877 132000 120000 69989 50000
are requested from a different Device. o 132123 119999 119999 50010
20% waste is assumed 168000 50000
Available 36000 30000 Available
0 0
The 30,000 copies are produced 331856 132000 120000 100089 50000
— 132123 119999 150099 50010
168000 50000
Available 36000 30000 Available
36021 30100

Consumption by the following process

The Consuming Node is set up to consume all 331856 132000 120000 100089 150000
available Components — | 132123 119999 150099 50010
168000 50000
Available 36000 30000 Available
36021 30100
All intermediate copies are consumed 331856 132000 120000 0 150000
— 132123 119999 150099 150099
168000 150000
Available 36000 30000 Unavailable
36021 30100

3.10.5 Description of Partitioned Resources

Printing workflows contain a number of processes that are repeated over a potentially large number of individual files,
sheets, surfaces or separations. In order to define a partitioned resource in a concise manner without having to create a
large number of individual nodes and resources, a set of resources might be partitioned by factoring them by one or more
attributes. The common elements and defaults are placed in the parent element, while partition-specific attributes and

82 JDF SPECIFICATION 1.7

RESOURCEPOOL AND RESOURCELINKPOOL - DEEP STRUCTURE

overrides are placed in the child elements. This saves space. In addition, by providing a single parent ID for the resources,
it allows easy access to the entire resource or iteration over each part.

To reference part of a resource, a Resourcelink references the parent resource and supplies a Part element that contains an
actual value for a partition. The result is all the child elements with matching partition values, including common values and
defaults from the parent resource. If @PartUsage = "Implicit", the parent attributes are returned if there is no matching par-
tition.

A partitioned resource MAY contain nested elements, each with the same name as the partitioned resource root. The
part-independent resource elements and attributes are located in the root of the resource, while the partition-depen-
dent elements are located in the nested elements. Thus one individual part is defined by the convolution of the partition-
independent elements and attributes, with the elements and attributes contained in the appropriate nested elements.
The attributes of nested part elements are overwritten by the equivalent attributes in descendent elements.

Some processes will enumerate a resource in XML order by using Partition Key values which it generates and modifies as
part of its processing. Other processes will treat the resource as a random access resource and look up leaf nodes based
on the current settings of @PartIDKeys values. For example, the RunList resource can be used by the Imposition process
to define key values (such as the @Run Partition Key during consumption of the RunList, and the Layout resource uses
partitioning to define a set of templates chosen based on the current content from the RunList being processed.

3.10.5.1 Subelements in Partitioned Resources

Subelements of a partitioned resource are inherited by a descendent element if and only if no equivalent subelements
exist in the descendent element. Subelements are completely replaced by those in descendent elements even if cardinal -
ity of the subelement allows multiple occurrences.

Example 3.14: Inheritance for Subelements of a Partitioned Resource

For example, the following SeparationSpec is two color duo-tone (only "Black" and SpotGreen) in the part with
@PageNumber = "1". For additional examples and restrictions, see also » Section 8.83.16.1.2 Position of PlacedObject
Elements in Layout which contains » Example 8.22: Invalid MarkObject and » Example 8.23: MarkObject.

<LayoutElement Class="Parameter" ID="ID1" PartIDKeys="PageNumber" Status="Available">
<SeparationSpec Name="Cyan"/>
<SeparationSpec Name="Magenta"/>
<SeparationSpec Name="Yellow"/>
<SeparationSpec Name="Black"/>
<FileSpec/>
<LayoutElement PageNumber="0"/>
<LayoutElement PageNumber="1">
<!-- These two SeparationSpec Elements completely replace the
CMYK in the root
-=>
<SeparationSpec Name="Black"/>
<SeparationSpec Name="SpotGreen"/>
</LayoutElement>
</LayoutElement>

3.10.5.2 Amount in Partitioned Resources

New in JDF 1.2

The @Amount attribute of a partitioned resource is treated formally exactly in the same manner as any other attribute.
This implies that the amount specified refers to the amount defined by one leaf, and not to the amount defined by the

sum of leaves in a branch. The @Amount attribute defined in the example below is, therefore, two, even though 24 phys-
ical plates are described.

Example 3.15: Partitioned ExposedMedia

The following example defines two sets of 12 plates for two sheets with three surfaces. Each has a common brand attri-
bute called “Gooey”. Each individual separation has its own @ProductID. Furthermore, the Status attribute varies from

JDF SPECIFICATION 1.7 83

STRUCTURE

part to part. For example, if a yellow plate breaks, only it will need to be remade and, therefore, set to "Unavailable"; the

others, meanwhile, can remain "Available".

<ExposedMedia Amount="2" Brand="Gooey" Class="Handling"
PartIDKeys="SheetName Side Separation"

ID="L1"

Status="Available">

<Media Dimension="500 600" MediaType="Plate"/>
<ExposedMedia SheetName="S1">
<ExposedMedia Side="Front">

<ExposedMedia ProductID="S1FCPlateJ42" Separation="Cyan"/>

<ExposedMedia ProductID="S1FMPlateJ42" Separation="Magenta"/>

<ExposedMedia ProductID="S1FYPlateJ42" Separation="Yellow" Status="Unavailable"/>
<ExposedMedia ProductID="S1FKPlateJ42" Separation="Black"/>

</ExposedMedia>

<ExposedMedia Side="Back">

<ExposedMedia ProductID="S1BCPlateJ42" Separation="Cyan"/>

<ExposedMedia ProductID="S1BMPlateJ42" Separation="Magenta"/>

<ExposedMedia ProductID="S1BYPlateJ42" Separation="Yellow"/>

<ExposedMedia ProductID="S1BKPlateJ42" Separation="Black"/>
</ExposedMedia>

</ExposedMedia>

<ExposedMedia SheetName="S2">
<ExposedMedia Side="Front">

<ExposedMedia
<ExposedMedia

ProductID="S2FCPlateJ42"
ProductID="S2FMPlateJ42"

Separation="Cyan"/>
Separation="Magenta"/>

<ExposedMedia ProductID="S2FYPlateJ42" Separation="Yellow"/>
<ExposedMedia ProductID="S2FKPlateJ42" Separation="Black"/>
</ExposedMedia>
</ExposedMedia>
</ExposedMedia>

3.10.5.3 Relating PartIDKeys and Partitions
New in JDF 1.2

The @PartIiDKeys attribute (see » Section 3.10.6 PartIDKeys Attribute and Partition Keys) describes the Partition Keys that
occur in a partitioned resource. The sequence and number of keys is restricted in order and cardinality to ensure interop-
erability. The first entry in the @PartiDKeys list defines the partition closest to the root, the next entry defines the next
intermediate partition node and so forth until the last entry, which defines the partition leaves. Each Partition Key SHALL
occur exactly once in the @PartiDKeys list. Note that some of the restrictions specified in this section were assumed to
be in place in versions before JDF 1.2 but were not explicitly stated in the specification.

The value of each Partition Key SHALL be unique in the scope of a single resource. Thus two resource siblings SHALL NOT
contain a Partition Key with the same name and value.

3.10.5.3.1 Incomplete Partitions
New in JDF 1.2

Partitioned resources MAY be partitioned by a restricted subset of keys in the @PartIDKeys list. Keys from the back of the
list MAY be omitted in individual partitions. If a key is omitted, all subsequent keys SHALL also be omitted.

Example 3.16: Legal Incomplete Partition

The following example demonstrates a legal incomplete partition. It is incomplete because the Preview that is parti-
tioned by @PreviewType = "ThumbNail" is not also partitioned by @Separation. It is legal because the omitted key
@Separation is at the end of the @PartIDKeys list:

<Preview Class="Parameter" ID="P1"
PartIDKeys="PreviewType Separation" Status="Available" URL="File:///aaa.pdf">
<Preview PreviewType="Separation">
<Preview Separation="Cyan"/>
<Preview Separation="Magenta"/>
</Preview>
<Preview PreviewType="ThumbNail"/>
</Preview>

84 JDF SPECIFICATION 1.7

RESOURCEPOOL AND RESOURCELINKPOOL - DEEP STRUCTURE

Example 3.17: Illegal Incomplete Partition

The following example demonstrates an illegal incomplete partition; in this particular case, the omitted keys are not at
the end of the @PartiDKeys list:

<Preview Class="Parameter" ID="P2"
PartIDKeys="PreviewType Separation" Status="Available">
<Preview Separation="Cyan"/>
<Preview Separation="Magenta"/>

</Preview>

3.10.5.3.2 Number of Partition Keys per Partitioned Leaf or Node

Exactly one Partition Key SHALL be specified per leaf or node, excluding the root node.
Note: This allows XPath-type searches on partitioned leaves.

Example 3.18: Legal Complete Partition
The following example demonstrates a legal partition:

<Preview Class="Parameter" ID="P3"
PartIDKeys="PreviewType Separation" Status="Available" URL="File:///aaa.pdf">
<Preview PreviewType="Separation">
<Preview Separation="Cyan"/>
</Preview>
</Preview>

Example 3.19: Illegal Partition

The following example demonstrates an illegal partition since more than one Partition Key is specified in the leaf, namely,
@PreviewType and @ Separation:

<Preview Class="Parameter" ID="P4"
PartIDKeys="PreviewType Separation" Status="Available" URL="File:///aaa.pdf">
<Preview PreviewType="Separation" Separation="Cyan"/>

</Preview>

3.10.5.3.3 Degenerate Partitions
A partitioned resource SHALL NOT contain Partition Keys in the root. Mapping partitioned parameters to non-Partitioned
resources is achieved by partitioning the resource with exactly one leaf.

Example 3.20: Degenerate Partition
The following example specifies that only "c1" be folded:

<Component Class="Quantity" ComponentType="Sheet" ID="cl"
PartIDKeys="SheetName" Status="Available">
<Component SheetName="Sheet 1"/>

</Component>

<Component Class="Quantity" ComponentType="Sheet" ID="c2"
PartIDKeys="SheetName" Status="Available">
<Component SheetName="Sheet 2" />

</Component>

<FoldingParams Class="Parameter" ID="fold" NoOp="true"
PartIDKeys="SheetName" Status="Available">
<FoldingParams NoOp="false" SheetName="Sheet 1"/>

</FoldingParams>

JDF SPECIFICATION 1.7 85

STRUCTURE

Example 3.21: Invalid Degenerate Partition
The Component elements in the following example are NOT valid:

<Component Class="Quantity" ComponentType="Sheet" ID="cl1l2"
PartIDKeys="SheetName" SheetName="Sheet 1" Status="Available"/>
<Component Class="Quantity" ComponentType="Sheet" ID="c22"
PartIDKeys="SheetName" SheetName="Sheet 2" Status="Available"/>
<FoldingParams Class="Parameter" ID="fold2" NoOp="true"
PartIDKeys="SheetName" Status="Available">
<FoldingParams NoOp="false"/>
</FoldingParams>

3.10.5.4 Partitioning of Resource Subelements

Only resources can be partitioned. If a resource contains subelements, the subelements SHALL NOT be partitioned. Sub-
elements SHALL always be specified completely in that part in which they occur. The content of subelements is not con-
voluted with the content of subelements in parts closer to the root. Five examples are provided below. While the first and
fourth examples are valid, the second, third and fifth are invalid.

Example 3.22: Partitioned ExposedMedia with Media Subelements
In the first example, the ExposedMedia resource is partitioned.

<ExposedMedia Class="Handling" ID="L1" PartIDKeys="Separation" Status="Available">
<Media Brand="foo" MediaType="Film"/>
<ExposedMedia Separation="Cyan"/>
<ExposedMedia Separation="Magenta'">
<Media Brand="bar" MediaType="Film"/>
</ExposedMedia>
</ExposedMedia>

Example 3.23: Partitioned ExposedMedia with Incomplete Media Subelements

In this incomplete example, the Media in the leaves is not complete because it does not contain the @MediaType attribute.
@MediaType is not inherited from the Media element in the root resource because, in this case, Media is not the parti-
tioned resource.

<ExposedMedia Class="Handling" ID="L21" PartIDKeys="Separation" Status="Available">
<Media MediaType="Film"/>
<ExposedMedia Separation="Cyan">
<Media Brand="foo"/>
</ExposedMedia>
<ExposedMedia Separation="Magenta">
<Media Brand="bar" Class="Consumable"/>
</ExposedMedia>
</ExposedMedia>

Example 3.24: Partitioned ExposedMedia with Invalid Partitioning of Media Subelements
In this invalid example, Media is a subelement that SHALL NOT be partitioned.

<ExposedMedia Class="Handling" ID="L31" PartIDKeys="Separation" Status="Available">
<Media MediaType="Film">
<Media Brand="foo" Separation="Cyan"/>
<Media Brand="bar" Separation="Magenta"/>
</Media>
</ExposedMedia>

86 JDF SPECIFICATION 1.7

RESOURCEPOOL AND RESOURCELINKPOOL - DEEP STRUCTURE

Example 3.25: Partitioned ExposedMedia with MediaRef Subelements

Partitioning MAY be combined with inter-Resource links (i.e., ResourceRef elements). In the following valid example,
each MediaRef is equivalent to an in-lined leaf with the explicit Part elements to define the partition (i.e., it is equivalent
to the valid » Example 3.22: Partitioned ExposedMedia with Media Subelements).

<Media Class="Consumable" ID="MedialD" MediaType="Film"
PartIDKeys="Separation" Status="Available">
<Media Brand="foo" Separation="Cyan"/>
<Media Brand="bar" Separation="Magenta"/>
</Media>
<ExposedMedia Class="Handling" ID="L41" PartIDKeys="Separation" Status="Available">
<ExposedMedia Separation="Cyan">
<!--equivalent to <Media MediaType="Film" Brand="foo"/> -->
<MediaRef rRef="MedialID">
<Part Separation="Cyan"/>
</MediaRef>
</ExposedMedia>
<ExposedMedia Separation="Magenta'">
<!--equivalent to <Media MediaType="Film" Brand="bar"/> -->
<MediaRef rRef="MedialID">
<Part Separation="Magenta"/>
</MediaRef>
</ExposedMedia>
</ExposedMedia>

Example 3.26: Partitioned ExposedMedia with Invalid MediaRef Subelements

In this invalid example, MediaRef does not reference the leaves of media but, rather, to the root of Media. It is equivalent
to the invalid » Example 3.24: Partitioned ExposedMedia with Invalid Partitioning of Media Subelements.

<Media Class="Consumable" ID="MedialID2" MediaType="Film"
PartIDKeys="Separation" Status="Available">
<Media Brand="foo" Separation="Cyan"/>
<Media Brand="bar" Separation="Magenta"/>

</Media>
<ExposedMedia Class="Handling" ID="L51" PartIDKeys="Separation" Status="Available">

<MediaRef rRef="MediaID2"/>
</ExposedMedia>

3.10.5.5 Logical Partitions and the Identical Element

Partitioning is a mechanism for describing a complete set of similar resources, but always leads to a tree structure of
resources. Sometimes it is necessary to describe a set of resources that are not a tree, but where some partitions of the
set are 'identical' to another partition. A set of ExposedMedia resources where the same plate for the separation
'CompanySpot' is reused for all sheets is a practical example.

3.10.5.5.1 Identical

Any partitioned resource MAY contain an Identical subelement. The resource partition containing the Identical element
is called the logical partition or slave partition. Linking a logical partition using a ResourceLink or referencing a logical
partition using a ResourceRef is semantically the same as linking/referencing the master partition.

All attributes except for the attributes specified in @PartiDKeys and all subelements of the resource (see » Table 3.21
Abstract Resource Element) specified or inherited in the logical partition SHALL be ignored and replaced by the attri-
butes and subelements of the master partition.

Table 3.33: Identical Element

DATA TYPE DESCRIPTION

Part element Identifies the physical partition which will be used instead of the logical par-
tition. The logical partition is defined by the resource partition containing the
Identical element.

JDF SPECIFICATION 1.7 87

STRUCTURE

Example 3.27:

Partitioning with the Identical Element

In the following example the back side of sheet S2 is identical to the back side of sheet Si:

<ExposedMedia Class="Handling"

ID="L1"

PartIDKeys="SheetName Side Separation" Status="Available">

<Media Class="Consumable" MediaType="Film"/>

<ExposedMedia SheetName="S1">
<ExposedMedia Side="Front">

<ExposedMedia

ProductID="1"

Separation="Cyan"/>

<ExposedMedia ProductID="2" Separation="Magenta"/>
<ExposedMedia ProductID="3" Separation="Yellow"/>
<ExposedMedia ProductID="4" Separation="Black"/>
</ExposedMedia>
<!-- Master partition that is referenced by an Identical Element

<ExposedMedia Side="Back">

<ExposedMedia ProductID="5" Separation="Cyan"/>
<ExposedMedia ProductID="6" Separation="Magenta"/>
<ExposedMedia ProductID="7" Separation="Yellow"/>
<ExposedMedia ProductID="8" Separation="Black"/>
</ExposedMedia>
</ExposedMedia>

<ExposedMedia SheetName="S5S2">
<ExposedMedia Side="Front">

<ExposedMedia ProductID="9" Separation="Cyan"/>
<ExposedMedia ProductID="10" Separation="Magenta"/>
<ExposedMedia ProductID="11" Separation="Yellow"/>
<ExposedMedia ProductID="12" Separation="Black"/>

</ExposedMedia>

<!-- Logical partition with an Identical Element -->

<ExposedMedia Side="Back">
<Identical>

<Part SheetName="S1" Side="Back"/>

</Identical>

</ExposedMedia>

</ExposedMedia>
</ExposedMedia>

3.10.5.5.2 Restrictions when using Identical Elements

The Identical element SHALL contain exactly one Part subelement, which identifies the physical or master partition that

is identical to the logical partition.

The logical partition SHALL have no other subelements than the Identical element and no additional attributes other

than those specified by @PartiDKeys.

The master partition identified by Identical/Part SHALL be either a partition leaf or at the same partition level of the log-
ical partition. Such a master partition SHALL NOT contain an Identical element. In this way, the logical partition obeys

the rules described in » Section 3.10.5.3 Relating PartIDKeys and Partitions.

Example 3.28: Resourcelink with Part Element

The ExposedMedia example above is valid, because both the logical and physical partition level equals the @Side partition

level. The following Resourcelink illustrates a valid partition sequence:

<ExposedMedialink Usage="Input" rRef="L1">
<Part Separation="Black" SheetName="S2" Side="Back"/>
</ExposedMedialLink>

88 JDF SPECIFICATION 1.7

-—>

RESOURCEPOOL AND RESOURCELINKPOOL - DEEP STRUCTURE

Example 3.29: Partitioning with an Invalid Identical Element

This example illustrates an INVALID logical partition, because logical and physical partition level are not equal and the
physical partition level is not a leaf.

<ExposedMedia Class="Handling" ID="L2"
PartIDKeys="SheetName Side Separation" Status="Available">
<ExposedMedia SheetName="S1">
<ExposedMedia Side="Front">
<ExposedMedia ProductID="1" Separation="Cyan"/>
<ExposedMedia ProductID="2" Separation="Magenta"/>
<ExposedMedia ProductID="3" Separation="Yellow"/>
<ExposedMedia ProductID="4" Separation="Black"/>
</ExposedMedia>
<ExposedMedia Side="Back">
<ExposedMedia ProductID="5" Separation="Cyan"/>
<ExposedMedia ProductID="6" Separation="Magenta"/>
<ExposedMedia ProductID="7" Separation="Yellow"/>
<ExposedMedia ProductID="8" Separation="Black"/>
</ExposedMedia>
</ExposedMedia>
<ExposedMedia SheetName="S2">
<ExposedMedia Side="Front">
<ExposedMedia ProductID="9" Separation="Cyan">
<!--This Identical is invalid because it references from a
Separation partition to a Surface partition -->
<Identical>
<Part SheetName="S1" Side="Back"/>
</Identical>
</ExposedMedia>
</ExposedMedia>
</ExposedMedia>
</ExposedMedia>

3.10.6 PartIDKeys Attribute and Partition Keys

3.10.6.1 Partitionable Resource

In addition to the usual resource attributes and elements, the partitionable resource element has partition-specific
attributes and elements in its root. Specifying @PartiDKeys in the root defines a partitioned resource. Throughout this
document, the term Partition Key (depending on the context) refers to either

an enumeration value of the @Part/DKeys attribute (e.g., "Side")
<ExposedMedia PartIDKeys="Side"...>

an attribute with one of two specialized functions that can either identify a partition (e.g., @Side)
<ExposedMedia ID="XM"...>
<ExposedMedia Side="Front"...>
</ExposedMedia>
or reference a partition from within a Part element (e.g., @Side)
<ExposedMedialink rRef="XM" ...>
<Part Side="Front"/>
</ExposedMedialink>

Further attributes that apply to partitioned resources are listed in the following table.
Table 3.34: Partitionable Resource Element (Sheet 1 of 2)

NAME DATA TYPE DESCRIPTION
PartIDKeys ? enumerations | List of attribute names that are used to separate the individual parts.
Modified in JDF 1.6 @PartIDKeys also defines the sequence from root to leaf in which the

@PartiDKeys SHALL occur in the partitioned resource. Each entry in the
@PartiDKeys list SHALL occur only once. @PartIDKeys SHALL NOT be speci-
fied below the root of a partitioned resource.

For details, see » Table 3.36 Part Element.

Modification note: Before JDF 1.4, Part/@Sorting and Part/@SortAmount were
not valid values of @PartiDKeys. Now they have been deprecated so all values
of @PartIDKeys are also elements of Part.

Allowed values are from: » Table 3.35 PartIDKey Attribute Values

JDF SPECIFICATION 1.7 89

STRUCTURE

Table 3.34: Partitionable Resource Element (Sheet 2 of 2)

NAME

PipePartiDKeys ?
New in JDF 1.2

DATA TYPE

enumerations

DESCRIPTION

Defines the granularity of a dynamic pipe for a partitioned resource. For
instance, if a resource were partitioned by sheet, surface and separation (i.e.,
Resource/@PartIDKeys ="SheetName Side Separation"), and if the ResourceLink/
@PipePartIDKeys = "SheetName Side", then pipe requests would be issued only
once per surface. The contents of @PipePartiDKeys SHALL be a subset of the

@PartiDKeys attribute of the resource that is linked by this ResourceLink.

Default value is from: @PartiDKeys (i.e., maximum granularity).
@PipePartIDKeys SHALL NOT be specified below the root of a partitioned
resource. For details on partitioned resources, see » Section 3.10.5
Description of Partitioned Resources.

Allowed values are from: » Table 3.35 PartIDKey Attribute Values.

Identical ?

element Cross reference to a logical partition. For details on logical partitions and the

Element.

Identical element, see » Section 3.10.5.5 Logical Partitions and the Identical

Resource*

element Nested resource elements that contain the appropriate Partition Keys as spec-

parts.

ified in @PartIDKeys. These elements SHALL be of the same name and type as
the root Resource element. They represent the individual parts or groups of

Table 3.35: PartIDKey Attribute Values®

PARTIDKEY VALUES

BinderySignatureName DocSheetIndex Option SetCopies
BinderySignaturePaginationIndex DocTags PageNumber SetDocIndex
BlockName Edition PageTags Setlndex
BundleltemIndex EditionVersion PartVersion SetRunindex
Celllndex FountainNumber PlateLayout SetSheetindex
Condition ltemNames PreflightRule SetTags
DeliveryUnitO LayerIDs PreviewType SheetIndex
DeliveryUnit1 Location PrintCondition SheetName
DeliveryUnit2 LotID Product Side
DeliveryUnit3 MetadataO ProductPart SignatureName
DeliveryUnit4 Metadatal RibbonName StationName
DeliveryUnit5 Metadata2 Run SubRun
DeliveryUnitb Metadata3 Runindex TilelD
DeliveryUnit7 Metadatas RunPage \WebName
DeliveryUnit8 Metadata5 RunPageRange WebProduct
DeliveryUnit9 Metadatab RunSet WebSetup
DocCopies Metadata7 RunTags

DocIndex Metadata8 Sectionindex

DocRunIndex Metadata9 Separation

a. Note: See » Table 3.36 Part Element for the version history of each value of @PartiDKey.

3.10.6.2 Part

Partitionable resources are uniquely identified by the attribute values listed in @PartIDKeys attributes. The choice of
which attributes to use depends on how the agent organizes the job.

The following table lists the content of a Part element, which contains a set of attributes that have a well described
meaning. Each of the attributes, except @Sorting and @ SortAmount, MAY be used in the nested resource elements of par-
titioned resources as the Partition Key (see example above).

Part elements match a given partition when all of the attributes of a Part element match the attributes of the referenced
resource. This corresponds to Boolean AND operation. Note that a Part element MAY specify a subset of the Partition Keys
(e.g., only lower level Partition Keys) and thus implicitly select multiple partitions leaves or nodes from a partitioned re-
source (see » Section 3.10.7.4 Implicit, Sparse and Explicit PartUsage in Partitioned Resources). If multiple Part elements

20 JDF SPECIFICATION 1.7

RESOURCEPOOL AND RESOURCELINKPOOL - DEEP STRUCTURE

are specified, the result is a Boolean OR of the multiple parts. A Part element with no attributes explicitly references the

root resource.

Some attributes of Part (@Separation, @SheetName, @ SignatureName) have a data type of string. Future versions of this
specification may restrict the data type to NMTOKEN. Therefore implementations SHOULD write values as NMTOKEN.
Compliant implementations SHALL be capable of reading string values.

Table 3.36: Part Element (Sheet 1 of 7)

NAME DATA TYPE DESCRIPTION
BinderySignatureNa | NMTOKEN Name of the BinderySignature used in a StrippingParams description.
?

me ¢

New in JDF 1.2

BinderySignaturePag | Inte- @BinderySignaturePaginationindex defines indices of the pages of the pagina-

inationindex ? gerRangeList | tion sequence of StrippingParams/StripCellParams elements or

New in JDF 1.4 BinderySignature/SignatureCell elements. Elements are counted by their pagi-
nation index. The index is zero based and is local in the BinderySignature, not
the pagelist of the job.

BlockName ? NMTOKEN @BlockName SHALL identify a CutBlock from a Cutting process. The value of

New in JDF 11 this attribute SHALL match the value of the @BlockName attribute of a
CutBlock that produces this resource. @BlockName SHOULD be unique in the
context of a job.
Note: Part/ @BlockName identifies partitions that have been created by cutting
in a previous process. When used as an input resource to a Cutting process,
CuttingParams/CutBlock/@BlockName identifies the partitions that are to be
created.

Bundleltemindex ? Inte- The @Bundleltemindex attribute selects a set of Bundleltem elements from a

New in IDF 1.2 gerRangeList | Component resource.

Cellindex ? Inte- Index of SignatureCell elements in a StrippingParams or BinderySignature.

New in JDF 1.2 gerRangeList | SignatureCell elements are counted starting from lower left. Each row is
indexed from left to right before moving up to the next row.

Condition ? NMTOKEN The @Condition attribute was added to JDF 1.2 to allow users of JDF-enabled

New in JDF 1.2 systems to define and track different kinds of waste for improved error
reporting and production statistics.
Values include those from: » Table 3.37 Condition Attribute Values.

DeliveryUnit0 ? NMTOKEN Specifies a hierarchical manifest of delivery packages where @ DeliveryUnit0

New in IDF 1.3 specifies the most granular bundle.
@DeliveryUnit<N+1> specifies the next most granular bundle in packing after
@DeliveryUnit<N>. Bundles can be packaged with varying numbers of prod-
ucts. @DeliveryUnit<N+1> SHALL occur before @DeliveryUnit<N> in
@PartIDKeys.
Note: N is a placeholder for the values 0 through 9.

DeliveryUnit1? NMTOKEN See @DeliveryUnitO.

New in JDF 1.3

DeliveryUnit2 ? NMTOKEN See @DeliveryUnitO.

New in JDF 1.3

DeliveryUnit3 ? NMTOKEN See @DeliveryUnitO.

New in JDF 1.3

DeliveryUnit4 ? NMTOKEN See @DeliveryUnitO.

New in JDF 1.3

DeliveryUnit5 ? NMTOKEN See @DeliveryUnitO0.

New in JDF 1.3

DeliveryUnit6 ? NMTOKEN See @DeliveryUnitO.

New in JDF 1.3

JDF SPECIFICATION 1.7 91

STRUCTURE

Table 3.36: Part Element (Sheet 2 of 7)

NAME DATA TYPE DESCRIPTION
DeliveryUnit7 ? NMTOKEN See @DeliveryUnitO.
New in JDF 1.3
DeliveryUnit8 ? NMTOKEN See @DeliveryUnitO.
New in JDF 1.3
DeliveryUnit9 ? NMTOKEN See @DeliveryUnitO.
New in JDF 1.3
DocCopies ? Inte- Identifies a set of document copies to which the partition applies.
gerRangeList
Docindex ? Inte- The @Docindex attribute selects a set of logical instance documents from a
gerRangeList | Runlist resource.
DocRunindex ? Inte- The @DocRunindex attribute selects a set of logical pages from instance docu-
gerRangeList | ments of a RunList resource. For example, @DocRunindex = "0 -1" specifies the
first and last page of every copy of every selected instance document (assum-
ing that additional partitioning using @DocCopies and/or @DocIndex is not
also specified). The index always refers to entries of the entire RunList and
SHALL NOT be modified if only a part of the RunList is spawned. Specifying
@DocRunindex does not modify the index of a RunList entry and therefore
does not reposition pages on a Layout.
DocSheetindex ? Inte- The @DocSheetindex attribute selects a set of logical sheets from individual
gerRangeList | instance documents. For example @DocSheetindex = "0 -1" specifies the first
and last sheet of every selected copy of every instance document (assuming
that additional partitioning using @DocCopies and/or @Doclndex is not also
specified). The index always refers to entries of the entire RunList and SHALL
NOT be modified if only a part of the RunList is spawned. Specifying
@DocSheetindex does not modify the index of a RunList entry and therefore
does not reposition pages on a Layout.
DocTags ¢ NameRange- | List of tags of documents in a multi-document RunList. Used to partition
New in JDF 1.3 List resources that are linked from processes that also have a RunList as input.
Modified in JDE 1.4 The partition is selected if the implied value (i.e., from the PDL) of the docu-
odriedin JUF 1. ment in the RunList matches any of the entries in @DocTags
Note that being a multi-set RunList implies being a multi-document RunList
as well.
Modification note: Starting with JDF 1.4, the data type was expanded from
NMTOKENS to NameRangeList.
Edition ? NMTOKEN An @¢Edition addresses a subset of a published product (e.g., newspaper issue).
New in IDF 1.3 The content of all copies of one edition is the same. Usually, an edition is
published for a specific region and/or publishing time (e.g., Asia/Europe edi-
tion or Morning/Evening edition).
EditionVersion ? NMTOKEN An edition version is an OPTIONAL subset of a single edition. In order to ship
New in JDF 1.3 inserts, editions might be subdivided into edition versions.
FountainNumber ? integer Zero-based position index of the fountain. Used to partition fountains along
the axis of a roller; can be used for web printing.
ItemNames ? NMTOKENS List of items to select from a Bundle.
New in JDF 1.2 Default behavior: all Bundleltem elements are processed.
LayerIDs ? Inte- The @LayerIDs attribute selects a set layers that are defined by @LayerID.
New in JDF 1.1 gerRangeList | pefault behavior: all layers are processed.

92

JDF SPECIFICATION 1.7

Table 3.36: Part Element (Sheet 3 of 7)

RESOURCEPOOL AND RESOURCELINKPOOL - DEEP STRUCTURE

NAME DATA TYPE DESCRIPTION
Location ? NMTOKEN Name of the location (e.g., in MIS). This part key allows to describe distrib-
Modified in JDF 1.3 uted resources. Note that this name does not define the location by itself. See
» Section 3.10.6.4 Locations of PhysicalResources for details on specifying
locations.
Values include those from: » Input Tray and Output Bin Names.
Note: The specified values are for printer locations.

LotID ? NMTOKEN Identifier of the lot of a resource in a lot controlled environment.

New in JDF 1.6

MetadataO ? NameRange- | Metadata extracted from a PDL using RunList/MetadataMap elements. See

New in JDF 1.4 List » Section 9.36 MetadataMap.

Metadatal ? NameRange- | See @MetadataO.

New in JDF 1.4 List

Metadata2 ? NameRange- | See @MetadataO.

New in JDF 1.4 List

Metadata3 ? NameRange- | See @MetadataO.

New in JDF 1.4 List

Metadata4 ? NameRange- | See @MetadataO.

New in JDF 1.4 List

Metadata5 ? NameRange- | See @MetadataO.

New in JDF 1.4 List

Metadata6 ? NameRange- | See @MetadataO.

New in JDF 1.4 List

Metadata7 ? NameRange- | See @MetadataO.

New in JDF 1.4 List

Metadata8 ? NameRange- | See @MetadataO.

New in JDF 1.4 List

Metadata9 ? NameRange- | See @MetadataO.

New in JDF 1.4 List

Option ? NMTOKEN Generic option that MAY be semantic free. MAY also be used for options from

Modified in JDF 1.3 an RFQ in an intent resource.

PageNumber ? Inte- Page number in a Component or document (e.g., FileSpec that is not described

gerRangeList | as a RunlList). References an index in a Pagelist.

PageTags ? NameRange- | List of tags of pages in a multi-page Runlist. Used to partition resources that

New in JDF 1.3 List are linked from processes that also have a RunList as input. The partition is

e selected if the implied value (i.e., from the PDL) of the page in the RunList

Modified in JDF 1.4 matches any of the entries in @PageTags.

Modification note: Starting with JDF 1.4, the data type was expanded from
NMTOKENS to NameRangeList.

PartVersion ? NMTOKENS Version identifier (e.g., the language version of a catalog).

Modified in JDF 1.3 Compatibility note: The data type of @PartVersion was changed from string to
NMTOKENS in JDF 1.3 in order to accommodate resources that contain ele-
ments from multiple versions (e.g., Sheets with two language versions).

PlateLayout ? NMTOKEN Identifier of a single plate layout (mainly used for newspaper processes,

New in JDF 1.3

where multiple plates are needed for one cylinder)

JDF SPECIFICATION 1.7 93

STRUCTURE

Table 3.36: Part Element (Sheet 4 of 7)

NAME DATA TYPE DESCRIPTION
PreflightRule ? NMTOKEN Definition of the specific parts of a PreflightReportRulePool/PRRule used in
N ia IR preflight applications.
Modified in JDF 1.3
PreviewType ? enumeration | Preview specifies the type and usage of a Preview. @PreviewType SHALL NOT
New in JDF 11 be specified for resources other than Preview or PreviewGenerationParams.
Modified in JDF 1.5 Allowed values are:
Animation — animated previews for 3D display. New in JDF 1.5.
Identification — Preview is used as a visual help to identify one or more prod-
ucts, e.g. on a gang form. New in JDF 1.5.
SeparatedThumbNail — Very low resolution separated preview.
Separation — Separated preview in medium resolution.
SeparationRaw — Separated preview in medium resolution with no compensa-
tion.
New in JDF 1.2
Static3D — static 3D model. New in JDF 1.5
ThumbNail — Very low resolution RGB preview.
Viewable — RGB preview in medium resolution.
PrintCondition ? NMTOKEN @PrintCondition specifies a characterization data set that is applied to a spe-
New in JDF 1.6 cific setup including paper selection and screening setup. See » Appendix
A.5.17 PrintStandard Characterization Data Sets for details of characterization
data sets.
Product ? NMTOKEN References the JDF[@ Type="Product"]/@ProductID that this Part applies to.
New in JDF 1.7
ProductPart ? NMTOKEN References the Product/@ID that this Part applies to.
New in JDF 1.5 Deprecation Note: Use @Product to reference JOF[@ Type="Product"]/
Deprecated in JDF 1.7 Glieeeisiiok
RibbonName ? NMTOKEN A string that uniquely identifies each ribbon. Multiple ribbons are created out
Modified in JDF 1.3 of one web after dividing in case of web printing.
Run ? NMTOKEN The @Run attribute selects an individual RunList partition from a RunList
Modified in JDF 1.3 LiESIRIREE:
Runlindex ? Inte- The @Runindex attribute selects a set of logical pages from a RunlList resource
gerRangeList | in a manner that is independent from the internal structure of the RunList. It
contains an array of mixed ranges and individual indices separated by
whitespace. Each range consists of two indices connected with a tilde (~). For
example, @Runindex = "2 ~5810 22 ~ -1". Negative numbers reference pages
from the back of a file in base-1 counting. In other words, -1 is the last page,
-2 the second to last, etc. Thus @Runindex = "0 ~ -1" refers to a complete range
of pages, from first to last. The index always refers to entries of the entire
RunList and SHALL NOT be modified if only a part of the RunList is spawned.
Specifying @Runindex does not modify the index of a RunList entry and there-
fore does not reposition pages on a Layout.
RunPage ? integer Zero-based page number. Used when a document/file-based RunList is bro-
New in JDF 1.1 ken down into a page based RunList. For instance, a 2-page document

Runlist:

<RunList URL="doc.pdf" (..)/>

is split into:

<RunList PartIDKeys="RunPage" (..)>
<RunList URL="doc page0.pdf"

RunPage="0" (...) />
<RunList URL="doc pagel.pdf"
RunPage="1" (..) />
</RunList>

94

JDF SPECIFICATION 1.7

Table 3.36: Part Element (Sheet 5 of 7)

NAME

RunPageRange ?
New in JDF 1.4

DATA TYPE

Inte-
gerRangeList

RESOURCEPOOL AND RESOURCELINKPOOL - DEEP STRUCTURE

DESCRIPTION

Used when splitting RunList resources into larger chunks that are not yet
based on PagelList indices.

RunSet ?
New in JDF 1.3

NMTOKEN

Generic group of elements in a RunlList. If partitioning a Runlist by @RunSet
and @Run, then @RunSet SHOULD be specified closer to the root.

RunTags ?
New in JDF 1.1
Modified in JDF 1.4

NameRange-
List

List of names in a named RunList. Used to partition resources that are linked
from processes that also have a RunlList as input when the sequence of the
RunList is undefined. The partition is selected if the explicit or implied (e.g.,
from the PDL) value of @RunTag of the RunList matches any of the entries in
@RunTags.

Note: The difference between @RunTags and @PageTags, @DocTags or
@SetTags. @PageTags is used to identify classes of individual pages having
differing JDF parameterization. Similarly, @DocTags is used to identify classes
of individual documents and @SetTags is used to identify classes of individual
sets each having differing JDF parameterization. @RunTags is used to identify
collections of pages, often thought of as a document or a piece of a document,
but not limited to that. Also, @RunTags MAY be explicitly set for an entire
RunList by use of the @RunTag attribute. The @SetTags, @DocTags and
@PageTags Partition Keys are always set implicitly and always refer to the
granularity within a @RunList implied by their names.

Modification note: Starting with JDF 1.4, the data type was expanded from
NMTOKENS to NameRangeList.

Sectionindex ?
New in JDF 1.2

Inte-
gerRangeList

List of sections in a StrippingParams.

Separation ?
Modified in JDF 1.6

string

Identifies the separation name.

Values include:

Black — Process color.

Blue — Additional process color.

Composite — Non-separated resource.

Cyan — Process color.

Green — Additional process color.

Magenta — Process color.

none — An explicit reference to a skipped module (i.e., no separation).

Added in JDF 1.5, Modified in JDF 1.6

Orange — Additional process color.

Red — Additional process color.

Separated — The resource is separated, but the separation definition is han-
dled internally by the resource, such as a PDF file that contains Separa-
tionInfo dictionaries.

Spot — Generic spot color. Used when the exact nature of the spot color is
unknown.

Varnish — Varnish.

Yellow — Process color.

Note: Other values include any separation name defined in the @Name attri-

bute of a Color element in the ColorPool.

Note: When @Separation is applied to a ColorantControlLink, it defines an im-

plicit partition that selects a subset of separations for the process that is de-

scribed by the ColorantControl. For details, see » Section 8.21 ColorantControl.

Modification note: Starting with JDF 1.6 the case of "none" has been changed

from "None" to "none" so that it matches the predefined separation "none" in

PDF.

SetCopies ?
New in JDF 1.5

Inte-
gerRangeList

Identifies a collection of set copies to which the partition applies.

JDF SPECIFICATION 1.7 95

STRUCTURE

Table 3.36: Part Element (Sheet 6 of 7)

NAME

SetDoclndex ?
New in JDF 1.2

DATA TYPE

Inte-
gerRangeList

DESCRIPTION

The @SetDocIndex attribute selects a set of logical instance documents from
instance document sets of a RunList resource. For example, @SetDoclndex = "0
-1" specifies the first and last document of every copy of every selected
instance document set. The index always refers to entries of the entire
RunList and SHALL NOT be modified if only a part of the RunList is spawned.
Specifying @SetDocindex does not modify the index of a RunList entry and
therefore does not reposition pages on a Layout.

SetIndex ?
New in JDF 1.1

Inte-
gerRangeList

The @Setindex attribute selects a set of logical instance document sets from a
RunList resource. The index always refers to entries of the entire RunList and
SHALL NOT be modified if only a part of the RunList is spawned. Specifying
@Setindex does not modify the index of a RunList entry and therefore does
not reposition pages on a Layout.

SetRunindex ?
New in JDF 1.2

Inte-
gerRangeList

The @SetRunindex attribute selects a set of logical pages from instance docu-
ment sets of a RunList resource. For example, @SetRunindex = "0 -1" specifies
the first and last page of every copy of every selected instance document set.
The index always refers to entries of the entire RunList and SHALL NOT be
modified if only a part of the RunList is spawned. Specifying @ SetRunindex
does not modify the index of a RunList entry and therefore does not reposi-
tion pages on a Layout.

SetSheetindex ?
New in JDF 1.2

Inte-
gerRangeList

The @SetSheetindex attribute selects a set of logical sheets from individual
sets of instance documents. For example @SetSheetindex = "0 -1" specifies the
first and last sheet of every selected copy of every set. The index always refers
to entries of the entire RunList and SHALL NOT be modified if only a part of
the RunlList is spawned. Specifying @ SetSheetindex does not modify the index
of a RunList entry and therefore does not reposition pages on a Layout.

SetTags ¢
New in JDF 1.3
Modified in JDF 1.4

NameRange-
List

List of tags of pages in a multi-set RunList. Used to partition resources that
are linked from processes that also have a RunList as input. The partition is
selected if the implied value (i.e., from the PDL) of the set in the RunList
matches any of the entries in @SetTags.

Modification note: Starting with JDF 1.4, the data type was expanded from
NMTOKENS to NameRangeList.

Sheetindex ?
Modified in JDF 1.4

Inte-
gerRangeList

The @Sheetindex attribute selects a set of logical sheets from a RunList
resource either implicitly or explicitly partitioned by @Sheetindex.
@Sheetindex is only valid when a RunlList is describing sheet/surfaces.

SheetName ?

string

A string that uniquely identifies each sheet.

Side ?

enumeration

Denotes the side of the sheet.

If @Side is specified, the Part element refers to one surface of the sheet. If it
is not specified, it refers to both sides. In case of web printing, "Front" is a
synonym for the upper side and "Back" for the down side of the web.
Allowed values are:

Front

Back

SignatureName ?

string

A string that uniquely identifies the signature within the partitioned
resource.

Sorting ?
Deprecated in JDF 1.4

Inte-
gerRangeList

Mapping from the implied partitioned resource order to a process order. The
indices refer to the elements of the complete partitioned resource, not to the
index in the selection of parts defined by the Part element. If not specified the
part order is the same as the sorting order. @Sorting SHALL NOT be used as a
Partition Key.

Note: @Sorting and @SortAmount are semantically different from the other at-
tributes in this table as they define the ordering of parts, whereas the other
attributes define the selection of parts.

Deprecation note: The order of the Part elements contained in a Resourcelink
is significant: the specified subsets of the resource are selected in the XML or-
der of the Part elements.

96

JDF SPECIFICATION 1.7

Table 3.36: Part Element (Sheet 7 of 7)

RESOURCEPOOL AND RESOURCELINKPOOL - DEEP STRUCTURE

NAME DATA TYPE DESCRIPTION

SortAmount ? boolean If a sorted resource has an @Amount attribute and @SortAmount = "true", each

Deprecated in JDF 1.4 resource SHALL be processed completely. If @SortAmount = "false” (the
default), each Part element SHALL be processed the number of times speci-
fied in the @Amount attribute before starting the next Part.
@SortAmount SHALL NOT be used as a Partition Key.
Deprecation note: See @Sorting.

StationName ¢ string The name of the 1-up design in a Dielayout.

New in JDF 1.3

SubRun ? NMTOKEN Defines individual sub-runs in a production run. For instance, Media might

New in JDF 1.3 vary over the duration of a longer run. The variation might be only stock
numbers, but physical characteristics might also vary.

TilelD ? XYPair XYPair of integer values that identifies the tile. Tiles are identified by their X

Modified in JDF 1.3 and Y indexes. Values are zero-based and SHALL originate at the lower left.
So "0 0" is the lower left tile and "1 0" is the tile next to it on the right. Tile
resources are described in detail in the » Section 8.155 Tile.
In JDF 1.3 and beyond, @Tile/D SHOULD NOT be used to specify multiple
plates per cylinder. Instead the new resource CylinderLayout SHOULD be used.

WebName ? NMTOKEN A string that uniquely identifies each web.

Modified in JDF 1.3

WebProduct ? NMTOKEN Name of a product that will be produced on a web press. Multiple web prod-

New in IDF 1.3 ucts MAY be produced simultaneously on one web press.

WebSetup ? NMTOKEN Defines one setup of a web press that MAY produce multiple web products.

New in JDF 1.3

Table 3.37: Condition Attribute Values (Sheet 1 of 2)

VALUE DESCRIPTION

Good All correct components.

Waste General waste.

Overrun Excess Component resource(s) that were produced by running the device after the spec-
ified amount has been produces.

xxxGood Like "Good" above, but where “xxx” can be the name of any JDF process (e.g.,
"FeedingGood", "TrimmingGood", etc.). In the case of a combined process or process group,
the name of the last JDF process in the process chain is used.

xxx\Waste Like "Waste" above, but where “xxx” can be the name of any JDF process (e.g.,

"FeedingWaste", "TrimmingWaste", etc.). In the case of a combined process or process
group, the name of the last JDF process in the process chain is used.

AuxiliarySheet
New in JDF 1.4

This value identifies the Media that was consumed as specified by InsertSheet/
@SheetType="AccountingSheet", "ErrorSheet", "JobSheet" or "SeparatorSheet".

BindingQualityTestFailed

Failed binding quality test. The Component resource(s) with this @ Condition belong to
the batch of Component resource(s) that did not pass the test.

BindingQualityTestPassed

Passed binding quality test. The Component resource(s) with this @ Condition belong to
the batch of Component resource(s) that passed the test but were not destroyed in the
process.

BindingQualityTestWaste

Passed binding quality test. The Component element(s) with this @ Condition belong to
the batch of Component element(s) that passed the test but were destroyed in the pro-
cess.

CaliperWaste

Waste by caliper on gathering / collecting.

JDF SPECIFICATION 1.7 97

STRUCTURE

Table 3.37: Condition Attribute Values (Sheet 2 of 2)

VALUE DESCRIPTION

DoubleFeedWaste Waste by double feeds on feeders.

IncorrectComponentWaste | Waste by the attempted use of an incorrect components (e.g., on a feeder).
BadFeedWaste Waste caused by a bad feed

ObliqueSheetWaste Waste by oblique sheets on gathering / collecting chains.

PaperJamWaste Waste by paper or other media jam.

Reusable Waste to be used for setup in the next process.

New in JDF 1.4

WhitePaperWaste White paper waste.

3.10.6.3 Options in Intent Resources

JDF defines "Option" as a Partition Key in order to specify multiple options (e.g., for multiple quotes in a non-redundant
manner). A ResourcelLink that links to a resource with an "Option" partition but has no Part element to choose the "Option"
defaults to the root resource.

3.10.6.4 Locations of PhysicalResources

Unlike other kinds of resources, PhysicalResources can be stored at multiple, distributed locations. This is specified by
including a Location element in the resource element. A @Location Partition Key is provided to define multiple locations
of one resource. The Partition Key carries no semantic meaning and does not by itself define the name of a location.

Example 3.30: ExposedMedia with Location Elements

The following example describes a set of plates that are distributed over two locations.
Note: See » Appendix A.5.9 Input Tray and Output Bin Names for additional detail on locating PhysicalResource items.

<ResourcePool>
<ExposedMedia Class="Handling" ID="L1" PartIDKeys="Location" Status="Available">
<ExposedMedia Amount="42" Location="ddl">
<Location LocID="PP 01234" LocationName="Desk Drawer 1m/>
</ExposedMedia>
<ExposedMedia Amount="100" Location="dd2">
<Location LocID="PP 01235" LocationName="Desk Drawer 2"/>
</ExposedMedia>
<Media/>
</ExposedMedia>
</ResourcePool>
<ResourcelLinkPool>
<ExposedMedialLink Amount="50" Usage="Input" rRef="L1">
<Part Location="dd2"/>
<!-- Note that @Location can but need not match
Location/@LocationName
-—>
</ExposedMedialLink>
</ResourcelLinkPool>

98 JDF SPECIFICATION 1.7

RESOURCEPOOL AND RESOURCELINKPOOL - DEEP STRUCTURE

Example 3.31: Media with Location Elements

The following example describes two different media in the top and bottom tray of a LayoutPreparation process. The me-
dia is selected for the cover and inside pages respectively.

<Media Class="Consumable" ID="TopMedia" Status="Available">
<Location LocationName="Top"/>
</Media>
<Media Class="Consumable" ID="BottomMedia" Status="Available">
<Location LocationName="Bottom"/>
</Media>
<LayoutPreparationParams Class="Parameter" ID="L1"
PartIDKeys="RunIndex" Sides="TwoSidedFlipY" Status="Available">
<!-- Partition that defines the first and last page of the document -->
<LayoutPreparationParams RunIndex="0 1 -2 -1">
<MediaRef rRef="TopMedia"/>
</LayoutPreparationParams>
<!-- Partition that defines the inside pages of the document -->
<LayoutPreparationParams RunIndex="2 ~ -3">
<MediaRef rRef="BottomMedia"/>
</LayoutPreparationParams>
</LayoutPreparationParams>

3.10.7 Linking to Resources

Modification note: Starting with JDF 1.4, all text up to » Section 3.10.7.3 Handling Amount in a ResourceLink to a
Partitioned Resource is new and replaces now-deleted text that was present in JDF 1.3

A JDF node can specify a reordering or subset of a resource by including one or more Part elements in the Resourcelink
element that links to that resource. For details of the Part element, please refer to » Table 3.36 Part Element.

3.10.7.1 Linking to Subsets of Resources

Each Resourcelink/Part element selects a subset of the resource, where the aggregation of each selected subset (in the
case of multiple ResourcelLink/Part elements) creates a “virtual” resource that will then be used during node processing.
This feature is often useful to reproduce part of the job described by a node, as the default interpretation of the Part el-
ements maintains the context as if the node had been executed without any Resourcelink partitioning.

Example 3.32: Linking to Subsets of Resources

For instance, if an Imposition process outputs multiple sheets, and each sheet has dynamic marks placed on the sheet
based on the value of @ Sheetindex, selecting a single sheet to be processed by Impesition would produce that sheet using
the original @Sheetindex value. This example would generate the imposed sheet #5 followed by the imposed sheet #1,
where all dynamic marks on both sheets retain the context in which @Sheetindex would have been defined when pro-
cessing the full RunList resource.

<ResourcePool>
<RunList Class="Parameter" ID="SheetSurfacesGeneratedByImposition"
PartIDKeys="SheetIndex" Status="Available">
<RunlList SheetIndex="1"/>
<RunList SheetIndex="3"/>
<RunList SheetIndex="5"/>
</RunList>
</ResourcePool>
<ResourcelLinkPool>
<RunListLink Usage="Output" rRef="SheetSurfacesGeneratedByImposition">
<!-- output of imposition -->
<Part SheetIndex="5"/>
<Part SheetIndex="1"/>
</RunListLink>
</ResourcelLinkPool>

3.10.7.2 Reordering the Processing of Resources

ResourcelLink partitioning may also be used to reorder the processing order of content described by a RunList. This is done
by using the RunList/@IgnoreContext attribute, which specifies which Part element Partition Keys' job context SHOULD be
ignored during processing. For more information and an example of this, see RunList/ @IgnoreContext in » Section 8.129
RunList and following the RunList table, see. » Example 9.5: RunList/MetadataMap.

JDF SPECIFICATION 1.7 99

STRUCTURE

3.10.7.3 Handling Amount in a Resourcelink to a Partitioned Resource

The @Amount specified in a Resourcelink to a PhysicalResource specifies the sum of individual resource partitions. Indi-
vidual amounts are specified in the PartAmount elements of the AmountPool.

Example 3.33: Amountin an ExposedMedialink to a Partitioned ExposedMedia

The following example shows the ResourceLink that refers to » Example 3.15: Partitioned ExposedMedia for a total of five
plates.

<ExposedMedialink Usage="Input" rRef="E1">
<Part Separation="Cyan" SheetName="S1"/>
<Part Separation="Magenta" SheetName="S1"/>
<AmountPool>
<PartAmount>
<Part Separation="Cyan" SheetName="S1" Side="Front"/>
</PartAmount>
<PartAmount>
<Part Separation="Cyan" SheetName="S1" Side="Back"/>
</PartAmount>
<PartAmount>
<Part Separation="Magenta" SheetName="S1" Side="Front"/>
</PartAmount>
<PartAmount Amount="2">
<Part Separation="Magenta" SheetName="S1" Side="Back"/>
</PartAmount>
</AmountPool>
</ExposedMedialink>

3.10.7.4 Implicit, Sparse and Explicit PartUsage in Partitioned Resources
The @PartUsage attribute defines how over-specified ResourceLink elements SHALL be resolved.

If @PartUsage = "Explicit’, Resourcelink elements that do not point to an explicitly defined partition of a resource are an
error.

If @PartUsage = "Implicit", ResourceLink elements that do not point to an explicitly defined partition of a resource refer
to the closest matching resource partition, regardless of the existence of sibling partitions with identical keys but mis-
matching values.

If @PartUsage = "Sparse", ResourcelLink elements that do not point to an explicitly defined partition of a resource refer to
the closest matching resource partition, if no sibling partitions with identical keys but mismatching values exist. If sib-
ling partitions with identical keys but mismatching values exist, ResourceLink elements that do not point to an explicitly
defined partition of a resource are in error.

Example 3.34: PartUsage in a Partitioned Resource

» Table 3.38 PartUsage Attribute examples below describes the behavior of the JDF example that follows. It shows the
value of @ProductID for the resource partition that is selected by the various values of @SheetName, @Side, @Separation
and @PartVersion for each case of @PartUsage="Implicit", "Explicit" and "Sparse", respectively.

Note the effects of the Identical element in the ExposedMedia with @ SheetName="52" and @ Side="Back".

Table 3.38: PartUsage Attribute examples (Sheet 1 of 2)

SHEETNAME SEPARATION PART\KIERSID IMPLICIT EXPLICIT SPARSE
— — — — Root Root Root

S1 = = = S1 S1 S1

S2 — — — S2 S2 S2

S3 — — — Root — —

S2 Back Cyan — S1BC S1BC S1BC

S1 Back Cyan — S1BC S1BC S1BC

S1 Back Orange — S1B — —

S2 Back Orange — S1B — —

100 JDF SPECIFICATION 1.7

RESOURCEPOOL AND RESOURCELINKPOOL - DEEP STRUCTURE

Table 3.38: PartUsage Attribute examples (Sheet 2 of 2)

SHEETNAME SEPARATION PART\I(IERSIO IMPLICIT EXPLICIT SPARSE
S1 — Cyan — S1BC, S1FC S1BC, S1FC S1BC, S1FC
S1 Back Cyan Deutsch S1BC = S1BC

S2 Back Cyan Deutsch S1BC — S1BC

S2 Front Cyan Deutsch S2FC = S2FC

S1 Back Black Deutsch S1BKD S1BKD S1BKD

Note: The example below has @PartUsage="Implicit" and explicit values for ExposedMedialink/Part attributes, but » Table
3.38 PartUsage Attribute examples above describes the behavior for all values of @PartUsage and all values of
ExposedMedialink/Part.

<ResourcelLinkPool>
<ExposedMedialLink Usage="Input" rRef="XM ID">
<Part PartVersion="Deutsch" Separation="Black" SheetName="S1" Side="Front"/>
</ExposedMedialink>
</ResourcelLinkPool>
<ResourcePool>
<ExposedMedia Brand="Gooey" Class="Handling" ID="XM ID"
PartIDKeys="SheetName Side Separation PartVersion"
PartUsage="Implicit" ProductID="Root" Status="Available">
<Media Dimension="500 600" MediaType="Plate"/>
<ExposedMedia ProductID="S1" SheetName="S1">
<ExposedMedia ProductID="S1F" Side="Front">
<ExposedMedia ProductID="S1FC" Separation="Cyan"/>
<ExposedMedia ProductID="S1FM" Separation="Magenta'"/>
<ExposedMedia ProductID="S1FY" Separation="Yellow"/>
<ExposedMedia ProductID="S1FK" Separation="Black">
<ExposedMedia PartVersion="Deutsch" ProductID="S1FKD"/>
<ExposedMedia PartVersion="English" ProductID="S1FKE"/>
</ExposedMedia>
</ExposedMedia>
<ExposedMedia ProductID="S1B" Side="Back">
<ExposedMedia ProductID="S1BC" Separation="Cyan"/>
<ExposedMedia ProductID="S1BM" Separation="Magenta"/>
<ExposedMedia ProductID="S1BY" Separation="Yellow"/>
<ExposedMedia ProductID="S1BK" Separation="Black">
<ExposedMedia PartVersion="Deutsch" ProductID="S1BKD"/>
<ExposedMedia PartVersion="English" ProductID="S1BKE"/>
</ExposedMedia>
</ExposedMedia>
</ExposedMedia>
<ExposedMedia ProductID="S2" SheetName="S2">
<ExposedMedia ProductID="S2F" Side="Front">
<ExposedMedia ProductID="S2FC" Separation="Cyan"/>
<ExposedMedia ProductID="S2FM" Separation="Magenta"/>
<ExposedMedia ProductID="S2FY" Separation="Yellow"/>
<ExposedMedia ProductID="S2FK" Separation="Black"/>
</ExposedMedia>
<ExposedMedia Side="Back">
<Identical>
<Part SheetName="S1" Side="Back"/>
</Identical>
</ExposedMedia>
</ExposedMedia>
</ExposedMedia>
</ResourcePool>

3.10.7.5 Referencing Multiple Resources of the Same Type

Some processes (e.g., Collecting, Gathering) allow multiple input resources of the same type. These multiple input re-
sources MAY be represented by multiple individual resources or by partitioned resources or by a mixture of both. If or-

JDF SPECIFICATION 1.7 101

STRUCTURE

dering is significant, the order of the leaves in a partitioned resource defines said ordering. » Example 3.35: Explicit
Reference of Ordered Partitioned Resources and » Example 3.36: Implicit Reference of Ordered Partitioned Resources il -
lustrate equivalent ways of gathering three input sheets.

For Gathering, Collecting, Inserting and similar processes that have multiple physical input resources, explicit links
SHOULD be used to define how the output component is ordered. Implicit references of ordered partitioned resources
are strongly discouraged since there is ambiguity if input components have multiple partition levels.

Example 3.35: Explicit Reference of Ordered Partitioned Resources

<JDE ID="Link0037" JobPartID="ID345" Status="Waiting" Type="Gathering"
Version="1.6" xmlns="http://www.CIP4.org/JDFSchema 1 1">
<ResourcePool>
<GatheringParams Class="Parameter" ID="GathOl" Locked="false" Status="Available"/>
<Component Class="Quantity" ComponentType="Sheet"
DescriptiveName="printed insert sheets" ID="SheetsOl"
PartIDKeys="SheetName" Status="Available">
<Component SheetName="Sheetl"/>
<Component SheetName="Sheet2"/>
<Component SheetName="Sheet3"/>
</Component>
<Component Class="Quantity" ComponentType="Sheet" ID="SheetsOut" Status="Available"/>
</ResourcePool>
<ResourcelLinkPool>
<GatheringParamsLink Usage="Input" rRef="Gath0l"/>
<!--three ComponentLink explicitly reference individual parts -->
<ComponentLink Usage="Input" rRef="Sheets01">
<Part SheetName="Sheetl"/>
</ComponentLink>
<ComponentLink Usage="Input" rRef="Sheets0l">
<Part SheetName="Sheet2"/>
</ComponentLink>
<ComponentLink Usage="Input" rRef="Sheets01">
<Part SheetName="Sheet3"/>
</ComponentLink>
<ComponentLink Usage="Output" rRef="SheetsOut"/>
</ResourcelLinkPool>
</JDF>

Example 3.36: Implicit Reference of Ordered Partitioned Resources

<JDEF ID="Link0037" JobPartID="ID345" Status="Waiting" Type="Gathering"
Version="1.6" xmlns="http://www.CIP4.0org/JDFSchema 1 1">
<ResourcePool>
<GatheringParams Class="Parameter" ID="GathOl" Locked="false" Status="Available"/>
<Component Class="Quantity" ComponentType="Sheet"
DescriptiveName="printed insert sheets" ID="SheetsOl"
PartIDKeys="SheetName" Status="Available">
<Component SheetName="Sheetl"/>
<Component SheetName="Sheet2"/>
<Component SheetName="Sheet3"/>
</Component>
<Component Class="Quantity" ComponentType="Sheet" ID="SheetsOut" Status="Available"/>
</ResourcePool>
<ResourceLinkPool>
<GatheringParamsLink Usage="Input" rRef="Gath0l1"/>
<!--the ComponentLink implicitly references all three parts -->
<ComponentLink Usage="Input" rRef="Sheets01"/>
<ComponentLink Usage="Output" rRef="SheetsOut"/>
</ResourceLinkPool>
</JDE>

3.10.8 Splitting and Combining Resources

Depending on the circumstances, it MAY be appropriate either to split a resource into multiple new nodes or to specify
multiple locations or parts for an individual resource. There are four possible methods for splitting and combining re-
sources. Two methods are shown in » Figure 3-6: Workflow for splitting shared input resources and » Figure 3-7:
Workflow for combining shared output resources and represent workflows that use the @Amount attribute of their

102 JDF SPECIFICATION 1.7

RESOURCEPOOL AND RESOURCELINKPOOL - DEEP STRUCTURE

ResourcelLink elements to share resources. This method is practical when one controller controls all aspects of resource
consumption or production. In » Figure 3-6: Workflow for splitting shared input resources, the resource amount is split
between subsequent processes. In » Figure 3-7: Workflow for combining shared output resources, individual processes
produce amounts that are then combined into a unified resource that is, in turn, used by a single process. In both cases,
a single, shared resource is employed. To enable independent parallel processing by multiple controllers, however, in-
dependent resources are needed. To create independent resources from one resource, the Split process is used, as shown
in » Figure 3-8: Workflow for splitting independent input resources (for further details, see » Section 6.2.10 Split). This
process allows multiple processes to be spawned off, after which multiple processes can consume the same resource in
parallel and can therefore run in parallel. » Figure 3-9: Workflow for combining independent output resources demon-
strates the reverse situation, which occurs if resources have been produced by multiple processes and are then con-
sumed, as a unified entity, by a single subsequent process. To accomplish this, the Combine process combines multiple
resources to create the single resource.

Figure 3-6: Workflow for splitting shared input resources

— Amount a Process B

Process A Amount a+b+c -— Amount b Process C

— Amount ¢ Process D

Figure 3-7: Workflow for combining shared output resources

Process A Amount a —

Process B Amount b ——>-— Amount a+b+c Process D

Process C Amount c —

Figure 3-8: Workflow for splitting independent input resources

Process

Process D

JDF SPECIFICATION 1.7 103

STRUCTURE

Figure 3-9: Workflow for combining independent output resources

-
(Process A >»| Resource a

Combine
Process

Resource d Process D

-
(Process B > Resource b

-
(Process C >»| Resource ¢

3.11 StatusPool

Deprecated in JDF 1.3.
Starting with JDF 1.3, StatusPool is deprecated and replaced by a partitioned Nodelnfo resource.

3.12 JDF Extensibility

JDF is meant to be flexible and therefore useful to any vendor, as each vendor may have specific data to include in the
JDF files. This section describes how JDF uses the XML extension mechanisms.

3.12.1 Namespaces in XML

e . Using Namespaces in JDF
JDF extensibility is implemented using XML Namespaces » [XIMLNS]. <>
XML namespaces are defined by @xmlns attributes. A general exam- It is REQUIRED to define the JDF

ple is provided below. namespace in a JDF document,
Namespaces are inserted in front of attribute and element names. The § even if no non JDF extensions are used. JDF
associated namespace of element names with no prefix is the default | can be defined either in the default name-
namespace defined by the xmlns attribute. The associated namespace | space or in a qualified namespace.

of attributes with no prefix is that one of the element. All namespace
prefixes SHALL be declared using the standard @xmlins:prefix attri-
bute declarations.

Example 3.37: Namespaces in XML
The example illustrates how private namespaces are declared and used to extend an existing JDF resource by adding pri-
vate attributes and a private element.

<JDF ID="ID1" JobPartID="ID345" Status="Ready" Type="Product"
Version="1.6" xmlns="http://www.CIP4.org/JDFSchema 1 1" xmlns:foo="fooschema URI">

<I-= ... ==
<ResourcePool>
<!-- Extending Device Resource ... -->

<Device Class="Implementation" ID="SomeID" ModelName="abc"
Status="Available" foo:specialname="cba">
<I== .0 ==
<foo:PrivateStuff type="privatetype"/>
<l—= .0 ==

</Device>

<l== .0 ==>

</ResourcePool>
</JDF>

3.12.1.1 JDF Namespace

The official namespace URI for JDF Version 1.0 is: http://www.CIP4.org/JDFSchema_ 1. The official namespace URI for
JDF Version 1.1 through JDF 1.X is: http://www.CIP4.org/JDFSchema_ 1_ 1. Itis strongly RECOMMENDED to use either the
default namespace with no prefix or a prefix of “jdf” as the JDF namespace prefix.

3.12.1.2 JDF Extension Namespace

CIP/ defines an extension namespace where new features that are anticipated to be included in a future version of the
specification are defined. The official extension namespace URI for JDF Version 1.X is: http://www.CIP4.org/
JDFSchema_1_1_ X. It is strongly RECOMMENDED to use a prefix of “jdfx” as the JDF extension namespace prefix.

104 JDF SPECIFICATION 1.7

JDF EXTENSIBILITY

3.12.2 Extending Process Types

JDF defines a basic set of process types. However, because JDF allows flexible encoding, this list, by definition, will not
be complete. Vendors that have specific processes that do not fit in the general JDF processes and that are not combi-
nations of individual JDF processes (see » Section 3.3.3 Combined Process Nodes) can create JDF process nodes of their
own type. Then the content of the @Type attribute MAY be specified with a prefix that identifies the organization. The
prefix and name SHALL be separated by a single colon (:) as shown in the following example.

Example 3.38: Extending Process Types

<JDF ID="ID1" JobPartID="ID345" Status="Ready"
Type="myCompaniesNS:MyVeryImportantProcess" Version="1.6"
xmlns="http://www.CIP4.0org/JDFSchema 1 1" xmlns:myCompaniesNS="my companies namespace URI">
<l== .. == o - — —
</JDF>

3.12.2.1 Rules about Process Extension

The use of namespace prefixes in the @Type attribute is for extensions only. Standard JDF process types SHALL be spec-
ified without a prefix in the @Type attribute or the @ Types attribute of a combined process node . If a process is simply
an extension of an existing process, it is possible to describe the private data by extending the existing resource types.

This is described in greater detail in the sections below.

Extensibility Caution

=3

>

l-..ll'
' JDF “Extensibility” simply means that you can add your own XML elements, attributes and
enumerations to a JDF application. Although JDF is quite extensive, odds are you'll find that
your current databases and workflow systems use information elements that are unique to your client market or
company ... they might have even been defined by your internal MIS staff. CIP4 acknowledges that it can’t define
everything, nor ought it prevent innovation by codifying everything in a static manner, and JDF’s extensibility pro-
vides both printers and technology providers with the flexibility they need to make JDF a success.
However, if you or your technology vendors extend JDF, please do so with caution. JDF’s success depends on the
ability of MIS systems and JDF enabled devices to write, read, parse and use JDF. Extensions are custom integra-
tion applications and great care needs to be made to ensure that extensions made for one systems or device will not
Jjam the JDF workflow or other JDF enabled systems and devices. If they use extensions to JDF, your technology
providers need to be able to provide you with a fully validated JDF schema and documentation that includes the use
of their extensions. Extensions that are not documented, or that are not to be disclosed to third parties for integration
purposes, ought to be viewed skeptically.

3.12.3 Extending the Nodelnfo and Customerinfo Nodes

Extending the Nodelnfo and Customerinfo nodes is achieved in a manner analogous to the extension of resources, which
is described below. On the other hand, extending the direct contents of JDF nodes by adding new elements or attributes
is discouraged.

3.12.4 Extending Existing Resources

All resources defined by JDF MAY be extended by adding attributes and elements using one’s own namespace for these
resource extensions. This is useful when the predefined resource types need only a small amount of private data added,
or if those resources are the only appropriate place to put the data. The JDF namespace of the extended resource SHALL
NOT be modified. However, the mechanism for creating new resources in a separate namespace is provided in the next
section.

However, duplicate functionality SHALL NOT be added to these resource types. JDF defined attributes and elements
SHALL be used where possible and MAY be extended with additional information only when JDF defined constructs don’t
exist. For example, it is not allowed to extend the RIP resource that controls the bits per colorant with a
@foo:ColorantDepth or @foo:ColDepth attribute that overrides the JDF defined parameter for bits per colorant (see
RenderingParams/@ ColorantDepth in » Section 8.125 RenderingParams).

3.12.5 Extending NMTOKEN Lists

Many resources contain attributes of type NMTOKEN. Some of these have a set of predefined, suggested enumerative
values. These lists MAY be extended with private keywords. If an ICS requires new NMTOKEN values or a work group
has agreed upon new recommended NMTOKEN values, these will be published at » [CIP4Names] prior to being added to
the specification. In order to identify private keywords, it is strongly RECOMMENDED to prefix these keywords with a
namespace like syntax (i.e., a namespace prefix separated by a single colon “:”). Such a namespace prefix SHOULD be

JDF SPECIFICATION 1.7 105

STRUCTURE

defined in the JDF ticket with the standard xmlns:Prefix="“someURI” notation, even if no extension elements or attri-
butes from that namespace occur in the JDF ticket. Implementations that find an unknown NMTOKEN prefixed by a
namespace prefix MAY then attempt to use the default value of that attribute if the value of @SettingsPolicy in effect is
"BestEffort".

Example 3.39: Extending NMTOKEN Lists

For instance, if an implementation encounters TrappingParams/@ TrapEndStyle (see below in » Table 3.39 Excerpt from
TrappingParams) in the JDF snippet shown below, and if the implementation does not support the "HDM" extension, the
best assumption is to use @ TrapEndStyle = "Miter", which is the default for @ TrapEndStyle.

<TrappingParams TrapEndStyle="HDM:FooBar"/>

Table 3.39: Excerpt from TrappingParams

NAME DATA TYPE DESCRIPTION
TrapEndStyle = NMTOKEN Instructs the trap engine how to form the end of a trap that touches another
"Miter" object.
Values include:
Miter
Overlap
Note: Other values might be added later as a result of customer requests.

3.12.6 Creating New Resources

There are certain process implementations that have functionality that cannot be specified by the predefined resource
types. In these cases, it might be necessary to create a new resource-type element. If so, the resource SHALL be clearly
specified and use its own namespace. These resource types SHALL only be linked to custom-type JDF process nodes.

3.12.7 Future JDF Extensions

In future versions, certain private extensions will become more widely used, even by different vendors. As private ex-
tensions become more of a general rule, those extensions will be candidates for inclusion in the next version of the JDF
specification. At that time the specific extensions will have to be described and will be included into the JDF namespace.

3.12.8 Maintaining Extensions

Given the mix of vendors that will use JDF, it is likely that
there will be a number of private extensions. Therefore, JDF
controllers SHALL be prepared to receive JDF files that have
extensions. These controllers SHOULD ignore all extensions
they don’t understand, but under no circumstance are they
allowed to remove these extensions when making modifica-
tions to the JDF. If they do, it will break the extensibility
mechanism. For example, imagine that JDF agent A creates a
JDF and inserts private information for process P. Further-
more, the information is only understood by agent A and the
appropriate device D for executing P. If the JDF needs to be
processed first by another agent/Device C and that process
removes all private data for P, process P will not be able to
produce the correct results on device D that were specified by
agent A.

Submit Your Extensions to CIP4

Writing JDF extensions? CIP4 encourages
you to become part of the standard and
submit your private extensions for review and possi-
ble inclusion in future versions of the JDF standard.
Not only might adoption of extensions into the JDF
standard help make it easier for customers to decide
to buy your products, but CIP4 is also considering
adopting a formal review process for extensions with
future editions of the JDF standard. By participating in
JDF’s development now, you could save time and
help avoid customer confusion in the future.

3.12.9 Processing Unknown Extensions

If anode is processed by a controller or device and it encounters an unknown extension in one of its input resources, the
expected behavior depends on the current value of @SettingsPolicy.

If @SettingsPolicy = "BestEffort", a Notification audit element with @Class = "Warning" SHOULD be logged.

If @SettingsPolicy = "MustHonor", the process SHALL NOT continue and a Notification audit element with @Class = "Error"
SHOULD be logged.

If @SettingsPolicy = "Operatorintervention”, the process SHALL stop and wait for an operator intervention and a
Notification audit element with @Class = "Warning" SHOULD be logged.

106 JDF SPECIFICATION 1.7

JDF VERSIONING

3.12.10 Derivation of Types in XML Schema

The XML Schema definition, see » [XMLSchema](part 1), describes a mechanism to create new types by derivation from
other types. This is an alternative to extend or create new elements as described in, » [XMLSchema](part 1, section 4.).
This mechanism is not allowed to be applied to any elements defined by JDF because such new element types can only
be understood by agents/Devices that know the extension. The use of the derivation mechanism is allowed only for pri-
vate extensions.

3.13 JDF Versioning
New in JDF 1.2

The JDF Specification is an evolving document that exists in multiple versions. Real workflows will be executed by de-
vices that individually support different versions of the specification. Complete JDF workflow descriptions MAY therefore
contain sub JDF nodes that SHALL be specified with different versions in one document.

3.13.1 JDF Versioning Requirements
The following list of requirements take the specific needs of a mixed version JDF workflow into account:
JDF documents with mixed versions SHALL be supported.
Environments with devices that support different JDF versions will exist.

It is not feasible to enforce simultaneous software upgrades for devices from multiple vendors in one
production facility.

MIS systems might not support all versions of all devices that are described in the JDF.
Customers might update a workflow system or device without updating the MIS system.

Archived JDF documents SHALL remain valid when a new version of the JDF specification and schema is
published.

3.13.2 JDF Version Definition

The version of a JDF node is defined as the highest version of all attributes or elements and linked resources. The version
of aresource is defined as the highest version of all elements, attributes or resources that are referenced via refelements.

3.13.3 JDF Version Policies

The following specifies the policies for evolving JDF 1.x versions. When the term “JDF” is used in the remainder of this
section, the reader also ought to interpret these policies to apply to JMF as well. Version policies include three areas of
application: JDF specification rules, JDF schema definition rules and JDF application behavior. The policies are applicable
to the transition from JDF 1.1/1.1A through to JDF 1.4, as well as future versions of JDF, but are not applicable to JDF 1.0.

3.13.3.1 JDF Specification Version Policies
The following list defines the policies that will be followed when extending the JDF specification.
Changes to the JDF specification are always backwards compatible.
Extension elements or attributes are never required.
New attributes in existing elements SHALL be optional.
New elements in existing elements SHALL be optional.
New elements MAY contain required elements or attributes.
Elements and attributes are never removed.

Deprecated elements or attributes continue to be valid in all versions of JDF 1.x

Data type changes SHALL be extensions of existing data types. In other words the data type of an extended
attribute SHALL be a complete superset of the existing data type. For instance, only the extensions defined by
the arrow directions are valid.

enumeration - NMTOKEN
NMTOKEN - string
integer > IntegerList
integer > double

The JDF/@ Version and JMF/@Version attributes are REQUIRED in the respective root of JDF or JMF instance
documents.

The semantics of attributes and elements SHALL NOT be altered.

New attributes or elements SHALL NOT be introduced that conditionally modify the semantics of existing
attributes and elements.

JDF SPECIFICATION 1.7 107

STRUCTURE

Semantics MAY only be altered when the previous definition is clearly wrong and the result is unpredictable
with the previous definition (e.g., bug fixes in the specification). These changes SHALL be clearly marked in
the specification.

The default values of attributes and elements SHALL NOT be altered.
The default behavior that is specified when an attribute or element is missing SHALL NOT be altered.

3.13.3.2 IDF Schema Version Policies
The following list defines the policies that will be followed when generating new schemas for new versions of the JDF
specification.
Changes to the JDF schema SHALL always be backwards compatible.
JDF 1.x documents SHALL validate against JDF 1.(x+n) schemas.
Only one JDF schema namespace SHALL be defined for all versions of JDF 1.x.
The namespace is http://www.CIP4.org/JDFSchema_ 1_ 1.
The xs:version attribute SHALL BE defined in the schema.
Applications that read a schema MAY verify that they are compatible with the version of the schema.
Applications MAY choose a schema based on the schema's version tag.

The schema version selection MAY be based on a best match to both application and JDF ticket or even
JDF node.

The JDF/@ Version attribute is defined as an enumeration that contains all valid versions for the schema (e.g., "1.1",
"1.2" and "1.3" for the JDF 1.3 version of the schema). The schema data type of a JDF of JMF version is
"JDFJMFVersion".

This allow schema validators to detect incompatible versions when parsing a local legacy schema.
The version annotations in the schema SHOULD be maintained wherever possible.
Explicit copies of published legacy schema versions SHALL be available on the CIP4 website.

The schema default values of deprecated attributes SHALL be removed from the schema. Deprecated attributes
SHALL still be valid but SHALL NOT be explicitly defaulted in the schema.

3.13.3.3 JDF Application Version Policies

This section specifies the policies that implementations SHOULD follow in order to support multiple versions of JDF. The
policies are specified for agents and controllers/devices separately.

3.13.3.3.1JDF Agent Version Policies
JDF agents SHALL ensure that the JDF that they generate is consistently versioned.

An agent SHALL update the JDF/@Version attribute when inserting new attributes or elements.

If an agent is not aware of versions, it SHALL assume that anything that it writes belongs to the agent's
maximum version. In this case, the version of any node that is affected is the maximum of its prior version or
the agent's version.

It is strongly RECOMMENDED that an agent honor the JDOF/@MaxVersion attribute.

An agent SHOULD NOT add attributes, elements or attribute values that were introduced in a version that is
higher than JDF/ @MaxVersion.

An agent SHOULD insert the lowest possible JDF/@ Version attribute that is applicable to the nodes version as
described in » Section 3.13.2 JDF Version Definition.

The JDF/@ Version of a spawned JDF node is identical to the JOF/@ Version of that node in a complete JDF.

3.13.3.3.2 JDF Device/Controller Version Policies
A JDF device/controller (i.e., any implementation that reads JDF) SHOULD be backwards compatible:

Implementations SHOULD handle deprecated elements and attributes gracefully.

JDF devices/controllers (i.e., any implementation that reads JDF) SHOULD attempt to be forwards compatible.
Schema validation errors that find an unknown attribute, element or attribute value in a JDF with a version that is
higher than the schema SHOULD NOT lead to an abort.

A device or controller that reads a JDF with an element or attribute or attribute value with a version that is
higher than the version that it was developed for SHOULD attempt to execute the JDF if @SettingsPolicy =
"BestEffort".

A device or controller that reads a JDF with an element or attribute or attribute value with a version that is
higher than the version that it was developed for SHALL NOT execute the JDF if @SettingsPolicy =
"MustHonor".

Implementations SHOULD handle non-fatal version schema validation errors gracefully.

108 JDF SPECIFICATION 1.7

JDF VERSIONING

Unknown attributes/elements in the JDF namespace SHOULD be treated the same as foreign namespace
attributes/elements when handling nodes that are not executed by the device or controller.

Unknown versions of the JDF namespace SHOULD be treated analog to foreign namespace elements when
handling nodes that are not executed by the device or controller.

JDF SPECIFICATION 1.7 109

STRUCTURE

1o JDF SPECIFICATION 1.7

4 Life Cycle

Introduction

This chapter describes the life cycle of a JDF job, from creation through modification to processing. Information is pro-
vided about the spawning of individual steps of jobs and in what way they are merged into the job once the process step
is completed.

4.1 Creation and Modification

The life cycle of a JDF job will likely follow one of two scenarios. In the first scenario, a job is created all at once by a
single agent and then is consumed by a set of devices. More often, however, a job is created by one agent and is then
transformed, or modified, over time by a series of other agents. This process might require specification of product in-
tent, which is defined in » Section 4.1.1 Product Intent Constructs.

Jobs can be modified in a variety of ways. In essence, any job is modified as it is executed, since information about the
execution is logged. Another instance of modification of a JDF job, however, occurs during processing when more de-
tailed information is learned or understood and then added along the way. This information might be added because an
agent knows more about the processing needed to achieve some result specified in a JMF node than the original, creating
agent knew. For example, one agent might create a product intent node that specifies the product intent of a series of
pages. This product intent node might include information about the number of pages and the paper properties. Another
node might then be inserted that includes a resource describing how the pages are to be RIPed. Later, another agent
might provide more detail about the RIPing process by appending optional information to the RIP Resource.

Regardless of where in the life cycle they are written, nodes and their resources SHALL be valid and include all REQUIRED
information in order to have a @Status of "Ready" (in case of nodes) or "Available" (in case of resources). This restriction
allows for the definition of incomplete output resources. For example, a URL resource without a file name might be com-
pleted by a process. On the other hand, it is impossible to define a valid and executable node with insufficient input pa-
rameters.

Once all of the inputs and parameters for the process requested by a node are completely specified, a controller can route
the JDF job containing this node to a device that can execute the process. When the process is completed, the agent/con-
troller in charge of the device will modify the node to record the results of the process.

4.1.1 Product Intent Constructs

JDF jobs, in essence, are requests made by customers for the pro- e
duction of quantities of some product or products. In other words,
a job begins with a particular goal in mind. In JDF, product goals
are often specified by using a construct called “product intent”
and represented by Product Intent Nodes. In contrast to process
resources that define precise values, Product Intent Nodes allow
ranges or sets of preferred values to be specified. Resources of this
kind include Colorintent, Foldingintent, Medialntent and
ShapeCuttinglntent, all of which are described in » Chapter 7
Product Intent.

product intent

“product intent” is another way of saying

“Job Specifications”. Rather than describ-
ing how a job will be made, product intent describes
what a finished product (or some aspect of a prod-
uct) will look like when it is completed. Product
intents can initiate with the customer and in rather
vague terms, and they might be later fleshed out or
completed by a printer’s customer service represen-
tative, estimating department or production planners.

The product intent of a job is like a blue print of a product. The
blue print might be extremely vague, detailing only the gen-
eral goal, or it might be very specific, stipulating the specific requirements inherent in meeting that goal. Product intent
might be defined for an end product about which little is known or about which the processing details for the job are
entirely unknown. Product intent constructs also allow agents to describe jobs that comprise multiple product compo-
nents and that might share some parts.

The initiating agent of a job specifies either product intent or a full set or processes. The various kinds of process nodes
are described in » Section 3.3.1 Product Intent Nodes, » Section 3.3.2 Process Group Nodes and » Section 3.3.3 Combined
Process Nodes. Any job that specifies product intent SHALL include nodes whose @Type = "Product". This representation
is described in the following section.

JDF SPECIFICATION 1.7

LIFE CYCLE

4.1.1.1 Representation of product intent

The product description of a job is a hierarchy of product intent nodes, and the bottom-most level of the product hier-
archy represents portions of the product that are each homogeneous in terms of their materials and formats. All nodes
below these product intent nodes begin specifying the processes needed to produce the products.

Product intent nodes are REQUIRED to contain only one thing, and that is a resource that represents the physical result
specified by the node. This resource is generally a Component. In addition, somewhere in the hierarchy of product intent
nodes, it is a good idea to include an Intent Resource to describe the characteristics of the intended product. Although
these are the only resources that SHOULD occur, product intent nodes can contain multiple resources. For example, some
resource types, such as Layoutintent and Medialntent, are defined to provide more general mechanisms to specify prod-
uct intent. The resulting product of a product intent node is specified as an output Component resource of the product
intent node.

In some cases, more than one high level product intent node will use the output of a product intent node. These high
level nodes represent the combination of homogeneous product parts. In this case, the @Amount attribute of the
Resourcelink elements that connect the nodes will identify how the lower level product is shared.

4.1.1.2 Representation of Product Binding

Some Intent Resources, such as Bindinglntent or Insertingintent, define how to combine multiple products. To accomplish
this, the respective component resources SHALL be labeled according to their usage. For example, the cover and insert
of a product are identified by ComponentLink/@processUsage attribute of the respective input ComponentLink elements.
For more information about product intent, see » Section 3.3.1 Product Intent Nodes.

4.1.2 Specification of Delivery of End Products

A job can define one or more products and specify a set of deliveries of end products. To accomplish this, a node JMF
[@Type="Product"] is created to define each product to be produced. The root product intent node SHOULD contain a
Deliveryintent resource that specifies a set of Dropintent elements. Each Dropintent element has a common delivery ad-
dress and time, and a set of Dropltemintent elements that specifies the amount of individual Component elements to de-
liver to this address. Quote generation as defined in the previous chapter includes the specification of delivery addresses.
For more information, see » Section 6.2.4 Delivery.

4.1.3 Specification of process Specifics for product intent nodes

Product intent nodes are designed to represent a customer’s view of the product. In some instances, a knowledgeable
customer might want to specify production details that are only available in JDF process resources for a given product.
Examples include scanning or screening parameters. This customer will still have no knowledge or control of the process
workflow and therefore is expected to specify only the Resource elements.

Individual JDF process resources MAY be referenced from the Productionintent resource. Resource/@Status will most
likely be "Incomplete" because generally the customer does not know all parameters of the Resource.

n2 JDF SPECIFICATION 1.7

PROCESS ROUTING

Example 4.1: Product Intent Node

The following example shows how specific information about screening is specified in an intent node by referencing
ScreeningParams with Productionintent/ScreeningParamsRef.

<JDF ID="Jobl" JobID="J1l" JobPartID="P1" Status="Waiting" Type="Product"
Version="1.6" xmlns="http://www.CIP4.0org/JDFSchema 1 1">
<ResourcePool>
<Component Amount="10000" Class="Quantity" ComponentType="Sheet"
DescriptiveName="Complete 1l6-page Brochure" ID="Link0003" Status="Unavailable"/>
<LayoutIntent Class="Intent" ID="Link0004" Status="Available">
<Dimensions DataType="XYPairSpan" Preferred="612 792" Range="576 720 ~ 648 864"/>
<Pages DataType="IntegerSpan" Preferred="16"/>
</LayoutIntent>
<MediaIntent Class="Intent" ID="Link0005" PartIDKeys="Option" Status="Available">
<FrontCoatings DataType="EnumerationSpan" Preferred="None"/>
<MedialIntent Option="1">
<FrontCoatings DataType="EnumerationSpan" Preferred="Glossy"/>
</Medialntent>
<BackCoatings DataType="EnumerationSpan" Preferred="None"/>
</MediaIntent>
<ProductionIntent Class="Intent" ID="ID PI" Status="Available">
<ScreeningParamsRef rRef="ScreenID"/>
</ProductionIntent>
<ScreeningParams Class="Parameter" ID="ScreenlID" Status="Incomplete">
<ScreenSelector ScreeningFamily="My favorite screen" SpotFunction="Ellipse"/>
</ScreeningParams>
</ResourcePool>
<ResourcelLinkPool>
<ComponentLink Usage="Output" rRef="Link0003"/>
<LayoutIntentLink Usage="Input" rRef="Link0004"/>
<MedialntentLink Usage="Input" rRef="Link0005"/>
<ProductionIntentLink Usage="Input" rRef="ID PI"/>
</ResourcelLinkPool>
</JDF>

4.2 Process Routing

A controller in a JDF workflow system has two tasks. The first is to determine which of the nodes in a JDF document are
executable, and the second is to route these nodes to a device that is capable of executing them. Both of these procedures
are explained in the sections that follow.

In a distributed environment with multiple controllers and devices, finding the right device or controller to execute a spe-
cific node might be a non-trivial task. Systems with a centralized, smart master controller might want to route jobs dy-
namically by sending them to the appropriate locations. Simple systems, on the other hand, might have a static, well
defined routing path. Such a system might, for example, pass the job from hot folder to hot folder. Both of these extremes
are valid examples of JDF systems that have no need for additional routing metadata.

In order to accommodate systems between these extremes, the Nodelnfo resource of a node contains OPTIONAL @Route
and @TargetRoute attributes that let an agent define a static process route on a node-by-node basis. JMF/
OQueueSubmissionParams|@ReturnURL takes precedence over Nodelnfo/ @ TargetRoute of the JDF node that is processed. If
no @Route or @ TargetRoute attribute is specified and if a controller has multiple options for where to route a job, it is up
to the implementation to decide which route to use.

The controller or device reading the JDF job is responsible for processing the nodes. A device examines the job and at-
tempts to execute those nodes that it knows how to execute, whereas a controller routes the job to the next controller or
device that has the appropriate capabilities.

4.2.1 Determining Executable nodes
In order to determine which node to execute, the controller/device SHALL use the following procedures.

1 It searches the JDF document for node types that it can execute or Gray Boxes that it can expand by comparing
the @Type and @ Types attributes and possibly the @Category attribute of the node to its own capabilities and
by determining the @Activation of the nodes. It SHOULD also verify that the @Status of the node or the respec-
tive Nodelnfo/@nodeStatus is either "Waiting" or "Ready". If a Device resource is specified as input to the node,
the resource SHALL match the controller/device. Devices MAY opt to limit the scope of the node search. The
limitations SHOULD be specified in the device capability description by appropriately setting DeviceCap/
@ExecutionPolicy.

JDF SPECIFICATION 1.7 13

LIFE CYCLE

2 The controller/device can then determine if any resources have a @Status of "Incomplete" or a @SpawnStatus of
"SpawnedRW". It SHOULD also determine if all of the input resources of the respective nodes have a @Status of
"Available" and that all processes that are attached through pipes are ready to execute. A controller MAY skip
these checks and expect the lower level controller or device that it controls to perform this step and return with
an error if it fails.

3 If scheduling information is provided in the Nodeinfo resource, the specified start and/or end time SHALL be
taken into account by the executing device. If no process times are specified, it is up to the device in charge of
queue handling to execute the process node.

4 If no executable nodes are found, the device SHALL return the node to the controller. A Notification audit ele-
ment with Notification/@Class = "Error" SHOULD be appended to the AuditPool of the root JDF node.
Notification/Error]/ @ReturnCode = "102" specifies that no executable node was found.

The node will go through various states during its life time as is described in » Figure 4-1: Life cycle of a JDF node

Figure 4-1: Life cycle of a IDF node

Start —
Activation = (Start) Top = Sté!tus_
TestRun or Bottom = Activation
TestRunAndGo
Waiting
Activation
= Active
TestRun
(| InProgress
Test Run Setup
Failed active
Suspended
active
In
Progress
active
Stopped
active From any
Cleanup “‘;:‘;E:d
active

e
4 \d v

Failed Completed Aborted

Abort

End
States

TestRun

4.2.2 Distributing processing to Work Centers or devices

JDF syntax supports two means of distributing processes to work centers or devices. Its first option is to use a “smart”
controller that has the ability to parse a JDF job and identify individual processes or process groups that might be dis-
tributed to a particular work center or device. This smart controller MAY use spawning and merging facilities to subdivide
the job ticket and pass specific instructions to a work center or device.

The second option, which is applicable when the controller being used isn’t smart, is to employ a simple controller im-
plementation that routes the entire job to each work center or device, thus leaving it up to the recipient to determine the
processing it can accomplish. For this option to work, each JDF capable device SHALL be able to identify process nodes

14 JDF SPECIFICATION 1.7

EXECUTION MODEL

it is capable of executing. Furthermore, each device SHALL have sufficient JDF handling capabilities to identify processes
that are ready to run.

4.2.3 Device / Controller Selection

The method used to determine which is the appropriate device or lower level controller to use to execute a given node
depends greatly on the implemented workflow being used. Although JDF provides a method for storing routing infor-
mation in the @Route attribute of the Nodelnfo resource of a node, it does not prescribe any specific routing methods.
However, some of the tools available to figure out alternative workflows are described below.

Knowledge of the capabilities of lower level controllers/devices either MAY be hard-wired into the system or gained using
the KnownDevices message. Since JDF does not yet provide mechanisms to determine if a given device is capable of pro-
cessing a node without actually performing a test run, a controller SHALL either have a prior knowledge of the detailed
capabilities of its controlled devices or perform a test run to determine if a device is capable of executing a node. Further-
more, in addition to the explicit routing information in the @Route attribute of the Nodelnfo resource of a node, JDF MAY
contain implicit routing information in the form of Device ImplementationResources.

JMF defines the KnownDevices query message to find controllers and devices. The information provided by this query can be
used by a controller to infer the appropriate routing for a node. In a system that does not support messaging, this informa-
tion will be provided outside of JDF.

4.3 Execution Model

JDF provides a range of options that help controllers tailor a processing system to the needs of the workflow and of the
job itself. The following sections explain the ways in which controllers execute processes using these various options.

The processing model of JDF is based on a producer/consumer model, which means that the sequencing of events is con-
trolled by the availability of input resources. As has been described, nodes act both as producers and consumers of re-
sources. When all necessary inputs are available for a given node, and not before, the process can execute. The sequence
of processing, therefore, is implied by the chain of resources in which the output resources of one node become the input
resources of a subsequent node.

JDF supports four kinds of process sequences: serial processing, overlapping processing, parallel processing and iterative
processing. All four are described in the following sections.

4.3.1 Serial processing

The simplest kind of process routing, known as serial processing, executes nodes sequentially and with no overlap. In
other words, no nodes are executed simultaneously. Once the process has acted upon the resource in some way, the re-
source availability is described by the @Status attribute of the resource, as described above. When the process state is
"Ready" or "Waiting", the process can begin executing.

In a workflow using serial processing, the controller is responsible for comparing the actual amount available with the
specified amount in the corresponding ResourceLink element to determine whether or not the input resource can be con-
sidered available. If no amount is specified in the ResourceLink, the process is assumed to consume the entire
PhysicalResource.

Figure 4-2: Example of a simple process chain linked by resources

R4

R1—{P1}—{R2

Y

R3

P2

» Time

» Figure 4-2: Example of a simple process chain linked by resources depicts a simple process chain that produces and
consumes Quantity Resources and uses an ImplementationResource. The resources R1, R2 and R3 represent Quantity
Resources. Process P1 consumes resource R1 and produces resource R2. R2 is then completely consumed by P2, which
also requires the ImplementationResource R4 for processing. Process P2 uses these two resources and produces resource
R3. All of this is accomplished along a linear time axis.

» Table 4.1 Examples of resource and process states in the case of simple process routing shows the value of the @Status
attribute of each of the resources and processes used in » Figure 4-2: Example of a simple process chain linked by
resources. The time axis runs from left to right both in » Figure 4-2: Example of a simple process chain linked by
resources and in » Table 4.1 Examples of resource and process states in the case of simple process routing. Note that no
process can execute until all resources leading up to that process are "Available". In other words, the job executes serially

JDF SPECIFICATION 1.7 15

LIFE CYCLE

and sequentially. For more information about the values of the @Status attribute of resources, see » Table 3.21 Abstract
Resource Element . For more information about the values of the @Status attribute of processes, see » Table 3.4 JDF.

Table 4.1: Examples of resource and process states in the case of simple process routing

OBJECT BEFORE DURING AFTER RUNNING

STATUS RUNNING P1 RUNNING P1 P1, BEFORE P2 DL 1 GAFIES [
Resource Available InUse Unavailable Unavailable Unavailable
R1
Resource Unavailable Unavailable Available InUse Unavailable
R2
Resource Unavailable Unavailable Unavailable Unavailable Available
R3
Resource Available Available Available InUse Available
R4
Process P1 Waiting or Ready InProgress Completed Completed Completed
Process P2 Waiting or Ready Waiting or Ready Waiting or Ready InProgress Completed

If a process aborts before completion, its output resources are "Unavailable" unless the output has been partially pro-
duced, in which case the device MAY update the amount and set the output to "Available".

When the @Amount attribute is used in connection with the quantifiable resources R1, R2 or R3 and their links, then the
controller SHALL decide whether or not a resource is available by comparing the individual values. If the amounts are
used to define the availability, then the resource @Status MAY be set to "Available" for all Quantity Resources. Note that
when the value of the @Status attribute of the resource is "Unavailable", the resource is not available even if a sufficient
@Amount is specified.

If amounts are specified in the resource element, they represent the actual available amount. If they are not specified,
the actual amount is unknown, and it is assumed that the process will consume the entire resource. Amounts of
ResourcelLink elements SHALL be specified for output resources that represent the intended production amount. The
specification of the @Amount attribute for input resources is OPTIONAL. For details, see » Section 3.10.4 Resource
Amount . If the controller cannot determine the amounts, this constitutes a JDF content error, which is logged by error
handling. This process is described in » Section 4.6 Error Handling.

If a process in a serial processing run does not finish successfully, the final process status is designated as "Aborted". In
an aborted job, only a part of the intended production might be available. If this occurs, the actual produced amount is
logged into the AuditPool by a ResourceAudit element.

4.3.2 Partial processing of nodes with Partitioned resources
New in JDF 1.2

JDF nodes themselves SHALL NOT be partitioned, although the input and output resources MAY be partitioned. If the
input and output Resourcelink elements reference one or more individual partitions, the JDF node executes using only
the referenced resources.

If multiple input resources are input to a process, the resource with the highest granularity defines the partitioning. For
instance, a ConventionalPrinting process might consume a non-partitioned ConventionalPrintingParams and a set of Ink
and ExposedMedia (Plate) resources that are partitioned by @Separation. The partition granularity will be defined by the
Ink and ExposedMedia (Plate) resources to be "Separation". The @Separation partition set is defined by the superset of all
defined Partition Key values. If the @Separation key values of Ink were "Black" and "Varnish", and the @Separation key val-
ues of ExposedMedia (Plate) were "Black", the resulting set is "Black" and "Varnish".

The Partition Keys of both input and output restrict the process. If the Partition Keys are not identical, both SHALL be ap-
plied to restrict the node. If the Partition Keys are non-overlapping (e.g., in an Imposition node where a RunList based in-
put partition is mapped to a sheet based output partition), the application SHALL explicitly calculate the result. The
following examples in » Table 4.2 Examples of Partitioning across multiple resources illustrate the restriction algo-
rithms:

Table 4.2: Examples of Partitioning across multiple resources (Sheet 1 of 2)

INPUT INPUT OUTPUT NODE
PARTITION 1 PARTITION 2 PARTITION PARTITION R CRIDN
@SheetName = — — @SheetName = If only the input is partitioned,
ST ST the node partition is defined by
the input.

16 JDF SPECIFICATION 1.7

Table 4.2: Examples of Partitioning across multiple resources (Sheet 2 of 2)

INPUT

PARTITION 1

INPUT

PARTITION 2

OUTPUT

PARTITION

NODE
PARTITION

EXECUTION MODEL

DESCRIPTION

@SheetName = — — @SheetName = If only the input is partitioned,
"S1” "S1" the node partition is defined by
@Separation = @Separation = the input.
"Cyan" "Cyan"
@SheetName = @Separation = — @SheetName = The first input is partitioned by
"S1" "Cyan" + "S1" @SheetName and @Separation
Separation = Separation = Separation = which de.fmes the Partltlpn Key
%ar’f.. u@glaciu -u@é)yar?' + granularity. The second input is
_ SheetName = | Partitioned by @Separation only
(@PartUsage = @5)1 but has an implied @SheetName
"Implicit") < L and has a larger but overlapping
"C%)l e’f(‘,f'r ation = set of separation values. The sep-
ac aration value set is therefore
defined by the second key.
@SheetName = — @SheetName = @SheetName = The input and output base parti-
"S1” ST "S1 tions are identical. The output
@Separation = @Separation = further restricts the partition.
"Cyan" "Cyan"
@SheetName = — @SheetName = Error Input and output are not overlap-
ST "S2" ping. This specifies the null set.
@Separation =
"Cyan"
@SheetName = @Separation = — Error This is an error and defines the
ST "Cyan" + null set. The first input is parti-
Separation = Separation = tioned by @SheetName and
"%Iagznta" "@B)lac‘f(" @Separation which defines the
Partition Key granularity. The sec-
ond input is partitioned by
@Separation only and has a larger
but non-overlapping set of sepa-
ration values. The separation
value set is therefore the null set.
@SheetName = @Separation = — Error The first input is partitioned by
"S1" "Cyan" + @SheetName and @ Separation
@Separation = @Separation = which defines the Partition Key
"Cyan" "Black” granularity. The second input is
PartU B partitioned by @Separation only
(@PartUsage = but has no implied @SheetName
"Explicit") and therefore has a non-overlap-
ping set of Partition Keys. The
separation value set is therefore
defined by the second key.
@Runindex = "0 ~ — @SheetName = Special This specifies sheet s2, with all
7" "s2" PlacedObject elements with an

@0rd in the range of 0 to 7. This
special case is important when
RunlList entries occur multiply on
different imposition sheets.

JDF SPECIFICATION 1.7

n7

LIFE CYCLE

4.3.3 Overlapping processing Using Pipes

Whereas pipes themselves are identified in the resource that represents the
pipe by specifying Resource/ @PipelD, pipe dynamics are declared in the
ResourcelLink elements that reference the pipe. This allows multiple nodes
and devices to access one pipe, each of them with its own pipe buffering pa-
rameters.

In some situations, resource linking is a continuous, dynamic process rather
than a predefined static process. In other words, one process might require
the output resources of another process before that process has completely
finished producing them. The ability to accomplish this kind of resource
transfer is known as overlapping processing, and it is accomplished with the
use of a mechanism known as pipes. Pipes are considered to be active if any
process linking to the pipe simultaneously consumes or produces that pipe
resource.

Any resource MAY be transformed into a pipe resource by specifying the
@PipelD attribute in the resource. Pipes resemble reservoir containers that
hang between processes. Processes connected to the pipe via output links fill
the container with necessary resources, while processes connected via input
links deplete it (see » Figure 4-3: Example of a pipe resource linking two

Pipe Resources

£
‘ A pipe resource is simply an

input to a process that can
be exhausted and can be replenished.
Examples might include rolls of paper
feeding into a press, ink well levels,
fountain solution, or even proofing
stock loaded into a proofer.
Another type of pipe resource in every-
day use is a “hot-folder” or “watched
file.” Hot folders are used to automate
functions such as preflighting. When a
file is saved to a hot-folder, the system
knows to automatically apply a defined
process to the new file. When the folder
is empty the processing stops.

processes via pull and » Figure 4-4: Example of a pipe resource linking two processes via push). The level is controlled
by the ResourceLink attributes @PipeResume and @PipePause (see » Table 3.27 ResourceLink Element and » Table 3.29
PartAmount Element). The unit of the buffers is defined by the @unit attribute of the resource.

The two following diagrams show the ways in which pipes mediate between the process producing the resource and the
process consuming the resource. The following OPTIONAL attribute values are defined for pipes:

Resourcelink/@PipePartIDKeys — specifies the granularity of a pipe request for partitioned resources.
Resourcelink/@PipePause — specifies at which resource level to pause a pipe.
Resource/@PipeProtocol — specified the protocol to use to pause, resume and initiate a pipe.
Resourcelink/@PipeResume — specifies at which resource level to resume a pipe.

The specified value of each of these attributes in any given Resourcelink dictates the levels at which a pipe SHOULD re-
sume or pause execution. » Figure 4-5: Example of status transitions in case of overlapping processing gives an example
of a view on the dynamics of a pipe resource. The available level of the pipe resource, represented as R2, and the avail-
ability status of two entity resources, represented as R1 and R3, are changing along a time line. Below the progressions
of these resources is the status of two processes — P1 and P2. P1 represents the process producing the pipe resource and
P2 represents the process consuming that resource. The resource status of an active pipe, represented here as R2, is de-
fined to be @Status= "InUse" (see also » Table 3.21 Abstract Resource Element).

Figure 4-3: Example of a pipe resource linking two processes via pull

R1 (P s

Supply
Level
R2

sz‘

PipeResume = level when P1 sends
PipePush to P2 following a PipePause

PipePause = level when P1
sends Pause message to P2

Y

R3

ns JDF SPECIFICATION 1.7

EXECUTION MODEL

Figure 4-4: Example of a pipe resource linking two processes via push

R1 _>(P1 f PipePause = level when P2 sends

Pause message to P1
Supply

Level
R2

PipeResume = level when P2 sends P2)
PipePull to P1 following a PipePause

» Figure 4-3: Example of a pipe resource linking two processes via pull and » Figure 4-4: Example of a pipe resource
linking two processes via push are views of the structure and » Figure 4-5: Example of status transitions in case of
overlapping processing a view of the dynamics of the pipe example considered here. R1 represents an input resource for
P1, which feeds into the intermediate pipe resource R2. Once the container R2 is filled to the predetermined level, it is
used as the input resource for P2, which in turn produces output resource R3.

Y

R3

Figure 4-5: Example of status transitions in case of overlapping processing

+ Available
R1 Unavailable

R2 Unavailable|

R3 Unavailable!

Y >
N In Progress H Completed
P1 Waiting | Stopped !
dy '
orready : . Completed
E In Progress
P2 waiting | !)
orready | | Time
: ' -
Start End

Resource linking through pipes is controlled through the specification of the @PipePause and @PipeResume attributes.
The intended amount of a resource MAY be specified in advance in the output ResourceLink. Whenever the level repre-
senting the available quantity of the pipe resource exceeds the @PipePause level of the Resourcelink, the process P1 is
halted (@Status = "Stopped") so that the process does not overproduce. Once the level falls below the @PipeResume value,
the process P1 resumes execution. P1is completed when it has produced the intended amount. Once P1 has performed its
task, the resources still in the pipe are consumed by the subsequent process without level control. In other words, after
a process filling a pipe buffer has completed, pipe buffering becomes disabled.

JDF SPECIFICATION 1.7 19

LIFE CYCLE

In the case of output ResourcelLink elements, the @PipeResume value SHALL be smaller than the @PipePause value, where-
as in the case of input ResourceLink elements, the @PipeResume value SHALL be greater than the @PipePause value. If
@PipePause is specified for a ResourcelLink and @PipeResume is not specified, the related process might run into a deadlock
state. In other words, the process stops and cannot resume execution automatically. Once a process is stopped under these
circumstances it can only be resumed manually or by sending a pipe control message for resumption that allows intercon-
nected execution control (halting and resumption of processes by pipe control messages is described in » Section 5.10
Messages for Pipe Control). If the attributes @PipeResume or @PipePause of ResourcelLink elements to pipe resources are
not specified, the controller is responsible when the linked processes start and stop independent of the level.

4.3.3.1 Dynamic Pipes

In addition to abstractly declaring pipe properties, JMF provides pipe messages that allow dynamic control of pipes. Dy-
namic pipes can be used to model situations where the amount of resources is not known beforehand but becomes known
during processing. An example of this behavior is a long press run where new plates are needed during a press run be-
cause of quality deterioration. The exact point in time where quality becomes unacceptable is not predetermined and
might even vary from separation to separation. Dynamic pipes provide the flexibility to adjust to changing situations of
this nature.

Another usage of dynamic pipes is linking the output of a variable data print job to various components. Examples in-
clude a pipe describing the RunList that links the RIP to a print engine or a pipe describing the Component that links the
printer to finishing equipment or individual finishing devices. In this case, the RunList and Component are templates that
are logically expanded in increments by the pipe messages.

Dynamic pipes provide a ResourceLink/@PipeURL attribute that allows dynamic requests for a status change of the pipe
while a process is executing. Dynamic requests use JMF pipe control messages (see » Section 5.10 Messages for Pipe
Control) sent to another controller whose URL address is specified by the @PipeURL attribute of the respective
ResourcelLink. Depending on the values of the Resource/ @PipeProtocol attribute, the following actions are possible.

"JMFPull": The consumer initiates the pipe by sending a PipePull message to its Resourcelink/@PipeURL. The
consumer MAY request new resources by sending PipePull messages. If the producer reaches the pipe-pause (low
water) mark, or is incapable of fulfilling PipePull messages for other reasons such as a malfunction, it SHOULD send a
PipePause message to the consumer. Once it has reached the pipe-resume (high water) mark, or the malfunction has
been removed, it SHOULD send a PipePush message to the consumer to inform the consumer that it can commence
sending PipePull messages. The consumer SHOULD send a PipeClose message to the producer if the consumer does
not require any further resources.

"JMFPush": The producer initiates the pipe by sending a PipePush message to its ResourceLink/@PipeURL. The
producer MAY dispatch new resources by sending PipePush messages. If the consumer reaches the pipe-pause (high
water) mark, or is incapable of fulfilling PipePush requests for other reasons such as a malfunction, it SHOULD send a
PipePause message to the producer. Once it has reached the pipe-resume mark (low water), or the malfunction has
been removed, it SHOULD send a PipePull to the producer to inform the producer that it can commence sending
PipePush messages.The producer SHOULD send a PipeClose message to the consumer if the producer cannot provide
any further resources.

When dynamic pipes are used, @PipeResume and @PipePause define the buffering parameters that lead to a pipe control
message to the remote device. The pipe control messages described later in » Section 5.10 Messages for Pipe Control are
designed to establish communication between processes at both ends of dynamic pipe, even if the corresponding processes
are spawned separately.

The following table summarizes the actions to be taken when the buffer in a dynamic pipe reaches a certain level “L”.
Table 4.3: Actions generated when a dynamic-pipe buffer passes various levels (Sheet 1 of 2)

PIPEPROTOCOL SITUATION MESSAGE DESCRIPTION

(SENDER)

JMFPull (consumer) Ready to process PipePull The consumer has processing or buff-
ering available and therefore the pro-
ducer SHOULD produce resources.

JMFPull (creator) L < @PipePause PipePause The creator has no resources available
and therefore the consumer SHALL
refrain from sending PipePull mes-
sages.

JMFPull (creator) L > @PipeResume PipePush Sufficient resources have been pro-
duced by the creator and are ready for
delivery to the consumer.

120 JDF SPECIFICATION 1.7

EXECUTION MODEL

Table 4.3: Actions generated when a dynamic-pipe buffer passes various levels (Sheet 2 of 2)

PIPEPROTOCOL SITUATION MESSAGE DESCRIPTION

(SENDER)

JMFPush (producer) Resources available PipePush Sufficient resources have been pro-
duced by the creator and are ready for

Delivery to the consumer. therefore
the consumer SHOULD consume
resources.

JMFPush (consumer) L > @PipePause PipePause The consumer has no processing or
buffering space available and therefor
the creator SHALL refrain from send-
ing PipePush messages.

JMFPush (consumer) L < @PipeResume PipePull The consumer has processing or buff-
ering available and therefore the pro-
ducer SHOULD commence sending
PipePush messages.

Dynamic pipes are initially dormant and SHALL be activated by an explicit request. If Resource/@PipeProtocol = "JMF",
dynamic pipe requests MAY be initiated by both ends of the pipe. As soon as the pipe has been initiated, actions that are
required by the implied @PipeProtocol ("JMFPush" or "JIMFPull") SHALL be applied. For example, a print process might no-
tify an off-line finishing process when a certain amount is ready by sending a PipePush message, or the printing process
might request a new plate by sending a PipePull message.

4.3.3.2 Pipes of Partitionable resources

Pipes of partitionable resources MAY also define the granularity of the resources that are considered to be one part by spec-
ifying the @PipePartIDKeys attribute in the appropriate Resourcelink element. For instance, a partitioned ImageSetting
process could be defined for multiple sheet separations, but a complete set containing all separations of both sides of a
single sheet would be sent to the press room as a single pipe request. In this case, the value of ExposedMedia/@ PartiDKeys
would be "SheetName Side Separation” and the value of the ResourcelLink/@PipePartiDKeys for the pipe would be
"SheetName". The resources specified in PipeParams SHOULD be reduced to only define the currently active parts. In the
example above, only the selected @SheetName partition with all its @Side and @ Separation partition leaves would be in-
cluded in the message.

4.3.3.3 Example JMFPush Sequence

This section illustrates the concept of dynamic pipes using the example of variable data near line finishing being con-
trolled by a variable data digital press.

The exchange resource is a Component that is the output of the DigitalPrinting combined node and the input of a com-
bined Folding and Stitching booklet maker.

Table 4.4: Event Sequence in Digital Finishing (Sheet 1 of 2)

DIRECTION TYPE PIPEPARAMS DESCRIPTION
P->C PipePush Initialize pipe
Sheet 0/1;
Cover; Set 0
P->C PipePush Next sheet

Sheet 0/5; Set
0

P->C PipePush Lots of next sheets

P->C PipePush Next sheet
Sheet 4/7;
Body; Set 35

P<-C PipePause Paper jam in finisher - destroys Set 34 and 35
Sheet 4/7; Set
35

P<-C PipePull Restart at page 0 of doc 34
Sheet 0; Set

34

JDF SPECIFICATION 1.7 121

LIFE CYCLE

Table 4.4: Event Sequence in Digital Finishing (Sheet 2 of 2)

DIRECTION TYPE PIPEPARAMS DESCRIPTION
P->C PipePush Restart pipe
Sheet 0/3; Set
34
P->C PipePush Lots of next sheets
P<-C PipePause Paper jam in printer - destroys set 122
Sheet 4/7,
Cover; Set 122
P<-C PipePull Restart at page 0 of Doc 34(optional)
Sheet 0; Set
122
P->C PipePush Restart at page 0 of Doc 122
Sheet 0; Set
122
P->C PipePush Lots of next sheets
P->C PipePush Last sheet - note zero based counting for index
Sheet 2/3;

Body; Set 221

P->C PipeClose Done

4.3.3.4 Comparison of Non-Dynamic and Dynamic Pipes

The ResourcelLink between non-dynamic pipes provides the buffering parameters for the process to which the
ResourcelLink belongs. Therefore, many processes can link to the same pipe resource. Furthermore, each process has its
own buffering parameters, whether it is a consumer or a producer. In order to control non-dynamic pipes, one master
controller SHALL control all processes linked to the pipe resource.

In contrast, dynamic pipes provide a URL address to control a process at the other end of the pipe, to be controlled by
the buffering parameters of the ResourcelLink control the process at that end. In the case of dynamic pipes, no master
controller is needed to control the pipe. Control is accomplished by sending pipe messages. If pipe resources are linked
to multiple consumers or producers, such as two finishing lines that consume the output of one press one palette at a
time, it is up to implementation to ensure consistency of the processes.

4.3.3.5 Metadata in Pipe Messages
New in JDF 1.6

PipeParams/Resource can contain metadata that is required by the recipient of the message. This metadata SHALL be
specified as Partition Keys in Resourcelink/Part and additional details MAY be specified as the actual contents of the
Resource. Partition Key metadata provides a mechanism to retain context in large variable data jobs without requiring
fully fleshed out partitioned Resources in the JDF.

A typical example of Partition Key metadata is Part/@Doclndex, Part/ @Runindex and Part/@Side to uniquely identify the
context of a surface image that is sent from a RIP to a digital press.

4.3.4 Parallel processing

While serial processing assumes that all resources will be produced and consumed in a linear fashion, and while over-
lapping processing uses multiple processes that work together to use and create resources, there are times when it makes
sense to run more than one process simultaneously, creating a multi-pronged workflow. This kind of process routing is
known as parallel processing. Subsections of jobs are spawned off so that nodes can be executed individually and simul-
taneously by the appropriate devices. Once the processes are complete, the spawned nodes are merged back into the orig-
inal job. The output resources of the merged nodes become inputs for later processes. For example, an insert could be
produced independently of a cover, and both will be bound together later.

In parallel processing, processes can be run in a coordinated parallel fashion by using independent resources. An inde-
pendent resource is a resource that is not shared between multiple processes. ImplementationResources, for example,
cannot be shared and are therefore always independent, and Consumable Resources and Quantity Resources can each be
split to function as independent resources. Individual partitions of partitionable resources are independent and can be
processed in parallel. Read-only resources, such as parameters, can be shared without any restrictions, and can, there-
fore, be used in read-only mode for parallel processing. Process chains created by the use of independent resources are
known as independent process chains.

122 JDF SPECIFICATION 1.7

EXECUTION MODEL

Parallel processing can proceed in one of two ways. Either a controller can organize the JDF nodes in a way that allows
it to initiate parallel processing, or it can use the spawning-and-merging mechanism to field out chunks of the job to
execute simultaneously. If a controller chooses the latter method, parent nodes that contain independent process chains
can be spawned off and processed independently. For example, in order to improve production capacity, an agent could
split Consumable Resources and create independent process chains in which each chain consumes its own resource part.
Afterwards, the agent could submit one of the created job parts to a subcontractor and process the other part with its
own facilities.

Parallel processing is used only to process multiple aspects of a job simultaneously; it is not used to process multiple
copies of a JDF job. In other words, a job SHALL NOT be copied and sent to different controllers for parallel processing.
For more information about spawning of jobs, see » Section 4.4 Spawning and Merging.

4.3.5 Iterative processing

Some processes, especially in the prepress area of production, cannot be described as a serial or parallel set of process
steps. Instead, a set of interdependent processes is iterated in a non-deterministic order. These processes are known as
iterative processes. For example, an advertisement is laid out that requires a photographic image. During the layout phase,
changes are to be made to the color settings of the image, which is then reinserted to the layout. Changes such as these
can be described in a high level fashion by defining a resource @Status attribute of "Draft". As long as an input resource to
a process has a @Status of "Draft", the @Status of the output resource SHALL NOT be "Available".

The ResourcelLink/@MinStatus of a ResourceLink that links to a draft input resource SHALL be set to less than or equal
"Draft" to state that a draft input resource is acceptable for a process. Thus a prepress layout process can be abstractly
defined to work on draft resources until an acceptable output has been achieved, but the output PDL file will not be used
for printing until @Status is "Available" and no longer designated as a "Draft"

Iterative processes can be set up in a formal fashion using dynamic pipes to convey parameter change requests or in an
informal way that assumes that the operators of the various processes have an informal communication channel. Both
are described in greater detail below.

4.3.5.1 Informal Iterative processing

Informal iterative processing does not require a complete redefinition of the resources needed at every iteration. This
kind of processing is generally used in a creative workflow where a job is defined and gets refined in a series of steps
until it is completed. The information about the changes is transferred through channels that bypass JDF. Nonetheless,
the description of these processes in JDF is useful for accounting purposes, as the status of each process might be mon-
itored individually.

The ResourcelLink elements for informal processing contain an additional @MinStatus attribute which SHALL be set to
"Draft", but in all other ways they are identical to the ResourcelLink elements used in simple sequential processing. Fur-
thermore, the nodes run through the same set of phases as they would in sequential processing. Nodes are designated
only as "Stopped" and not as "Completed" after being processed for an iterative cycle. They are marked as completed after
their output resources lose their @Status of "Draft".

4.3.5.2 Formal Iterative processing

In formal iterative processing, all ResourceLink elements between interacting processes are dynamic pipes. Every request
for a new resource is initiated by a PipePush or PipePull message that contains at least one Resourceelement with the
updated parameters. This resource is used by the process, and the resulting new output resource can be consumed by
the requesting process. The @Status of "Draft" can be removed from a resource by sending the creator a PipeClose mes-
sage that has the OPTIONAL @ UpdatedStatus attribute set to "Available". A node can only reach a @Status of "Completed"
if it has no remaining draft resources. Another method to remove the draft status is to define a node for an Approval
process that accepts draft resources as inputs and has non-draft resources representing the same entities as outputs.

4.3.6 Approval, Quality Control and Verification

In many cases, it is desirable to ensure that an executed process or set of processes have been executed completely and/
or correctly. In the graphic arts industry this is verified by generating approvals and signing them. JDF allows modeling
of the approval process and modeling of the verification processes by allowing an OPTIONAL ApprovalSuccess Input re-
source in any process.

The Approval, QualityControl and Verification processes accept any one resource as an input, i.e. the resource to be ap-
proved, checked for quality or verified. The process should have an output resource of the same type which is used for
the process results and, if approved, an ApprovalSuccess resource. An ApprovalSuccess resource SHALL NOT be set as
"Available" unless it has been signed by an authorized person. For hard copy proofing, a combined process (e.g., ending
with the ImageSetting, ConventionalPrinting or DigitalPrinting process) generates the hard proof which is input to a sep-
arate Approval process. For soft proofing, a combined process (ending with Approval process) generates the soft proof
which is approved by that Approval process.

JDF provides a QualityControl process to verify that the output of a process fulfills certain quality criteria. This differs
from the Verification process, which verifies the completeness of a given set of resources.

JDF SPECIFICATION 1.7 123

LIFE CYCLE

4.4 Spawning and Merging

JDF spawning is the process of extracting a JDF subnode from a job and creating a new, complete JDF document that
contains all of the information needed to process the subnode in the original job. Merging is the process of recombining
the information from a spawned JDF part with the original JDF job, even after both documents have evolved inde-
pendently. By using the mechanism for spawning and merging different parts of a job, it is possible to submit job parts
to distributed controllers, devices, other work areas or other work centers.

The JDF spawning-and-merging mechanism can be applied recursively, which means that subjects that have already
been spawned can in turn spawn other sub-subjobs and so on. However, a node SHALL NOT be re-spawned. If a node is
to be spawned a second time, the previously submitted version SHALL first be deleted, and the spawning procedure
SHALL be applied again to the original node.

No matter how many job parts have been spawned, however, merging is accomplished by copying nodes back to their
original location and synchronizing the appropriate resources. Therefore, each spawning SHALL be logged in the job by
the agent performing the actions that result in a spawned JDF node. Furthermore, in order to avoid inconsistent JDF
states after merging, each merging SHALL be logged, or the appropriate Spawned audit element SHALL be removed from
the AuditPool element.
» Figure 4-6: The spawning and merging mechanism and its phases shows, schematically, the spawning and merging
of a subjob, designated as P.b. The following three phases are defined on a demonstrational time scale.

1 The first phase occurs before the subjob is spawned off.

2 The second phase occurs during the spawn phase, when the spawned subjob is executed separately.

3 The third phase occurs after the spawned JDF node has been merged back into the original JDF job.

Figure 4-6: The spawning and merging mechanism and its phases

Spawning Diagram of
Existing Job Tickets Existing Job Tickets

» Spawning Depth

JobP JobPb
S Point Job P:
pawn Point:
time of spawning off n
Phase Before Pb as a separate job
o——>
Parent
Spawn Phase
Spawned
Original Job
® A /
\ Job P:
Phase After Return Point: n
time of merging back P.b
to its original location
' (Pa) (Pb)
Time

The three phases of the job part are bordered by the spawning point and the merging point. On a job scale, denoted as
spawning depth in » Figure 4-6: The spawning and merging mechanism and its phases, one job ticket exists during the
phases before and after spawning, and the following two job tickets exist during the spawning phase: the job with the
parent (P) of the original JDF part (P.b', also denoted as a subjob) that has been spawned; and the spawned JDF node
(P.by) itself.

This section provides examples that outline the various ways in which spawning and merging can be applied. The fol-
lowing cases are considered in the following sections.

1 Standard spawning and merging

124 JDF SPECIFICATION 1.7

SPAWNING AND MERGING

2 Spawning and merging with resource copying

3 Parallel spawning and merging of partitioned resources

4 Simultaneous spawning and merging of multiple nodes
JDF can support any combination of the cases described, but these six represent a cross-section of likely scenarios. Case
one is the simplest of all of the cases; it occurs in every instance of spawning and merging, regardless of the circum-
stances surrounding the process. Each subsequent case requires additional processing that builds upon the processing
described in the cases that precede it.

4.4.1 Standard Spawning and Merging

The actions described in this case SHALL be applied in every spawning and merging process. All cases described in this
chapter, as well as any other that might be invented, begin with these procedures.

Spawning

To indicate that a process has been spawned, the @Status attribute of the original JDF node SHALL be set to the value
"Spawned" (see » Table 3.4 JDF). The @Status attribute of the spawned node remains unchanged.

A unique @SpawnlID attribute SHOULD be set in the spawned node, and a copy of its value SHOULD be set in the

@NewSpawnID of the newly created Spawned audit element. This simplifies the book keeping of Audit elements and any
subsequent merging in the case where a node is spawned multiple times, either due to error conditions or in parallel with
individual partitions. The value of @SpawnID SHOULD also be appended to the @SpawnIDs list of all spawned resources.

In order to identify all of the ancestors of a job that has been spawned, an AncestorPool element is included in the root
node of every spawned JDF node. This element contains an Ancestor element that identifies every parent, grandparent,
great-grandparent, etc of the spawned subnode. In this way, the family tree of every spawned node is tracked in an or-
dered sequence that allows an unbroken trace back through all predecessors. Consequently, the elements that comprise
the AncestorPool of a spawned JDF node SHALL be copied into the AncestorPool element of the newly spawned JDF node,
before the ancestor information of the previously spawned JDF node is appended to the AncestorPool element of the
newly spawned JDF node. The last Ancestor element in each AncestorPool is the parent, the second-to-last the grand-
parent, etc. Nodelnfo and Customerinfo elements or refelements MAY be copied into the respective Ancestor elements.

The complete ancestor information is REQUIRED in order to merge back semi-finished jobs with nested spawns. If the
last spawn is always merged first (“LIFO” —Last In, First Out), then knowing the direct parent is sufficient as each par-
ent will in turn know its own parent back to the original JDF node. Therefore, a complete ancestral lineage can always
be inferred from any spawned node.

When a job is spawned, the action SHALL be logged in the parent node of the spawned node in the original job. This is
accomplished by creating a Spawned element with the @jRef attribute set to the ID of the spawned JDF node. This
Spawned element SHALL be appended to the AuditPool container of the original parent node. If no AuditPool container
exists in the parent node, one SHALL be created for the purpose.

Example 4.2: Family Tree of Spawned nodes
The following code is an example of a family tree:

<AncestorPool>
<Ancestor FileName="file:///grandparent.jdf" NodeID="p 01"/>
<Ancestor FileName="file:///parent.jdf" NodeID="p 02"/>
</AncestorPool>

Merging
After processing, the spawned JDF node SHALL be merged back into its original location in the parent JDF node. Before
this can occur, however, duplicate information contained in any elements (such as Comment) SHALL be deleted by the
agent executing the spawning and merging. Once this has been accomplished, the spawned node is copied to the location
of the original node, completely overwriting the original node. The @Status of the original node is then overwritten with
the result.

To complete the merging process, the merging agent SHALL add a Merged audit element to the AuditPool (see » Section
3.5 AuditPool). The @MergelD of the Merged audit element SHOULD be set to the value of the @SpawnID attribute of the
merged node. Furthermore, the AncestorPool container with all child elements SHALL be removed, and the value of
@SpawnID SHOULD be removed from the @SpawniDs attribute of the appropriate resources.

A JDF agent that receives a JDF node that has been spawned individually, and thus has no Part element in the
AncestorPool, MAY modify any elements except for resources that were spawned as read-only data.

4.4.2 Spawning and Merging with resource Copying

The following figure represents an example of a job that requires that resources be copied during spawning. In this job,
the nodes B, and B, are linked to the same resource, which is localized in the ResourcePool of an ancestor node, denoted
as node A. This node is the parent node.

JDF SPECIFICATION 1.7 125

LIFE CYCLE

Figure 4-7: JDF node structure that requires resource copying during spawning and merging

JDF Node A
Resource 1

JDF Node B, JDF Node B,
Link to Link to
Resource 1 Resource 1

When node B, is spawned, its resources SHALL also be duplicated. To accomplish this, the affected resources SHALL be
copied to the spawned JDF node and purged during merging, a process that is described below.

4.4.2.1 Spawning of resources with Inter-resource Links

Resources are linked to a node by three mechanisms.
Explicit links defined by a ResourceLink in the ResourcelLinkPool of the node.
Implicit links defined by the ResourceRef elements of linked resources (implicit links are recursive).
Implicit links defined by the ResourceRef elements of the AuditPool of the node.

A spawning or merging agent SHALL resolve all of these links by copying any non-local resources into the local
ResourcePool.

Spawning

Spawning begins as described in Case 1. The affected resources SHALL then be copied to the ResourcePool of the spawned
JDF node. The copied resources retain the same @ID values as the original resources. These resources can be spawned for
read-only access, which allows multiple simultaneous spawning of a resource, or for read/write access, which allows only
one spawning of a resource. The read/write spawning of a resource locks the resource in the original file in order to avoid
conflicts that result from simultaneous modification or reading and modification of a resource. The @SpawnStatus attri-
bute of the original resource SHALL be set to "SpawnedRW" (which stands for “spawned read/write”) or "SpawnedR0O"
(which stands for “spawned read-only”) to indicate that the resource is spawned. In other words, a copy of the resource
is spawned together with the spawned JDF node. Read/write access effectively locks the original resources, just as if the
attribute @Locked = "true"! were present. If a resource is spawned as read-only, it is NOT RECOMMENDED to modify the
original resource that remains in the parent JDF, as this might lead to inconsistencies, unless the JMF Resource Command
message is used to inform the device or controller that the resource was spawned to. The @Locked attribute of spawned
resources that are copied read-only SHALL also be set "true". Furthermore, the value of the @ID attribute of each copied
resource SHALL be appended to the appropriate @rRefsROCopied or @rRefsRWCopied values of the Spawned element that
resides in the AuditPool of the parent node.

Merging

Merging begins as decribed in Case 1. Each Read/Write resource that has been copied for spawning SHALL be copied into its
original location, completely overwriting the original resource. If any Read-only resource that has been copied for spawning
is not the identical to the original resource, a JDF content error SHOULD be logged by a Notification element of
@Class="Error" (see » Section 4.6 Error Handling). The @ID attributes of the overwritten resources SHALL be specified in
the @rRefsOverwritten attribute of the Merged element. The Merged element is then inserted into the AuditPool container
of the parent during the usual merging procedure, which is shown as the return point in the spawning diagram.

4.4 .3 Parallel Spawning and Merging of Partitioned resources

In many cases, it is desirable to define a parallel workflow for partitioned resources. This is modeled by spawning a node
that defines the process for each part that is to be processed individually.

Spawning
Spawning begins as it did in Case 1 or Case 2. Then the spawning agent SHALL loop over all ResourceLink elements and
ensure that the appropriate Part element or elements exist in any resources in the spawned ticket, where only the indi-

vidual parts are REQUIRED. This is accomplished either by adding Part elements if none exist in ResourcelLink elements
of the parent node or by modifying the copies of existing Part elements. Part elements SHALL be included in all

1. Usually resources become locked (@Locked = "true") if they are referenced by Audit elements (see also
» Section 3.5 AuditPool).

126 JDF SPECIFICATION 1.7

NODE AND RESOURCE IDS

Resourcelink elements that point to resources that are spawned with write access. Part elements MAY be included in
ResourcelLink elements that point to resources that are spawned with read only access (e.g., PhysicalResources where only
a part is provided to a process as input). In addition, copies of the Part elements are appended to the Spawned audit el-
ement. The @Status of any partitioned resource is defined individually for each partition. The @Status of the parent node
is set to "Part" and a Nodelnfo partition for the partition of this spawn SHALL be created. Nodelnfo/ @NodeStatus of the
partition that describes the newly spawned node is set to "Spawned".

Exactly one Part element that contains the Partition Keys of this spawn and all Partition Keys of previous spawns SHALL
be present in the AncestorPool of the spawned JDF node.

The spawning procedure described in this section can be performed iteratively for multiple parts, effectively generating
one Spawned audit element and one Nodelnfo partition per part. The Spawned and Merged audit elements are not placed
in the parent node of the node to be spawned, but rather in the node itself.

An agent that receives a JDF node that has been spawned in parallel and thus has a Part element in the AncestorPool
SHALL NOT modify any elements except for:
Resources that were spawned with read-write permission, and
Adding Audit elements.
Synchronizing newly inserted JDF subnode in spawned JDF nodes is OPTIONAL.
Merging
After an individual partitioned spawned node has been processed, it is merged back to the parent as described in Case 1.

In addition, a copy of the Part elements of the corresponding Spawned audit element is appended to the Merged element
and any read/write resources are merged into their appropriate parts.

4.4.4 Simultaneous Spawning and Merging of Multiple nodes

It is not possible to explicitly spawn multiple nodes simultaneously into one JDF job ticket. The nodes SHALL be grouped
into a single process group node. This node can then be spawned and merged as described in the previous sections.

4.5 Node and Resource IDs

All nodes and resources SHALL contain a unique identifier, not only because it is important to be able to identify indi-
vidual components of a job, but also because JDF uses these IDs for internal linking purposes. Each agent that creates
resources and subnodes or that performs spawning and merging is responsible for providing IDs that are unique in the
scope of the file, taking into account all of the phases of a job’s life cycle.

IDs come in two flavors: pure and composite. A pure ID is an ID that does not contain a period character (“.”). A com-
posite ID is made up of pure IDs separated by periods. IDs are used differently under different circumstances. Several
different circumstances are described below.

In case of no spawning. If an agent inserts new elements requiring IDs into an original job, then the agent assigns pure
IDs to the new elements and SHALL guarantee their uniqueness.

In case of single spawning. If an agent inserts new elements into a spawned JDF node, then the agent creates composite
IDs by using the ID of the root node and appending a unique pure ID delimited by a period. For example:

ID of spawned root node: @ID = "Job_01234.Proc1"

ID used for new element: @ID = "Job_01234.Procl.newpurelD"
In case of independent spawning. The agent that merges the independent jobs beneath a Big Job inserts a unique, pure
ID (delimited by a period) in front of all IDs of each Small Job it receives. This means that the agent SHALL replace all
IDs of each job it receives whenever it encounters an ID collision. If an agent inserts new elements into a spawned JDF
node, then the agent creates composite IDs by using the ID of the respective root node of the Small Job and appends a
unique pure ID, delimited by a period. For example:

ID of the Big Job with node @ID = "A"
Receives Small Job A, with some IDs: @ID = "A" @ID = "A.A" @ID = "A.B" where the first is the ID of the root node.
Receives Small Job A, with some IDs: @ID = "A" @ID = "A.A" @ID = "anything" ...

The agent creates locally unique pure IDs: @ID ="A1"and @ID = "A2" each prefixed to all IDs of each received Small
]ob the IDs of the Small Job A, become: @ID = "A1.A" @ID = "ATLAA" @ID ="A1.A.B", and the IDs of the Small Job A,

become: @ID = "A2.A" @ID = "A2.A.A" @ID = "A2.anything". All IDs in the Big Job are unique.

The agent creates a new element added to the Small Job A; with ID: @ID = "A1.A.C". Here the agent SHALL resolve

the possible conflict if it would append the pure ID = "A" to the root ID = "A1.A". That means the agent has to check the
uniqueness of each created ID.

Before merging the jobs back to their original location, the agent SHALL remove the prefixed pure IDs of all IDs,
here "A1", "A2" respectively. Then the newly created element will be merged back with the @ID = "A.C".

4.6 Error Handling

Error handling is an implementation-dependent feature of JDF based systems. The AuditPool element provides a con-
tainer where errors that occur during the execution of a JDF node are to be logged using Notification elements.

JDF SPECIFICATION 1.7 127

LIFE CYCLE

Notification elements MAY also be sent in JMF messages. The content of the Notification element is described in » Table
3.14 Notification Audit Element. For a list of predefined error codes, see » Appendix A.4 Return Codes. Further details
about error handling are provided in the next four sections.

4.6.1 Classification of Notifications

Notification audit elements are classified by the @Class attribute. Every workflow implementation SHALL associate a
class with all events on an event-by-event basis. For values, see Notification/@Class in » Section 3.5.6 Notification.

4.6.2 Event Description

A description of the event is given by a generic Comment element, which is REQUIRED for the Notification classes
"Information”, "Warning", "Error" or "Fatal". For example, after a process is aborted, error information describing a device
error MAY be logged in the Comment element of the Notification element. If phase times are logged, the PhaseTime ele-
ment that logged the transition to the "Aborted" state MAY also contain a local Comment element that describes the cause
of the process abortion. PhaseTime and Notification elements are OPTIONAL subelements of the AuditPool, which is de-
scribed in » Section 3.5 AuditPool.

4.6.3 Error Logging in the JDF File

A JDF compliant controller/agent SHOULD log an error by inserting a Notification element in the AuditPool of the node
that generated the error.

4.6.4 Error Handling via Messaging (JMF)

A JMF with a Notification element in the message body SHOULD be sent through all persistent channels that subscribed
events of class "Error". How to subscribe error events via JMF, see » Section 5.3.4 Persistent Channels and » Section 5.19
Events.

4.7 Test Running

In JDF, the notion of a test run is similar to the press notion of preflight. The goal is to detect JDF content errors and
inconsistencies in a job before the job is executed.

The ability to perform a test run MAY be built into individual devices or controllers. Alternatively, a controller implemen-
tation MAY perform test runs on behalf of its devices. A test run MAY be routed through all of the different devices and
controllers in a workflow, just as if the test run were a standard execution run. For the routing of jobs and nodes through
different devices and controllers for a test, the spawning and merging mechanism MAY also be applied. The devices/con-
trollers receiving a job read and analyze it WITHOUT initiating execution. Rather, they investigate the content of the
node they would execute. A device/controller with agent capabilities MAY record results into the AuditPool associated
with a given process.

During test running, the requirements of the processes specified are compared to the capabilities of the devices targeted.
A device or controller explicitly tests if the REQUIRED inputs are actually present, valid and without errors. For example,
an input requirement might be a URL that, when a test run is performed, is found to point to an item that no longer exists
in that location. Test running is meant to prevent errors as a result of that kind of misinformation. It is particularly useful
when running expensive or time-consuming jobs.

It is also possible to test run specific parts of a workflow, or even individual nodes. An agent might request a test of cer-
tain nodes by setting the JDF @Activation attribute to "TestRun" (see » Table 3.4 JDF), which is inherited by all descendent
nodes that are not inactive (@Activation = "Inactive"). If a device or controller! detects an error in a node, a Notification
element containing a textual description SHOULD be appended to the AuditPool element of the node in which the error
occurred, and if messaging is supported, the error SHOULD be also communicated to the connected listeners via mes-
saging. For more information, see » Section 5.5 Error and Event Messages. If an error has been detected, the agent can
modify the job in order to correct the error. Once a test run has been completed successfully, the device/controller with
agent capabilities changes the @Status attribute of the tested node to "Ready". If a test run fails, the device/controller
SHALL record the process status as "FailedTestRun". After the test run has finished, the agent SHOULD log the result by
appending a ProcessRun element to the AuditPool element. For more information about Audit elements, see » Section 3.5
AuditPool.

In principle, execution and test runs might be run simultaneously. For example, one job part could be executed while
another part requests only a test. JDF also defines an @Activation value of "TestRunAndGo" that requests a test run and,
upon successful completion, automatically initiates processing.

4.7.1 Resource Status During a Test Run

In order to test run a complete set of nodes, it is sometimes necessary to imply the @Status of resources that are pro-
duced by prior nodes. Successful test running does not set the @Status attribute of a resource to "Available" unless the
resource actually is available. Nodes may assume that an input resource has @ Status="Available", provided that the re-
source is an output of another node that has completed a test run and has @Status="Ready".

1. Note that only devices and controllers with agent capabilities can write in a JDF document.

128 JDF SPECIFICATION 1.7

5 Messaging

A workflow is a dynamic set of interacting controllers and devices. For the workflow to run efficiently, these controllers
and devices need to communicate and interact in a well defined manner. Messaging is a simple but powerful way to es-
tablish this kind of dynamic interaction. The JDF based Job Messaging Format (JMF) provides a wide range of capabilities
to facilitate interaction between the various aspects of a workflow, from simple unidirectional notification through the
issuing of direct commands. This chapter outlines the way in which JMF accomplishes these interactions. The following
list of use cases is considered:

System bootstrapping and setup

Dynamic status, resource usage and error tracking for jobs and devices

Pipe control

Device setup and job changes

Queue handling and job submission

Device Capability description

Both controllers and devices MAY support JMF. This support requires hosting by a HTTP(S) server. JMF messages are
most often encoded in pure XML, without an additional MIME Multipart wrapper. Only controllers that support JDF job
submission via the message channel SHALL support MIME for messages.

JMF messaging uses a bidirectional protocol — currently HTTP and HTTPS.

JDF messaging supports combining the JMF message, the JDF job ticket(s) to which it refers, and, possibly, the digital
assets to which the JDF job tickets refer to in a single package. See » Section 11.3 JDF Packaging.

5.1 JMF

JMF and JDF have inherently different structures. In order to allow immediate identification of messages, JMF uses the
unique name JMF as its own root-element name.

The root element of the XML fragment that encodes a message, like the root element of a JDF fragment, contains a series
of predictable attributes and instances of Message elements. This content is defined in the tables that follow. Message el-
ements are abstract, instances of Message elements all derive from this JMF base.

Table 5.1: IMF Element (Sheet 1of 2)

NAME DATA TYPE DESCRIPTION
AgentName ? string The name of the agent application that generated the JMF. Both the company
New in JDF 1.4 name and the product name MAY appear, and SHOULD be consistent between
' versions of the application.
AgentVersion ? string The version of the agent application that generated the JMF. The format of
New in JDF 1.4 the version string MAY vary from one application to another, but SHOULD be

consistent for an individual application.

DevicelD ? string Identifies the recipient device or controller.

If @DevicelD is not specified, then the recipient of the message is assumed to
be the final recipient. If a controller receives a message which references a
@DevicelD that does not match the controller's @DevicelD, the controller
SHOULD attempt to pass the message on to the correct device. If the control-
ler is unable to pass the message on, it SHOULD respond to the message with
Message/@ReturnCode="121", "Unknown DevicelD". If a device receives a mes-
sage with a @DevicelD that does not match its own, it SHOULD also respond
to the message with Response/@ReturnCode="121".

ICSVersions ¢ NMTOKENS CIPZ Interoperability Conformance Specification (ICS) Versions that this JMF
New in IDF1.3 message complies with. The semantics are identical to JOF/@ICSVersions.

The value of @ISCVersions SHALL conform to the value format described in
» Section 3.2.1 ICS Versions Value.

JDF SPECIFICATION 1.7

MESSAGING

Table 5.1: JMF Element (Sheet 2 of 2)

NAME

Max\Version ?
New in JDF 1.3

DATA TYPE

enumeration

DESCRIPTION

Maximum JDF version to be written by an agent that modifies this message.
If not specified, an agent that responds to the message MAY write any version
it is capable of writing. See » Section 3.13 JDF Versioning for a discussion of
versioning in JDF.

Allowed value is from: » JDFJMFVersion.

ResponseURL ?
New in JDF 1.2

Deprecated in JDF 1.5

Unidirectional

URL

URL of the direct response to this JMF. @ResponseURL is REQUIRED when
using an unidirectional protocol that does not automatically provide a
response channel (e.g., the file protocol). If @ResponseURL is specified, a
Response SHALL be generated and written to @ResponseURL, even if no
ResponseTypeObj is REQUIRED for the Message. The Response MAY be empty.
It SHALL NOT be present when a bidirectional protocol is used (e.g., in
HTTP). The URL SHALL be an explicit locator. It is up to the sending agent to
generate a unique locator for the response.

Example: "file://master/JMFResponseFolder/Rip1/r12345.jmf".
Deprecation note: Unidirectional (file based) JMF has been deprecated.

SenderID

string

String that identifies the sender device, controller or agent. For a sender
device, the sender's @DevicelD. For a sender controller, the sender's
@DevicelD. @SenderID SHOULD be modified to the proxy controller's
@DevicelD when a JMF is passed through a proxy. See also Message/
@SenderID in » Table 5.2 Message Element.

TimeStamp

dateTime

Time stamp that identifies when the message was created.

Version
Modified in JDF 1.2

enumeration

Text that identifies the version of the JMF message. The current version of
this specification are "1.1", "1.2", "1.3", "1.4" and "1.5". The version of a JMF mes-
sage is defined by the highest version of the JMF message itself or any child
element. For details on JDF versioning see » Section 3.13 JDF Versioning.

Note that @ Version was OPTIONAL before JDF 1.2, but is REQUIRED in
instances that conform to JDF 1.2 and beyond. If not specified, the XML
schema value for @ Version SHALL default to "1.1".

Allowed value is from: » JDFJMFVersion.

Employee ?
New in JDF 1.4

element

Employee who created this message.

Message +
Modified in JDF 1.4

element

Abstract Message element(s). If a JMF instance includes multiple Message
elements, the messages SHALL be executed in XML order.
Modification note: Starting with JDF 1.4, Message order is relevant.

5.1.1 Message

The following table describes the contents of the abstract Message element. All messages contain an @/D and a @ Type

attribute.

Table 5.2: Message Element (Sheet 1 of 2)

NAME DATA TYPE DESCRIPTION
AgentName ? string The name of the agent application that generated the JMF. Both the company
New in JDF 1.4 name and the product name MAY appear, and SHOULD be consistent between
' versions of the application. If not specified, defaults to the value of JMF/
@AgentName.
AgentVersion ? string The version of the agent application that generated the JMF. The format of
New in JDF 1.4 the version string MAY vary from one application to another, but SHOULD be
’ consistent for an individual application. If not specified, defaults to the value
of IMF/@AgentVersion.
ICSVersions ? NMTOKENS CIPZ Interoperability Conformance Specification (ICS) Versions that this JMF
New in JDF 1.4 message complies with. The semantics are identical to JOF/@ICSVersions. If
not specified, defaults to the value of JMF/@ICSVersions.
The value of @ISCVersions SHALL conform to the value format described in
» Section 3.2.1 ICS Versions Value.
ID ID Identifies the message.

130

JDF SPECIFICATION 1.7

Table 5.2: Message Element (Sheet 2 of 2)

NAME

SenderID ?
New in JDF 1.4

DATA TYPE

string

JMF MESSAGE FAMILIES

DESCRIPTION

@SenderlD of the original sender of this message element. If not specified,
defaults to the @SenderID of the parent JMF. @ SenderiD SHALL NOT be mod-
ified when a JMF is passed through a proxy. See also JMF/@ SenderID in

» Table 5.1 JMF Element.

Time ¢

dateTime

Time at which the message was generated. This attribute NEED NOT be spec-
ified unless this time is different from the time specified in the @ TimeStamp
attribute of the JMF element.

Note: When a proxy forwards messages and creates a new JMF parent for a
message, it SHALL update @ Time to the value of the original JMF/@TimeStamp
if @Time is not provided in the original message.

Type

NMTOKEN

Name that identifies the message type. Message types are described in the
remainder of this chapter.

Values include those from: » Table 5.14 List of JMF Messages.

Version ?
New in JDF 1.4

enumeration

Text that identifies the version of the JMF message. The current version of
this specification are "1.1", "1.2" , "1.3" and "1.4". The version of a JMF message is
defined by the highest version of the JMF message itself or any child element.
For details on JDF versioning see » Section 3.13 JDF Versioning. If not speci-
fied, defaults to the value of JMF/@ Version.

Allowed value is from: » JDFJMFEVersion.

xsitype ¢
New in JDF 1.2

NMTOKEN

Informs schema aware validators of the JMF message type definition that the
message SHALL be validated against. The schema for this version includes
definitions for all the standard JMF messages defined in » Section 5.6
Message Template. If omitted then a general definition for the JMF message
will be used. See » Section 3.2 JDF.

Employee ?
New in JDF 1.4

element

Employee who created this message. If not specified, defaults to the value of
JMF/Employee.

5.2 JMF Message Families

A message contains one or more of the following six high
level elements, referred to as message Families, in the root
node. These families are Query, Command, Signal, Response,
Acknowledge and Registration. An explanation of each fam-
ily is provided in the following sections, along with an en-
coding example.

5.2.1 Query

A Query element is used as a message that retrieves infor-
mation from a controller without changing the state of that
controller. A query is sent to a controller. After a Query mes-

Response & Acknowledgement

The terminology used for Message Families

contradicts common usage but will be
retained for backwards compatibility. The Response actu-
ally functions as an Acknowledgement that a Command
will be acted upon, while the Acknowledge could more
properly be named Completion or Result. The haming
was defined to be consistent with HTTP naming conven-
tions so that a Response is always transported on an
HTTP response in case HTTP is used as the JMF trans-
port protocol layer.

sage is sent, a Response message is returned. If the Query
message included a Subscription, Signal messages are sent to the designated URL until a StopPersistentChannel Command

message is sent.

JDF SPECIFICATION 1.7 131

MESSAGING

Figure 5-1: Interaction of messages with a subscription

Client

Query with Subscription

Controller

Query =
Response

A

Interesting

Interesting

Interesting

Command

»

event1 Signal 1

Client’s
Subscription URL

event2 Sjgnal 2

Y

Y

eventn Signaln

StopPersistentChannel

Response

<
«<

Y

The Query contains an @ID attribute and a @ Type attribute, which it inherits from the abstract message type described in

» Table 5.2 Message Element. JMF supports a number of well defined query types, and each query type can contain addi-
tional descriptive elements, which are described in » Section 5.11 Queue Support and » Section 5.16 Extending Messages.
The following table shows the content of a Query message:

Table 5.3: Query Message Element

NAME DATA TYPE DESCRIPTION
AcknowledgeFormat | string A formatting string used with the @AcknowledgeTemplate attribute to define
? a sequence of generated URLs. If @AcknowledgeFormat is specified, then
New in JDF 1.3 @AcknowledgeTemplate SHALL also be specified and @AcknowledgeURL
' SHALL NOT be specified.
Depr?cat?d in JDF1.5 Allowed values are from: » Appendix G String Generation.
Unidirectional
AcknowledgeTempla | string A template, used with @AcknowledgeFormat, to define a sequence of gener-
te ? ated URLs. The resulting set of URLs SHALL be qualified URLs and not a
; folder. If @Acknowledgelemplate is specified, then @AcknowledgeFormat
New in JDF 1.3 e -
) SHALL also be specified and @AcknowledgeURL SHALL NOT be specified.
Deprecated in JDF1.5 Allowed values are from: » Appendix G String Generation.
Unidirectional
AcknowledgeType = | enumerations | Defines the actions to be acknowledged. This is necessary mainly for device-
"Completed" Machine pairs where the machine is not accessible online.
New in JDF 1.3 Allowed values are:
Received — The Query has been received and understood (e.g., by an operator).
Applied — The Query has been applied to the machine (e.g., by an operator).
Completed — The Query has been completely responded to.
AcknowledgeURL ? URL URL of the recipient of any Acknowledge. If specified, the command requests
New in JDF 1.3 for an Acknowledge message depending on the value of @AcknowledgeType.
' The protocol of the acknowledgment is specified by the scheme of
@AcknowledgeURL.
QueryTypeObj * element Abstract element that is a placeholder for any descriptive elements that pro-
vide details for the query. The element type of QueryTypeObj is defined by the
@Type attribute of the abstract Message element.
Subscription ? element If Subscription is specified then a persistent channel SHALL be created. For

the structure of Subscription, see » Section 5.3.4 Persistent Channels.

132

JDF SPECIFICATION 1.7

Example 5.1:

Query Message

JMF MESSAGE FAMILIES

The following is an example of a Query message:

<JMF MaxVersion="1.6" SenderID="Controller-1"

Version="1.6"

TimeStamp="2005-07-25T11:38:23402:00" xmlns="http://www.CIP4.0org/JDFSchema 1 1"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<Query ID="MO07" Type="KnownDevices" xsi:type="QueryKnownDevices"/>

</JIME>

5.2.2 Command

A Command element is syntactically equivalent to a Query, but rather than simply retrieving information, it also causes
a state change in the target device. The following table contains the contents of a Command message. A Response message
is returned immediately after a Command. If the Command included an @AcknowledgeURL, and the Command was going
to take a while, the device controller MAY select to return the Response message with @Acknowledge="true", and send an
Acknowledge message to the @AcknowledgeURL when the Command completes.

Table 5.4: Command Message Element

NAME DATA TYPE DESCRIPTION

Acknowledgeformat | string A formatting string used with the @AcknowledgeTemplate attribute to define

? a sequence of generated URLs. If @AcknowledgeFormat is specified, then

New in JDF 1.2 @AcknowledgeTemplate SHALL also be specified and @AcknowledgeURL

: SHALL NOT be specified.

DeFxr.ecat'ed in JDF1.5 Allowed values are from: » Appendix G String Generation.

Unidirectional

AcknowledgeTempla | string A template, used with @AcknowledgeFormat, to define a sequence of gener-

te ? ated URLs. The resulting set of URLs SHALL be qualified URLs and not a

New in JDF 1.2 folder. If @AcknowledgeTemplate is specified, then @AcknowledgeFormat

. SHALL also be specified and @AcknowledgeURL SHALL NOT be specified.
Deprecated in JDF 1.5 : . .
e Allowed values are from: » Appendix G String Generation.

Unidirectional

AcknowledgeType = | enumerations | Defines the actions to be acknowledged. This is necessary mainly for device-

"Completed" machine pairs where the machine is not accessible online.

New in JDF 1.1 Allowed values are:
Received — The command has been received and understood (e.g., by an oper-

ator).
Applied — The command has been applied to the machine (e.g., by an opera-
tor).

Completed — The command has been executed.

AcknowledgeURL ? URL URL of the recipient of any Acknowledge. If specified, the command requests

Modified in JDF 1.2 for an Acknowledge message depending on the value of @AcknowledgeType.

' The protocol of the acknowledgment is specified by the scheme of

@AcknowledgeURL.

RelatedCommands ? | NMTOKENS A list of Command/@ID values that need to be processed as a single transac-

New in JDF 1.4 tion (in other words all commands needs to succeed or all need to be
rejected). The commands SHALL be processed in the order specified by this
attribute. This attribute SHALL only appear in the last command of a transac-
tion. An application SHOULD wait for a reasonable amount of time to collect
all related commands prior to failing a transaction.

TransactionID ? string The ID on the transaction the command belongs to. All commands with the

New in JDF 1.4 same @ TransactionlD SHALL either all succeed or all fail

CommandTypeObj * | element Abstract element that is a placeholder for any descriptive elements that pro-
vide details of the command.

JDF SPECIFICATION 1.7 133

MESSAGING

Example 5.2 ResumeQueueEntry Command Message

The following example demonstrates how a ResumeQueueEntry command message can cause a job in a queue to begin
executing:

<JMF DeviceID="A3 Printer" MaxVersion="1.6" SenderID="MIS master A" Version="1.6"
TimeStamp="2000-07-25T12:32:48+02:00" xmlns="http://www.CIP4.0org/JDFSchema 1 1"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<Command ID="MOO09" Type="ResumeQueueEntry" xsi:type="CommandResumeQueueEntry">
<QueueEntryDef QueueEntryID="7j0b-0032"/>
</Command>
</JMF>

Example 5.3: ResumeQueueEntry Response Message
The following example shows a possible Response message to the Command message example above:

<JMF MaxVersion="1.6" SenderID="A3 Printer" Version="1.6"
TimeStamp="2000-07-25T12:32:48+02:00" xmlns="http://www.CIP4.0org/JDFSchema 1 1"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<Response ID="M109" Type="ResumeQueueEntry" refID="M0O09" xsi:type="ResponseResumeQueueEntry">
<Queue DeviceID="A3 Printer" Status="Full">

<QueueEntry JobID="job-0032" QueueEntryID="j0b-0032" Status="Running"/>
</Queue>

</Response>
</JME>

5.2.3 Signal

A Signal element is used as a message, which is equivalent to a combination of a Query message and a Response message.

It is a unidirectional message sent on any event to other controllers. This kind of message can be used to automatically
broadcast status changes.

Controllers can get Signal messages in one of three ways. The first way is to subscribe for them with an initiating query
message transmitted via a message channel that includes a Subscription element. The second way is to subscribe for them
with an initiating Query message defined in the Nodelnfo element of a JDF node that also includes a Subscription element
(see JMF elements in » Section 8.93 NodeInfo). The first query message is transmitted separately via a mechanism such
as HTTP, whereas the second is read together with the corresponding JDF node. Once the subscription has been estab-
lished, signals are sent to the subscribing controllers via persistent channels. In both cases, however, the Signal message

contains a @refID attribute that refers to the persistent channel. The value of the @refID attribute identifies the per-
sistent channel that initiated the Signal.

The third way in which a controller can receive a signal is to have the signal channels hard-wired, for example, by a tool
such as a list of controller URLs read from an initialization file. For example, signals MAY be generated independently
when a service is started, or when sub-Controllers that are newly connected to a network want to inform other control-
lers of their capabilities. Hard-wired signals, however, SHALL NOT have a @refID attribute. If no @refID is specified, the
corresponding query parameters SHALL be specified instead.

Table 5.5: Signal Message Element (Sheet 1 of 2)

NAME DATA TYPE DESCRIPTION

ChannelMode = enumeration | Specifies reliability of the signal.

‘FireAndForget” Allowed value is from: » ChannelMode.

New in JDF 1.4

LastRepeat = "false" | boolean If "true", the persistent channel is being closed by the device and no further
messages will be generated that fulfill the persistent channel criteria. If
"false", further signals will be sent. For further details, see » Section 5.3.4
Persistent Channels.

reflD ? NMTOKEN Identifies the initiating Query message that subscribed this Signal message.
Hard-wired signals SHALL NOT contain a @refID attribute.

134 JDF SPECIFICATION 1.7

JMF MESSAGE FAMILIES

Table 5.5: Signal Message Element (Sheet 2 of 2)

NAME

ReplaceAfter ?
New in JDF 1.7

DATA TYPE

DateTime

DESCRIPTION

The data from previous Signal messages with the same @SenderID and a value
of @Time after the time specified by @ReplaceAfter and prior to the time
specified by @ReplaceBefore SHALL be replaced by data in this Signal.
@ReplaceAfter SHALL be specified if @ReplaceBefore is specified. If
@ReplaceAfter and @ReplaceBefore are not specified, this Signal is the origi-
nal and SHALL NOT replace a previous Signal.

ReplaceBefore ?
New in JDF 1.7

DateTime

The data from previous Signal messages with the same @SenderID and a value
of @Time after the time specified by @ReplaceAfter and prior to the time
specified by @ReplaceBefore SHALL be replaced by data in this Signal.
@ReplaceBefore SHALL be specified if @ReplaceAfter is specified. If
@ReplaceBefore and @ReplaceAfter are not specified, this Signal is the origi-
nal and SHALL NOT replace a previous Signal.

Notification *
Modified in JDF 1.5

element

Textual description of the signal. The Notification element SHOULD be pro-
vided if the severity of the event that caused this signal is greater than
"Warning", or if pure events have been subscribed. See » Section 3.5.6
Notification. For details about subscribing pure events see » Section 5.19
Events.

Modification note: Starting with JDF 1.5, this element changes from optional
to zero or more occurrences.

QueryTypeObj *
Modified in JDF 1.4

element

This element is an abstract element and a placeholder for any descriptive ele-
ments that provide details for the virtual Query, which, if sent, would convey
the same ResponseTypeObj elements. These element types are the same as in
the Query message element. If the QueryTypeObj is required in the corre-
sponding Query, it SHALL also be specified in the Signal, even if the
OueryTypeObj in the subscription message referred to by @refID completely
defines the context. The element type of QueryTypeObj is defined by the
@Type attribute of the abstract Message element.

ResponseTypeObj *

element

Abstract element that is a placeholder for any descriptive elements that pro-
vide details subscribed. These element types are the same as in the Response
message element.

Trigger ?

element

Describes the trigger event which caused this signal. The Trigger element
recalls some information provided during the Subscription of the signal mes-
sages. For details on subscribing signals see » Section 5.3.4 Persistent
Channels.

5.2.3.1 Trigger

The following table describes the structure of the Trigger element.

Table 5.6: Trigger Element

NAME DATA TYPE DESCRIPTION
RepeatStep ? integer Recalls the @RepeatStep attribute specified during Subscription of the signal.
For details see » Table 5.11 Subscription Element.
RepeatTime ? double Recalls the @RepeatTime attribute specified during Subscription of the signal.
For details see » Table 5.11 Subscription Element.
Added ? element A pool that contains the description of trigger events caused by the adding of
Deprecated in JDF 1.2 elements like services, controllers, devices or messages.
Replaced by ChangedPath in JDF 1.2 and above.
ChangedAttribute * | element If a change of an attribute triggered this signal, this element describes the
Deprecated in JDF 1.2 attribute that changed.
Replaced by ChangedPath in JDF 1.2 and above.
ChangedPath * element If a change of an attribute or element triggered this signal, this element
New in JDF 1.2 describes the details of the element or attribute that changed.
Removed ? element A pool that contains the description of trigger events caused by the removal

Deprecated in JDF 1.2

of elements like services, controllers, devices or messages.
Replaced by ChangedPath in JDF 1.2 and above.

JDF SPECIFICATION 1.7 135

MESSAGING

5.2.3.2 ChangedPath
New in JDF 1.2

The following describes the structure of the ChangedPath element. ChangedPath replaces the Added, ChangedAttribute
and Removed elements.

Table 5.7: ChangedPath Element

NAME DATA TYPE DESCRIPTION
Path XPath XPath of the element or attribute that was modified.
Modification enumeration | Specifies the modification that occurred with the object specified in @Path.

Allowed values are:

Create — The object was created.
Delete — The object was deleted.
Modify — The object was modified.

Oldvalue ? string 0ld value of the attribute if @Path specifies an attribute and @Modification !=
"Create". The string SHALL be cast to the appropriate data type that depends
on the attribute’s data type.

NewValue ? string New value of the attribute if @Path specifies an attribute and @Modification
I= "Delete". The string SHALL be cast to the appropriate data type that
depends on the attribute’s data type.

Example 5.4: Signal Message
The following is an example of a Signal message:

<JMF MaxVersion="1.6" SenderID="Press 45" Version="1.6"
TimeStamp="2005-07-25T12:28:01+02:00" xmlns="http://www.CIP4.0org/JDFSchema 1 1"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<Signal ID="s123" Type="Status" xsi:type="SignalStatus">
<StatusQuParams JobID="42" JobPartID="66"/>
<DeviceInfo DeviceStatus="Setup"/>
</Signal>
</JMF>

5.2.4 Response

A Response is a message that a receiver SHALL synchronously send to a sender as a response to a message. A Response
element is used to reply to a Query or a Command and is always a direct answer of a Query or a Command. A Response
message is returned from a controller to the controller that submitted the Query or Command; however, Response mes-
sage(s) are not acknowledged themselves.

A Response message indicates that a Query or Command has been received and interpreted. The Response of a Query or
Commands with short latency also includes the information about the execution. An Query or Command with long latency
MAY additionally generate a separate Acknowledge message (see » Section 5.2.5 Acknowledge) to broadcast the execu-
tion of the Query or Command. A Response SHOULD contain a Notification element that describes the return status in text
if @ReturnCode is greater than 0. A Response contains an attribute called @refID, which identifies the initiating Query or
Command. The following table shows the content of a Response message.

A Signal with @ ChannelMode="Reliable" SHALL also be replied to with a Response.

Table 5.8: Response Message Element (Sheet 1 of 2)

NAME DATA TYPE DESCRIPTION
Acknowledged = boolean Indicates whether the Command/Query will be acknowledged separately. If
"false" "true", an Acknowledge message will be supplied after Command/Query execu-

tion. If "false", no Acknowledge message will be supplied. If
@Acknowledged="true", then no additional information other than protocol
information, such as @AgentName, @ID and @reflD SHALL be specified.
"Real" information SHALL only be specified in the corresponding
Acknowledge.

136 JDF SPECIFICATION 1.7

JMF MESSAGE FAMILIES

Table 5.8: Response Message Element (Sheet 2 of 2)

NAME DATA TYPE DESCRIPTION
refiD ? NMTOKEN Copy of the @ID attribute of the initiating Query message or Command mes-
Modified in JDF 1.2 sage to which the response message refers. If not specified, the response

message refers to the entire JMF message (e.g., if the JMF was not parseable).
Response/@Type is set to "Notification" if the @ Type of the incoming Message
is corrupted or unknown.

ReturnCode = "0" integer The value "0" indicates success. For all other possible codes see » Appendix A.4
Return Codes.

Subscribed ¢ boolean If a Subscription element has been supplied by the corresponding query, this

Modified in JDF 1.2 attribute indicates whether the Subscription has been refused or accepted. If

"true", the requested Subscription is accepted. If "false", the Subscription is
refused because the controller does not support persistent channels. For
details, see » Section 5.3.4 Persistent Channels.

Notification * element Additional information including textual description of the return code. The
Modified in JDF 1.5 Notification element SHOULD be provided if the @ReturnCode is greater than o,
which indicates that an error has occurred. See » Section 3.5.6 Notification.

Modification note: Starting with JDF 1.5, this element changes from
optional to zero or more occurrences.

ResponseTypeObj * | element Abstract element that is a placeholder for any descriptive elements that pro-
vide details queried for or details about command execution.

If Response/@Acknowledged="true", ResponseType0bj element(s) MAY be
missing or incomplete in a Response.

Example 5.5: Response Message for Query

An example of a response message to a command message is provided in the » Section 5.2.2 Command. The encoding
example for the query message, shown above, might generate the following response message:

<JMF MaxVersion="1.6" SenderID="RIP-1" Version="1.6"
TimeStamp="2000-07-25T11:38:25+02:00" xmlns="http://www.CIP4.0rg/JDFSchema 1 1"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<Response ID="M107" Type="KnownDevices" refID="MO07" xsi:type="ResponseKnownDevices">
<DeviceList>
<DevicelInfo DeviceStatus="Unknown">
<Device DeviceID="Ripl"/>
</DeviceInfo>
<DeviceInfo DeviceStatus="Unknown">
<Device DeviceID="Rip2"/>
</DevicelInfo>
</DeviceList>
</Response>
</JMEF>

5.2.5 Acknowledge

An Acknowledge element is a message that is an asynchronous answer to a Command message or Query message issued
by a controller. Each Acknowledge message is unidirectional and similar to a Response message, and the @refID attribute
of each refers to the initiating command. Acknowledge messages are generated if commands with long latency have been
executed in order to inform the Command message sender of the results. Acknowledge messages are only generated if

JDF SPECIFICATION 1.7 137

MESSAGING

the initiating Command message has specified the @AcknowledgeURL attribute or a pair of @AcknowledgeFormat and
@AcknowledgeTemplate attributes.

Figure 5-2: Interaction of Command and Acknowledge messages

Command with Acknowledge

. Client’s
Client Controller Acknowledge URL
Command > Each Acknowledge
_ Response below is optional

Command | Received Acknowledge
AcknowledgeType="Received” g
Command | Applied Acknowledge _
AcknowledgeType="Applied” -
Command | Completed Acknowledge o
AcknowledgeType="Completed” g

They are announced in the Response message to the command message by setting @Acknowledged="true".

Table 5.9: Acknowledge Message Element

NAME DATA TYPE DESCRIPTION
AcknowledgeType = | enumerations | Defines the context of this message. This is necessary mainly for device-
"Completed" Machine pairs where the machine is not accessible online.
New in JDF 1.1 Allowed values are:
Received — The initiating Command has been received and understood (e.g., by
an operator).
Applied — The initiating Command has been applied to the machine (e.g., by an
operator).
Completed — The initiating Command has been executed. No further acknowl-
edgement will be sent after an acknowledgement with
@AcknowledgeType="Completed" has been sent.
reflD NMTOKEN Identifies the initiating Command message that the Acknowledge refers to.
ReturnCode = "0" integer Describes the result. "0" indicates success. For all other possible codes see
» Appendix A.4 Return Codes.
Notification ? element Textual description of the command execution. See » Section 3.5.6
Modified in JDF 11A Notification.
ResponseTypeObj * | element Abstract element that is a placeholder for any descriptive elements that pro-

vide details about command execution.

Delayed acknowledge messages contain the same ResponseTypeObj elements
as direct Response messages.

Example 5.6:

Acknowledge Message

The following is an example of an Acknowledge message:

<JMF MaxVersion="1.6" SenderID="A3 Printer"

Version="1.6"

TimeStamp="2000-07-25T12:32:48+02:00" xmlns="http://www.CIP4.0rg/JDFSchema 1 1"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<Acknowledge ID="M109" Type="PipePush" refID="M010" xsi:type="AcknowledgePipePush">
<JobPhase JobID="J1l" JobPartID="1" Status="InProgress"/>

</Acknowledge>
</JME>

138

JDF SPECIFICATION 1.7

JMF HANDSHAKING
5.2.6 Registration
New in JDF 1.3

A Registration message is a request to the recipient of the JMF to send Command messages to a command recipient who
is specified in Subscription. See » Section 5.3.4.2 Persistent Channels for Commands for details on persistent channels
for commands.

Table 5.10: Registration Message Element

NAME DATA TYPE DESCRIPTION

CommandTypeObj * | element Abstract elements that provide details of the Command that is setup by this
Registration message.

Subscription element Creates a persistent channel for a command. For the structure of a
Subscription element, see » Section 5.3.4 Persistent Channels.

5.3 JMF Handshaking

JMF can seek to establish communication between system components in several ways. This section describes the ac-
tions and appropriate reactions in a communication using JMF.

5.3.1Single Query/Command Response Communication

The handshaking mechanisms for queries and commands are equivalent. The initiating controller sends a query message
or command message to the target controller. The target parses the Query or Command and immediately issues an ap-
propriate Response message. If a Command with long latency is issued, an additional Acknowledge message MAY be sent
to acknowledge when the command has been executed.

5.3.2 Signal and Acknowledge Handshaking

By default, JMF signal messages and acknowledge messages are “fire and forget.” In case of success, no response mes-
sage is sent by the receiver besides the standard protocol HTTP response with an empty body. If an error occurred at the
receiver's end, the Signal or Acknowledge receiver SHOULD return an error response message as defined in » Section 5.5
Error and Event Messages.

Any response related to a Signal or Acknowledge message SHALL NOT specify that an acknowledge will be sent (the ac-
knowledged attribute SHALL be set to false). This is due to the fact that signal and acknowledge messages inherently
forbid the use of an acknowledge in response, since they do not have an @AcknowledgeURL to indicate where these ac-
knowledge messages should be sent.

5.3.3 Reliable Signaling

If reliable signaling has been specified when the persistent channel is set up (see » Table 5.11 Subscription Element), then
the receiver of the JMF signal SHALL respond to the message using a JMF response that indicates the appropriate value
for the @ReturnCode attribute. If the receiver does not respond to the reliable signal, the sender SHALL retry the reliable
signal, based on the @RetryPolicy specified in the original Subscription element. If a response is received with a

JDF SPECIFICATION 1.7 139

MESSAGING

@ReturnCode value other than zero, then the signal message MAY have to be retried, depending on the Error/ @Resend
attribute in the response.

Figure 5-3: Example of reliable signaling

Subscriber Signaler

|_| Query ID="42" w/Subscription

»—1 Subscription
L_l Processed

Reliable Signal 1 w/refID = "42" J-I—_l

Signal 1 Response w/ReturnCode = "0"
Received >

Signal 1
Created

A

Reliable Signal 2 w/refID = "42" J:l Signal 2

Signal2not 1 < - - Created
Received v Reliable Signal 2 (retry)
v Reliable Signal 2 (retry 2)
: :[] Signal 3
Signal 3 . _ Reliable Signal 3 w/reflD = "42" Created
Received D
eceive Response w/ReturnCode = "0"

Y

5.3.4 Persistent Channels
Ouery and Command messages are subscribed for using Subscription elements.

5.3.4.1 Persistent Channels for Signals

Queries are made persistent by including a Subscription element that defines the persistent channel-receiving end. The
responding controller SHOULD initially send a response message to the subscribing controller, then the responding con-
troller SHOULD send signal messages whenever the condition specified by one of the attributes in the following table is
true. This is referred to as a persistent channel. The @refID attribute of the Signal is defined by the @ID attribute of the
Ouery. In other words, the @refID of the signal identifies the persistent channel. Any Query can be set up as a persistent
channel, although in some cases this might not make sense.

5.3.4.2 Persistent Channels for Commands

New in JDF 1.3

Commands can also be subscribed for by using a Subscription element in an initial Registration. A Subscription in a
Registration defines a request for the initial registration message receiver to subsequently send Command messages to
the recipient defined in Subscription/ @URL or Subscription/@Format + Subscription/@Template. For instance, an MIS
might send a Registration to a prepress workflow system that directs the prepress workflow system to send Command
messages to a press controller whenever a plate or preview has been produced.

5.3.5 Subscription

Whether or not a responding controllers implements a JDF persistent channel as an HTTP/1.1 » [RFC2616] persistent
connection depends on implementation.

Table 5.11: Subscription Element (Sheet 1 of 2)

NAME DATA TYPE DESCRIPTION
ChannelMode ? enumerations | Specifies reliability of persistent channel, and whether it is required or just
New in JDF 1.4 preferred. Ordered list, with most preferred channel mode first.

If none of the provided values of @ChannelMode are supported by the con-
sumer of the subscription, the response SHOULD indicate @ReturnCode 111,
which is “Subscription request denied”.

Allowed values are from: » ChannelMode

Note: See » Table 5.2.3 Signal.

140 JDF SPECIFICATION 1.7

JMF HANDSHAKING

Table 5.11: Subscription Element (Sheet 2 of 2)

NAME DATA TYPE DESCRIPTION

Format ¢ string A formatting string used with the @ Template attribute to define a sequence of

N ia IR generated URLs.

Deprecated in JDF 1.5 Allowed values are from: » Appendix G String Generation.

Unidirectional Constraint: If @Format is specified, then @Template SHALL also be specified
and @URL SHALL NOT be specified

Languages ? languages List of languages selected for human readable communication. If not speci-

New in JDF 1.6 fied, the operating system language SHALL be used. If multiple languages are
specified, the second and further languages SHOULD only be used for provid-
ing additional localized Comment elements. Messages SHALL NOT be sent
multiple times for the same event.

MinDelayTime ¢ duration Minimum delay between two subsequent Signal messages that are triggered

New in JDF 1.3 by this Subscription. If not specified a Signal SHOULD be fired when any of the
conditions described in Subscription is met. Note that Signal messages that
would be fired before @MinDelayTime are lost. @MinDelayTime SHOULD NOT
be applied to Signal messages that affect costing.

Reliable Signal messages SHALL NOT be retried more frequently than the

interval specified by @MinDelayTime.

RepeatStep ? integer Requests an update signal whenever the @ActualAmount associated with the
query is an integer multiple of @RepeatStep.

If not specified, it is up to the sending controller to generate signals.

RepeatTime ? double Requests an update signal every @RepeatTime seconds. If defined, the signal
is generated periodically, independent of any other trigger conditions.

@RepeatTime SHALL NOT override any signals triggered by a change of sta-

tus. Signals triggered by a status change SHALL be sent regardless of the

value of @RepeatTime. A sender MAY restart counting for @RepeatTime based
signals whenever it sends a signal to the same subscription.

RetryPolicy ? enumeration | For reliable subscriptions. Indicates whether or not signals SHOULD be

New in JDF 1.4 retried indefinitely, or only until the next signal from the same Subscription

(i.e., has the same @refID) would be sent. @RetryPolicy is ignored for non-

reliable subscriptions.

Allowed values are:

DiscardAtNextSignal — If a signal has not been received, and it is time to send
the next signal related to this Subscription (the next signal specifies the
same @refID value), then discard the current signal.

RetryForever — Continue retrying every signal indefinitely.

Template ? string A template, used with @Format, to define a sequence of generated URLs.
New in JDF 1.2 Allowed values are from: » Appendix G String Generation.

Deprecated in JDF 1.5 Constraint: if @ Template is specified, then @Format SHALL also be specified
Unidirectional and @URL SHALL NOT be specified.

URL ? URL URL of the persistent channel receiving end. The protocol of the Subscription
Modified in JDF 1.2 is specified by the scheme of @URL.

Note: Starting with JDF 1.5, this attribute is no longer specified as “Bidirec-

tional” because unidirectional attributes are deprecated.

ObservationTarget | element Requests an updating signal message whenever the value of one of the attri-
*k

butes specified in ObservationTarget changes.

JDF SPECIFICATION 1.7 141

MESSAGING

5.3.5.1 ObservationTarget
Table 5.12: ObservationTarget Element

NAME DATA TYPE DESCRIPTION
Attributes ? NMTOKENS Requests an update signal whenever the value of one of the attributes speci-
Deprecated in JDF 1.2 fied by @Attributes is modified. A value of "*" denotes a message request for

any attribute change which is the default.
Deprecation note: Replaced with @ObservationPath in JDF 1.2 and above.

ElementIDs ¢ NMTOKENS IDs of the elements that contain attributes that can change. Used only in con-
Deprecated in JDF 1.2 junction with a query of the state change of a certain resource or node which
cannot uniquely be addressed by the other attributes of this element.
Deprecation note: Replaced with @ObservationPath in JDF 1.2 and above.

ElementType ? NMTOKEN Name of the element that contains attributes that can change. Defaults to the
Deprecated in JDF 1.2 abstract ResponseTypeObj of the message.

Deprecation note: Replaced with @ObservationPath in JDF 1.2 and above.
ObservationPath ? XPath XPath of the elements or attributes that are observed. The XPath is in the
New in JDF 1.2 context of the resulting JMF. If not specified, a Signal is emitted on any

change in the abstract ResponseType0Obj of the message.

If a controller that does not support persistent channels is queried to set up a persistent channel, it SHALL answer the
query message with a response message, set @Subscribed to "false", and set the @ReturnCode to "111".

Multiple attributes of a Subscription element are combined as a boolean OR operation of these attributes. For instance,
if @RepeatStep and @ObservationTarget are both specified, messages fulfilling either of the requirements are requested.
If the Subscription element contains only a URL, it is up to the emitting controller to define when to emit messages.

5.3.6 Scope of Subscriptions

New in JDF 1.5.

Note: In general, subscriptions SHOULD be as global in scope as possible. For instance, it is preferable to create one glob-
al status Subscription for all job related and job unrelated messages, rather than creating a new status Subscription for
each individual queue entry.

Deprecation note: Starting with JDF 1.5, support for job and queue entry specific subscriptions is deprecated.

5.3.7 Deleting Persistent Channels

A persistent channel SHALL be deleted by sending a StopPersistentChannel command message, as described in » Section
5.56 StopPersistentChannel.

5.4 JMF Messaging Levels What's your JMF
AJDF conforming controller MAY opt to support one of the following messaging 9P\ sop?
compliance levels offered by JMF:

No messaging — Controllers have the option of supporting no As part of your strategic
messaging at all. For this level, JDF includes Audit records for each equipment purchasing procedures and
process that allow the results of the process to be recorded. requirements, consider what the JDF

Notification — Most controllers will choose to support some level of Messaging Levels are desired, and
messaging capability. Notification is the most basic level of support. what the minimum level of confor-
Devices that support notification provide unidirectional messaging by mance will be for your new equipment
sending signal messages. Notification messages inform the controller purchases.
when they begin and complete execution of some process within a job.

They MAY also provide notice of some error conditions. Setup of the
notification channel is hard-wired.

Query support — The next level of communication supports queries. Controllers that support queries respond to

requests from other controllers by communicating their status using such tools as current @JobID attributes, queued
@JobID attributes or current job progress.

Command support — This level of support provides controllers with the ability to process commands. The
controller can receive commands, for instance, to interrupt the current job, to restart a job, or to change the status of
jobs in a queue.

Submission support — Finally, controllers MAY accept JDF jobs via an HTTP post request to the messaging
channel. In this case, the messaging channel SHALL support MIME Multipart/Related documents. For more details on
submission, see » Section 5.57 SubmissionMethods.

Each messaging level encompasses all of the lower messaging levels. Note that the message levels are provided for in-
formation and are not normative.

142 JDF SPECIFICATION 1.7

ERROR AND EVENT MESSAGES

5.5 Error and Event Messages

If an acknowledge message, command message, query message, signal message or a registration message is not suc-
cessfully handled, a processor SHALL reply with a standardized error response that may contain a Notification element.
Notification elements, described in detail in » Section 3.5.6 Notification, convey a textual description. The information
contained in the Notification element can be used by a user interface to visualize errors.

The response messages and acknowledge messages contain a @ReturnCode attribute. @ReturnCode defaults to 0, which
indicates that the response is successful. In case of success and in responses to commands, an informational Notification
element (@Class="Information") MAY be provided. In case of a warning, error or fatal error, the @ReturnCode is greater
than 0 and indicates the kind of error committed. In this case, a Notification element SHOULD be provided. Error codes
are defined in » Appendix A.4 Return Codes. The responding application SHOULD f{ill additional Netification/Error ele-
ments that describe the details of the error.

Example 5.7 Response with Notification Element
The following example uses a Notification element to describe an error:

<JMF MaxVersion="1.6" SenderID="A3 Printer" Version="1.6"
TimeStamp="2005-03-25T12:32:48+02:00" xmlns="http://www.CIP4.0org/JDFSchema 1 1"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<Response ID="M109" ReturnCode="5" Type="ResumeQueueEntry"
refID="M009" xsi:type="ResponseResumeQueueEntry">
<Notification Class="Error" TimeStamp="2005-03-25T712:32:48+02:00" Type="Error">
<Comment>StartJob unsuccessful - Device does not handle commands</Comment>
<Error ErrorID="1234" Resend="Prohibited">
<ErrorData ErrorType="Unsupported" Path="/JMF/Command"/>
</Error>
</Notification>
</Response>
</JME>

5.6 Message Template

The previous sections in this chapter provide a description of the overall structure of JMF messages. This section con-

tains a list of the standard messages that are defined within the JDF framework. It is OPTIONAL for a JDF compliant ap-
plication to support each Signal message or Query message described in this list. It is, however, possible to discover which
messages are supported in a workflow. A controller responds to the KnownMessages query message by publishing a list
of all the messages it supports (see » Section 5.29 KnownMessages, below).

At the beginning of each section there is a table that lists all of the message types in that category. These tables contain
three columns. The first is entitled “Message Type,” and it lists the names of each message type. The second column is
entitled “Family.” The values in this (family) column describe the kind of message element that is applicable in the cir-
cumstance being illustrated. The following abbreviations are used to describe the values used in the tables below to de-
scribe these major message element types.

Note: That these are XML elements that are direct children of the JMF element.

C: Command

G: Registration (“G” is the third letter)

Q: Query

R: Response and Acknowledge

S: Signal

More than one of these values can be valid simultaneously. If that is the case, then all applicable letters are included in
the column. Additionally, there are a few special circumstances indicated by particular combinations of these letters. The
letters “QR” or “CR” indicate that all Query messages and Command messages cause a Response message to be returned.

If the message can occur as a Signal message, either from a Subscription or independently, the “Family” field in the table
also contains the letter “S”. Finally, the third column provides a description of each element.

At the beginning of each section describing the contents and function of the message types listed in the tables described
above is a table containing the instantiation (i.e., the type) of all of the abstract subelements applicable to the message
being described. Each table contains an entry that describes the details of the Query message or Command message as

JDF SPECIFICATION 1.7 143

MESSAGING

well as an additional entry that describes the details of the corresponding response. The tables resemble the following
template:

Table 5.13: Template for Message tables

OBJECT TYPE ELEMENT NAME DESCRIPTION

Abstract subelement Name and type of the subelement | Short description of the subelement(s) if applicable.
type of the Query or that defines specifics of the Query
Command. message or Command message,
followed by a cardinality symbol.

Abstract subelement Name and type of subelement that | Short description of the subelement(s) if applicable.
type of the Response contains specific information

or Acknowledge. about the Response message or
Acknowledge message to a Query
message or Command message fol-
lowed by cardinality symbol.

5.6.1 Object Type Column

Each message in the remainder of this chapter has two cells in the Object Type column. The first is either QueryTypeObj
or CommandTypeObj. The second is always a ResponseTypeObj.

5.6.1.1 QueryTypeObj

A QueryTypeObj is an abstract element that is a placeholder for subelements of a Query or Signal message. See Query/
QueryTypeObj (» Table 5.3 Query Message Element) and Signal/QueryTypeObj (» Table 5.5 Signal Message Element).
OueryTypeObj also appears in the first row of the Object Type column for each query message below. For each such query
message, the corresponding elements in the Element Name column are intended to replace the QueryTypeObj in Query/
QueryTypeObj or Signal/QueryTypeOb;j.

5.6.1.2 CommandTypeObj

A CommandTypeObj is an abstract element that is a placeholder for subelements of a Command or Registration message.
See Command/CommandTypeObj (» Table 5.4 Command Message Element) and Registration/CommandTypeObj (» Table
5.10 Registration Message Element). CommandTypeObj also appears in the first row of the Object Type column for each
Command message below. For each such Command message, the corresponding elements in the element Name column
are intended to replace the CommandTypeObj in Command/CommandTypeObj or Registration/CommandTypeObj.

5.6.1.3 ResponseTypeObj

A ResponseTypeObj is an abstract element that is a placeholder for subelements of a Response, Signal or Acknowledge
message. See Response/ResponseType0bj (» Table 5.8 Response Message Element), Signal/ResponseTypeObj (» Table 5.8
Response Message Element) and Acknowledge/ResponseTypeObj (» Table 5.9 Acknowledge Message Element).
CommandTypeObj also appears in the second row of the Object Type column for each message below. For each such mes-
sage, the corresponding elements in the Element Name column are intended to replace the ResponseTypeObj in the
Response/ResponseTypeObj, Signal/ResponseTypeObj or Acknowledge/ResponseTypeObj.

5.7 List of AlLJMF Messages
The following table provides a list of all message element types.

Table 5.14: List of JIMF Messages (Sheet 1 of 3)

MESSAGE TYPE FAMILY DESCRIPTION
AbortQueueEntry CR The QueueEntry is aborted and remains in the Queue with QueueEntry/
@Status="Aborted".
CloseQueue CR The queue is closed. No Jobs are to be accepted by the queue.
Events QRS Used to subscribe pure events occurring randomly like scanning of a bar code,
Deprecated in JDF 1.5 activation of function keys at a console, error messages, etc.
FlushQueue CQRS All entries in the queue are removed.
FlushResources CQRS Remove temporary Resource from a Device.
New in JDF 1.2

144 JDF SPECIFICATION 1.7

LIST OF ALL JMF MESSAGES

Table 5.14: List of JIMF Messages (Sheet 2 of 3)

MESSAGE TYPE FAMILY DESCRIPTION

ForceGang CR A gang is forced to execute.

New in JDF 1.3

GangStatus CR The status of a gang is queried.

New in JDF 1.3

HoldQueue CR The queue is held. No Jobs within the queue are to be executed.

HoldQueueEntry CR The entry remains in queue but is not executed until a ResumeQueueEntry
Command message is received.

KnownControllers QRS Returns a list of JMF capable controllers.

Deprecated in JDF 1.5

KnownDevices QRS Returns information about the Devices that are controlled by a Controller.

KnownlIDFServices QRS Returns a list of services (JDF Node Types) that are defined in the JDF speci-

Deprecated in JDF 1.2 fication.

KnownMessages QRS Returns a list of all messages that are supported by the Controller.

KnownSubscription | QRS Returns a list of active persistent channels.

S

New in JDF 1.4

ModifyNode CRS modifies details of JDF Nodes.

New in JDF 1.3

NewlIDF CQRS Initiates or reports modifications of new JDF Nodes.

New in JDF 1.2

Nodelnfo CQRS Initiates or reports modifications of JDF Node information (e.g., scheduling).

New in JDF 1.2

Deprecated in JDF 1.3

Notification QRS Generally sent as Signals. A Query allows Subscriptions for Notification mes-
sages.

Occupation QRS Queries the occupation of an employee.

Deprecated in JDF 1.5

OpenQueue CR The queue is opened. Jobs are to be accepted.

PipeClose CR Closes a pipe because no further Resources are needed. This is typically used
to terminate the producing Process.

PipePause CR Pauses a Process if no further Resources can be consumed or produced.

PipePull CR Requests a new Resource from a pipe.

PipePush CR Notifies that a new Resource is available in a pipe.

QueueEntryStatus QRS Returns a QueueEntry element.

Deprecated in JDF 1.2

QueueStatus QRS Returns the OQueue elements that describe a queue or set of queues.

RemoveQueueEntry | CR A job is removed from the queue.

RepeatMessages QR Returns a set of previously sent messages that have been stored by the Con-

Deprecated in JDF 1.5

troller.

JDF SPECIFICATION 1.7 145

MESSAGING

Table 5.14: List of JIMF Messages (Sheet 3 of 3)

MESSAGE TYPE FAMILY DESCRIPTION
RequestForAuthenti | CQRS Used as a Command to exchange certificates or as a Query to obtain the
cation authentication status of previously exchanged certificates.
New in JDF 1.4
RequestQueueEntry | CR A new job is requested by the Device. This message is used to signal that a
New in JDF 1.2 Device has processing Resources available.
Resource CGQRS Queries and/or modifies JDF Resources that are used by a Device, such as

Device settings, or by a job. This message can also be used to query the level
of Consumable Resource elements in a Device.

ResourcePull CGR Creates a new QueueEntry from an already existing QueueEntry and submits it

New in JDF 1.2 to the queue in order to be executed.

ResubmitQueue€Entr | CR Replaces a queue entry without affecting the entry’s parameters. The com-

y mand is used, for example, for late changes to a submitted JDF.

ResumeQueue CR The queue is activated and queue entries are to be executed.

ResumeQueueEntry | CR Aheld job is resumed. The job is re-queued at the position defined by its cur-
rent priority. Submission time is set to the current time stamp.

ReturnQueueEntry CR Returns a job that had been submitted with a SubmitQueueEntry to the queue

New in IDF 1.2 that represents the Controller that originally submitted the job.

SetQueueEntryPosit | CR Queues a job behind a given position n, where n represents a numerical value. "0" is

ion the pole position. Priority is set to the priority of the job at position n.

SetQueueEntryPriori | CR Sets the priority of a queued job to a new value. This does not apply to Jobs

ty that are already running.

ShutDown CR Shuts down a Device.

New in JDF 1.2

Status QRS Queries the general status of a Device, Controller or job.

StopPersistentChan | CR Closes a persistent channel.

nel

SubmissionMethods | QR Queries a list of supported submission methods to the queue.

SubmitQueueEntry CR A job is submitted to a queue in order to be executed.

SuspendQueueEntry | CR The entry is suspended if it is already running. It remains suspended until a

New in JDF 1.2 ResumeQueueEntry Command message is received.

Track QRS Queries the location of a given job or job Part.

Deprecated in JDF 1.5

UpdatelDF CRS Synchronizes and relinks modified JDF Nodes.
New in JDF 1.3

WakeUp CR Wakes up a Device that is in standby mode.
New in JDF 1.2

5.8 Messages for Events and Capabilities

The message types of the following table are defined in order to exchange metadata about Controller or Device abilities
and for general communication.

Table 5.15: Messages for events and capabilities (Sheet 1 of 2)

MESSAGE TYPE FAMILY DESCRIPTION
Events QRS Used to subscribe pure events occurring randomly like scanning of a bar code,
Deprecated in JDF 1.5 activation of function keys at a console, error messages, etc.

146 JDF SPECIFICATION 1.7

MESSAGES TO QUERY/COMMAND A JOB, DEVICE OR CONTROLLER

Table 5.15: Messages for events and capabilities (Sheet 2 of 2)

MESSAGE TYPE FAMILY DESCRIPTION
KnownControllers QRS Returns a list of JMF capable Controllers.
Deprecated in JDF 1.5
KnownDevices QRS Returns information about the Devices that are controlled by a Controller.
KnownlIDFServices QRS Returns a list of services (JDF Node Types) that are defined in the JDF speci-
Deprecated in JDF 1.2 fication.
KnownMessages QRS Returns a list of all messages that are supported by the Controller.
KnownSubscription | QRS Returns a list of active persistent channels.
S
New in JDF 1.4
Notification QRS Generally sent as Signals. A Query allows Subscriptions for Notification mes-

sages.

RepeatMessages QR Returns a set of previously sent messages that have been stored by the Con-
Deprecated in JDF 1.5 troller.
RequestForAuthenti | CQR Used as a Command to exchange certificates or as a Query to obtain the
cation authentication status of previously exchanged certificates.
New in JDF 1.4
StopPersistentChan | CR Closes a persistent channel.

nel

5.9 Messages to Query/Command a Job, Device or Controller

JDF Messaging provides methods to trace the status of individual devices and resources, and additional job-dependent
job-tracking data. The status of a job is described by the Status elements of that job.

Devices are uniquely identified by a name — that is, by the attribute @DevicelD of the Device Resource (see » Section 8.43
Device) — while Controllers are uniquely identified by their URL. In other words, Controllers are implicitly identified as
a result of the fact that they are responding to a message. One Controller MAY control multiple Devices. The following
queries and commands are defined for status and progress tracking.

Table 5.16: Messages to query/affect a Job, Device or Controller (Sheet 1 of 2)

MESSAGE TYPE FAMILY DESCRIPTION

FlushResources CQRS Remove temporary Resources from a Device.

New in JDF 1.2

ModifyNode CRS Modifies details of JDF Nodes that have previously been submitted to a

New in JDF 1.3 Device.

NewJDF CQRS Initiates or reports modifications of new JDF Nodes.

New in JDF 1.2

Nodelnfo CQRS Initiates or reports modifications of JDF Node information (e.g., scheduling).

New in IDF 1.2 Use either Resource Command messages with ResourceCmdParams/

D tedin JDF1.3 @ResourceName="Nodelnfo" or Resource Query messages with

eprecatedin ' ResourceQuParams/@ResourceName="Nodelnfo" instead.

Occupation QRS Queries the occupation of an employee.

Deprecated in JDF 1.5 Deprecation note: Use Status signals with JobPhase/Activity or Devicelnfo/
Activity instead.

Resource CGQRS Queries and/or modifies JDF Resources that are used by a Device, such as
Device settings, or by a job. This message can also be used to query the level
of consumables in a Device.

ResourcePull CGR Creates a new QueueEntry from an already existing QueueEntry and submits it

New in JDF 1.2 to the queue in order to be executed.

JDF SPECIFICATION 1.7 147

MESSAGING

Table 5.16: Messages to query/affect a Job, Device or Controller (Sheet 2 of 2)

MESSAGE TYPE FAMILY DESCRIPTION
ShutDown CR Shuts down a Device.
New in JDF 1.2
Status QRS Queries the general status of a Device, Controller or job.
Track QRS Queries the location of a given job or job Part.

Deprecated in JDF 1.5

UpdatelDF CRS Synchronizes and relinks modified JDF Nodes.
New in JDF 1.3

WakeUp CR Wakes up a Device that is in standby mode.
New in JDF 1.2

5.10 Messages for Pipe Control

JDF Messaging provides methods to control dynamic pipes. Dynamic pipes are described in detail in » Section 4.3.3
Overlapping processing Using Pipes.

Table 5.17: Messages for Control of Dynamic Pipes

MESSAGE TYPE FAMILY DESCRIPTION

PipeClose CR Closes a pipe because no further resources are needed. this is typically used to
terminate the producing process.

PipePause CR Pauses a process if no further resources can be consumed or produced.
PipePull CGR Requests a new resource from a pipe.
PipePush CGR Notifies that a new resource is available in a pipe.

5.10.1 PipeParams
The PipeParams element is also used by the messages PipePull, PipePush and PipePause.
Table 5.18: PipeParams Element (Sheet 1 of 2)

NAME DATA TYPE DESCRIPTION
JobID ? string Specifies the @JobID of the process at the receiving end of the message that
New in JDF 1.2 links to the resource specified in @PipelD.
JobPartiD ? string Specifies the @JobPartID of the process at the receiving end of the message
New in IDF 1.2 that links to the resource specified in @PipelD.
PipelD string Pipe ID of the JDF resource that defines the dynamic pipe.
ProjectID ? string Specifies the @ProjectID of the Node at the receiving end of the message that
New in JDF 15 links to the Resource specified in @PipelD.

Status = "InProgress" | enumeration | Process status after the request.
Allowed value is from: » Status.

UpdatedStatus ? enumeration | This value represents the actual status of the pipe resource and MAY be used
by the receiving process for process termination control. For details see
» Section 4.3.5.2 Formal Iterative processing.

Allowed value is from: » ResourceStatus.

AmountPool ? element Updated AmountPool for the pipe Resource. The AmountPool/PartAmount/Part
New in JDF 1.5 MAY contain additional metadata related to the updated Resource.

The ordering of the PartAmount elements in the AmountPool is relevant.

148 JDF SPECIFICATION 1.7

QUEUE SUPPORT

Table 5.18: PipeParams Element (Sheet 2 of 2)

NAME DATA TYPE DESCRIPTION

Resource * element Updated resources to be used by the process that receives the pipe com-
mand:PipePull (the receiver creates the pipe Resource), PipePush (the receiver
consumes the pipe Resource) and PipePause (the receiver only updates the
inputs).

Possible commands are: PipePull, PipePush or PipePause. In case of the
PipeClose Command message, the Resources are ignored. The data type and
@Class of Resource is derived from the Abstract Resource. See » Section 3.8.3
Abstract Resource.

ResourcelLink ? element Updated ResourcelLink to the pipe Resource: PipePull (it is an output link),
Deprecated in JDF 1.5 PipePush (it is an input link) and PipePause (depends on the pipe end). This
ResourceLink MAY be used by the Process that links to the pipe Resource.

The attributes @rRef and @Usage of a ResourceLink SHALL NOT be modified
by the Agent that sends the Pipe Control message because these attributes are
used by the JMF receiver to identify the ResourceLink that is to be modified.

In case of the PipeClose Command message, the Resourcelink is ignored.
Deprecation note: Starting with JDF 1.5, AmountPool replaces Resourcelink.
This change allows for amounts and partitions without using @rRef and
@Usage. The Resource is identified by @Pipeld).

5.171 Queue Support

In JMF, a Controller or Device is assumed to have one input queue that accepts submitted Jobs. Controllers which receive
submitted jobs SHALL in turn submit these jobs to lower level controllers or devices to further pass the submission on.
In other words, job submissions “cascade” down through controllers until they get to the device. Similarly,
ReturnQueueEntry messages “cascade” back up through each level. If a machine supports multiple queues, it SHALL be
represented by multiple logical devices in JDF. In other words, a Device SHALL NOT have more than one queue. The sim-
ple case of a device with no queue can be mapped to a queue with two @Status states: "Waiting" and "Full". JMF supports
simple handling of priority queues. The following assumptions are made:

Queues support priority. Priority SHALL only be changed for waiting Jobs. A queue MAY round priorities to the
number of supported priorities, which MAY be one, indicating no priority handling,

Priority is described by an integer from 0 to 100. Priority 100 defines a job that SHOULD pause another job that is
in progress and commence immediately. If a Device does not support the pausing of running Jobs, it SHOULD queue a
priority 100 job before the last pending priority 100 job.

A controller MAY control multiple devices/queues.
Queue entries can be unambiguously identified by a @ QueueEntryID.

A controller or device MAY analyze a JDF that is submitted to a queue at submission or execution time. A queue
MAY treat a JDF as a closed envelope that is passed on to the device without checking. The behavior is implementation
dependent.
Some conventions used in the following sections have already been introduced in » Section 5.6 Message Template. This
affects the message families and the descriptive tables at the beginning of each message section that describe the type
objects related to the corresponding message. The type objects are QueryTypeObj, CommandTypeObj and
ResponseTypeObj.

5.11.1 Queue Entry ID Generation

Queue entries are accessed using a @Queue€ntrylD attribute, which the queue’s controller or device generates when it
receives the submitted job, and which is returned in the SubmitQueueEntry response message. @QueueEntrylD SHALL
uniquely identify an entry within the scope of one queue. An implementation is free to choose the algorithm that gen-
erates @QueueEntrylD values.

5.12 Messages for Queue Entry Handling

Queue-entry handling is provided so that the state of individual jobs within a queue can be changed. Job submission,
queue-entry grouping, priorities, and hold / suspend / resume of entries are all supported. The individual commands are
defined in the table and explained in greater detail in the sections that follow.

JDF SPECIFICATION 1.7 149

MESSAGING

Starting with JDF 1.5, the Queue element is deprecated in the response to all queue entry handling messages. The
OueuefFilter that limits the Queue is also deprecated in the respective commands and queries. The status of the resulting
queue SHOULD therefore be queried with an explicit QueueStatus message. See » Section 5.41 QueueStatus.

Table 5.19: Messages for queue entry handling

MESSAGE TYPE FAMILY DESCRIPTION

AbortQueueEntry CR The QueueEntry is aborted and remains in the Queue with QueueEntry/

Modified in JDF 1.2 @Status="Aborted".

HoldQueueEntry CR The entry remains in queue but is not executed until a ResumeQueueEntry
Command message is received.

RemoveQueueEntry | CR A job is removed from the queue.

RequestQueueEntry | CR A new job is requested by the Device. This message is used to signal that a

New in JDF 1.2 Device has processing capabilities available.

ResubmitQueue€Entr | CR Replaces a queue entry without affecting the entry’s parameters. The com-

y mand is used, for example, for late changes to a submitted JDF.

ResumeQueueEntry | CR A held job is resumed. The job is re-queued at the position defined by its cur-
rent priority. Submission time is set to the current time stamp.

ReturnQueueEntry CR Returns a job that had been submitted with a SubmitQueueEntry to the queue

New in JDF 1.2 that represents the Controller that originally submitted the job.

SetQueueEntryPosit | CR Queues a job behind a given position n, where n represents a numerical value.

ion "0" is the pole position. Priority is set to the priority of the job at position n.

SetQueueEntryPriori | CR Sets the priority of a queued job to a new value. This does not apply to Jobs

ty that are already running.

SubmitQueueEntry CR A job is submitted to a queue in order to be executed.

SuspendQueueEntry | CR The entry is suspended if it is already running,. It remains suspended until a

New in IDF 1.2 ResumeQueueEntry Command message is received.

The following table specifies the status transitions for the respective queue entry handling messages. The error(n) indi-
cates the ReturnCode which is returned on an illegal Status transition and the queue entry Status is unchanged. For de-
tails on error codes, see » Appendix A.4 Return Codes.

The following are codes for the following table:

A: Aborted

C: Completed

H: Held

PR: PendingReturn New in JDF 1.4

Rm: Removed

Rn: Running

S: Suspended

W: Waiting

number: Error that specified number (e.g., “105” means “error(105)”). .

Table 5.20: Status Transitions for QueueEntry Handling Messages (Sheet 1 of 2)

PREVIOUS STATUS E';'(?SNT'E
MESSAGE TYPE
NT
AbortQueueEntry 105 A A A A 114 114 113
HoldQueueEntry 105 H 113 106 106 114 114 114
RemoveQueueEntry 105 Rm Rm 106 106 106 Rm Rm
ResumeQueueEntry 105 113 \W 113 Rn/W 114 114 114
SetQueueEntryPosition 105 W H 107 107 114 114 114

150 JDF SPECIFICATION 1.7

MESSAGES FOR QUEUE ENTRY HANDLING

Table 5.20: Status Transitions for QueueEntry Handling Messages (Sheet 2 of 2)

PREVIOUS STATUS

MESSAGE TYPE

SetQueueEntryPriority 105 W H 107 107 114 114 114
SuspendQueueEntry 105 115 115 S 113 114 114 114
RequestQueueEntry RequestQueueEntry is emitted by the Controller of the queue and not sent to the
queue. Therefore it is not applicable in this section.
ResubmitQueueEntry 105 \W H Rn+W | S +107 114 Rn+W | Rn+W
+107 + 114 + 114
ReturnQueueEntry ReturnQueueEntry is emitted by the Controller of the queue and not sent to the

queue. Therefore it is not applicable in this section.

SubmitQueueEntry W,H, A new @QueueEntrylD is generated by the queue owner on submission.
Rn Therefore these states are not applicable.

JDF SPECIFICATION 1.7 151

MESSAGING

The following @Status transition diagram depicts the life cycle of a queue entry.

Figure 5-4: IMF QueueEntry status transition diagram

QueueEntry
non-existant

(Start) § (Re-) SubmitQueueEntry/@Hold="true"

(Re-) SubmitQueueEntry ResourcePuII/@Hold:"true”o

P

ResourcePull

HoldQueueEntry

Waiting ResumeQueueEntry

QueueEntry is selected
for execution (internal)

ResourcePull
SuspendQueueEntry

ResumeQueueEntry | Suspended

®2—J

ResourcePull

Running

QueueEntry

completes (internal)
RemoveQueueEntry

®
® AbortQueueEntry

l Pending

Return

Return done and execution
aborted (internal)

Return done and execution
sucessful (internal)

®

Return done and

Completed
RemoveQueueEntry P Aborted
pending (internal)
RemoveQueueEntry
State Removed is used RemoveQueueEntry

only in the response of Removed

RemoveQueueEntry

Delete after response
(internal)

@ AbortQueueEntry

® ResourcePull
QueueEntr
(End) non-existanyt ® RemoveQueueEntry

5.13 Messages for Global Handling of Queues

Whereas the commands in the preceding section change the state of an individual queue entry, the commands in this

section modify the state of an entire queue. Note that entries that are executing in a Device are not affected by the global
queue-handling commands and SHALL be accessed individually. An individual queue can be selected by specifying the
target Device in the @DevicelD attribute of the JMF Root. If no @DevicelD is specified, the commands or queries are ap-

152 JDF SPECIFICATION 1.7

MESSAGES FOR GLOBAL HANDLING OF QUEUES

plied to all queues that are controlled by the Controller that received the message. The following individual messages are
defined:

Table 5.21: Messages for global handling of queues

MESSAGE TYPE FAMILY DESCRIPTION
CloseQueue CR The queue is closed. No Jobs are to be accepted by the queue.
FlushQueue CQRS All entries in the queue are removed.
HoldQueue CR The queue is held. No Jobs within the queue are to be executed.
OpenQueue CR The queue is opened. Jobs are to be accepted.
QueueEntryStatus QRS Returns a QueueEntry element.

Deprecated in JDF 1.2

QueueStatus QRS Returns the Queue element that describes a queue.
ResumeQueue CR The queue is activated and queue entries are to be executed.
SubmissionMethods | QR Queries a list of supported submission methods to the queue.

The following table shows the resulting status of a Queue in dependence on global queue commands CloseQueue/
OpenQueue and HoldQueue/ResumeQueue as well as the load of a queue and its processor. The first command pair deter-
mines the logical state of the first column “Closed” and the second of the column “Held”. The Queue is held if the Queue
manager doesn't send existing entries to the Queue's processor.

Table 5.22: Definition of the Queue Status Attribute Values

CLOSED HELD QUEUE FULL PROCESSOR FULL STATUS
Yes Yes Any Any "Blocked"
Yes No Any Any "Closed"
No Yes Any Any "Held"
No No Any No "Waiting"
No No No Yes "Running"”
No No Yes Yes "Full"

Figure 5-5: Effects of the global queue messages on the queue status

\ 4
I
i
o

OpenQueue
CloseQueue

HoldQueue
ResumeQueue

HoldQueue
l ResumeQueue

ananpawnsay

“OpenQueue ﬁ aN3NDP|OH ’l

“queue internal “queue internal
communication”

Waiti) R . communication”
atting “queue internal yotlillafe) ' “queue internal

communication” communication”

CloseQueue
OpenQueue

Queue

ResumeQueue
HoldQueue

OpenQueue
CloseQueue

Close

Pl

JDF SPECIFICATION 1.7 153

MESSAGING

5.13.1 QueueEntryStatus
Deprecated in JDF 1.2
Deprecation note: Starting with JDF 1.2, use QueueStatus with an appropriate QueueFilter instead of QueueEntryStatus.

5.14 Elements for Queues
In this section elements used by queue-handling commands are defined.

5.14.1 Queue

The attributes in the following table are defined for Queue message elements. Queue elements represent the queue of a
device including QueueEntry elements that represent both pending and running queue entries.

Table 5.23: Queue Element

NAME DATA TYPE DESCRIPTION
DevicelD string Identifies the device that is represented by the queue.
MaxQueueSize ? integer The maximum number of QueueEntry elements excluding
New in JDF 1.6 OueueEntry[@Status="Completed"] or QueueEntry[@Status="Aborted"] ele-
ments that can be contained in the Queue.
QueueSize ? integer The total number of QueueEntry elements that are in the Queue regardless of
New in IDF 1.2 the settings in the QueueFilter. Thus the value of @QueueSize may be higher

Modified in JDF 1.6 than the number of QueueEntry elements.

Status enumeration | Status of the queue.

Allowed values are:

Blocked — Queue is completely inactive. Entries SHALL NOT be added and no
entries are executed. The queue is closed and held. The queue requires an
interaction like OpenQueue or ResumeQueue to reactivate it.

Closed — Queue entries that are in the queue are executed, but new entries
SHALL NOT be submitted. The lock SHALL be removed explicitly by the
OpenQueue Command message.

Full — Queue entries that are in the queue are executed but new entries SHALL
NOT be submitted. The lock is removed by the queue Controller as soon
as it is able to do so.

Running — A Process is executing. Entries can be submitted and will be exe-
cuted when they reach their turn in the queue.

Waiting — Queue accepts new entries and has free Resources to immediately
commence processing.

Held — Entries can be submitted but will not be executed until the queue is
resumed by the ResumeQueue Command message.

Device * element The Devices that execute entries in this queue. Only Device/@ DevicelD
SHOULD be specified in these Device elements.

Queue€ntry * element QueueEntry elements (see » Table 5.24 QueueEntry Element, below). The
Modified in JDF 1.2 entries SHALL be ordered in the sequence they have been or will be executed
in, beginning with the running entries, followed by the waiting entries, high-
est QueueEntry/@Priority first, which are then followed by the completed
entries, sorted beginning with the youngest QueueEntry/@EndTime. The
Oueue contains a list of all QueueEntry elements that are still accessible on
the Device using the queue entry handling messages that are defined in

» Table 5.24 QueueEntry Element.

A OQueueEntry is not automatically deleted when executed or aborted, but
rather it remains in the Queuve and its @Status is changed to "Completed" or
"Aborted" accordingly. QueueEntry[@Status="Completed" or
@Status="Aborted"] elements SHALL NOT count towards determining Queue/
@Status based on the number of QueueEntry elements versus the
@MaxQueueSize.

154 JDF SPECIFICATION 1.7

Example 5.8:

Queue Element

ELEMENTS FOR QUEUES

<Queue DeviceID="(Q12345" Status="Running">
<QueueEntry JobID="111" JobPartID="0" Priority="1"
QueueEntryID="111-0" Status="Completed"/>
<QueueEntry JobID="111" JobPartID="1" Priority="1"
QueueEntryID="111-1" Status="Running"/>
<QueueEntry JobID="111" JobPartID="2" Priority="1"
QueueEntryID="111-2" Status="Waiting"/>
<QueueEntry JobID="112" JobPartID="1" Priority="55"
QueueEntryID="112-1" Status="Held"/>

</Queue>

5.14.2 QueueEntry

Table 5.24: QueueEntry Element (Sheet 1 of 2)

NAME DATA TYPE DESCRIPTION
Activation ? enumeration | Specifies the activation of the requested QueueEntry.
New in JDF 1.5 Allowed value is from: » Activation.
DevicelD ? string Identification of the Device that the QueueEntry will be or was executed on. If
New in JDF 1.2 not specified, it defaults to the default device of the queue.
EndTime ? dateTime Time when the job has been ended.
New in JDF 1.2
GangName ? NMTOKEN Name of the gang that this QueueEntry belongs to. @GangName SHALL be
N i IETLE! specified, if the QueueEntry is a candidate member of a gang job.
GangPolicy ? enumeration | Ganging policy for the QueueEntry.
New in JDF 1.3 Allowed value is from: » GangPolicy
JobID ? string The @JobID of the JDF process.
Modified in JDF 1.1
JobPartiD ? string The @JobPartID of the JDF process.
Priority = "1" integer Priority of the QueueEntry. Values are 0-100."0" is the lowest priority, while
"100" is the highest priority.
QueueEntrylD string ID of a QueueEntry. This ID SHALL be generated by the queue owner.
RelatedJoblID ? string The @RelatedJoblD of the JDF process.
New in JDF 1.7
Related/obPartID ? string The @RelatedJobPartID of the JDF process.
New in JDF 1.7
StartTime ? dateTime Time when the job has been started.
New in JDF 1.1
Status enumeration | Status of the individual entry.

Modified in JDF 1.3

Allowed value is from: » QueueEntryStatus.

JDF SPECIFICATION 1.7 155

MESSAGING

Table 5.24: QueueEntry Element (Sheet 2 of 2)

NAME DATA TYPE DESCRIPTION
StatusDetails ? string @StatusDetails provides additional details on the status of the QueueEntry.
New in JDF 1.5 Values include:

HeldForResourcePull — When @Status is "PendingReturn”, job is not returned on
purpose, commands ResourcePull, RemoveQueueEntry oOr
AbortQueueEntry are possible

JobUserInputRequired — When @Status is"Waiting" or "Running", job is not pro-
ducible and waits for user input required to process further (e.g., missing
parameters, decisions, etc.)

JobMissResources — When @Status is "Waiting" or "Running”, job waits for
resources to become available to process further

JobReadyForStart — When is @Status "Waiting" or "Running”, job is ready and
waits for (manual) start event to process further

QueuedToRun — When @Status is"Waiting" or "Running”, job is queued to run
and waits for device to become available (idle) to process further

PendingReturn — When @Status is "PendingReturn”, job is currently returning
(explicit "PendingReturn” to distinguish from devices/controllers that do
not support @StatusDetails)

Running — When @Status is "Running"”, job is processing (explicit Running to
distinguish from devices/controllers that do not support @StatusDetails)

SubmissionTime ? dateTime Time when the entry was submitted to the queue.

GangSource * element If present, each GangSource SHALL represent the source jobs that are being

New in IDF 1.6 processed as a gang job by this QueueEntry.

JobPhase * element Description of the current status of the job that is associated with the

New in IDF 1.2 OueueEntry. Note that in JDF 1.3 and above, one QueueEntry MAY have multi-
ple active JobPhase elements.

Part * element Describes which parts of a job were submitted to the queue. The Part ele-

New in JDE 1.2 ments are copies of AncestorPool/Part of the JDF Node that is executed by the

' device.

Preview * element Any number of Preview elements MAY be associated with a QueueEntry and

New in JDF 1.2 used for display purposes. Preview/@ PreviewUsage SHOULD be "ThumbNail" or
"Viewable".

5.14.3 QueueEntryDef
The element specifies a queue entry and is used to refer to a certain queue entry.
Table 5.25: QueueEntryDef Element

DATA TYPE DESCRIPTION

QueueEntrylD string ID of the queue entry. The ID is generated by the queue owner.

5.14.4 QueueFilter
New in JDF 1.2

The QueueFilter element defines a filter for all messages that return a queue. The supplied elements of the QueueFilter
define a matching criteria that is a logical “and”. Only QueueEntry elements that match all restrictions specified by the
OueuefFilter are included in the Queue element that is returned by the queue-handling message. The QueueFilter element
is also used to specify the QueueEntry elements to be removed by the FlushQueue message.

Table 5.26: QueuefFilter Element (Sheet 1 of 3)

NAME DATA TYPE DESCRIPTION
Activation ? enumeration | The activation state of the QueueEntry elements to be returned. If not speci-
New in IDF 1.5 fied, there is no filtering on QueueEntry/@Activation.

Allowed value is from: » Activation.

FirstEntry ? string @QueueEntrylD of the first QueueEntry that this QueueFilter applies to. Only
New in JDF 1.6 OueueEntry elements that are behind this (including this) QueueEntry in the
current queue sorting SHALL be selected.

156 JDF SPECIFICATION 1.7

ELEMENTS FOR QUEUES

Table 5.26: QueueFilter Element (Sheet 2 of 3)

NAME DATA TYPE DESCRIPTION
GangNames ? NMTOKENS Gang names of the QueueEntry elements to be returned. If not specified, there
New in JDF 1.3 is no filtering on QueueEntry/@ GangName.
JobID ? string Return only QueueEntry elements with specified @JobID. If not specified,
New in JDF 1.4 there is no fllterlng on QueueEntry/@JobId.
JobPartiD ? string Return only QueueEntry elements with specified @JobPartID. If not specified,
New in JDF 1.4 there is no filtering on QueueEntry/@JobPartID.
LastEntry ? string @QueuekntrylD of the last QueueEntry that this QueueFilter applies to. Only
New in IDF 1.6 OueueEntry elements that are in front of this (including this) QueueEntry in
the current queue sorting SHALL be selected.
MaxEntries ? integer Maximum number of QueueEntry elements to provide in the Queue element. If
not specified, fill in all matching QueueEntry elements.
MaxPriority ? integer Only QueueEntry elements with a @Priority lower than or equal to the value of
New in JDF 1.6 @MaxPriority SHALL be provided in the Queue element. If not specified, there
is no @Priority upper bound on candidates.
MinPriority ¢ integer Only QueueEntry elements with a @Priority higher than or equal to the value
New in JDF 1.6 of @MinPriority SHALL be provided in the Queue element. If not specified,
there is no @Priority lower bound on candidates.
NewerThan ? dateTime Only QueueEntry elements with a @SubmissionTime newer than or equal to
this dateTime SHALL BE provided in the Queue element or removed by the
FlushOueue message. If not specified, there is no dateTime upper bound on
candidates.
OlderThan ? dateTime Only QueueEntry elements with a @ SubmissionTime older than or equal to this
dateTime SHALL BE provided in the Queue element or removed by the
FlushOueue message. If not specified, there is no dateTime lower bound on
candidates.
PreviewUsages ? enumerations | Specifies the particular kind (or kinds) of Preview resources to return in
New in JDF 1.4 OueueEntry/Preview. If @PreviewUsages is empty or not supplied, the
OueueEntry element SHALL not contain any Preview resources.
The Preview resources returned in a QueueEntry are a subset of those in the
actual QueueEntry defined by:
OueueEntry/Preview [contains (QueueFilter/@ PreviewUsages,
@PreviewUsage)]
Allowed values are from: » PreviewUsage.
QueueEntryDetails = | enumeration | @QueueEntryDetails refines the level of provided information about the queue.
"Brief” allowed values are:
Modified in JDF 1.4 None — Do not fill in the QueueEntry elements into the queue.
Brief — Provide all available QueueEntry information except for the associated
JobPhase element.
JobPhase — Provide all available QueueEntry information including the associ-
ated JobPhase elements. JobPhase/@URL MAY be returned when
@QueueEntryDetails="JobPhase".
JDF — Provide all available QueueEntry information including the associated
JobPhase element and the associated JDF element in the JobPhase ele-
ment. Deprecated in JDF 1.4
Deprecation note: Starting with JDF 1.4, use the Status query to retrieve status
information including information about the current JDF.
StatusList ? enumerations | Only QueueEntry elements with a @Status matching one of the entries in

@StatusList SHALL be selected by this filter. If not specified, there is no fil-
tering on QueueEntry/@Status.

Allowed values are from: » QueueEntryStatus.

JDF SPECIFICATION 1.7 157

MESSAGING

Table 5.26: QueueFilter Element (Sheet 3 of 3)

NAME

UpdateGranularity ?
New in JDF 1.4

DATA TYPE

enumeration

DESCRIPTION

Specifies whether all or only the updated QueueEntry elements should be

included in the Queue.

Allowed values are:

All — The Queue element describes all QueueEntry elements.

ChangesOnly — The Queue element describes only those QueueEntry elements
that have new information since the last Queue element was sent. When
used in conjunction with a signal, the Queue element describes all jobs on
the first instance of the signal being sent.

Device *

element

Only QueueEntry elements that match the attribute values specified in one of
these Device resources SHALL be included. QueueEntry elements match the
criteria if the attribute values specified in one of these Device resource match
the equivalent attribute values of the devices that are processing the
OueueEntry. Unspecified attributes always match. If Device is not specified, all
OueueEntry elements are returned. As this is a filter, only information that
can be used to identify a Device SHALL be specified. This precludes use of
DeviceCap and IconList in this Device.

GangSource *
New in JDF 1.6

element

If present only QueueEntry elements that contain a GangSource element that
matches at least one of these GangSource elements SHALL be selected. If not
specified, there is no filtering based on GangSource.

Part *
New in JDF 1.4

element

Only QueueEntry elements with all specified Part elements SHALL BE
returned. If not specified, there is no filtering on QueueEntry/Part.

QueueEntryDef *

element

Defines an explicit list of queue entries. If not specified, all entries in the
Oueue are considered.

5.15 Gang Jobs
New in JDF 1.3

JMF provides a mechanism to specify groups of QueueEntry elements within a queue that are processed together in a
gang. A job is submitted to a gang by specifying QueueSubmissionParams/@ GangPolicy. The details of how individual job
parts are ganged are device specific. For a description of planned job ganging, see also » Section 6.3.38 SheetOptimizing.

Table 5.27: Messages for Gang Jobs

MESSAGE TYPE FAMILY DESCRIPTION
ForceGang CR A gang is forced to execute.
New in JDF 1.3
GangStatus CR The status of a gang is queried.
New in JDF 1.3

5.16 Extending Messages

This specification defines a set of predefined messages for general usage. Extensions to existing messages and additional
message types can be defined using the standard extension rules described in » Section 3.12 JDF Extensibility. Note, the
generic content of » Section 3.1 Generic Contents of All Elements is also valid for JMF elements. It is not allowed to define
message extensions which duplicate the functionality of messaging types, messaging elements or message attributes
that are already defined in this specification.

For example the content of the @ Type attribute MAY be specified with a prefix that identifies the organization that de-
fined the extension. The prefix and name SHOULD be separated by a single colon (‘:’). Any additional attributes and el-
ements are allowed, and internal elements MAY be declared with explicit namespaces. The official namespace of JMF
elements is @xmlns="http://www.CIP4.org/JDFSchema_1_1". This namespace is identical to that defined for JDF in

» Section 3.12 JDF Extensibility. An example is provided:

158 JDF SPECIFICATION 1.7

Example 5.9: Custom Query

<JMF MaxVersion="1.6" SenderID="Circus"

ABORTQUEUEENTRY

TimeStamp="2005-07-25T12:32:48+02:00" Version="1.6"

xmlns="http://www.CIP4.0rg/JDFSchema 1 1"

xmlns:Circus="http://Circus.Schema.URI" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<Query ID="Ql" Type="Circus:IsClownHappy" xsi:type="Circus:QueryIsClownHappy">

<Circus:ClownParams Gender="male"/>
</Query>
</JIMFE>

Example 510: Custom Response

The response message will also have the "Circus:" namespace identifier. All Circus elements are explicitly declared.

<JMF MaxVersion="1.6" SenderID="Circus 2"

TimeStamp="2005-07-25T12:32:48+02:00" Version="1.6"

xmlns="http://www.CIP4.0rg/JDFSchema 1 1"

xmlns:Circus="http://Circus.Schema.URI" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<Response ID="M1" Type="Circus:IsClownHappy" refID="Ql" xsi:type="Circus:ResponselsClownHappy">

<Circus:Clown happy="true" name="Joe"/>
<Circus:Clown happy="false" name="John"/>
</Response>
</JME>

5.16.1 IfraTrack Support

The extending mechanism can be used to implement
compatibility with other XML-based messaging stan-
dards, for example version 3.0 of IfraTrack. The @ Type at-
tribute is set to the appropriate namespace, and the
foreign message is included, as demonstrated in the fol-
lowing example:

Note: The application is free to select the appropriate re-

More on IfraTrack

of status and management information
between local and global production management sys-
tems in newspaper production.

IfraTrack is a specification for the interchange

sponse types in order to fulfill its local (IfraTrack) protocol requirements if it uses its own namespace. In the examples
below, the default namespace associated with the JMF query message and response elements has been overwritten by

the Ifra namespace.

Example 5.11: Custom Query for IfraTrack

<JMF MaxVersion="1.6" SenderID="IFRA" Version="1.6" TimeStamp="2003-07-25T12:32:48+02:00"
xmlns="http://www.CIP4.0org/JDFSchema 1 1" xmlns:IFRA="IfraTrack URI"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<Query ID="Q1l" Type="IFRA:IMF" xsi:type="IFRA:QueryIMF">

<imf:IMF
xmlns:imf="IfraTrack URI">Whatever you want
</Query>
</JMF>

Example 512: Custom Response for IfraTrack
The legal response message would be:

<JMF MaxVersion="1.6" SenderID="IFRA" Version="1.6" TimeStamp="2003-07-25T12:32:48+02:00"
xmlns="http://www.CIP4.0org/JDFSchema 1 1" xmlns:IFRA="IfraTrack URI"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<Response ID="M1" Type="IFRA:IMF" refID="Ql" xsi:type="IFRA:ResponseIMF">
<imf:IMF xmlns:imf="IfraTrack URI">The appropriate IFRA response (s)</imf:IMF>

</Response>
</JMF>

5.17 AbortQueueEntry

(might be multiple top level Elements)</imf:IMF>

Once this command is issued, the entry specified by AbortQueueEntryParams/QueueFilter is stopped or aborted and re-
mains in the Queue with QueueEntry/@Status="Aborted" or "Completed" depending on the value of
AbortQueueEntryParams/@EndStatus. The Audit elements and JOF/@ Status of the processing JDF node are to be appro-

JDF SPECIFICATION 1.7

159

MESSAGING

priately set to "Aborted"or "Completed" and the JDF node SHALL be delivered to the URL as specified by SubmitQueueEntry/
@ReturnURL, SubmitQueueEntry/@ReturnJMF or Nodelnfo/@ TargetRoute.

Table 5.28: AbortQueueEntry Message

OBJECT TYPE

CommandTypeObj
Modified in JDF 1.2
Modified in JDF 1.5

ELEMENT
NAME DESCRIPTION
AbortQueueEn
tryParams ?
New in JDF 1.5
OueueEntryDe | Defines the queue entry or set of queue entries.
f? Deprecation note: Starting with JDF 1.5, this QueueEntryDef SHOULD be locat-

Deprecated in
JDF1.5

ed in AbortQueueEntryParams/QueueFilter.

QueuefFilter ?
New in JDF 1.2

Deprecated in
JDF1.5

Defines a filter for the returned Queue elements in the AbortQueueEntry mes-
sage.

ResponseTypeObj
Modified in JDF 1.5

Queue ?

Deprecated in
JDF 1.5

Describes the state of the queue after the command has been executed.

For the definition of the elements listed above, see » Section 5.14 Elements for Queues.

5.17.1 AbortQueueEntryParams

New in JDF 1.5

Table 5.29: AbortQueueEntryParams Element

NAME DATA TYPE DESCRIPTION
EndStatus enumeration | End status of the job after completing processing.
Allowed values are:
Completed
Aborted
QueueFilter ? element This QueueFilter selects the QueueEntry elements to apply this message to.

Example 5.13:

AbortQueueEntry Command

The following example demonstrates how an AbortQueueEntry command message causes a job in a queue to be aborted
and only return the @Status of the aborted QueueEntry in the response, rather than the entire Queue:

<Command ID="M0O09" Type="AbortQueueEntry" xsi:type="CommandAbortQueueEntry">
<QueueEntryDef QueueEntryID="7j0b-0032"/>

<QueueFilter>

<QueueEntryDef QueueEntryID="j0b-0032"/>

</QueueFilter>

</Command>

Example 5.14:

AbortQueueEntry Response

The following example shows a possible response message to the command message example above:

<Response ID="M109" Type="AbortQueueEntry" refID="M009" xsi:type="ResponseAbortQueueEntry">
<Queue DeviceID="A3 Printer" Status="Running">
<QueueEntry JobID="job-0032" QueueEntryID="job-0032" Status="Aborted"/>

</Queue>
</Response>

160

JDF SPECIFICATION 1.7

CLOSEQUEUE

5.18 CloseQueue

The queue is closed. No further queue entries are accepted by the queue. The status of entries that are already in the
queue remains unchanged and entries that are already in the Queue MAY be executed.

Table 5.30: CloseQueue Message

ELEMENT

OBJECT TYPE NAME DESCRIPTION
CommandTypeObj OueueFilter ? | Defines a filter for the returned Queue element in the CloseQueue message.
Modified in JDF 1.5 New in JDF 1.2
Deprecated in
JDF 1.5
ResponseTypeObj Queue ? Describes the state of the queue after the command has been executed.
Modified in JDF 1.5 Deprecated in
JDF 1.5
5.19 Events

Deprecated in JDF 1.5
Starting with JDF 1.5, the functionality of Events can be achieved using a subscription to Notification messages.

5.20 FlushQueue

5.20.1 FlushQueue Command

FlushQueue Command is used to remove QueueEntry elements from the Queue.

Note: A QueueEntry is not automatically deleted when executed or aborted, but rather it remains in the Queue and its
@Status is changed to "Completed" or "Aborted" accordingly. FlushQueueParams allows the specification of which
OueueEntry elements to remove. The QueueFilter in the FlushQueue message is applied to the OQueue returned after the
command is executed. The QueueFilter contained within the FlushQueueParams is used to specify which QueueEntry el-
ements to remove.

Table 5.31: FlushQueue Command Message

OBJECT TYPE ELEMENT DESCRIPTION

NAME

CommandTypeObj FlushQueuePa | Defines the QueueEntry elements to be removed. If not specified, then only
Modified in JDF 1.5 rams ¢ pending (i.e., @Status="Waiting" and @Status="Held" queue entries are
NewinJDF1.2 | removed).

OQueueFilter ? | Defines a filter for the returned Queue element in the FlushQueue message.
New in JDF 1.2

Deprecated in
JDF 1.5

ResponseTypeObj FlushQueuelnf | Defines the QueueEntry elements that were removed.

Modified in JDF 1.5 o?
New in JDF 1.2

Queue ? Describes the state of the queue after the command has been executed.

Deprecated in
JDF 1.5

5.20.1.1 FlushQueueParams
New in JDF 1.2

Table 5.32: FlushQueueParams Element

DATA TYPE DESCRIPTION

QueueFilter ? element Defines a QueueFilter that specifies the QueueEntry elements to be removed. If
not specified, the Queue is completely flushed.

JDF SPECIFICATION 1.7 161

MESSAGING

5.20.2 FlushQueue Query

When used as a signal or query, FlushQueue Query allows a controller to monitor queue flushing that is initiated by the
device (e.g., due to resource constraints). The QueueFilter in the FlushQueue message is applied to the Queue returned af-
ter the command is executed. The QueueFilter contained within the FlushQueuelnfo is used to specify which QueueEntry
elements were removed.

Table 5.33: FlushQueue Query Message

ELEMENT

OBJECT TYPE NAME DESCRIPTION
QueryTypeObj FlushQueuePa | Defines a QueueFilter that specifies the QueueEntry elements to be removed. If
Modified in JDF 1.5 rams not specified, the Queue is completely flushed.
New in JDF 1.5

QueuefFilter ? | Defines a filter for the returned Queue element in the FlushQueue message.

Deprecated in
JDF 1.5

ResponseTypeObj FlushQueuelnf | Defines the QueueEntry elements that were removed.

Modified in JDF1.5. | ©°
New in JDF 1.2

Queue ? Describes the state of the queue after the elements have been flushed.

Deprecated in
JDF 1.5

5.20.2.1 FlushQueuelnfo

New in JDF 1.2

The QueueFilter in FlushQueueParams defines the QueueEntry elements to be removed by FlushQueue. Those QueueEntry
elements meeting the criteria set in the QueueFilter will be removed.

Table 5.34: FlushQueuelnfo Element

DATA TYPE DESCRIPTION

QueuefFilter element Defines a QueueFilter that specifies the QueueEntry elements that were
removed. Typically QueueFilter contains a set of QueueEntryDef elements that
specify the QueueEntry elements that were removed.

5.21 FlushResources
New in JDF 1.2

The FlushResources message is used to remove temporary resources from a device. FlushResourceParams specifies the
resources to remove.

The Command allows a controller to request that a device actively flush its resources whereas the Query or Signal allows
a device to message that it has flushed resources to a controller.

5.21.1 FlushResources Command

The FlushResources Command is used to remove temporary resources from a device. FlushResourceParams allows the
specification of which resources to remove.

Table 5.35: FlushResources Command

ELEMENT

OBJECT TYPE NAME DESCRIPTION
CommandTypeObj FlushResourc | Defines the resources to be removed.
eParams ?

OQueuefFilter ? | Defines a filter for the returned Queue element in the FlushResources mes-

Deprecated in | Sage.
JDF 1.5

ResponseTypeObj FlusgnedResou This element is a placeholder for future use.
ces ¢

162 JDF SPECIFICATION 1.7

FORCEGANG

5.21.1.1 FlushedResouces

Table 5.36: FlushedResources Element

DATA TYPE DESCRIPTION

5.21.2 FlushResources Query

The FlushResources Query is used to query whether temporary resources have been removed by a device.
FlushResourceParams allows the specification of which resources were removed.

Table 5.37: FlushResources Query

ELEMENT
OBJECT TYPE NAME DESCRIPTION
QueryTypeObj FlushResourc | Defines the resources to be removed.
eParams ?

OQueueFilter ? | Defines a filter for the returned Queue element in the FlushResources mes-

Deprecated in | Sage.
JDF1.5

ResponseTypeObj FlusgledResou This element is a placeholder for future use.
ces ¢

5.21.2.1 FlushResourceParams

Table 5.38: FlushResourceParams Element

NAME DATA TYPE DESCRIPTION
FlushPolicy = enumeration | Policy that defines how much of the QueueEntry resources is requested to be
"QueueEntry" flushed.

Allowed values are:

Complete — Remove all temporary resources belonging to the selected
OueueEntry including global resources that MAY be used by other
OueueEntry elements.

QueueEntry — The local resources belonging to the selected QueueEntry are
completely removed and no longer available — the default.

Intermediate — Remove any intermediate resources that belong to the
OueueEntry (e.g., intermediate raster files in a combined RIP and Image-
Setting Process), and retain the original input resources. A ResourcePull
message is still possible after executing FlushResources with
@FlushPolicy="Intermediate".

QueueFilter ? element Defines a QueueFilter that specifies the QueueEntry elements to which the
resources to be removed belong. If not specified, all temporary resources on
the device are completely flushed according to the value of @FlushPolicy.

5.22 ForceGang
New in JDF 1.3

The ForceGang message forces all QueueEntry[@Status="Waiting"] elements that belong to a gang to be executed, even
though the device dependent queue entry collecting algorithm might not be completed. A QueueEntry belongs to a gang
if QueueEntry/@GangName is included in the list of GangCmdFilter/ @ GangNames.

Table 5.39: Contents of the ForceGang Command Message

OBJECT TYPE ELEMENT DESCRIPTION

NAME

CommandTypeObj GangCmdFilte | Defines the gang(s) to be forcibly executed.
r

ResponseTypeObj =

JDF SPECIFICATION 1.7 163

MESSAGING

5.22.1 GangCmdFilter

Table 5.40: GangCmdFilter Element

OBJECT TYPE ELEMENT DESCRIPTION

NAME

GangNames ? NMTOKENS @GangNames SHALL specify a list of queue entries with matching values of
OueueEntry/@GangName that SHALL be processed. If not specified, all queue
entries with a non-empty value of QueueEntry/@ GangName SHALL be pro-

cessed.
Policy ? enumeration | The policy with which the elements in the gang SHALL be processed.
New in JDF 1.6 Allowed values are:

All - All elements in the given gang SHALL be processed.

Optimized -As many elements in a given gang as can be processed without
unnecessary waste SHOULD be processed. The algorithm for selecting the
respective elements is implementation dependent and SHOULD take pri-
ority and scheduling data into account.

5.23 GangStatus

New in JDF 1.3

GangStatus returns a description of the gang(s). Details are specified in the Ganginfo element.
Table 5.41: GangStatus Message

OBJECT TYPE ELEMENT DESCRIPTION

NAME

QueryTypeObj GangQuFilter | Defines a filter for the gang(s) that are queried. If GangOQufFilter is not sup-
? plied, all gangs are queried.

ResponseTypeObj Ganginfo * Describes the status of the gang(s).

5.23.1 GangQufFilter

Table 5.42: GangQufFilter Element

DATA TYPE DESCRIPTION

GangNames ? NMTOKENS @GangNames SHALL specify a list of Ganglnfo elements with matching values
of Ganglinfo/@GangName that SHALL be returned. If not specified, all avail-
able Ganginfo elements SHALL be returned.

5.23.2 Ganglnfo
Details of the gang are specified in Ganglnfo elements.

Table 5.43: Ganglnfo Element

NAME DATA TYPE DESCRIPTION
Amount ? double Quantity of QueueEntry items that are currently waiting to be executed. If the
New in JDF 1.6 device specifies amount in a unit other than countable objects, such as m?,

@Amount SHALL be specified in the units of the device.

GangName NMTOKEN Name of the gang.

5.24 HoldQueue

The queue is held. No entries will start execution. Note that the status of a held entry prior to HoldQueue is retained so
that held jobs remain held after a ResumeQueue. New entries can still be submitted to a held queue. HoldQueue only af-

164 JDF SPECIFICATION 1.7

HOLDQUEUEENTRY

fects jobs that have not commenced processing. Queue entries that are already running SHALL be suspended individually
using the SuspendQueueEntry command message.

Table 5.44: HoldQueue Message

ELEMENT
OBJECT TYPE NAME DESCRIPTION

CommandTypeObj OueueFilter ? | Defines a filter for the returned Queue element in the HoldQueue message.
Modified in JDF 1.5 New in JDF 1.2

Deprecated in

JDF 1.5
ResponseTypeObj Queue ? Describes the state of the queue after the command has been executed.
Modified in JDF 1.5 Deprecated in

JDF 1.5

5.25 HoldQueueEntry

The entry specified by HoldQueueEntryParams/QueueFilter remains in the queue but is not executed. If its @Status is
"Waiting", its @Status is set to "Held". The HoldQueueEntry command message has no effect on jobs with a @Status other
than "Waiting". If QueueEntry/@ GangPolicy is other than "NoGang", a held QueueEntry retains its respective gang data but
does not influence execution of other jobs that are in the gang. For details, see » Table 5.20 Status Transitions for
QueueEntry Handling Messages.

Table 5.45: HoldQueueEntry Message

OBJECT TYPE ELEMENT DESCRIPTION

NAME

CommandTypeObj HoldQueueEnt

Modified in JDF 1.5 ryParams ?
New in JDF 1.5

OueueEntryDe | Defines the queue entry.
f?
Deprecated in
JDF1.5

OQueuefFilter ? | Defines a filter for the returned Queue elements in the HoldQueueEntry mes-
NewinJDF1.2 | Sage.

Deprecated in

JDF 1.5
ResponseTypeObj Queue ? Describes the state of the queue after the command has been executed.
Modified in JDF 1.5 Deprecated in

JDF 1.5

5.25.1 HoldQueueEntryParams
New in JDF 1.5

Table 5.46: HoldQueueEntryParams Element

DATA TYPE DESCRIPTION

QueueFilter ? element This QueueFilter selects the QueueEntry elements to apply this message to.

5.26 KnownControllers
Deprecated in JDF 1.5
Starting with JDF 1.5, use KnownDevices.

5.27 KnownDevices
The KnownDevices query message requests information about the devices that are controlled by a controller. If a high

level controller controls lower level controllers, it SHOULD also list the devices that are controlled by these. The response

JDF SPECIFICATION 1.7 165

MESSAGING

is a DeviceList which is a list of Devicelnfo elements controlled by the controller that receives the query, as demonstrated
in » Example 5.15:KnownDevices Response.

Table 5.47: KnownDevices Message

OBJECT TYPE ELEMENT DESCRIPTION

NAME

QueryTypeObj DeviceFilter ? | Refines the list of devices queried. Only devices that match the DeviceFilter are
listed. The default SHALL return a list of all known devices.

ResponseTypeObj Devicelist ? The list of known devices.
Modified in JDF 11A Modification note: Before JDF 1.1A this was “Device*”. It was changed due to
inconsistencies of the inheritance model in the JDF schema.

Example 5.15: KnownDevices Response

<Response ID="M1" Type="KnownDevices" refID="Ql" xsi:type="ResponseKnownDevices">
<DevicelList>
<DeviceInfo DeviceStatus="Unknown">
<Device DeviceID="Joe SpeedMaster" DeviceType="Heidelberg SM102/6 rev. 47"/>
</DeviceInfo>
</DevicelList>
</Response>

5.27.1 DeviceFilter

The DeviceFilter element refines the list of devices that are requested to be returned. Only devices that match all param-
eters of one of the Device resources specified in the DeviceFilter element are included.

Table 5.48: DeviceFilter Element

NAME DATA TYPE DESCRIPTION
DeviceDetails = enumeration | @DeviceDetails refines the level of provided information about the device.
“None” Allowed values are:
New in JDF 1.1 Brief — Provide all available device information except for Device elements.

Capability — Provide Device/DeviceCap subelements which represent details of
the capabilities of the device.

Details — Provide maximum available device information excluding device
capability descriptions. Includes Device elements which represent details
of the device.

Full — Provide maximum available device information including Device capa-
bility descriptions. Includes Device elements which represent details of
the device.

Modules — ModuleStatus elements are to be provided without module specific
status details and without module specific employee information.

NamedFeature — Provide maximum available device information including
limited device capability descriptions. Includes Device elements which
represent details of the device and Device/DeviceCap/FeaturePool subele-
ments which represent named features of the device.

None — Provide only Devicelnfo/ @DevicelD and Devicelnfo/ @ DeviceStatus.

Localization ? languages or | If present, @Localization defines the Iangualgle code(s) specifying the localiza-
New in JDF 1.2 "3l tion(s) to be returned for each device (see the DeviceCap subelement descrip-

: tion for details of what entries are localized). If "all" is specified, then all
localizations for the device are returned.

If not specified, no localizations are returned.

Device * element Only devices that match the attribute values specified in one of these Device
resources are included. Devices match the criteria if the attribute values
sgecified here in the Device resource match the equivalent attribute values of
the known devices. Unspecified attributes always match. If Device is not spec-
ified, all known Device resources are returned. As this is a filter, only infor-
mation that can be used to identify a device SHALL be specified. This
precludes use of DeviceCap and IconList in this Device. The data type of Device
is ResourceElement. See » Section 3.10.1 ResourceElement — Subelement of a
Resource.

166 JDF SPECIFICATION 1.7

KNOWNIJDFSERVICES

5.27.2 Devicelist
New in JDF 1.1A
The DevicelList element contains a list of information about devices that are returned.

Table 5.49: Devicelist Element

DATA TYPE DESCRIPTION

Devicelnfo * element List of information about known devices as requested by the DeviceFilter ele-
ment. For details of the Devicelnfo element, see » Table 5.104 Devicelnfo
Element in the message description » Section 5.55 Status.

5.28 KnownJDFServices
Deprecated in JDF 1.2
In JDF 1.2 and beyond, KnownJDFServices has been replaced with KnownDevices and @ DeviceDetails="Capabilities".

5.29 KnownMessages
The KnownMessages query message returns a list of all message types that are supported by the controller.

Table 5.50: KnownMessages Message

ELEMENT

OBJECT TYPE NAME DESCRIPTION
QueryTypeObj KnownMsgQu | Refines the query for known messages. If not specified, list all supported
Params ? message types.
ResponseTypeObj MessageServi | Specifies the supported messages. Multiple MessageService elements MAY be
ce* specified for a message with a given JMF/@Type.

5.29.1 KnownMsgQuParams

The flags of the KnownMsgQuParams element specify the message families to include in the response list. Multiple flags
are allowed.

Table 5.51: KnownMsgQuParams Element

NAME DATA TYPE DESCRIPTION

ChannelMode ? enumerations | Limits the list based on supported channel modes for the message.

New in JDF 1.4 Allowed values are from: » ChannelMode
Note: See » Table 5.5 Signal Message Element.

Exact = "false" boolean Requests an exact description of the known messages. If "true", the response

New in JDF 1.1 also contains the requested DevCaps of the messages.

ListCommands = boolean Lists all supported Command types.

"true"

ListQueries = "true" boolean Lists all supported Query types.

ListRegistrations = boolean Lists all supported Registration message types.

"true"

New in JDF 1.3

ListSignals = "true" boolean Lists all supported Signal types.

Persistent = "false" boolean If "true", only lists messages that can use persistent channels. If "false",
ignores the ability to use persistent channels.

5.29.2 MessageService

The response is a list of MessageService elements, one for each supported message type. The flags of the MessageService
response message element are set in each MessageService entry. They define the supported usage of the message by the

JDF SPECIFICATION 1.7 167

MESSAGING

controller. Note that no @Response attribute is included in the list, since the capability to process one of the other mes-
sage families implies the capability to generate an appropriate Response message. Multiple flags are allowed.

Table 5.52: MessageService Element (Sheet 10of 2)

NAME DATA TYPE DESCRIPTION

Acknowledge = boolean If "true", the device supports asynchronous Acknowledge answers to this mes-

"false" sage.

New in JDF 1.1

ChannelMode ? enumerations | Specifies the supported channel modes for the message.

New in JDF 1.4 Allowed values are from: » ChannelMode
Note: See » Table 5.5 Signal Message Element.

Command = "false" boolean If "true", the message is supported as a Command.

GenericAttributes ? NMTOKENS List of generic attributes that are supported and unrestricted by the device

N i IETLE! implementation. Descriptions of attributes that appear in State elements (see
the following » Section 10.2.7 State) overwrite the description in

@ GenericAttributes, which SHALL NOT be specified if KnownMsgQuParams/

@Exact = "false".

JMFRole ? enumeration | The role of the device that responds with the MessageService .
New in JDF 1.3 Allowed values are:

Receiver — The device that responds to KnownMessages receives and
responds to the message specified in @ Type. This MessageService speci-
fies query messages, signal messages command messages and registra-
tion messages that the device understands.

Sender — The device that responds to KnownMessages is the originator of the
message specified in @Type. This MessageService specifies Response ele-
ments and Acknowledge elements that the device understands as a
Response to the messages that it has sent.

Persistent = "false" boolean If "true" the message is supported as a persistent channel.

Query = "false" boolean If "true" the message is supported as a Query.

Registration = "false" | boolean If "true" the message is supported as a Registration message.

New in JDF 1.3

Signal = "false" boolean If "true" the message is supported as a Signal.

Type NMTOKEN Type of the supported message. Extension types are specified by stating the
namespace prefix in @ Type

Values include those from: » Table 5.14 List of JMF Messages.

URLSchemes ? NMTOKENS List of schemes supported for the message defined by this MessageService.
New in JDF 1.3 Allowed values include:

file — The file scheme according to » [RFC1738] and » [RFC3986].

http — HTTP (Hypertext Transport Protocol)

https — HTTPS (Hypertext Transport Protocol — Secure)

ActionPool ? element Container for zero of more Action elements for use as constraints. For details

N ia HETLE! on Action elements, see » Section 10.2.2 ActionPool. ActionPool SHALL NOT be
specified if KnownMsgQuParams/@Exact="false".

DevCapPool ? element Pool of DevCap elements that can be referenced from multiple elements

New in JDF 1.3 within the DeviceCap structure. DevCapPool SHALL NOT be specified if

KnownMsgQuParams /@ Exact="false".

DevCaps * element Specifies the restrictions of the parameter space of the supported messages.
New in JDF 1.1 For details on using DevCaps, see » Section 10.2.5 DevCaps. DevCaps SHALL

NOT be specified if KnownMsgQuParams/@Exact="false".

ModulePool ? element Pool of ModuleCap elements that specify the availability of a given module.

New in JDF 1.3

See » Section 10.2.4.1 ModuleCap for details of ModuleCap. ModulePool SHALL
NOT be specified if KnownMsgQuParams/@Exact="false".

168

JDF SPECIFICATION 1.7

KNOWNSUBSCRIPTIO

Table 5.52: MessageService Element (Sheet 2 of 2)

NS

NAME DATA TYPE DESCRIPTION

State * element State elements that define the parameter space that is covered by the device.

New in JDE 1.4 One State element SHALL be defined for each supported attribute of the JDF
node that is not specified @GenericAttributes or implied by @ TypeExpression
or @Types.

TestPool ? element Container for zero or more Test elements that are referenced from

New in IDF 1.3 ActionPool/Action elements. TestPool SHALL NOT be specified if
KnownMsgQuParams/@Exact="false".

Example 516: KnownMessages Response

The following is an example of a response message to a KnownMessages query message.

<Response ID="M1"
<MessageService
<MessageService
Signal="true"
</Response>

Type="KnownMessages" refID="Q1l" xsi:type="ResponseKnownMessages">
JMFRole="Receiver" Query="true" Type="KnownMessages"/>
JMFRole="Receiver" Persistent="true" Query="true"
Type="Status"/>

5.30 KnownSubscriptions

New in JDF 1.4

The KnownSubscriptions message enables controllers to query devices for a list of active persistent channels.

Table 5.53: KnownSubscriptions Message

ELEMENT
OBJECT TYPE NAME DESCRIPTION
QueryTypeObj SubscriptionFi | Refines the query for known messages. If not specified, list all supported
lter ? message types.
ResponseTypeObj Subscriptionin | List of active persistent channels.

fo*

5.30.1 Subscription
New in JDF 1.4

Filter

The SubscriptionFilter element is a filter to limit the list of Subscriptioninfo elements that are returned in the
KnownSubscriptions response.

Table 5.54: SubscriptionFilter Element (Sheet 1 of 2)

NAME DATA TYPE DESCRIPTION

ChannellD ? NMTOKEN @ChannelID of the persistent channel to be queried. If the channel has been
created with a Query message, the @ChannellD specifies the @ID of the Query
message (identical to the @refID of the Response message)

DevicelD ? string Only subscriptions from devices or controllers with a matching @DevicelD
attribute are queried.

Families ? enumerations | Only subscriptions with the family (Signal or Command) listed are queried

JobID ? string @JobID of the JDF node that messages are subscribed for. If not specified,

Deprecated in JDF 1.5 subscriptions are returned for all @JobID values.
Deprecation note: Job specific subscriptions are discouraged.

JobPartiD ? string @JobPartID of the JDF node that messages are subscribed for. If not specified,

Deprecated in JDF 1.5 subscriptions are returned for all @JobPartID values.
Deprecation note: Job specific subscriptions are discouraged.

MessageTypes ¢ NMTOKENS List of Message/@Type values of the subscribed messages. If not specified,
subscriptions are returned for all message types.

JDF SPECIFICATION 1.7

169

MESSAGING

Table 5.54: SubscriptionFilter Element (Sheet 2 of 2)

NAME

QueueEntrylD ?
Deprecated in JDF 1.5

DATA TYPE

string

DESCRIPTION

@ QueueEntryID of the job whose subscriptions are queried. If @QueueEntrylD
is specified, @JobID, @JobPartID and Part are ignored. If none of @JobID,
@JobPartID, Part or @QueueEntrylD are specified, KnownSubscriptions applies
to all persistent channels that were established.

Deprecation note: Job specific subscriptions are discouraged.

URL?

URL

URL of the receiving controller. This SHALL be identical to the @URL that was
used to create the persistent channel. If no @ChannellD is specified, all per-
sistent channels to this @URL are queried.

Part *
Deprecated in JDF 1.5

element

Part elements that describe the partition of the job whose subscriptions are
queried. For details on node partitions, see » Section 4.3.2 Partial processing
of nodes with Partitioned resources.

Deprecation note: Job specific subscriptions are discouraged.

5.31 ModifyNode
New in JDF 1.3

This JMF is used to modify either the @Activation or @ CommentURL attributes of a JDF node and to add or modify
Comment elements of a JDF node or a resource.

5.31.1 ModifyNode Command
The ModifyNode Command is sent by a controller to a device to modify the JDF node on the device.
Table 5.55: ModifyNode Command

OBJECT TYPE

ELEMENT
NAME

DESCRIPTION

CommandTypeObj

ModifyNodeC
mdParams ?

Defines the details of the ModifyNode message.

ResponseTypeObj

5.31.2 ModifyNode Signal
The ModifyNode Signal is sent by a device to a control to signal that the JDF node on the device has been modified.
Table 5.56: ModifyNode Signal

OBJECT TYPE

ELEMENT
NAME

DESCRIPTION

QueryTypeObj

ModifyNodeC
mdParams ?

Defines the details of the ModifyNode message.

ResponseTypeObj

5.31.2.1 ModifyNodeCmdParams
The ModifyNodeCmdParams specifies the details of the JDF node to be modified.
Table 5.57: ModifyNodeCmdParams Element (Sheet 1 of 2)

NAME DATA TYPE DESCRIPTION
Activation ? enumeration | The new value for @Activation.
Allowed value is from: » Activation.
CommentURL ? URL The new value for @CommentURL. Note that @CommentURL is specified in
» Table 3.1 Any Element (generic content) and that the semantics are over-
ridden by the definition in this table.
JobID string @JobID of the node to be modified. In case of adding a Comment to a Resource

or Audit, this @JobID SHALL be an attribute of the node where the AuditPool
or AuditPool resides.

170

JDF SPECIFICATION 1.7

NEWIJDF

Table 5.57: ModifyNodeCmdParams Element (Sheet 2 of 2)

NAME DATA TYPE DESCRIPTION

JobPartID string @JobPartID of the node to be modified. In the case of adding a Comment to a
Resource or Audit, this @JobPartID SHALL be an attribute of the node where
the AuditPool or ResourcePool resides.

NewComment * element Details of modifications of Comment elements.

5.31.2.2 NewComment

Table 5.58: NewComment Element

NAME DATA TYPE DESCRIPTION

Action enumeration | Allowed values are:

Add — A new Comment is added. If @refID is specified, the comment is stored
in the resource or Audit with @ID = @refID.

Concat — Comment is concatenated to the Comment with Comment/@ID =
@CommentID.

Replace — Comment replaces the Comment with Comment/@ID = @CommentID.

Remove — The comment with Comment/@ID = @CommentID is removed.

CommentID ? NMTOKEN @ID of the existing Comment. SHALL be specified if @Action="Concat",
"Replace" or "Remove".

reflD ? NMTOKEN @ID of the Resource or Audit where the Comment SHALL be added. The @refID
SHALL NOT be set unless @Action="Add".

Comment ? element The Comment to "Add", "Concat" or "Replace". Comment SHALL NOT be specified
if @Action="Remove". Note that Comment * is specified in » Table 3.1 Any
Element (generic content) and that the cardinality and semantics are over-
ridden by the definition in this table.

Part ? element Partition of the resource where the Comment SHALL be added. Part SHALL
New in JDF 1.4 NOT be specified unless @refID references a resource and @Action="Add".
5.32 New)DF
New in JDF 1.2

The NewJDF message can be used to query and initiate the modification of JDF nodes by either a subordinate controller
or a master controller. It is mainly used to synchronize JOF/@JobID and JDF/@JobPartID between an MIS and a device or
controller. Either side MAY initiate synchronization. A query message or signal message informs a controller or MIS sys-
tem that a JDF node has been created. A command initiates a modification.

5.32.1 NewlJDF Query

The NewJDF Query message is sent to a device or controller in order to extract information about previously unknown
JDF nodes. For instance, an MIS that has received a JMF with an unknown @JobPartiD MAY query the JMF sender about
details of the JDF with that @JobPart/D. When used as a signal, the signaling device specifies that it has created a new JDF
with the properties defined by IDInfo, for instance when a workflow controller has instantiated an abstract process group
node with new subnodes. NewJDF is made selective by specifying a NewJDFQuParams element.

The query’s response message returns a list of IDInfo elements that contains the queried information concerning the
newly created nodes.

Table 5.59: NewIJDF Query Message

ELEMENT

OBJECT TYPE NAME DESCRIPTION
QueryTypeObj NewlJDFQuPar | Specifies the details of the nodes that information is requested about.
ams
ResponseTypeObj IDInfo * Contains the information about the newly created nodes.

JDF SPECIFICATION 1.7 m

MESSAGING

5.32.1.0.1 NewJDFQuParams
Table 5.60: NewJDFQuParams Element

NAME DATA TYPE DESCRIPTION
JobID ? string @JobID of the JDF node that is being queried.
JobPartID ? string @JobPartiD of the JDF node that is being queried.
QueueEntrylD ? string @QueuekntrylD of the job that is currently being executed. If @QueueEntryID is
specified, @JobID and @JobPartID are ignored.

5.32.2 NewJDF Command

The NewJDF Command message is sent to an MIS, device or controller to initiate creation of new JDF nodes by that device
or controller. For instance, a workflow controller might have received content data and now requires a JDF job from an
MIS to which work on the content can be booked. The NewJDF Command message does not imply any job submission or
request for job submission. Job queue submission SHALL still be requested with a RequestQueueEntry message, and the
MIS SHALL still subsequently submit the job to the requesting controller or device.

Table 5.61: NewJDF Command Message

OBJECT TYPE ELEMENT DESCRIPTION

NAME

CommandTypeObj NewJDFCmdP | Specifies the details of the nodes that are to be created.
arams

ResponseTypeObj IDInfo ? Contains the information about the newly created node.

5.32.2.1 NewJDFCmdParams

Table 5.62: NewJDFCmdParams Element

NAME DATA TYPE DESCRIPTION

IDFDetails = "Brief" string Level of detail requested for the returned IDInfo elements.
Values include:

None — Do not return any IDinfo elements.

Brief — Return IDInfo elements without embedded JDF or device.
Full — Return IDInfo elements with embedded JDF and device.

IDInfo element Details of the new JDF node that SHALL be created.

5.32.2.2 IDInfo

Table 5.63: IDInfo Element (Sheet 1 of 2)

NAME DATA TYPE DESCRIPTION
Category ? NMTOKEN JDF/ @ Category of the JDF node.
Values include those from: » Node Categories.
JDFURL ? URL URL to detailed JDF description. Provides a way of referencing a JDF element
New in JDF 15 instead of embedding it at IDInfo/JDF. At most one of JDF and @JDFURL SHALL
be specified.

Note: The referenced » JDF MAY be an ancestor » JDF Node of the newly cre-
ated node. In this case the recipient SHALL search the returned » JDF for the
» JDF Node with the correct @JobPartID.

JobID ? string @JobID of the JDF node.
JobPartiD ? string @JobPartID of the JDF node.
ParentJoblD ? string @JobID of the parent node of the JDF node. If not specified, it defaults to the

value of @JobID.

ParentlobPartID ? string Job Part ID of the parent node of the JDF node.

172 JDF SPECIFICATION 1.7

NODEINFO
Table 5.63: IDInfo Element (Sheet 2 of 2)

NAME DATA TYPE DESCRIPTION
ProjectID ? string Identification of the project context that the JDF described by this IDInfo
: belongs to. Enables usage of NewJDF in a web to print environment where
New in JDF 1.5 ! :
@ProjectID represents the shopping cart.
RelatedJobID ? string The @RelatedJoblD of the JDF node.
New in JDF 1.7
RelatedJobPartID ? string The @RelatedJobPartID of the JDF node.
New in JDF 1.7
Type ? NMTOKEN IDF/@Type of the JDF node.
Values include:
Combined
ProcessGroup
Product

Values include those from: » Chapter 6 Processes.

Types ? NMTOKENS IDF]@Types of the JDF node.
Values include those from: » Chapter 6 Processes.

Device ? element Description of the device that the JDF is targeted for. The data type of Device
is ResourceElement. See » Section 3.10.1 ResourceElement — Subelement of a
Resource.

JDF? element Detailed JDF description. Contains information that allows the receiver of the

NewJDF message to properly respond. Note that the JDF is not implicitly sub-
mitted. At most one of JDF and @JDFURL SHALL be specified.

Note: This may be an ancestor » JDF Node of the newly created » Node. In this
case the recipient SHALL search the returned » JDF for the » JDF Node with
the correct @JobPartID.

5.33 Nodelnfo

New in JDF 1.2

Deprecated in JDF 1.3

The Nodelnfo message has been replaced with the Resource message in JDF 1.3.

5.34 Notification

Notification messages are generally sent as Signals. Query/@ Type="Notification" is defined to allow subscriptions for
Notification messages. Notification elements MAY be used to signal usual events due to any activities of a device, operator,
etc. (e.g., scanning a bar code). Such a Signal always has a @ Type="Notification".

Machine events SHOULD be provided in the context of a Signal/@ Type="Status" or Signal/@ Type="Resource" in order to
provide additional context of the event such as counter values and job identifiers and SHOULD NOT be sent in Signal/
@Type="Notification" messages.

Table 5.64: Notification Message

ELEMENT
OBJECT TYPE NAME DESCRIPTION
QueryTypeObj NotificationFil | Defines the types of Notification elements that should be returned.
ter?
New in JDF 1.4

ResponseTypeObj Notification ¢ | Notification that describes the event. Notification SHALL be provided in a
Modified in JOF | Signal or in a direct Response to a Query that has no Subscription element.

1.7 See » Section 3.5.6 Notification.

Modification note: Starting with JDF 1.7, Notification is optional to allow an
empty response to a Query that has a Subscription.

JDF SPECIFICATION 1.7 173

MESSAGING

5.34.1 NotificationFilter

Table 5.65: NotificationFilter Element

NAME DATA TYPE DESCRIPTION

Classes ? enumerations | Defines the set of Notification/@Class types to be queried/subscribed for. If
@Classes is not specified then all Notification classes are queried or sub-
scribed to.

Allowed values are from: » Severity.
Constraint note: If both @Classes and @ Types contain lists of values, the
NotificationFilter defines an OR of all combinations.
DevicelD ? string ID of the device whose messages are queried/subscribed. MAY be specified for
Deprecated in JDF 1.3 device selection if the controller controls more than one device.
Deprecation note: Starting with JDF 1.3, use JMF/@DevicelD.

JobID ? string JobID of the job whose messages are queried/subscribed.

Deprecated in JDF 1.5 Deprecation note: Job specific subscriptions are discouraged.

JobPartID ? string JobPartID of the job whose messages are queried/subscribed.

Deprecated in JDF 1.5 Deprecation note: Job specific subscriptions are discouraged.

MilestoneTypes ? NMTOKENS Matching milestone types SHALL be returned and/or subscribed to. If
@MilestoneTypes is not specified then all supported milestone values are
queried or subscribed to.

Values include those from: » Milestones.
QueueEntrylD ? string @QueueEntryID of the job whose messages are queried/subscribed. If
New in IDF 1.2 @QueueEntryID is specified, @JobID, @JobPartID and Part are ignored. If none
. of @JobID, @JobPartID, Part or @QueueEntrylD are specified, NotificationFilter
Deprecated in JDF 1.5 applies to all jobs.
Deprecation note: Job specific subscriptions are discouraged.

SignalTypes = NMTOKENS Signal/@ Type values of the subscribed messages. @SignalTypes SHOULD con-

"Notification" tain values as shown in Message/@Type, but are restricted to the values for

New in JDF 1.2 Signal messages.

Values include:
All — Specifies that all signals, regardless of @Type are queried/subscribed.

Types ? NMTOKENS Matching notification types are returned/subscribed. If @ Types is not speci-
fied then all supported type values are queried or subscribed to.

Values include those from: » Notification Details.

Part * element Part elements that describe the partition of the job whose messages are que-

New in JDF 1.2 ried/subscribed. For details on job partitions, see » Section 4.3.2 Partial

- ted in JDF 1.5 processing of nodes with Partitioned resources.

eprecatedin ' Deprecation note: Job specific subscriptions are discouraged.

Example 5.17:

Notification Signal

<Signal ID="S1" Type="Notification" xsi:type="SignalNotification">
<Notification Class="Event" TimeStamp="2005-07-25T12:32:48+02:00" Type="Barcode">
<Comment>Palette completed</Comment>
<Barcode Code="99923AAA123"/>
</Notification>

</Signal>

5.35 Occupation
Deprecated in JDF 1.5

Deprecation note: Activity elements provide the functionality that makes Occupation redundant.

174

JDF SPECIFICATION 1.7

OPENQUEUE

5.36 OpenQueue

The queue is opened and new queue entries can be accepted by the queue. A held queue remains held. The OpenQueue
command message is the opposite of a CloseQueue command message.

Table 5.66: OpenQueue Message

ELEMENT

OBJECT TYPE NAME DESCRIPTION
CommandTypeObj OueueFilter ? | Defines a filter for the returned Queue element in the OpenQueue message.
Modified in JDF 1.5 New in JDF 1.2
Deprecated in
JDF1.5
ResponseTypeObj Queue ? Describes the state of the queue after the command has been executed.
Modified in JDF 1.5 Deprecated in
IDF 1.5

5.37 PipeClose

The PipeClose message notifies the process at the other end of a dynamic pipe that the sender of this message needs no
further resources or will produce no further resources through the pipe. The PipeClose command message response is
equivalent to the PipePull and PipePush command message responses PipePulldescribed below.

If Resource/@PipeProtocol="JMFPush" the producer SHALL terminate the pipe with a PipeClose message. If Resource/
@PipeProtocol="IMFPull" the consumer SHALL terminate the pipe with a PipeClose message.

Table 5.67: PipeClose Message

ELEMENT
OBJECT TYPE NAME DESCRIPTION
CommandTypeObj PipeParams Describes the pipe resource. The PipeParams element is described in » Section
5.39 PipePull.
ResponseTypeObj JobPhase ? The status of the responding process. The JobPhase element is defined in
Modified in JDF 1.5 Deprecated in | * Table 5.106 JobPhase Element.
JDF1.5

5.38 PipePause
The PipePause message pauses execution of a process that is at the other end of a dynamic pipe.

PipePause MAY be emitted by either the consumer or the producer whenever a condition exists that requires a resyn-
chronization.

If Resource/@PipeProtocol="JMFPush", and the consumer sends a PipePause, the producer SHALL NOT send further
PipePush messages until the consumer has reopened the pipe by sending a PipePull message.

If Resource/@PipeProtocol="JMFPull", and the producer sends a PipePause, the consumer SHALL NOT send further
PipePull messages until the producer has reopened the pipe by sending a PipePush message.

PipePause MAY be sent by the respective other end of the pipe even if the pipe is already paused. In this case the resyn-
chronization requirements above still apply.

The PipePause command message response is equivalent to the PipePull command message response described above.

Table 5.68: PipePause Message

ELEMENT
OBJECT TYPE NAME DESCRIPTION
CommandTypeObj PipeParams Describes the pipe resource. The PipeParams element is described in » Section
5.39 PipePull.
ResponseTypeObj JobPhase ? The status of the responding process. The JobPhase element is defined in
Modified in JDF 1.5 Deprecated in | * Table 5.106 JobPhase Element.
JDF 1.5

JDF SPECIFICATION 1.7 175

MESSAGING

5.39 PipePull

The PipePull message requests resources that are described in a JDF dynamic pipe (see » Section 3.8.6 Pipe Resources
and » Section 4.3.3 Overlapping processing Using Pipes). PipePull messages are the JMF equivalent of a dynamic input
ResourcelLink. Below, depicts the mode of operation of a PipePull message.

The PipePull command message response returns a @ReturnCode of 0 if the command has been accepted by the receiving
controller. If not successful, @ReturnCode is one of the codes presented in » Appendix A./ Return Codes. The Response
message MAY contain a Notification element. The JobPhase element (see » Section 5.55 Status) returned SHOULD provide
only the @Status attribute that describes the job status of the responding process after receiving the command.

If Resource/@PipeProtocol="JIMFPull", the consumer SHALL initiate the pipe with a PipePull command message.
Table 5.69: PipePull Message

ELEMENT
OBJECT TYPE NAME DESCRIPTION
CommandTypeObj PipeParams Describes the requested pipe resource.
ResponseTypeObj JobPhase ? The status of the responding process. The JobPhase element is defined in
Modified in JDF 1.5 Deprecated in | * Table 5.106 JobPhase Element.
IDF 1.5

Figure 5-6: Mechanism of a PipePull message

Res.A m . Immediate: JMF - PipePull command response
A Pipe Delayed: JMF - Pipe Acknowledge
Resource
Updated
input resources
Res.B
Updated output)
resource link
JMF - PipePull)
command message PipeURL?

5.40 PipePush

The PipePush message notifies the availability of pipe resources that are described in a JDF dynamic pipe (see » Section
3.8.6 Pipe Resources and » Section 4.3.3 Overlapping processing Using Pipes). PipePush messages are the JMF equivalent
of a dynamic output ResourceLink. The » Figure 5-7: Mechanism of a PipePush message depicts the mode of operation
of a PipePush message. The PipePush command message response is equivalent to the PipePull command message re-
sponse described above.

If Resource/@PipeProtocol="JIMFPush", the producer SHALL initiate the pipe with a PipePush message.
Table 5.70: PipePush Message

ELEMENT
OBJECT TYPE NAME DESCRIPTION
CommandTypeObj PipeParams Describes the produced pipe resource. The PipeParams element is described in
» Section 5.39 PipePull.
ResponseTypeObj JobPhase ? The status of the responding process. The JobPhase element is defined in
Modified in JDF 1.5 Deprecated in | * Table 5.106 JobPhase Element.
JDF1.5

176 JDF SPECIFICATION 1.7

QUEUESTATUS

Figure 5-7: Mechanism of a PipePush message

JMF - PipePush

Updated Input
command message Resource Link

PipeURL? ("
Res.A . Updated
Pipe l Input
Resource Resources

Res.B

Immediate: JMF - PipePush command response
Delayed: JMF - Pipe Acknowledge

5.41 QueueStatus
OueueStatus returns a description of the current state of a queue.

Table 5.71: QueueStatus Message

ELEMENT

OBJECT TYPE NAME DESCRIPTION
QueryTypeObj OueueFilter ? | Defines a filter for the QueueStatus message.
Modified in JDF 1.2 New in JDF 1.2
ResponseTypeObj Queue ? Oueue SHALL describe the status of the queue. Queue SHALL be provided in a
Modified in JDE | Signal or in a direct Response to a Query that has no Subscription element.
17 Modification note: Starting with JDF 1.7, Queue is optional to allow an empty
response to a Query that has a Subscription.

For the definition of the Queue element, see » Section 5.14 Elements for Queues.

5.42 RemoveQueueEntry

This command causes the entries specified by RemoveQueueEntryParams/QueueFilter to be removed from the queue. It
does not affect QueueEntry [@Status="Running" or @ Status="Suspended"]. Use AbortQueueEntry to Stop a running or sus-
pended job and then remove it with RemoveQueueEntry. For details, see » Table 5.20 Status Transitions for QueueEntry
Handling Messages.

Table 5.72: RemoveQueueEntry Message (Sheet 1 of 2)

OBJECT TYPE ELEMENT DESCRIPTION

NAME

CommandTypeObj OueueEntryDe | Defines the queue entry.
ModifiedinIDF12 | f?

Modified in JDF 1.5 Deprecated in
JDF1.5

OQueuefFilter ? | Defines a filter for the returned Queue elements in the RemoveQueueEntry
NewinJDF1.2 | MeSsage.

Deprecated in
JDF 1.5

RemoveQueue

EntryParams
?

New in JDF 1.5

JDF SPECIFICATION 1.7 177

MESSAGING

Table 5.72: RemoveQueueEntry Message (Sheet 2 of 2)

ELEMENT
OBJECT TYPE NAME DESCRIPTION
ResponseTypeObj Queue ? Describes the state of the queue after the command has been executed.
Modified in JDF 1.5 Deprecated in
JDF 1.5

5.42.1 RemoveQueueEntryParams
New in JDF 1.5

Table 5.73: RemoveQueueEntryParams Element

DATA TYPE DESCRIPTION

QueueFilter ? element This QueueFilter selects the QueueEntry elements to apply the
RemoveQueueEntry message to.

5.43 RepeatMessages

Deprecated in JDF 1.5

The RepeatMessages message has been deprecated in JDF 1.5. RepeatMessages was designed to query for missed mes-
sages if signals were required to be complete. This functionality SHOULD preferably be implemented using reliable chan-
nels (i.e., by specifying Subscription/@Channelmode="Reliable". See » Section 5.3.3 Reliable Signaling,.

5.44 RequestForAuthentication
New in JDF 1.4

The RequestForAuthentication message can be used as a command to exchange certificates or as a query to obtain the
authentication status of previously exchanged certificates. Acknowledge messages SHALL NOT be used to respond to a
RequestForAuthentication Command or RequestForAuthentication Query. In other words, the response element SHALL
NOT specify @Acknowledged="true". If it is not possible to confirm authentication before the HTTP channel times out,
the @ReturnCode SHALL be "304", which means “Authentication pending”.

5.44.1 RequestForAuthentication Command
New in JDF 1.4

The RequestForAuthentication Command command is used to request authentication and trust of a certificate that is pro-
vided in the RequestForAuthentication Command. The sender of the command is identified by the @SenderID attribute in
the JMF element that contains the RequestForAuthentication Command. The sender MAY be authenticated as both a client
and as a server, and a separate certificate SHALL be provided by the sender for each role that the sender wishes to use.

If a RequestForAuthentication Command is received over a secure channel, and a previous RequestForAuthentication
Command has already been received, the previous RequestForAuthentication Command SHOULD be ignored, and any cer-
tificates associated with the prior command SHOULD be considered untrusted. This allows for a party that is currently
trusted to update its certificate as needed (such as when the previous certificate is about to expire).

Once authentication has been established between two parties, any RequestForAuthentication Command that is sent over
a non-secure channel SHALL result in error 305, which is “Authentication already established”. Other @Reason values
MAY be supported over secure channels.

Table 5.74: RequestForAuthentication Command Message

OBJECT TYPE ELEMENT DESCRIPTION

NAME

CommandTypeObj Authenticatio | Details of the certificate of the sender.

nCmdParams
ResponseTypeObj Authenticatio | @ReturnCode="0" indicates “I trust you”. The initial response to a
nResp ? RequestForAuthentication Command SHALL include a fully specified

AuthenticationResp element.

178 JDF SPECIFICATION 1.7

5.44.1.1 AuthenticationCmdParams

REQUESTFORAUTHENTICATION

Table 5.75: AuthenticationCmdParams Element

NAME

AuthenticationType

DATA TYPE

enumeration

DESCRIPTION

Allowed values are:

AsClient — Sender of the message wishes to be authenticated as a client that
initiates HTTP requests. Command includes the sender's client certifi-
cate, the response will include the responders server certificate.

AsServer — Sender of message wishes to be authenticated as a server that
responds to HTTP requests. Command includes the sender's server cer-
tificate, the response will include the responders client certificate.

Reason

enumeration

Used to indicate the reason for sending this message.

Allowed values are:

InitiateConnection — the client wishes to exchange certificates with the server.

ClientCertificateExpired — the previously-sent client certificate has expired.

ServerCertificateExpired — the previously-received server certificate has
expired.

ClientHostnameMismatch — the client certificate's Common Name couldn't be
resolved to match the IP address or domain name from which the request
came.

ServerHostnameMismatch — the server certificate's Common Name couldn't be
resolved to match the IP address or domain name from which the
response came.

ClientCertificateRevoked — the previously-sent client certificate has been
revoked.

ServerCertificateRevoked — the previously-received server certificate has been
revoked.

Other — some other reason. Use @ReasonDetails for further explanation.

ReasonDetails ?

string

Further details on the reason for this message.

SecureURL ?

URL

URL of the port of the command sender that will accept JMF messages via the
HTTPS protocol. This attribute SHALL be specified when the sender of the
RequestForAuthentication Command has specified AuthenticationCmdParams/
@AuthenticationType="AsServer".

Certificate ?

element

The requester's certificate.

If @AuthenticationType="AsClient", this certificate SHALL be the requester's
client certificate. If @AuthenticationType="AsServer", this certificate SHALL be
the requester's server certificate.

5.44.1.2 Certificate

Table 5.76: Certificate Element

DATA TYPE

DESCRIPTION

text

The certificate in PEM MD5 format.

Implementation Note: There SHALL NOT be any whitespace between the end
of the tag and the start of the certificate, or between the end of the certificate
and the start of the end tag. See example below.

Note: The certificate should only include the public key.

5.44.1.3 AuthenticationResp

Table 5.77: AuthenticationResp Element (Sheet 1 of 2)

DATA TYPE

DESCRIPTION

SecureURL ?

URL

URL of the port of the command recipient that will accept JMF messages via

the HTTPS protocol. This attribute SHALL be specified when the sender of the
RequestForAuthentication Command has specified AuthenticationCmdParams/

@AuthenticationType="AsClient".

JDF SPECIFICATION 1.7 179

MESSAGING

Table 5.77: AuthenticationResp Element (Sheet 2 of 2)

NAME

Certificate ?

DATA TYPE

element

DESCRIPTION

The command recipient's certificate. If AuthenticationCmdParams/
@AuthenticationType="AsClient", this certificate SHALL be the command
recipient's server certificate. If AuthenticationCmdParams/
@AuthenticationType="AsServer", this certificate SHALL be the command
recipient's client certificate. When responding to a RequestForAuthentication
Command over a non-secure channel with Reason="InitiateConnection”, this
element SHALL be specified.

When responding to a RequestForAuthentication Query, the Certificate ele-
ment SHALL NOT be specified.

See AuthenticationCmdParams/Certificate.

5.44.2 RequestForAuthentication Query

New in JDF 1.4

The RequestForAuthentication Query is used to determine the authentication status of a certificate that was provided in
an earlier RequestForAuthentication Command or the response to the command. The sender of the query is identified by
the @SenderID attribute in the JMF element that contains the RequestForAuthentication Query. The sender MAY be au-

thenticated as both a client and as a server, and a separate certificate SHALL be provided by the sender for each role that
the sender wishes to use.

If a RequestForAuthentication Query is received, and no previous RequestForAuthentication Command has been received,
the response SHALL specify a @ReturnCode of 306, which is “No authentication request in process”. .

Table 5.78: RequestForAuthentication Query Message

OBJECT TYPE

ELEMENT
NAME

DESCRIPTION

QueryTypeObj Authenticatio | Specifies the type of authentication being queried.
nQuParams
ResponseTypeObj Authenticatio | @ReturnCode="0" indicates “I trust you”.

nResp °

180

JDF SPECIFICATION 1.7

REQUESTFORAUTHENTICATION
5.44.2.1 AuthenticationQuParams

Table 5.79: AuthenticationQuParams Element

DATA TYPE DESCRIPTION

AuthenticationType enumeration | Allowed values are:
AsClient — Sender of the message wishes to check the authentication status of
the client certificate associated with it.

AsServer — Sender of message wishes to check the authentication status of
the server certificate associated with it.

Example 5.18: RequestForAuthentication Command

<Command ID="M0O01l" Type="RequestForAuthentication" xsi:type="CommandRequestForAuthentication">
<AuthenticationCmdParams AuthenticationType="AsClient" Reason="InitiateConnection">
<Certificate>=====BEGIN CERTIFICATE=====

MIIC3jCCApWCBEIWY6YWCWYHK0ZIZzjgEAWUAMFUXCzAJBgNVBAYTAKNIMQO8wDQYDVQQHEWZadXJp
Y2gxDTALBgNVBAOTBENJUDQxDZANBgGNVBASTBkpNR1BXRzZEVMBMGA1UEAXMMd3d3LmNpcDQub3Jdn
MB4XDTAIMDIxXODIXNTIzOFoXDTAIMDUyOTIXNTIzOFowVTELMAKGA1UEBhMCQOgxDzANBgNVBACT
BlplcmljaDENMAsSGA1IUEChMEQO1QNDEPMAOGAIUECxMGSk1GIFAHMRUWEWYDVQQODEwWx3d3cuY21lw
NC5vemewggG3MIIBLAYHK0ZIZzjgEATCCARSCGYEA/X9TgR11E11530gcLuzk5/YRt1I870QAwWx4/
gLZRIM1IFXUAiUftZPY1Y+r/F9bow9subViWzXgTuAHTRVB8mMZgt2uZUKWkn5/0BHsSQIsJPu6bnX/rfG
G/g7V+£GgKYVDWT7g/bTxR7DAJVUEIOoWkTL2dfOuK2HXKu/yIgMZndFIACcCFQCXYFCPFSMLZLKS
uYKi64QL8Fgc9QKBgQD34aCFlps93su8glw2uFe5eZSvu/0660L5VOwLPQeCZ1FZV4661F1P5nEH
EIGAtEKWcSPOTCgWET7 fPCTKMyKbhPBZ611R8jSjgo64eK70mdZFuo38L+iE1YvH7YnoBJDvMpPG+
gFGQiaiD3+Fab5Z8GkotmXoB7VSVKAUW7/s9JKgOBhAACGYArHi /BVNE30G0JIIdzWraVrx1lwg9RM
do+tYRjY4bXue7LRDCvVaSxX1Ddy9kTyeTTntwUrJOyx/8gEi/WmraGXhK8wGSrtE/g3S/A16DWEB
CiyeMhlCrd4QiAhp5WtR4KIMIB)g2Xn8+0MnnT1gDnmesNaSwdz/01E0azSPTy5XnDALBgcghkjoO
OAQDBQADLWAWLAIUFZH0ojJvsO3+UYMBZk6yDzhdejzMCFHCOWbkDwfImQCa+dTebXZ1elG1lQ

=====END CERTIFICATE=====</Certificate>
</AuthenticationCmdParams>
</Command>

Example 5.19: RequestForAuthentication Response
The form of response that would most likely follow the above command appears below:

<Response ID="M101" ReturnCode="304" Type="RequestForAuthentication"

refID="M001" xsi:type="ResponseRequestForAuthentication">

<AuthenticationResp SecureURL="https://printserver.mycompany.com/A3Printer">

<Certificate>=====BEGIN CERTIFICATE=====

uYKi64QL8Fgc9QKBgQD34aCFlps93su8glw2uFeb5eZSvu/0660L5VOwLPQeCZ1FZV4661F1P5nEH
EIGAtEKWcSPOTCGWE7fPCTKMyKbhPBZ6i1R87Sjgo64eK70mdZFuo38L+iE1YVH7 YnoBJDVMpPG+
gFGQiaiD3+Fab5Z8GkotmXoB7VSVKAUW7/s9JKgOBhAACGYArHi /BVNE30G0JIIdzWraVrx1lwg9RM
do+tYRjY4bXue7LRDCvVaSxX1Ddy%kTyeTTntwUrJOyx/8gEi/WmraGXhK8wGSrtE/g3S/A16DWEB
CiyeMhlCrd4QiAhp5WtR4KIMIB)g2Xn8+0MnnT1gDnmesNaSwdz/01E0azSPTy5XnDALBgcghkjO
OAQDBQADLWAWLAIUFZH0ojJvsO3+UYMBZk6yDzhdejzMCFHCOWbkDwfImQCa+dTebXZ1elG1lQ
MIIC3jCCApWCBEIWY6YWCWYHKOZIZjgEAWUAMFUXCZzAJBgNVBAYTAKNIMQ8wDQYDVQQHEWZadXJp
Y2gxDTALBgNVBAOTBENJUDQxDzZANBgNVBASTBkpNRiBXRzEVMBMGA1UEAXMMd3d3LmNpcDQub3Jdn
MB4XDTAIMDIxXODIXNTIzOFoXDTAIMDUyOTIXNTIzOFowVTELMAKGA1IUEBhMCQOgxDzANBgNVBACT
BlplcmljaDENMAsSGAIUEChMEQO1QNDEPMAOGAIUECxMGSk1GIFAHMRUWEWYDVQQODEWx3d3cuY21lw
NC5vemewggG3MI IBLAYHK0ZIZjgEATCCARSCGYEA/X9TgR11E11530gcLuzk5/YRt1I870QAwx4 /
gLZRIM1IFXUAiUftZPY1Y+r/F9bow9subViWzXgTuAHTRVE8mMZgt2uZUKWkn5/0BHsSQIsJPu6bnX/rfG
G/g7V+fGgKYVDWT7g/bTxR7DAJVUE1OWKTL2dfOuK2HXKu/yIgMZndFIACccCFQCXYFCPFSMLzLKS
=====END CERTIFICATE=====</Certificate>

</RAuthenticationResp>
</Response>

Example 5.20: Follow up RequestForAuthentication Query
Next, the original command sender would send a follow up RequestForAuthentication Query:

<Query ID="M004" Type="RequestForAuthentication" xsi:type="QueryRequestForAuthentication">
<AuthenticationQuParams AuthenticationType="AsClient"/>
</Query>

JDF SPECIFICATION 1.7 181

MESSAGING

Example 5.21:

RequestForAuthentication Response from Follow Up Query

If authentication has been confirmed, the following response would be sent to the RequestForAuthentication Query:

<Response ID="M102" ReturnCode="0" Type="RequestForAuthentication"
refID="M004" xsi:type="ResponseRequestForAuthentication"/>

5.45 RequestQueueEntry

New in JDF 1.2

This command requests a new queue entry from a potential submitting agent. The actual submission is still handled by
the standard queue entry handling parameters.

Note: This command is emitted from the device that is represented by the queue to a controller or device and not to the
queue, as is the case with most other queue handling commands.

Whereas JDF generally assumes a "Push' workflow, where a controller or MIS assigns a task to a given device,
RequestQueueEntry allows a ""Pull" workflow to be implemented, where a device with free processing capabilities dy-
namically requests a new task.

Table 5.80: RequestQueueEntry Message

ELEMENT
OBJECT TYPE NAME DESCRIPTION
CommandTypeObj RequestQueue | Defines the specifics for the requested job.
EntryParams
ResponseTypeObj — The response to this message contains no ResponseTypeObj, only an empty

response element that specifies the @ReturnCode. Any job submission is han-
dled using hot folders or the standard SubmitQueueEntry message.

5.45.1 RequestQueueEntryParams

Table 5.81: RequestQueueEntryParams Element

NAME DATA TYPE DESCRIPTION

Activation ? enumeration | Specifies the activation of the requested QueueEntry.

New in JDF 1.5 Allowed value is from: » Activation.

JobID ? string @JobID of the requested QueueEntry.

JobPartiD ? string @JobPartID of the requested QueueEntry.

QueueURL URL URL of the Queue controller that is requesting the QueueEntry and will accept
Oueue manipulation messages. If URL specifies a file, this is the hot folder for
JDF submission.

SubmitPolicy ? enumeration | Defines the requested policy for submitting the node.

New in JDF 1.3 If not specified, the submission policy is dependent on the controller imple-
mentation. @SubmitPolicy allows a device to request a node that would other-
wise not be submitted by the controller due to missing resources.

Allowed values are:
Standard — All linked resources SHALL have a Resource@Status as defined by
Resourcelink/@MinStatus.
Late — All linked resources SHALL have a Resource@Status as defined by
Resourcelink/@MinLateStatus.
Force — The node SHALL be submitted regardless of the values of linked
Resource@ Status.
Part * element Partition parts of the requested QueueEntry.
Queue ? element Representation of the current status of the device's Queue.

182

JDF SPECIFICATION 1.7

RESOURCE

5.46 Resource

The Resource message can be a Command message or a Query message to modify or to query JDF resources. In both cases
(query and command), it is possible to address either global device resources, such as device settings or job-specific re-
sources. The query message retrieves information about the resources without modifying them, while the Command

message modifies those settings within the resource that is specified. Settings that are not specified remain unchanged.

5.46.1 Resource Query

The Resource Query can be made selective by specifying a ResourceQuParams element. The presence of the @JobID attri-
bute determines whether global device resources or job-related resources are returned. If no ResourceQuParams element
is specified, only the global device resources are returned.

The query’s response message returns a list of Resourcelnfo elements that contains the queried information concerning
the resources. If the list is empty because the selective query parameters of the ResourceQuParams lead to a null selection
of the known device/job resources, then the @ReturnCode is 103 (@JobID unknown), 104 (@JobPartID unknown) or 108
(empty list) and SHOULD be flagged as a warning with Notification [@Class="Warning" and @ Type="Error"].

Table 5.82: Resource Query Message

ELEMENT

OBJECT TYPE NAME DESCRIPTION
QueryTypeObj ResourceQuPa | Specifies the resources queried.
rams ?
ResponseTypeObj Resourcelnfo | Contains the amount data of resources and if requested, the resources itself.
%

5.46.1.1 ResourceQuParams
Table 5.83: ResourceQuParams Element (Sheet 1 of 3)

NAME DATA TYPE DESCRIPTION

Classes ? enumerations | List of the resource classes to be queried. For example, in order to query the
actual level of consumables in a device outside of any job context, specify
@Classes="Consumable" in the query without a @JobID attribute.

Default value is: All classes (if @Classes is empty or not specified).
Allowed values are from: » ResourceClass.

Context ? enumeration | Specifies the job context of the queried resources.
New in JDF 1.5 Allowed values are:
Deprecated in JDF 1.6 Job — the query is for all resources in the context of the specified job.

Global — the query is for a catalog of all known resources.
Deprecation Note: The context is now defined within @Scope.

Exact = "false" boolean Requests an exact description of the JDF resource. If "true”, the response will
also return the requested JDF resource.

JobID ? string JDF/@JobID of the JDF node that is being queried. If no @JobID is specified, the

Modified in JDF 1.4 request applies to the currently running process or global resources, depend-

ing on the value of @Context.

JobPartiD ? string JDF/@JobPartID of the JDF node that isbeing queried. If no @JobPartID is spec-
ified, all resources related to @JobID are queried.

Location ? string Identifies the location of a resource, such as paper tray, ink container or
thread holder. The name is the same name used in the Partition Key @Location
of distributed resources (see also » Section 3.10.6.4 Locations of
PhysicalResources).

Default value is: The location will be selected by the device.

Values include those from: » Input Tray and Output Bin Names.
Note: The specified values are for printer locations.

JDF SPECIFICATION 1.7 183

MESSAGING

Table 5.83: ResourceQuParams Element (Sheet 2 of 3)

NAME DATA TYPE DESCRIPTION
LotDetails = "Brief" enumeration | @LotDetails refines the level of information provided about individual lots of
New in JDF 1.4 the resources.
Deprecated in JDF 1.6 This attribute is most useful when querying an MIS, and SHOULD NOT be

specified when querying a device.

Allowed values are:

Brief — Provides only the @LotControlled attribute in the response indicating
whether or not the resources are lot controlled.

Full — Provides Lot elements related to the resources.

Amount — Same as "Full", but with the addition of the @Amount attribute so
the MIS can indicate what the current “on hand” balance for the Lot is in

the MIS.
LotID ? string @LotID of the individual lot of the resource that is queried.
New in JDF 1.4 Deprecation note: Use Part/@LotID
Deprecated in JDF 1.6
ProcessUsage ? NMTOKEN Selects a resource in which Resourcelink/@ProcessUsage matches the token
Modified in JDF 1.6 specified.

Only necessary if a resource name is used more than once by one node. For
example, the Component input ExposedMedia of a ConventionalPrinting pro-
cess SHALL be distinguished by specifying @ProcessUsage="Plate" and
@ProcessUsage="Proof", respectively.

The @ResourceName, @Usage and @ProcessUsage attributes are combined by
a logical AND conjunction to select the resource to be queried.

Values include those from: » Process Usage.

ProductiD ? string @ProductID of the resource that is queried.

New in JDF 1.2

QueueEntrylD ? string OueueEntry/@QueueEntrylD of the job that is currently being executed, that is
New in JDF 1.2 being queried. If @QueueEntryID is specified, @JobID, @JobPartID and Part

SHALL NOT be specified. If none of @JobID, @JobPartID, Part or
@QueueEntrylD are specified, ResourceQuParams applies to all jobs.

ResourceDetails = enumeration | @ResourceDetails refines the level of information provided about the
"Full” resources.
New in JDF 1.4 Allowed values are:

Brief — Provides appropriate ID information specific to the type of resource
and @DescriptiveName attributes only. For example, @Product/iD would be
included for Consumable Resource elements that represent consumables,
@PersonallD for Employee resources.

Full — Provides all of the attributes of the resources.

ResourcelD ? NMTOKEN Resource/@ID of the resource that is queried.
New in JDF 1.3 Note: The data type is NMTOKEN and not IDREF because the referenced @ID
need not be present in the JMF.

Deprecation note: Starting with JDF 1.5, resources SHOULD be identified by
@ProductID in Resource JMF messages.

Deprecated in JDF 1.5

ResourceName ? NMTOKENS Name of the resource(s) being queried.
Modified in JDF 1.4 Values include those from: » Section 8 Resources.

Modification note: Starting with JDF 1.4, the data type was expanded from
NMTOKEN to NMTOKENS.

Scope ? enumeration | Specifies whether the Response or Signal SHALL return a complete list of all
New in JDF 1.4 known resources, or the currently loaded resources or the resources related
to a specific job.

Allowed value is from: » Scope.

184 JDF SPECIFICATION 1.7

RESOURCE

Table 5.83: ResourceQuParams Element (Sheet 3 of 3)

NAME DATA TYPE DESCRIPTION

Usage ? enumeration | Selects a resource in which the value of the ResourcelLink/@Usage attribute
matches the token specified here in this attribute. Only necessary if a
resource with a given name is used both as input and output by one node.

Allowed value is from: » ResourceUsage.

Part * element Part elements that describe the resource whose messages are queried.
New in JDF 1.2

Example 5.22: Resource Query about Paper

The following is an example of a press system sending a Resource Query to another MIS to get information on all paper
known by the MIS.

<?xml version="1.0" encoding="UTF-8"?>

<JMF AgentName="CIP4 JDF Writer Java" AgentVersion="1.5 BLD 93"
MaxVersion="1.6" SenderID="SenderID"
TimeStamp="2017-08-18T18:23:39+02:00" Version="1.6"
xmlns="http://www.CIP4.0rg/JDFSchema 1 1"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:type="JMFRootMessage">
<!--Generated by the CIP4 Java open source JDF Library version : CIP4 JDF Writer Java 1.5 BLD 93-->
<Query ID="gl" Type="Resource" xsi:type="QueryResource">

<ResourceQuParams Classes="Consumable" Exact="true"/>

</Query>

</JIME>

Example 5.23: Resource Response about Paper

The following is an example of a Response message, containing a Resourcelnfo element, sent in response to the previous
Resource Query.

<?xml version="1.0" encoding="UTF-8"?>
<JMF AgentName="CIP4 JDF Writer Java" AgentVersion="1.5 BLD 93"
MaxVersion="1.6" SenderID="SenderID"
TimeStamp="2017-08-18T18:23:39+02:00" Version="1.6"
xmlns="http://www.CIP4.0rg/JDFSchema 1 1"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:type="JMFRootMessage">
<!--Generated by the CIP4 Java open source JDF Library version : CIP4 JDF Writer Java 1.5 BLD 93-->
<Response ID="rl" Type="Resource" refID="gl" xsi:type="ResponseResource">
<ResourceInfo>
<Media Class="Consumable"
DescriptiveName="more about the paper here"
ID="r.2784. 170818 182339214 000003" Status="Unavailable"/>
<AmountPool>
<PartAmount ActualAmount="42">
<Part LotID="Lot 1" SheetName="Sheetl" SignatureName="Sigl"/>
</PartAmount>
<PartAmount ActualAmount="84">
<Part LotID="Lot 2" SheetName="Sheetl" SignatureName="Sigl"/>
</PartAmount>
</AmountPool>
</ResourceInfo>
</Response>
</JMF>

JDF SPECIFICATION 1.7 185

MESSAGING

Example 5.24: Resource Query about Employees

The following is an example of a press system sending a Resource Query to an MIS to get a list of all known employees
in the MIS:

<Query ID="M170" Type="Resource" xsi:type="QueryResource">
<ResourceQuParams ResourceDetails="Brief" ResourceName="Employee"/>
</Query>

Example 5.25: Resource Response about Employees
The following is an example of a Resource response to the previous Resource Query

<Response ID="M1001l" Type="Resource" refID="M170" xsi:type="ResponseResource'">
<ResourceInfo>
<Employee Class="Implementation" DescriptiveName="John Allen"
ID="EQ1" PersonalID="1034" Status="Available"/>
</ResourceInfo>
<ResourcelInfo>
<Employee Class="Implementation" DescriptiveName="Sally Brown"
ID="E02" PersonallID="1057" Status="Available"/>
</ResourceInfo>
<ResourceInfo>
<Employee Class="Implementation" DescriptiveName="Mike Davison"
ID="E03" PersonallD="2105" Status="Available"/>
</ResourcelInfo>
<l== .0 ==>
<ResourceInfo>
<Employee Class="Implementation" DescriptiveName="Will Smith"
ID="EQ4" PersonallID="6410" Status="Available"/>
</ResourceInfo>
</Response>

Example 5.26: Resource Signal about Consumed Resources

The following is an example of a Resource signal used to report the inventory identification of the resources that were
used:

<Signal ID="P172" Type="Resource" xsi:type="SignalResource">
<ResourceQuParams JobID="34028" JobPartID=" FO5A84BD"/>
<ResourceInfo>
<Media Brand="Roll Stock" Class="Consumable"
Dimension="2520 8640000" ID="RIOO07" MediaType="Paper"
PartIDKeys="SheetName" ProductID="3002" Status="Available">
</Media>
<AmountPool>
<PartAmount ActualAmount="3230">
<Part SheetName="1" LotID="Lot01l"/>
</PartAmount>
<PartAmount ActualAmount="1820">
<Part SheetName="1" LotID="Lot02"/>
</PartAmount>
<PartAmount ActualAmount="5050">
<Part SheetName="2" LotID="Lot02"/>
</PartAmount>
</AmountPool>
</ResourcelInfo>
</Signal>

5.46.2 Resource Command

The Resource Command message SHALL be used to modify or create either global device settings or resources of a running
job. It can be made selective by specifying the OPTIONAL attributes in the ResourceCmdParams element. The presence of
ResourceCmdParams/@JobID determines whether global device resources or job-related resources are modified. If no re-
source exists in the target JDF that matches the filter settings in ResourceCmdParams, and ResourceCmdParams/@JobID
is present, then the specified resource SHALL be created as an input resource to the JDF node.

186 JDF SPECIFICATION 1.7

RESOURCE

The Resource message contains a list of Resourcelnfo elements with all resources and private extensions of the device
after the changes have been applied. The type of the resource that is given as a response depends on the type of the re-
source given in the command.

If the Resource Command message was successful, the value of @ReturnCode is "0". If it is not successful, the value of
@ReturnCode is one of those that have been described in the above section about the Resource Query message; or it is
"200" (invalid resource parameters) or "201" (insufficient resource parameters). Partial application of the resource
SHOULD also be flagged as a warning with Noetification[@Class="Warning" and @ Type="Error"]. If the value of
@ReturnCode is larger than "0", the controller that issued the command can evaluate the returned resource in order to
find the setting that could not be applied.

Table 5.84: Resource Command Message

ELEMENT
OBJECT TYPE NAME DESCRIPTION
CommandTypeObj ResourceCmd | Specifies the resources to be modified.
Params
ResponseTypeObj Resourcelnfo | Contains information about the resources after modification.
%

5.46.2.1 ResourceCmdParams

Table 5.85: ResourceCmdParams Element (Sheet 1 of 2)

NAME DATA TYPE DESCRIPTION

Activation = "Active" | enumeration | Describes the activation status of the uploaded resource. Allows for a range of
New in JDF 1.1 activity, including deactivation and test running of a resource prior to actu-
Modified in JDE1.6 ally committing the change to the device.

Allowed value is from: » Activation.

Exact = "false" boolean Requests an exact description of the JDF resource. If "true", the response mes-
sage will also return the requested JDF resource.

JobID ? string @JobID of the JDF node that the resource being modified is linked to. If no
@JobID is specified, global resource settings are modified.

JobPartID ? string @JobPartID of the JDF node that the resource being modified is linked to.

ProcessUsage ? NMTOKEN Selects a resource in which the value of the ResourceLink/@ProcessUsage

attribute matches the token specified here in this attribute.

Only necessary if a resource name is used more than once by one node. For
example, the ExposedMedia input resources of a ConventionalPrinting process
can be distinguished by specifying @ProcessUsage="Plate" and
@ProcessUsage="Proof", respectively.

The @ResourceName, @Usage and @ ProcessUsage attributes are combined by
a logical AND conjunction to select the resource to be modified.

Values include those from: » Process Usage.

ProductID ? string @ProductID of the resource that is updated.

New in JDF 1.2

ProductionAmount ? | double New requested amount of resource production. This value replaces the
ResourceLink/@Amount of the selected resource.

QueueEntrylD ? string @QueueEntrylD of the job that is currently being executed. If @QueueEntryID is

New in JDF 1.2 specified, @JobID, @JobPartID and Part are ignored. If none of @JoblD,

@JobPartID, Part or @QueueEntrylD are specified, ResourceCmdParams applies
to global resources.

JDF SPECIFICATION 1.7 187

MESSAGING

Table 5.85: ResourceCmdParams Element (Sheet 2 of 2)

NAME DATA TYPE DESCRIPTION
ResourcelD ? NMTOKEN Resource/@ID the resource that is modified. If both @ResourcelD and
New in JDF 1.3 Resource are specified, resources with a non-matching Resource/@ID SHALL
D ted in JDE15 NOT be updated.
eprecatedin : Note: The data type is NMTOKEN and not IDREF because the referenced @ID
NEED NOT be present in the JMF.
Deprecation note: Starting with JDF 1.5, resources SHOULD be identified by
@ProductID in Resource JMF messages.
ResourceName ? NMTOKEN Name of the resource whose production amount will be modified.
Values include those from: » Chapter 8 Resources.
Status ? enumeration | Updated @Status of the selected resource.
New in JDF 1.2 Allowed value is from: » ResourceStatus.
UpdatelDs ? NMTOKENS The @UpdatelD attributes of one or more ResourceUpdate that are defined in
New in JDF 1.1 resources known to the recipient. The data type is NMTOKENS and not
. ted inJDE1.3 IDREFS because no matching IDs exist within this message. The order of
eprecatedin : tokens in defines the order in which the updates are applied.
UpdateMethod = enumeration | @UpdateMethod specifies how the resource is updated.
‘Complete’ Attributes that are required to correctly identify the resource SHALL be spec-
New in JDF 1.3 ified, even if @UpdateMethod="Remove" or @ UpdateMethod="Incremental".
Modified in JDF 1.4 These attributes include @ProductID, @Class, @PartIDKeys, and any Partition
Keys.
Allowed values are:
Complete — The resource partitions defined by Part are completely overwrit-
ten by Resource in this message.
Incremental — The resource partitions defined by Part are incrementally
updated by the values that are explicitly set in Resource in this message.
Remove — The resources or resource partitions are removed. New in JDF 1.4
Usage ? enumeration | Selects a resource in which the value of the ResourcelLink/@Usage attribute
New in JDF 1.4 matches the token specified here in this attribute. Only necessary if a
resource name is used both as input and output by one node.
Allowed value is from: » ResourceUsage.
MiSDetails ? element Definition how the costs for the modification of the Resource are to be
New in JDF 1.2 charged.
Part * element Part elements that describe the partitions of the resource that is being modi-
New in JDF 1.2 fied. If not specified, the entire resource is selected. If a resource is the final
instance of set of partitioned resources, and thus the properties of the parti-
tion that represents the set are modified in addition to the properties of the
instance, then the Part that represents the set SHOULD also be specified
explicitly.
For example, if the fourth plate of a four color process set is now available,
and thus the entire surface is now available, Part elements for both the fourth
plate and for the entire surface SHOULD be specified. If the other surface is
also available, then a Part element for the sheet SHOULD be specified as well.
Resource * element Resources to be uploaded to the device. They replace the original resources

according to the policy specified in @ UpdateMethod. The resource SHOULD be
identified by ResourceCmdParams/@ResourceName, ResourceCmdParams/
@Usage, ResourceCmdParams/@ProcessUsage Or ResourceCmdParams/
@ProductiD.

The data type and @Class of Resource MAY be derived from the Abstract
Resource. See » Section 3.8.3 Abstract Resource.

JDF SPECIFICATION 1.7

RESOURCE

Example 5.27: Resource Command: Single Resource is Available
The following is an example for specifying that the Cyan, Front plate of sheet2, signature 1 has become available.

<Command ID="C1l" Type="Resource" xsi:type="CommandResource">
<ResourceCmdParams JobID="MakeBrochure 012" ResourceID="ExposedMedialID">
<Part Separation="Cyan" SheetName="Sheet2" Side="Front" SignatureName="Sigl"/>
</ResourceCmdParams>
</Command>

Example 5.28: Resource Command: Multiple Resources are Available

The following is an example for specifying that the Black, Front plate of sheet2, signature 1 has become available and is
also the last plate of Sheet 2.

<Command ID="C2" Type="Resource" xsi:type="CommandResource">
<ResourceCmdParams JobID="MakeBrochure 012" ResourceID="ExposedMediaID">
<Part Separation="Black" SheetName="Sheet2" Side="Front" SignatureName="Sigl"/>

<!-- the entire front of Sheet2 is also available -->
<Part SheetName="Sheet2" Side="Front" SignatureName="Sigl"/>
<!-- the entire Sheet2 is also available -->

<Part SheetName="Sheet2" SignatureName="Sigl"/>
</ResourceCmdParams>
</Command>

5.46.2.2 Resourcelnfo
Modified in JDF 1.7

Table 5.86: Resourcelnfo Element (Sheet 1 of 3)

NAME DATA TYPE DESCRIPTION
ActualAmount ? double When querying a device, this attribute reflects the current accumulated
New in JDF 1.2 amount of the resource that has been consumed (input) or produced (output)

by the process. This corresponds to the current value of ResourceLink/
@ActualAmount if it would be written now.

@ActualAmount SHALL NOT be specified if @Scope="Estimate".
When querying an MIS, this attribute SHOULD NOT be specified.

Amount ? double When querying a device, this attribute reflects the intended accumulated
amount of the resource that will be consumed (input) or produced (output)
by the process. This corresponds to the current value of ResourceLink/
@Amount if it would be written now.

When querying an MIS, this attribute specifies the amount of the Consumable
Resource that is available in inventory.

AvailableAmount ¢ double When querying a device, this attribute specifies the device-specific amount of
the Consumable Resource that is available in the device.

When querying an MIS, this attribute specifies the amount of the Consumable
Resource that is available in inventory

CommandResult ¢ enumeration Result of a Resource Command.

New in JDF 1.4 Allowed values are:

Merged — Values from the resource in ResourceCmdParams were merged into
an existing resource. See the Resourcelnfo/Resource for the merged
result.

New — A new resource with the values specified in ResourceCmdParams was
created.

Rejected — The Resource Command was not applied to this resource.

Removed — An existing resource was removed completely by a resource spec-
ified in ResourceCmdParams.

Replaced — An existing resource was replaced completely by a resource speci-
fied in ResourceCmdParams.

DevicelD ? NMTOKEN Used to disambiguate the location of a resource when a controller is returning
New in JDF 1.5 cumulative resource information from its controlled devices.

JDF SPECIFICATION 1.7 189

MESSAGING

Table 5.86: Resourcelnfo Element (Sheet 2 of 3)

NAME

Level ?

Modified in JDF 1.4
Modified in JDF 1.6

DATA TYPE

enumeration

DESCRIPTION

Level of the consumable or output bin that is represented by this

Resourcelnfo for the device.

Allowed values are:

Empty — The bin is empty.

Full - The bin is full. New in JDF 1.6

High - The output bin is filling up and can soon be Full. This value is for out-
put levels only and SHOULD NOT be specified for input resources. New in
IDF1.6

Low — The resources are running low and can soon be Empty. This value is for
input levels only and SHOULD NOT be specified for output bins.

OK — Specification is left to the device manufacturer.

Modification note: Starting with JDF 1.4, the default of "OK" is removed to al-

low job independent resource information.

Location ?

string

Device-specific string to identify the location of a given consumable, such as
paper tray, ink container or thread holder. The name is the same name used
in the Partition Key @Location of distributed resources (see also » Section
3.10.6.4 Locations of PhysicalResources).

Default value is: the location will be selected by the device

Values include those from: » Input Tray and Output Bin Names.
Note: The specified values are for printer locations.

LotControlled ?
New in JDF 1.4

boolean

Indicates that the resource is lot controlled.

ModulelD ?
New in JDF 1.3

string

@ModulelD of the module that the Resource is consumed or produced by. If
neither of @ModulelD or @Modulelndex are specified, defaults to the entire
device specified by JMF/@ SenderID.

Modulelndex ?
New in JDF 1.3

Inte-
gerRangelList

The 0-based indices of the module or modules that the Resource is consumed
or produced by. If neither of @ModulelD or @Modulelndex are specified,
defaults to the entire device specified by JMF/@SenderID.

Orientation ?
New in JDF 1.5

enumeration

Named orientation describing the orientation of the Resource relative to the
ideal process coordinate that uses this Resource. @Orientation can be used to
describe orientation dependent resources such as paper in a paper tray.

Allowed value is from: » Orientation.

ProcessUsage ?

NMTOKEN

Selects a resource in which the value of the ResourceLink /@ProcessUsage
attribute matches the token specified here in this attribute.

Only necessary if a resource name is used more than once by one node. For
example, the ExposedMedia input resources of a ConventionalPrinting process
can be distinguished by specifying @ProcessUsage="Proof" and
@ProcessUsage="Plate", respectively.

The @ResourceName and @ProcessUsage attributes are combined by a logical
AND conjunction to select the resource to be queried.

Values include those from: » Process Usage.

ProductID ?
New in JDF 1.2

string

@ProductID of the resource.

ResourcelD ?
New in JDF 1.3

Deprecated in JDF 1.5

NMTOKEN

Resource/@ID of the resource.
Note: The data type is NMTOKEN and not IDREF because the referenced @/D
NEED NOT be present in the JMF.

Deprecation note: Starting with JDF 1.5, resources SHOULD be identified by
@ProductID in Resource JMF messages.

ResourceName ?

NMTOKEN

Name of the resource if @Exact="false" in the query.

@ResourceName specifies the primary resource that this Resourcelnfo applies
to. Additional resources MAY be specified to ensure complete references from
the primary resource.

Values include those from: » Chapter 8 Resources.

190

JDF SPECIFICATION 1.7

RESOURCE

Table 5.86: Resourcelnfo Element (Sheet 3 of 3)

NAME DATA TYPE DESCRIPTION

Scope ? enumeration | @Scope specifies the context of the resources defined in this Resourcelnfo.

New in JDF 1.5 Allowed value is from: » Scope.

Speed ? double The current speed at which the resource that this Resourcelnfo describes is

New in JDF 1.6 being consumed or produced. @Speed SHALL be defined in the units specified
by @Unit / hour.

Status ? enumeration | Updated @Status of the selected resource.

New in JDF 1.2 Allowed value is from: » ResourceStatus.

TotalAmount ? double @TotalAmount specifies the job independent total counter setting for a given

New in JDF 1.6 type of resource.
Note: This allows tracking of power consumption without requiring a device
to track it individually for each job.

Transformation ? matrix @Transformation describes the transformation of the orientation of the

New in JDF 1.6 Resource (described by this Resourcelnfo) relative to the ideal process coordi-
nate system that uses this Resource as an input or output.

Unit ? string Unit of the amount attributes.
In a job context it is strongly discouraged to specify a unit other than the unit
defined in the respective JDF resource, although this might be necessary due
to technical considerations, such as when ink is specified in weight (g) and
ink measurement is specified in volume (liter).
Values include those from: » Units.

Usage ? enumeration | Specifies a resource in which the value of the Resourcelink/@Usage attribute
N i IETLE! matches the value of this attribute. Only required if a resource name is used
both as input and output by one node.

Allowed value is from: » ResourceUsage.

AmountPool ? element Definition of partial amounts and pipe parameters for this Resource. The

New in JDF 1.3 contents of the AmountPool are described for the various types of
Resourcelink elements in » Table 3.28 AmountPool Element. If AmountPool is
specified, the Resourcelnfo SHALL NOT contain any of the amount related
attributes defined in AmountPool/PartAmount .

CostCenter ? element Cost center to which the resource consumption is allocated.

Event * element Event MAY be used to specify machine-dependent codes that triggered a

New in JDF 1.7 Signal/ @ Type="Status".

Lot * element Used when a device is querying a controller to determine what lots exist for

New in JDF 1.4 the resource being queried. When a device is the sender of this message, lot

Deprecated in IDF 1.6 information is specified in the AmountPool, and SHALL NOT be specified
here.

MiSDetails ? element Definition of how the costs for the production of the Resource are to be

New in JDF 1.2 charged.

Part * element Part elements that describe the resource.

New in JDF 1.4 Creation note: Starting with JDF 1.4, Part is back after being deprecated in JDF
1.3.

Resource * element JDF description of the resource. If the query or command leading to this

Modified in JDF 1.4

response message element contains Part elements, the resource SHALL con-
tain only the appropriate matching partitions. The data type and @Class of
Resource is derived from the abstract resource. See » Section 3.8.3 Abstract
Resource.

Modification note: Starting with JDF 1.4, there can be multiple occurrences of
Resource elements. See @ResourceName for the reason.

JDF SPECIFICATION 1.7 191

MESSAGING

Example 5.29: Resource Query for Consumables
The following is an example for retrieving settings:

<Query ID="Ql" Type="Resource" xsi:type="QueryResource">
<ResourceQuParams Classes="Consumable" Exact="true"/>
</Query>

Example 5.30: Resource Response about Consumables
The following is a possible response message to the query message above:

<Response ID="M1" Type="Resource" refID="Q1l" xsi:type="ResponseResource">
<ResourceInfo AvailableAmount="2120" Location="Paper Tray 1">
<Media Class="Consumable" ID="ID123" Status="Available">
<!-- Media resource defined in JDF -->
</Media>
</ResourceInfo>
<ResourcelInfo AvailableAmount="0" Level="Empty" Location="Inkl" Unit="1">
<Ink Class="Consumable" ID="ID124" Status="Available">
<!-- Ink description resource defined in JDF -->
</Ink>
</ResourceInfo>
</Response>

Example 5.31: Resource Command for Changing Amount
The following is an example for modifying the production amount of a specific job to produce brochures.
<Command ID="C1l" Type="Resource" xsi:type="CommandResource">

<ResourceCmdParams JobID="MakeBrochure 012" ProductionAmount="7500" ResourceName="Component" />
</Command>

Example 5.32: Resource Response for Changing Amount
The following is a possible response to the Resource Command message above.
<Response ID="M2" Type="Resource" refID="Cl" xsi:type="ResponseResource">

<ResourcelInfo Amount="7500" ResourceName="Component"/>
</Response>

5.47 ResourcePull
New in JDF 1.2

The ResourcePull message requests a resource from a controller or device. The resource is specified as the output re-
source of a JDF node. The requested resource MAY be a subset of the resource specified in the original JDF. The
ResourcePullParams element provides the parameters. The command can be used to regenerate the output of a
QueueEntry or JDF node with any @Status.

If the ResourcePull is accepted, the respective QueueEntry is re-queued with QueueEntry/@ Status="Waiting". After pro-
cessing, the processing result SHALL be sent to the original submitter of the QueueEntry that is being repeated using a
ReturnQueueEntry message. The sender of the ResourcePull message SHOULD be informed of the completion of the
ResourcePull message with a Resource Command.

Workflow Integration with ResourcePull

When ResourcePull is submitted directly to a device in a workflow that is monitored by an MIS system, the MIS system
SHALL be informed about the re-execution of the JDF node, so that it can update the state of the entire job appropriately.

192 JDF SPECIFICATION 1.7

RESOURCEPULL

Note: It is preferred to pull a resource from a device in a workflow that is monitored by an MIS system by sending the
ResourcePull message to the MIS. The MIS can then control the device in the standard manner and also maintain con-
sistency of its internal job representation.

Table 5.87: ResourcePull Message

OBJECT TYPE ELEMENT DESCRIPTION
CommandTypeObj OueuefFilter ? | Defines a filter for the returned Queue element in the ResourcePull message.
Deprecated in
JDF1.5

ResourcePullP | Defines the parameters of the repeated job.

arams
ResponseTypeObj Queue ? Describes the state of the queue after the command has been executed.
Deprecated in
JDF 1.5
QueueEntry Provides the queue entry of the repeated job.

5.47.1 ResourcePullParams

The ResourcePullParams MAY contain queue-ordering attributes equivalent to those used by the SetQueueEntryPriority
and SetQueueEntryPosition messages. The OPTIONAL list of Part elements refers to the output resource that is produced
by the JDF node.

Table 5.88: ResourcePullParams Element (Sheet 1 of 2)

NAME DATA TYPE DESCRIPTION

Amount ? double The @Amount attribute identifies the amount of the output resource to be
created by the JDF node that is executed by the cloned QueueEntry. This
@Amount is the amount to be produced by the process that is executed due to
the ResourcePull. Thus if 200 copies had been created previously and 100
copies are requested by the ResourcePull, @Amount="100" and not "300".

Hold = "false" boolean If "true", the entry is submitted as held.

JobID ? string @JobID of the JDF node that creates the requested resource. If @QueueEntrylD
is specified, @JobID is ignored. Exactly one of @JobID or @QueueEntryID
SHALL be specified.

NextQueueEntrylD ? | string ID of the queue entry that SHALL be positioned directly behind the entry.

PrevQueueEntrylD ? | string ID of the queue entry that SHALL be positioned directly in front of the entry.

Priority = "1" integer Number from 0 to 100, where 0 is the lowest priority and 100 is the maximum
priority.

QueueEntrylD ? string @ QueueEntryID of the JDF node that creates the requested resource. If

@QueueEntrylD is specified, @JobID and Part are ignored. Exactly one of
@JobID or @QueueEntrylD SHALL be specified.

RepeatPolicy ? enumeration | Policy that defines how to reuse intermediate resources that were generated
in the original processing step (e.g., intermediate raster files in a combined
RIP and ImageSetting process).

Allowed values are:

Complete — Restart from the original input resources if they are available. The
process can run based on intermediate resources if no original resources
are available.

CompleteOnly — Restart from the original input resources. The process SHALL
NOT run if any original resources are not available.

Fast — Reuse as many intermediate resources as possible (e.g., restart Image-
Setting from stored intermediate raster files and do not reRIP if possible).

ResourcelD string ID attribute of the resource requested.

JDF SPECIFICATION 1.7 193

MESSAGING

Table 5.88: ResourcePullParams Element (Sheet 2 of 2)

NAME DATA TYPE DESCRIPTION
ReturnURL ? URL URL where the JDF file SHALL be written when the job is completed or
Deprecated in JDF 1.4 aborted. If not specified, the JDF SHALL be placed in the default output hot

folder of the queue controller. If @ReturnURL is specified with the "file"
scheme, @ReturnURL SHALL specify an individual file. @ReturnURL takes pre-
cedence when Nodelnfo/ @ TargetRoute is specified in the previously submitted

JDF.

WatchURL ? URL URL of the controller that SHALL be notified when the status of the

Deprecated in JDF 1.4 OueueEntry or the underlying job changes. Specifying @WatchURL is equiva-
lent to sending a Subscription for an Events message with @SignalTypes =
"ALL".

Disposition ? element Specifies how long the OQueueEntry SHOULD be retained in the queue. If not

specified, the QueueEntry MAY be removed from the queue immediately after
process completion of the QueueEntry.

MiSDetails ? element Definition how the costs for the production of the Resource are to be charged.

Part * element The Part elements identify the parts of a partitioned output resource to be
created by the JDF node. The structure of the Part element is defined in

» Table 3.36 Part Element. For details on partitioned resources, see » Section
3.10.5 Description of Partitioned Resources. For details on node partitions, see
» Section 4.3.2 Partial processing of nodes with Partitioned resources.

Example 5.33: ResourcePull Command

For example, if an ImageSetting process produces a partitioned set of plates, the following example message would re-
quest only the yellow plate of the "Front" @Surface of Sheet1.

<Command ID="C3" Type="ResourcePull" xsi:type="CommandResourcePull">
<ResourcePullParams Priority="100" QueueEntryID="AllPlates" ResourceID="R42">
<Part Separation="Yellow" SheetName="Sheetl" Side="Front"/>
</ResourcePullParams>
</Command>

5.48 ResubmitQueueEntry

A job is resubmitted to a queue using the ResubmitQueueEntry message. This allows late changes to be made to a job
without affecting queue parameters and without exporting the internal structure of a queue. Resubmission overwrites
the job with JDF information specified in ResubmissionParams/@URL. If QueueEntry/@ Status is neither "Waiting" nor
"Held", resubmitting a queue entry MAY fail because a device NEED NOT implement ResubmitQueueEntry for running
queue entries. Resubmission does not affect other queue parameters as specified. For example, resubmission does not
affect queue ordering. For details, see » Table 5.20 Status Transitions for QueueEntry Handling Messages.

Table 5.89: ResubmitQueueEntry Message

ELEMENT

OBJECT TYPE NAME DESCRIPTION
CommandTypeObj QueuefFilter ? | Defines a filter for the returned Queue element in the ResubmitQueueEntry
Maodified in JDF 1.2 NewinJDF1.2 | Inessage.
Deprecated in
JDF 1.5
Resubmission | Defines the job resubmission.
Params
ResponseTypeObj Queue ? Describes the state of the queue after the command has been executed.
Modified in JDF 1.5 Deprecated in
JDF 1.5

194 JDF SPECIFICATION 1.7

RESUMEQUEUE

5.48.1 ResubmissionParams

Table 5.90: ResubmissionParams Element

NAME DATA TYPE DESCRIPTION
QueueEntrylD string ID of the queue entry to be replaced.
URL URL Location of the JDF to be submitted. It MAY be a URL with a "cid" scheme in

the case of MIME Multipart/Related.

5.49 ResumeQueue

The queue is activated and queue entries can be executed. The ResumeQueue command message is the opposite of a
HoldQueue command message.

Table 5.91: ResumeQueue Message

ELEMENT
OBJECT TYPE NAME DESCRIPTION
CommandTypeObj OueueFilter ? | Defines a filter for the ResumeQueue message.
Modified in JDF 1.5 New in JDF 1.2
Deprecated in
JDF 1.5
ResponseTypeObj Queue ? Describes the state of the queue after the command has been executed.
Modified in JDF 1.5 Deprecated in
JDF 1.5

5.50 ResumeQueueEntry

The hold status of the queue entries specified by ResumeQueueEntryParams/QueueFilter/QueueEntryDef has been re-
moved. A QueueEntry with @Status="Held" gets a @Status of "Waiting". A QueueEntry with @Status="Suspended" gets a
@Status of "Running". If QueueEntry/@ GangPolicy is other than "NoGang", a resumed QueueEntry joins its respective gang.
For details, see » Table 5.20 Status Transitions for QueueEntry Handling Messages.

Table 5.92: ResumeQueueEntry Message

OBJECT TYPE ELEMENT DESCRIPTION

NAME

CommandTypeObj OueueEntryDe | Defines the queue entry.

Modified in JDF 1.5 f? Deprecation note: Starting with JDF 1.5, this QueueEntryDef SHOULD be locat-
Deprecated in ed in ResumeQueueEntryParams/QueueFilter.
IDF 1.5

OueueFilter ? | Defines a filter for the returned Queue element in the ResumeQueueEntry
New inJDF1.2 | MESSage.

Deprecated in
JDF 1.5

ResumeQueue

EntryParams
?

New in JDF 1.5

ResponseTypeObj Queue ? Describes the state of the queue after the command has been executed.

Modified in JDF 1.5 Deprecated in
JDF1.5

5.50.1 ResumeQueueEntryParams
New in JDF 1.5

JDF SPECIFICATION 1.7 195

MESSAGING

Table 5.93: ResumeQueueEntryParams Element

DATA TYPE DESCRIPTION

QueueFilter ? element This QueueFilter selects the QueueEntry elements to apply the
ResumeQueueEntry message to.

5.51 ReturnQueueEntry

New in JDF 1.2

The ReturnQueueEntry message SHALL return a JDF that had been submitted with a SubmitQueueEntry to the controller
that originally submitted the job. ReturnQueueEntry SHALL be sent for all queue entries that have been completed or
aborted if QueueSubmissionParams/@ReturnJMF has been specified. This also applies to queue entries that have been re-
moved prior to processing. If ReturnQueueEntry is sent for a QueueEntry that has been removed prior to processing,
@Aborted SHALL contain the value of JDF/@ID.

Note: This command is sent from the device to a controller and not from controller to device as is the case with most
other queue handling commands.

Table 5.94: ReturnQueueEntry Message

ELEMENT

OBJECT TYPE NAME DESCRIPTION
CommandTypeObj ReturnQueueE | Defines the job being returned from device to controller after processing is
ntryParams completed or aborted.
ResponseTypeObj =

5.51.1 ReturnQueueEntryParams

The @URL attribute specifies the location where the JDF file to be returned can be retrieved by the controller. The scheme
of the @URL attribute (such as "file", "http" or "cid") SHALL define the retrieval method to be used to retrieve the JDF.

Table 5.95: ReturnQueueEntryParams Element

NAME DATA TYPE DESCRIPTION

Aborted ? NMTOKENS ID of the JDF nodes that have been executed and aborted or failed test run-
ning. If @Aborted and @ Completed are empty, no executable node was found.
Note that the data type of this attribute was erroneously specified as IDFREFS
in JDF 1.2. and JDF 1.3.

Completed ? NMTOKENS ID of the JDF nodes that have been executed and completed or succeeded in
test run. Note that the data type of this attribute was erroneously specified as
IDFREFS in JDF 1.2. and JDF 1.3.

Priority ? integer The priority of the QueueEntry when it was executed on the device. The con-
troller receiving this message MAY prioritize this job for continued process-
ing based on this value.

QueueEntrylD string OueueEntry/@QueueEntrylD of the returned queue entry. Note that this attri-
bute was erroneously omitted in JDF 1.2. and JDF 1.3.

URL URL Location of the JDF to be returned. Note that the @URL SHOULD be queried
with a SubmissionMethods query message to determine whether MIME Mul-
tipart/Related is supported

196 JDF SPECIFICATION 1.7

SETQUEUEENTRYPOSITION

5.52 SetQueueEntryPosition

The position of the queue entry is modified. The QueueEntryPosParams element provides the parameters. The position
of a queue entry SHALL NOT be modified unless @Status="Waiting" or @Status="Held". For details, see » Table 5.20 Status
Transitions for QueueEntry Handling Messages.

Table 5.96: SetQueueEntryPosition Message

OBJECT TYPE ELEMENT DESCRIPTION

NAME

CommandTypeObj OueueEntryPo | Defines the queue entry.
Modified in JDF 1.2 sParams

OQueuefFilter 2 | Defines a filter for the returned Queue element in the SetQueueEntryPosition
NewinJDF1.2 | Tessage.
Deprecated in

JDF 1.5
ResponseTypeObj Queue ? Describes the state of the queue after the command has been executed.
Modified in JDF 1.5 Deprecated in

JDF 1.5

5.52.1 QueueEntryPosParams

@QueueEntrylD specifies the queue entry to be moved. Jobs can either be set to a specific position within the queue or
positioned next to an existing queue entry. The priority of the entry matches the priority of the entry that precedes it,
after it has been repositioned.

Table 5.97: QueueEntryPosParams Element

NAME DATA TYPE DESCRIPTION

NextQueueEntrylD ? | string ID of the queue entry that SHALL be positioned directly behind the entry.
Exactly one of @NextQueueEntrylD, @PrevQueueEntrylD or @Position SHALL be
specified.

PrevQueueEntrylD ? | string ID of the queue entry that SHALL be positioned directly in front of the entry.
Exactly one of @NextQueueEntrylD, @PrevQueueEntrylD or @Position SHALL be
specified.

Position ? integer Position in the queue. "0"=pole position. Note that the position is based on the
queue before modification. Thus if a queue entry is moved back in the queue,
its final position is one lower than specified in @Position. Exactly one of
@NextQueueEntrylD, @PrevQueueEntrylD or @Position SHALL be specified.

QueueEntrylD string ID of a queue entry.

5.53 SetQueueEntryPriority

The priority of the queue entry is modified. The QueueEntryPriParams element provides the parameters. For details, see
» Table 5.20 Status Transitions for QueueEntry Handling Messages.

Table 5.98: SetQueueEntryPriority Message

OBJECT TYPE ELEMENT DESCRIPTION

NAME

CommandTypeObj OueueEntryPri | Defines the queue entry.
Modified in JDF 1.5 Params

QueueFilter ? | Defines a filter for the returned Queue element in the SetQueueEntryPriority
New inJDF1.2 | MESSage.
Deprecated in

JDF1.5
ResponseTypeObj Queue ? Describes the state of the queue after the command has been executed.
Modified in JDF 1.5 Deprecated in

JDF1.5

JDF SPECIFICATION 1.7 197

MESSAGING

5.53.1 QueueEntryPriParams
@QueueEntryID, described in the table below, specifies the queue entry that has its priority modified.

Table 5.99: QueueEntryPriParams Element

NAME DATA TYPE DESCRIPTION

Priority integer Number from 0 to 100, where "0" is the lowest priority and "100" is the maxi-
mum priority.

The priority from QueueSubmissionParams/@Priority and
QueueEntryPriParams/@Priority takes precedence over Nodelnfo/@JobPriority.

QueueEntrylD ? string ID of a queue entry.
Deprecated in JDF 1.5

QueuefFilter ? element This QueueFilter selects the QueueEntry elements to apply the
New in JDF 1.5 SetQueueEntryPriority message to.

5.54 ShutDown

New in JDF 1.2

The ShutDown command message shuts down a controller or device. A device SHALL use the Status message if it signals
its own shutdown.

Table 5.100: ShutDown Message

OBJECT TYPE ELEMENT DESCRIPTION

CommandTypeObj OueueFilter ? | Defines a filter for the returned Queue element in the ShutDown message.
Deprecated in
JDF 1.5
ShutDownCm | Defines the details of a shutdown.
dParams

ResponseTypeObj Devicelnfo Describes the device status as anticipated after the shut-down.
Queue ? Provides information about the queue and all its entries as anticipated after
Deprecatedin | the shutdown. This element will only be provided if the device has queue
IDF1.5 capabilities. The queue element is described in » Section 5.14 Elements for

Queues.

5.54.1 ShutDownCmdParams

Table 5.101: ShutDownCmdParams Element

NAME DATA TYPE DESCRIPTION
ShutDownType = enumeration | Defines the device shutdown method.
"StandBy" Allowed values are:

Full — Completely shut down the device. It is no longer accessible via JMF
after the shutdown. Devicelnfo/@ DeviceStatusDetails SHOULD be
"ShutDown". Devicelnfo/@DeviceStatus SHALL be "Down".

StandBy — The device is set to standby mode. It can be restarted with a
WakeUp JMF message. Devicelnfo/@ DeviceStatusDetails SHOULD be
"StandBy". If the device requires a WakeUp JMF prior to accepting new
jobs, Devicelnfo/ @ DeviceStatus SHALL be "Down", else it SHALL be "Idle".

FlushQueueParams | element Defines the policy for flushing the queue upon shutdown. If not specified, the
? queue is not flushed. The behavior of a queue after shutdown is system spe-
cific.
5.55 Status

The Status message queries the general status of a device or a controller and the status of jobs associated with this device
or controller. No job context is needed to issue a Status message. The response SHOULD contain one or more Devicelnfo
elements, which contain the device specific information and which MAY contain other JobPhase elements that in turn
contain the job specific information.

198 JDF SPECIFICATION 1.7

STATUS

Table 5.102: Status Message

ELEMENT

OBJECT TYPE NAME DESCRIPTION
QueryTypeObj StatusQuPara | Refines the query to include various aspects of the device and job states.
ms
ResponseTypeObj Devicelnfo * Describes the actual device status. If multiple Devicelnfo elements are speci-
Modified in JDF | fied, these describe multiple devices. A sequential state change of an individ-
17 ual device SHALL be encoded as 2 separate signals. At least one Devicelnfo

SHALL be provided in a Signal or in a direct Response to a Query that has no
Subscription element.

Modification note: Starting with JDF 1.7, Devicelnfo is optional to allow an
empty response to a Query that has a Subscription.

Queue ? Provides information about the queue and all its entries. This element will
Deprecated in only be provided if the device has queue capabilities. The Queue element is
JIDF 1.6 described in » Section 5.14 Elements for Queues.

Deprecation note: In JDF 1.6 and beyond, use a QueueStatus message.

Example 5.34: Status Signal
New in JDF 1.4
Example of a status signal for a phase switch from setup to running

<JMF MaxVersion="1.6" SenderID="MIS master A" Version="1.6"
TimeStamp="2007-08-09T11:35:41+02:00" xmlns="http://www.CIP4.0org/JDFSchema 1 1"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<Signal ID="ml8" Type="Status" xsi:type="SignalStatus">
<DeviceInfo DeviceStatus="Running">
<JobPhase JobID="jID" JobPartID="jpID"
PhaseStartTime="2007-08-09T11:35:40+02:00" Status="Setup"/>
</DeviceInfo>
</Signal>
<Signal ID="ml9" Type="Status" xsi:type="SignalStatus">
<DeviceInfo DeviceStatus="Running">
<JobPhase JobID="jID" JobPartID="jpID"
PhaseStartTime="2007-08-09T11:35:41+02:00" Status="InProgress"/>
</DeviceInfo>
</Signal>
</JME>

JDF SPECIFICATION 1.7 199

MESSAGING

5.55.1 StatusQuParams
StatusQuParams 1is a filter that refines the level of information that SHALL be returned in the response or signals.
Table 5.103: StatusQuParams Element

NAME

DeviceDetails =
"None"

DATA TYPE

enumeration

DESCRIPTION

Refines the provided status information about the device.

Allowed values are:

None — Devicelnfo/@DevicelD and Devicelnfo/ @ DeviceStatus SHALL be pro-
vided. Other Devicelnfo attributes MAY be provided. Devicelnfo/Employee,
Devicelnfo/Device and Devicelnfo [ModuleStatus elements SHALL NOT be
provided.

Brief — Provide all available device information except for Device elements.
The provided information includes JobPhase and Activity elements.

Modules — Provide ModuleStatus elements with module specific status
details.

Details — Provide maximum available device information excluding device
capability descriptions. Includes Device elements which represent details
of the device.

Capability — Provide Device elements with DeviceCap subelements which rep-
resent details of the capabilities of the device.

Full — Provide maximum available device information including device capa-
bility descriptions. Includes Device elements which represent details of
the device.

Employeeinfo =
"false"

boolean

If "true”, Employee elements are to be provided in the response. Those ele-
ments describe the employees which are associated to the device independent
on any job.

JobDetails = "None"

enumeration

Refines the provided status information about the jobs associated with the
device. Each higher entry includes the values specified in the lower entries.

Allowed values are:

None — JobPhase/@JobID, JobPhase/@JobPartlD SHALL be specified if a job is
running. JobPhase/Part SHOULD be specified if a job is running. At least
one of JobPhase/ @Amount and JobPhase/@ PercentCompleted SHALL be
specified if a job is running. Additional job related data SHOULD NOT be
specified.

MIS — Provide business with the relevant information contained in the
CostCenter element and the @DeadLine, @DeviceStatus, @Status,
@StatusDetails and the various @Counter attributes. In JDF 1.2 and
beyond, this value is identical to "Brief". Deprecated in JDF 1.2

Brief — Provide all available status information including JobPhase and
Activity elements except for JDF.

Full — Provide maximum available status information. Includes a URL refer-
ence to an actual JDF which represents a snapshot of the current job
state.

JobID ?

string

@JobID of the JDF node whose status is being queried. The @JobID SHALL be
unique within the workflow. If not specified, list all known jobs.

JobPartID ?

string

@JobPartID of the JDF node whose status is being queried.

QueueEntrylD ?
New in JDF 1.2

string

@QueueEntryID of the job that is being queried. If @QueueEntryID is specified,
@JobID, @JobPartID and Part are ignored. If none of @JobID, @JobPartID, Part
or @ QueueEntrylD are specified, StatusQuParams applies to all jobs.

Queuelnfo ?
Deprecated in JDF 1.6

boolean

If "true", a Queue element is requested to be provided. This is analogous to a
OueueStatus query message.
Deprecation note: In JDF 1.6 and beyond, use a QueueStatus message.

Part *
New in JDF 1.2

element

Part elements that describe the partition of the job whose status is queried.
For details on node partitions, see » Section 4.3.2 Partial processing of nodes
with Partitioned resources.

200

JDF SPECIFICATION 1.7

STATUS
5.55.2 Devicelnfo

The response message returns a Devicelnfo element for the queried device.
Table 5.104: Devicelnfo Element (Sheet 1 of 2)

NAME

CounterUnit ¢

DATA TYPE

string

DESCRIPTION

The unit of the @ProductionCounter, the @ TotalProductionCounter and numer-
ator unit of @Speed.

The default unit is the default unit defined by JDF for the output resource of
the node executed by the device. For example, in case of a sheet-fed printer, it
is the number of sheets; in case of a web printer, it is the length of printed
web in meters.

Values include those from: » Units.

DeviceCondition ?

New in JDF 1.2

enumeration

The general condition of a device.

Allowed values are:

OK — The device is in working condition.

NeedsAttention — The device is still in working condition but requires atten-
tion.

Failure — The device is not in working condition.

OffLine — The device is off line and its condition is unknown.

DevicelD ?
New in JDF 1.3

string

@DevicelD of the Device that this Devicelnfo describes. @DevicelD SHALL
match Device/ @DevicelD if Device is specified in this Devicelnfo.

DeviceOperationMod

e’
New in JDF 1.2

enumeration

@DeviceOperationMode shows the operation mode that the Device is in. It is
used to show if the production of a Device is aimed at producing good prod-
ucts or not. The latter case applies when a Device is used to produce a job for
testing, calibration, etc., without the intention to produce good output.
Allowed values are:

Productive — The Device is used to produce good product. Any times recorded
in this mode are to be allocated against the job.

NonProductive — The Device is used without the intention to produce good
product. Any times recorded in this mode are not to be allocated against
the job.

Maintenance — The Device is used without the intention to produce good
product (e.g., to perform (preventative) maintenance).

DeviceStatus

enumeration

The status of a device.

Allowed values are:

Unknown — No device is known or the device cannot provide a @DeviceStatus.

Idle — No job is being processed and the device is accepting new jobs.

Down — No job is being processed and the device currently cannot execute a
job. The device might be broken, switched off, etc.

Setup — The device is currently being set up. This state is allowed to occur also
during the execution of a job.

Running — The device is currently executing a job.

Cleanup — The device is currently being cleaned. This state is allowed to occur
also during the execution of a job.

Stopped — The device has been stopped, probably temporarily. This status
indicates some kind of break, including a pause, maintenance or a break-
down, as long as execution has not been aborted.

EndTime ?
New in JDF 1.7

dateTime

@EndTime SHALL specify the end time of a device status and SHALL be spec-
ified when the device status changes. A device status changes when the sub-
sequent Devicelnfo that describes the same device has a different
@DeviceStatus or @ StatusDetails. @EndTime SHALL NOT be specified in a
heartbeat signal.

HourCounter ?

duration

The total integrated time (life time) of device operation in hours.

IdleStartTime ?
New in JDF 1.4

dateTime

Specifies the beginning of the last phase with no JobPhase entries. A device is
idle when no active jobs are being processed. Multiple phases with different
status values and no active job phases may be specified, for instance a main-
tenance phase followed by an idle phase. @/dleStartTime SHALL not be speci-
fied if JobPhase elements are present in the Devicelnfo or @DeviceStatus !=
“Idle", "Down" or "Stopped".

JDF SPECIFICATION 1.7 201

MESSAGING

Table 5.104: Devicelnfo Element (Sheet 2 of 2)

NAME DATA TYPE DESCRIPTION

PowerOnTime ? dateTime Date and time when the device was switched on.

ProductionCounter ¢ | double The current machine production counter. This counter can be reset manually.
Typically, it starts counting at power-on time. The reset of this counter MAY
be signaled by a Notification[@Class="Event", @ Type ="CounterReset"] mes-
sage, see » Appendix A.5.14.2 Notification Details.

Speed ? double @Speed specifies the current machine speed. @Speed SHALL be defined in the
same units as @ CounterUnit per hour.

StatusDetails ? string String that defines the device state more specifically.

Values include those from: » Status Details.
ToollDs ? NMTOKENS @TooliDs SHALL reference the values of Tool/@ProductlD of individual tools
New in IDF 1.7 that are in use independent of a job. @ ToolIDs SHALL NOT be specified for
' tools that are specified in JobPhase/@ ToollDs.

TotalProductionCoun | double The current total machine production counter since the machine was pro-

ter ? duced.

Activity * element Device and operator activities that are related to the device and are unrelated

New in JDF 1.5 to a specific job.

Device ? element A Device resource that describes details of the device. The data type of Device
is resource element. See » Section 3.10.1 ResourceElement — Subelement of a
Resource.

Employee * element Employee resources that describe which employees are currently working at
the device. The data type of Employee is resource element. See » Section 3.10.1
ResourceElement — Subelement of a Resource.

Event * element Event MAY be used to specify machine-dependent codes that triggered a

New in JDF 1.7 Signal/@ Type="Status" .

JobPhase * element Each JobPhase SHALL describe the actual status of a job in the device. All jobs
that are active on the device SHALL be specified. Supplying no JobPhase spec-
ifies that no job is currently active on the device.

Active jobs have JDF/ @Activation="Active", "TestRun" or "TestRunAndGo" and
IDF/@Status="TestRunlnProgress", "Setup", "InProgress", "Cleanup" or "Stopped".
Multiple JobPhase elements specify that multiple job phases are active simul-
taneously on the device.

For details on using JobPhase elements, see » Table 5.106 JobPhase Element.

ModuleStatus * element Status of individual modules that are in use independent of a job.

ModuleStatus SHALL not be specified for modules that are specified in
JobPhase/ModuleStatus. For details on using ModuleStatus elements, see
» Table 5.107 ModuleStatus Element.

5.55.2.1 Activity
New in JDF 1.5

Activity elements allow tracking of device and operator tasks in addition to the values of the global attributes @Status
and @StatusDetails. An Activity SHOULD define a task that has a duration. Singular events SHOULD be specified in

Devicelnfo/Event.

Table 5.105: Activity Element (Sheet 1 of 2)

NAME DATA TYPE DESCRIPTION
ActivitylD ? string ID of the activity being performed. This ID is unique, site specific and internal
to the MIS.
ActivityName ? string Name of the activity being performed.
EndTime ? dateTime @EndTime SHALL specify the end time of the activity. @EndTime SHALL NOT
New in JDE 1.7 be specified in a heartbeat signal that defines an ongoing activity.

202

JDF SPECIFICATION 1.7

STATUS

Table 5.105: Activity Element (Sheet 2 of 2)

NAME DATA TYPE DESCRIPTION
PersonaliD ? string MIS identifier of the employee that performs the activity.
StartTime ? dateTime Date and time that the employee started the activity. This value MAY remain
the same in multiple messages.

5.55.3 JobPhase

A Status response message MAY provide JobPhase elements. The JobPhase element represents the actual state of a job.
The JobPhase element is an analogue to the PhaseTime audit element described in » Section 3.5.7 PhaseTime. The main
difference between a JobPhase element and a PhaseTime audit element is that a JobPhase message element reflects a
snapshot of the current job status whereas the PhaseTime audit element reflects a time span bordered by two (sub-) sta-
tus transitions.

For exact information about the job phase, a JobPhase element MAY include a URL reference to a copy of the current state
of the job described as JDF. If Part elements are specified, all attributes in JobPhase apply only to the specified parts. If
an actual JDF is not supported by the controller, the same rules apply for the Status response message as those which
apply for the Resource response message.

Table 5.106: JobPhase Element (Sheet 1 of 3)

NAME DATA TYPE DESCRIPTION
Activation ? enumeration | The activation of the JDF node.
New in JDF 1.1 Allowed value is from: » Activation.
Amount ¢ double Sum of actual @Amount that the node defined in this JobPhase produced since

@StartTime. If @Waste is also specified, the value SHALL be without waste.
The unit MAY be specified in the @CounterUnit attribute of the parent element
Devicelnfo.

DeadLine ? enumeration | Scheduling state of the job.

Allowed values are:

InTime — The job or job part will probably not miss the deadline.
Late — The job or job part will miss the deadline.

Warning — The job or job part could miss the deadline.

Note: For more details on scheduling, see Nodelnfo.

EndTime ? dateTime @EndTime SHALL specify the end time of a JobPhase and SHALL be specified
New in IDE 1.7 when the job status changes. A job status changes when the subsequent

' JobPhase that describes the same job has a different @Status or
@StatusDetails and when the job is completed on the device. @EndTime
SHALL NOT be specified in a heartbeat signal.

JobID ? string @JoblD of the JDF node that is executing.

JobPartiD ? string @JobPartID of the JDF node that is executing.

PercentCompleted ¢ | double Node processing progress in percent (%) completed.

PhaseAmount ? double Actual amount that the node defined in this JobPhase produced during this

New in JDF 1.2 JobPhase. If @PhaseWaste is also specified, the value is without waste. The
unit is specified in the @ CounterUnit attribute of the parent element
Devicelnfo.

PhaseStartTime ? dateTime Time that this JobPhase started.

New in JDF 1.2

PhaseWaste ? double Actual amount of waste that the node defined in this JobPhase produced

New in JDF 1.2 during this JobPhase. The unit is specified in the @ CounterUnit attribute of the
parent element Devicelnfo.

QueueEntrylD ? string If the job was submitted to a Queue and the @QueueEntryID is known, this
attribute SHOULD be provided.

RelatedJoblID ? string The @RelatedloblD of the JDF node that is executing.

New in JDF 1.7

JDF SPECIFICATION 1.7 203

MESSAGING

Table 5.106: JobPhase Element (Sheet 2 of 3)

NAME DATA TYPE DESCRIPTION

RelatedJobPartID ? string The @RelatedlobPartID of the JDF node that is executing.

New in JDF 1.7

RestTime ? duration Estimated duration of time to finishing processing this node.

New in JDF 1.1

SpawnlD ? NMTOKEN @SpawnlD allows distinguishing multiple spawned jobs with the same

New in JDF 1.5 @JobID.

Speed ? double The current job speed. @Speed is defined in the same units as
@ProductionCounter [hour. Defaults to the speed specified in the Devicelnfo
element.

StartTime ? dateTime Time when execution of the node that is described by this JobPhase has been

New in JDF 11 started, defined by the transition of JOF/@Status from "Waiting" or "Ready" to
any active value.

Status enumeration | The status of the JDF node.

Allowed value is from: » Status.
StatusDetails ? string String that defines the job state more specifically.
Values include those from: » Status Details.
ToolIDs ? NMTOKENS @TooliDs SHALL reference the values of Tool/@ProductID of individual tools
New in JDF 1.7 that are used to execute this job. @ToolIDs SHALL NOT be specified for tools
' that are specified in Devicelnfo/@ ToolIDs.

TotalAmount ? double Planned amount that will be produced when this job phase is 100% com-

New in JDF 1.1 pleted. The unit is specified in the @CounterUnit attribute of the parent ele-
ment Devicelnfo.

URL? URL URL of a copy of the complete JDF that represents a snapshot of the job that

New in JDF 1.4 is currently being processed. The JDF is for reference only and SHALL not be
merged with the main JDF of the job using spawning and merging methods.
IDF| @Activation SHOULD be set to "Informative" in this JDF element. The URL
SHOULD reference a MIME part using a "cid" URL scheme.

Waste ? double Total @Amount of waste that the node defined in this JobPhase produced

New in JDF 1.1 since @StartTime. The unit MAY be specified in the @CounterUnit attribute of
the parent element Devicelnfo.

WorkStepID ? string If present, @WorkSteplD SHALL identify the Workstep that is described by this

New in JDF 1.7 JobPhase. If Nodelnfo/@WorkStepID is specified, the value SHALL be copied
from there; otherwise the value MAY be generated by the device that is gen-
erating the JobPhase.

Activity * element Device and operator activities that are related to a specific job or job phase.

New in JDF 1.5

CostCenter ? element The cost center that the job is currently being charged to. Defaults to the cost
center specified in the Devicelnfo element.

GangSource * element If present, each GangSource SHALL represent the source jobs that are being

New in JDF 1.6 processed as a gang job by this QueueEntry.

JDF? element Complete JDF node that represents a snapshot of the job that is currently

Deprecated in JDF 1.4 being processed. This element is for reference only and SHALL NOT be
merged with the main JDF of the job using spawning and merging methods.
JDF| @Activation SHALL be set to "Informative" in this JDF element.
Deprecation note: Starting with JDF 1.4, JDF has been replaced by @URL. This
avoids clashes of identical @ID attributes when multiple JobPhase elements
from the same JDF are specified.

MiSDetails ? element Definition of how the costs for this JobPhase are to be charged.

New in JDF 1.2

204 JDF SPECIFICATION 1.7

STATUS
Table 5.106: JobPhase Element (Sheet 3 of 3)

NAME DATA TYPE DESCRIPTION
ModuleStatus * element Status of individual modules that are used to execute this JobPhase.
New in JDF 1.3 ModuleStatus SHALL NOT be specified for modules that are specified in

Devicelnfo/ModuleStatus. For details on using ModuleStatus elements, see
» Table 5.107 ModuleStatus Element.

Part * element Describes which parts of a job are currently being processed.

Modified in JDF 1.1 For details on node partitions, see » Section 4.3.2 Partial processing of nodes
with Partitioned resources.

5.55.4 ModuleStatus

The ModuleStatus element restricts the scope of a JobPhase or Devicelnfo element to apply only to the device modules
that are selected by the list of ModuleStatus elements. The ModuleStatus element is similar to the ModulePhase element
of the PhaseTime audit element (see » Table 3.16 ModulePhase Element). ModulePhase/@ DevicelD attribute is not spec-
ified because it is already uniquely identified in Devicelnfo/@DevicelD. The ModuleStatus element is described in the fol-
lowing table.

Table 5.107: ModuleStatus Element

NAME DATA TYPE DESCRIPTION
CombinedProcessind | IntegerList @ CombinedProcessindex attribute specifies the indices of individual processes
ex? in the @Types attribute to which a ModuleStatus that describes a combined
New in IDF 1.3 process node or process group node belongs. Multiple entries in

@ CombinedProcessindex specify that the module specified by ModuleStatus is
executing the respective multiple processes in the combined process node.

DeviceStatus ¢ enumeration Status of the module.

Allowed values are:

Unknown — The module status is unknown.

Idle — The module is not used. An example is a color print module that is
inactive during a black-and-white print.

Down — The module cannot be used. It might be broken, switched off etc.

Setup — The module is currently being set up.

Running — The module is currently executing.

Cleanup — The module is currently being cleaned.

Stopped — The module has been stopped, but running might be resumed later.
This status can indicate any kind of break, including a pause, mainte-
nance or a breakdown, as long as running can be easily resumed.

ModulelD ? string @ModulelD of the module that ModuleStatus refers to.
New inJDF 1.3 If not specified, the module is specified in @Modulelndex.
At least one of @ModulelD or @Modulelndex SHALL be specified.
Modulelndex ? Inte- The 0-based indices of the module or modules. If multiple module types are
Modified in JDF 1.3 gerRangeList | available on one machine, indices SHALL also be unique. @Modulelndex is
unique within the machine.
ModuleType ? NMTOKEN Module description
Modified in JDF 1.5 Values include those from: » Module Types.

Note: The allowed values depend on the type of device. Each type of device has
a separate table of values.
Modification note: Starting with JDF 1.5, @ModuleType is optional.

StatusDetails ? string Description of the module status phase that provides details beyond the enu-
merative values given by the @DeviceStatus attribute.

Values include those from: » Status Details.

Employee * element Employee resource(s) that represent the employee(s) that are working at this
Deprecated in JDF 1.5 module (the module is specified by the attributes @Modulelndex and
@ModuleType). The data type of Employee is ResourceElement. See » Section
3.10.1 ResourceElement — Subelement of a Resource.

JDF SPECIFICATION 1.7 205

MESSAGING

Example 5.35: Status Response to Query

The following is an example of a Response message to a Status query message. The device in this example holds one job
and executes another job that is currently printed duplex (each side) on four-color modules for the front and three-color
modules for the back, with one idle:

<Response ID="M1" Type="Status" refID="Ql" xsi:type="ResponseStatus">
<DevicelInfo DeviceStatus="Running" StatusDetails="Waste">
<JobPhase Amount="2560" DeadLine="InTime" JobID="678"
JobPartID="01" PercentCompleted="52" QueueEntryID="Job-05"
Status="InProgress" StatusDetails="Waste"/>
<JobPhase Amount="0" DeadLine="Warning" JobID="679" JobPartID="01"
PercentCompleted="0" QueueEntryID="Job-06" Status="Ready"/>
<ModuleStatus DeviceStatus="Running" ModuleIndex="0 ~ 3 6 ~ 8" ModuleType="PrintModule"/>
<ModuleStatus DeviceStatus="Idle" ModuleIndex="4" ModuleType="PrintModule"/>
<ModuleStatus DeviceStatus="Running" ModuleIndex="5" ModuleType="PerfectingModule"/>
</DeviceInfo>
</Response>

5.56 StopPersistentChannel

The StopPersistentChannel command message unregisters a listening controller from a persistent channel. No more
messages are sent to the controller once the command has been issued. A certain subset of signals MAY be addressed to
be unsubscribed by specifying a StopPersChParams element.

Table 5.108: StopPersistentChannel Message

ELEMENT
OBJECT TYPE NAME DESCRIPTION
CommandTypeObj StopPersChPa | Specifies the persistent channel and the message types to be unsubscribed.
rams
ResponseTypeObj Subscriptionin | One Subscriptioninfo element SHALL be returned for every persistent channel
fo* that was removed.

5.56.1 StopPersChParams
StopPersChParams provides a filter which selects persistent channels that SHALL be unregistered.
Table 5.109: StopPersChParams Element (Sheet 1 of 2)

NAME DATA TYPE DESCRIPTION

ChannellD ? NMTOKEN @ChannellD of the persistent channel to be deleted. If the channel has been
created with a Query message, the @ChannellD specifies the @ID of the Query
message (identical to the @refID of the Response message).

MessageType ? NMTOKEN Only messages with a matching message type are suppressed.
Default value is: all message types
Values include those from: » Table 5.1/ List of JMF Messages.

DevicelD ? string Only messages from devices or controllers with a matching @DevicelD attri-
bute are suppressed.

JobID ? string Only messages with a matching @JobID attribute are suppressed.

Deprecated in JDF 1.5 Deprecation note: Job specific subscriptions are discouraged.

JobPartiD ? string Only messages with a matching @JobPartID attribute are suppressed.

Deprecated in JDF 1.5 Deprecation note: Job specific subscriptions are discouraged.

QueueEntrylD ? string @QueueEntrylD of the job whose messages are queried/subscribed. If

New in IDE1.2 @QueueEntrylD is specified, @JobID, @JobPartID and Part are ignored. If none
) of @JobID, @JobPartID, Part or @QueueEntrylD are specified,

Deprecated in JDF 1.5 StopPersChParams applies to all jobs that will be processed by the receiver.

Deprecation note: Job specific subscriptions are discouraged.

URL URL URL of the receiving controller. This SHALL be identical to the @URL that was
used to create the persistent channel. If no @ChannellD is specified, all per-
sistent channels to this @URL are deleted.

206 JDF SPECIFICATION 1.7

SUBMISSIONMETHODS

Table 5.109: StopPersChParams Element (Sheet 2 of 2)

DATA TYPE DESCRIPTION
Part * element Part elements that describe the partition of the job whose messages are sup-
: pressed. For details on node partitions, see » Section 4.3.2 Partial processing
New in JDF 1.2 . .
) of nodes with Partitioned resources.
Deprecated in JDF 1.5 Deprecation note: Job specific subscriptions are discouraged.

5.57 SubmissionMethods

The SubmissionMethods message returns information about the QueueEntry submission and return formats that are sup-
ported by a device or controller. Thus, it can be used to determine the details of how a SubmitQueueEntry message can
be sent to a device, or the details of a ReturnQueueEntry message that will be returned by the device.

Table 5.110: SubmissionMethods Message

ELEMENT
OBJECT TYPE NAME DESCRIPTION
QueryTypeObj — —
ResponseTypeObj SubmissionM | Describes the submission methods supported by the queue.

ethods ?

5.57.1 SubmissionMethods

The response message element MAY contain multiple attributes, as defined below. If an attribute is not specified, the
corresponding submission method is not supported.

Table 5.111: SubmissionMethods Element

NAME DATA TYPE DESCRIPTION

File ? boolean Can retrieve a JDF from a file specified in the URL

Deprecated in JDF 1.2 In JDF 1.2 and beyond, include "file" in @URLSchemes.

HotFolder ? URL URL specification of a hot folder location.

Deprecated in JDF 1.4 Deprecation note: Starting with JDF 1.4, use the KnownDevices response: /
JMF/Response/Devicelnfo/Device/@JDFInputURL

HttpGet ? boolean Can rqtrieve a JDF via HTTP get commands. In JDF 1.2 and beyond, include

Deprecated in JDF 1.2 "http” In @URLSchemes.

MIME ? boolean Accepts MIME Multipart/Related submission messages via a message post. In

Deprecated in JDF 1.2 JDF 1.2 and beyond, use @Packaging="MIME".

Packaging ? enumerations | List of packaging methods supported.

New in JDF 1.2 Default behavior: The controller does not support receiving packaged mes-

Modified in JDF 1.4 sages and SHALL retrieve JDF files using a URL with a scheme other than
"cid".

Allowed values are:.

MIME — Accepts MIME Multipart/Related packaging of JMF, JDF and digital
assets.

None — no form of packaging is supported. New in JDF 1.4

URLSchemes ? NMTOKENS List of schemes supported for retrieving JDF files. If not specified, the con-
New in JDF 1.2 troller does not support retrieving JDF files from remote URLSs.

Values include:

file — The file scheme according to » [RFC1738] and » [RFC3986].
ftp — FTP (File Transfer Protocol)

http — HTTP (Hypertext Transport Protocol)

https — HTTPS (Hypertext Transport Protocol — Secure)

JDF SPECIFICATION 1.7 207

MESSAGING

Example 5.36: SubmissionMethods Response

The following is an example of a response message to a SubmissionMethods query message:

<Response ID="M1" Type="SubmissionMethods" refID="Ql" xsi:type="ResponseSubmissionMethods">
<SubmissionMethods HotFolder="file://MyDevice/HotFolder"

Packaging="MIME" URLSchemes="http file ftp"/>
</Response>

5.58 SubmitQueueEntry

SubmitQueueEntry submits a job to a queue of a device or controller QueueSubmissionParams provides the parameters
associated with the submission.

Table 5.112: SubmitQueueEntry Message

ELEMENT
OBJECT TYPE NAME DESCRIPTION
CommandTypeObj OQueueFilter ? | Defines a filter for the returned Queue element in the SubmitQueueEntry mes-
Modified in JDF 1.5 NewinJDF1.2 | Sage.
Deprecated in
JDF 1.5

OueueSubmis | Defines the job submission.
sionParams

ResponseTypeObj Queue ? Describes the state of the queue after the command has been executed.
Modified in JDF 1.5 Deprecated in
JDF 1.5

OueueEntry ? | Provides the queue entry of the submitted job. QueueEntry SHALL be specified
ModifiedinJDF | if the submission was successful and SHALL be omitted in case the submis-
1.2 sion was rejected.

Definition of the QueueEntry elements, see » Section 5.14 Elements for Queues.

5.58.1 QueueSubmissionParams

The job submission can contain queue-ordering attributes equivalent to those used by the SetQueueEntryPriority and
SetQueueEntryPosition messages. The @URL attribute specifies the location where the JDF file to be submitted can be re-
trieved by the queue controller. The location type in the @URL attribute (such as "file", "http" or "cid") defines the submis-
sion method. @ReturnURL or @ReturnJMF MAY specify the location where the modified JDF SHALL be sent after the job
is completed or aborted.

The @URL attribute specifies the location where the queue controller can retrieve the JDF file to be submitted.
Table 5.113: QueueSubmissionParams Element (Sheet 1 of 2)

NAME DATA TYPE DESCRIPTION

Activation ? enumeration | Activation of the submitted JDF.
Allowed value is from: » Activation.

GangName ? NMTOKEN Name of the gang for the job. If @GangName is specified, the QueueEntry
New in JDF 1.3 SHOULD be executed along with other QueueEntry elements that share a
common value of @GangName. If @GangName is not known, the receiving
device MAY either return an error 131 or create the gang with @GangName on

the fly.
GangPolicy ? enumeration | Ganging policy for the QueueEntry.
New in JDF 1.3 Allowed value is from: » GangPolicy.
Hold = "false" boolean If "true”, the entry is submitted as for QueueEntry/@Status="Held". If a

OueueEntry is submitted with @Hold="true" and @ GangPolicy is other than
"NoGang", the OueueEntry retains its respective gang data but does not influ-
ence execution of other jobs that are in the gang.

208 JDF SPECIFICATION 1.7

SUBMITQUEUEENTRY

Table 5.113: QueueSubmissionParams Element (Sheet 2 of 2)

NAME

NextQueueEntryID ?

DATA TYPE

string

DESCRIPTION

ID of the queue entry that SHALL be positioned directly behind the entry. At
most one of @NextQueueEntrylD, @PrevQueueEntrylD or @Priority SHALL be
specified.

PrevQueueEntryID ?

string

ID of the queue entry that SHALL be positioned directly in front of the entry.
At most one of @NextQueueEntrylD, @PrevQueueEntrylD or @Priority SHALL be
specified.

Priority ?
Modified in JDF 1.6

integer

Number from 0 to 100, where "0" is the lowest priority and "100" is the maxi-
mum priority. At most one of @NextQueueEntrylD, @PrevQueueEntryID or
@Priority SHALL be specified.

Note that QueueSubmissionParams/@Priority is not the same as Nodelnfo/
@Priority. QueueSubmissionParams/@Priority specifies the priority in the con-
text of the device queue whereas Nodelnfo/@Priority specifies the priority of
the task in general. QueueSubmissionParams/@Priority MAY be modified due
to additional scheduling information (e.g., Nodelnfo/@FirstStart).

The priority from QueueSubmissionParams/@ Priority and
OueueEntryPriParams/@Priority takes precedence over Nodelnfo/ @JobPriority.
Modification note: Prior to JDF 1.6, @Priority had a default value of "1". This
default is erroneous and has been removed because it conflicts with the de-
fault of Nodelnfo/@JobPriority="50" and because @ NextQueueEntryID and
@PrevQueueEntrylD could never be specified without violating the restriction
that @Priority is not specified.

reflD ?
New in JDF 1.2

NMTOKEN

Copy of the @ID attribute of the initiating RequestQueueEntry message.

ReturnJMF ?
New in JDF 1.2

URL

URL where a ReturnQueueEntry message SHALL be sent when the QueueEntry
is completed or aborted.

Note: The @ReturnJMF queue SHOULD be queried with a SubmissionMethods
query message to determine whether MIME Multipart/Related is supported by
the return queue. @ReturnJMF SHALL NOT be specified if @ReturnURL is pres-
ent.

ReturnURL ?
Modified in JDF 1.2

URL

URL where the JDF file SHALL be written when the QueueEntry is completed
or aborted. A controller SHALL write only a JDF document to the URL and
SHALL NOT write a MIME Multipart package to the URL. If @ReturnURL is
specified with the "file" scheme, @ReturnURL SHALL specify an individual file.
@ReturnURL SHALL take precedence when Nodelnfo/@ TargetRoute is speci-
fied in the submitted JDF.

Note: A controller SHALL NOT return a JDF file or MIME Multipart/Related file
by performing a SubmitQueueEntry or ReturnQueueEntryto the @ReturnURL
URL. The controller specified by @ReturnURL SHALL NOT accept JMF messag-
es. See instead @ReturnJMF. @ReturnURL SHALL NOT be specified if
@ReturnJMF is present.

URL
Modified in JDF 1.2

URL

Location of the JDF to be submitted. In the case of MIME Multipart/Related,
the URL MAY have a "cid" scheme.

WatchURL ?
Modified in JDF 1.2
Deprecated in JDF 1.5

URL

URL of the controller that SHALL be notified when the status of the
OueueEntry or the underlying job changes.

Disposition ?
New in JDF 1.2

element

Defines how long the QueueEntry SHOULD be retained in the queue. If not
specified, the QueueEntry MAY be removed from the queue immediately after
process completion of the QueueEntry.

JDF SPECIFICATION 1.7 209

MESSAGING

Example 5.37: SubmitQueueEntry Command with “file" Scheme
If the URL has a "file" scheme, the device retrieves the file at the location specified in the @URL attribute. The following
example declares a file on the network.

<Command ID="M1" Type="SubmitQueueEntry" xsi:type="CommandSubmitQueueEntry">
<QueueSubmissionParams URL="File://MyNetWorkShare/AnyDirectory/jobl.jdf"/>
</Command>

Example 5.38: SubmitQueueEntry Command with “http” Scheme

In this example, the queue controller retrieves the file with a standard HTTP get command from a host that MAY be re-
mote. The job delivered as a response to the HTTP get command MAY be a MIME Multipart/Related entity. The HTTP
server MAY retrieve a file or it MAY generate the response dynamically with a CGI script or other such tool.

<Command ID="M2" Type="SubmitQueueEntry" xsi:type="CommandSubmitQueueEntry">
<QueueSubmissionParams URL="http://JobServer.JDF.COM?jobl"/>
</Command>

JDF Package Submission

If a controller is capable of decoding MIME, it is legal to submit a MIME Multipart/Related message. See » Section 11.3
JDF Packaging for details of MIME Multipart/Related packaging.

5.59 SuspendQueueEntry
New in JDF 1.2

The entry specified by QueueEntryDef is suspended if its @Status is "Running”. Its @Status is set to "Suspended". Whether
other queue entries can be run while the queue entry remains suspended depends on implementation. The
SuspendQueueEntry command message has no effect on jobs with a @Status other than "Running". For details, see » Table
5.20 Status Transitions for QueueEntry Handling Messages.

Table 5.114: SuspendQueueEntry Message

OBJECT TYPE ELEMENT DESCRIPTION

NAME

CommandTypeObj OueueEntryDe | Defines the queue entry.

Modified in JDF 1.5 f?
Deprecated in
IDF15

OQueueFilter ? | Defines a filter for the returned Queue element in the SuspendQueueEntry

Deprecated in | [T€Ssage.
JDF1.5

SuspendQueu

eEntryParams
?

New in JDF 1.5

ResponseTypeObj Queue ? Describes the state of the queue after the command has been executed. See
Modified in JDF 1.5 Deprecated in » Section 5.14 Elements for Queues for the definition of the elements listed
IDF15 above. The entry specified by QueueEntryDef remains in the queue, but moves
into the "Suspended" state.

5.59.1 SuspendQueueEntryParams
New in JDF 1.5

Table 5.115: SuspendQueue€EntryParams Element

DATA TYPE DESCRIPTION

QueuefFilter ? element This QueueFilter selects the QueueEntry elements to apply to.

210 JDF SPECIFICATION 1.7

TRACK

5.60 Track
Deprecated in JDF 1.5

5.61 UpdatelDF
New in JDF 1.3
This JMF is used to synchronize a JDF node that has been submitted by a controller to a device.

5.61.1 UpdatelDF Command

The UpdateJDF Command will be sent from a controller (e.g., an MIS) to a device (e.g., a workflow system) which received
the original job. The changes SHALL be applied to processes that have not started yet. If the MIS tries to do update a
running job, the controller or device MAY return an error 107.

Any JIDF/ @ Type value MAY be added to the original JDF with this message.
Figure 5-8: Without UpdateJDF message

L1 L2 The JDF submitted to the controller contains the two processes P1
. :. :. and P2. They are linked using Resource R1 and the Resourcelink
elements L1 and L2

Figure 5-9: With UpdateJDF message

L1 L2, The Resource R1 is first processed by process P3 whose output

resource R2 is then consumed by process P2, which has been wait-
ing for R2 to become "Available".

The UpdatelDF message contains the new process P3, the resource
La R2 and the three new Resourcelink elements L3, L4 and L5. The
P3 R2 ResourcelLink L2 SHALL be removed from the JDF.

Y

Table 5.116: UpdatelDF Command

OBJECT TYPE ELEMENT DESCRIPTION

NAME

CommandTypeObj UpdatelDFCm | Defines the details of the UpdateDF message.
dParams ?

ResponseTypeObj = =

5.61.2 UpdatelDF Signal
New in JDF 1.4

The UpdatelDF Signal will be sent from the device to a controller. It notifies the controller about modifications that have
occurred on the device.

Table 5.117: UpdatelDF Signal

ELEMENT
OBJECT TYPE NAME DESCRIPTION
QueryTypeObj UpdatelDFCm | Defines the details of the UpdateJDF message.
dParams ?
ResponseTypeObj = =

JDF SPECIFICATION 1.7 21

MESSAGING

5.61.2.1 UpdateJDFCmdParams
The UpdatelDFCmdParams specifies a JDF node, new Resource elements and new Resourcelink elements to add to existing
nodes.

Table 5.118: UpdateJDFCmdParams Element

NAME DATA TYPE DESCRIPTION
ParentJoblD string @JobID of the node in which the new node SHALL be inserted.
ParentJobPartID string @JobPartID of the node in which the new node SHALL be inserted.
Createlink * element New Resourcelink elements to be added to the previously submitted JDF
nodes.
CreateResource * element Newly created resources to be added to previously submitted JDF nodes. The

resources are used to link the new node to existing nodes.

Resources that are linked only internally within the new node SHOULD be in
the new node and SHOULD NOT be placed in a another ResourcePool using
CreateResource elements.

IDF element The new JDF node to become a child of the parent node. It is an error (204 -
Cannot create node) to specify a JDF with a combination of @JobID and
@JobPartID that matches an existing JDF node in the JDF ticket in which the
parent node resides.

MoveResource * element Specifies resources in previously submitted JDF nodes that are to be moved to
another ResourcePool so that they are accessible for all new JDF nodes that
link to the resources.

Note: MoveResource does not create new partitions in existing resources.

Removelink * element ResourcelLink elements in the previously submitted job that are no longer in
use and are to be removed.

5.61.2.2 CreatelLink

Table 5.119: Createlink Element

NAME DATA TYPE DESCRIPTION
JobID string @JoblD of the node in which the new Resourcelink is inserted.
JobPartID string @JobPartID of the node in which the new Resourcelink is inserted.
Resourcelink + element Thg new Resourcelink elements which link the new node to the existing
nodes.

If the node already has a link to this resource with a different Part element,
the Part elements that are specified in this Resourcelink SHALL be added to
the existing ResourceLink.

5.61.2.3 CreateResource

Table 5.120: CreateResource Element

NAME DATA TYPE DESCRIPTION
JobID string @JobID of the node in which the new Resources are to be inserted.
JobPartID string @JobPartID of the node in which the new Resources are to be inserted.
Resource + element The new Resource elements. In general, these are created to link the new
node to existing nodes. The data type and @Class of Resource is derived from
the abstract resource. See » Section 3.8.3 Abstract Resource.

212 JDF SPECIFICATION 1.7

UPDATEIJDF
5.61.2.4 MoveResource

Table 5.121: MoveResource Element

NAME DATA TYPE DESCRIPTION
JobID string @JobID of the node to which the new Resource SHALL be moved.
JobPartID string @JobPartID of the node in which the new Resource SHALL be moved.
ResourcelD NMTOKEN Resource/@ID of the Resource that is moved. Note: If the Resource has been
spawned, an error MAY be reported back.

5.61.2.5 Removelink

Table 5.122: Removelink Element

NAME DATA TYPE DESCRIPTION
JobID string @JobID of the node from which the Resourcelink elements are to be removed.
JobPartID string @JobPartiD of the node from which the ResourcelLink elements are to be
removed.
Resourcelink + element The Resourcelink elements to be removed. Note: If this ResourceLink contains
fewer Part elements than the corresponding Resourcelink in the JDF, only the
Part elements specified in this ResourceLink are to be removed.

Note: This message might not work:

if one of the Resources or Links have references to a Pipe.

if the Controller has submitted parts of the job to a second controller or a device.
The JDF after executing the message is valid

on a Job which is waiting.

if all Nodes, to which the new Node is linked are waiting.

if the link to a running Node is not using a pipe.

JDF SPECIFICATION 1.7 213

MESSAGING

Example 5.39: UpdatelDF Command

<Command ID="ID1" Type="UpdateJdDF" xsi:type="CommandUpdateJDE">
<UpdateJDFCmdParams ParentJobID="ID100" ParentJobPartID="ID112">
<Createlink JobID="ID100" JobPartID="ID111">
<MediaLink Usage="Input" rRef="1ink001111"/>
</CreateLink>
<CreateResource JobID="100" JobPartID="110">
<Component rRef="1ink001112"/>
</CreateResource>
<RemovelLink JobID="100" JobPartID="111">
<MediaLink Usage="Input" rRef="1ink001113"/>
</RemoveLink>
<MoveResource JobID="100" JobPartID="101" ResourceID="1ink000004"/>
<JDF ID="NewJob42" Status="Ready" JobPartID="200" Type="Cutting">
<AuditPool>
<Created AgentName="MIS" AgentVersion="1.0" TimeStamp="2005-06-02T09:01:45+01:00"/>
</AuditPool>
<ResourcePool>
<Component Class="Quantity" ComponentType="Sheet"
ID="1ink000002" Status="Available"/>
<CuttingParams Class="Parameter" ID="1ink000007" Status="Available"/>
</ResourcePool>
<ResourcelLinkPool>
<ComponentLink Usage="Output" rRef="1ink000002"/>
<CuttingParamsLink Usage="Input" rRef="1ink000007"/>
</ResourcelLinkPool>
</JDE>
</UpdateJDFCmdParams>
</Command>

5.62 WakeUp
New in JDF 1.2

The WakeUp command message activates a controller or device that has been in stand-by mode. All queues that belong
to the device are held upon its receiving a WakeUp and SHALL be resumed with an explicit ResumeQueueEntry message.
All jobs that were running on the device at shutdown are also in a held state and SHALL be explicitly resumed with a
ResumeQueueEntry message. A device SHALL use the Status message if it signals its own awakening.

Table 5.123: WakeUp Message

OBJECT TYPE ELEMENT DESCRIPTION

NAME

CommandTypeObj WakeUpCmdP | Defines the details of the WakeUp message.
?
arams ¢

ResponseTypeObj Devicelnfo Describes the device status immediately after the WakeUp message has been
sent. The device SHOULD also send an Acknowledge/WWakeUp message after its
warm up cycle has been completed if applicable.

5.62.1 WakeUpCmdParams
WakeUpCmdParams is a placeholder for future use and for extensions to the WakeUp message.
Table 5.124: WakeUpCmdParams Element

DATA TYPE DESCRIPTION

214 JDF SPECIFICATION 1.7

b Processes

]T]?[? following chapter describes the processes that are defined in detail for The JDF Cookbook
Q Chapter 6 and following are
6.1 Process Template “the list of ingredients” in the
Processes are defined by their input and output resources. All relevant re- | JDF “cookbook.” The following Pro-
source information is provided in tables for each process. Furthermore, al- | cesses and Elements are fairly exhaus-
though they are not listed for each process, additional, OPTIONAL input tive. You can choose to use only what
resources (as defined in » Table 6.1 Template for Input Resources) are valid | fits your workflow.
for all processes defined in this chapter.

Note: Regarding the Templates for tables for Input Resources and Output Resources
Italicized text describes the actual text that would be in its place in an actual process definition

Cardinality in the Name column refers to a cardinality symbol, which is either empty or consists of a symbol, such
as “?”. Examples described by the Name column include: “Media*” and “Component (Proof) ?”. For further
details, see » Section 1.4.5 Specification of Cardinality.

The text following a “Note:” in a table field gives further information about the specified table row.

Each of the first two rows of the following table represents zero or more of what it describes. Each of the
remaining rows in the Input Resource Template describes an Input Resource that is OPTIONAL for any process,
even though it doesn’t appear in the process’s Input Resources table.

Table 6.1: Template for Input Resources (Sheet 1 of 2)

NAME DESCRIPTION

Resource-Name Information about the Input Resource.

Cardinality Note: The resource represents any input resource. If an OPTIONAL resource is not spec-
ified in a JDF instance, the JDF Consumer MAY make its own assumption regarding
attributes and subelements of the resource. Specification-defined attribute defaults
cannot be guaranteed.

Resource-Name Information about the Input Resource

(someValue) Cardinality Note: @ProcessUsage attribute of the specified resource SHALL match the "someValue"
value specified in the parentheses. When a process potentially contains multiple input
resources of the same type, the value of @ProcessUsage distinguishes the resources.

ApprovalSuccess * Any number of ApprovalSuccess Resources MAY be appended to processes in order to
model proofing and verification requirements. This is implied and not specified explic-
itly in the tables in the following section. For more information on the Approval pro-
cess, see » Section 6.2.1 Approval.

ColorPool ? ColorPool identifies all the colors that are used in the job. ColorPool may include separa-

New in JDF 1.6 tions that represent die lines or other auxillary colors.

Customerinfo ? Specifies information about the customer.

New in JDF 1.3 Prior to JDF 1.3 Customerinfo was not a resource, but rather a direct child element of the
JDF node.

Employee * Employee that is associated with processing this node.

Device * Device that is associated with processing this node.

MiscConsumable * Generic consumable resources that are associated with processing this node.

New in JDF 1.3

Nodelnfo ? Specifies information about the node.

New in JDF 1.3 Prior to JDF 1.3 Nodelnfo was not a resource, but rather a direct child element of the JDF
node.

JDF SPECIFICATION 1.7

PROCESSES

Table 6.1: Template for Input Resources (Sheet 2 of 2)

NAME DESCRIPTION

PreflightReport * Any number of PreflightReport Resources MAY be appended to processes in order to
N ia IR convey the results of previous preflighting steps. This is implied and not specified
explicitly in the tables in the following section. For more information on the Preflight
process, see » Section 6.3.27 Preflight.

Preview * Any number of previews MAY be associated with a process and used for display pur-
New in JDF 1.1A poses. Preview/@PreviewUsage SHOULD be "ThumbNail" or "Viewable".
Deprecation note: Starting with JDF 1.4, a Preview MAY be a member of any element. See

Deprecated in JDF 1.4 » Table 3.1 Any Element (generic content).

Tool * Miscellaneous reusable tool required for a process.

New in JDF 1.4

UsageCounter * Devices MAY use counters, called “usage counters”, to track equipment utilization or
New in JDF 1.3 work performed, such as impressions produced or documents generated.

6.2 General Processes
General processes that can take place throughout the workflow.

6.2.1 Approval

The Approval process can take place at various steps in a workflow. For example, a resource (e.g., a printed sheet or a
finished book) is used as the input to be approved, and an ApprovalSuccess (given, for example, by a customer or fore-
man) is produced. Combining the process with any other process can be used to represent a request for a receipt. The
process that follows the Approval process in the workflow chain will most often require the ApprovalSuccess as input.

Resources typically have a @Status = "Draft" before the Approval. After a successful Approval, Resources have a @Status
= "Available" and after an unsuccessful Approval, they have a @Status = "Rejected".

Table 6.2: Approval - Input Resources

NAME DESCRIPTION

ApprovalParams Details of the approval process.

Resource * The resources to be approved. The input will most often be a resource of Class "Handling"
or "Quantity". When the input resource of an Approval process is a ByteMap, it SHOULD
be displayed on a viewing device.

Table 6.3: Approval - Output Resources

NAME DESCRIPTION

ApprovalSuccess Result of any Approval process given, for example, by a customer or foreman. Note that
ApprovalSuccess Resources are only available on success.

Resource (Accepted) * Represents the input resources that have been accepted for further processing by the
Approval process as output resources. This is typically used to transfer the resource
@Status of "Draft" to "Available" (see also » Section 4.3.5.2 Formal Iterative processing).

Resource (Rejected) * Represents the input resources that have been rejected for further processing by the
Approval process as output resources. This can be used to define additional processing for
rejected resources. Resource/@Status SHOULD be set to "Rejected".

6.2.2 Buffer
New in JDF 1.1

216 JDF SPECIFICATION 1.7

GENERAL PROCESSES

The Buffer process is used to buffer a Resource for a certain time period. This can be buffering of a complete resource or
of a partial Resource (e.g., in a pipe). The @Amount of the input and output of resources SHALL be equal. Waiting for
printed material to dry before finishing is an example of the Buffer process.

Table 6.4: Buffer - Input Resources

NAME DESCRIPTION

BufferParams The parameters (e.g., times and locations of the Buffer process).

Resource The Resource element to be buffered.

Table 6.5: Buffer - Output Resources

DESCRIPTION

Resource The same Resource after buffering.

6.2.3 Combine

The Combine process is used to combine multiple PhysicalResources or logical resources (e.g., RunList Resources of the
same content to form one resource). The sum of @Amount of the input and output of resources SHALL be equal. The or-
dering of the input ResourceLink elements SHALL be honored.

Table 6.6: Combine - Input Resources

DESCRIPTION

Resource + The resources to be combined.

Table 6.7: Combine - Output Resources

DESCRIPTION

Resource Result of combining. The resource formed as a result of the Combine process.

6.2.4 Delivery

This process can be used to describe the delivery of a PhysicalResources to or from a location. This delivery can be inter-
nal — meaning within the company — or to an external company or customer. The Customerinfo element of the JDF node
can also be used if the delivery to is to be made to only one customer. Note that a delivery receipt can be requested by
combining the Delivery process with an Approval process.

Table 6.8: Delivery - Input Resources

NAME DESCRIPTION

DeliveryParams Necessary information about the physical item or items to be delivered is stored here.
Resource ? Any resource delivered to a location. This can be a PhysicalResource or a Parameter
Deprecated in JDF 1.2 Resource that is delivered electronically.

Modification note: In JDF 1.2 and beyond the delivered resources are defined as refele-
ments in elements of DeliveryParams/Drop/Dropltem.

Table 6.9: Delivery - Output Resources

DESCRIPTION

Resource + These SHALL be PhysicalResources.
Modified in JDF 1.2

6.2.5 Manuallabor
New in JDF 1.1

This process can be used to describe any process where resources are handled manually. The ManualLabor process is de-
signed to monitor any type of non-automated labor from an MIS system.

JDF SPECIFICATION 1.7 217

PROCESSES

Table 6.10: Manuallabor - Input Resources

NAME DESCRIPTION

ManuallaborParams Details on the Manuallabor process.

Resource * Resources that are used to create the output resource.

Table 6.11: Manuallabor - Output Resources

DESCRIPTION
Resource * The resources that were created by manual work. In general these will be Component
Modified in JDF 1.4 resources, but Handling Resources MAY also be processed manually. If no output

resource is specified, the Manuallabor process describes incidental work.
Modification note: Starting with JDF 1.4, multiple resources are allowed.

6.2.6 Ordering
Deprecated in JDF 1.5

6.2.7 Packing
Deprecated in JDF 1.1

6.2.8 QualityControl
New in JDF 1.2

This process defines the setup and frequency of quality controls for a process. QualityControl is generally performed on
Component resources produced as intermediate or final output of a process.

Multiple QualityControl processes MAY be specified. See Resourcelink/@CombinedProcessindex for differentiating the re-
sources of multiple identical processes.

6.2.8.1 Mapping severity to scores

New in JDF 1.7

JDF provides a generic scoring of quality using the @Severity attribute which is an integer data type and has a restricted
range of [0-100].

Typically, quality scoring systems will have their own levels and ordering of results and these SHOULD be mapped to a
value in @Severity. This will typically require mapping multiple @Severity values to a quality score.

When writing a score as a severity, the following mapping SHALL be applied:

Highest quality: @Severity="0"
Lowest quality: @Severity="100"
. Lo (2x(P+1)
All other values: @Severity= (—(2N) x 100

Where P="Position of score' and N=""Number of scores".
When reading a severity and translating to a score, the following mapping SHALL be applied:
P=(S x N)/101
Where P="Position of score", S="'Severity" and N=""Number of scores".
Note: The score positions are zero based and are assumed to be linearly distributed between the lowest and highest val-
ues.
Note: The mapping of positions to the names of scores is left as an exercise for the reader.

Note: The algorithms above ensure that @Severity="0" is always mapped to the highest score, @Severity="100" is always
mapped to the lowest score and that all other positions are close to the center of the valid score range.

A low @Severity value of "0" SHALL always represent a better quality than higher @Severity values.

6.2.8.2 Example Severity for Barcodes

The following table shows how the barcode quality grades as defined in » [ISO15415:2011] and » [1SO15416:2016] could
be mapped to @Severity in QualityControlParams and QualityControlResult.

218 JDF SPECIFICATION 1.7

GENERAL PROCESSES

Table 6.12: Barcode quality grade mapping

ANSI GRADE I1ISO GRADE @S\EXLE:EITY @SREXI\TEIETV DESCRIPTION
A A "0" "0"-"20" Very good.
B 3 "30" "21"-"40" Good.
C 2 "50" "41"-"60" Satisfactory.
D 1 "70" "61"-"80" Sufficient.
F 0 "100" "81"-"100" Failed.

Table 6.13: QualityControl - Input Resources

NAME

DESCRIPTION

ColorantControl ?

ColorantControl SHALL define the color separations that are expected to have been

New in JDF 1.7 printed on the input Component.
Layout ? Definition of the production marks and print content for QualityControl.
New in JDF 1.7 Note: See Preview in » Table 6.1 Template for Input Resources for referencing images for

comparison or display.

QualityControlParams

Detailed definition of the QualityControl process.

Resource

The resource to be quality controlled. In general this will be a Component resource.

Table 6.14: QualityControl - Output Resources

NAME

DESCRIPTION

QualityControlResult

Results of the process, e.g. measurement statistics. The details provided in
OQualityControlResult SHALL conform at least to the requested methods specified in
OualityControlParams/@Method. Additional details MAY be provided.

Resource

This resource describes the resource after QualityControl has been applied.

Note: This resource will generally be partitioned by @ Condition to track the amount of
accepted and rejected resources. This Resource SHOULD reference the
OQualityControlResult Output resource.

6.2.9 ResourceDefinition

This process can be used to describe the interactive or automated process of defining resources such as set-up informa-
tion. This process creates output resources or modifies input resources of the same type as the output resources. The
ResourceDefinition process is designed to monitor interactive work such as creating imposition templates. It can also be
used to model a hot folder process that accepts resources from outside of a JDF based workflow.

Table 6.15: ResourceDefinition - Input Resources

NAME DESCRIPTION

Resource * Any type of resource. Generally these will be templates.

Modified in JDF 1.1

ResourceDefinitionParams | Details on how to handle defaults.

?

JDF SPECIFICATION 1.7 219

PROCESSES

Table 6.16: ResourceDefinition - Output Resources

DESCRIPTION

Resource + The same type of resource as one of the input resources.
Modified in JDF 1.1

6.2.10 Split

This process is used for splitting one physical or logical resource into multiple physical or logical resources containing
the same content as the original. The sum of @Amount of the input and output of resources SHALL be equal.

Table 6.17: Split - Input Resources

DESCRIPTION

Resource The resource to be split.

Table 6.18: Split - Output Resources

DESCRIPTION

Resource + The resources formed as a result of splitting.

6.2.11 Verification

The Verification process is used to confirm that a process has been completely executed. In the case of variable data
printing in which every document is unique and validated individually, database access is required. Verification in this
situation can involve scanning the physical sheet and interpreting a bar code or alphanumeric characters. The decoded
data can then be either recorded in a database to be later cross referenced with a verification list, or cross referenced and
validated immediately in real time.

Verification differs from QualityControl in that Verification verifies the existence of a given set of resources, whereas
QualityControl verifies that the existing resources fulfill certain quality criteria.

Table 6.19: Verification - Input Resources

NAME DESCRIPTION

DBSchema ? Schema description of the cross-reference database.
Deprecated in JDF 1.5

DBSelection ? Database link that defines the database that contains cross-reference data.
Deprecated in JDF 1.5

FileSpec (Verification) ¢ Reference to data that contains implementation specific descriptions of the resources to
New in JDF 1.5 be verified.
IdentificationField * Identifies the position and type of data for an automated, OCR-based verification pro-
Deprecated in JDF 1.5 Cess. .))
Deprecation note: Starting with JDF 1.5, use Component/IdentificationField.
Resource ? The resource to be verified. The input will most often be a resource with @Class =
New in JDF 1.2 "Quantity" (e.g., Component) or @Class = "Parameter" (e.g., RunList).
VerificationParams Controls the verification requirements.

Table 6.20: Verification - Output Resources

DESCRIPTION

ApprovalSuccess ? Signature file that defines verification success.

220 JDF SPECIFICATION 1.7

PREPRESS PROCESSES

Table 6.20: Verification - Output Resources

NAME DESCRIPTION

DBSelection ? Database link where the verification data SHALL be recorded.

Deprecated in JDF 1.5

FileSpec (Accepted) ? Reference to data that contains implementation specific descriptions of the resources

New in IDF 1.5 that were correctly verified.

FileSpec (Rejected) ? Reference to data that contains implementation specific descriptions of the resources

New in JDF 1.5 that were NOT correctly verified.

FileSpec (Unknown) ? Reference to data that contains implementation specific descriptions of the resources

New in JDF 1.5 that were scanned but are NOT in the explicit or implied list of known resources.

Resource ? The resource after verification. Most often the Resource will not be modified by

New in IDF 1.2 Verification. It has been added here to allow modeling of Verification in a combined pro-
cesses.

6.3 Prepress Processes

This section lists all processes that are performed prior to printing. This includes processes that are performed to make
digital assets press ready and the creation of physical assets such as plates or cut dies that are required for printing or
converting.

6.3.1 AssetlListCreation
New in JDF 1.2

The purpose of this process is to provide a listing of all assets and their dependent assets that are required in order to
use the input assets. This process analyzes the input Runlist to find dependent assets to provides a complete listing of
files in the output RunlList. AssetListCreation does not package, encode or compress the list of files.

Table 6.21: AssetlistCreation - Input Resources

NAME DESCRIPTION

AssetlistCreationParams Parameters of the AssetListCreation process

RunList List of assets used to create a listing of dependent assets.

Table 6.22: AssetlistCreation — Output Resources

DESCRIPTION

RunlList Alisting of all assets that the assets listed in the input RunList are dependent on includ-
ing the input assets. The dependent assets are to be inserted into the output RunList as
Runlist/LayoutElement/Dependencies/LayoutElement.

6.3.2 Bending
New in JDF 1.3

The Bending device consumes a printing plate and bends and/or punches it. In contrast to commercial printing, for news-
paper printing this process is not integrated into the ImageSetting process. In JDF 1.3 and above ImageSetting does not
imply Bending. An in-line plate puncher SHOULD be modeled as a combined process consisting of ImageSetting and
Bending processes.

Table 6.23: Bending - Input Resources (Sheet 1 of 2)

NAME DESCRIPTION

BendingParams List of assets used to create a listing of dependent assets.

ExposedMedia ? The ExposedMedia resource to be bent/punched.

JDF SPECIFICATION 1.7 221

PROCESSES

Table 6.23: Bending - Input Resources (Sheet 2 of 2)

DESCRIPTION

edia ¢ n a newspaper environment, Dummy forms mi e needed. In this case, a Media wi
Media ? I pap t,D yf ghtb ded. In th , a Med. th
@MediaType = "Plate" serves as an input resource.

Table 6.24: Bending - Output Resources

DESCRIPTION

ExposedMedia The bent/punched ExposedMedia resource.

6.3.3 ColorCorrection

ColorCorrection is the process of modifying the specification of colors in documents to achieve some desired visual result.
The process might be performed to ensure consistent colors across multiple files of a job or to achieve a specific design
intent (e.g., “brighten the image up a little”).

ColorCorrection is distinct from ColorSpaceConversion, which is the process of changing how the colors specified in the
job will be produced on paper. Rather, ColorCorrection is the process of modifying the desired result, whatever the spec-
ified color space might be.

The ColorCorrection process MAY be part of a combined process with the ColorSpaceConversion process, in which case
the source and destination profiles used by the ColorSpaceConversion process would be supplied from
ColorSpaceConversionParams. Either the direct @Adjustment attribute or the ICC profile attribute ColorCorrectionOp/
FileSpec with @ResourceUsage = "AbstractProfile” can be used in this scenario to apply color corrections in the device in-
dependent ICC Profile Connection Space interpreted from the ICC source profile before the ICC destination profile is ap-
plied.

Alternatively, a ColorCorrection process MAY occur after a ColorSpaceConversion process. In this scenario only the
ColorCorrectionOp/FileSpec with @ResourceUsage="DevicelinkProfile" supplied in ColorCorrectionOp is used.

Table 6.25: ColorCorrection - Input Resources

NAME DESCRIPTION

ColorantControl ? Identifies the assumed color model for the job.
Modified in JDF 1.1A

ColorCorrectionParams Parameters of the ColorCorrection process
New in JDF 1.1
RunlList List of content elements that SHALL be operated on.

Table 6.26: ColorCorrection — Output Resources

DESCRIPTION

Runlist List of color-corrected content elements.

6.3.4 ColorSpaceConversion

ColorSpaceConversion is the process of converting colors that are provided in a PDL to another color space. There are two
ways in which a controller can use this process to accomplish the color conversion. It can simply order the colors to be
converted by the device assigned to the task, or it can request that the process simply tag the input data for eventual
conversion. Additionally, the process can remove all tags from the PDL.

The color conversion controls are based on the use of ICC profiles. While the assumed characterization of input data can
take many forms, each can internally be represented as an ICC profile. In order to perform the transformations, input
profiles SHALL be paired with the identified final target device profile to create the transformation.

The target profile for color space conversion selection should be based on ColorSpaceConversionParams/@ICCProfileUsage
in the following order of precedence.

UsePDL — If present, the embedded target profile SHALL be used.
UseSupplied — The embedded target profile SHALL NOT be used.

222 JDF SPECIFICATION 1.7

PREPRESS PROCESSES

In order to avoid the loss of black color fidelity resulting from the transformation from a four-component CMYK to a
three-component interchange space, the controller MAY provide a DeviceLink! transform in
ColorSpaceConversionParams/ColorSpaceConversionOp/FileSpec[@ResourceUsage="DevicelinkProfile"]. The transform
SHALL be applied when converting from a specific source color space to the final target device color space specified for
the ColorSpaceConversion operation being applied. In these instances, the final target profile SHALL NOT be specified in
ColorSpaceConversionParams/FileSpec.

Table 6.27: ColorSpaceConversion - Input Resources

NAME DESCRIPTION

ColorantControl ? Identifies the assumed color model for the job.
Modified in JDF 1.1A

ColorSpaceConversionPara | Parameters that define how color spaces will be converted in the file.
ms

Runlist List of pages, sheets or byte maps on which to perform the selected operation.

Table 6.28: ColorSpaceConversion - Output Resources

NAME DESCRIPTION

ColorantControl ? Identifies the assumed color model for the job. The ColorantControl resource MAY be
modified by a ColorSpaceConversion process.

RunlList List of pages, sheets or byte maps on which the selected operation has been performed.

6.3.5 ContactCopying
New in JDF 1.1

ContactCopying is the process of making an analog copy of a film onto a another film or plate. It includes
FilmToPlateCopying as defined in JDF 1.0 and deprecated in JDF 1.1.

Table 6.29: ContactCopying - Input Resources

ContactCopyParams The settings of the contact copying task.

DevelopingParams ° Controls the physical and chemical specifics of the media development process.
ExposedMedia + The film or films to be copied onto the film or plate.

Media ? The unexposed film or plate.

TransferCurvePool ? Area coverage correction and coordinate transformations of the device.

Table 6.30: ContactCopying - Output Resources

DESCRIPTION

ExposedMedia The resulting exposed contact copy.

1. A DeviceLink transform is a transform that is defined in an ICC profile file (see » [ICC.1]) that maps directly
from one specific source color space to a specific destination device color space. An example of this is a
transform that maps directly from PDL source objects defined using sRGB directly to SWOP CMYK.

JDF SPECIFICATION 1.7 223

PROCESSES

6.3.6 ContoneCalibration

This process specifies the process of contone calibration. It consumes contone raster data such as the output from a
Rendering process. It produces contone raster data that has been calibrated using information about the intended screen-
ing to correctly calibrate the contone data.

Table 6.31: ContoneCalibration - Input Resources

NAME DESCRIPTION

RunList Ordered list of rasterized byte maps representing pages or surfaces.
ScreeningParams ? Metadata specifying which halftoning mechanism it is intended to be applied in a sub-
Modified in JDF 1.1 sequent Screening process.

TransferFunctionControl ? | Specifies which calibration to apply.
Modified in JDF 1.1

Table 6.32: ContoneCalibration - Output Resources

DESCRIPTION

Runlist Ordered list of rasterized byte maps representing pages or surfaces.

6.3.7 CylinderLayoutPreparation
New in JDF 1.3

CylinderLayoutPreparation specifies where to mount a single form in a newspaper-Web Press. This information might be
needed by printers as human-readable text on the surface of the form. Usually, the information is shown in a non-print-
able area of the form.

The required color information for each plate layout is addressed by Layout/ContentObject/@Ord. The attribute points to
RunList (Document). RunList/@Pagelistindex points to detailed PageData, including individual color information.

Table 6.33: CylinderLayoutPreparation - Input Resources

NAME DESCRIPTION

CylinderLayoutPreparatio Set of parameters for CylinderLayoutPreparation.

nParams ?

Layout Definition of the Layout of the individual plates. The resulting CylinderLayout references
plate layouts.

Runlist The document RunlList.

Table 6.34: CylinderLayoutPreparation - Output Resources

DESCRIPTION

CylinderLayout CylinderLayout specifies where to mount a single form in a newspaper-Web Press. If
requested by the printer, this information can be indicated as human-readable text on
the surface of the physical plate.

6.3.8 DBDocTemplatelayout
Deprecated in JDF 1.5
Deprecation note: Starting with JDF 1.5, use LayoutElementProduction instead.

6.3.9 DBTemplateMerging
Deprecated in JDF 1.5
Deprecation note: Starting with JDF 1.5, use LayoutElementProduction instead.

6.3.10 DieDesign
New in JDF 1.4

224 JDF SPECIFICATION 1.7

PREPRESS PROCESSES

This process describes the design of a die tool set with one or more stations starting from a DieLayout that describes the
layout of the one-up designs on a die. The output of this process is a DieLayout resource, describing a tool set for the die
cutter machine that can be used in a subsequent DieMaking process. DieDesign typically follows DieLayoutProduction.

Table 6.35: DieDesign - Input Resources

DESCRIPTION

DieLayout A resource describing the die cutter layout. This layout is already imposed for a specific
sheet size and MAY describe multiple stations.

Table 6.36: DieDesign - Output Resources

DESCRIPTION

Dielayout + A set of resources describing the die cutter tool set.

6.3.11 DielayoutProduction
New in JDF 1.4

This process describes the layout of one or more structural designs for a given Media. The output of this process is a
DieLayout resource describing the positioning of the individual one-ups on the die. The DieLayoutProduction process can
be performed by a human operator using a CAD application. In some cases it can be an automated process. The process
can be run in estimation mode; in which case multiple solutions are returned that can then be used as input of a cost
estimation module to determine the optimal layout. The DieLayoutProduction process is the packaging equivalent of a
Stripping process in conventional printing. The output DieLayout of DieLayoutProduction is typically the input of a sub-
sequent DieDesign process.

Table 6.37: DieLayoutProduction - Input Resources

NAME DESCRIPTION

DielayoutProductionPara | The parameters for DieLayoutProduction.
ms

ShapeDef + ShapeDef resources describing the different 1-up structural designs to be stepped and
repeated on the Media.

Table 6.38: DieLayoutProduction - Output Resources

DESCRIPTION

DieLayout + DieLayout describes a die cutter tool set. If DieLayoutProductionParams/
@Estimate="True", multiple alternative DieLayout elements are returned, otherwise a
single DieLayout SHALL be generated.

JDF SPECIFICATION 1.7 225

PROCESSES

Example 6.1 DielLayoutProduction: Single Shape and Two Sheet Sizes
Example of DieLayoutProduction of a single shape on 2 stock sheet sizes.

<!-- DielLayoutProduction Sample
Date:Sept 2007 Version: 1.00
Single Shape is repeated on a range of alternative sheet sizes.
-—>
<JDF DescriptiveName="Single shape versus a set of sheet sizes"
ID="n001" JobPartID="ID234" Status="Waiting"
Type="DieLayoutProduction" Version="1.6" xmlns="http://www.CIP4.org/JDFSchema 1 1">
<ResourcePool>
<ShapeDef Class="Parameter" ID="ShapelUp" Status="Available">
<FileSpec URL="file://myserver/myshare/olive.dd3"/>
</ShapeDef>
<!-- Layout can chose from 2 stock sheet sizes. Nesting with 2nd row
rotated and secondary gutters. Rotate against grain/flute
is not allowed.
-—>
<DielLayoutProductionParams Class="Parameter" ID="LayParam" Status="Available">
<ConvertingConfig SheetHeight="2267.72 ~ 2267.72" SheetWidth="2834.64 ~ 2834.64"/>
<ConvertingConfig SheetHeight="2834.64 ~ 2834.64" SheetWidth="3401.57 ~ 3401.57"/>
<RepeatDesc AllowedRotate="None" GutterY="0.0" GutterY2="14.17" LayoutStyle="Reverse2ndRow"/>

</DielayoutProductionParams>

<!-- The layout with minimum waste will be returned as the final result. -->
<DielLayout Class="Parameter" ID="DielLay" Status="Unavailable"/>
</ResourcePool>

<ResourcelLinkPool>
<ShapeDefLink Usage="Input" rRef="ShapelUp"/>
<DielayoutProductionParamsLink Usage="Input" rRef="LayParam"/>
<DielLayoutLink Usage="Output" rRef="DielLay"/>
</ResourceLinkPool>
</JDF>

Example 6.2: DieLayoutProduction: Single Shape and Range of Sheet Sizes
Example of DieLayoutProduction of a single shape on a range of sheet sizes. The sheet sizes have defined minimum and
maximum width and height. The layout is optimized for a particular order quantity.

<!-- DielLayoutProduction Sample
Date:Sept 2007 Version: 1.00
Single Shape is repeated on a continuous range of sheet sizes. -->
<JDF DescriptiveName="Single shape versus a set of sheet sizes"
ID="n001" JobPartID="ID400" Status="Waiting"
Type="DieLayoutProduction" Version="1.6" xmlns="http://www.CIP4.org/JDFSchema 1 1">
<ResourcePool>
<ShapeDef Class="Parameter" ID="ShapelUp" Status="Available">
<FileSpec URL="file://myserver/myshare/olive.dd3"/>
</ShapeDef>
<!-- Layout can choose sheet sizes between 1200mm-1000mm wide and
1000mm-800mm high. The layout will be optimized for order quantities
of 1 million boxes. Gutters are 5mm and cross flute/grain rotation
is not allowed.
-—>
<DielayoutProductionParams Class="Parameter" ID="LayParam" Status="Available">
<ConvertingConfig SheetHeight="2834.64 ~ 2267.72" SheetWidth="3401.57 ~ 2834.64"/>
<RepeatDesc AllowedRotate="None" GutterX="14.17" GutterY="14.17" OrderQuantity="1000000"/>

</DielLayoutProductionParams>

<!-- The layout with minimum waste will be returned as the
final result. -->
<DielLayout Class="Parameter" ID="DielLay" Status="Unavailable"/>
</ResourcePool>

<ResourceLinkPool>
<ShapeDefLink Usage="Input" rRef="ShapelUp"/>
<DielLayoutProductionParamsLink Usage="Input" rRef="LayParam"/>
<DielLayoutLink Usage="Output" rRef="DieLay"/>
</ResourceLinkPool>
</JDF>

226 JDF SPECIFICATION 1.7

PREPRESS PROCESSES

Example 6.3: DielayoutProduction: Two Shapes and Range of Sheet Sizes

Example of DieLayoutProduction of 2 shapes on a range of sheet sizes. The sheet sizes have defined minimum and max-
imum width and height. The layout is optimized for a particular order quantity of 2 boxes.

<!-- DielLayoutProduction Sample
Date:Sept 2007 Version: 1.00
2 Shapes is repeated on a continuous range of sheet sizes.
-—>
<JDF DescriptiveName="Single shape versus a set of sheet sizes" ID="n001l" Status="Waiting"
Type="DieLayoutProduction" Version="1.6" xmlns="http://www.CIP4.0rg/JDFSchema 1 1">
<ResourcePool>
<ShapeDef Class="Parameter" ID="ShapelUp" Status="Available">
<FileSpec URL="file://myserver/myshare/beef.dd3"/>
</ShapeDef>
<ShapeDef Class="Parameter" ID="ShapelUp2" Status="Available">
<FileSpec URL="file://myserver/myshare/chicken.dd3"/>
</ShapeDef>
<!-- Layout can chose sheetsizes between 1200mm-1000mm wide and
1000mm-800mm high. Layout is optimized for an order
quantity of 300k boxes for beef and 700k boxes for chicken.
Gutters are 5mm and cross flute/grain rotation is not allowed.
-—>
<DielayoutProductionParams Class="Parameter" ID="LayParam" Status="Available">
<ConvertingConfig SheetHeight="2834.64 ~ 2267.72" SheetWidth="3401.57 ~ 2834.64"/>
<RepeatDesc AllowedRotate="None" GutterX="14.17" GutterY="14.17" OrderQuantity="300000"/>
<RepeatDesc AllowedRotate="None" GutterX="14.17" GutterY="14.17" OrderQuantity="700000"/>
</DielLayoutProductionParams>

<!-- The layout with minimum waste will be returned as the final
result. —-->
<DielLayout Class="Parameter" ID="DielLay" Status="Unavailable"/>
</ResourcePool>

<ResourceLinkPool>
<ShapeDefLink Usage="Input" rRef="ShapelUp"/>
<ShapeDefLink Usage="Input" rRef="ShapelUp2"/>
<DielLayoutProductionParamsLink Usage="Input" rRef="LayParam"/>
<DielayoutLink Usage="Output" rRef="Dielay"/>
</ResourcelLinkPool>
</JDE>

6.3.12 DigitalDelivery

New in JDF 1.2

This process specifies the delivery of digital assets in any stage of the flow. It could be images, documents, layout, text
files, ready to print raster files or any other file type. When ArtDeliveryintent/ArtDelivery/@ArtDeliveryType is
"DigitalNetwork" or "DigitalFile" the corresponding process will be DigitalDelivery unless ArtDeliveryintent/@Method =
"local".

It is not necessary to use the DigitalDelivery process to describe informal delivery of files during the workflow, although
DigitalDelivery can be used for asset collection purposes (i.e., defining how an input RunList will be collected in the output
RunList describing the packing containers of compression or encoding).

Table 6.39: DigitalDelivery - Input Resources

NAME DESCRIPTION

DigitalDeliveryParams Parameter specifying the artwork files delivery characteristics.

Runlist * The list of digital files to be delivered.
Modified in JDF 1.3

Table 6.40: DigitalDelivery — Output Resources

DESCRIPTION

RunList + The list of digital files which were actually delivered to the destination.
Modified in JDF 1.3

JDF SPECIFICATION 1.7 227

PROCESSES

6.3.13 FilmToPlateCopying
Deprecated in JDF 1.1
FilmToPlateCopying has been replaced by the more generic ContactCopying.

6.3.14 FormatConversion

New in JDF 1.1

Deprecated in JDF 1.5

Deprecation note: Starting with JDF 1.5, use a Combined process of RasterReading and Rendering.

6.3.15 ImageEnhancement
New in JDF 1.5

The ImageEnhancement process describes generic image data processing.
Note: The source MAY be any image, but also text or vector graphics.

Table 6.41: ImageEnhancement - Input Resources

NAME DESCRIPTION

ImageEnhancementParam | Describes the controls selected for the manipulation of images.
S

RunlList List of content data elements on which to perform the selected operations.

Table 6.42: ImageEnhancement - Output Resources

DESCRIPTION

RunList List of page contents with images that have been manipulated as indicated
by the ImageEnhancementParams resource.

6.3.16 ImageReplacement

This process provides a mechanism for manipulating documents that contain referenced image data. It allows for the
“fattening” of files that simply contain a reference to external data or contain a low resolution proxy. Additionally, the
resource can be specified so that this process generates proxy images from referenced data. ImageReplacement is inten-
tionally neutral of the conventions used to identify the externally referenced image data.

Table 6.43: ImageReplacement - Input Resources

NAME DESCRIPTION

ImageCompressionParams | This resource provides a set of controls that determines how images will be compressed
? in the resulting “fat” PDL pages.

New in JDF 1.1

ImageReplacementParams | Describes the controls selected for the manipulation of images.

RunlList List of page contents on which to perform the selected operation.

Table 6.44: ImageReplacement - Output Resources

DESCRIPTION

RunList List of page contents with images that have been manipulated as indicated by the
ImageReplacementParams resource.

6.3.17 ImageSetting

The ImageSetting process is executed by an imagesetter or platesetter that images a bitmap onto the film or plate media.
The ImageSetting process can also be used to describe hard copy proofing (see » Section 6.2.1 Approval).

228 JDF SPECIFICATION 1.7

PREPRESS PROCESSES

Table 6.45: ImageSetting - Input Resources

NAME DESCRIPTION

ColorantControl ?
New in JDF 1.2

The ColorantControl resources that define the ordering and usage of inks during mark-
ing on the imagesetter.

DevelopingParams ?
New in JDF 1.1

Controls the physical and chemical specifics of the media development process.

ExposedMedia °
New in JDF 1.3

When imaging to reusable media, ExposedMedia MAY also be used as input to
ImageSetting.

Constraint: exactly one of Media or ExposedMedia SHALL be specified.

ImageSetterParams °
Modified in JDF 1.1

Controls the device specific features of the imagesetter.

Media ? The unexposed media.
Constraint: exactly one of Media or ExposedMedia SHALL be specified.
RunlList Identifies the set of bitmaps to image. The RunList MAY contain bytemaps or images.

TransferCurvePool ?
New in JDF 1.1

Area coverage correction and coordinate transformations of the device.

Table 6.46: ImageSetting — Output Resources

DESCRIPTION

ExposedMedia

The exposed media resource. In the case of plate setting, this is the exposed set of
plates. In the case of film setting, this is the exposed set of films.

6.3.18 Imposition
Modified in JDF 1.4

Modification note: Starting with JDF 1.4, automated imposition is added.

The Imposition process is responsible for combining pages of input graphical content onto surfaces of the physical output
media. Static or dynamic printer's marks can be added to the surface in order to facilitate various aspects of the produc-
tion process. Among other things, these marks are used for press alignment, color calibration, job identification, and as
guides for cutting and folding.

Note: The Imposition process specifies the task of combining pages and marks on sheets. The task of setting up the pa-
rameters needed for Imposition is defined either by LayoutPreparation, Stripping or by the generic ResourceDefinition pro-
cess.

Table 6.47: Imposition - Input Resources

NAME DESCRIPTION

Layout A Layout resource that indicates how the content pages from the Document RunList and
marks from the Marks RunlList (see below) are combined onto imposed surfaces.

RunList (Document) Structured list of incoming page contents that are transformed to produce the imposed

surface images.

RunList (Marks) ? Structured list of incoming marks. These are typically printer’s marks such as fold

marks, cut marks, punch marks or color bars.

JDF SPECIFICATION 1.7 229

PROCESSES

Table 6.48: Imposition - Output Resources

NAME DESCRIPTION

RunList The RunList represents a structured list of imposed surfaces. The @ElementType of the
LayoutElement resource SHALL be "Surface". Conceptually the output RunList will be
partitioned by at least @SheetName and @Side to represent the individual printed sur-
faces. If the Imposition process is executed before any raster image processing, this will
generally be consumed by an Interpreting process. In the case of where Imposition is
executed after any raster image processing, it will be consumed by DigitalPrinting or
ImageSetting.

There are two mechanisms provided for controlling the flow of page images onto sheet surfaces:

The default mechanism is for non-automated (e.g., fully-specified) Imposition. Fully-specified imposition explicitly
identifies all page content for each sheet imaged and references these pages by means of the order in which they are
defined in the input RunList (Document) resource. Static printer's marks are referenced in a similar fashion from the input
RunlList (Marks) resource.

Setting the @Automated attribute of the Layout resource to "true" activates a template approach to imposition and relies
upon the full hierarchy structure of the document (as specified by the RunList (Document) and referenced » Structured
PDL data) to specify the page content to be imposed.

In JDF , there is a single Layout resource definition. Its structure is broad enough to encompass the needs of both fully
specified and template-driven imposition. When described fully (@Automated = "false"), the Layout resource partition
structure defines the imposition to take place. The highest level of each partition defines a signature. The children of
each of the signatures in turn specifies an array of sheets, and each sheet MAY have up to two surfaces (Front and/or
Back), on which the page images and any printer's marks are to be placed using PlacedObject elements. A sheet that spec-
ifies no surface content SHALL be interpreted as blank. Pages that are to be printed SHALL be placed onto surfaces using
ContentObject subelements which explicitly identify the page (Typically done using the ContentObject/ @Ord attribute
which specifies an index into the document RunList). Thus, the Layout partition hierarchy SHALL explicitly specify which
pages are to be imaged onto each surface.

For JDF 1.3, automated imposition was originally defined such that Layout resource partitions specified a single signature
of sheet(s) upon which page content was to be imposed. The sequence of pages to be imaged via automated imposition
was defined by the document RunList. The pages were pulled from this sequence as needed in order to satisfy the
ContentObject elements defined for each sheet surface in the signature of the Layout resource. The signature was repeat-
ed as necessary until all pages available in the document RunList had been used.

Note: The XML order in which the partitions of the Layout resource are defined is significant for both automated and
non-automated imposition and defines the order in which the imposition engine SHALL create the output RunlList.

6.3.18.1 Glossary for Automated Imposition
This table below introduces terms and concepts necessary for understanding automated imposition processing.

Table 6.49: Glossary for Automated Imposition (Sheet 1 of 4)

TERM DEFINITION

When processing an » Imposition Template, the imposition engine maintains an inter-
nal Base Index into the » Page Pool being processed. That Base Index is added to the
ContentObject/ @Ord value, resulting in an index into the » Page Pool for referencing the
page to be placed, and is updated for each » Imposition Template iteration. Both posi-
tive and negative base indices are maintained for use when ContentObject/@Ord has
either a negative or positive value.

Base Index

Base Ord Same as » Base Index.

Collect Set of sheets that are collected together prior to gathering,.

Document Major Processing Order refers to the scenario wherein all instances of a
given document class (across all sets to be processed) SHALL be produced before start-
Document Major ing processing for the next document class.

Processing Order For instance, the production requirements may state that all brochures SHALL be pro-
duced for each set, followed by all cover letters and then all postcards. This processing
order is an example of Document Major.

230 JDF SPECIFICATION 1.7

PREPRESS PROCESSES

Table 6.49: Glossary for Automated Imposition (Sheet 2 of 4)

TERM DEFINITION

Imposed Sheet Set

Describes a single set of sheet definitions generated by the imposition engine contain-
ing imposed content.

Note: This may represent a precut set of sheets in a cut-and-stack workflow (where the
maximum number of sheets in the » Imposed Sheet Set is defined by Layout/
LogicalStackParams|@MaxStackDepth), or a collect whenno » Logical Stacks are defined.

Imposition Template

A first-level branch of a partitioned Layout resource having @Automated = "true" that
describes a single set of sheets with a common imposition layout that accommodates
very specific production characteristics. A single Layout resource defines a collection of
one or more Imposition Templates.

Instance Document

The imposition engine treats each immediate child node of a setina » Structured PDL
as an Instance Document. This is used as the basis for generating @€EndOfDocument
breaks in the resulting RunList (Surface), and for processing RunList/@DocCopies attri-
butes (see » Section 8.129 RunList). If a set has only pages as its children, then a single
» Instance Document is assumed to exist.

Logical Sheet

One or more pages placed onto a sheet definition withina » Logical Stack (i.e., a sheet
definition within a » Logical Stack).

Logical Stack

When Layout/LogicalStackParams/@MaxStackDepth is specified in the root of the Layout
resource, then the imposition engine is configured for imposition onto multiple Logical
Stacks. These stacks are described through the use of adding Layout/PlacedObject/
@LogicalStackOrd to stack-specific descriptions for each placed object. For more infor-
mation, see » Section 6.3.18.4.1 Using Logical Stacks.

Logical Stack Set

The set of » Logical Stacks described by an » Imposed Sheet Set.

Page Pool

A Page Pool refers to a delimited sequence of pages defined within the RunList
(Document) input to the Imposition process. A Page Pool MAY encompass all pages of the
RunList (Document) as in the case of » Unstructured PDLs. In the case of » Structured
PDLs, a Page Pool is defined to be that set of pages represented by a leaf node of the
document structure. For example, a brochure which has a sub-structure of cover and
body has two leaf nodes, cover and body, respectively. If body were further divided into
chapter sections, then the leaf nodes of the brochure would be the cover and each body
chapter. LayoutElement/@ElementType may be used to demote an already » Structured
PDL to be treated as an » Unstructured PDL. Examples of » Structured PDL formats
include PPML, PPML/VDX, and ISO 16612-2 PDF/VT.

» Imposition Templates select Page Pools to be processed based on their Partition Keys
whose values are derived from metadata present in the PDL data (e.g., Layout parti-
tioned by @DocTags = "Letter" would process all Page Pools of the current set whose
metadata derived Partition Key @DocTags matches "Letter"). See below for more detail.

It is important to note that the pages in a Page Pool SHALL be presented to the imposi-
tion engine in a well defined order known to the Layout resource creator (typically
reader order) in order for them to be processed correctly.

Page Pool List

A Page Pool List refers to a sequence of one or more » Page Pools (contiguous or dis-
joint in the RunList (Document)) aggregated together and treated as a single » Page Pool
for processing by a selected » Imposition Template. For example, if a Page Pool List is
constructed from the » Page Pools: Chapteri1, Chapter2, and Chapter4 as defined in an
input RunList (Document), then the aggregate result is a single pool of pages consisting
of the pages from Chapter1, Chapter2 and Chapter4. The order of the pages of the Page
Pool List SHALL be processed in the order in which the » Page Pools are defined in the
RunList (Document). The boundaries between » Page Pools in a Page Pool List are
implicitly maintained for use by the imposition processor for making page level sheet
surface mapping decisions during processing (e.g., specifying a right side facing pages
start at the beginning of each chapter). » Page Pools are aggregated into Page Pool
Lists through the use of the Layout/@BaseOrdReset attribute. If @BaseOrdReset =
"PagePoollist" then all » Page Pools processed by the » Imposition Template are aggre-
gated. If @BaseOrdReset = "PagePool’, then each » Page Pool is processed separately.

It is important to note that the pages in a Page Pool List SHALL be presented to the
imposition engine in a well defined order known to the Layout resource creator (typi-
cally reader order) in order for them to be processed correctly.

JDF SPECIFICATION 1.7 231

PROCESSES

Table 6.49: Glossary for Automated Imposition (Sheet 3 of 4)

TERM DEFINITION

Various PDL formats provide for the definition of key/value pairs within the PDL that
MAY be treated as metadata for the purpose of process parameterization. For example,
the metadata key/value pairs specified in the PDL data may identify the type of finished
document using @DocumentType = "PostCard" or "Booklet", which would then affect the
selection of the » Imposition Template to be applied.

The Imposition process makes use of metadata to make decisions as to which » Page
Pools should be processed through an » Imposition Template. These decisions are per-
formed by comparing the explicit Partition Key settings for each » Imposition Template
to the partition key/value settings mapped from the PDL for each » Page Pool in the
current set, and each matching » Page Pool is processed through the corresponding

» Imposition Template(s).

Within an » Imposition Template, metadata associated with individual pages MAY also
be used to parameterize dynamic mark and slug-line content generation (see example
below). Refer to the RunList/MetadataMap element definition for information on how to
specify the mapping of PDL specified metadata values for use by JDF (e.g., using Parti-
tion Keys or GenerallD keys).

The » PDL Processor SHALL make use of the RunList/MetadataMap to generate Partition
Keys, GenerallD and other values during the course of imposition processing. These val-
ues SHALL be regenerated as necessary, as the metadata key/value pairs in the PDL
change based on which portion of the PDL is being processed.

PDL Metadata

A PDL interface that hides details of a particular PDL and syntax, etc. from the imposi-
PDL Processor tion engine itself. Its role is to present the structure of the PDL and pools of pages
within the PDL structure to the imposition engine in a PDL independent way.

Recipient Set Set of finished pages produced for a single recipient.

Set Major Processing Order refers to the scenario when all documents of a set instance
are produced before starting on the next set instance; this is the typical processing
order for most VDP applications.

Set Major Processing
Order

Sheet Definition A branch of an » Imposition Template that describes the imposition to be performed
for a sheet. » Sheet Definitions for automated imposition SHALL be partitioned by
@SheetName and @Side.

A Structured PDL defines sequences of groupings of pages. These groupings may be as
simple as specifying the set of pages belonging to a chapter or cover of a booklet where
such a group isa » Page Pool. In the case of Variable Document Printing (VDP)

» Structured PDLs, there are often multiple sets of content where typically a set
instance comprises the content to be delivered to a single recipient. Each set has one or
Structured PDL more documents, and documents may be further subdivided into sub-documents in
hierarchical fashion. The imposition engine processes each set individually in the
sequence specified in the interpretation specified by the RunList that references the

» Structured PDL data file.

The general structure of a Structured PDL is identified by the PDL (PDL specification or
PDL instance) itself or the value of the LayoutElement/@ElementType attribute.

For MultiDocument PDL files, the PDL processor supplies the context to the imposition

processor that represents the PDL’s document structure. This context is defined as

Set — represents a single set containing all of the documents in the PDL file, therefore
the value of @Setindex SHALL always be 0.

Structured PDL — Document — is always the first hierarchical level in the file.

MultiDocument SubDoco to SubDoc9 — represent consecutive levels of the hierarchy below the Docu-

ment level in the file not including the level representing individual pages. If any

level of the hierarchy is not defined, the value of the corresponding @ SubDocindexn

is undefined.

Pages — represent individual pages in the PDL.

232 JDF SPECIFICATION 1.7

PREPRESS PROCESSES

Table 6.49: Glossary for Automated Imposition (Sheet 4 of 4)

TERM DEFINITION

Structured PDL —
MultiSet

For MultiSet PDL files, the PDL processor supplies the context to the imposition pro-
cessor that represents the PDL’s set and document structure. This context is defined as
Set — represents a set of related documents.

Document — is always the first hierarchical level below the Set level. If a MultiSet file
contains only Sets with no document or sub-document breaks (no levels are
defined below the Set level), all of the pages of the set are considered to be included
in a single document therefore the @DocIndex is always 0.

SubDoco to SubDoc9 — represent consecutive levels of the hierarchy below the Docu-
ment level in the file not including the level representing individual pages. If any
level of the hierarchy is not defined, the value of the corresponding @ SubDocIndexn
is undefined.

Pages — represent individual pages in the PDL.

Note: The lowest level of the JDF hierarchy (Set, Document, SubDocn) mapped by the
PDL processor represents a » Page Pool context.

Unstructured PDL

An Unstructured PDL is a content file consisting of a single set of one or more pages.
Typically such a PDL file is considered to be a single document and a single Layout

» Imposition Template would be applied to the entire set of pages. When a JDF imposes
structure on such a file either using direct @Page indices or a partitioned RunList point-
ing to different page ranges of the file using @EndOfSet, @EndOfDocument attributes,
then the imposition engine will treat the input RunList resource asa » Structured PDL.

6.3.18.2 Variables for Automated Imposition

The imposition engine maintains a set of locally scoped variables that may be referenced during imposition processing.
The values of these variables reflect the current context of processing during execution of the Imposition process. These
variables include those described in » Section G String Generation, as well as those described in bulleted items below. All
variables below are integer variables.

Table 6.50: Variables for Automated Imposition (Sheet 1 of 2)

NAME

Collectindex ?

DATA TYPE DESCRIPTION

integer Represents a zero based index of the current collect of sheets being generated

by an automated » Imposition Template from the current » Page Pool or
» Page Pool List being processed. May be greater than zero if Layout/
@MaxCollect is specified and is greater than 1.

CollectSheetIndex ?

integer Is a zero-based index of the current physical or » Logical Sheet of the cur-

rent collect generated by an automated » Imposition Template from the cur-
rent » Page Pool or » Page Pool List being processed. » Logical Sheets are
used when » Logical Stacks are defined.

ImposedSheetSetind | integer Is the 0-based » Imposed Sheet Set index.
?

ex ¢

PoolSheetlIndex ? integer Is a zero-based index of the current physical or logical sheet generated from
the current » Page Pool or » Page Pool List within an automated
» Imposition Template. » Logical Sheets are used when » Logical Stacks are
defined. The value of this variable is independent of the number of collects
generated by the same automated » Imposition Template.

SheetCount ? integer Is the current number of physical or logical sheets generated during the pro-

cessing of the automated Layout resource. » Logical Sheets are used when

» Logical Stacks are defined. At the beginning of processing of the Layout
resource, the value of this variable is set to zero. The value of this variable
MAY be reset to zero in later Layout partitions using the Layout/
@SheetCountReset attribute. @ SheetCount is always reset to zero at the begin-
ning of processing of a set regardless of the value of Layout/
@SheetCountReset.

SubDoclndexn ?

integer Where n represents any hierarchical structure levels below the level of the

current document present in the » Structured PDL data to be processed. For
example, @SubDoclndex0 might represent a collection of chapters in a bro-
chure where its containing parent is at the document level (@Docindex is used
to indicate the position (index) of the document in its containing Set).

JDF SPECIFICATION 1.7 233

PROCESSES

Table 6.50: Variables for Automated Imposition (Sheet 2 of 2)

NAME DATA TYPE DESCRIPTION

TotalCollects ? integer Is the total number of collects generated by an automated » Imposition
Template from the current » Page Pool or » Page Pool List being processed.

TotallmposedSheetS | integer Is the total number of » Imposed Sheet Sets defined for the job.
ets ?
TotalSets ? integer Is the total number of recipient sets generated for the job. Note that in cases

where it is used before the end of content imposition, it is necessary for the
imposition processor to count the number of sets in the PDL content.

TotalSheetCount ? integer Is the total number of physical or » Logical Sheets generated during the pro-
cessing of the automated Layout resource. » Logical Sheets are used when

» Logical Stacks are defined. The value of this variable MAY be recalculated in
later Layout partitions using the Layout/@SheetCountReset attribute.
@TotalSheetCount is always reset to zero at the beginning of processing of a
set regardless of the value of Layout/@SheetCountReset.

TotalSheetsInCollect | integer Is the total number of physical or » Logical Sheets that make up the current
? collect generated by an automated » Imposition Template from the current

» Page Pool or » Page Pool List being processed. » Logical Sheets are used
when » Logical Stacks are defined.

TotalSheetsInPool ? | integer Is the total number of physical or » Logical Sheets generated from the cur-
rent page pool or page pool list within an automated » Imposition Template.
» Logical Sheets are used when » Logical Stacks are defined.

The above variables MAY be used for controlling the activation of printer's marks (See Layout/MarkObject/
MarkActivation). For example:

Example 6.4: Automated Imposition: MarkObject

This example causes a slug line to be imaged on the bottom center of the first sheet of the set of sheets comprising a
signature instance. Here are the details. For MarkActivation/ @ Context, its value of "Collectindex" specifies that the value
of @Collectindex is the index used with MarkActivation/ @Index. For Layout/@Index, its value of 0 specifies that the sheet
receive the specified slug line if the value of @Collectindex is 0 (i.e., if it is first sheet of the signature instance).

Note: If @Index were "14 6", then the slug line would go on the second, fifth and seventh sheets.

<MarkObject Anchor="BottomCenter" CTM="1 0 0 1 0 0">
<DeviceMark Font="MySlugLineFont" FontSize="8"/>
<!--Result: Gender=male -->
<JobField JobFormat="Gender=%s" JobTemplate="GenerallID:Gender"/>
<RefAnchor Anchor="BottomCenter" AnchorType="Sibling" rRef="1000006"/>
<MarkActivation Context="CollectIndex" Index="0"/>

</MarkObject>

6.3.18.3 Execution Model for Automated Imposition

The Imposition process transforms the sequences of pages contained withina » Page Poolor » Page Pool List to a specific
sequence of imposed sheet surfaces. The » Imposition Templates and the order of the » Imposition Templates defined
by the Layout resource explicitly define the ‘page to sheet’ surface mapping transformation applied by the imposition
engine.

The pseudo-code below describes the processing performed by the imposition engine at a high level:

For each set in the order specified in the input Runlist (Document)
For each Imposition Template
For each Page Pool in the set
If the partition key conditions for the Imposition Template are satisfied
Process the Page Pool through the Imposition Template
Note: The emphasised terms in the above sample are defined in » Table 6.49 Glossary for Automated Imposition.

Thus, each Layout Resource » Imposition Template is processed in the XML structure order specified. Every » Page Pool
belonging to the current set is then evaluated against the Partition Keys specified for that » Imposition Template to de-
termine if it SHALL be processed by that » Imposition Template.

234 JDF SPECIFICATION 1.7

PREPRESS PROCESSES

Since each » Page Pool is evaluated for each » Imposition Template, it is possible to reuse the same » Page Pool with
multiple » Imposition Templates.

The RunList resource output from the Imposition process represents a sequence of imposed sheet surfaces where each
surface may be represented either by pointing to PDL content where all the input pages are imposed onto single PDL
pages, or, when used with a combined process, may refer to the page set along with imposition instructions to the in-
terpreter using an exchange resource. The structure of the Layout resource affects the Partition Keys conserved by its
output Runlist (and its referenced content), by conserving all Partition Keys specified in the Layout along with generating
all of the appropriate Partition Keys, such as @Setindex, @Doclndex, @Sheetindex. The output RunList can be viewed con-
ceptually as a collection of sheet surface pairings (front and back) that conserves information about which Layout

» Imposition Template and » Page Pool metadata that was in scope at the time the sheets were generated.

Note: @DoclIndex is always generated even if every set contains only a single document; a set that contains only pages is
treated as a set with a single document.

Note: MarkObject/@Ord works in the same way for automated imposition as for non-automated imposition. In other
words, the @Ord value corresponds to the page entry described by that absolute @0Ord position in the RunList (Marks).

Example 6.5: Imposition Template: Layout

Thus, if the » Imposition Template (Layout) in this example is applied, then the resulting RunList resource conceptually
conserves the following Partition Keys: @ Setindex, @ Sheetindex, @DocTags, @Doclndex, @SheetName and @Side along
with any other in-scope Partition Keys.

Note that in this example, @Setindex and @Doclndex are conserved by setting @€EndOfSet and @EndOfDocument respec-
tively in the output Runlist (Surface). In a Layout that defines » Logical Stacks containing multiple documents or sets
within » Imposed Sheet Sets, @ SetIndex and @DocIndex would need to be conserved by explicitly setting the value of the
@Setindex and @Doclndex Partition Keys. The RunList is expected to be partitioned by @Run, where each @Run represents
one or more sheets, each having at least one surface either implied by Runlist/@SheetSides, or explicitly partitioned by
@Side.

<Layout Automated="true" Class="Parameter" ID="L1"
PartIDKeys="DocTags SheetName Side" Status="Available">
<Layout DocTags="CoverLetter">
<Layout SheetName="CoverLetterSheets">
<Layout Side="Front">
<ContentObject CITM="1 0 0 1 0 0" Ord="0"/>
</Layout>
</Layout>
</Layout>
<Layout DocTags="Booklet">
<Layout SheetName="BookletSheets">
<Layout Side="Front">
<ContentObject CTM="1 0 0 1 0 0" Ord="0"/>
<ContentObject CTM="1 0 0 1 0 0" Ord="-1"/>
</Layout>
<Layout Side="Back">
<ContentObject CTM="1 0 0 1 0 0" Ord="1"/>
<ContentObject CTM="1 0 0 1 0 0" Ord="-2"/>
</Layout>
</Layout>
</Layout>
</Layout>

6.3.18.4 Configuration for Various Automated Impositions

6.3.18.4.1 Using Logical Stacks

An » Imposed Sheet Set output by the imposition engine can describe multiple » Logical Stacks. Each of these » Logical
Stacks is placed onto a well-defined section of the sheet definitions, and after printing will typically be cut in a postpress
finishing operation, generating the representative physical stacks.

» Logical Stacks are configured through the use of two mechanisms:
Layout/LogicalStackParams element specifies the control for each » Logical Stack including how » Logical Sheets

are sequenced onto a » Logical Stack, and restrictions on how » Logical Sheets of » Recipient Sets can span
» Logical Stacks and » Imposed Sheet Sets.

The abstract PlacedObject/ @ LogicalStackOrd is used to assign individual placed object definitions toa » Logical
Stack. Each PlacedObject defines the CTM for placing that object onto the » Logical Stack. Each of the
PlacedObject elements will have the same @Ord value across the » Logical Stacks.

JDF SPECIFICATION 1.7 235

PROCESSES

Todefinea » Logical Stack, the Layout/LogicalStackParams element SHALL be present in the root of the Layout resource.
This element configures the imposition engine to place » Logical Sheets within » Logical Stacks. The maximum number
of sheets that can make up an » Imposed Sheet Set is specified by LogicalStackParams/@MaxStackDepth. Stacks are iden-
tified through the use of LogicalStackParams/Stack/@ LogicalStackOrd; the first » Logical Stack is @LogicalStackOrd = "0",
the 2nd is "1", etc.

All » Logical Stacks defined by Layout/LogicalStackParams SHALL be used in all » Imposition Templates, with the ex-
ception of an optional sheet (see Layout/SheetCondition in » Section 8.83.13 SheetCondition) having a @ Condition of
"LogicalStackSetBegin" or "LogicalStackSetEnd" — these optional » Logical Sheets are placed into a specific » Logical Stack
as specified by the PlacedObject/ @ LogicalStackOrd in the optional sheet.

The imposition works by traversing each » Logical Stack (in the sequence specified by LogicalStackParams/Stack/
@LogicalStackSequence). Each » Imposition Template is processed where PlacedObject elements are evaluated for one of
two cases:

1 The PlacedObject has no @LogicalStackOrd. In this case, the PlacedObject is considered to be a physical sheet-
level object, and is placed once at the start of processing for a physical sheet. Note that only information rele-
vant to a physical sheet (such as @Sheetindex) is in scope for use in generating dynamic marks. An example of a
physical sheet-level mark is a cut mark for where to cut the stacks.

2 The PlacedObject has a @LogicalStackOrd. In this case, only PlacedObject elements that have a matching

@ LogicalStackOrd for the current » Logical Stack being processed are placed. Note that information relevant to
documents and pages (such as @Collectindex or @ TotalSheetsInPool) is in scope for use in generating dynamic
marks.

When insufficient number of pages remain to complete all » Logical Stacks in an » Imposed Sheet Set, the imposition

engine SHALL distribute all content evenly across » Logical Stacks in order to minimize the number of sheets in that

» Imposed Sheet Set, while still honoring any restrictions specified in Layout/SheetCondition, LogicalStackParams/

@Restrictions or Layout/PageCondition.

6.3.18.4.1.1 Imposition for Cut and Stack

This example shows how to configure for cut and stack imposition. Cut and stack produces a sequence of » Imposed
Sheet Sets, where each » Imposed Sheet Set is cut into separate physical stacks, then each physical stack is restacked
into a larger stack. This simple example is configured for 2 » Logical Stacks with a @MaxStackDepth = "3", and is filled
with 20 pages. Content on the back of the sheet is placed head-to-head with the front content.

Note: The 2nd » Imposed Sheet Set has distributed the remaining 8 pages onto 2 sheets.

Figure 6-1: Imposition for cut and stack

Stack 0 Stack1

Sheet 0 (l) l
Sheet 1 | |
N
Sheet 2 | |
b4 10

Imposed Sheet Set 0

Stack 0 Stack 1

Sheet 3 | |

236 JDF SPECIFICATION 1.7

PREPRESS PROCESSES

Figure 6-1: Imposition for cut and stack

Sheet 4 | |

Imposed Sheet Set 1

6.3.18.4.2 Imposition for Signatures with Saddle Stitching

Saddle stitched booklets typically contain pages selected from the front of the reader ordered list of pages and pages se-
lected from the back of the reader ordered list of pages on the same sheet. For instance the outside cover of a 16 page
booklet will contain the first page (@0rd = "0") on the right of the sheet and the last page (@0rd ="15") on the left of the
sheet. The pagination for the inner sheets is calculated by adding to the page number from the front and by subtracting
from the back. The next page inside the cover of a booklet printed in duplex will typically contain the third page (@0rd
="2") on the right and the third from last page (@0rd = "13") on the left. This behavior is described by specifying negative
@0rd values for the ContentObject elements that are filled with pages from the back of the RunList in automated impo-
sition. The following code illustrates how absolute @Ord values are assigned based on sheet iterations.

Note: Layout/@MaxCollect specifies the maximum number of sheets per signature (e.g., in a perfect bound book).
@MaxCollect specifies the maximum number of loops prior to restarting the signature.

Example 6.6: Automated Imposition: Ord Values
/*

* calculates a "real" ord value in an automated layout

* @param ord the Value of Ord in the layout

* @param nPages the total number of pages that are consumed by the Layout, if

* frontOffset!=0 the pages before frontOffset are NOT counted

* @param loop which sheet loop are we on?

* (@param maxOrdFront number of pages consumed from the front of the list

* @param maxOrdBack positive number of pages consumed from the back of the list

* @param frontOffset page number of the first page to be placed on ord 0 in loop 0
* @return the pge to assign in this Ord, -1 if no page fits

public static int calcOrd(
int ord, int nPages, int loop, int maxOrdFront,
int maxOrdBack, int frontOffset)

final int maxOrd = maxOrdFront + maxOrdBack;
if (maxOrd*loop >= nPages)
{
return -1; // we are in a loop that has no remaining pages
}
int page;
if (ord >= 0)
{ // count from front
page = ord + loop*maxOrdFront;
} else { // the page to put on -1
int end = nPages + maxOrd - 1 -((nPages +maxOrd - 1)%maxOrd);
page = end - loop*maxOrdBack+ord;
}
// if a page evaluates to e.g. 10 and we only have 9 pages, ciao
return page< nPages? pagetfrontOffset : -1;
}

6.3.18.4.3 Selecting from Multiple Imposition Templates When Processing an unstructured PDL

In this case, the imposition engine optionally selects between » Imposition Templates based on the quantity of pages
present in the » Page Pool:

Layout/@OrdsConsumed restricts the pages of a » Page Pool to which a given » Imposition Template of an automated
layout is applied. It is designed for use with » Unstructured PDLs that only allow access to pages by index. For instance,
a wraparound cover might be specified as page 0 and therefore a special cover sheet with only one ContentObject can be
defined whereas the body sheets might contain 2 ContentObject elements per surface.

JDF SPECIFICATION 1.7 237

PROCESSES

@OrdsConsumed is only used when you have one » Page Pool and you want to restrict the number of pages to be pro-
cessed for a given » Imposition Template.

6.3.18.4.4 Imposition for Start of a Chapter

The Layout/PageCondition element may be used to specify where on a sheet a first page of a chapter (» Page Pool) starts.
It does this by specifying which ContentObject elements on a sheet may not be used to place the first page of a chapter.
An example may be found after » Table 8.152 PageCondition Element.

6.3.18.4.5 Imposition for Regenerating Sheet Surfaces
There are two methods to configure the imposition engine for re-imposing sheet surfaces:

1 Re-imposition by sheet or sheet surface: A specific selection of sheets or surfaces imposed by the imposition
engine may be selected using the controls of the RunListLink to the RunList (Surface) output from the Imposition
process.

2 Re-imposition of sheets from content: Alternatively the RunListLink to the RunList (Document) input to the
imposition engine may be partitioned to select specific content to be re-imposed.
For example, if the @Metadata0 Partition Key has been configured to represent a recipient record number in a VDP job,
that Partition Keys can be used to select a specific recipient record(s) for which to re-impose sheet surfaces.

Details on how to configure ResourceLink/Part elements for sheet re-imposition including how to correctly regenerate
dynamic sheet marks may be found at » Section 3.10.7 Linking to Resources and @I/gnoreContext in » Table 8.244 RunList
Resource.

6.3.18.4.6 Imposition for Document-Major Processing of a VDP » Structured PDL

To process a » Structured PDL in » Document Major Processing Order, the RunList (Document) input Resourcelink
SHALL contain Part elements specifying the order in which documents SHALL be processed. This effects a virtual reor-
dering of the content present in the PDL. Details on how to configure ResourceLink/Part elements for content reordering
may be found at » Section 3.10.7 Linking to Resources and @IgnoreContext in » Table 8.244 RunList Resource.

6.3.19 InkZoneCalculation

The InkZoneCalculation process takes place in order to preset the ink zones before printing. The Preview data are used to
calculate a coverage profile that represents the ink distribution along and perpendicular to the ink zones within the
printable area of the preview. The InkZoneProfile can be combined with additional, vendor-specific data in order to preset
the ink zones and the oscillating rollers of an offset printing press.

Table 6.51: InkZoneCalculation - Input Resources

NAME DESCRIPTION

InkZoneCalculationParams | Specific information about the printing press geometry (e.g., the number of zones) to
? calculate the InkZoneProfile.

Modified in JDF 1.3

Layout ? Specific information about the Media (including type and color) and about the sheet
New in JDF 11 (placement coordinates on the printing cylinder).

Preview A low to medium resolution bitmap file representing the content to be printed.

Sheet ? Specific informati.on about the Media (inclqding type and color) and about the sheet
Deprecated in JDF 1.1 (placement coordinates on the printing cylinder). Replaced by Layout in JDF 1.1.
TransferCurvePool ? Function to apply ContactCopying DigitalPrinting and ConventionalPrinting process char-

acteristics (e.g., press, climate and substrate) under certain standardized circum-
stances. This function can be used to generate an accurate InkZoneProfile.

Table 6.52: InkZoneCalculation - Output Resources

DESCRIPTION

InkZoneProfile InkZoneProfile contains information about ink coverage along and perpendicular to the
ink zones for a specific press geometry.

238 JDF SPECIFICATION 1.7

PREPRESS PROCESSES

6.3.20 Interpreting

The interpreting device consumes page descriptions and instructions for controlling the marking device (e.g., imageset-
ter, digital printers, CTP, digital printing combined processes, etc.). The parsing of graphical content in the page descrip-
tions produces a canonical display list of the elements to be drawn on each page.

The interpreter SHALL act upon any device control instructions that affect the physical functioning of the marking de-
vice such as media selection and page delivery and implied ColorSpaceConversion. Media selection determines which type
of medium is used for printing and where that medium can be obtained. Page delivery controls the location, orientation
and quantity of physical output.

The interpreter is also responsible for resolving all system resource references. This includes handling font substitutions
and dealing with resource aliases. However, the interpreter specifically does not get involved with any functions of the
device that could be considered finishing features, such as stapling, duplexing and collating.

Table 6.53: Interpreting - Input Resources

NAME DESCRIPTION

ColorantControl ? Identifies the color model used by the job.
Modified in JDF 1.1

FontPolicy ? Describes the behavior of the font machinery in absence of requested fonts.

InterpretingParams Provides the parameters needed to interpret the PDL pages specified in the RunList
resource.

PDLResourceAlias * These resources allow a JDF to reference resources which are defined in a Page Descrip-

tion Language (PDL). For example, a PDLResourceAlias resource could refer to a font
embedded in a PostScript file.

RunlList This resource identifies a set of PDL pages or surfaces that SHALL be interpreted.

Table 6.54: Interpreting — Output Resources

NAME DESCRIPTION
InterpretedPDLData ? Pipe of streamed data which represents the results of Interpreting the pages in the
Deprecated in JDF 1.2 RunList. In JDF 1.2 and beyond, a RunList with InterpretedPDLData subelements describes
the output content data for Interpreting.
RunList ? Pipe of streamed data that represents the results of Interpreting the pages in the
New in JDE 1.2 RunList. The data is specified in InterpretedPDLData subelements. The format and detail

of these is implementation specific. In C1general, it is assumed that the Interpreting and
Rendering processes are tightly coupled and that there is no value in attempting to
develop a general specification for the format of this data.

6.3.21 LayoutElementProduction

This process describes the creation of page elements. It also explains how to create a layout that can put together all of
the necessary page elements, including text, bitmap images, vector graphics, PDL or application files such as Adobe In-
Design®, Adobe PageMaker® and Quark XPress®. The elements might be produced using any of a number of various
software tools. This process is often performed several times in a row before the final LayoutElement, representing a final
layout file, is produced.

Table 6.55: LayoutElementProduction - Input Resources

NAME DESCRIPTION
LayoutElement * Metadata about the PDL or application file, bitmap image file, text file, vector graphics file,
etc.

LayoutElementProduction | The parameters for the LayoutElementProduction process.
Params ?

New in JDF 1.3

JDF SPECIFICATION 1.7 239

PROCESSES

Table 6.56: LayoutElementProduction - Output Resources

NAME DESCRIPTION

LayoutElement ? A URL of the PDL or application file is produced by this process. Exactly one of
LayoutElement or RunList SHALL be specified.

RunlList ? A Runlist of a LayoutElement resource of @ElementType "Page" or "Document"SHALL be
produced if this LayoutElementProduction task is the last process of type
LayoutElementProduction. Exactly one of LayoutElement or RunList SHALL be specified.

6.3.22 LayoutPreparation
New in JDF 1.1

The LayoutPreparation process specifies the process of defining the Layout resource for the Imposition process. Note that
it is possible to create a combined process that includes both LayoutPreparation and Imposition. In this case, the Layout
and RunList (Marks) resource would not be explicitly defined, since they are exchange resources between the two pro-
cesses.

Table 6.57: LayoutPreparation - Input Resources

NAME DESCRIPTION

LayoutPreparationParams | Set of parameters needed to control the LayoutPreparation process.

RunList (Document) ? List of documents and/or pages that will be input into the layout. Note that this RunList
Modified in JDF 1.2 is for information only and not modified by the LayoutPreparation process.
RunList (Marks) ? List of marks that will be input into the layout. These are typically printer’s marks such

as fold marks, cut marks, punch marks or color bars.

Table 6.58: LayoutPreparation - Output Resources

Layout The layout of the document to be imposed.
RunList (Marks) ? List of marks that SHALL be used as input of the following Imposition process.
TransferCurvePool ? Definition of the transfer curves and coordinate systems of the devices.

6.3.23 LayoutShifting
New in JDF 1.4
LayoutShifting specifies how to apply separation dependent shifts on a flat or objects on a press sheet.

The exact ordering of the process within the RIPing and ImageSetting and the elements referenced by input and output
RunList elements are not defined by the specification since it is implementation dependent. LayoutShifting MAY occur on
display lists, raster data or in the image setting hardware.

Table 6.59: LayoutShifting - Input Resources

NAME DESCRIPTION
LayoutShift Parameters for the LayoutShifting.
RunList References the input objects/flats to apply shifting to.

Table 6.60: LayoutShifting - Output Resources

DESCRIPTION

RunList The output RunList references the image data that the separation dependent layout
shifts applied to.

240 JDF SPECIFICATION 1.7

PREPRESS PROCESSES

6.3.24 PageAssigning
New in JDF 1.4

This process sorts the possibly-unordered pages from one or more input RunlList resources into reader's order and places
the result in the output RunlList.

Table 6.61: PageAssigning - Input Resources

NAME DESCRIPTION

PageAssignParams ? Container for future or proprietary extensions.

Runlist + One or more Runlist resources with potentially unsorted pages

Table 6.62: PageAssigning — Output Resources

DESCRIPTION

Runlist RunList with pages sorted in reader's order so that it can be input to an Imposition process
(i.e., the sequence of pages in RunList corresponds to Layout/ContentObject/@Ord).

6.3.25 PDFToPSConversion

The PDFToPSConversion process controls the generation of PostScript from a single PDF document. This process MAY be
used at any time in a host-based PDF workflow to exit to PostScript for use of tools that consume such data. Additionally,
it MAY be used to actively control the physical printing of data to a device that consumes PostScript data. The JDF model
of this MAY include a PDFToPSConversion process in a combined process node with a PDFToPSConversion process.

It is RECOMMENDED to replace PDFToPSConversion with the combination of Interpreting and PDLCreation processes.

Table 6.63: PDFToPSConversion - Input Resources

NAME DESCRIPTION

PDFToPSConversionParam | Set of parameters needed to control the generation of PostScript.
S

RunlList List of documents and pages to be converted to PostScript.

Table 6.64: PDFToPSConversion - Output Resources

DESCRIPTION

Runlist Stream or streams of resulting PostScript code. This PostScript code can end up physi-
cally stored in a file or be piped to another process. PDFToPSConversionParams/
@GeneratePageStreams determines whether there is a single stream generated for all
pages in the Runlist or whether each page is generated in to a separate consecutive
stream.

6.3.26 PDLCreation
New in JDF 1.3

The PDLCreation device consumes the display list of graphical elements generated by an Interpreting, RasterReading or a
ByteMap and produces a new PDL output RunList based on the selected output resource parameters.

Table 6.65: PDLCreation - Input Resources (Sheet 1 of 2)

NAME DESCRIPTION

ImageCompressionParams | This resource provides a set of controls that determines how images will be compressed
? in the resulting PDL pages.

PDLCreationParams ? These parameters control the operation of the process that interprets the display list
and produces the resulting PDL pages.

JDF SPECIFICATION 1.7 241

PROCESSES

Table 6.65: PDLCreation - Input Resources (Sheet 2 of 2)

DESCRIPTION

RunList This resource is a pipe of streamed data that represents a device independent display
list structure. The RunList SHALL specify either an InterpretedPDLData or ByteMap ele-
ment, but not both.

Table 6.66: PDLCreation — Output Resources

DESCRIPTION

Runlist This resource identifies the location of the resulting PDL file(s). If the FileSpec/
@MimeType is specified, then the value SHALL match PDLCreationParams/@MimeType.
If not specified, then PDLCreationParams/@MimeType SHALL be inserted.

6.3.27 Preflight

Preflighting is the process of examining the components of a print job to ensure that the job will print successfully and
with the expected results. Preflight checks can be performed on each document or page identified within the associated
RunlList.

Preflighting a file is generally a two-step process. First, the documents are analyzed and compared to the set of tests.
Then, a preflight report is built to list the encountered issues (according to the tests).

Agents record the instructions for, and devices record the results of, preflight operations in JDF jobs, using two types of
resources: PreflightParams and PreflightReport.

Table 6.67: Preflight — Input Resources

NAME DESCRIPTION

PreflightParams A specified list of tests against which documents and/or pages are to be tested.

PreflightReportRulePool ? | A list of rules used to build the PreflightReport. Those rules are attached to actions in

Modified in JDF 1.4 the ActionPool. . , ,
Modification note: Starting with JDF 1.4, this resource becomes optional.

RunList The list of documents and/or pages to be preflighted.

Table 6.68: Preflight — Output Resources

DESCRIPTION

PreflightReport PreflightReport is a container for logging information that is generated by the Preflight
process.

6.3.28 PreviewGeneration

The PreviewGeneration process produces a low resolution Preview of each separation that will be printed. The Preview
can be used in later processes such as InkZoneCalculation. The PreviewGeneration process typically takes place after
Imposition or RIPing.

The PreviewGeneration can be performed in one of the following two ways: 1) the imaged printing plate is scanned by a
conventional plate scanner or 2) medium to high resolution digital data are used to generate the Preview for the sepa-
ration(s). The extent of the PDL coordinate system (as specified by the MediaBox attribute, the resolution of the preview
image, and width and height of the image) SHALL fulfill the following requirements:

MediaBox-width / 72 * x-resolution = width + 1
MediaBox-height / 72 * y-resolution = height +1

A gray value of 0 represents full ink, while a value of 255 represents no ink (see the DeviceGray color model in
» [PostScript] Chapter 4.8.2).

6.3.28.1 Rules for the Generation of the Preview Image

To be useful for the ink consumption calculation, the preview data SHALL be generated with an appropriate resolution.
This means not only spatial resolution, but also color or tonal resolution. Spatial resolution is important for thin lines,

242 JDF SPECIFICATION 1.7

PREPRESS PROCESSES

while tonal resolution becomes important with large areas filled with a certain tonal value. The maximum error caused
by limited spatial and tonal resolution SHOULD be less than 1%.

6.3.28.2 Spatial Resolution

Where pixels of the preview image fall on the border between two zones, their tonal values SHALL be split up. In a worst
case scenario, the pixels fall just in the middle between a totally white and a totally black zone. In this case, the tonal
value is 50%, but only 25% contributes to the black zone. With the resolution of the preview image and the zone width
as variables, the maximum error can be calculated using the following equation:

100
4 x resolution[L/mm] x zone_ width[mm]

error[%] =

For a zone width broader than 25 mm, a resolution of 2 lines per mm will always result in an error less than 0.5%. There-
fore, a resolution of 2 lines per mm (equal to 50.8 dpi) is suggested.

Figure 6-2: Worst case scenario for area coverage calculation

Zone 1

Overlapping pixel Border between zones

6.3.28.3 Tonal Resolution
The kind of error caused by color quantization depends on the number of shades available. If the real tonal value is
rounded to the closest (lower or higher) available shade, the error can be calculated using the following equation:

100

(o) =
error(%] = 5— number_of shades

Therefore, at least 64 shades SHOULD be used.

6.3.28.4 Line Art Resolution

When rasterizing line art elements, the minimal line width is 1 pixel, which means 1/resolution. Therefore, the relation-
ship between the printing resolution and the (spatial) resolution of the preview image is important for these kind of el-
ements. In addition, a specific characteristic of PostScript RIPs adds another error: within PostScript, each pixel that is
touched by a line is set. Tests with different PostScript jobs have shown that a line art resolution of more than 300 dpi

is normally sufficient for ink-consumption calculation.

6.3.28.5 Conclusion
There are quite a few different ways to meet the requirements listed above. The following list includes several examples:
The job can be RIPed with 406.4 dpi monochrome.

With anti-aliasing, the image data can be filtered down by a factor of 8 in both directions. This results in an image
of 50.8 dpi with 65 color shades.

High resolution data can also be filtered using anti-aliasing. First, the RIPed data, at 2540 dpi monochrome, are
taken and filtered down by a factor of 50 in both directions. This produces an image of 50.8 dpi with 2501 color
shades. Finally those shades are mapped to 256 shades, without affecting the spatial resolution.

Rasterizing a job with 50.8 dpi and 256 shades of gray is not sufficient. The problem in this case is the rendering of thin
lines (see Line Art Resolution above).

6.3.28.6 Recommendations for Implementation
The following three guidelines are strongly RECOMMENDED:

The resolution of RIPed line art SHOULD be at least 300 dpi.

JDF SPECIFICATION 1.7 243

PROCESSES

The spatial resolution of the preview image SHOULD be approximately 20 pixel/cm (= 50.8 dpi).
The tonal resolution of the preview image SHOULD be at least 64 shades.

Table 6.69: PreviewGeneration - Input Resources

NAME DESCRIPTION

ColorantControl ? The ColorantControl resources that define the ordering and usage of inks in print mod-
New in JDF 1.1 ules. Needed for generating thumbnails.
ExposedMedia ? The PreviewGeneration process can use an exposed printing plate to produce a Preview

resource. This task is performed using an analog plate-scanner. Exactly one of
ExposedMedia, Preview or RunList SHALL be specified in any PreviewGeneration process.

Preview ? Medium or low resolution bitmap file that can be used for calculation of overviews and
; thumbnails. Exactly one of ExposedMedia, Preview or RunList SHALL be specified in any

New in JDF 1.1 . .

PreviewGeneration process.

PreviewGenerationParams | Parameters specifying the size and the type of the preview.

RunList ? High resolution bitmap data are consumed by the PreviewGeneration process. These
data represent the content of a separation that is recorded on a printing plate or other
such item. Exactly one of ExposedMedia, Preview or RunList SHALL be specified in any
PreviewGeneration process.

TransferCurvePool ? Area coverage correction and coordinate transformations of the device.
New in JDF 1.1

Table 6.70: PreviewGeneration - Output Resources

DESCRIPTION

Preview The Preview data are comprised of low to medium resolution bitmap files representing,
for example, the content of a separation that is recorded on a printing plate or other
such item. A Preview can also be used to visualize resources, such as thumbnail images.

6.3.29 Proofing

Deprecated in JDF 1.2

The Proofing process was deprecated in JDF 1.2. Instead, use a combined process to produces the hard proof (e.g., one
that includes the ImageSetting, ConventionalPrinting or DigitalPrinting process). Then input the hard proof to a separate
Approval process. In JDF 1.2 and beyond, proofing is a combined process.

6.3.30 PSToPDFConversion

This section defines the controls needed to invoke a device that accepts a PostScript stream and produces a set of PDF
pages as output.

It is RECOMMENDED to replace PSToPDFConversion with the combination of Interpreting and PDLCreation processes.

Table 6.71: PSToPDFConversion - Input Resources

NAME DESCRIPTION

FontParams ? These parameters determine how the conversion process will handle font errors
encountered in the PostScript stream.

ImageCompressionParams | This resource provides a set of controls that determines how images will be compressed
? in the resulting PDF pages.

PSToPDFConversionParam | These parameters control the operation of the process that interprets the PostScript
s? stream and produces the resulting PDF pages.

RunList This resource specifies where the PostScript stream SHALL be found.

244 JDF SPECIFICATION 1.7

PREPRESS PROCESSES

Table 6.72: PSToPDFConversion - Output Resources

DESCRIPTION

RunList This resource identifies the location of the resulting PDF pages.

6.3.31 RasterReading
New in JDF 1.3

The RasterReading process consumes raster graphic formatted files and converts them into a display list structure as the
principal element to be drawn on each page. The RasterReading process is not a stand-alone process but is used in con-
junction with processing and rendering processes in a combined process such as Rendering or PDLCreation.

Table 6.73: RasterReading - Input Resources

NAME DESCRIPTION

RasterReadingParams ? Additional parameters for reading raster files.

RunlList This resource identifies a set of raster pages or surfaces that will be inserted into the
display list. This resource SHALL reference ByteMap images.

Table 6.74: RasterReading - Output Resources

DESCRIPTION

RunList Pipe of streamed data that represents the results of RasterReading the pages in the
input RunList. The format and detail are implementation dependent. The RunList SHALL
specify an InterpretedPDLData element that describes the output content data for
RasterReading.

6.3.32 Rendering

The Rendering process consumes the display list of graphical elements generated by the Interpreting or RasterReading
process. It converts the graphical elements according to the geometric and graphic state information contained within
the display list and with the RenderingParams information to produce binary rasterized data suitable for processes that
consume ByteMap information.

Table 6.75: Rendering - Input Resources

NAME DESCRIPTION

ImageCompressionParams | Allows definition of compressed raster images.
?

New in JDF 1.5

InterpretedPDLData ? Pipe of streamed data that represents the results of Interpreting the pages in the

Deprecated in JDF 1.2 RunList. In JDF 1.2 and beyond, a RunList/InterpretedPDLData subelement describes the
input content data for Rendering.

Media ? This resource provides a description of the physical media that will be marked. The

Deprecated in JDF 1.1 physical characteristics of the media can affect decisions made during Rendering.

RenderingParams ? This resource describes the format of the byte maps to be created and other specifics of
the Rendering process.

RunlList ? Pipe of streamed data that represents the results of Interpreting or RasterReading the

New in JDF 1.2 pages in the input RunList. The data is specified in InterpretedPDLData subelements. The

format and detail of these is implementation specific. In general, it is assumed that the
Interpreting, RasterReading, Rendering and PDLCreation are tightly coupled and that
there is no value in attempting to develop a general specification for the format of this
data.

Modification note: Starting with JDF 1.4, all text replaced by text from RunlList in output
resource

JDF SPECIFICATION 1.7 245

PROCESSES

Table 6.76: Rendering — Output Resources

NAME DESCRIPTION

Runlist Pipe of streamed data that represents the results of Rendering. This RunList MAY be
consumed by any subsequent process that consumes raster data, including PDLCreation,
ImageSetting or DigitalPrinting. The data MAY be specified in ByteMap sub-elements. In
general, it is assumed that the Interpreting, RasterReading, Rendering and PDLCreation
are tightly coupled and that there is no value in attempting to develop a general specifi-
cation for the format of this data.

Modification note: Starting with JDF 1.4, first half of text is modified.

6.3.33 RIPing

RIPing is a Gray Box (see » Section 3.3.2.1 Use of the Types Attribute in Process Group Nodes — Gray Boxes) that is a com-
bination of at least two processes. Most often it includes Interpreting and Rendering, but it may also include
ColorSpaceConversion, Trapping, Separation, Imposition and Screening. Thus one typical RIPing node is with JOF/@ Type =
"ProcessGroup" and JDF/@Category = "RIPing" as shown in the following example:

Example 6.7: RIPing

<JDF Category="RIPing" ID="ID100" JobPartID="ID23" Status="Ready"
Type="ProcessGroup" Types="Interpreting Rendering Screening"
Version="1.6" xmlns="http://www.CIP4.org/JDFSchema 1 1"/>

The RIPing process consumes page descriptions and instructions for producing graphical output. It parses the graphical
content in the page descriptions, renders that content, and produces a rasterized image of the page. This raster MAY
contain contone data and be represented upon output as a ByteMap. Alternatively, the RIPing process MAY also perform
halftone screening, in which case the output is in the form of a bitmap. It is also responsible for resolving all system
resource references that include font handling and resource aliasing.

Instructions read by the RIP include information about the media, halftoning, color transformations, colorant controls
and other items that affect that rasterized output. They do not, however, represent any specific controls for the physical
output device, nor do they deal with any instructions intended for the finishing device.

In most cases, RIPing will be part of a combined process with a process that specifies physical marking (e.g.,
DigitalPrinting or ImageSetting). In this case, the interpreter SHOULD be able to act upon device control instructions that
affect the physical functioning of the printing device such as media selection and page delivery. Media selection deter-
mines which type of medium is used for marking and where that medium can be obtained. Page delivery controls the
location, orientation and quantity of physical output. The RIP is also responsible for resolving all system resource ref-
erences. This includes handling font substitutions and dealing with resource aliases. However, the RIP specifically does
not get involved with any functions of the device that could be considered finishing features, such as stapling, duplexing
and collating.

When a RIPing process is comprised of only the Interpreting and Rendering processes, various intermediary steps are
needed before the output can be run through a ConventionalPrinting process. In theory, however, a workflow could in-
clude no intermediary steps between a RIPing process and a DigitalPrinting process. The following workflow scenarios
represent possible process chains in each circumstance:

RIPing — Screening — ImageSetting — ContactCopying — ConventionalPrinting
RIPing — (Screening) — DigitalPrinting
Since RIPing is not a predefined JDF process, see the processes that contribute to the RIP for input and output resources.

6.3.34 Scanning
The Scanning process creates bitmaps from analog images using a scanner.

Table 6.77: Scanning - Input Resources

NAME DESCRIPTION

ExposedMedia Description of the media to be scanned. The ExposedMedia SHOULD be partitioned by
@Runindex, in order to provide unique mapping from ExposedMedia to the output
Runlist.

ScanParams High level scanner settings. These settings are specifically not intended as a replace-
ment for low-level device interfaces such as TWAIN.

246 JDF SPECIFICATION 1.7

PREPRESS PROCESSES

Table 6.78: Scanning - Output Resources

DESCRIPTION

Runlist List of a ByteMap resource or a LayoutElement resource of @ElementType = "Image".

6.3.35 Screening

This process specifies the process of halftone screening. It consumes contone raster data (e.g., the output from an
Interpreting and Rendering process). It produces monochrome that has been filtered through a halftone screen to identify
which pixels are needed for approxmating the original shades of color in the document.

This process definition includes capabilities for halftoning after raster image processing according to the PostScript
definitions. Alternatively, it allows for the selection of FM screening/error diffusion techniques. In general, an actual
screening process will be a combined process of ContoneCalibration and Screening processes.

Table 6.79: Screening - Input Resources

NAME DESCRIPTION

RunList Ordered list of rasterized ByteMap or InterpretedPDLData representing pages or sur-
faces.

ScreeningParams Parameters specifying which halftone mechanism SHALL be applied and with what
specific controls.

Table 6.80: Screening - Output Resources

DESCRIPTION

Runlist Ordered list of rasterized and screened output pages. The resolution SHALL remain the
same, with resulting data being one bit per component. Furthermore, the organization
of planes within the data SHALL not change.

6.3.36 Separation

The Separation process specifies the controls associated with the generation of color-separated data. It is designed to be
flexible enough to allow a variety of possible methods for accomplishing this task. First of all, it sponsors host-based
PDF separating operations, in which a RunlList of pre-separated PDF data is generated. It can also be combined with a
RIP to allow control of In-RIP separations. In this scenario a RunList containing ByteMap resources is generated as the
output. Yet another anticipated combination is with the process that deals with incoming device-dependent data. And
finally, it MAY be part of a combined process with an ImageReplacement process in order to do image substitution for
omitted or proxy images.

Table 6.81: Separation - Input Resources

NAME DESCRIPTION

ColorantControl ? Identifies which colorants in the job are to be output.
Modified in JDF 1.1A

RunlList List of pages that are to be operated on.

SeparationControlParams | Controls for the separation process.

Table 6.82: Separation - Output Resources

DESCRIPTION

RunList List of separated pages or separated raster bytemaps.

6.3.37 ShapeDefProduction
New in JDF 1.4

JDF SPECIFICATION 1.7 247

PROCESSES

This process describes the structural design of a one-up product (e.g., a non rectangular label, a box, a display, a bag, a
pouch, etc.). This is a description of the unprinted blank box as it will be available after ShapeCutting and before
BoxFolding. Also, this process typically (but not exclusively) describes the process of designing the shape of a new box
using a CAD application. See DieLayoutProduction for the process of designing a die for multiple one-up products. The
output of the ShapeDefProduction process can be multiple ShapeDef resources (e.g., when the design of the box results
in multiple pieces, such as a box, an object and an insert piece, where the insert piece is fixed to the object to be packed
in the box). Another example would be a multi-piece display. The ShapeDefProduction process can be performed by a
human operator using a CAD application. In some cases it can be an automated process.

Note: ShapeDefProduction needs information stored in both ShapeDefProductionParams and ShapeDef to make a new
structural design.

Table 6.83: ShapeDefProduction - Input Resources

NAME DESCRIPTION

LayoutElement ? A rough drawing or outline (e.g., an EPS) of the ShapeDef that serves as the input for
structural design.

ShapeDefProductionParam | Parameters for the structural design.
S

Table 6.84: ShapeDefProduction - Output Resources

DESCRIPTION

ShapeDef + A resource describing the shape of the product to be produced.

6.3.38 SheetOptimizing
New in JDF 1.5

SheetOptimizing describes ganging of multiple pages or BinderySignatures onto one or more printed sheets. These
BinderySignatures MAY be parts of unrelated customer jobs. This process is also referred to as job ganging.

SheetOptimizing MAY be used together with QueueSubmissionParams/@ GangName and the ForceGang command. In this
case, individual jobs with identical QueueSubmissionParams/@ GangName are collected with each job submission. A
ForceGang command instructs the ganging engine to process all GangElement entries that have been submitted with a
matching QueueSubmissionParams/@ GangName. JDF/@JoblD SHALL be specified in the context of the requested gang job.

Table 6.85: SheetOptimizing - Input Resources

NAME DESCRIPTION

Assembly * Input Assembly to specify the binding order e.g. for creep calculation. These assemblies
MAY contain sections that are not included in this sheet optimization (e.g., when only
covers are optimized and the bodies are produced individually).

BinderySignature ? List of BinderySignature elements that describe the individual gang candidate signa-
New in JDF 1.6 tures. This BinderySignature SHALL at least be partitioned by @BinderySignaturelD.

SheetOptimizingParams ? | Parameters specifying details that allow individual sections to be distributed on the
printed sheets.

Table 6.86: SheetOptimizing — Output Resources

DESCRIPTION
StrippingParams ? The StrippingParams resource that will be populated by the SheetOptimizing process.
Modified in JDF 1.7 The resource MAY be partially populated by the submitter with restrictions on what the

SheetOptimizing is allowed to do.
Modification note: StrippingParams was made optional in JDF 1.7 to allow collecting
without the creation of a gang sheet.

6.3.39 SoftProofing
Deprecated in JDF 1.2

248 JDF SPECIFICATION 1.7

PREPRESS PROCESSES

The SoftProofing process was deprecated in JDF 1.2. Instead, use a combined process to produce the soft proof in which
the last process is the Approval process that approves the soft proof. In JDF 1.2 and beyond, soft proofing is a combined
process.

6.3.40 Stripping
New in JDF 1.2

An important aspect of the interface between an MIS system and a prepress workflow system is imposition. When an
order is accepted or even during the estimation phase, the MIS system determines how the product will be produced us-
ing the available equipment (e.g., presses, folders, cutters, etc.) in the most cost-efficient way. The result of this exercise
has a large impact on imposition in prepress.

The Stripping process specifies the process of translating a high level structured description of the imposition of one or
multiple job parts or part versions represented by the StrippingParams resource into a Layout resource for the Imposition
process. Note that the Stripping process can generate all resources needed for the Imposition process, thus also the
RunList (Marks).

The Assembly resource is often referred to as the product view, while the BinderySignature is referred to as the produc-
tion view. In this way, Assembly/@BindingSide typically refers to the bound side of the final product, while
BinderySignature/@BindingEdge refers to the bound side during production.

When both attributes are not equal, it is up to the stripping device to modify the orientation and/or sequence of the con-
tent pages to synchronize product and production view.

Table 6.87: Stripping - Input Resources

NAME DESCRIPTION

Assembly + Assembly describes how the sections of the different job parts imposed together are
combined. If multiple Assembly resources are defined, mapping between
StrippingParams and Assembly is achieved by matching the respective @JobID and
@AssemblylDs attributes.

ColorantControl ? Contains information on the colors and separations. Useful when creating marks that
New in JDF 1.3 need color information.
RunList (Document) ? List of documents. When available, this list can be used to generate a Layout and popu-

lated RunList (no LayoutElement[@ElementType = "Reservation"]) which can be fed into a
subsequent Imposition process.

StrippingParams High level structured description of the imposition of one or multiple job parts or part versions.

TransferCurvePool ? Definition of the transfer curves and coordinate systems of the devices. The coordinate
system of the StrippingParams coincides with the Layout coordinate system specified in
the TransferCurvePool.

Table 6.88: Stripping - Output Resources

NAME DESCRIPTION

Layout The layout of the document to be imposed.

RunList (Document) ? List of documents that are to be used as input of the following Imposition process.

RunList (Marks) ? List of marks that are to be used as input of the following Imposition process.
Example 6.8: Stripping: Simple Example

This simple example specifies three 16 page bindery signatures using folding catalog scheme F16-6.

<StrippingParams ID="FoldCatalogSample" Class="Parameter" Status="Available"
WorkStyle="WorkAndBack" PartIDKeys="SheetName">
<BinderySignature FoldCatalog="Fl6-6"/>
<StrippingParams SheetName="Sheetl"/>
<StrippingParams SheetName="Sheet2"/>
<StrippingParams SheetName="Sheet3"/>
</StrippingParams>

JDF SPECIFICATION 1.7 249

PROCESSES

Example 6.9: Stripping: Complex Example

The following example specifies three sheets: Sheet1 and Sheet2 are based on a B2x4 BinderySignature using the
"WorkAndBack" workstyle, while Sheet3 is based on BinderySignature B2x2 using the "WorkAndTurn" workstyle.

WorkAndBack B2x4 WorkAndTurn B2x2
8|/ |V |LL V| €| C| S
B 20
151 0| 312 7101116

<BinderySignature Class="Parameter" ID="B2x4" NumberUp="4 2" Status="Available">
<SignatureCell BackPages="14 1 2 13" FrontPages="15 0 3 12" Orientation="Up"/>
<SignatureCell BackPages="9 6 5 10" FrontPages="8 7 4 11" Orientation="Down"/>
</BinderySignature>
<BinderySignature Class="Parameter" ID="B2x2" NumberUp="2 2" Status="Available">
<SignatureCell BackPages="6 1" FrontPages="7 0" Orientation="Up"/>
<SignatureCell BackPages="5 2" FrontPages="4 3" Orientation="Down"/>
</BinderySignature>
<StrippingParams Class="Parameter" ID="L1" PartIDKeys="SheetName"
Status="Available" WorkStyle="WorkAndBack">
<StrippingParams SheetName="Sheetl">
<BinderySignatureRef rRef="B2x4"/>
</StrippingParams>
<StrippingParams SheetName="Sheet2">
<BinderySignatureRef rRef="B2x4"/>
</StrippingParams>
<StrippingParams SheetName="Sheet3" WorkStyle="WorkAndTurn">
<BinderySignatureRef rRef="B2x2"/>
<Position RelativeBox="0 0 0.5 1"/>
<Position Orientation="Flipl80" RelativeBox="0.5 0 1 1"/>
</StrippingParams>
</StrippingParams>

6.3.41 Tiling

The Tiling process allows the contents of surfaces to be imaged onto separate pieces of media. Note that many different
workflows are possible. Tiling SHALL always follow Imposition, but it can operate on imposed PDL page contents or on
contone or halftone data. Tiling will generally be part of a combined process. For example, Tiling might be part of a com-
bined process with ImageSetting. In that case, the input would be a RunList that contains ByteMap resources for each sur-
face.

Table 6.89: Tiling - Input Resources

NAME DESCRIPTION

RunList (Marks) ¢ Structured list of incoming marks. These are typically printer’s marks that provide the
information needed to combine the tiles.

RunList (Surface) Structured list of imposed page contents or Byte Maps that are to be decomposed to
produce the images for each tile. The @ElementType value of the LayoutElement
resource SHALL be "Surface".

Tile A partitioned Tile resource that describes how the surface contents are to be decom-
posed.

Table 6.90: Tiling - Output Resources

DESCRIPTION

RunlList Structured list of portions of the decomposed surfaces. The value of the @ElementType
attribute of the LayoutElement resource SHALL be "Tile".

250 JDF SPECIFICATION 1.7

PRESS PROCESSES

6.3.42 Trapping

Trapping is a prepress process that modifies PDL files to compensate for a type of error that occurs on presses. Specifi-
cally, when more than one colorant is applied to a piece of media using more than one inking station, the media might
not stay in perfect alignment when moving between inking stations. Any misalignment will result in an error called mis-
registration. The visual effect of this error is either that inks are erroneously layered on top of one another, or, more
seriously, that gaps occur between inks that are intended to abut. In this second case, the color of the media is revealed
in the gap and is frequently quite noticeable. Trapping, in short, is the process of modifying PDL files so that abutting
colorant edges intentionally overlap slightly, in order to reduce the risk of gaps.

The Trapping process modifies a set of document pages to reduce or (ideally) eliminate visible mis-registration errors in
the final printed output. The process MAY be part of a combined process with RIPing or specified as a stand-alone process.

Table 6.91: Trapping - Input Resources

NAME DESCRIPTION

ColorantControl ? Identifies the color model used by the job.
Modified in JDF 1.1A

FontPolicy ? Describes the behavior of the font machinery in absence of requested fonts.
New in JDF 1.1

RunlList Structured list of incoming page contents that are to be trapped.
TrappingDetails Describes the general settings needed to perform trapping.

Table 6.92: Trapping — Output Resources

DESCRIPTION

RunList Structured list of the modified page contents after Trapping has been executed.

6.4 Press Processes

Press processes involve the transfer of colorant to a substrate. From a technical standpoint they are often classified in
impact and non-impact printing technologies. The impact printing class can be further subdivided into relief, intaglio,
planograph or screen technologies, which in turn can be divided in further subparts. Because of the way a workflow is
constructed in JDF, however, a different approach to classification was used. All of the various printing technologies be-
long to one of two categories:

1 ConventionalPrinting, which involves printing from a physical master,

2 DigitalPrinting, which involves generic commercial printing from a digital master.
The ConventionalPrinting and DigitalPrinting processes can be applied to either web or sheet fed printing.

The most prominent physical, planographic printing technologies are offset lithography and electrophotography. They
are also the printing processes that are most commonly used by today’s graphic arts industry. Consequently, the
ConventionalPrinting process in JDF takes them as models. That does not mean, however, that other printing techniques
can not make use of the ConventionalPrinting process and its resources. The extensibility features of JDF can be used to
fill other requirements related to printing technology.

6.4.1 ConventionalPrinting

This process covers several conventional printing tasks, including sheet-fed printing, web printing, web/ribbon coating,
converting and varnishing. Typically, each takes place after prepress and before postpress processes. Direct imaging
technology on press is modeled as a combined process of ImageSetting and ConventionalPrinting. Press machinery often
includes postpress processes (e.g., WeblnlineFinishing, Folding and Cutting) as in-line finishing operations. The
ConventionalPrinting process itself does not cover these postpress tasks.

Using a conventional printing press for producing a press proof can be performed in the following two ways:

A proof of type Component is produced with a ConventionalPrinting process. The result of this process is then sent
to the Approval process, which in turn produces an ApprovalSuccess resource. That resource is then passed on to a
second ConventionalPrinting process, which requires that the press be set up a second time.

The @DirectProof attribute of the ConventionalPrintingParams can be used to specify the proof if it is produced
during the ConventionalPrinting process. In this case, the press need only be set up once.

Note that the definition and ordering of separations is specified by ColorantControl/ColorantOrder of the appropriate re-
source.

JDF SPECIFICATION 1.7 251

PROCESSES

In the context of web printing, the ConventionalPrinting process SHALL be in a combined process with the

WeblnlineFinishing process.

Table 6.93: ConventionalPrinting - Input Resources (Sheet 1 0of 2)

NAME DESCRIPTION

ColorantControl ?

The ColorantControl resources that define the ordering and usage of inks in print mod-
ules. The ColorantControl resource specifies the complete set of colors that will be
printed on a sheet.

Component °
Modified in JDF 1.4

Various components in the form of preprints can be used in ConventionalPrinting in lieu
of Media. Examples include waste or a set of preprinted sheets.

Modification note: Starting with JDF 1.4, the input ComponentLink NEED NOT have
@ProcessUsage= "Input".

Component (Proof) ?

A proof component is used if a proof was produced during an earlier print run. Note that
the proof MAY be a Component produced in a previous run and has not necessarily been
produced explicitly as a proof. In general, at most one of Component (Proof) or
ExposedMedia (Proof) SHOULD be specified.

ConventionalPrintingPara
ms

Specific parameters to set up the press.

ExposedMedia (Cylinder) ?
New in JDF 1.3

ExposedMedia (Cylinder) is used to describe direct imaging on reusable cylinders.
ExposedMedia (Cylinder) defines the set of cylinders to be used in the press run that is
described by this node. Both ExposedMedia (Cylinder) and ExposedMedia (Plate) MAY
occur in the same device. At least one of ExposedMedia (Cylinder) or ExposedMedia
(Plate) SHALL be specified.

ExposedMedia (Plate) ?
Modified in JDF 1.3

The printing plates and information about them are used to set up the press. The
ExposedMedia (Plate) resource defines the set of plates to be used in the press run that
is described by this node.

Both ExposedMedia (Cylinder) and ExposedMedia (Plate) MAY occur in the same device.
At least one of ExposedMedia (Cylinder) or ExposedMedia (Plate) SHALL be specified.

ExposedMedia (Proof) ¢

A proof is used to compare color and content during ConventionalPrinting. This proof is pro-
duced by a prepress proofing device. At most one of ColorantControl (Proof) or
ExposedMedia (Proof) SHOULD be specified.

ExposedMedia (Sleeve) ?
New in JDF 1.4

This ExposedMedia SHALL specify the flexo sleeve if this ConventionalPrinting process
describes a flexo print process.

Ink ?
Modified in JDF 1.1

Information about the physical properties of the ink. Ink SHOULD be partitioned by at
least @Separation.
Note: See also Color for a description of the logical properties of the color separations.

InkZoneProfile ?

The InkZoneProfile contains information about the amount of ink that is needed along
the printing cylinder of offset lithographic presses with ink key adjustment functions.

Layout ? Sheet and surface elements from the Layout tree (e.g., CIELABMeasuringField,

New in JDF 1.1 DensityMeasuringField, or ColorControlStrip) can be used for quality control at the
press. The quality control field value and position can be of interest for automatic qual-
ity control systems. RegisterMark can be used to line up the printing plates for the press
run, and its position can in turn be used to position items such as a camera.

Media ? The physical substrate (e.g., paper or foil) and information about the Media (e.g., thick-

ness, type and size) are useful in setting up paper travel in the press. This resource
SHALL be present if no preprinted Component (Input) resource is used.

Media (MountingTape) ¢
New in JDF 1.4

Description of a mounting tape for a sleeve.

PrintCondition ?
New in JDF 1.2

Used to control the use of colorants when printing pages on a specific media. The attri-
butes and elements of the PrintCondition resource describe the aim values for a given
printing process.

Sheet ?
Deprecated in JDF 1.1

Specific information about the Media (including type and color) and about the sheet
(e.g., placement coordinates on the printing cylinder). Replaced by Layout in JDF 1.1.

252

JDF SPECIFICATION 1.7

PRESS PROCESSES

Table 6.93: ConventionalPrinting - Input Resources (Sheet 2 of 2)

DESCRIPTION

TransferCurvePool ? Area coverage correction and coordinate transformations of the device.
New in JDF 1.1

Table 6.94: ConventionalPrinting - Output Resources

NAME DESCRIPTION

Component Describes the printed sheets, ribbons or webs that can be used by another printing pro-
Modified in JDF 1.2 cess or postpress processes. Note that the @Amount attribute of the ResourceLink to this
resource indicates the number of copies of the entire job that will be produced.
Modification note: Prior to JDF 1.2 this Component was marked with a @ProcessUsage =
"Good", which is OPTIONAL, but supported in JDF 1.2 and beyond.

Component (Waste) ? Produced waste of printed sheets or ribbons. In JDF 1.2 and beyond,
Deprecated in JDF 1.2 ConventionalPrinting produces one Component that MAY be partitioned by @ Condition in
order to distinguish waste Component resources from good Component resources.

6.4.2 DigitalPrinting

DigitalPrinting is a direct printing process that, like ConventionalPrinting, occurs after prepress processes but before post-
press processes. In DigitalPrinting, the data to be printed are not stored on an extra medium (e.g., a printing plate or a
printing foil), but instead are stored digitally. The printed image for each output is generated using the digital data. Elec-
trophotography, inkjet, and other technologies are used for transferring colorant (either liquid ink or dry toner) onto the
substrate. Furthermore, both Sheet-Fed and Web presses can be used as machinery for DigitalPrinting.

DigitalPrinting MAY also be used to image a small area on preprinted Component resources to perform actions such as
addressing or numbering another Component. This kind of process can be executed by imaging with an inkjet printer
during press, postpress or packaging operations. DigitalPrinting is therefore not only a press or prepress operation but
sometimes also a postpress process.

Digital printing devices that provide some degree of finishing capabilities (e.g., collating and stapling), as well as some
automated layout capabilities (e.g., N-up and duplex printing), MAY be modeled as a combined process that includes
DigitalPrinting. Such a combined process MAY also include other processes (e.g., Approval, ColorCorrection,
ColorSpaceConversion, ContoneCalibration, Cutting, Folding, HoleMaking, ImageReplacement, Imposition, Interpreting,
LayoutPreparation, Perforating, Rendering, Screening, Stacking, Stitching, Trapping or Trimming).

Controls for DigitalPrinting are provided in the DigitalPrintingParams resource. The set of input resources of a combined
process that includes DigitalPrinting MAY be used to represent an Internet Printing Protocol (IPP) Job or a PPML Job. See
Application Notes for IPP and Variable Data printing.

Note: Putting a label on a product or Dropltem is not DigitalPrinting; it is Inserting.

Table 6.95: DigitalPrinting - Input Resources (Sheet 1 of 2)

NAME DESCRIPTION

ColorantControl ? The ColorantControl resources that define the ordering and usage of inks in print mod-
ules.

Component * Various components can be used in DigitalPrinting instead of Media. Examples include

Modified in JDF 1.4 preprinted covers, waste, precut Media, or a set of preprinted sheets or webs. If multiple

Component (Input) resources are linked to one process, the mapping of media to content
is defined in the partitions of DigitalPrintingParams.

At least one of Component or Media SHALL be specified as input.
Modification note: Starting with JDF 1.4, the input ComponentLink NEED NOT have

@ProcessUsage= "Input".

Component (Proof) ¢ A proof component is used if a proof was produced during an earlier print run (see
description in » Section 6.4.1 ConventionalPrinting). Note that the proof MAY be a
Component produced in a previous run and has not necessarily been produced explicitly
asa pfrogf. In general, at most one of Component (Proof) or ExposedMedia SHOULD be
specified.

DigitalPrintingParams Specific parameters to set up the machinery.

JDF SPECIFICATION 1.7 253

PROCESSES

Table 6.95: DigitalPrinting - Input Resources (Sheet 2 of 2)

NAME DESCRIPTION

ExposedMedia ? A proof is useful for comparisons (completeness, color accuracy) with the print out of
the DigitalPrinting process. In general, at most one of Component (Proof) or
ExposedMedia SHOULD be specified.

Ink ? Ink or toner and information that is needed for DigitalPrinting.
Layout ? Sheet and surface elements from the Layout tree (e.g., CIELABMeasuringField,
New in JDF 11 DensityMeasuringField, or ColorControlStrip) can be used for quality control at the

press. The quality control field value and position can be of interest for automatic qual-
ity control systems. RegisterMark can be used to line up the printing plates for the press
run, and its position can in turn be used to position items such as a camera.

Media * The physical Media and information about the Media (e.g., thickness, type and size) is
used to set up paper travel in the press. This has to be present if no preprinted
Component (Input) resource is present. Unprinted Media used for covers are also defined
as Media.

At least one of Component or Media SHALL be specified as an input resource.
Note: Printing a job on more than one web or sheet at the same time is parallel process-
ing.

PrintCondition ? Used to control the use of colorants when printing pages on a specific media. The attri-
butes and elements of the PrintCondition resource describe the aim values for a given
printing process.

Runlist Raster data in Byte Maps that will be printed on the digital press are needed for
DigitalPrinting. The RunList contains only ByteMap elements.

Sheet ? Specific information about the Media (including type and color) and about the sheet
Deprecated in JDF 1.1 (placement coordinates on the printing cylinder). Replaced by Layout in JDF 1.1.

TransferCurvePool ? Area coverage correction and coordinate transformations of the device.
New in JDF 1.1

Table 6.96: DigitalPrinting - Output Resources

NAME DESCRIPTION

Component Components are produced for other printing processes or postpress processes.

P Note: The @Amount attribute of the ResourceLink to this resource SHALL specify the
Modified in JDF 1.2 . o .
number of copies of the entire job that SHALL be produced.
Modification note: Prior to JDF 1.2 the ResourceLink of this Component required
@ProcessUsage = "Good". Starting with JDF 1.2 the requirement for @ProcessUsage has
been made optional.

Note: When processing a PDL with multiple documents or sets, such as PDF/VT, the
amount SHALL BE defined in the scope of the entire document. If one copy of the num-
ber of copies defined within the PDL file of each record is requested, the Component/
@Amount SHALL be set to 1.

Component (Waste) ? Produced waste, MAY be used by other processes. In JDF 1.2 and beyond, DigitalPrinting
Deprecated in JDF 1.2 produces one Component that MAY be partitioned by @ Condition in order to distinguish
' waste Component resources from good Component resources.

6.4.3 Varnishing
New in JDF 1.4

Varnishing is the process of varnishing a Component. Spot varnishing with a ripped image or a printing plate from
ExposedMedia SHALL be described as DigitalPrinting or ConventionalPrinting with Ink/@ Family = "Varnish". All types of all-
over (flood) varnishing or spot varnishing applied without a ripped image or a printing plate from ExposedMedia SHALL
be described with the Varnishing process. Flood coatings are typically intended to be protective; they can increase water
resistance, scuff resistance, and even food resistance in the case of restaurant menus.

Common coating types requested by customers include UV coatings (Ultra Violet cured polymers) which provide higher
durability, and aqueous coatings that are viewed as greener and typically more easily recycled at end-of-life. Both types
of overall coating protect the printed image as well as the substrate.

254 JDF SPECIFICATION 1.7

POSTPRESS PROCESSES

Table 6.97: Varnishing - Input Resources

NAME DESCRIPTION

Component ? The Component to be varnished. Exactly one of Component or Media SHALL be specified.

ExposedMedia * Various types of ExposedMedia MAY be specified for varnishing. See VarnishingParams/
@VarnishMethod for details.

Ink? Details of the colorant that is used for Varnishing. Ink/@Family SHOULD be "Varnish".

Media ? The Media to be varnished. Exactly one of Component or Media SHALL be specified.

VarnishingParams ? Details of the setup of the varnishing device.

Table 6.98: Varnishing - Output Resources

DESCRIPTION

Component The varnished Component.

6.4.4 IDPrinting
Deprecated in JDF 1.1

The IDPrinting process was deprecated in JDF 1.1. Instead, implementations SHOULD use a combined process that in-
cludes the DigitalPrinting process, thus improving interoperability by reducing one of the combinations of processes. Also
the IDPrinting process defined a number of resources and subelements which are deprecated since they duplicate other
resources.

6.5 Postpress Processes

Postpress is the most flexible and varied area that is covered by this specification. The individual postpress processes are
provided in alphabetical order.

6.5.1 AdhesiveBinding
Deprecated in JDF 1.1
The AdhesiveBinding process has been split into the following individual processes:
CoverApplication
Gluing
SpinePreparation
SpineTaping
Note: The parameters of the GlueApplication for adhesive-binding operations have been moved into

CoverApplicationParams and SpineTapingParams as GlueApplication subelements. The generic GlueApplication for adhe-
sive binding is now described by the Gluing process.

6.5.2 BlockPreparation

New in JDF 1.1

As there are many options for a hardcover book, the block preparation is more complex than what has already been de-
scribed for other types of binding above. Those options are the ribbon band (numbers of bands, materials and colors),
gauze (material and glue), head band (material and colors), kraft paper (material and glue) and tightbacking (different
geometry and measurements).

Table 6.99: BlockPreparation - Input Resources

NAME DESCRIPTION

Component The BlockPreparation process consumes one Component and creates a book block.

BlockPreparationParams Specific parameters to set up the machinery.

JDF SPECIFICATION 1.7 255

PROCESSES

Table 6.100: BlockPreparation - Output Resources

DESCRIPTION

Component One Component is produced: the prepared book block. The value of Component/
@ProductType SHALL be "BookBlock".

6.5.3 BoxFolding
New in JDF 1.3
BoxFolding defines the process of folding and gluing blanks into folded flat boxes for packaging.

Table 6.101: BoxFolding - Input Resources

NAME DESCRIPTION

BoxFoldingParams Specific parameters to set up the folder gluer.
Component The BoxFolding process consumes one Component, the folding blank. Its @ProductType =
"BlankBox".

Component (Application) * | This process MAY consume additional Component resources, such as windows, handles
Deprecated in JDF 1.4 or inlets. These Component resources SHALL additionally be referenced from
BoxFoldingParams/BoxApplication elements.

Deprecation note: Starting with JDF 1.4, a combined process that includes the BoxFolding
and Inserting processes replaces BoxApplication.

Table 6.102: BoxFolding - Output Resources

DESCRIPTION

Component One Component is produced: the folded flat box. The value of Component/@ProductType
SHALL be "FlatBox".

6.5.4 BoxPacking
New in JDF 1.1
A pile, stack or bundle of products can be packed into a box or carton.

Table 6.103: BoxPacking - Input Resources

NAME DESCRIPTION

BoxPackingParams Specific parameters to set up the machinery.

Component + The BoxPacking process puts a set of Component resources into the box Component.

If more than one Component is specified, a Component/Bundle resource SHALL also be
specified for each Component.

Modification note: Starting with JDF 1.4, Component can occur more than once.

Component (Box) ¢ Details of the box or carton.

Media (Tie) ? Protective Media can be placed between individual rows of Component resources.
New in JDF 1.3

Media (Underlay) ¢ Protective Media can be placed between individual layers of Component resources.
New in JDF 1.3

Table 6.104: BoxPacking - Output Resources

DESCRIPTION

Component One Component is produced: the boxed Component.

256 JDF SPECIFICATION 1.7

POSTPRESS PROCESSES

6.5.5 Bundling
New in JDF 1.2

JDF 1.1 contains no process for bundling products. The Bundling process is normally followed by a Strapping process. In
a Bundling process, single products like sheets or signatures are bundled together. The resulting bundle is the output
Component of the process and is used to store the products. When this Component is used as an input to a consuming or
subsequent process (e.g., Gathering, Collecting or Inserting), the single components of a bundle are used.

Figure 6-3: Bundle creation

Figure 6-4: Bundle transport

Table 6.105: Bundling - Input Resources

NAME DESCRIPTION

BundlingParams Bundling parameters.
Component The Component to be bundled.
Media ? End boards to protect the bundle. For each bundle a pair of end boards is needed.

Table 6.106: Bundling - Output Resources

DESCRIPTION

Component The completed bundle.

6.5.6 CaseMaking
New in JDF 1.1

Case making is the process where a hardcover book case is produced. As there are many different kinds of hardcover cas-
es, they will be described in a later version of the JDF specification.

Table 6.107: CaseMaking - Input Resources (Sheet 10f 2)

NAME DESCRIPTION

CaseMakingParams Specific parameters to set up the machinery.
Component The cover material is either a preprinted or processed sheet of paper. Exactly one of Media
(CoverMaterial) ? (CoverMaterial) or Component (CoverMaterial) SHALL be specified.

JDF SPECIFICATION 1.7 257

PROCESSES

Table 6.107: CaseMaking - Input Resources (Sheet 2 of 2)

NAME DESCRIPTION

Media (CoverBoard) The cardboard Media used for the cover board.
Modified in JDF 1.1A

Media (CoverMaterial) ¢ The CaseMaking process MAY also consume unprocessed Media as cover material.
Exactly one of Media (CoverMaterial) or Component (CoverMaterial) SHALL be specified.

Media (SpineBoard) ? The cardboard Media used for the spine board. If not specified, the Media (CoverBoard)
SHALL be used for the spine board.

Table 6.108: CaseMaking - Output Resources

DESCRIPTION
Component One Component is produced: the book case. Component/@ProductType SHALL be
"BookCase".
6.5.7 Casingln
New in JDF 1.1

The hardcover book case and the book block are joined in the Casingln process.

Table 6.109: Casingln - Input Resources

NAME DESCRIPTION

CasinglnParams Specific parameters to set up the machinery.
Component (BookBlock) The prepared book block.
Component (BookCase) The hardcover book case.

Table 6.110: Casingln - Output Resources

DESCRIPTION

Component One Component is produced: the completed hardcover book.

6.5.8 ChannelBinding

Various sizes of metal clamps can be used in ChannelBinding. The process can be executed in two ways. In the first, a pile
of single sheets — often with front and back covers — is inserted into a U-shaped clamp and crimped in special machin-
ery. In the second, a pre-assembled cover that includes the open U-shaped clamp is used instead of the U-shaped clamp
alone. The thickness of the pile of sheets determines in both cases the width of the U-shaped clamp to be used for form-
ing the fixed document, which is not meant to be reopened later.

Table 6.111: ChannelBinding - Input Resources

NAME DESCRIPTION

ChannelBindingParams Specific parameters to set up the machinery.

Component The operation requires one component: the block of sheets to be bound.

If Component (Cover) is NOT provided and there is a cover, this Component SHALL be
partitioned, and the first partition of this Component SHALL specify the cover
Modification note: Starting with JDF 1.4, the input ComponentLink NEED NOT have
@ProcessUsage= "BookBlock".

Component (Cover) ? The empty cover with the U-shaped clamp that might, for example, have been printed
before it is used during the ChannelBinding process.

258 JDF SPECIFICATION 1.7

POSTPRESS PROCESSES

Table 6.112: ChannelBinding - Output Resources

DESCRIPTION

Component One Component is produced: the channel-bound component forming an item such as a
brochure.

6.5.9 CoilBinding

Another name for CoilBinding is spiral binding. Metal wire, wire with plastic or pure plastic is used to fasten pre-punched
sheets of paper, cardboard or other materials. Automated machinery first forms a spiral of proper diameter and length.
The ends of the spiral are then “tucked-in”. Finally, the content is permanently fixed. Note that every time a coil-bound
book is opened, a vertical shift occurs as a result of the coil action. This is a characteristic of the process.

Table 6.113: CoilBinding - Input Resources

NAME DESCRIPTION
CoilBindingParams Specific parameters to set up the machinery.
Component The operation requires one component: the pile of pre-punched sheets often including
a top and button cover.

Table 6.114: CoilBinding - Output Resources

DESCRIPTION

Component One Component is produced: the coil-bound component forming an item such as a cal-
endar.

6.5.10 Collecting

This process collects folded sheets or partial products, some of which might
have been cut. The first Component to enter the workflow lies at the bottom of
the pile collected on a saddle, and the sequence of the input components that
follows depends upon the produced component. The figure to the right shows a
typical collected pile.

The operation coordinate system is defined as follows: The y-axis is aligned

with the binding edge. It increases from the registered edge to the edge opposite

the registered edge. The x-axis is aligned with the registered edge. It increases

from the binding edge to the edge opposite to the binding edge (i.e., the product front edge).

Table 6.115: Collecting - Input Resources

NAME DESCRIPTION

Assembly ? Assembly explicitly describes the sequence of the Component resources to be collected.
New in JDF 1.3 If Assembly is not specified, the sequence SHALL be defined by the sequence of the
Component. Caution: Assembly has the first on the outside, whereas the Component
resources are listed from inside to outside.

CollectingParams ? Specific parameters to set up the machinery.

Component + Variable amount of sheets to be collected.

DBRules * Database input that describes which sheets are to be collected for a particular instance

Deprecated in JDF 1.5 of a component. In this version the schema is only human readable text. One rule is
applied for each individual component.

DBSelection ? Database input that describes which sheets are to be collected for a particular instance

Deprecated in JDF 1.5 component.

IdentificationField ? Information about identification marks on the component. In JDF 1.2 and beyond, this

Deprecated in JDF 1.2 information is defined in the Component itself.

JDF SPECIFICATION 1.7 259

PROCESSES

Table 6.116: Collecting - Output Resources

DESCRIPTION

Component A block of collected sheets is produced. This Component can be joined in further post-
press processes.

6.5.11 CoverApplication
New in JDF 1.1
CoverApplication describes the process of applying a softcover to a book block.

Table 6.117: CoverApplication - Input Resources

NAME DESCRIPTION

Component The book block on which the cover is applied.

If Component (Cover) is NOT provided, this Component SHALL be partitioned, and the
first partition of this Component SHALL specify the cover.

Component (Cover) ? The softcover that is applied.
Modified in JDF 1.4 Modification note: Starting with JDF 1.4, this Component is optional because of the new
rule about partitioning the main Component specified above.

CoverApplicationParams Specific parameters to set up the machinery.

Table 6.118: CoverApplication - Output Resources

DESCRIPTION

Component The book block with the applied softcover.

6.5.12 Creasing
New in JDF 1.1
Sheets are creased or grooved to enable folding or to create even, finished page delimiters.

Table 6.119: Creasing - Input Resources

NAME DESCRIPTION

Component This process consumes one Component.
Modified in JDF 1.2 Note: Prior to JDF 1.2 this Component was OPTIONAL, which was clearly a typing mistake
in the specification.

CreasingParams Details of the Creasing process.

Table 6.120: Creasing - Output Resources

NAME DESCRIPTION

Component One creased Component is produced.

6.5.13 Cutting

Sheets are cut using a guillotine Cutting machine. Before Cutting, the sheets might be jogged and buffered. CutBlock re-
sources and/or CutMark resources can be used for positioning the knife. After the Cutting process is performed, the blocks
are often again buffered on a pallet.

Since Cutting is described here in the most machine independent manner, the specified CutBlock elements do not directly
imply a particular cutting sequence. Instead, a specialized agent SHALL determine the sequence.

Media might also be cut in a pre-cutting step. In this case, Cutting MAY deliver Media as the output resource.

260 JDF SPECIFICATION 1.7

POSTPRESS PROCESSES

Cutting MAY also be used to describe cutting of a web into multiple ribbons on a web press. This process is commonly
referred to as “Slitting”.

Table 6.121: Cutting - Input Resources

NAME DESCRIPTION

Component ? This process consumes one Component: the printed sheets. Exactly one of Component or
Media SHALL be specified as input.

CutBlock * One or more CutBlock resources can be used to define the Cutting sequence. Either

Deprecated in JDF 1.1 CutBlock or CuttingParams/Cut SHALL be specified, but not both.

CutMark * CutMark resources can be used to adapt the theoretical cut positions to the real posi-

Deprecated in JDF 1.1 tions of the corresponding blocks on the Component to be cut.

CuttingParams Details of the Cutting process.

New in JDF 1.1

Media ? Cutting can be applied to Media in order to adjust size or shape. Exactly one of
Component or Media SHALL be specified as input.

Table 6.122: Cutting - Output Resources

NAME DESCRIPTION

Component * One or several blocks of cut Component resources are produced. The output SHOULD be

Modified in JDF 1.3 partitioned by @BlockName. When an input Component is cut, the output SHALL be a set
of Component resources. Either Component or Media SHALL be specified as output, but
not both.

Media * When Media are cut, the output SHOULD also be a set of Media. Either Component or

Modified in JDF 1.3 Media SHALL be specified as output, but not both.

6.5.14 DieMaking
New in JDF 1.4
This process describes the production of tools for a die cutter (e.g., in a die maker shop).

Table 6.123: DieMaking - Input Resources

DESCRIPTION

Dielayout A resource describing the die cutter tool set.

Table 6.124: DieMaking - Output Resources

DESCRIPTION

Tool + The set of tools for the die cutter.

6.5.15 Dividing
Deprecated in JDF 1.1
Dividing has been replaced by Cutting.

6.5.16 Embossing
New in JDF 1.1

The Embossing process is performed after printing to stamp a raised or depressed image (artwork or typography) into
the surface of paper using engraved metal embossing dies, extreme pressure and heat. Embossing styles include blind,
deboss and foil-embossed.

JDF SPECIFICATION 1.7 261

PROCESSES

Table 6.125: Embossing - Input Resources

NAME DESCRIPTION

Component This process consumes one Component that is embossed by the process.
EmbossingParams Parameters to set up the machinery.
Media * Media SHOULD be provided if an EmbossingParams/Emboss/
Modified in JDF 1.4 @EmbossingType="FoilEmbossing" or "FoilStamping".

Modification note: Starting with JDF 1.4, Media can occur more than once.
Tool * The embossing stamps or calenders.
Modified in JDF 1.4 Modification note: Starting with JDF 1.4, Tool can occur more than once.

Table 6.126: Embossing - Output Resources

DESCRIPTION

Component One Component is created.

6.5.17 EndSheetGluing

EndSheetGluing finalizes the book block in preparation for case binding by attaching end sheets to the book block. Back
end sheets and front end sheets are in most cases sheets folded once before EndSheetGluing takes place. The end sheets
serve as connections between the book block and the cover boards.

Table 6.127: EndSheetGluing - Input Resources

NAME DESCRIPTION

Component A back end sheet and a front end sheet are glued onto the book block.

Modified in JDF 1.5 Modification note: Starting with JDF 1.4, the input ComponentLink NEED NOT have
@ProcessUsage= "BookBlock".

Component A back end sheet that SHALL be mounted on the book block. At least one of Component,

(BackEndSheet) ? Component (BackEndSheet) or Component (FrontEndSheet) SHALL be present.

Modified in JDF 1.5 Modification note: Starting with JDF 1.5, this element is optional.

Component A front end sheet that SHALL be mounted on the book block. At least one of Component,

(FrontEndSheet) ? Component (BackEndSheet) or Component (FrontEndSheet) SHALL be present.

Modified in JDF 1.5 Modification note: Starting with JDF 1.5, this element is optional.

EndSheetGluingParams Specific parameters to set up the machinery.

Table 6.128: EndSheetGluing - Output Resources

DESCRIPTION

Component A book block is produced that includes the end sheets.

6.5.18 Feeding
New in JDF 1.2

The Feeding process separates sheets or signatures from a stack, roll or stream and feeds single Components to processes
such as Folding, Gathering, Collecting, ConventionalPrinting, etc. In general, the Feeding process will be part of a combined
process with processes that consume the feed of Components or Media.

When used in a combined process with feed consuming process (e.g., Gathering), the Feeding process allows an arbitrary
complex selection of input Component elements in any number, and in any order, as long as elements are consumed con-
secutively (i.e., no random access within a single input component).

262 JDF SPECIFICATION 1.7

POSTPRESS PROCESSES

When specified for a web press or web finishing device, Feeding describes the process of unwinding Media or Components

from a roll.

Figure 6-5: Combined process with Feeding process

Output
Component

c Input Combined Node
omponent A

. Other

Input Feeding Process
Component B

Compose output component by taking:
« Two items from Input Component A

- Two items from Input Component B

+ One item from Input Component A

In our example above, one input component (Component A) is a bundle component (@BundleType = "Stack") consisting
of a collated set of three sheets, the other one (Component B) is a collated set consisting of two sheets per set. Both sets
are oriented face-up, see » Figure 6-6: Input components. » Figure 6-7: Output component shows the output for the

case of Gathering.

Figure 6-6: Input components

== Sheet 1 of Component A === === Sheet 1 of Component B ==
= Sheet 2 of Component A === === Sheet 2 of Component B ==

= Sheet 3 of Component A ==

Figure 6-7: Output component

= Sheet 3 of Component A ==
== Sheet 2 of Component B ==
== Sheet 1 of Component B ==
= Sheet 2 of Component A ==
== Sheet 1 of Component A ==

Note that, by default, none of the sheets is flipped, so surfaces of sheet 1 of Component A do not show in a different di-

rection. To flip sheets, FeedingParams/Collatingltem/@ Orientation MAY be specified.

Table 6.129: Feeding - Input Resources

NAME DESCRIPTION

Component * Sheets or signatures to be fed to the machinery. The @ProcessUsage of the Component
MAY be specified as any valid @ProcessUsage of the feed consuming process.

FeedingParams Specific parameters to set up the Feeding process.

Media * Media to be fed to the feeder machinery.

JDF SPECIFICATION 1.7

263

PROCESSES

Table 6.130: Feeding - Output Resources

NAME DESCRIPTION

Component * Component(s) fed to the consuming process.

Media * Media fed to the consuming process.

6.5.19 Folding

Buckle folders or knife folders are used for Folding sheets. One or more sheets can be folded at the same time. Web presses
often provide in-line Folding equipment. Longitudinal Folding is often performed using a former, a plow folder or a belt.
Jaw folding, chopper folding or drum folding equipment is used for folding the sheets that have been divided.

The JDF Folding process covers both operations done in stand-alone Folding machinery—typically found when process-
ing printed materials from sheet-fed presses—and in-line equipment of web presses. Creasing and/or slot perforating are
sometimes necessary parts of the Folding operation that guarantee exact process execution. They depend on the folder

used, the Media and the folding layout. These operations are specified in the Creasing and Perforating processes respec-
tively.

Table 6.131: Folding - Input Resources

NAME DESCRIPTION

Component Component resources, including a printed sheet or a pile of sheets, are used in the Folding
process.
FoldingParams Specific parameters to set up the machinery.

Table 6.132: Folding - Output Resources

DESCRIPTION

Component The process produces a Component, which in most cases is a folded sheet.
Modified in JDF 1.1

6.5.20 Gathering

In the Gathering process, ribbons, sheets or other Component resources are accumulated on a pile that will eventually be
stitched or glued in some way to create an individual Component. The input Component resources MAY be output resourc-
es of a Web-Printing machine used in Collecting or of any machine that executes a ConventionalPrinting or DigitalPrinting
process. In sheet applications, a moving gathering channel is used to transport the pile. But no matter what the inception
of the Gathering process, the sequence of the input components dictates the produced component. » Figure 6-8:
Gathering shows typical gathered piles.

Figure 6-8: Gathering

AN NN

Loose sheets Folded signatures

Table 6.133: Gathering - Input Resources (Sheet 1 of 2)

DESCRIPTION
Assembly ? Explicitly describes the sequence of the Component resources to be gathered. If
New in JDF 1.3 Assembly is not specified, the sequence is defined by the sequence of the Component.

Caution: Assembly has the first on the top, whereas the Component resources are listed
from bottom to top.

264 JDF SPECIFICATION 1.7

POSTPRESS PROCESSES

Table 6.133: Gathering - Input Resources (Sheet 2 of 2)

NAME DESCRIPTION

Component + Variable amount of components including single sheets or folded sheets are used in the
Gathering process. The first Component in the list lies at the bottom of the gathered pile.

DBRules * Database input that describes which sheets are to be gathered for a particular instance

Deprecated in JDF 1.5 component. The schema are only in the form of human-readable text. One rule is
applied for each individual component.

DBSelection ? Database input that describes which Sheets are to be gathered for a particular instance

Deprecated in JDF 1.5 component.

GatheringParams Specific parameters to set up the machinery.

IdentificationField ? Information about identification marks on the component. In JDF 1.2 and beyond, this

Deprecated in JDF 1.2 information is defined in the Component itself.

Table 6.134: Gathering - Output Resources

DESCRIPTION
Component Components gathered together (e.g., a pile of folded sheets).
6.5.21 Gluing
New in JDF 1.1

Gluing describes arbitrary methods of applying glue to a Component.

Table 6.135: Gluing - Input Resources

NAME DESCRIPTION

Component This process consumes one Component: the printed sheets.

GluingParams Details of the Gluing process.

Table 6.136: Gluing - Output Resources

DESCRIPTION

Component One Component is produced, the input Component with glue applied to it.

6.5.22 HeadBandApplication
New in JDF 1.1
Head bands are applied to the hardcover book block.

Table 6.137: HeadBandApplication - Input Resources

NAME DESCRIPTION

Component The prepared book block.

HeadBandApplicationPara | Specific parameters to set up the machinery.
ms

Table 6.138: HeadBandApplication - Output Resources

DESCRIPTION

Component One Component is produced: the hardcover block with head bands.

JDF SPECIFICATION 1.7 265

PROCESSES

6.5.23 HoleMaking

Avariety of machines (e.g., those responsible for stamping and drilling) can perform the HoleMaking process. This post-
press process is needed for different binding techniques (e.g., spiral binding). One or several holes with different shapes
can be made that are later on used for binding the book block together.

HoleMaking MAY be used to describe line hole punching that generates a series of holes with identical distance (pitch)
running parallel to the edge of a web, which is mainly used to transport paper through continuous-feed printers and
finishing devices (form processing). The final product is typically a web with two lines of holes, one at each edge of the
web. The distance between holes within each line of holes is identical (constant pitch). In case of line hole punching,
HoleMakingParams/HoleLine/Hole/ @ Center applies to the initial hole and HoleMakingParams/HoleLine/Hole/@Extent ap-
plies to each hole individually.

Sometimes line hole punching is performed for multiple webs before dividing the web after the HoleMaking process.
The following figure shows the parameters for both cases.
Figure 6-9: Hole parameters

Line Hole Punching Multiple Web Line Hole Punching
______________ S —
Center (X) A (@) 0,0 O
Center (X)
TV | O 010 O
L] (@) olo (@)
(@) ot |
45 - (@) O I (@) (@)
Extent (Y) —/T_O o _ o o | o o
5 o) 0,0 o)
(@) Ol |E
Front 5 O 0|0 O
(@) Of |§
Le - i (@) olo (@)
pitch (Y,0) —1 | a |
S S ol |° P PR X
"IA I" Ny,
Center (Y) J J I X
Extent (X) Row 1 Row 2 Row 3 Row 4

Table 6.139: HoleMaking - Input Resources

NAME DESCRIPTION

Component One Component (e.g., a printed sheet or a pile of sheets) is modified in the HoleMaking
process.

HoleMakingParams Specific parameters, including hole diameter and positions, used to set up the machin-
ery.

Table 6.140: HoleMaking - Output Resources

DESCRIPTION

Component A Component with holes (e.g., a book block or a single sheet) is produced for further
postpress processes.

6.5.24 Inserting

This process can be performed at several stages in postpress. The process can be used to describe the labeling of prod-
ucts, labeling of packages or the gluing-in of a Component (e.g., a card, sheet or CD-ROM). Two Component resources are
required for the Inserting process: the “mother” Component and the “child” Component. Inserting can be a selective pro-
cess by means of inserting different “child” Component resources. Information regarding the placement is needed to
perform the process. Inserting multiple child components is specified as a combined process with multiple individual
Inserting steps.

266 JDF SPECIFICATION 1.7

POSTPRESS PROCESSES

Figure 6-10: Parameters and coordinate system used for Inserting

Glue line segment

A
Y Glue line gap
“Child” Component
(The rotation of the
- Child Component is
Start Position defined by
of glueline ™ ResourceLink/@Transformation

Origin of ___ “Mother”-
“Mother”- Component
Component
coordinate
system >
X

Sheet Offset

The process coordinate system is defined as follows: The Y-axis is aligned with the binding edge and increases from the
registered edge to the edge opposite the registered edge. The X-axis, meanwhile, is aligned with the registered edge. It
increases from the binding edge to the edge opposite the binding edge, which is the product front edge.

Table 6.141: Inserting - Input Resources

NAME DESCRIPTION

Component Designates where to insert the child Component.

Modified in JDF 1.4 Modification note: Starting with JDF 1.4, the input ComponentLink NEED NOT have
@ProcessUsage= "Mother".

Component (Child) The Component that SHALL be inserted in the mother Component.

DBRules ? Database input that describes whether the child is to be inserted for a particular

Deprecated in JDF 1.5 instance Component. In this version the schema is only human readable text.

DBSelection ? Database input that describes whether the child is to be inserted for a particular

Deprecated in JDF 1.5 instance Component.

IdentificationField ? Information about identification marks on the Component. In JDF 1.2 and beyond, this

Deprecated in JDF 1.2 information is defined in the Component itself.

InsertingParams Specific parameters (e.g., placement) to set up the machinery.

Table 6.142: Inserting — Output Resources

DESCRIPTION

Component A mother Component is produced containing the inserted child Component.

6.5.25 Jacketing
New in JDF 1.1

Jacketing is the process where the book is wrapped by a jacket that needs to be folded twice. As long as the book is spec-
ified and the jacket dimensions are known, there are just a few important details. If the jacketing device also creases the
jacket, this can be described with a combined process of Jacketing and Creasing.

JDF SPECIFICATION 1.7 267

PROCESSES

Table 6.143: Jacketing - Input Resources

NAME DESCRIPTION

Component (Book) The book that the jacket is wrapped around.
Component (Jacket) The description of the jacket.
JacketingParams Specific parameters to set up the machinery.

Table 6.144: Jacketing - Output Resources

DESCRIPTION

Component The jacketed book.

6.5.26 Labeling
New in JDF 1.1

A label can be attached to a bundle. The label can contain information on the addressee, the product, the product quan-
tities, etc., which can be different for each bundle.

Table 6.145: Labeling - Input Resources

NAME DESCRIPTION

Component The Labeling process labels one Component with a set of labels.
Component (Label) ? The label to be attached to the Component.
LabelingParams Specific parameters to set up the machinery.

Table 6.146: Labeling - Output Resources

DESCRIPTION

Component One Component is produced: the labeled Component.

6.5.27 Laminating

In the Laminating process, a plastic film is bonded to one or both sides of a Component resource’s media, and adhered
under pressure with either a thermal setting or pressure sensitive adhesive.

Table 6.147: Laminating - Input Resources

NAME DESCRIPTION

Component A Component is REQUIRED for Laminating.
LaminatingParams Specific parameters to set up the machinery.
Media? The laminating foil material.

Table 6.148: Laminating — Output Resources

DESCRIPTION

Component One Component is produced: the laminated component.

6.5.28 LongitudinalRibbonOperations
Deprecated in JDF 1.1

268 JDF SPECIFICATION 1.7

POSTPRESS PROCESSES

In version 1.1 of JDF and beyond, in-line finishing is described using the “standard” finishing processes (e.g., Creasing,
Cutting, Folding) or in a combined process node with ConventionalPrinting.

6.5.29 Numbering
Deprecated in JDF 1.5
Starting with JDF 1.5, use LayoutElementProduction.

6.5.30 Palletizing
New in JDF 1.1
Bundles, stacks, piles or boxes can be loaded onto a pallet.

Table 6.149: Palletizing - Input Resources

NAME DESCRIPTION

Component + The Palletizing process describes placing the bundle that is represented by the
Modified in JDF 1.4 Component onto a pallet.
If more than one Component is specified, a PalletizingParams/Bundle resource SHALL

also be specified.
Modification note: Starting with JDF 1.4, Component can occur more than once.

Pallet The pallet.

PalletizingParams Specific parameters to set up the machinery.

Table 6.150: Palletizing — Output Resources

DESCRIPTION

Component One Component is produced. It represents the loaded pallet.

If more than one input Component is supplied, a Component/Bundle resource SHALL also
be supplied in the output Component

6.5.31 Perforating
New in JDF 1.1

Perforating describes any process where a Component is perforated. Perforating includes production perforation applied
as a preparation for Folding.

Table 6.151: Perforating - Input Resources

NAME DESCRIPTION

Component This process consumes one Component: the printed sheets.

PerforatingParams Details of the Perforating process.

Table 6.152: Perforating - Output Resources

DESCRIPTION

Component One Component is produced.

6.5.32 PlasticCombBinding

In the PlasticCombBinding process, a plastic insert wraps through pre-punched holes in the substrate. Most often, these
holes are rectangular and elongated. After the plastic comb is opened with a special tool, the pre-punched block of sheets
— often together with a top and button cover — is inserted onto the “teeth” of the plastic comb. When released from the
machine, the teeth return to their original cylindrical positions with the points tucked into the backside of the spine area.
Special machinery can be used to reopen the plastic comb binding.

JDF SPECIFICATION 1.7 269

PROCESSES

Table 6.153: PlasticCombBinding - Input Resources

NAME DESCRIPTION

Component The operation requires one component: the pile of sheets often including a top and but-
ton cover.

PlasticCombBindingParam | Specific parameters to set up the machinery.
S

Table 6.154: PlasticCombBinding - Output Resources

DESCRIPTION

Component One Component is produced: the plastic-comb-bound component forming an item such
as a calendar.

6.5.33 PrintRolling
New in JDF 1.2

The single products like sheets, signatures or partial products are rolled onto a roll stand. The roll is the output compo-
nent of the process and is used to store the products. The single components of a roll are used as input component of a
consuming process (e.g., Collecting, Gathering or Inserting). See » Figure 6-11: Print roll.

Figure 6-11: Print roll

Table 6.155: PrintRolling - input resources

NAME DESCRIPTION

Component Component to be rolled.
PrintRollingParams ? Print rolling parameters.
RollStand ? Roll stand to store the component(s) as rolls.

Table 6.156: PrintRolling - output resources

DESCRIPTION

Component The print roll.

6.5.34 RingBinding

In this process, pre-punched sheets are placed in a ring binder. Ring binders have different numbers of rings that are
fixed to a metal backbone. In most cases, two, three or four metal rings hold the sheets together as long as the binding
is closed. Depending on the amount of sheets to be bound together, ring binders of different thickness SHALL be used.

270 JDF SPECIFICATION 1.7

POSTPRESS PROCESSES

Table 6.157: RingBinding - Input Resources

NAME DESCRIPTION

Component The operation requires one component: the pile of pre-punched sheets to be inserted
Modified in JDF 1.4 into the ring binder.

Modification note: Starting with JDF 1.4, the input ComponentLink NEED NOT have
@ProcessUsage= "BookBlock".

Component (RingBinder) ¢ | The empty ring binder that might have been printed, for example, before it is used
during the RingBinding process.

RingBindingParams Specific parameters to set up the process/machinery.

Table 6.158: RingBinding - Output Resources

DESCRIPTION

Component One Component is produced: the ring-bound component forming an item such as a cal-
endar.

6.5.35 SaddleStitching
Deprecated in JDF 1.1
SaddleStitching has been replaced by Stitching in JDF 1.1.

6.5.36 ShapeCutting
New in JDF 1.1

The ShapeCutting process can be performed using tools such as hollow form punching, perforating or die-cutting equip-
ment.

Table 6.159: ShapeCutting - Input Resources

NAME DESCRIPTION

Component This process consumes one Component that are the sheets to be cut.

ShapeCuttingParams ? Details of the ShapeCutting process.
Modified in JDF 1.3

Tool * The set of tools (die, counter, blankers, strippers, etc.).
Modified in JDF 1.3

Table 6.160: ShapeCutting - Output Resources

DESCRIPTION

Component + One or more Components are produced by the ShapeCutting process.
Modified in JDF 1.3

6.5.37 Shrinking
New in JDF 1.1

The Shrinking process shrinks the shrink-wrap that is wrapped around a bundle. Shrink-wrap foil SHALL be treated in
order to shrink.

Note: Shrinking does NOT include the wrapping of the Component with foil. The actual wrapping is described by the
Wrapping process. See » Section 6.5.52 Wrapping.

JDF SPECIFICATION 1.7 27

PROCESSES

Table 6.161: Shrinking - Input Resources

NAME DESCRIPTION

Component The Bundle including the shrink-wrap media is represented by this Component.

ShrinkingParams Specific parameters to set up the machinery.

Table 6.162: Shrinking - Output Resources

DESCRIPTION

Component One Component is produced: the bundle including the shrunk shrink-wrap media.

6.5.38 SideSewing
Deprecated in JDF 1.1
SideSewing has been replaced by ThreadSewing.

6.5.39 SpinePreparation

New in JDF 1.1

The SpinePreparation process describes the preparation of the spine of book blocks for hard and softcover book produc-
tion (e.g., milling and notching).

Table 6.163: SpinePreparation - Input Resources

NAME DESCRIPTION

Component The raw book block.

SpinePreparationParams Specific parameters to set up the machinery.

Table 6.164: SpinePreparation — Output Resources

DESCRIPTION

Component The book block with a processed spine.

6.5.40 SpineTaping
New in JDF 1.1

SpineTaping describes the process of applying a tape strip to the spine of a book block. It also describes the process of
applying kraft paper to a hardcover book block.

Table 6.165: SpineTaping - Input Resources

NAME DESCRIPTION

Component The book block that the spine is taped to.

SpineTapingParams Specific parameters to set up the machinery.

Table 6.166: SpineTaping - Output Resources

DESCRIPTION

Component The book block with the spine.

6.5.41 Stacking
New in JDF 1.1

272 JDF SPECIFICATION 1.7

POSTPRESS PROCESSES

The Stacking process collects PhysicalResources and produces a pile, stack or bundle for delivery. In a standard produc-
tion each bundle consists of the same amount of identical products, possibly followed by one or more odd-count bundles.
In a production with variable data (e.g., newspaper dispatch, demographic production or individual addressed products),
each bundle has a variable amount of products, and, in the worst case, each product can be different from the others.
The input components are single products; the output components are stacks of this product.

A stack of components might be uneven and unstable, due to variations in thickness across each component. The thick-
ness variations might be caused by folding, binding or inserted components. A stack might be split into layers, with suc-
cessive layers rotated by 180° to compensate for the unevenness (» Figure 6-12: Stacking layers).

Figure 6-12: Stacking layers

Stack/Pile/Bundle of
StandardAmount components

Layer of LayerAmount components

Y

If the thickest part is on an edge (e.g., a book binding), the components might be offset to separate the thick parts. Layer
compensation and offsetting can be combined as in the following examples of pile patterns.

Table 6.167: Parameters in Stacking®

PILE STANDARD LAYER AMOUNT COMPENSATE DISJOINTING
PATTERN AMOUNT (Default = StandardAmount) (Default = true) OFFSET
6 6 true 00
6 1 true 00
6 1 false x0
6 1 true x 0

JDF SPECIFICATION 1.7 273

PROCESSES

Table 6.167: Parameters in Stacking®

PILE STANDARD LAYER AMOUNT COMPENSATE DISJOINTING
PATTERN AMOUNT (Default = StandardAmount) (Default = true) OFFSET
6 3 true 00
6 3 false x 0
6 3 true x0

a. Column headings ‘STANDARD AMOUNT’, ‘LAYER AMOUNT’, ‘COMPENSATE’ and ‘DISJOINTING OFFSET’
refer to the values in StackingParams/@StandardAmount, StackingParams/@LayerAmount, StackingParams/
@Compensate and StackingParams/Disjointing/@ Offset respectively.

If the number of components is not evenly divisible by StackingParams/@StandardAmount or the number of components
in a bundle is not evenly divisible by StackingParams/@LayerAmount, there will be a remainder, yielding one or more
odd-count stacks or layers. By default, the odd-count stack or layer size can contain as few as one component. This
might exceed equipment cycle times, and flimsy components (newspapers) might cause problems with downstream
equipment, such as strappers. StackingParams/@MinAmount and StackingParams/@MaxAmount control the minimum
and maximum size of odd-count stacks and layers. The following figures show the odd count handling for bundles and
layers.

Figure 6-13: 0dd count handling for a bundle

StandardAmount =~ f-----mmsssssssmmmmmmmsssssmoommomoooooo

MinAmount s m e e -

MaxAmount

StandardAmount E

b - - - - -k - - - - -

Add odd count Add odd count to
to first or last last bundle. Then

E Create odd-
bundle i splitinto 2 odd

count bundle

bundles of nearly
the same size

274 JDF SPECIFICATION 1.7

POSTPRESS PROCESSES

Figure 6-14: Odd count handling for a layer

LayerAmount === === - e o e e e e :

Odd count

MinAmount f-==--=-=-===------- T - - - -

i Add odd count to last layer ; Create odd-count layer |

Table 6.168: Stacking - Input Resources

NAME DESCRIPTION

Component The Stacking process consumes one Component and stacks it onto a stack.

StackingParams Specific parameters to set up the machinery.

Table 6.169: Stacking - Output Resources

DESCRIPTION

Component One Component is produced: the stack of input components.

6.5.42 StaticBlocking
New in JDF 1.4
The StaticBlocking process puts an electrical charge on a stack in order to hold it together for shipping.

Table 6.170: StaticBlocking - Input Resources

NAME DESCRIPTION

Component The StaticBlocking process puts an electrical charge on the specified Component.

StaticBlockingParams Specific parameters for the electrical charging.

Table 6.171: StaticBlocking — Output Resources

DESCRIPTION

Component The resulting electrically charged Component.

6.5.43 Stitching
Gathered or collected sheets or signatures are stitched together with a cover. This process can be used to describe corner
stitching, side stitching or saddle stitching.

Table 6.172: Stitching - Input Resources

NAME DESCRIPTION

Component A Component is REQUIRED that represents the pile of gathered or collected sheets,
including the cover.

StitchingParams Specific parameters to set up the machinery.

JDF SPECIFICATION 1.7 275

PROCESSES

Table 6.173: Stitching - Output Resources

DESCRIPTION

Component One Component is produced: the gathered or collected sheets including the cover
stitched together.

Example 6.10: Stitching: Combined Process
Components containing staples of different characteristics like shape, width, etc. are defined by a combined process.

<JDF ID="CombinedStitch" JobID="Stitching special" JobPartID="ID123"
Status="Ready" Type="Combined" Types="Stitching Stitching"
Version="1.6" xmlns="http://www.CIP4.0org/JDFSchema 1 1">
<ResourcePool>
<StitchingParams Class="Parameter" ID="Stitchl" NumberOfStitches="2"
StapleShape="Butted" Status="Available" StitchPositions="100 700"
StitchWidth="28.3" WireBrand="Steel" WireGauge="2.3"/>
<StitchingParams Class="Parameter" ID="Stitch2" NumberOfStitches="2"
StapleShape="Eyelet" Status="Available" StitchPositions="300 500"
StitchWidth="42.5" WireBrand="Steel" WireGauge="2.3"/>
<Component Class="Quantity" ComponentType="Sheet" ID="Compl" Status="Available"/>
<Component Class="Quantity" ComponentType="Sheet" ID="Comp2" Status="Unavailable"/>
</ResourcePool>
<ResourcelLinkPool>
<StitchingParamsLink CombinedProcessIndex="0" Usage="Input" rRef="Stitchl"/>
<StitchingParamsLink CombinedProcessIndex="1" Usage="Input" rRef="Stitch2"/>
<ComponentLink Usage="Input" rRef="Compl"/>
<ComponentLink Usage="Output" rRef="Comp2"/>
</ResourcelLinkPool>
</JDF>

6.5.44 Strapping
New in JDF 1.1

Abundle MAY be strapped. There are different kinds of strapping (e.g., single (one strap around the bundle), double (two
parallel straps) and cross (two crossed straps)).

Table 6.174: Strapping - Input Resources

NAME DESCRIPTION

Component The Strapping process puts straps around a bundle that is represented by a Component.
Strap ° The straps used.
StrappingParams Specific parameters to set up the machinery.

Table 6.175: Strapping - Output Resources

DESCRIPTION

Component One Component is produced: the strapped Component.

6.5.45 StripBinding

New in JDF 1.1

Hard plastic strips are held together by plastic pins, which in turn are bound to the strips with heat. The sheets to be
bound SHALL be pre-punched so that the top strip with multiple pins fits through the assembled material. It is then con-
nected to the bottom strip with matching holes for the pins. The binding edge is often compressed in a special machine
before the excess pin length is cut off. The backstrip is permanently fixed with plastic clamping bars and cannot be re-
moved without a special tool.

276 JDF SPECIFICATION 1.7

POSTPRESS PROCESSES

Table 6.176: StripBinding - Input Resources

NAME DESCRIPTION
Component The operation requires one component: the block of sheets to be bound.
StripBindingParams Specific parameters to set up the machinery.

Table 6.177: StripBinding — Output Resources

NAME DESCRIPTION
Component One Component is produced: the strip-bound component forming an item such as a
book.
6.5.46 ThreadSealing
New in JDF 1.1

ThreadSealing involves sewing the spines of individual signatures of a book with pieces of meltable thread prior to
Gathering. The thread is melted by applying heat during SpinePreparation. In practice, ThreadSealing will often be com-
bined with Folding in a single process.

Table 6.178: ThreadSealing - Input Resources

NAME DESCRIPTION
Component This process consumes one Component that is the gathered individual folded signatures.
ThreadSealingParams Details of the ThreadSealing process.

Table 6.179: ThreadSealing - Output Resources

DESCRIPTION

Component One Component is produced, the individual folded and sewn signatures.

6.5.47 ThreadSewing
This process involves stitching signatures together with thread to create a book block.

Table 6.180: ThreadSewing - Input Resources

NAME DESCRIPTION
Component The operation requires one Component that is the gathered individual folded signatures.
ThreadSewingParams Specific parameters to set up the machinery.

Table 6.181: ThreadSewing - Output Resources

DESCRIPTION

Component One Component is produced: the thread-sewn components forming an item such as a raw
book block.

6.5.48 Trimming

The Trimming process is performed to adjust a book block or sheet to its final size. In most cases, it follows a block joining
process, and the process is often executed as an in-line operation of a production chain. For example, the binding station
might deliver the book blocks to the trimmer. A combined process in the trimming machinery would then execute a cut
at the front, head and tail in a cycle of two operations. Closed edges of folded signatures would then be opened while the
book block is trimmed to its predetermined dimensions.

JDF SPECIFICATION 1.7 277

PROCESSES

The separation of N-up multiple products is specified with a Cutting process prior to a Trimming process.

The process coordinate system is defined as follows:
The X-axis SHALL be aligned with the registered side. It increases from the binding side to the face side.
The Y-axis SHALL be aligned with the binding side. It increases from the registered edge.

Figure 6-15: Parameters and coordinate system used for trimming

Y

Block before =

trimming g

A
Height
Trimmed /
block \
/ Width
Face side

Spine side ——>

— TrimmingOffset

Origin of
operation \4
coordinate
system

A
>

Y

Y

Registered side

Table 6.182: Trimming - Input Resources

NAME DESCRIPTION

Component The bound book block or sheet that will be trimmed.
Modified in JDF 1.2

TrimmingParams Specific parameters (e.g., trim size) to set up the machinery.

Table 6.183: Trimming - Output Resources

NAME DESCRIPTION

Component One Component is produced: the trimmed component.

6.5.49 WeblnlineFinishing
New in JDF 1.3

The WeblnlineFinishing process combines all additional information about inline finishing functionality in connection
with Web printing. In order to describe the WeblnlineFinishing functionality fully, it is necessary to combine additional
processes, such as Stitching, Trimming, Gluing, etc.

278 JDF SPECIFICATION 1.7

POSTPRESS PROCESSES

Table 6.184: WeblnlineFinishing - Input Resources

NAME DESCRIPTION

Assembly ? In context of newspaper printing, Assembly describes how the newspaper job is sub-
divided in physical sections and bound together.

Component Printed webs or ribbons, which will be processed by the WeblnlineFinishing process.

ProductionPath ? ProductionPath describes the paper path that is used through the press and describes
exactly one particular product which has to be produced.

StrippingParams ? Defines how the surfaces of the bindery signatures of a single job or jobs are placed onto
the web(s) or sheet(s).

This information MAY be used for counting the amount of components produced.

WeblnlineFinishingParams | Additional parameters for production are described by WeblnlineFinishingParams.
?

Table 6.185: WeblnlineFinishing - Output Resources

DESCRIPTION

Component Describes the finished printed Component out of web inline finishing equipment. This
could be printed and/or folded sheets or rolls.

With one production run, it is possible to produce more than one product / order.
Component MAY be partitioned by @WebProduct

6.5.50 Winding
New in JDF 1.5

The Winding process describes the winding of continuous media or processed components onto a core. The setup is de-
fined in WindingParams. The final orientation of the labels on the output roll is specified in Component/@ WindingResult.

Table 6.186: Winding - Input Resources

NAME DESCRIPTION

Component Ribbon or web to be wound. Exactly one of Media or Component SHALL be specified.

Media ? Unprocessed Media MAY be wound. Exactly one of Media or Component SHALL be spec-
ified.

Media (Core) ? Core that the input Component is wound around.

WindingParams ? Setup parameters of the winding process.

Table 6.187: Winding - Output Resources

DESCRIPTION

Component The roll including the core and the wound products. Component/@WindingResult SHALL
be evaluated to determine the winding orientation.

6.5.51 WireCombBinding

In WireCombBinding metal wire, wire with plastic or pure plastic is used to fasten pre-punched sheets of paper, cardboard
or other such materials. The wire — often formed as a double wire — is inserted into the holes, then curled to create a
circular enclosure.

JDF SPECIFICATION 1.7 279

PROCESSES

Table 6.188: WireCombBinding - Input Resources

NAME DESCRIPTION

Component The operation requires one component: the pile of preprinted sheets, often including a
front and back cover.

WireCombBindingParams Specific parameters to set up the machinery.

Table 6.189: WireCombBinding - Output Resources

DESCRIPTION

Component One Component is produced: the wire-comb bound component forming an item such as
a calendar.

6.5.52 Wrapping
New in JDF 1.1
Single products, bundles or pallets can be wrapped by film or paper.

Table 6.190: Wrapping - Input Resources

NAME DESCRIPTION

Component The Wrapping process wraps a bundle that is represented by a Component.
Component (Wrapper) ? If the wrapping material is preprinted, then Component (Wrapper) represents the wrap-
New in IDE 1.6 ping material. Rubber bands and other non-printed material SHOULD be represented as
' MiscConsumable.
Media ? The wrapping material.
Deprecated in JDF 1.6 Deprecation note: From version JDF 1.6 use a Component(Wrapper) and/or a
MiscConsumable.
MiscConsumable Additional details of the wrapper material. Non-printed material SHOULD be repre-
(Wrapper) ? sented as MiscConsumable. MiscConsumable(Wrapper) SHALL NOT be present if
New in JDF 1.6 Component (Wrapper) is provided. MiscConsumable/@ Type SHOULD be one of
' "PaperBand", "PaperWrap", "PlasticBand", "RubberBand" or "Shrink\Wrap".
WrappingParams Specific parameters to set up the machinery.

Table 6.191: Wrapping - Output Resources

DESCRIPTION

Component One Component is produced: the wrapped Component.

6.6 Postpress Processes Structure

6.6.1 Block Production

This subcategory of the postpress processes merges together all the processes for making a book block. First, the block
is compiled using the Collecting and Gathering processes. It is then combined using one or several of the block joining
processes, including CoverApplication, SpineTaping, Stitching and ThreadSewing. The workflow using these processes
eventually produces a Component that can be trimmed.

6.6.1.1 Block Compiling

The Gathering and Collecting processes are used to position unfolded sheets and/or folded sheets in a specific order.
These operations set a fixed page sequence in preparation for three-side trimming and binding. Block compiling in-
cludes:

Collecting
Gathering

280 JDF SPECIFICATION 1.7

POSTPRESS PROCESSES STRUCTURE

PrintRolling
Feeding
Winding

6.6.1.2 Block Joining

The block joining processes can be grouped into two major subcategories: conventional binding methods, which includes
the processes of Stitching, CoverApplication, SpinePreparation, SpineTaping, ThreadSealing and ThreadSewing; and sin-
gle-leaf binding methods, which are listed in » Section 6.6.1.3.1 Single-Leaf Binding Methods. Together, they form a
subcategory of block-production processes. All of these processes, which are known as block joining processes, unite
sheets and/or folded sheets lying loosely on top of each other.

There are numerous possible binding methods. The most prominent ones are modeled by the processes described in the
following sections. Many of them can be part of a combined production chain being performed as in-line tasks. Block
joining includes:
- CoverApplication

EndSheetGluing

Gluing

SpinePreparation

SpineTaping

Stitching

ThreadSewing

6.6.1.3 Binding Methods

6.6.1.3.1 Single-Leaf Binding Methods

Besides the conventional binding methods, there is a multifaceted group of binding methods for single-leaf bindings.
This group can again be subdivided into two subtypes: loose-leaf binding and mechanical binding, each of which is de-
scribed in the sections that follow.

6.6.1.3.2 Loose-Leaf Binding Method
These binding techniques allow contents to be changed, inserted or removed at will. There are two essential groups of
loose-leaf binding systems: those that require the paper to be punched or drilled and those that do not. The RingBinding
method, described in the next section, is the most prominent binding in the loose-leaf binding category. Loose-leaf bind-
ing methods include:

RingBinding

6.6.1.3.3 Mechanical Binding Methods

Single leafs are fastened into what is essentially a permanent system that is not meant to be reopened. However, special
machinery can be used to reopen some of the mechanical binding systems described below.

In mechanical binding, printing and folding can be done in a conventional manner. The gathered sheets, however, often
require the back to be trimmed, as well as the other three sides. Mechanical bindings are often used for short-run jobs
such as ones that have been printed digitally. The most prominent mechanical binding processes are described in the
sections that follow. Mechanical binding methods include:

ChannelBinding
CoilBinding
PlasticCombBinding
RingBinding
StripBinding
WireCombBinding

6.6.2 HoleMaking
HoleMaking

6.6.3 Laminating

Laminating

6.6.4 Numbering

Numbering

6.6.5 Packaging Processes
The individual processes defined in this section replace the deprecated Packing process. Packaging processes include:

BoxPacking
Bundling
Labeling

JDF SPECIFICATION 1.7 281

PROCESSES

Palletizing
Shrinking
Stacking
Strapping
Wrapping

6.6.6 Processes in Hardcover Book Production

The following processes refer to the production of hardcover books. Several processes are needed to produce a hardcover
book. Some of them are essential and others are optional. The processes are:

CaseMaking: Production of hardcover book cases.

BlockPreparation: The optional hardcover design elements (e.g., rounding and backing, ribbon band, head
band, side gluing and tightbacking) are described in this process. Application of kraft pa-
per to the book block is described in the SpineTaping process.

Casingln: In this process, the case and the prepared book block are brought together.
Jacketing: In the Jacketing process, the jacket is wrapped around the hardcover book.

Processes in hardcover book production include:
BlockPreparation
CaseMaking
Casingin
Collecting
Gluing
HeadBandApplication
Jacketing
SpinePreparation
SpineTaping
ThreadSealing
ThreadSewing

6.6.7 Sheet Processes

Many printing processes produce sheets that are processed further in finishing operations. The web processes presented
in the preceding sections result in sheets that are treated in much the same way as sheets produced by Sheet-Fed print-
ing presses. The following processes describe these sheet finishing operations. Sheet processes include:

Creasing

Cutting

Embossing

Feeding

Folding

Gathering

Gluing

Palletizing

Perforating

PrintRolling

ShapeCutting

ThreadSealing

Winding

6.6.8 Tip-on/in
The processes EndSheetGluing and Inserting are part of the postpress operations. They can be grouped together as a tip-
on/in process. Either part can be performed by hand, tip-on/in machine or by a press. Tip-on/in includes:

EndSheetGluing
Inserting

6.6.9 Trimming

Trimming.

6.6.10 Web Processes

This sub-chapter of the postpress processes is dedicated to web and ribbon operations (i.e., operations that require a web
or a ribbon to execute). In essence, a ribbon is a web that has been slit or cross-cut. More specifically, a web is a contin-
uous strip of Media to be used for printing (e.g., paper or foil). This substrate is called “Web” while it is threaded through
the printing machinery, but once it has run through the Cutting process and been slit, the web no longer exists. In its
place are ribbons or sheets.

A ribbon, then, is the part of the web that enters the folder. If the web is never slit, however, the web and the ribbon are
identical. Slitting and salvage-trim operations on a web can result in one or more ribbons. A ribbon can be further sub-

282 JDF SPECIFICATION 1.7

POSTPRESS PROCESSES STRUCTURE

divided after it has been slit. After the Cutting process, sheets are treated further. The Gathering process and Folding pro-
cess also handle web and ribbon applications.

JDF SPECIFICATION 1.7 283

PROCESSES

284 JDF SPECIFICATION 1.7

/ Product Intent

This chapter describes Intent Resources and provides a list (in alphabetical order) of all specific Intent Resource types. All
Intent Resources have a resource class of "Intent", for more information on resource class, see » Section 3.8.4 Resource
Classes.

Aswas described in » Section 4.1.1 Product Intent Constructs, Intent Resources are designed to narrow down the available
options when defining a JDF job. Many of the elements in Intent Resources are OPTIONAL. If an OPTIONAL element of an
Intent Resource is omitted and no additional information is specified in the description, the value defaults to “don’t
care”. If an entire Intent Resource that specifies a given product feature is omitted, then that feature is not requested.
For instance, if a product intent description has no Resourcelink to Bindingintent, then no binding is requested. The char-
acteristics of the product that are not specified through the use of Intent Resources will be selected by the system that
processes the Intent Resources. The system that processes the product intent data in a JDF job ticket MAY insert the de-
tails of its selection into the JDF data for the job. See » Section 1.6.2.1 Conformance Requirements for Support of
Attributes and Attribute Values for more information on the handling and processing of systems-specified default val-
ues.

All Intent Resources share a set of subelements that allow a ‘Request for Quote’ to describe a range of acceptable values
for various aspects of the product. These elements, taken together, allow an administrator to provide a specific value for
the quote.

7.0.1 Product Intent Descriptions

Product intent is also described as a JDF node. The following table defines the list of JDF Intent Resources used to describe
product intent.

Table 7.1: Product Intent - Input Resources (Sheet 1 of 2)

NAME DESCRIPTION

ArtDeliverylintent ? This resource specifies the prepress art delivery intent for a JDF job.

Bindingintent ? This resource specifies the binding intent for a JDF job.

Colorintent ?

This resource specifies the type of ink to be used for a JDF job.

Component *

Components that are partial products of the product described by this node. If input
Component resources are specified, at least one of Bindingintent or Insertingintent is
REQUIRED.

Deliveryintent ?

Summarizes the options that describe pickup or delivery time and location of the
PhysicalResources of a job.

Embossingintent ?

This resource specifies the embossing and/or foil stamping intent for a JDF job.

Foldingintent ?

This resource specifies the fold intent for a JDF job using information that identifies the
number of folds, the height and width of the folds, and the folding catalog number.

HoleMakingintent ?

This resource specifies the hole making intent for a JDF job.

Insertingintent ?

This resource specifies the placing or inserting of one component within another, using
information that identifies page location, position and attachment method.

Laminatingintent ?

This resource specifies the laminating intent for a JDF job using information that iden-
tifies whether or not the product is laminated.

Layoutintent ?

This resource records the size of the finished pages for the product component.

Medialntent ?

This resource describes the media to be used for the product component.

Numberingintent ?

This resource describes the parameters of stamping or applying variable marks in order
to produce unique components, for items such as lottery notes or currency.

JDF SPECIFICATION 1.7

PRODUCT INTENT

Table 7.1: Product Intent - Input Resources (Sheet 2 of 2)

NAME DESCRIPTION

Packingintent ? This resource specifies the packaging intent for a JDF job, using information that iden-
tifies the type of package, the wrapping used and the shape of the package.

Productionintent ? This resource specifies the manufacturing intent and considerations for a JDF job using
information that identifies the desired result or specified manufacturing path.

Proofingintent ¢ This resource specifies the prepress proofing intent for a JDF job, using information
that identifies the type, quality, brand name and overlay of the proof.

Publishinglintent ? This resource specifies publishing metadata that are of general interest for prepress,
press and postpress. The data include details on the general structure of the product
being published.

Screeningintent ? This resource specifies the screening intent parameters desired for a JDF job.

ShapeCuttingintent ? This resource specifies form and line cutting for a JDF job.

Sizelntent ? This resource records the size of the finished pages for the product component.

Deprecated in JDF 1.2 Sizelntent has been deprecated in JDF 1.1. All contents have been moved to Layoutintent.

Variablelntent ? This resource specifies the variations for printed data with variable content.

New in JDF 1.6

Table 7.2: Product Intent - Output Resources

DESCRIPTION

Component + Resource representation of the output this product intent node. Multiple Component
resources SHALL be specified in a root node that contains a Deliveryintent that refer-
ences multiple Component resources as delivery end products.

7.1 Intent Properties Template

Each of the following sections begins with a brief narrative description of the resource. Following that is a list containing
details about the properties of the resource, as shown below. A template of this list is shown below.

After the list describing the resource properties, each section contains tables that outline the structure of each resource
and, when applicable, the abstract or subelement information that pertains to the resource structure. The first column
contains the name of the attribute or element. A template of these tables is also provided below.

Note: For the resource properties template below, the italicized text describes the actual text that would be in its place
in an actual resource definition.

Note: For the resource structure template table below: Cardinality in the Name column of the resource structure template
table refers to a cardinality symbol, which is either empty or consists of a symbol, such as “?”. Examples described by
the Name column include: “Ink *” and “FileSpec("DeviceLinkProfile") ?”. For further details, see » Section 1.4.5
Specification of Cardinality.

Intent Properties Template

Process Resource Pairing: List of process resources with which an intent resource is generally identified. In practice,
the process resources will contain the data with which the customer’s intent is fulfilled in
production and distribution of the product. This is a list of the primary resources and not a
complete list.

Example Partition List of recommended Partition Keys: For a complete list of Partition Keys, see the description
of @PartIDKeys in » Table 3.34 Partitionable Resource Element.
Note: Resources may be partitioned by keys that are not specified in this list.

Table 7.3: Template for Intent Resources (Sheet 1 of 2)

DATA TYPE DESCRIPTION
Attribute-Name Attribute- Information about the attribute.
Cardinality data-type

286 JDF SPECIFICATION 1.7

INTENT PROPERTIES TEMPLATE

Table 7.3: Template for Intent Resources (Sheet 2 of 2)

NAME DATA TYPE DESCRIPTION
Element-Name element Information about the element.
Cardinality Note: The “element” data type means that the specified element SHALL be an
in-line subelement within the resource.
Element-Name refelement Information about the element
Cardinality Note: The “refelement” data type means that the specified element is based

on other atomic resources or resource elements. The specified element SHALL
be either an in-line element or an instance of a resourceRef element (see

» Section 3.10.2 ResourceRef — Element for Inter-Resource Linking and
refelement). In case of a ResourceRef element, a “Ref” SHALL be appended to
the name specified in the table column entitled “Name”.

Intent Resources contain subelements that allow spans of values to be specified. These subelements also provide mech-
anisms to select a set of values from the provided range and map them to a set of quotes. These subelements are called
span elements. The span element to use is determined by the data type of the values to be recorded. Span elements are
defined to facilitate negotiation between buyer and provider.

7.1.1 Abstract Span Element

Span elements of Intent Resources have a common set of attributes that define the priority, data type and requested iden-
tity of the element. These common attributes are described in » Table 7.4 Abstract Span Element. In addition, abstract

span elements have at least four attributes that define the data type dependent aspects of the span. The data type of these
values depends on the data type of the span and is defined in the following sections:

@Actual —The intended value agreed to by the producer of the product.

@OfferRange — A proposed range of equivalent values in cost that are defined by the producer of the product.
@Preferred — A preferred value defined by the recipient of the product.

@Range — A proposed range of values defined by the recipient of the product.

Table 7.4: Abstract Span Element

NAME DATA TYPE DESCRIPTION

DataType enumeration Describes the data type of the span element within an Intent
Resource. This attribute is provided for applications that do not have
access to schema validation.

Allowed values are:

DurationSpan OptionSpan

EnumerationSpan ShapeSpan

IntegerSpan StringSpan

NameSpan TimeSpan

NumberSpan XYPairSpan
Priority ? enumeration Indicates the importance of the specific intent.
Deprecated in JDF 1.2 Allowed values are:

None

Suggested — The customer will accept a value of @Actual that is dif-
ferent than the value of @Preferred or outside of @Range.

Required — The customer expects the @Actual to be equal to
@Preferred or within @Range.
Note: The attribute @Preferred is available in the data types
which inherit from this abstract type.

Deprecation note: Starting with JDF 1.2, use @SettingsPolicy.

7.1.2 Span Elements

The Data Type column of tables for Intent Resources (below) can contain the same data types as non-Intent Resources
(namely data types defined in the » Section 1.7 Data Structures) as well as span elements that are listed in the » Table
7.5 List of Span Elements. In Intent Resource tables, XXXSpan elements are treated as attribute-like data types even
though span elements are technically XML elements because the semantic usage of the span elements is equivalent to
the usage of attributes in process resources.

JDF SPECIFICATION 1.7 287

PRODUCT INTENT

Each span element contains attributes or subelements listed in » Table 7.4 Abstract Span Element and in the pertinent
span element listed in » Table 7.5 List of Span Elements.

Table 7.5: List of Span Elements

NAME PAGE DESCRIPTION
DurationSpan page 288 Describes a set of duration values.
New in JDF 1.1
EnumerationSpan page 288 Describes a set of enumeration values.
IntegerSpan page 289 Describes a numerical range of integer values.
NameSpan page 289 Describes a set of NMTOKEN values.
NumberSpan page 290 Describes a numerical range of values.
OptionSpan page 290 Describes an intent in which the principal information is that a specific

option is requested.

ShapeSpan page 290 Describes a set of shape values.
New in JDF 1.1

StringSpan page 291 Describes a set of string values.
TimeSpan page 291 Describes a set of dateTime values.
XYPairSpan page 292 Describes a set of XYPair values.

7.1.2.1 DurationSpan
New in JDF 1.1

This span subelement is used to describe a selection of instances in time. It inherits from the abstract span element de-
scribed in » Section 7.1.1 Abstract Span Element.

Table 7.6: DurationSpan Element

NAME DATA TYPE DESCRIPTION
Actual ? duration The actual value selected for the quote.
OfferRange ? Dura- Provides an offered range of time durations. If not specified, it defaults to the
New in IDF 1.3 tionRange value of @Actual.
Preferred ? duration Provides a value specified by the person submitting the request, indicating

what that person prefers. The value of @Preferred SHALL fall within the
range of values specified in @Range.

Range ? Dura- Provides a valid range of time durations. If not specified, it defaults to the
tionRange value of @Preferred.

7.1.2.2 EnumerationSpan

This span subelement is used to describe ranges of enumerative values. It inherits from the abstract span element de-
scribed in » Section 7.1.1 Abstract Span Element. It is identical to the NameSpan element except for the fact that it de-
scribes a closed list of enumeration values.

Table 7.7: EnumerationSpan Element (Sheet 1 of 2)

NAME DATA TYPE DESCRIPTION
Actual ? enumeration | The actual value selected for the quote.
OfferRange ? enumerations | Provides an offered range of values.
New in JDF 1.3 Default value is from: @Actual.
Preferred ? enumeration | Provides a value specified by the person submitting the request, indicating
what that person prefers. The value of @Preferred SHALL fall within the
range of values specified in @Range.

288 JDF SPECIFICATION 1.7

INTENT PROPERTIES TEMPLATE

Table 7.7: EnumerationSpan Element (Sheet 2 of 2)

DATA TYPE DESCRIPTION

Range ? enumerations | Provides a set of discreet enumeration values.
Default value is from: @Preferred.

Example 7.1: EnumerationSpan

<BindingIntent Class="Intent" ID="BI1l" Status="Available">
<BindingType Actual="Ring" DataType="EnumerationSpan"/>
<RingBinding>
<HoleType DataType="EnumerationSpan" Range="R4m-DIN-A5 R6m-DIN-A5">
<Comment Name="R4m-DIN-A5">
4 equidistant holes on each side of a hexagonal piece of paper
</Comment>
<Comment Name="R6m-DIN-A5">
6 equidistant holes on each side of a hexagonal piece of paper
</Comment>
</HoleType>
</RingBinding>
</BindingIntent>

7.1.2.3 IntegerSpan

This span subelement is used to describe ranges of integer values. It inherits from the abstract span element described
in » Section 7.1.1 Abstract Span Element.

Table 7.8: IntegerSpan Element

NAME DATA TYPE DESCRIPTION
Actual ? integer The actual value selected for the quote.
OfferRange ? Inte- Provides either a set of individual values, a range of values or a combination
New in JDF 1.3 gerRangeList | of the two that comprise all offered values for the span.

Default value is from: @Actual.

Preferred ? integer Provides a value specified by the person submitting the request, indicating
what that person prefers. The value of @Preferred SHALL fall within the
range of values specified in @Range.

Range ? Inte- Provides either a set of discreet values, a range of values or a combination of
gerRangeList | the two that comprise all allowed values for the span.

Default value is from: @Preferred.

7.1.2.4 NameSpan

This span subelement is used to describe name ranges. It inherits from the abstract span element described in » Section
7.1.1 Abstract Span Element. It is identical to the EnumerationSpan element except for the fact that it describes an exten-
sible list of NMTOKEN values.

Table 7.9: NameSpan Element

NAME DATA TYPE DESCRIPTION
Actual ? NMTOKEN The actual value selected for the quote.
OfferRange ? NMTOKENS Provides a set of discreet values that comprise all offered values for the span.
New in JDF 1.3 Default value is from: @Actual.
Preferred ? NMTOKEN Provides a value specified by the person submitting the request, indicating

what that person prefers. The value of @Preferred SHALL fall within the
range of values specified in @Range.

Range ? NMTOKENS Provides a set of discreet values that comprise all allowed values for the span.
Default value is from: @Preferred.

JDF SPECIFICATION 1.7 289

PRODUCT INTENT

7.1.2.5 NumberSpan

This span subelement is used to describe a numerical range of values. It inherits from the abstract span element de-
scribed in » Section 7.1.1 Abstract Span Element.

Table 7.10: NumberSpan Element

NAME DATA TYPE DESCRIPTION

Actual ? double The actual value selected for the quote.

OfferRange ? Dou- Provides either a set of discreet values, a range of values or a combination of

New in JDF 1.3 bleRangeList | the two that comprise all offered values for the span.

Default value is from: @Actual.

Preferred ? double Provides a value specified by the person submitting the request, indicating
what that person prefers. The value of @Preferred SHALL fall within the
range of values specified in @Range.

Range ? Dou- Provides either a set of discreet values, a range of values or a combination of

bleRangeList | the two that comprise all allowed values for the span.

Default value is from: @Preferred.

7.1.2.6 OptionSpan

This span subelement is used to describe a range of options or boolean values. It inherits from the abstract span element
described in » Section 7.1.1 Abstract Span Element.

Table 7.11: OptionSpan Element

NAME

DATA TYPE

DESCRIPTION

Actual ? boolean The actual value selected for the quote. If the option is included="true".
Detail ? string @Detail provides information about the option.
Deprecated in JDF 1.2 Deprecation note: Starting with JDF 1.2, use @DescriptiveName.
OfferRange ? enumerations | Provides a set of the discreet boolean values.
New in JDF 1.3 Default value is from: @Actual.
Allowed values are:
true
false
Preferred ? boolean Provides a value specified by the person submitting the request, indicating
what that person prefers.
Range ? enumerations | Provides a set of the discreet boolean values.
New in JDF 1.2 Allowed values are:

true
false

7.1.2.7 ShapeSpan
New in JDF 1.1

This span subelement is used to describe ranges of numerical value pairs. It inherits from the abstract span element de-
scribed in » Section 7.1.1 Abstract Span Element.

Table 7.12: ShapeSpan Element (Sheet 1 of 2)

NAME DATA TYPE DESCRIPTION
Actual ? shape The actual value selected for the quote.
OfferRange ? ShapeRange- | Provides either a set of discreet values, a range of values or a combination of
List the two that comprise all offered values for the span.

New in JDF 1.3

Default value is from: @Actual.

JDF SPECIFICATION 1.7

INTENT PROPERTIES TEMPLATE
Table 7.12: ShapeSpan Element (Sheet 2 of 2)

NAME DATA TYPE DESCRIPTION

Preferred ? shape Provides a value specified by the person submitting the request, indicating
what that person prefers. The value of @Preferred SHALL fall within the
range of values specified in @Range.

Range ? ShapeRange- | Provides either a set of discreet values, a range of values or a combination of
List the two that comprise all allowed values for the span.

Default value is from: @Preferred.

7.1.2.8 StringSpan

This span subelement is used to describe string ranges. It inherits from the abstract span element described in » Section
7.1.1 Abstract Span Element.

Table 7.13: StringSpan Element

NAME DATA TYPE DESCRIPTION
Actual ? string The actual value selected for the quote.
Preferred ? string Provides a value specified by the person submitting the request, indicating

what that person prefers. The value of @Preferred SHALL fall within the
range of values specified in @Range.

OfferRange * element Provides a set of discreet values that comprise all offered values for the span.
New in JDF 1.3 Default value is from: @Actual.
Range * element Provides a set of discreet values that comprise all allowed values for the span.

Default value is from: @Preferred.

7.1.2.8.1 OfferRange

Table 7.14: OfferRange Element

DATA TYPE DESCRIPTION

text Text content of the OfferRange.

7.1.2.8.2 Range

Table 7.15: Range Element

DATA TYPE DESCRIPTION

text Text content of the Range.

7.1.2.9 TimeSpan

This span subelement is used to describe a selection of instances in time. It inherits from the abstract span element de-
scribed in » Section 7.1.1 Abstract Span Element.

Table 7.16: TimeSpan Element (Sheet 1 of 2)

NAME DATA TYPE DESCRIPTION
Actual ? dateTime The actual value selected for the quote.
OfferRange ? DateTimeR- Provides a range of values that comprise all offered values for the span.
New in JDF 1.3 Al Default value is from: @Actual.
Preferred ? dateTime Provides a value specified by the person submitting the request, indicating
what that person prefers. The value of @Preferred SHALL fall within the
range of values specified in @Range.

JDF SPECIFICATION 1.7 291

PRODUCT INTENT

Table 7.16: TimeSpan Element (Sheet 2 of 2)

DATA TYPE

DESCRIPTION

Range ?

DateTimeR-
ange

Provides a range of values that comprise all allowed values for the span.
Default value is from: @Preferred.

7.1.2.10 XYPairSpan

This span subelement is used to describe ranges of numerical value pairs. It inherits from the abstract span element de-
scribed in » Section 7.1.1 Abstract Span Element.

Table 7.17: XYPairSpan Element

NAME DATA TYPE DESCRIPTION

Actual ? XYPair The actual value selected for the quote.

OfferRange ? XYPair- Provides either a set of discreet values, a range of values or a combination of

N i IETLE! RangeList the two that comprise all offered values for the span.

Default value is from: @Actual.

Preferred ? XYPair Provides a value specified by the person submitting the request, indicating
what that person prefers. The value of @Preferred SHALL fall within the
range of values specified in @Range.

Range ? XYPair- Provides either a set of discreet values, a range of values or a combination of

RangelList the two that comprise all allowed values for the span.

Default value is from: @Preferred.

7.2 ArtDeliveryintent

This resource specifies the prepress art delivery intent for a JDF job and maps the items to the appropriate reader pages
and separations. Art delivery refers to any physical or electronic asset that is needed for processing the job.

Resource Properties

Process Resource Pairing:

Example Partition:

"Option"

DeliveryParams, DigitalDeliveryParams

Table 7.18: ArtDeliveryintent Resource (Sheet 1 of 2)

NAME DATA TYPE DESCRIPTION

ArtDeliveryDate ? TimeSpan Specifies the latest time at which the transfer of the artwork will be made.

New in JDF 1.1

ArtDeliveryDuration | DurationSpan | Specifies the latest time by which the transfer will be made relative to the

? date of the purchase order. Within an RFQ_or a quote, at most one of either

New in JDF 1.1 ArtDeliveryDate or ArtDeliveryDuration SHALL be specified. Within a purchase
order, only ArtDeliveryDate is allowed.

ArtHandling ? Enumera- Describes what SHALL happen to the artwork after usage. The address for the

New in JDF 11 tionSpan "Return” and "Pickup” values SHALL be specified by a Contact[contains
(@ContactTypes, "ArtReturn")]/Address.
Allowed value is from: » ArtHandling.

DeliveryCharge ? Enumera- Specifies who pays for a delivery being made by a third party.

New in JDF 1.1 tionSpan Allowed value is from: » DeliveryCharge.

Modified in JDF 1.3

Method ? NameSpan Specifies the delivery method, which can be a generic method.

Modified in JDF 1.5 Value includes those from: » Delivery Methods.

PreflightStatus= enumeration | Information about a Preflight process probably applied to the artworks prior

"NotPerformed" to submission.

New in JDF 1.1 Allowed value is from: » PreflightStatus.

Modified in JDF 1.2

JDF SPECIFICATION 1.7

ARTDELIVERYINTENT

Table 7.18: ArtDeliveryintent Resource (Sheet 2 of 2)

NAME DATA TYPE DESCRIPTION
ReturnList="None" NMTOKENS Type of printer created intermediate materials that are to be sent to the cus-
New in JDF 11 tomer after usage.
Values include:
DigitalMedia — Digital data on media (e.g., a CD).
DigitalNetwork — Digital data via network.
ExposedPlate — Pre-exposed press plates, usually used for a rerun.
ImposedFilm — Film of the imposed surfaces.
LooseFilm — Film of individual pages or sections.
OriginalPhysicalArt — Analog artwork (e.g., reflective or transparencies).
Tool — Tools needed for processing the job (e.g., a die for die cutting or
embossing stamp).
None — No intermediate materials are to be returned to the customer.
ReturnMethod ? NameSpan Specifies a delivery method for returning the artwork if ArtHandling/
New in JDF 1.1 @Actual="Return" and for the printer created materials listed in ReturnlList.
Allowed value is from: » Delivery Methods.
Servicelevel ? StringSpan The service level of the specific carrier.
New in JDF 1.2 Allowed value is from: » Service Levels.
Transfer ? Enumera- Describes the responsibility of the transfer.
New in JDF 1.1 tionSpan Allowed value is from: » ArtTransfer.
ArtDelivery + element Individual delivery.
Modified in JDF 1.1
Company ° refelement Address and further information of the art delivery. Company SHALL NOT be
Deprecated in JDF 1.1 specified unless the printer is expected to pick up the art delivery at this
address. In JDF 1.1 and beyond, Company is a subelement of Contact.
Contact * refelement Address and further information about the transfer of the artwork. The actual
New in IDF 11 delivery address SHALL be specified by
Contact[contains (@ ContactTypes, "Delivery")]/Address. At most one such
Contact SHALL be specified.
The actual pickup address SHALL be specified by
Contact[contains (@ ContactTypes, "Pickup")]/Address. At most one such
Contact SHALL be specified.
7.2.1 ArtDelivery

Each ArtDelivery element defines a set of existing products that are needed to create the specified product. Attributes
that are specified in an ArtDelivery element overwrite those that are specified in their parent ArtDeliveryintent element.
If OPTIONAL attributes are not specified, their values default to the values specified in ArtDeliveryintent.

Table 7.19: ArtDelivery Element (Sheet 1 of 3)

NAME DATA TYPE DESCRIPTION
Amount ? integer Number of physical objects to be delivered. Only valid if no detailed resource
Modified in JDF 1.2 description (e.g., ExposedMedia, Runlist, ScanParams, DigitalMedia or Tool) is

specified.

ArtDeliveryDate ¢ TimeSpan Specifies the latest time by which the transfer of the artwork will be made.
New in JDF 1.1
ArtDeliveryDuration | DurationSpan | Specifies the latest time by which the transfer will be made relative to the
? date of the purchase order. Within an RFQ_or a quote, at most one of either
New in JDF 1.1 ArtDeliveryDate or ArtDeliveryDuration SHALL be specified. Within a purchase

order, only the ArtDeliveryDate is allowed.

JDF SPECIFICATION 1.7 293

PRODUCT INTENT

Table 7.19: ArtDelivery Element (Sheet 2 of 3)

NAME DATA TYPE DESCRIPTION

ArtDeliveryType NMTOKEN Type of artwork supplied.

New in JDF 1.1 Values include:

Modified in JDF 1.2 DigitalFile — Digital data irrespective of the delivery mechanism. The union of

"DigitalMedia" and "DigitalNetwork". New in JDF 1.2
DigitalMedia — Digital data on media (e.g., a CD).
DigitalNetwork — Digital data via network.
ExposedPlate — Pre-exposed press plates, usually used for a rerun.
ImposedFilm — Film of the imposed surfaces.
LooseFilm — Film of individual pages or sections.
OriginalPhysicalArt — Analog artwork (e.g., reflective or transparencies).
Proof — Physical proof delivered with digital scan or separated film asset.
Tool — Tools needed for processing the job (e.g., a die for die cutting or
embossing stamp).

None — No artwork exists, and it will be created later.

ArtHandling ? Enumera- Describes what SHALL happen to the artwork after usage.

New in JDF 1.1 tionSpan The address for the "Return” and "Pickup" values SHALL be specified by
Contact[contains (@ ContactTypes, "ArtReturn")]/Address.
Default value is from: ArtDeliveryintent/ArtHandling.
Allowed value is from: » ArtHandling.

DeliveryCharge ? Enumera- Specifies who pays for a delivery being made by a third party.

New in JDF 1.1 tionSpan Default value is from: ArtDeliveryintent/DeliveryCharge.

Modified in JDF 1.3 Allowed value is from: » DeliveryCharge.

HasBleeds="false" boolean If "true", the file has bleeds.

IsTrapped="false" boolean If "true”, the file has been trapped.

Method ? NameSpan Specifies a delivery method. It MAY be a generic item from the list defined in

e @Method in ArtDeliveryintent.
Modified in JDF1.5 Allowed value is from: » Delivery Methods.
Pagelist ? Inte- Set of pages of the output Component that are filled by this ArtDelivery. This
gerRangeList | maps the pages in the ArtDelivery to the pages in the product that is pro-

duced. For example if PageList="3 ~ 5", page 0 of the ArtDelivery (e.g., RunlList)
is page 3 in the product, page 1 is page 4, etc. If not specified, the @PageList
SHALL include all pages in reader order. The indices specified in @PageList
reference the PageData elements defined in Pagelist.

PreflightOutput ? URL Pointer to the output information created by the preflight tool if

New in JDF 14 @PreflightStatus is either "WithoutErrors" or "WithErrors".

PreflightStatus ? enumeration | Information about a Preflight process.

New in JDF 1.1 Default value is from: ArtDeliveryintent/@PreflightStatus.
Allowed value is from: » PreflightStatus.

ReturnMethod ? NameSpan Specifies a delivery method for returning the artwork if ArtHandling/

New in JDF 1. @Actual="Return".
Default value is from: ArtDeliveryintent/ReturnMethod.
Allowed value is from: ArtDeliveryintent/ReturnMethod.

Servicelevel ? StringSpan The service level of the specific carrier.

New in JDF 1.2 Value includes those from: » Service Levels.

Transfer ? Enumera- Describes the responsibility of the transfer.

New in JDF 1.1 tionSpan Default value is from: ArtDeliveryintent/Transfer.
Allowed value is from: » ArtTransfer.

Company ? refelement Address and further information about the art delivery. This SHALL NOT be

Deprecated in JDF 1.1

specified unless the printer is expected to pick up the art delivery at this address.
In JDF 1.1 and beyond, Company is a subelement of Contact.

294

JDF SPECIFICATION 1.7

BINDINGINTENT

Table 7.19: ArtDelivery Element (Sheet 3 of 3)

NAME DATA TYPE DESCRIPTION
Component ? refelement Description of a physical component (e.g., physical artwork). If neither Component,
Deprecated in JDF 1.1 ExposedMedia, nor RunList are specified, no details of the ArtDelivery except the
' @ArtDeliveryType and @Amount are known.
Contact * refelement Address and further information about the art transfer.
New in JDF 1.1 Default value is from: ArtDeliveryintent/Contact.
DigitalMedia ? refelement Description of any digital media (e.g., CD or tape with artwork that will be
New in JDF 1.2 delivered). If neither ExposedMedia, RunList, DigitalMedia, nor Tool are speci-
' fied, no details of the ArtDelivery except the @ArtDeliveryType and @Amount
are known.
ExposedMedia ? refelement Description of exposed media (e.g., film, plate or proof). If neither
Modified in JDF 1.2 ExposedMedia, RunList, DigitalMedia, nor Tool are specified, no details of the
' ArtDelivery, except the @ArtDeliveryType and @Amount, are known.
RunlList ? refelement Link to digital artwork that is accessible via a set of URLs that are defined in
Modified in JDF 1.2 the Runlist/LayoutElement/FileSpec/ @URL. If neither DigitalMedia,
' ExposedMedia, RunList, nor Tool are specified, no details of the ArtDelivery
except the @ArtDeliveryType and @Amount are known.
ScanParams ? refelement Description of a ScanParams that defines scanning details for the exposed
media defined by ExposedMedia.
Tool ? refelement Details of the Tool if @ArtDeliveryType="Tool". If neither ExposedMedia,
New in JDF 1.1 Runlist, DigitalMedia, nor Tool are specified, no details of the ArtDelivery

Modified in JDF 1.2

except the @ArtDeliveryType and @Amount are known.

7.3 Bindingintent

This resource specifies the binding intent for a JDF job using information that identifies the desired type of binding and
which sides SHALL be bound. The input products that are used as a cover SHALL have a @ProductType of "Cover",
"FrontCover" or "BackCover". The input products that are used as a hardcover jacket SHALL have a @ProductType of "Jacket".
Input components that are used as end sheets for hardcover or softcover binding SHALL have a @ProductType of
"EndSheet". All other products are bound in the order of their appearance in the ResourceLinkPool of the JDF node that
contains the Bindingintent.

Resource Properties

Process Resource Pairing:

Example Partition:

BlockPreparationParams, CaseMakingParams, CasinglnParams, ChannelBindingParams,

CoilBindingParams, CoverApplicationParams, EndSheetGluingParams, GlueApplication,

Glueline, GluingParams, InsertingParams, JacketingParams, PlasticCombBindingParams,

RingBindingParams, SpinePreparationParams, SpineTapingParams, StitchingParams,

StripBindingParams, ThreadSealingParams, ThreadSewingParams, WireCombBindingParams

"Option"

Table 7.20: Bindingintent Resource (Sheet 1 of 3)

NAME DATA TYPE DESCRIPTION
BackCoverColor ? Enumera- Defines the color of the back cover material of the binding.
New in JDF 1.1 tionSpan Default value is from: @ CoverColor.
Allowed value is from: » NamedColor.

BackCoverColorDet | StringSpan A more specific, specialized or site-defined name for the color. If
ails ? BackCoverColorDetails is supplied, BackCoverColor SHOULD also be supplied.
New in JDF 1.4
BindingColor ? Enumera- Defines the color of the spine material of the binding.

tionSpan Allowed value is from: » NamedColor.
BindingColorDetails | StringSpan A more specific, specialized or site-defined name for the color. If
? BindingColorDetails is supplied, BindingColor SHOULD also be supplied.
New in JDF 1.4

JDF SPECIFICATION 1.7 295

PRODUCT INTENT

Table 7.20: Bindingintent Resource (Sheet 2 of 3)

NAME DATA TYPE DESCRIPTION
BindingLength ? Enumera- Indicates which side SHALL be bound when no content. Thus, no orientation
Deprecated in JDF 1.6 | tionSpan is available, but a quote for binding is needed.
Allowed values are:
Long
Short
Deprecation note: From JDF 1.6 use BindingSide.
BindingOrder = enumeration | Specifies whether the child Component resources are to be collected or gath-
"Gathering" ered if multiple child Component resources are combined.
New in JDF 1.1 Allowed values are:
Modified in JDF 1.4 None — The products referenced by child product are NOT bound together.
Typically used for flatwork jobs. New in JDF 1.4
Collecting — The products referenced by child product are collected on a spine
and placed within one another. The first Component is on the outside.
Gathering — The child Component resources are gathered on a pile and placed
on top of one another. The first child product is on the top.
List — More complex ordering of child Component resources is specified using
the BindList in this intent resource for this product.
BindingSide ? Enumera- @BindingSide indicates which side of the product SHALL be bound. Each of
tionSpan these values SHALL identify the binding edge. @BindingSide is defined in the
coordinate system of the product. @BindingSide SHALL NOT be provided if
@BindingOrder="None".
Constraint: If both @BindingSide and @BindingLength are specified,
@BindingSide has precedence.
Default value is from: @BindinglLength, unless a non-empty BindList was
specified.
Allowed value is from: » Edge.
BindingType ? Enumera- Describes the desired binding for the job.
Modified in JDF 1.2 tionSpan Allowed value is from: » BindingType.
CoverColor ? Enumera- Defines the color of the cover material of the binding.
tionSpan Allowed value is from: » NamedColor.
CoverColorDetails ? | StringSpan A more specific, specialized or site-defined name for the color. If
New in JDF 1.4 CoverColorDetails is supplied, CoverColor SHOULD also be supplied.
AdhesiveNote ? element Details of AdhesiveNote binding.
New in JDF 1.6
AdhesiveBinding ? element Details of AdhesiveBinding. Replaced with SoftCoverBinding in JDF 1.1.
Deprecated in JDF 1.1
BindList ? element Details of binding of individual child Component resources.
New in JDF 1.1
BookCase ? element Details of the book case. Used in combination with AdhesiveBinding,
Deprecated in JDF 1.1 ThreadSewing or ThreadSealing. Replaced with HardCoverBinding in JDF 1.1.
ChannelBinding ? element Details of ChannelBinding.
CoilBinding ? element Details of CoilBinding.
EdgeGluing ? element Details of EdgeGluing.
New in JDF 1.1
HardCoverBinding ? | element Details of HardCoverBinding.
New in JDF 1.1
I;lasticCombBinding element Details of PlasticCombBinding.
RingBinding ? element Details of RingBinding.

296

JDF SPECIFICATION 1.7

BINDINGINTENT

Table 7.20: Bindingintent Resource (Sheet 3 of 3)

NAME DATA TYPE DESCRIPTION
SaddleStitching ? element Details of SaddleStitching.
SideSewing ? element Details of SideSewing.
SideStitching ? element Details of SideStitching.
SoftCoverBinding ? element Details of SoftCoverBinding.
New in JDF 1.1
StripBinding ? element Details of StripBinding.
New in JDF 1.1
Tabs ? element Details of Tabs.
Tape ? element Details of Tape binding.
New in JDF 1.1
ThreadSealing ? element Details of ThreadSealing.
ThreadSewing ? element Details of ThreadSewing.
VeloBinding ? element Details of VeloBinding. Renamed to StripBinding in JDF 1.1.
Deprecated in JDF 1.1
WireCombBinding ? | element Details of WireCombBinding.

7.3.1 AdhesiveNote

New in JDF 1.6

Details of adhesive note binding.
Table 7.21: AdhesiveNote Element

DATA TYPE DESCRIPTION
GlueLine ? element GlueLine provides details of the shape of the glue application and type of glue
used.
7.3.2 BindList
New in JDF 1.1

BindList is used to describe complex bindings where more than one child is bound into a cover (e.g., in promotional prod-
ucts).

Table 7.22: BindList Element

DATA TYPE DESCRIPTION
BindIltem * element Individual bind item description.
7.3.3 Bindltem
New in JDF 1.1

A child BindItem is bound to a parent item. The position of the spine of the child Binditem is defined by @ChildFolio and
the position of the child Binditem in the parent is defined by @ParentFolio.

Table 7.23: Bindltem Element (Sheet 1 of 2)

DATA TYPE DESCRIPTION
BindingType ? Enumera- Describes the desired binding for the individual BindItem.
tionSpan Default value is from: Bindingintent.

Allowed value is from: » BindingType.

JDF SPECIFICATION 1.7 297

PRODUCT INTENT

Table 7.23: Bindltem Element (Sheet 2 of 2)

NAME DATA TYPE DESCRIPTION

ChildFolio ? XYPair Definition of the fold between two pages in the Binditem component that is
bound to the cover. The two numbers (as integers) in the @ChildFolio attri-
bute are the page numbers of the two outer pages of the child Component
which touch the cover or another parent Component. The pages are counted in
the order as described in Layoutintent/@ FolioCount of the child product.
Defaults to the spine of the child.

ParentFolio XYPair Definition of the fold between two pages in the cover Component that receive
the Binditem. The two numbers (as integers) in the @ParentFolio attribute are
the page numbers in the cover Component which touch the child Component.
The pages are counted in the order as described in Layoutintent/@ FolioCount
of the cover product.

Transformation ? matrix Rotation and offset between the Component to be inserted and the parent
Component. For details on transformations, see » Section 2.6.2 Coordinates
and Transformations.

WrapPages ? Inte- List of pages of the cover that wrap around a Bindltem after all folds are

gerRangeList | applied. It is sufficient to specify the pages of the "Front" partition of the cover
(e.g. cover pages 1and 4).
Note: This attribute SHALL NOT be specified if the position of the cover can be
derived from the folding information.

ChannelBinding ? element Details of ChannelBinding.

CoilBinding ? element Details of CoilBinding.

EdgeGluing ? element Details of EdgeGluing.

HardCoverBinding ? | element Details of HardCoverBinding.

PlasticCombBinding | element Details of PlasticCombBinding.

?

RingBinding ? element Details of RingBinding.

SaddleStitching ? element Details of SaddleStitching.

SideSewing ? element Details of SideSewing.

SideStitching ° element Details of SideStitching.

SoftCoverBinding ? element Details of SoftCoverBinding.

StripBinding ? element Details of StripBinding.

Tabs ? element Details of Tabs.

Tape ? element Details of Tape binding.

ThreadSealing ? element Details of ThreadSealing.

ThreadSewing ? element Details of ThreadSewing.

WireCombBinding ¢ | element Details of WireCombBinding.

7.3.4 AdhesiveBinding

Deprecated in JDF 1.1

7.3.5 BookCase
Deprecated in JDF 1.1

298

JDF SPECIFICATION 1.7

BINDINGINTENT

7.3.6 ChannelBinding

Table 7.24: ChannelBinding Element

NAME DATA TYPE DESCRIPTION
ChannelBrand ? StringSpan Strings providing available brand names for the ChannelBinding.
New in JDF 1.3
Cover ? OptionSpan If "true", the clamp used in ChannelBinding includes a preassembled cover.
Thickness ? NumberSpan | Specifies thickness of board that is wrapped as front and back covers of a case
bound book, in points.

7.3.7 CoilBinding

Table 7.25: CoilBinding Element

NAME DATA TYPE DESCRIPTION
CoilBrand ? StringSpan Strings providing available brand names for the coil.
New in JDF 1.3
CoilMaterial ? Enumera- The coil materials available for CoilBinding.
tionSpan Allowed value is from: » BinderMaterial.
HoleType ? Enumera- Predefined hole pattern that matches the binder. For details of the hole types,
New in JDF 1.6 tionSpan see the values.
Allowed value is from: » Appendix] Hole Pattern Catalog.
HoleList ? refelement Details of the holes for coil binding,
New in JDF 1.2

7.3.8 EdgeGluing
New in JDF 1.1

Table 7.26: EdgeGluing Element

DATA TYPE DESCRIPTION
EdgeGlue ? Enumera- Glue type used to glue the edge of the gathered sheets.
tionSpan Allowed value is from: » Glue.

7.3.9 HardCoverBinding
New in JDF 1.1

Table 7.27: HardCoverBinding Element (Sheet 1 of 2)

NAME DATA TYPE DESCRIPTION
BlockThreadSewing | OptionSpan Specified if the block is thread sewn.
?
CoverStyle ? NameSpan Defines the style of the cover board.
New in JDF 1.3 Values include:
Simple — Single layer cover board, see » Figure 7-1: Structure of a normal
hardcover book.
Padded — Padded cover board, see » Figure 7-2: Structure of a padded
hardcover book.
EndSheets ? OptionSpan Specified if end sheets are applied. Additional details of the EndSheets MAY be
specified by supplying an input Component with @ProcessUsage with
@ProductType="EndSheet".

JDF SPECIFICATION 1.7 299

PRODUCT INTENT

Table 7.27: HardCoverBinding Element (Sheet 2 of 2)

NAME DATA TYPE DESCRIPTION
HeadBands ? OptionSpan The following case binding choice specifies the use of head bands on a case
bound book. If "true", head bands are inserted both top and bottom.
HeadBandColor ? Enumera- Defines the color of the head band.
tionSpan Allowed value is from: » NamedColor.
HeadBandColorDeta | StringSpan A more specific, specialized or site-defined name for the color. If
ils ? HeadBandColorDetails is supplied, HeadBandColor SHOULD also be supplied.
New in JDF 1.4
Jacket ? Enumera- Specifies whether a hardcover jacket is needed and how it is attached. Details
tionSpan of the jacket MAY be described in the Component with @ProcessUsage "Jacket".
Allowed values are:
None — No jacket is needed.
Loose — The jacket is loosely wrapped.
Glue — The jacket is glued to the spine.
JacketFoldingWidth | NumberSpan | Dimension of the jacket folds. See JacketingParams for details.
?
New in JDF 1.3
JapanBind ? OptionSpan Bind the book block at the open edge, so that the folds are visible on the out-
side. If not specified, explicitly, this option is never selected.
SpineBrushing ? OptionSpan Brushing option for SpinePreparation.
SpineFiberRoughing | OptionSpan Fiber roughing option for SpinePreparation.
?
SpineGlue ? Enumera- Glue type used to glue the book block to the cover.
tionSpan Allowed value is from: » Glue.
Spinelevelling ? OptionSpan Leveling option for SpinePreparation.
SpineMilling ? OptionSpan Milling option for SpinePreparation.
SpineNotching ? OptionSpan Notching option for SpinePreparation.
SpineSanding ? OptionSpan Sanding option for SpinePreparation.
SpineShredding ? OptionSpan Shredding option for SpinePreparation.
StripMaterial ? Enumera- Spine taping strip material.
tionSpan Allowed values are from: » StripMaterial.
Thickness ? NumberSpan | Specifies the thickness of the board that is wrapped as front and back covers
of a case bound book, in points.
TightBacking ? Enumera- Definition of the geometry of the back of the book block.
tionSpan Allowed value is from: » TightBacking.
RegisterRibbon * refelement Number, materials, colors and details of register ribbons.

300

JDF SPECIFICATION 1.7

BINDINGINTENT

Figure 7-1: Structure of a normal hardcover book

cover spine cover
board board board

cover
material

Figure 7-2: Structure of a padded hardcover book

cover
material

7.3.10 PlasticCombBinding
Table 7.28: PlasticCombBinding Element (Sheet 1 of 2)

DATA TYPE DESCRIPTION

CombBrand ? StringSpan Strings providing available brand names for the plastic comb.
New in JDF 1.3

JDF SPECIFICATION 1.7 301

PRODUCT INTENT

Table 7.28: PlasticCombBinding Element (Sheet 2 of 2)

NAME DATA TYPE DESCRIPTION
PlasticCombType ° NameSpan The distance between the “teeth” in PlasticCombBinding and the distance
Modified in JDF 1.1 between the holes of the pre-punched leaves SHALL be the same. The follow-
ing values from the hole type catalog in » Appendix] Hole Pattern Catalog
exist:
Values include:
P12m-rect-02 — Distance = 12 mm; Holes = 7 mm X 3 mm
P16_9i-rect-0t — Distance = 14.28 mm; Holes = 8 mm X 3 mm
Euro — Distance = 12 mm; Holes = 7 mm x 3 mm Deprecated in JDF 1.1
USA1 — Distance = 14.28 mm; Holes = 8 mm X 3 mm. Deprecated in JDF 1.1
HoleType ? Enumera- Predefined hole pattern that matches the binder. For details of the hole types,
New in IDF 1.6 tionSpan see the values.
Allowed value is from: » Appendix] Hole Pattern Catalog.
Holelist ? element Details of the holes for the plastic comb. Note that @Shape is always rectan-
N ia IR gular by design of the plastic combs.

7.3.11 RingBinding

Table 7.29: RingBinding Element (Sheet 1 of 2)

NAME

BinderBrand ?
New in JDF 1.3

DATA TYPE

StringSpan

DESCRIPTION

Strings providing available brand names for RingBinding.

BinderMaterial ?

NameSpan

The following describe RingBinding binder materials used.

Values include:

Cardboard — Cardboard with no covering.

ClothCovered — Cardboard with cloth covering.

Plastic — Binder cover fabricated from solid plastic sheet material (e.g., PVC
sheet).

VinylCovered — Cardboard with colored vinyl covering.

HoleType ?
New in JDF 1.1

Enumera-
tionSpan

Predefined hole pattern for the ring system. Multiple hole patterns are not
allowed (e.g., 3-hole ring binding and 4-hole ring binding holes on one piece
of media). For details of the hole types, see the values.

Allowed value is from: » Appendix] Hole Pattern Catalog.

RingDiameter ?

NumberSpan

Size of the rings in points. The value used in production SHALL be suitable for
specified values of HoleType. Note that in ring shapes other than round, this
size is specified by industry-standard method.

RingMechanic ?

OptionSpan

The ring binder used includes a lever for opening and closing.

RingShape ?

NameSpan

RingBinding shapes.
Values include:
Round

Oval

D-shape

SlantD

RingSystem ?
Deprecated in JDF 1.1

NameSpan

Values include:

2HoleEuro

3HoleUS

4HoleEuro

Deprecation note: Starting with JDF 1.1, use HoleType.

RivetsExposed ?

OptionSpan

The following RingBinding choice describes mounting of the ring mechanism
in binder case.

If "true", the heads of the rivets are visible on the exterior of the binder. If
"false", the binder covering material covers the rivet heads.

JDF SPECIFICATION 1.7

BINDINGINTENT
Table 7.29: RingBinding Element (Sheet 2 of 2)

NAME DATA TYPE DESCRIPTION

ViewBinder ? NameSpan The values are RingBinding clear vinyl outer wrap types and are used on top of

a colored base wrap.

Values include:

Embedded — Printed material is embedded by sealing between the colored and
clear vinyl layers during binder manufacturing.

Pocket — Binder is designed so that printed material can be inserted between
the color and clear vinyl layers after binder manufacturing.

7.3.12 SaddleStitching

Table 7.30: SaddleStitching Element

NAME DATA TYPE DESCRIPTION
StapleShape ? Enumera- Specifies the shape of the staples to be used.
New in JDF 1.6 tionSpan Allowed value is from: » StapleShape.
StitchNumber ? IntegerSpan Number of stitches used for saddle stitching.
New in JDF 1.1

7.3.13 SideSewing
This is a placeholder that might be filled with private or future data.

Table 7.31: SideSewing Element

DATA TYPE DESCRIPTION

7.3.14 SideStitching

Table 7.32: SideStitching Element

NAME DATA TYPE DESCRIPTION
StapleShape ? Enumera- Specifies the shape of the staples to be used.
New in JDF 1.6 tionSpan Allowed value is from: » StapleShape.
StitchNumber ? IntegerSpan Number of stitches used for side stitching.
New in JDF 1.2

7.3.15 SoftCoverBinding
New in JDF 1.1

Table 7.33: SoftCoverBinding Element (Sheet 1 of 2)

NAME DATA TYPE DESCRIPTION

l?slockThreadSewing OptionSpan Specifies whether the block is also thread sewn.

EndSheets ? OptionSpan Specified if end sheets are applied. Additional details of the end sheets MAY

New in JDF 1.3 be specified by supplying an input Component with
@ProcessUsage="EndSheet".

FoldingWidth ? NumberSpan | Definition of the dimension of the folding width of the front cover fold. See

New in JDF1.3 JacketingParams for details.

JDF SPECIFICATION 1.7 303

PRODUCT INTENT

Table 7.33: SoftCoverBinding Element (Sheet 2 of 2)

NAME DATA TYPE DESCRIPTION

FoldingWidthBack ? | NumberSpan | Definition of the dimension of the folding width of the back cover fold. If not

e e specified, FoldingWidthBack defaults to FoldingWidth.
GlueProcedure ? Enumera- Glue procedure used to glue the book block to the cover.
tionSpan Allowed values are:
Spine

SideOnly — Glued at the side or end sheets but not at the spine. "SideOnly"
books are also referred to as “layflat” if EndSheets is also specified. See
» Figure 7-3: Structure of a book with GlueProcedure = "SideOnly"
(Layflat).

SingleSide — Swiss brochure.

SideSpine — Both side gluing and spine gluing.

Scoring ? Enumera- Scoring option for SoftCoverBinding. Values are based on viewing the cover in
tionSpan its flat, pre-bound state.

Allowed values are:
TwiceScored
QuadScored

None

SpineBrushing ? OptionSpan Brushing option for SpinePreparation.

SpineFiberRoughing | OptionSpan Fiber roughing option for SpinePreparation.
?

SpineGlue ? Enumera- Glue type used to glue the book block to the cover.
tionSpan Allowed value is from: » Glue.

Spinelevelling ? OptionSpan Leveling option for SpinePreparation.

SpineMilling ? OptionSpan Milling option for SpinePreparation.

SpineNotching ? OptionSpan Notching option for SpinePreparation.

SpineSanding ? OptionSpan Sanding option for SpinePreparation.

SpineShredding ? OptionSpan Shredding option for SpinePreparation.

Figure 7-3: Structure of a book with GlueProcedure = "SideOnly" (Layflat)

7.3.16 StripBinding
New in JDF 1.1

Table 7.34: StripBinding Element (Sheet 1 of 2)

NAME DATA TYPE DESCRIPTION
HoleType ? Enumera- Predefined hole pattern that matches the binder. For details of the hole types,
New in JDF 1.6 tionSpan see the values.

Allowed value is from: » Appendix] Hole Pattern Catalog.

304 JDF SPECIFICATION 1.7

BINDINGINTENT

Table 7.34: StripBinding Element (Sheet 2 of 2)

DATA TYPE DESCRIPTION
Holelist ? refelement Note that @Shape is always round by design of the strip poles.
New in JDF 1.2
7.317 Tabs

Specifies tabs in a bound document.

Table 7.35: Tabs Element

NAME DATA TYPE DESCRIPTION
TabBanks="1" integer Number of rows of tabs on the face of the book.
Deprecated in JDF 1.4 Deprecation note: Starting with JDF 1.4, @ TabBanks should be calculated
from @TabCount and @ TabsPerBank.
TabBrand ? StringSpan Strings providing available brand names for the Tabs.
New in JDF 1.3
TabCount ? integer Number of tabs across all banks. If @ TabsPerSet is not an even multiple of
New in JDF 1.4 @TabsPerBank, the last bank in each set is partially filled.
TabsPerBank ? integer Number of equal-sized tabs in a single bank if all positions were filled. Note that

banks can have tabs only in some of the possible positions

Tal%ExtensionDistan NumberSpan | Distance tab extends beyond the body of the book block, in points.
ce ¢

TabExtensionMylar | OptionSpan If "true", the tab extension will be mylar reinforced.

?

TabBindMylar ? OptionSpan If "true", the tab bind edge will be mylar reinforced.

TabBodyCopy ? OptionSpan If "true", color will be applied not only on tab extension, but also on tab body.

Note: The lack of body copy allows all tabs within a bank to be printed on a
single sheet.

TabMylarColor ? Enumera- Specifies the color of the mylar used to reinforce the tab extension. This is
tionSpan conditional on TabExtensionMylar being "true".

Allowed value is from: » NamedColor

TabMylarColorDetai | StringSpan A more specific, specialized or site-defined name for the color. If
Is? TabMylarColorDetails is supplied, TabMylarColor SHOULD also be supplied.
New in JDF 1.4

7.3.18 Tape

New in JDF 1.1

Table 7.36: Tape Element

DATA TYPE DESCRIPTION
TapeColor ? Enumera- Defines the color of the tape material of the binding.
Deprecated in JDF 1.4 | tionSpan Allowed value is from: » NamedColor.

Deprecation note: Starting with JDF 1.4, use Bindinglntent/@BindingColor.

7.3.19 ThreadSealing
This is a placeholder that might be filled with private or future data.
Table 7.37: ThreadSealing Element

DATA TYPE DESCRIPTION

JDF SPECIFICATION 1.7 305

PRODUCT INTENT

7.3.20 ThreadSewing
Table 7.38: ThreadSewing Element

DATA TYPE DESCRIPTION

Sealing ? OptionSpan If "true", thermo-sealing is needed in ThreadSewing.

7.3.21 WireCombBinding
Table 7.39: WireCombBinding Element

NAME DATA TYPE DESCRIPTION
WireCombBrand ? StringSpan Strings providing available brand names for the WireCombBinding.
New in JDF 1.3
WireCombMaterial ? | Enumera- The material used for forming the WireCombBinding.
tionSpan Allowed values are:
Steel-Silver

ColorCoatedSteel

WireCombShape ? NameSpan The shape of the wire comb.

Modified in JDF 1.6 Allowed value is from: » Comb and Coil Shapes.

HoleType ? Enumera- Predefined hole pattern that matches the binder. For details of the hole types,
New in IDF 1.6 tionSpan see the values.

Allowed value is from: » Appendix] Hole Pattern Catalog.

Holelist ? refelement Details of the holes for the wire comb.
New in JDF 1.2

7.4 Colorintent

This resource specifies the type of ink to be used. Typically, the parameters consist of a manufacturer name and addi-
tional identifying information. The resource also specifies any coatings and colors to be used, including the process color
model and any spot colors.

In addition to the printed images, Colorintent also provides details of protective or gloss enhancing coatings. Customers

may either specify the performance characteristic they desire in the coating or specify a coating type. Common examples

are water-resistance, and rub-resistance. Both characteristics may be required at the same time. An example is in the

wine industry, where the white wine label has to survive transport rubbing, followed by water and rubbing ice cubes in

a bucket upon serving.

Resource Properties

Process Resource Pairing: Color, ColorantControl, ColorCorrectionParams, ColorPool, ColorSpaceConversionParams, Ink,
VarnishingParams

Example Partition: "Option", "PageNumber", "Side"

Table 7.40: Colorintent Resource (Sheet 1 of 3)

DATA TYPE DESCRIPTION

Coatings ? StringSpan Material usually applied to a full surface on press as a protective or gloss-
Modified in JDF 1.5 enhancing layer over ink.

Value includes those from: » Ink and Varnish Coatings.

306 JDF SPECIFICATION 1.7

COLORINTENT

Table 7.40: Colorintent Resource (Sheet 2 of 3)

NAME

ColorICCStandard ?
New in JDF 1.2

DATA TYPE

StringSpan

DESCRIPTION

ColoriCCStandard can be used to identify a specific standard printing condi-

tion, by reference to characterization data registered with the ICC, see

» [Characterization Data]. This printing condition reference corresponds to

the output intent characterization referencing capability in PDF/X. The syn-

tax will be reference name as shown in the examples below. Reference name
is the standard reference string name used in both JDF and PDF/X, defined
for each printing condition in the characterization registry on the ICC web-
site.

Allowed values include:

FOGRAT1 — Registered by FOGRA pertaining to offset commercial and specialty
printing according to » [1SO12647-2:2013], positive plates, paper type 1
(gloss-coated, above 70 g/m?) and paper type 2 (matte-coated, above 70
g/m?), screen frequency 60/cm. Appropriate for black-backing measure-
ment.

FOGRA15 — Registered by FOGRA pertaining to offset commercial and spe-
cialty printing according to » [ISO12647-2:2013], positive plates, paper
type 1 (gloss-coated, above 70 g/m?) and paper type 2 (matte-coated,
above 70 g/m?), screen frequency 60/cm. Appropriate for self-backing
measurement.

CGATS TROO1 — pertaining to printing conditions that conform to ANSI
CGATS.6, which addresses publication printing in the US as defined by
SWOP.

Note: If both of ColoriCCStandard or are specified, the union of the two is spec-

ified. If both of ColoriCCStandard and ColorStandard are specified, then

ColoriCCStandard defines the ICC specific details, whereas ColorStandard de-

fines the generic color standard.

ColorStandard ?
Modified in JDF 1.2

NameSpan

The color process (i.e., printing condition) requested for the job.
ColorStandard does not imply values for ColorsUsed. For instance, if
ColorStandard is "CMYK", ColorsUsed SHALL still contain the four process
colors "Cyan", "Magenta", "Yellow" and "Black". If both of ColorIiCCStandard and
ColorStandard are specified, then ColoriCCStandard defines the ICC specific
details, whereas ColorStandard defines the generic color standard.

Allowed value is from: » Table 7.41 ColorStandard Attribute Values.

Coverage ?

NumberSpan

Cumulative colorant coverage percentage. For example, a full sheet of 100%
deep black in CMYK has Coverage/@Actual="400". Typical coverages based on
one color plane are:

Light — 1-9%

Medium — 10-35%

Heavy — 36+%

InkManufacturer ?
Deprecated in JDF 1.2

NameSpan

Name of the manufacturer of the ink requested (e.g., "ACMEInk",
"CIP4_Ink_Company", etc.).

NumColors ?
New in JDF 1.5

integer

@NumColors specifies the number of colors (Inks) used for a product. A value
of 0 implies no printing. A value of 1 implies black. A value of 4 implies CMYK.
Spot colors SHALL be specified in ColorsUsed.

If both @NumColors and ColorsUsed are specified, the sum of both is
requested (e.g., @NumColors="4" and ColorsUsed/SeparationSpec/
@Name="Spot1" defines a CMYK product with one additional spot color).

Certification *
New in JDF 1.7

element

Each Certification SHALL specify a minimum requested ink certification level.
If more than one Certification is present, at least one of the ink certification
levels SHALL be met.

ColorPool ?
New in JDF 1.1

refelement

Additional details about the colors used. The ColorPool resource may include
some or all details about both ColorsUsed separation spot colors, spot colors
contained in job files that will be printed using process color equivalents and
the ColorStandard process colors.

JDF SPECIFICATION 1.7 307

PRODUCT INTENT

Table 7.40: Colorintent Resource (Sheet 3 of 3)

DATA TYPE

DESCRIPTION

ColorsUsed ? element Array of colorant separation names that are requested. If not specified, the
values are implied from ColorStandard. If specified, ColorsUsed SHALL con-
tain a list of all separation names used by the job.

Note: If additional information about the colors and colorants is needed, it can

be specified in the referenced ColorPool resource.

Table 7.41: ColorStandard Attribute Values

VALUE DESCRIPTION

CMYK Generic four color process.

FIRST Flexographic Image Reproduction Specifications & Tolerances.

GRACOL General Requirements for Applications in Commercial Offset Lithography
Hexachrome 6 colors "CMYK" + "Orange" and "Green".

HIFI 7 colors "CMYK" + "Red", "Green" and "Blue".

1S012647 » [1SO12647-2:2013] offset standard.

Deprecated in JDF 1.2

JapanColor2001 Japan Color 2001 standard » [japancolor].
Monochrome Generic single color printing condition (e.g., black and white or one single spot color).
None No marks. Used to define one-sided printing.

Deprecated in JDF 1.2

Deprecation note: Starting with JDF 1.2, use Layoutintent/@Sides instead.

SNAP

Specifications for Newsprint Advertising Production

SWOP

Specifications for Web Offset Publications. Registered by ANSI with the ICC as ICC:CGATS
TRoo1 pertaining to printing conditions that conform to ANSI CGATS.6 which is based
on publication printing in the US as defined by SWOP, Inc.

1.5 Deliverylntent

Summarizes the options that describe pickup or delivery time and location of the PhysicalResources of a job. It also de-
fines the number of copies that are requested for a specific job or delivery. This includes delivery of both final products
and of proofs. Deliveryintent MAY also be used to describe the delivery of intermediate products such as partial products
in a subcontracting description

Resource Properties

Process Resource Pairing: Address, DeliveryParams
Example Partition: "Option"

Table 7.42: Deliveryintent Resource (Sheet 1 of 3)

NAME DATA TYPE DESCRIPTION

Accepted ? boolean
Deprecated in JDF 1.3

The quote that is specified by this Deliveryintent has been accepted.
Deprecation note: Starting with JDF 1.3, contract negotiation information has
been removed and will be handled by the business wrapper around JDF (e.g.,

PrintTalk).
AdditionalAmount= integer Number of components used to calculate the value of the @AdditionalPrice
"" attribute in the Pricing. This value applies to the number of additional items
New in JDF 1.2 in one Dropintent/Dropltemintent and not to the total additional number of

items.

In JDF 1.3 and beyond, pricing information has been removed and will be
handled by the business wrapper around JDF (e.g., PrintTalk).

Deprecated in JDF 1.3

BuyerAccount ? string Account ID of the buyer with the delivery service.

308 JDF SPECIFICATION 1.7

DELIVERYINTENT

Table 7.42: Deliverylntent Resource (Sheet 2 of 3)

NAME DATA TYPE DESCRIPTION

DeliveryCharge ? Enumera- Specifies who pays for a delivery being made by a third party.

New in JDF 1.1 tionSpan Allowed value is from: » DeliveryCharge.

Modified in JDF 1.2

Earliest ? TimeSpan Specifies the earliest time after which the transfer SHALL be made. Within an
RFQ or a quote, at most one of Earliest or EarliestDuration SHALL be specified.

EarliestDuration ? DurationSpan | Specifies the earliest time by which the transfer SHALL be made relative to
the date of the purchase order. Within an RFQ_or a quote, at most one of
Earliest or EarliestDuration SHALL be specified. Within a purchase order,
EarliestDuration SHALL NOT be specified.

Method ? NameSpan Specifies a delivery method, which can be a generic method.

Modified in JDF 1.5 Value includes those from: » Delivery Methods.

Overage ? NumberSpan | Percentage value that defines the acceptable upwards variation of @Amount.
Defaults to the trade custom defaults as defined by PIA, BVD, etc.

Ownership="0rigin" enumeration | Point of transfer of ownership:

Allowed values are:
Origin — Ownership of goods is transferred upon leaving point of origin.
Destination — Ownership is transferred upon receipt at destination.

Pickup ? boolean Specifies whether the delivery brings or picks up the merchandise.

Deprecated in JDF 1.1 If @Pickup="false", the drop is delivered to the address specified in Company.
If @Pickup="true", the Deliveryintent describes an input to the job (e.g., a CD
for inserting, a preprinted cover, etc.). In this case Company describes the
location where the merchandise is picked up.

Required ? TimeSpan Specifies the time by which the transfer SHALL be made. Within an RFQ or a
quote, exactly one of Required or RequiredDuration SHALL be specified.

RequiredDuration ? | DurationSpan | Specifies the time by which the transfer SHALL be made relative to the date
of the purchase order. Within an RFQ or a quote, exactly one of Required or
RequiredDuration SHALL be specified. Within a purchase order,
RequiredDuration SHALL NOT be specified.

ReturnMethod ? NameSpan Specifies a delivery method for returning the surplus material and SHALL

New in JDF 11 NOT be specified unless SurplusHandling="Return".

Value includes those from: » Delivery Methods.

Servicelevel ? StringSpan The service level of the specific carrier.

New in JDF 1.2 Value includes those from: » Service Levels.

SurplusHandling ? Enumera- Describes what SHALL happen with unused or redundant parts of the transfer

New in JDF 11 tionSpan specified with Transfer="BuyerToPrinterDeliver" or "BuyerToPrinterPickup" after
the job. The return delivery or pickup address is specified by
Contact[contains (@ ContactTypes, "SurplusReturn")].

Allowed value is from: » SurplusHandling.

Transfer ? Enumera- Describes the direction and responsibility of the transfer.

New in JDF 1.1 tionSpan Allowed value is from: Drop/Transfer.

Underage ? NumberSpan | Percentage value that defines the acceptable downwards variation of @Amount.
Defaults to the trade custom defaults as defined by PIA, BVD, etc. The value SHALL
be nonnegative.

Company ? refelement Address and further information of the addressee.

Deprecated in JDF 1.1 In JDF 1.1 and beyond, Company is referenced from Contact.

Contact * refelement Address and further information of the Contact responsible for the transfer.

New in JDF 11 The actual delivery address is specified as the Contact[contains

(@ContactTypes, "Delivery")]/Address. The actual pickup address is specified
as the Contact[contains (@ ContactTypes, "Pickup")]/Address. At most one
Contact [contains (@ContactTypes, X)] SHALL be specified for X equal to
"Delivery", "Pickup" or "Billing".

JDF SPECIFICATION 1.7 309

PRODUCT INTENT

Table 7.42: Deliverylntent Resource (Sheet 3 of 3)

NAME DATA TYPE DESCRIPTION

Dropintent + element Includes all locations where the product will be delivered. Note that multiple
Droplintent elements specify multiple deliveries and not options for delivery.

FileSpec refelement Reference to a document to that SHALL be printed and packaged together

(DeliveryContents) ? with the delivered items of this Drop.

New in JDF 1.6

FileSpec refelement A FileSpec resource pointing to a mailing list. The format of the referenced

(MailingList) ? mailing list is implementation dependent.

Pricing ? element Pricing elements that define the pricing of the complete Deliveryintent

Deprecated in JDF 1.3

including any Droplintent or Dropltemintent elements that MAY contain fur-
ther Pricing elements.

In JDF 1.3 and beyond, pricing information has been removed and will be
handled by the business wrapper around JDF (e.g., PrintTalk).

7.5.1 Droplintent

This element contains information about the intended individual drop of a delivery. Attributes that are specified in a
Dropintent element override those that are specified in their parent Deliveryintent element. If OPTIONAL values are not
specified, they default to the values specified in the Deliveryintent.

Table 7.43: Droplintent Element (Sheet 1 of 2)

NAME DATA TYPE DESCRIPTION

AdditionalAmount ? | integer Number of components used to calculate the value of the @AdditionalPrice

New in JDF 1.2 attribute in the Pricing. This value applies to the number of additional items

- ted in JDF13 in one Dropintent/Dropltemintent and not to the total additional number of

eprecatedin ' items. If not specified, defaults to the value of Deliveryintent/

@AdditionalAmount.
In JDF 1.3 and beyond, pricing information has been removed and will be
handled by the business wrapper around JDF (e.g., PrintTalk).

BuyerAccount ? string Account ID of the buyer with the delivery service.

New in JDF 1.2 Default value is from: Deliveryintent/@BuyerAccount

DropID ? string Dropintent elements with the same @DropID are part of the same drop. This

New in JDF 1.5 attribute is provided to allow items from multiple individual JDF jobs to be
delivered in one drop.

Earliest ? TimeSpan Specifies the earliest time after which the transfer SHALL be made. Within an
RFQ or a quote, at most one of Earliest or EarliestDuration SHALL be specified.

EarliestDuration ? DurationSpan | Specifies the earliest time by which the transfer SHALL be made relative to
the date of the purchase order. Within an RFQ_or a quote, at most one of
Earliest or EarliestDuration SHALL be specified. Within a purchase order,
EarliestDuration SHALL NOT be specified.

Method ? NameSpan Specifies a delivery method.

Modified in JDF 1.5 Value includes those from: » Delivery Methods.

Pickup ? boolean If "true", the merchandise is picked up.

Deprecated in JDF 1.1 If @Pickup="false", the Dropintent is delivered to the address specified in
Company.
If @Pickup="true", the Dropintent describes an input to the job (e.g., a CD for
inserting, a preprinted cover, etc.). In this case, Company describes the loca-
tion where the merchandise is picked up.

Required ? TimeSpan Specifies the time by which the delivery SHALL be made. Within an RFQ_or a

quote, at most one of Required or RequiredDuration SHALL be specified.

JDF SPECIFICATION 1.7

DELIVERYINTENT

Table 7.43: Droplintent Element (Sheet 2 of 2)

NAME DATA TYPE DESCRIPTION

RequiredDuration ? | DurationSpan | Specifies the time by which the delivery SHALL be made relative to the date
of the purchase order. Within an RFQ or a quote, at most one of Required or
RequiredDuration SHALL be specified. Within a purchase order,
RequiredDuration SHALL NOT be specified.

ReturnMethod ? NameSpan Specifies a delivery method for returning the surplus material, and SHALL

New in JDF 1.1 NOT be specified unless SurplusHandling="Return".
Default value is from: Deliveryintent/ReturnMethod.
Value includes those from: » Delivery Methods.

ServiceLevel ? StringSpan The service level of the specific carrier.

New in JDF 1.2 Value includes those from: » Service Levels.

SurplusHandling ? Enumera- Describes what SHALL happen with unused or redundant parts of the trans-

New in JDF 1.1 tionSpan fer.
Default value is from: DeliveryintentSurplusHandling.
Allowed value is from: » SurplusHandling.

Transfer ? Enumera- Describes the direction and responsibility of the transfer.

New in JDF 11 tionSpan Allowed value is from: Drop/@ Transfer.

Company ? refelement Address and further information of the addressee. In JDF 1.1 and beyond

Deprecated in JDF 1.1 Company is a subelement of Contact.

Contact * refelement Address and further information of the Contact responsible for the transfer.

New in JDF 11 The actual delivery address is specified as the Contact[contains
(@ContactTypes, "Delivery")]/Address. The actual pickup address is specified
as the Contact[contains (@ ContactTypes, "Pickup")]/Address. At most one
Contact[contains (@ ContactTypes, X)]/ SHALL be specified for X equal to
"Delivery", "Pickup" or "Billing". Defaults to the Deliveryintent/Contact.

Dropltemintent + element A Droplntent MAY consist of multiple products that are represented by their
respective PhysicalResource elements. Each Dropltemintent element describes
a number of individual resources that is part of this Droplintent.

FileSpec refelement Reference to a document to that SHALL be printed and packaged together

(DeliveryContents) ? with the delivered items of this Drop.

New in JDF 1.6

Pricing ? element Pricing element that defines the pricing of the Dropintent. In JDF 1.3 and

Deprecated in JDF 1.3

beyond, pricing information has been removed and will be handled by the
business wrapper around JDF (e.g., PrintTalk).

7.5.2 DropltemlIntent

Table 7.44: Dropltemintent Element (Sheet 1 of 2)

NAME DATA TYPE DESCRIPTION

AdditionalAmount ? | integer Number of components used to calculate the value of the @AdditionalPrice

Modified in JDF 1.2 attribute in the Pricing. If not specified, defaults to the value of Dropintent/

D : @AdditionalAmount.

eprecated in JDF 1.3
In JDF 1.3 and beyond, pricing information has been removed and will be
handled by the business wrapper around JDF (e.g., PrintTalk).

Amount ? integer Specifies the final number of resources delivered. If not specified, defaults to
the total amount of the resource that is specified by PhysicalResources or 1 if
this Dropltemintent specifies a proof. Note that Dropltemintent/@Amount cor-
responds semantically to Resourcelink/@ActualAmount and Dropltem/
@ActualAmount.

DropID ? string Dropltemintent elements with the same @DropID are part of the same drop.

New in JDF 1.5 This attribute is provided to allow items from multiple individual JDF jobs to

be delivered in one drop.

JDF SPECIFICATION 1.7 3n

PRODUCT INTENT

Table 7.44: Dropltemintent Element (Sheet 2 of 2)

NAME DATA TYPE DESCRIPTION

OrderedAmount ? integer Specifies the original number of resources ordered. If not specified, defaults
to the value of @Amount. Note that Dropltemintent/@ OrderedAmount corre-
sponds semantically to ResourceLink/@Amount and Dropltem/@Amount.

Proof ? string This Droplitemintent refers to a proof that is specified in a Proofitem of the
New in JDF 11 Proofinglntent of this product intent node.

Constraint: Proofingintent/Proofitem/@ProofName SHALL match @Proof.
Exactly one of PhysicalResource or @Proof SHALL be specified.

Unit ? string Unit of measurement for the @Amount specified in the PhysicalResources.

Deprecated in JDF 1.6 If not specified, then the value from the resource described by
PhysicalResource/@ Unit is used.

PhysicalResource ? | refelement Description of the individual item that is delivered.

Modified in JDF 1.1 Constraint: exactly one of PhysicalResource or @Proof SHALL be specified.

Note: PhysicalResource represents a resource that SHALL be an instance of a
PhysicalResource (e.g., Component).

Pricing ? element Pricing element that defines the pricing of the Dropitemintent.
Deprecated in JDF 1.3 Deprecation note: Starting with JDF 1.3, pricing information has been re-
moved and will be handled by the business wrapper around JDF (e.g., Print-
Talk).
7.5.3 Pricing

Deprecated in JDF 1.3

7.5.4 Payment
Deprecated in JDF 1.3

7.5.5 CreditCard
Deprecated in JDF 1.3

7.6 Embossingintent
New in JDF 1.1

This resource specifies the embossing and/or foil stamping intent for a JDF job using information that identifies whether
the product is embossed or stamped, and if desired, the complexity of the affected area.

Resource Properties
Process Resource Pairing: EmbossingParams
Example Partition: "Option", "PageNumber", "Side"

Table 7.45: Embossinglntent Resource

DATA TYPE DESCRIPTION

Embossingltem + element Each embossed image is described by one Embossingltem.

7.6.1 Embossingltem

Table 7.46: Embossingltem Element (Sheet 1 of 2)

NAME DATA TYPE DESCRIPTION
Direction Enumera- The direction of the image.
Maodified in JDF 1.3 tionSpan Allowed value is from: » EmbossDirection.
EdgeAngle ? NumberSpan | The angle of a beveled edge in degrees. Typical values are an angle of: 30, 40,
45, 50 or 60 degrees. If EdgeAngle is specified, EdgeShape="Beveled" SHALL be
specified.

312 JDF SPECIFICATION 1.7

FOLDINGINTENT

Table 7.46: Embossingltem Element (Sheet 2 of 2)

NAME DATA TYPE DESCRIPTION
EdgeShape ? Enumera- The transition between the embossed surface and the surrounding media can
tionSpan be rounded or beveled (angled).
Allowed values are:
Rounded
Beveled
EmbossingType StringSpan The embossing type required. The strings defined in EmbossingType are
Modified in JDF 1.4 whitespace separated combinations of the following tokens.
Allowed value is from: » EmbossType.
FoilColor ? Enumera- Defines the color of the foil material that is used for embossing.
tionSpan Allowed value is from: » NamedColor.
FoilColorDetails ? StringSpan A more specific, specialized or site-defined name for the color. If
New in JDF 1.4 FoilColorDetails is supplied, FoilColor SHOULD also be supplied.
FoilColorDetails SHOULD be used to specify specialized foil properties such as
holographic or transparent foils. Example combinations of FoeilColor and
FoilColorDetails include:
Holographic foils: @FoilColor="Silver" and @FoilColorDetails="Holographic".
Matte transparent foil: @FoilColor="White" and
@FoilColorDetails="TransparentMatte".
Height ? NumberSpan | The height of the levels. This value specifies the vertical distance between the
highest and lowest point of the stamp, regardless of the value of Direction.
ImageSize ? XYPairSpan The size of the bounding box of one single image.
Level ? Enumera- The level of embossing.
tionSpan Allowed value is from: » EmbossLevel.
Location ? enumeration | Position of the embossing on the product.
New in JDF 1.6 Allowed value is from: » Face.
Position ? XYPairSpan Position of the lower left corner of the bounding box of the embossed image
in the coordinate system of the surface of the Component that is selected by
@Location.
Separation ? string @Separation identifies the separation within the PDL whose color values
New in IDF 1.6 SHALL be used as the embossing values. A value of 0.0 in the PDL SHALL
' specify no embossing, a value of 1.0 in the PDL SHALL specify embossing
with full depth.
ToolName ? NMTOKEN Name of the embossing tool.
New in JDF 1.6

7.7 FoldinglIntent

This resource specifies the straight line folding, creasing and perforating of a product. Folds that are implied by binding
such as "F4-1" of a saddle stitched booklet SHALL NOT be specified. » Table 7.48 Product Folds illustrates some typical
product folds. See » Section 7.3 BindingIntent for additional details.

Resource Properties

Process Resource Pairing: CreasingParams, CuttingParams, Fold, FoldingParams, PerforatingParams

Example Partition:

"Option"

JDF SPECIFICATION 1.7 313

PRODUCT INTENT

Table 7.47: Foldinglntent Resource

NAME DATA TYPE DESCRIPTION

FoldingCatalog NameSpan Describes the folding scheme.

Note: The folding scheme in this context refers to the folding of the finished
product as seen after the cutting, not the folding, of the sheet as seen in pro-
duction. See Layoutintent/ @ Foliocount for a discussion of pagination of folded
end products.

See » Table 7.48 Product Folds for an illustration of typical product folding
schemes.

Value includes those from: » Fold Catalog.

FoldingDetails ? string @FoldingDetails is a system dependent descriptor of the folding.

New in JDF 1.6 @FoldingDetails MAY be used to differentiate differing fold dimensions with
the same general topology, such as asymmetrical Z-folds.

Folds ? XYPair Number of folds in x and in y direction. This attribute specifies the number of

Deprecated in JDF 1.1 folds seen in the sheet after folding, and not the number of fold operations

needed to achieve that result. If not specified, it SHALL be inferred from
@FoldingCatalog. If X and Y are the number of folds in the x and y directions,
respectively, the product 2*(X+1)*(Y+1) SHALL always match the n of "Fn-i"
of @FoldingCatalog.

Orientation? Enumera- @Orientation indicates the orientation of the unfolded product with respect to
New in JDF 1.6 tionSpan the lay of the fold. A value of "Rotate0" SHALL be mapped to the lay of the fold
on the lower left of the product prior to folding and the front side of the
product oriented in the direction of an upward fold.

Allowed value is from: » Orientation.

Fold * element This describes the details of folding operations in the sequence described by the value
New in JDF 11 of @FoldingCatalog. Fold SHALL be specified if non-symmetrical folds are
requested.

7.7.1 Typical Product Folds

The following figure illustrates some typical product folds.
Note: This list is not complete.

Table 7.48: Product Folds

FOLD CATALOG

VALUE DESCRIPTION
F2-1 No fold.
F4-1 Single fold.

314 JDF SPECIFICATION 1.7

Table 7.48: Product Folds

FOLD CATALOG

FOLDINGINTENT

VALUE DESCRIPTION
F6-1 Zigzag fold.
F6-3 Altar fold.
F6-4 Tri-fold.
F6-7 Z fold.
F8-2 Parallel fold.

JDF SPECIFICATION 1.7

315

PRODUCT INTENT

Table 7.48: Product Folds

FOLD CATALOG
VALUE

DESCRIPTION

F8-4 Gate fold.

F8-5 Barrel fold.

7.8 HoleMakinglntent

This resource specifies the hole making intent for a JDF job, using information that identifies the type of hole making
operation or alternatively, an explicit list of holes. This resource does not specify whether the media will be pre-drilled
or the media will be drilled or punched as part of making the product.

Resource Properties

Process Resource Pairing: Hole, HoleLine, HoleMakingParams, Media
Example Partition: "Option"

Table 7.49: HoleMakingintent Resource (Sheet