
Release 1.2

JJDDFF SSppeecciiff iiccaattiioonn

JDF Specification Release 1.2
Legal Notice

Use of this document is subject to the following conditions which are deemed accepted by any person or entity
making use hereof.

Copyright Notice
Copyright © 2000-2004, International Cooperation for the Integration of Processes in Prepress, Press and Postpress
(CIP4) with registered office in Zurich, Switzerland. All Rights Reserved. CIP4 hereby grants to any person or entity
obtaining a copy of the Specification and associated documentation files (the "Specification") a perpetual, worldwide,
non-exclusive, fully paid-up, royalty-free copyright license to use, copy, publish, distribute, publicly display, publicly
perform, and/or sublicense the Specification in whole or in part verbatim and without modification, unless otherwise
expressly permitted by CIP4, subject to the following conditions. This legal notice must be included in all copies con-
taining the whole or substantial portions of the Specification. Copies of excerpts of the Specification which do not
exceed five (5) pages must include the following short form Copyright Notice: Copyright © 2000-2004, International
Cooperation for the Integration of Processes in Prepress, Press and Postpress (CIP4) with registered office in Zurich,
Switzerland.

Trademarks and Tradenames
International Cooperation for the Integration of Processes in Prepress, Press and Postpress, CIP4, Job Description
Format, JDF and the CIP4 logo are trademarks of CIP4. Rather than put a trademark symbol in every occurrence of
other trademarked names, we state that we are using the names only in an editorial fashion, and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

Except as contained in this legal notice or as allowed by membership in CIP4, the name of CIP4 must not be used in
advertising or otherwise to promote the use or other dealings in this Specification without prior written authorization
from CIP4.

Waiver of Liability
The JDF Specification is provided as is, without warranty of any kind, express, implied, or otherwise,
including but not limited to the warranties of merchantability, fitness for a particular purpose and
noninfringement. In no event will CIP4 be liable for any claim, damages or other liability, whether in an action
of contract, tort or otherwise, arising from, out of, or in connection with the JDF Specification or the use or
other dealings in the JDF Specification.
Legal Notice i

Legal Notice
ii Legal Notice

JDF Specification Release 1.2
Table of Contents

Front Matter
 Legal Notice. i
 Table of Contents . iii
 List of Figures . xxvii

Chapter 1 Introduction . 1
1.1 Background on JDF . 1
1.2 Document References . 1
1.3 Conventions Used in This Specification . 2
1.3.1 Text Styles ... 2
1.3.2 XPath Notation Used in this Specification.. 3
1.3.3 Call-Outs .. 3
1.3.4 Specification of Cardinality... 4

1.4 Glossary of Terminology . 4
1.4.1 Conformance Terminology... 7
1.4.2 Conformance Requirements for JDF Entities .. 7
1.4.2.1 Conformance Requirements for Support of Attributes and Attribute Values..................... 7
1.4.2.2 Conformance Requirements for Support of Elements .. 8
1.4.2.3 Conformance Requirements for Support of Processes ... 8
1.4.2.4 Conformance Requirements for Support of Combined Processes...................................... 9
1.4.3 Conformance to SettingsPolicy.. 9

1.5 Data Structures . 9
1.6 Units . 11

Chapter 2 Overview of JDF . 13
2.1 System Components . 13
2.1.1 Job Components.. 13
2.1.1.1 Jobs and Nodes ... 13
2.1.1.2 Elements.. 13
2.1.1.3 Attributes .. 13
2.1.1.4 Relationships... 13
2.1.1.5 Links ... 14
2.1.2 Workflow Component Roles .. 14
2.1.2.1 Machines ... 14
2.1.2.2 Devices.. 14
2.1.2.3 Agents ... 14
2.1.2.4 Controllers .. 15
Table of Contents iii

Table of Contents
2.1.2.5 Management Information Systems—MIS .. 15
2.1.2.6 System Interaction .. 16

2.2 JDF Workflow . 16
2.2.1 Job Structure.. 17

2.3 Hierarchical Tree Structure and Networks in JDF . 19
2.4 Role of Messaging in JDF . 20
2.5 Coordinate Systems in JDF . 21
2.5.1 Introduction .. 21
2.5.2 How and Where Coordinates and Transformations Are Used/Defined in JDF.... 22
2.5.3 Coordinate Systems of Resources and Processes.. 23
2.5.3.1 Coordinate Systems of Combined Processes.. 23
2.5.3.2 Coordinate System Transformations .. 23
2.5.4 Product Example: Simple Brochure ... 25
2.5.5 General Rules .. 30
2.5.6 Homogeneous Coordinates ... 30

Chapter 3 Structure of JDF Nodes and Jobs . 33
3.1 JDF Nodes . 35
3.1.1 Generic Contents of JDF Elements ... 35
3.1.2 JDF Node Attributes and Elements.. 37
3.1.2.1 Common Node Types ... 42
3.1.3 Product Intent Nodes ... 43
3.1.4 Process Group Nodes.. 43
3.1.4.1 Use of the Types attribute in ProcessGroup nodes ... 44
3.1.4.2 Use of the NamedFeatures attribute in Product and ProcessGroup nodes........................ 44
3.1.4.3 ResourceLink Structure in ProcessGroup nodes .. 45
3.1.5 Combined Process Nodes ... 46
3.1.5.1 Combined Process Nodes with Multiple Processes of the Same Type............................. 46
3.1.5.2 Examples of Combined Process Nodes .. 47
3.1.6 Process Nodes... 47

3.2 AncestorPool . 48
3.3 Customer Information in CustomerInfo . 49
3.4 Node Information in NodeInfo . 51
3.5 StatusPool . 52
3.6 Resources . 53
3.6.1 Resource Classes.. 56
3.6.1.1 Parameter Resources... 56
3.6.1.2 Intent Resources.. 57
3.6.1.3 Implementation Resources.. 57
3.6.1.4 Physical Resources (Consumable, Quantity, Handling) ... 57
iv Table of Contents

JDF Specification Release 1.2
3.6.1.5 PlaceHolder Resources ... 59
3.6.2 Position of Resources within JDF Nodes... 59
3.6.3 Pipe Resources.. 59
3.6.4 ResourceUpdate Elements .. 59

3.7 Resource Links . 61
3.7.1 Links to Parameter Resources... 66
3.7.2 Links to Implementation Resources... 66
3.7.3 Links to Physical Resources.. 67
3.7.4 Links to PlaceHolder Resources.. 68
3.7.5 Links to Intent Resources .. 68
3.7.6 Inter-Resource Linking Using ResourceRef... 68
3.7.6.1 Status of Resources That Contain rRef References .. 70
3.7.6.2 Alignment of ResourceLink and ResourceRef ... 70

3.8 Subsets of Resources . 71
3.8.1 Resource Amount .. 71
3.8.1.1 Evaluating and Updating Amount related attributes in a Device 71
3.8.1.2 Specifying Amount for a partially completed process.. 72
3.8.2 Description of Partitionable Resources.. 74
3.8.2.1 Amount in Partitionable Resources .. 75
3.8.2.2 Relating PartIDKeys and Partitions .. 75
3.8.2.2.1 Incomplete Partitions ... 76
3.8.2.2.2 Multiple Keys per Partitioned Leaf or Node ... 76
3.8.2.2.3 Degenerate Partitions ... 76
3.8.2.3 Partitioning of Resource sub-Elements... 77
3.8.2.4 Additional Attributes for use with partitioned Resources .. 78
3.8.2.5 Options in Intent Resources .. 84
3.8.2.6 Locations of Physical Resources .. 84
3.8.3 Linking to Subsets of Resources ... 85
3.8.3.1 Handling Amount in a ResourceLink to a Partitioned Resource...................................... 85
3.8.3.2 Implicit and Explicit PartUsage in Partitioned Resources.. 85
3.8.3.3 Referencing Partitioned Resources from Nodes That Allow Multiple ResourceLinks.... 86
3.8.4 Splitting and Combining Resources... 87

3.9 AuditPool . 88
3.9.1 Audit Elements... 91
3.9.1.1 ProcessRun.. 91
3.9.1.2 Notification ... 92
3.9.1.2.1 NotificationDetails ... 93
3.9.1.3 PhaseTime... 93
3.9.1.4 ResourceAudit .. 94
3.9.1.4.1 Logging Machine Data by Using the ResourceAudit .. 95
3.9.1.4.2 Logging Changes in Product Descriptions by Using the ResourceAudit 96
3.9.1.5 Created .. 96
3.9.1.6 Deleted .. 97
Table of Contents v

Table of Contents
3.9.1.7 Modified.. 97
3.9.1.8 Spawned.. 97
3.9.1.9 Merged .. 98

3.10 JDF Extensibility . 98
3.10.1 Namespaces in XML.. 98
3.10.1.1 JDF Namespace .. 99
3.10.1.2 JDF Extension Namespace ... 99
3.10.2 Extending Process Types .. 99
3.10.3 Extending Existing Resources ... 100
3.10.4 Extending NMTOKEN Lists.. 100
3.10.5 Creating New Resources ... 100
3.10.6 Future JDF Extensions .. 100
3.10.7 Maintaining Extensions .. 101
3.10.8 Processing Unknown Extensions... 101
3.10.9 Derivation of Types in XMLSchema... 101

3.11 JDF Versioning . 101
3.11.1 JDF Versioning Requirements ... 101
3.11.2 JDF Version Definition ... 102
3.11.3 JDF Version Policies.. 102
3.11.3.1 JDF Specification Version Policies .. 102
3.11.3.2 JDF Schema Version Policies... 102
3.11.3.3 JDF Application Version Policies... 103
3.11.3.3.1 JDF Agent Version Policies ... 103
3.11.3.3.2 JDF Device/Controller Version Policies ... 103

Chapter 4 Life Cycle of JDF . 105
4.1 Creation and Modification . 105
4.1.1 Product Intent Constructs .. 105
4.1.1.1 Representation of Product Intent .. 106
4.1.1.2 Representation of Product Binding... 106
4.1.2 Defining Business Objects Using Intent Resources... 106
4.1.3 Specification of Delivery of End Products .. 108
4.1.4 Specification of Process Specifics for Product Intent Nodes 108

4.2 Process Routing . 109
4.2.1 Determining Executable Nodes ... 110
4.2.2 Distributing Processing to Work Centers or Devices ... 110
4.2.3 Device / Controller Selection.. 111

4.3 Execution Model . 111
4.3.1 Serial Processing ... 111
4.3.2 Partial Processing of Nodes with Partitioned Resources................................... 112
4.3.3 Overlapping Processing Using Pipes... 114
vi Table of Contents

JDF Specification Release 1.2
4.3.3.1 Pipes of Partitionable Resources... 116
4.3.3.2 Dynamic Pipes .. 116
4.3.3.3 Comparison of Non-Dynamic and Dynamic Pipes... 117
4.3.4 Parallel Processing .. 117
4.3.5 Iterative Processing ... 117
4.3.5.1 Informal Iterative Processing.. 118
4.3.5.2 Formal Iterative Processing .. 118
4.3.6 Approval, Quality Control, and Verification .. 118

4.4 Spawning and Merging . 118
4.4.1 Case 1: Standard Spawning and Merging ... 120
4.4.2 Case 2: Spawning and Merging with Resource Copying................................... 121
4.4.2.1 Spawning of Resources with Inter-Resource Links ... 121
4.4.3 Case 3: Parallel Spawning and Merging of Partitioned Resources 122
4.4.4 Case 4: Nested Spawning and Merging in Reverse Sequence 122
4.4.5 Case 5: Spawning and Merging of Independent Jobs 123
4.4.6 Case 6: Simultaneous Spawning and Merging of Multiple Nodes 125

4.5 Node and Resource IDs . 125
4.6 Error Handling . 126
4.6.1 Classification of Notifications ... 126
4.6.2 Event Description... 126
4.6.3 Error Logging in the JDF File ... 126
4.6.4 Error Handling via Messaging (JMF) ... 126

4.7 Test Running . 126
4.7.1 Resource Status During Testrun.. 127

4.8 Capability and Constraint Definitions . 127

Chapter 5 JDF Messaging with the Job Messaging Format 129
5.1 JMF Root . 129
5.2 JMF Semantics . 131
5.2.1 Message Families .. 131
5.2.1.1 Query .. 132
5.2.1.2 Response ... 133
5.2.1.3 Signal .. 134
5.2.1.4 Command.. 136
5.2.1.5 Acknowledge .. 137
5.2.2 JMF Handshaking.. 138
5.2.2.1 Single Query/Command Response Communication .. 138
5.2.2.2 Signal .. 138
5.2.2.3 Persistent Channels ... 138

5.3 JMF Messaging Levels . 140
Table of Contents vii

Table of Contents
5.4 Error and Event Messages . 140
5.4.1 Pure Event Messages.. 141

5.5 Standard Messages . 141
5.5.1 Controller Registration and Communication Messages..................................... 142
5.5.1.1 Events.. 142
5.5.1.2 KnownControllers... 144
5.5.1.3 KnownJDFServices .. 146
5.5.1.4 KnownMessages ... 146
5.5.1.5 RepeatMessages.. 147
5.5.1.6 StopPersistentChannel .. 148
5.5.2 Device/Operator Status and Job Progress Messages 149
5.5.2.1 FlushResources ... 150
5.5.2.2 NewJDF .. 150
5.5.2.3 NodeInfo ... 152
5.5.2.4 Occupation .. 154
5.5.2.5 Resource.. 155
5.5.2.6 ResourcePull ... 160
5.5.2.7 Shutdown .. 162
5.5.2.8 Status... 162
5.5.2.9 Track ... 168
5.5.2.10 WakeUp .. 169
5.5.3 Pipe Control ... 170
5.5.3.1 PipeClose .. 170
5.5.3.2 PipePull ... 170
5.5.3.3 PipePush.. 172
5.5.3.4 PipePause .. 173

5.6 Queue Support . 173
5.6.1 Queue Entry ID Generation ... 173
5.6.2 Use of QueueFilter in Queue Entry Handling commands.................................. 173
5.6.3 Queue Entry Handling Commands .. 174
5.6.3.1 AbortQueueEntry.. 176
5.6.3.2 HoldQueueEntry ... 176
5.6.3.3 RemoveQueueEntry.. 177
5.6.3.4 RequestQueueEntry .. 177
5.6.3.5 ResubmitQueueEntry.. 178
5.6.3.6 ResumeQueueEntry .. 178
5.6.3.7 ReturnQueueEntry .. 178
5.6.3.8 SetQueueEntryPosition ... 179
5.6.3.9 SetQueueEntryPriority.. 180
5.6.3.10 SubmitQueueEntry.. 180
5.6.3.11 SuspendQueueEntry.. 182
5.6.4 Global Queue Handling.. 182
5.6.4.1 CloseQueue... 183
5.6.4.2 FlushQueue ... 184
viii Table of Contents

JDF Specification Release 1.2
5.6.4.3 HoldQueue .. 185
5.6.4.4 OpenQueue ... 185
5.6.4.5 QueueEntryStatus ... 185
5.6.4.6 QueueStatus .. 185
5.6.4.7 ResumeQueue ... 186
5.6.4.8 SubmissionMethods.. 186
5.6.5 Queue-Handling Elements... 187

5.7 Extending Messages . 190
5.7.1 IfraTrack Support ... 190

Chapter 6 Processes . 191
6.1 Process Template . 191
6.2 General Processes . 191
6.2.1 Approval... 191
6.2.2 Buffer ... 192
6.2.3 Combine... 192
6.2.4 Delivery .. 193
6.2.5 ManualLabor ... 193
6.2.6 Ordering.. 193
6.2.7 Packing ... 194
6.2.8 QualityControl .. 194
6.2.9 ResourceDefinition.. 194
6.2.10 Split .. 194
6.2.11 Verification ... 195

6.3 Product Intent Descriptions . 195
6.4 Prepress Processes . 196
6.4.1 AssetListCreation... 196
6.4.2 ColorCorrection.. 197
6.4.3 ColorSpaceConversion .. 197
6.4.4 ContactCopying ... 198
6.4.5 ContoneCalibration .. 198
6.4.6 DBDocTemplateLayout.. 199
6.4.7 DBTemplateMerging.. 199
6.4.8 DigitalDelivery .. 199
6.4.9 FilmToPlateCopying... 200
6.4.10 FormatConversion ... 200
6.4.11 ImageReplacement.. 200
6.4.12 ImageSetting.. 201
6.4.13 Imposition... 201
6.4.14 InkZoneCalculation .. 202
Table of Contents ix

Table of Contents
6.4.15 Interpreting... 203
6.4.16 LayoutElementProduction.. 203
6.4.17 LayoutPreparation.. 204
6.4.18 PDFToPSConversion... 204
6.4.19 Preflight.. 204
6.4.20 PreviewGeneration .. 205
6.4.21 Proofing.. 207
6.4.22 PSToPDFConversion... 207
6.4.23 Rendering .. 208
6.4.24 RIPing .. 208
6.4.25 Scanning.. 209
6.4.26 Screening... 209
6.4.27 Separation.. 210
6.4.28 SoftProofing ... 210
6.4.29 Stripping... 210
6.4.30 Tiling .. 212
6.4.31 Trapping... 212

6.5 Press Processes . 213
6.5.1 ConventionalPrinting.. 213
6.5.2 DigitalPrinting... 214
6.5.3 IDPrinting ... 216

6.6 Postpress Processes . 216
6.6.1 AdhesiveBinding .. 216
6.6.2 BlockPreparation.. 216
6.6.3 BoxPacking.. 217
6.6.4 Bundling... 217
6.6.5 CaseMaking... 218
6.6.6 CasingIn... 218
6.6.7 ChannelBinding.. 219
6.6.8 CoilBinding... 219
6.6.9 Collecting ... 219
6.6.10 CoverApplication.. 220
6.6.11 Creasing... 220
6.6.12 Cutting.. 221
6.6.13 Dividing .. 221
6.6.14 Embossing ... 221
6.6.15 EndSheetGluing... 222
6.6.16 Feeding.. 222
6.6.17 Folding ... 223
6.6.18 Gathering .. 224
x Table of Contents

JDF Specification Release 1.2
6.6.19 Gluing... 224
6.6.20 HeadBandApplication .. 224
6.6.21 HoleMaking .. 225
6.6.22 Inserting ... 225
6.6.23 Jacketing.. 226
6.6.24 Labeling ... 226
6.6.25 Laminating ... 226
6.6.26 LongitudinalRibbonOperations... 227
6.6.27 Numbering ... 227
6.6.28 Palletizing... 227
6.6.29 Perforating ... 227
6.6.30 PlasticCombBinding... 228
6.6.31 PrintRolling... 228
6.6.32 RingBinding.. 228
6.6.33 SaddleStitching.. 229
6.6.34 ShapeCutting ... 229
6.6.35 Shrinking.. 229
6.6.36 SideSewing.. 230
6.6.37 SpinePreparation ... 230
6.6.38 SpineTaping... 230
6.6.39 Stacking ... 230
6.6.40 Stitching ... 231
6.6.41 Strapping.. 231
6.6.42 StripBinding.. 231
6.6.43 ThreadSealing.. 232
6.6.44 ThreadSewing.. 232
6.6.45 Trimming.. 232
6.6.46 WireCombBinding.. 233
6.6.47 Wrapping.. 233
6.6.48 Postpress Processes Structure.. 233
6.6.48.1 Block Production .. 233
6.6.48.1.1 Block Compiling .. 234
6.6.48.1.2 Block Joining ... 234
6.6.48.1.2.1 Single-Leaf Binding Methods.. 234
6.6.48.1.2.2 Loose-Leaf Binding Method.. 234
6.6.48.1.2.2.1 Mechanical Binding Methods ... 234
6.6.48.2 HoleMaking .. 234
6.6.48.3 Laminating .. 235
6.6.48.4 Numbering .. 235
6.6.48.5 Packaging Processes ... 235
6.6.48.6 Processes in Hardcover Book Production... 235
6.6.48.7 Sheet Processes ... 236
Table of Contents xi

Table of Contents
6.6.48.8 Tip-on/in ... 236
6.6.48.9 Trimming .. 236
6.6.48.10 Web Processes .. 236

Chapter 7 Resources . 237
7.1 Intent Resources . 237
7.1.1 Intent Resource Span Subelements .. 238
7.1.1.1 Structure of Abstract Span Subelement .. 238
7.1.1.2 Structure of the DurationSpan Subelement .. 239
7.1.1.3 Structure of the EnumerationSpan Subelement .. 240
7.1.1.4 Structure of the IntegerSpan Subelement ... 240
7.1.1.5 Structure of the NameSpan Subelement ... 240
7.1.1.5.1 Specifying New Values in a NameSpan Subelement .. 240
7.1.1.6 Structure of the NumberSpan Subelement.. 241
7.1.1.7 Structure of the OptionSpan Subelement.. 241
7.1.1.8 Structure of the ShapeSpan Subelement ... 241
7.1.1.9 Structure of the StringSpan Subelement ... 241
7.1.1.10 Structure of the TimeSpan Subelement .. 242
7.1.1.11 Structure of the XYPairSpan Subelement .. 242
7.1.2 ArtDeliveryIntent .. 242
7.1.3 BindingIntent .. 247
7.1.4 ColorIntent ... 255
7.1.5 DeliveryIntent ... 258
7.1.6 EmbossingIntent .. 263
7.1.7 FoldingIntent .. 264
7.1.8 HoleMakingIntent ... 265
7.1.9 InsertingIntent .. 265
7.1.10 LaminatingIntent .. 267
7.1.11 LayoutIntent ... 267
7.1.12 MediaIntent .. 270
7.1.13 NumberingIntent .. 275
7.1.14 PackingIntent ... 275
7.1.15 ProductionIntent... 276
7.1.16 ProofingIntent... 277
7.1.17 ScreeningIntent.. 279
7.1.18 ShapeCuttingIntent .. 279
7.1.19 SizeIntent ... 280

7.2 Process Resources . 280
7.2.1 Process Resource Template.. 280
7.2.2 Address.. 281
7.2.3 AdhesiveBindingParams.. 282
7.2.4 ApprovalParams .. 282
xii Table of Contents

JDF Specification Release 1.2
7.2.5 ApprovalSuccess ... 283
7.2.6 Assembly ... 283
7.2.7 AssetListCreationParams .. 284
7.2.8 AutomatedOverPrintParams.. 285
7.2.9 BinderySignature ... 285
7.2.10 BlockPreparationParams ... 287
7.2.11 BoxPackingParams.. 288
7.2.12 BufferParams... 288
7.2.13 Bundle.. 289
7.2.14 BundlingParams... 290
7.2.15 ByteMap... 291
7.2.16 CaseMakingParams... 292
7.2.17 CasingInParams ... 293
7.2.18 ChannelBindingParams ... 294
7.2.19 CIELABMeasuringField.. 295
7.2.20 CoilBindingParams .. 296
7.2.21 CollectingParams... 296
7.2.22 Color .. 297
7.2.23 ColorantAlias.. 303
7.2.24 ColorantControl.. 303
7.2.25 ColorControlStrip ... 306
7.2.26 ColorCorrectionParams ... 307
7.2.27 ColorMeasurementConditions ... 309
7.2.28 ColorPool ... 310
7.2.29 ColorSpaceConversionParams.. 311
7.2.30 ColorSpaceConversionOp ... 313
7.2.31 ComChannel .. 321
7.2.32 Company.. 323
7.2.33 Component .. 323
7.2.34 Contact... 327
7.2.35 ContactCopyParams.. 328
7.2.36 ConventionalPrintingParams ... 328
7.2.37 CostCenter... 331
7.2.38 CoverApplicationParams ... 331
7.2.39 CreasingParams .. 332
7.2.40 CutBlock... 333
7.2.41 CutMark ... 334
7.2.42 CuttingParams ... 335
7.2.43 DBMergeParams ... 336
7.2.44 DBRules... 337
Table of Contents xiii

Table of Contents
7.2.45 DBSchema... 337
7.2.46 DBSelection ... 338
7.2.47 DeliveryParams.. 338
7.2.48 DensityMeasuringField .. 340
7.2.49 DevelopingParams... 341
7.2.50 Device.. 342
7.2.51 DeviceMark .. 344
7.2.52 DeviceNSpace ... 344
7.2.53 DigitalDeliveryParams.. 345
7.2.54 DigitalMedia ... 346
7.2.55 DigitalPrintingParams .. 347
7.2.55.1 Coordinate systems in DigitalPrinting.. 347
7.2.56 Disjointing .. 349
7.2.57 Disposition ... 350
7.2.58 DividingParams.. 351
7.2.59 ElementColorParams... 351
7.2.60 EmbossingParams... 352
7.2.61 Employee... 353
7.2.62 EndSheetGluingParams .. 353
7.2.63 ExposedMedia ... 355
7.2.64 FeedingParams.. 356
7.2.65 FileSpec... 359
7.2.66 FitPolicy ... 365
7.2.67 Fold .. 366
7.2.68 FoldingParams... 366
7.2.69 FontParams .. 370
7.2.70 FontPolicy .. 370
7.2.71 FormatConversionParams... 371
7.2.72 GatheringParams... 374
7.2.73 GlueApplication.. 375
7.2.74 GluingParams .. 376
7.2.75 GlueLine... 376
7.2.76 HeadBandApplicationParams.. 377
7.2.77 Hole.. 378
7.2.78 HoleLine... 378
7.2.79 HoleList .. 380
7.2.80 HoleMakingParams.. 380
7.2.81 IdentificationField ... 382
7.2.82 IDPrintingParams... 383
7.2.83 ImageCompressionParams ... 383
xiv Table of Contents

JDF Specification Release 1.2
7.2.84 ImageReplacementParams ... 388
7.2.85 ImageSetterParams... 390
7.2.86 Ink .. 391
7.2.87 InkZoneCalculationParams.. 392
7.2.88 InkZoneProfile.. 393
7.2.89 InsertingParams... 394
7.2.90 InsertSheet... 396
7.2.91 InterpretedPDLData... 399
7.2.92 InterpretingParams .. 400
7.2.93 JacketingParams ... 402
7.2.94 JobField ... 403
7.2.95 LabelingParams... 404
7.2.96 LaminatingParams... 404
7.2.97 Layout .. 405
7.2.98 LayoutElement ... 406
7.2.99 LayoutPreparationParams ... 408
7.2.100 LongitudinalRibbonOperationParams.. 417
7.2.101 ManualLaborParams.. 417
7.2.102 Media ... 417
7.2.103 MediaSource.. 422
7.2.104 MISDetails.. 422
7.2.105 NumberingParams... 423
7.2.106 ObjectResolution.. 424
7.2.107 OrderingParams... 424
7.2.108 PackingParams.. 425
7.2.109 PageList ... 425
7.2.110 PalletizingParams .. 427
7.2.111 Pallet .. 428
7.2.112 PDFToPSConversionParams .. 428
7.2.113 PDLResourceAlias... 431
7.2.114 PerforatingParams... 432
7.2.115 Person.. 433
7.2.116 PlaceHolderResource .. 433
7.2.117 PlasticCombBindingParams .. 433
7.2.118 PlateCopyParams.. 434
7.2.119 PreflightAnalysis ... 434
7.2.120 PreflightInventory ... 434
7.2.121 PreflightParams ... 434
7.2.122 PreflightProfile.. 436
7.2.123 PreflightReport ... 437
Table of Contents xv

Table of Contents
7.2.124 PreflightReportRulePool .. 440
7.2.125 Preview .. 442
7.2.126 PreviewGenerationParams.. 444
7.2.127 PrintCondition .. 445
7.2.128 PrintRollingParams .. 446
7.2.129 ProofingParams ... 447
7.2.130 PSToPDFConversionParams .. 447
7.2.131 QualityControlParams... 452
7.2.132 QualityControlResult .. 452
7.2.133 RegisterMark.. 453
7.2.134 RegisterRibbon .. 454
7.2.135 RenderingParams.. 455
7.2.136 ResourceDefinitionParams .. 455
7.2.137 RingBindingParams ... 456
7.2.138 RollStand ... 457
7.2.139 RunList... 458
7.2.140 SaddleStitchingParams.. 463
7.2.141 ScanParams .. 463
7.2.142 ScavengerArea .. 465
7.2.143 ScreeningParams .. 465
7.2.144 SeparationControlParams.. 467
7.2.145 SeparationSpec ... 468
7.2.146 ShapeCuttingParams... 468
7.2.147 Sheet.. 469
7.2.148 ShrinkingParams.. 470
7.2.149 SideSewingParams.. 470
7.2.150 SpinePreparationParams... 470
7.2.151 SpineTapingParams .. 472
7.2.152 StackingParams... 473
7.2.153 StitchingParams... 475
7.2.154 Strap .. 478
7.2.155 StrappingParams ... 478
7.2.156 StripBindingParams ... 479
7.2.157 StrippingParams .. 479
7.2.158 Surface... 483
7.2.159 ThreadSealingParams ... 489
7.2.160 ThreadSewingParams ... 490
7.2.161 Tile ... 491
7.2.162 Tool .. 492
7.2.163 TransferCurve.. 493
xvi Table of Contents

JDF Specification Release 1.2
7.2.164 TransferCurvePool... 493
7.2.165 TransferFunctionControl .. 494
7.2.166 TrappingDetails.. 494
7.2.167 TrappingParams .. 495
7.2.168 TrapRegion .. 499
7.2.169 TrimmingParams.. 499
7.2.170 VerificationParams... 500
7.2.171 WireCombBindingParams.. 501
7.2.172 WrappingParams ... 502

7.3 Device Capability Definitions . 502
7.3.1 Structure of the DeviceCap Subelement.. 502
7.3.1.1 Structure of the ActionPool Subelement .. 504
7.3.1.1.1 Structure of the Action Subelement ... 504
7.3.1.2 Structure of the DevCaps Subelement .. 505
7.3.1.2.1 Structure of the Loc Subelement ... 507
7.3.1.2.2 Structure of the DevCap Subelement .. 507
7.3.1.2.2.1 Structure of the Abstract State Subelement ... 508
7.3.1.2.2.1.1 Structure of the BooleanState Subelement.. 511
7.3.1.2.2.1.2 Structure of the DateTimeState Subelement ... 511
7.3.1.2.2.1.3 Structure of the DurationState Subelement... 512
7.3.1.2.2.1.4 Structure of the EnumerationState Subelement .. 512
7.3.1.2.2.1.5 Structure of the IntegerState Subelement.. 513
7.3.1.2.2.1.6 Structure of the MatrixState Subelement .. 514
7.3.1.2.2.1.7 Structure of the NameState Subelement ... 515
7.3.1.2.2.1.8 Structure of the NumberState Subelement.. 516
7.3.1.2.2.1.9 Structure of the PDFPathState Subelement .. 517
7.3.1.2.2.1.10 Structure of the RectangleState Subelement ... 517
7.3.1.2.2.1.11 Structure of the ShapeState Subelement ... 518
7.3.1.2.2.1.12 Structure of the StringState Subelement ... 519
7.3.1.2.2.1.13 Structure of the XYPairState Subelement... 520
7.3.1.3 Structure of the DisplayGroupPool Subelement... 520
7.3.1.3.1 Structure of the DisplayGroup Subelement ... 521
7.3.1.4 Structure of the FeaturePool Subelement ... 521
7.3.1.5 Structure of the MacroPool Subelement ... 522
7.3.1.5.1 Structure of the macro Subelement .. 522
7.3.1.5.1.1 Structure of the choice Subelement ... 522
7.3.1.5.1.1.1 Structure of the otherwise Subelement ... 523
7.3.1.5.1.1.2 Structure of the when Subelement .. 523
7.3.1.5.1.2 Structure of the set Subelement ... 523
7.3.1.5.1.2.1 Structure of the FeatureAttribute Subelement .. 523
7.3.1.5.1.3 Structure of the call Subelement .. 523
7.3.1.6 Structure of the Performance Subelement .. 524
7.3.1.7 Structure of the TestPool Subelement .. 524
7.3.1.7.1 Structure of the Test Subelement ... 524
7.3.1.7.1.1 Structure of the abstract Term Subelement.. 524
7.3.1.7.1.2.1 Boolean Operators... 526
7.3.1.7.1.2.2 Evaluation Subelements .. 527
7.3.2 Examples of Device Capabilities.. 532
Table of Contents xvii

Table of Contents
7.4 Concept of the Preflight Process . 538
7.4.1 Object Classes... 539
7.4.1.1 Checking for the Presence of a Property... 540
7.4.1.2 Basic tests on set of objects .. 541
7.4.2 Properties... 541
7.4.2.1 Annotation Properties ... 542
7.4.2.2 Box Properties... 542
7.4.2.3 Class Properties... 544
7.4.2.4 Colorant Properties ... 545
7.4.2.5 Document Properties... 545
7.4.2.6 Fill Properties.. 548
7.4.2.7 Font Properties .. 549
7.4.2.8 Graphic Properties .. 550
7.4.2.9 Image Properties ... 551
7.4.2.10 Logical Properties ... 553
7.4.2.11 PageBox Properties... 553
7.4.2.12 Pages Properties .. 554
7.4.2.13 PDLObject Properties ... 555
7.4.2.14 Reference Properties ... 555
7.4.2.15 Shading Properties .. 555
7.4.2.16 Stroke Properties... 556
7.4.2.17 Text Properties .. 556
7.4.2.18 Vector Properties .. 557

Chapter 8 Building a System Around JDF . 559
8.1 Implementation Considerations and Guidelines . 559
8.2 JDF and JMF Interchange Protocol . 559
8.2.1 File-Based Protocol (JDF + JMF) .. 559
8.2.1.1 JMF Transport Using The File Protocol ... 559
8.2.2 HTTP-Based Protocol (JDF + JMF) .. 560
8.2.2.1 Protocol Implementation Details .. 560

8.3 JDF Packaging . 560
8.3.1 MIME Basics .. 560
8.3.2 MIME Types and File Extensions .. 561
8.3.2.1 MIME Fields... 561
8.3.2.1.1 Content Type ... 561
8.3.2.1.2 Content ID ... 561
8.3.2.1.3 Content Length .. 561
8.3.2.1.4 Content Transfer Encoding .. 562
8.3.2.1.5 Content Disposition ... 562
8.3.2.2 Example Packaging of Individual JDF/JMF files in MIME... 562
8.3.2.3 CID URL Scheme... 562
8.3.2.4 Ordering of JDF/JMF in MIME Multipart/Related .. 563

8.4 MIS Requirements . 564
xviii Table of Contents

JDF Specification Release 1.2
8.5 Interoperability Conformance Specifications . 564

Appendix A Encoding. 565
A.1 Notes About Encoding . 565
A.1.1 Ranges and RangeLists .. 565
A.1.2 Whitespace.. 565
A.1.3 Infinity Limits.. 565

A.2 Simple Types — Attribute Values . 565
A.2.1 boolean.. 565
A.2.2 CMYKColor.. 565
A.2.3 date.. 566
A.2.4 dateTime.. 566
A.2.5 DataTimeRange .. 566
A.2.6 DateTimeRangeList... 566
A.2.7 double.. 566
A.2.8 DoubleList.. 567
A.2.9 DoubleRange... 567
A.2.10 DoubleRangeList ... 567
A.2.11 duration.. 567
A.2.12 DurationRange .. 567
A.2.13 DurationRangeList... 568
A.2.14 gYearMonth... 568
A.2.15 hexBinary... 568
A.2.16 ID... 568
A.2.17 IDREF.. 568
A.2.18 IDREFS ... 568
A.2.19 integer.. 569
A.2.20 IntegerList.. 569
A.2.21 IntegerRange... 569
A.2.22 IntegerRangeList ... 569
A.2.23 LabColor .. 569
A.2.24 language.. 570
A.2.25 matrix... 570
A.2.26 NameRange .. 570
A.2.27 NameRangeList... 570
A.2.28 NMTOKEN... 571
A.2.29 NMTOKENS .. 571
A.2.30 PDFPath.. 571
A.2.31 rectangle.. 571
A.2.32 RectangleRange.. 572
Table of Contents xix

Table of Contents
A.2.33 RectangleRange List ... 572
A.2.34 regExp ... 572
A.2.35 shape... 572
A.2.36 ShapeRange.. 572
A.2.37 ShapeRangeList .. 573
A.2.38 sRGBColor .. 573
A.2.39 string.. 573
A.2.40 TimeRange.. 573
A.2.41 TransferFunction ... 573
A.2.42 URI .. 574
A.2.43 URL ... 574
A.2.44 XYPair ... 574
A.2.45 XYPairRange... 574
A.2.46 XYPairRangeList ... 574
A.2.47 XPath... 575

A.3 Enumerations and Lists . 575
A.3.1 enumeration... 575
A.3.2 enumerations... 575
A.3.3 Defined JDF enumeration Data Types .. 575
A.3.3.1 JDFJMFVersion... 575
A.3.3.2 NamedColor ... 576
A.3.3.3 Orientation ... 576
A.3.3.4 Side .. 577
A.3.3.5 WorkStyle .. 577
A.3.4 XYRelation... 577

A.4 JDF File Formats . 578
A.4.1 PNG Image Format ... 578

Appendix B Schema . 579
B.1 Using xsi:type . 579
B.1.1 Using xsi:type with JDF Nodes.. 579
B.1.2 Using xsi:type with JMF Messages ... 580

Appendix C Converting PJTF to JDF . 581
C.1 PJTF Object Conversion . 581
C.1.1 Accounting... 581
C.1.2 Address ... 581
C.1.3 Analysis ... 581
C.1.4 AuditObject.. 581
C.1.5 ColorantAlias ... 582
C.1.6 ColorantControl ... 582
xx Table of Contents

JDF Specification Release 1.2
C.1.7 ColorantDetails.. 582
C.1.8 ColorantZoneDetails.. 582
C.1.9 ColorSpaceSubstitute.. 582
C.1.10 Delivery ... 582
C.1.11 DeviceColorant.. 582
C.1.12 Document .. 582
C.1.13 Finishing.. 584
C.1.14 FontPolicy.. 584
C.1.15 InsertPage... 584
C.1.16 InsertSheet .. 584
C.1.17 Inventory.. 584
C.1.18 Ticket... 584
C.1.19 JobTicketContents... 584
C.1.20 JTFile... 587
C.1.21 Layout.. 587
C.1.22 Media... 587
C.1.23 MediaSource ... 587
C.1.24 MediaUsage .. 587
C.1.25 PageRange ... 587
C.1.26 PlacedObject ... 589
C.1.27 PlaneOrder .. 589
C.1.28 Preflight ... 589
C.1.29 PreflightConstraint... 589
C.1.30 PreflightDetail .. 589
C.1.31 PreflightInstance.. 590
C.1.32 PreflightInstanceDetail .. 590
C.1.33 PreflightResults ... 590
C.1.34 PrintLayout .. 590
C.1.35 Profile .. 590
C.1.36 Rendering.. 591
C.1.37 ResourceAlias ... 591
C.1.38 Scheduling... 591
C.1.39 Signature... 592

C.2 Sheet . 592
C.2.1 SlipSheet ... 592
C.2.2 Surface.. 592
C.2.3 Tile... 592
C.2.4 Trapping .. 592
C.2.5 TrappingDetails ... 592
C.2.6 TrappingParameters.. 592
Table of Contents xxi

Table of Contents
C.2.7 TrapRegion.. 592

C.3 Translating Values . 592
C.4 Translating the Contents Hierarchy . 593
C.5 Representing Pages . 593
C.6 Representing Preseparated Documents . 594
C.7 Representing Inherited Characteristics . 594
C.8 Translating Layout . 594
C.9 Translating PrintLayout . 594
C.10 Translating Trapping . 595

Appendix D Converting PPF to JDF . 597
D.1 Converting PPF Data Types . 598
D.2 PPF Product Definitions . 598
D.2.1 Comparison of the PPF Component to the JDF Component 599
D.2.2 Collecting... 599
D.2.3 Gathering... 599
D.2.4 ThreadSewing ... 600
D.2.5 SaddleStitching ... 600
D.2.6 Stitching... 600
D.2.7 SideSewing ... 600
D.2.8 EndSheetGluing .. 600
D.2.9 AdhesiveBinding.. 600
D.2.10 Trimming ... 601
D.2.11 GluingIn ... 601
D.2.12 Folding... 602

D.3 PPF Sheet Structure . 603
D.3.1 Administration Data ... 605
D.3.2 Preview Images... 606
D.3.3 Transfer Curves... 607
D.3.4 Register Marks .. 607
D.3.5 Color and Ink Control .. 607
D.3.6 Cutting Data .. 608
D.3.7 Folding Data .. 609
D.3.8 Comments and Annotations.. 609
D.3.9 Private Data and Content .. 609

Appendix E Modeling IfraTrack in JDF . 611
E.1 IFRA Objects and JDF Nodes . 611
xxii Table of Contents

JDF Specification Release 1.2
E.1.1 Object Identification ... 611
E.1.2 IFRA Object Hierarchy... 611
E.1.3 Object States ... 611
E.1.4 Deadlines and Scheduling... 612

E.2 JMF Messages that Translate IfraTrack Messages . 612

Appendix F Mapping between JDF and IPP . 613
F.1 IPP References . 613

Appendix G StatusDetails Supported Strings 615

Appendix H ModuleType Supported Strings 617

Appendix I Supported Error Codes in JMF and Notification elements .
619

Appendix J NotificationDetails . 621
J.1 Predefined NotificationDetails . 621
J.1.1 Barcode.. 621
J.1.2 FCNKey.. 621
J.1.3 SystemTimeSet.. 621
J.1.4 CounterReset ... 621
J.1.5 Error ... 622
J.1.6 Event .. 622

Appendix K MessageEvents Values . 623

Appendix L Color Adjustment Attribute Description and Usage . . . 625
L.1 Adjustment Using Direct Attributes . 625
L.2 Adjustment using ICC Profile Attributes . 626
L.3 Adjustment using an ICC Abstract Profile Attribute . 626
L.4 Adjustment using an ICC DeviceLink Profile Attribute 626

Appendix M North American Media Weight Explained 627

Appendix N Media Sizes. 629

Appendix O Input Tray and Output Bin Names 633

Appendix P FileSpec Attribute Examples for MimeType and MimeType-
Table of Contents xxiii

Table of Contents
Version Attributes. 635

Appendix Q FileSpec MimeType, URL, and Compression attributes, and
Container subelement . 641
Q.1 FileSpec attribute value examples . 641
Q.2 Corresponding XML examples . 642
Q.3 Additional examples showing partitioning of FileSpec 643
Q.4 Example of an Intent Job Ticket with a doubly nested ZIP packaging file . . 647

Appendix R Resolving RunList/@Directory and FileSpec/@URL URI ref-
erences . 649
R.1 Semantics of the RunList/@Directory attribute . 649

Appendix S AppOS and OSVersion Attributes 651

Appendix T References . 653

Appendix U JDF/CIP4 Hole Pattern Catalog. 663

Appendix V Examples . 669
V.1 Brief Example . 669
V.1.1 Before Processing ... 669
V.1.2 After Processing .. 670

V.2 Product JDF . 671
V.3 Spawning and Merging . 672
V.3.1 Example 2 Component JDF before Spawning .. 672
V.3.2 Example 2 Component JDF Parent after spawning the cover node.................. 673
V.3.3 Example 2 Component JDF spawned node.. 674
V.3.4 Example 2 Component JDF after merging .. 674
V.3.5 Example of a Partitioned ImageSetting Node before Spawning........................ 676
V.3.6 The Spawned Cyan Partition of the ImageSetting Node................................... 676
V.3.7 The Root Partitioned ImageSetting Node after Spawning................................. 677
V.3.8 The Merged ImageSetting Node ... 677

V.4 Conversion of PJTF to JDF . 678
V.4.1 PJTF input ... 678
V.4.2 JDF output ... 681

V.5 Conversion of PPF to JDF . 682
V.6 RunList . 689
V.7 Messages . 691
xxiv Table of Contents

JDF Specification Release 1.2
V.7.1 Simple KnownMessages ... 691
V.7.2 Simple persistent channel ... 692

V.8 Stripping . 693
V.8.1 Using Position.. 693
V.8.2 Multiple BinderySignatures.. 693
V.8.3 Multisection BinderySignatures ... 694
V.8.4 Multiple job parts in one imposition ... 694
V.8.5 FoldOuts .. 695
V.8.6 Multiple Web Layout .. 695
V.8.7 Stripping Process .. 697

V.9 DigitalDelivery Examples . 699

Appendix W New, Deprecated, Modified, Illegal, & Removed Items 705
W.1 Compatibility Warnings . 706
W.2 New Items . 706
W.3 Deprecated Items . 711
W.4 Modified Items . 716
W.5 Clarified Items . 718
W.6 New/Modified Attributes and Elements . 721
W.6.1 Structure of JDF Nodes and Jobs .. 721
W.6.2 JDF Messaging with the Job Messaging Format.. 723
W.6.3 Processes... 727
W.6.4 Resources .. 727

Appendix X Deprecated Processes, Resources, and JMF Messaging El-
ements . 743
X.1 Deprecated Processes . 743
X.1.1 Packing.. 743
X.1.2 FilmToPlateCopying .. 743
X.1.3 PreflightAnalysis ... 744
X.1.4 PreflightInventory... 746
X.1.5 PreflightProfile ... 746
X.1.6 Proofing ... 747
X.1.7 SoftProofing... 748
X.1.8 IDPrinting... 749
X.1.9 AdhesiveBinding.. 750
X.1.10 Dividing.. 750
X.1.11 LongitudinalRibbonOperations .. 751
X.1.12 SaddleStitching.. 751
Table of Contents xxv

Table of Contents
X.1.13 SideSewing.. 751

X.2 Deprecated Resources . 752
X.2.1 BindingIntent Deprecated Subelements .. 752
X.2.2 SizeIntent... 753
X.2.3 AdhesiveBindingParams ... 753
X.2.4 DividingParams ... 755
X.2.5 IDPrintingParams .. 755
X.2.6 LongitudinalRibbonOperationParams.. 765
X.2.7 MediaSource ... 766
X.2.8 PackingParams ... 767
X.2.9 PlateCopyParams.. 768
X.2.10 ProofingParams... 768
X.2.11 SaddleStitchingParams ... 770
X.2.12 SideSewingParams ... 771

X.3 JMF Messaging Elements . 772
X.3.1 KnownJDFServices ... 772
X.3.2 QueueEntryStatus ... 773

Appendix Y Table of Tables . 775

Appendix Z Terminology Usage . 781
xxvi Table of Contents

JDF Specification Release 1.2
List of Figures

Figure 1.1 Handling of Default Values of JDF Attributes. 8
Figure 2.1 Example of JDF and JMF workflow interactions . 16
Figure 2.2 JDF tree structure . 17
Figure 2.3 Example of a hierarchical tree structure of JDF nodes . 19
Figure 2.4 Example of a process chain linked by input and output resources 20
Figure 2.5 Standard coordinate system . 21
Figure 2.6 Relation between resource and process coordinate systems 22
Figure 2.7 Layout of simple saddle stitched brochure (product example) 25
Figure 2.8 Surface coordinate system . 26
Figure 2.9 Press coordinate system used for sheet-fed printing . 26
Figure 2.10 Press coordinate system used for web printing . 27
Figure 2.11 Coordinate systems after Folding (product example) . 27
Figure 2.12 Coordinate systems after Collecting (product example) . 28
Figure 2.13 Examples of Transformations and Coordinate Systems in JDF. 29
Figure 2.14 Transforming a point (example) . 31
Figure 3.1 Structure of the JDF Node . 34
Figure 3.2 Structure of JDF Generic Contents . 37
Figure 3.3 Job hierarchy with process, process group, and product intent nodes 43
Figure 3.4 Structure of the abstract resource types . 56
Figure 3.5 Resource Links and ResourceRefs . 61
Figure 3.6 Nodes linked by a resource . 61
Figure 3.7 Structure of the abstract ResourceLink types . 63
Figure 3.8 Amount Handling . 72
Figure 3.9 Splitting and combining physical resources . 88
Figure 3.10 Structure of Audit element types derived from the abstract Audit type 90
Figure 4.1 Simplified PrintTalk workflow (negotiation phase) . 107
Figure 4.2 Life Cycle of a JDF node . 110
Figure 4.3 Example of a simple process chain linked by resources . 111
Figure 4.4 Example of a Pipe resource linking two processes . 114
Figure 4.5 Example of status transitions in case of overlapping processing 115
Figure 4.6 The spawning and merging mechanism and its phases . 119
Figure 4.7 JDF node structure that requires resource copying during spawning and merging 121
Figure 4.8 Example for a JDF node structure with nested spawning 123
Figure 4.9 Example of the spawning and merging of independent jobs 124
Figure 4.10 Parameter Space in device Capabilities . 127
Figure 5.1 Contents of a JMF root element and the message families 131
Figure 5.2 Interaction of Messages with a subscription . 132
Figure 5.3 Interaction of Command and Acknowledge Messages . 137
Figure 5.4 Mechanism of a PipePull message . 171
Figure 5.5 Mechanism of a PipePush message . 172
Figure 5.6 JMF QueueEntry Status Transition Diagram . 175
Figure 5.7 Effects of the global queue messages on the queue Status 183
Figure 6.1 Worst case scenario for area coverage calculation . 206
Figure 6.2 Packaging Process Coordinate System . 235
Figure 7.1 CaseMakingParams . 292
Figure 7.2 Parameters and Coordinate System for CasingIn . 293
List of Figures xxvii

List of Figures
Figure 7.3 Parameters used for channel binding . 294
Figure 7.4 Coordinate systems used for collecting . 297
Figure 7.5 Terms and definitions for components . 324
Figure 7.6 Parameters and coordinate system for cover application 332
Figure 7.7 Parameters and coordinate system used for end-sheet gluing 354
Figure 7.8 Names of the reference edges of a sheet in the FoldingParams resource 366
Figure 7.9 Fold Catalog part 1 . 368
Figure 7.10 Fold Catalog part 2 . 369
Figure 7.11 Coordinate system used for gathering . 374
Figure 7.12 Parameters and coordinate system for glue application 375
Figure 7.13 Parameters and Coordinate system used for Inserting . 394
Figure 7.14 Parameters and Coordinate System for Jacketing . 402
Figure 7.15 PRGroup Structure . 438
Figure 7.16 Parameters and Coordinate System for BlockPreparation 454
Figure 7.17 Parameters and coordinate systems for the SpinePreparation process 471
Figure 7.18 Parameters and coordinate system for the SpineTaping process 472
Figure 7.19 Odd Count Handling for Bundling . 474
Figure 7.20 Staple shapes . 475
Figure 7.21 Parameters and coordinate system used for saddle stitching 476
Figure 7.22 Parameters and coordinate system used for stitching . 476
Figure 7.23 Definition of margins in StripCellParams . 482
Figure 7.24 Parameters and coordinate system used for thread sewing 490
Figure 7.25 Parameters and coordinate system used for side sewing 490
Figure 7.26 Parameters and coordinate system used for trimming . 499
Figure D.1 JDF node of a CIP3 product structure . 597
Figure D.2 JDF representation of sheets . 604
Figure X.1 Parameters and coordinate system for glue application . 754
Figure X.2 Staple shapes . 770
Figure X.3 Parameters and coordinate system used for side sewing 771
xxviii List of Figures

JDF Preface and User Overview
This specification is immense … there little doubt about that … but it is also a keystone standard for the future of
graphic communications. The members of CIP4 believe that users and developers alike should have a clear under-
standing of what the objectives of the Job Definition Format (JDF) are as well as an understanding of its value and
purpose. To that end we thought you would find a “non-standard” preface and user overview helpful.

Before we get into the overview, we remind you that JDF is a living specification. We would value your comments and input.
There are several ways to contact the International Cooperation for the Integration of Processes in Prepress, Press and Postpress
(CIP4) and to receive ongoing information about CIP4 activities. To get a list of contacts, join the JDF developers form, or sign up
for E-mail updates, visit the contact page at http://www.cip4.org/. (Of course, we’d love to have you as a CIP4 member
too! Be sure to review the membership page when you visit the CIP4 Website.)

You will also find call-outs throughout this document that are identified by three different icons. These callouts, provided for
your convenience, are not normative parts of the standard, i.e., they’re not technically a part of the standard. They provide refer-
ences to external sources, executive summaries of complex technical concepts, and some thoughts or strategies you may want to
consider as you formulate your JDF implementation plan. Look for these call-out icons:

Value. This revision of JDF is significant because it builds upon the second version of JDF (v.1.1a) to deliver a fully
functional and mature standard. As such, this revision includes elements from which executives, shop managers, and
technicians will all benefit equally, though in different ways. In the next few years it is our belief that this specifica-
tion will positively effect everyone involved in the creation and production of printing; regardless of form (offset,
digital, flexographic, and so on) or function (direct mail, periodical publication, packaging, and so on). Furthermore,
JDF will be of value to companies both large and small. Some of the benefits that JDF may provide include:

• A common language for describing a print job across enterprises, departments, and software and systems;

• A tool for verifying the accuracy and completeness of job tools;

• A systems interface language that can be used to benchmark the performance of new equipment (hardware and
software) and that can reduce the cost of expensive custom integration for printers, prepress services, and others;

 Call-Out Icon Usage

Icon Call-Out Type

External references to online resources, related
standards, tutorials, and helpful information.

Executive-style summaries of technical concepts
in easy-to-understand language.

Thoughts to ponder and strategy ideas for
formulating JDF implementation programs.
xxix

http://www.cip4.org/

• A basis for total workflow automation that incorporates all aspects
of production: human, machine, and computer;

• A standard that can be applied to eliminate wasteful re-keying and
redundancy of information; and

• A common computer language for printing and related industries
as well as a platform for more effective communication.

Most importantly, JDF provides an opportunity for users of graphic
arts equipment to get a better return on their technology investment
and an opportunity to create a print production and distribution work-
flow that is more competitive with broadcast media in terms of time-
to-market.

XML and Schema: Why? The Extensible Markup Language (XML) is the standard language that is employed by
JDF. JDF is also constructed to the World Wide Web Consortium’s (W3C) recommendation for the construction of
schema. Why is this important and, in layman’s terms, what does it do for you?

First of all, it is helpful to understand how MIS professionals around the world use XML today. Although there
are some systems that manage and process XML directly, it is primarily used as an exchange language or “middle-
ware” element to create the “glue” that ties integrated systems together.

 F o r i n s t a n c e ,
complex systems such
as enterprise resource
planning (ERP), data
warehousing, or E-
commerce systems
often tap into numer-
ous legacy databases
and application envi-
ronments. A manager
may wish to have a
“view” of corporate
information that is
actually an aggregate
of information that
may come from vari-
ous sources such as
billing and invoicing,
sales management,
inventory, and other
systems. Rather than
merge these systems
into a single, monstrous and centralized system, an operator queries the legacy systems and the results are wrapped in
XML. This allows programmers to deal with one exchange language or data format instead of a multitude of propri-
etary data formats.

XML is not a functional computer language like JAVA, C++ or FORTRAN—it is incapable of manipulating data
in anyway; rather, it is a descriptive computer language that can be used to describe your information including its
structure, interrelationships, and to some extent, its intended usage. For this reason, modern program languages such
as JAVA provide intrinsic support for XML processing. Most modern database applications also provide methods for
receiving and delivering XML.

Implementation
Strategy

As you read this standard, con-
sider how to make JDF a part of your
equipment evaluation and purchasing pro-
cedures. Should you add JDF enabled sys-
tems slowly with equipment replacement
and upgrades, or aggressively as part of a
plant reengineering process? What's your
desired competitive position?.
xxx

JDF Specification Release 1.2
Early XML, based solely upon the XML 1.0 specification, had a few
limitations that prevented it from being used widely as a transactional
data format across enterprises, as opposed to within enterprises (where
it found its niche as described above.) For example, there is probably a
database behind each of your major systems and applications. If your
database has reserved a fixed space a data particular field and a sup-
plier provides a transaction with a data element larger than that field,
you have a problem. The data limitations of XML 1.0 cannot effec-
tively deal with this. The XML Schema specification solved this prob-
lem and others.

The Plusses of Parsing. Schemas also provide one other feature that is perhaps the greatest benefit. Tagged doc-
uments or transactions (called “instances” in XML parlance) are parsible. Schemas, such as JDF, establish rules for
structuring your information. A parser is a software application that reads those rules, checks documents and transac-
tions, and then validates that they conform to the rules as established in your schema … sort of like preflighting but
for XML instances rather than your layout pages.

Parsers can play many roles. Like preflighting software, parsers
can be run as stand-alone applications, but they can also be found
embedded into other applications. Some of the roles parsers may play
in your JDF-enabled workflow include:

1 Acceptance checking of client job tickets;

2 Validation of JDF prior to or following transformation of data
into and out of databases;

3 Ensuring that source job information is collected as a docu-
ment is created (embedded in document layout software);

4 Determining if equipment reads and writes Job Messaging Format (JMF) commands, a subset of JDF, as part
of equipment benchmarking and testing software;

5 Controlling the movement of workflow information and controls within workflow software from process to
process and as a specific JDF job ticket requires; and

6 Working as a middleware component to communicate between JDF-enabled software and systems and your
legacy Management Information System (MIS) and corporate applications environments.

It is worth mentioning that parsing can be time consuming and computer intensive. But parsers don’t have to be the
gatekeepers everywhere in a JDF-enabled workflow. Equipment that is JDF-enabled and part of a company’s internal
production operations need not parse every communication. It can be limited to equipment evaluation and problem
solving applications. The role of JDF parser-enabled software in a printing plant that uses tightly coupled JDF-
enabled print production equipment might look like this:

XML Schema

To learn more about XML
Schema, including tools,

usage, tutorials, and other resources visit
http://www.w3.org/XML/Schema

Free Parsers

The JDF schema was vali-
dated with the Xerces parser.

This parser, as well as other XML tools, is
available for free from The Apache Soft-
ware Foundation open source software
community at http://xml.apache.org/
xxxi

http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema
http://xml.apache.org/
http://xml.apache.org/
http://xml.apache.org/

The JDF Concept. The JDF schema is quite complex and detailed—something best left to programmers, MIS person-
nel, and XML experts. But the language and concepts behind JDF are quite simple and straightforward. The schema itself
can be downloaded from the CIP4 Website, but is not part of this specification. Instead, this is your “cookbook.” It pro-
vides an explanation of each of the components of JDF, its meaning, and intended usage. You will want to use the compo-
nents of JDF that fit best with your workflow and the needs of your customers. To start, a basic understanding of the
concepts behind JDF is in order. There are three primary components to JDF:

1 JDF itself,

2 The Job Messaging Format (JMF), and

3 The MIS system.
JDF is simply an exchange format for instructions and job parameters. You can use PDF, or its standard variant (PDF/
X), to relay production files from one platform to another. You can do the same with JDF to relay job parameters and
instructions. JDF can be used to describe a printing job logically, as you would in exchanging a job description with a
client within an estimate. It can also be used to describe a job in terms of individual production processes and the
materials or other process inputs required to complete a job.

There is no such thing as a standard print workflow. In fact, printing is the ultimate form of flexible
manufacturing. This makes process automation quite a challenge for our industry. What you’ll find in this standard
are XML element definitions that describe all the production processes and material types you’re likely to encounter,
regardless of your workflow. These are the building blocks that you can use to emulate your workflow with JDF. As a
matter of convention, processes such as preflighting, scanning, printing, cutting, and so on are referred to as process
nodes. Every process in the print production workflow requires input resources starting with the client’s files or art-
work and ending with the final bound, packaged, and labeled print product. For example, before you can print, you
need paper, ink, and plates, and before you can send a document to a bindery line, you need printed and cut signa-
tures.
xxxii

JDF Specification Release 1.2
Process nodes and resources are the basic elements within JDF. They can be strung together to meet the requirements
of each job. The output of one process becomes the input of the following process, and a process doesn’t begin until
its input resources are available:

This specification provides details on how to use these building blocks
to describe concurrent processes, spawned processes, dynamic pro-
cesses, and so on. To realize the capabilities of JDF, there are two other
things you will need: a way of controlling the flow of process and a
way of communicating commands to equipment on the shop floor.

JMF is a subset of JDF that handles communication with equipment
on the shop floor. This may include major equipment, such as platesetters,
or subsystems, such as in-line color measurement devices. JMF can be
used to establish a queue, discover the capabilities of a JDF-enabled
device, determine the status of a device, e.g., “RIPing,” “Idle”, and so on.

 Although, theoretically, you can string together equipment that
supports JMF directly to one another, in almost all cases you will want
your production equipment to communicate with your MIS system.
This way it is the MIS system that controls the scheduling, execution, and control of work in progress. The role of the
MIS system is described within this standard, but it isn’t highly defined. In fact, the JDF standard does not dictate
how a JDF system should be built. Many printers, prepress services, and other graphic arts shops will already have
MIS systems in place. JDF enabled workflow and MIS systems, custom-tailored to print production requirements,
will soon be available on the market. However, many printers already have MIS and workflow systems that have
been customized or developed for their own environments. In most cases these legacy systems can be modified to
work with the new JDF workflows and JDF enabled equipment. There are a variety of XML support tools available
on the market to address the databases underlying all MIS systems.

Changes to JDF 1.2, ICS Documents, and Certification. JDF 1.2 includes both some wholly new material, as well
as many improvements and refinements to JDF 1.1 and JDF 1.1a. A complete catalog of changes can be found in “New,
Deprecated, Modified, Illegal, & Removed Items” on page 705. You will also find Modified in JDF 1.2 and New in
JDF 1.2 flags throughout this document. A few of the more “administrative” changes that you may find important include:
• All number, NumberList, NumberRange, and NumberRangeList data types were changed to double, DoubleList,

DoubleRange, and DoubleRangeList data types throughout the document. The old “number” allowed for
interpretation as either an integer or a double, which could cause compatibility issues. Note that this change has
no effect on the encoding. Integer is still used, but with the elimination of all types of “number” data types, this
source of potential confusion is eliminated.

JMF

The Job Messaging Format
(JMF) functions as a standard

interface between your equipment and
your information systems, or other equip-
ment already on the shop floor. By buying
only equipment that supports JMF you will
reduce the cost and complexity of integrat-
ing new equipment into your production
operations, and you will improve the flexi-
bility and adaptability of your shop.

XML and Databases

To learn more about how XML and database work
together, check out the white papers and tutorials avail-

able from XML.org at http://www.xml.org/xml/
resources_focus_rdbms.shtml.
xxxiii

http://www.xml.org/xml/resources_focus_rdbms.shtml
http://www.xml.org/xml/resources_focus_rdbms.shtml

• A “page count” could be interpreted differently, depending on the context of its usage. A designer may only
count number of folio pages, someone estimating paper usage may count the recto and verso sides of a pages as
one page (or leave), and some one in estimating may count all finished pages, which include both blank pages
and folio pages. This is cleared up in the glossary and edits have been made throughout to ensure consistency.

• In JDF 1.1 and 1.1a many JDF attributes had default values and enumerations of “system specified.” As a
default, the JDF sender would have to add these values of “system specified,” which the receiving system would
then replace with the actual value used by the system. This creates unnecessary work and may result in errors;
hence, in JDF 1.2 “system specified” has been removed in almost all cases and it is expected that the receiving
system will use its own default where a processing parameter is not defined with an attribute value, and that
system will add the JDF value it uses to the JDF instance.

• All deprecated Resources, Processes, and other major deprecated sections have been removed to an appendix to
make the JDF standard easier to read.

Several more substantial changes were made to JDF 1.2 as well. The Job Messaging Format and the FileSpec
resource have been greatly improved. Several new finishing processes have been added to JDF 1.2, as well as pro-
cesses and resources for handling quality control measurement and data collection. As indicated in JDF 1.1a, this new
edition includes the much anticipated definitions of preflighting processes and resources — replacing the page holder
preflighting processes and resources in JDF 1.1a.

Perhaps the most significant change in JDF 1.2 is the completion of device capabilities (see “Device Capability
Definitions” on page 502.) Device capabilities provides a language internal to JDF that can be used to construct tests
and queries of systems. These capabilities are used heavily by the new preflighting functions and also provide for a
new type of preflighting: process preflighting. Given a set of customer files, intent, and processing instructions in
JDF, device capabilities features could be used to query a JDF system (e.g., production line, plant, company, etc.) to
determine if all of the capabilities are there to complete the job. Conceivably this could be used in selecting a location
to produce a job or to balance work across an organization.

Device capabilities in JDF 1.2 have a third important func-
tion and that is to facilitate the automation of the “handshake.”
For instance, in JDF there are five staple folds that a stitcher may
use. If a new stitcher is added to your JDF workflow, the govern-
ing workflow or MIS system must know which of those five folds
the new stitcher supports. Communicating the set of JDF ele-
ments and attributes supported by a device to the MIS system or
workflow system is creating the “handshake.”

Prior to JDF 1.2, printers had to make this reconciliation or
“handshake” for themselves or with the help of their vendors and/
or consultants. Some groups, such as NGP or Print City, are con-
structing handshakes between devices of partnering companies so
that come drupa, if you buy JDF-enabled products from the com-
panies in one of these groups, you'll have some assurance that the
handshakes have been established and the devices among the
partners have been pre-integrated.

Device capabilities in JDF 1.2 allows for JDF 1.2-capable devices to be automatically queried for the details of
what aspects of JDF they can and cannot manage. This is an important step towards total “plug-n-play” interoperabil-
ity, but the reader is cautioned that it may be a year or more before there are enough JDF 1.2-capable products on the
market for buyers to specify and rely on this automated handshake functionality.

Finally, in JDF 1.2 the concept of Interoperability Conformance Specification of “ICS” documents is introduced. No
single device (i.e., printer, press, imagesetter, etc.) is likely to implement all that the JDF specification provides for. For
instance, if you are in the digital printing business, you may not care to facilitate data used for case binding. A RIP need not
be required to facilitate JDF preflighting. A Stitcher probably doesn't need to handle image rendering data.

To specify exactly what individual classes of devices need to do with JDF, CIP4 members are developing ICS docu-
ment that will provide the minimum expectations for individual classes of devices. ICS documents will later be used as the
basis for certification testing. Once the certification program begins, you will start seeing products that are marked as “JDF
Certified” and this will be certification to identified levels of one or more specific ICS documents. The ICS documents are
all currently in draft form, and only in circulation among members of CIP4, but once published, like the standard, they will
be freely available to the public and we expect that they will become part of your buying practices.
xxxiv

Chapter 1 Introduction
This document defines the technical specification for the Job Definition Format (JDF) and its counterpart, the Job
Messaging Format (JMF). We will describe the components of JDF, both internal and external, and explain how to
integrate the format components to create a viable workflow. Ancillary aspects are also introduced, such as how to
convert PJTF or PPF to JDF, and how JDF relates to IfraTrack. It is intended for use by programmers and systems
integrators for operations addressed by the International Cooperation for Integration of Processes in Prepress, Press
and Postpress (CIP4). In this first chapter, we present the concept of JDF, how to use this document and some basic
document navigational aids.

1.1 Background on JDF
JDF is an extensible, XML-based format built upon the existing technologies of CIP3’s Print Production Format
(PPF) and Adobe’s Portable Job Ticket Format (PJTF). It provides three primary benefits to the printing industry: 1.)
the ability to unify the prepress, press, and postpress aspects of any printing job, unlike any previous format; 2.) the
means to bridge the communication gap between production services and Management Information Systems (MIS);
and 3.) the ability to carry out both of these functions no matter what system architecture is already in place and no
matter what tools are being used to complete the job. In short, JDF is extremely versatile and comprehensive.

JDF is an interchange data format to be used by a system of administrative and implementation-oriented compo-
nents, which together produce printed products. It provides the means to describe print jobs in terms of the products
eventually to be created, as well as in terms of the processes needed to create those products. The format provides a
mechanism to explicitly specify the controls needed by each process, which may be specific to the devices that will
execute the processes.

JDF works in tandem with a counterpart format known as the Job Messaging Format, or JMF. JMF provides the
means for production components of a JDF workflow to communicate with system controllers and administrative
components. It relays information about the progress of JDF jobs and gives MIS the active ability to query devices
about the status of processes being executed or getting ready to be executed. JMF will provide the complete job track-
ing functionality that is defined by IfraTrack messaging standard. Depending on the system architecture, JMF may
also provide the means to control certain aspects of these processes directly.

JDF and JMF are maintained and developed by CIP4 (http://www.cip4.org). They were originally developed by
four companies prominent in the graphic arts industry—Adobe, Agfa, Heidelberg, and MAN Roland — with signifi-
cant contributions provided by CIP3, the IfraTrack working group, Fraunhofer IGD and the PrintTalk consortium.

1.2 Document References
Throughout this specification references to other documents are indicated by short symbolic names inside square
brackets, (e.g., [ICC.1]). Implementers must read and conform to such referenced documents when implementing a
part of this specification with such a reference. The reader is directed to “References” on page 653 to find the com-
plete set of JDF references and the full title, date, source, and availability of all such references. In addition, this spec-
ification assumes that the reader has a basic awareness of, or access to, the following documents.
Background on JDF 1

http://www.cip4.org

Chapter 1 Introduction
1.3 Conventions Used in This Specification
This section contains conventions and notations used within this document.

1.3.1 Text Styles
The following text styles are used to identify the components of a JDF job.

• Elements are written in sans serif. Examples are Comment,
CustomerInfo, and ResourceLinks.

• Attributes are written in italic sans serif. Examples are
Status, ResourceID, and ID.

• Resources are written in bold sans serif. Examples are
ImpositionProof, Toner, and ExposedMedia.

• Processes are written in bold-italic sans serif. Examples are
ColorSpaceConversion, Rendering, and Scanning.

• Enumerative and Boolean values of attributes are written in italics. Examples are true, Waiting,
Completed, and Stopped.

• Standard bold text is used for the following purposes

Table 1-1: Basic References

Term Definition
[JDF11a] Job Definition Format 1.1a

Date: 2002
Produced by: International Cooperation for Integration of Processes in Prepress, Press
and Postpress (CIP4)
Available at: http://www.cip4.org

[XML] XML Specification
Version 1.0 (Second Edition)

Date: 6 October 2000
Produced by: World Wide Web Consortium (W3C)
Available at: http://www.w3.org/TR/REC-xml.

[XMLNS] Namespaces in XML
Version (W3C Recommendation of 14 January 1999)

Date: 14 January 1999
Produced by: World Wide Web Consortium (W3C)
Available at: http://www.w3.org/TR/REC-xml-names/

[XPath] XML Path Language (XPath) Version 1.0
Version W3C Recommendation 16 November 1999

Date: 16 November 1999
Produced by: World Wide Web Consortium (W3C)

Available at: http://www.w3.org/TR/xpath.html.
[XMLSchema] XML Schema Part 0+1+2: Primer, Structures and Datatypes

Version (W3C Recommendation of 02 May 2001)
Date: 02 May 2001
Produced by: World Wide Web Consortium (W3C) XML Schema working group
Available at: http://www.w3.org/TR/xmlschema-0/, http://www.w3.org/TR/
xmlschema-1/ and http://www.w3.org/TR/xmlschema-2/.

 Extended Backus-Naur
Form

The Extended Backus-Naur Form
(EBNF) provides a compact notation that is
commonly used in the specifications of program-
ming languages. The official EBNF standard,
[iso14977:1996], is available from ISO.
2 Conventions Used in This Specification

http://www.cip4.org
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xpath.html
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/

JDF Specification Release 1.2
– to highlight glossary items. Examples are device, element, and job.

– to highlight defined items inside a table. An example is the data type NMTOKEN in the table in Section 1.4
Data Structures.

– to highlight definitions of local terms. These are terms that are of local importance for a certain chapter, or
some sections inside a chapter. An example is a spawned job in Section 4.4, Spawning and Merging.

– to designate PPF objects in Appendix D, Converting PPF to JDF. Examples are CIP3ProductName and
CIP3ProductComponent.

• For the benefit of those who are reading this document in PDF or online, cross-reference links are denoted by
gray text. Examples are Chapter 6 Processes, and Section 1.2 Conventions Used in This Specification. To
follow a link, click the highlighted text. The examples provided are not actual links.

• Also for the benefit of online readers, external hyperlinks are graphically designated. An example is http://
URL.com. To follow a link, click the highlighted text. The example provided is not an actual link.

1.3.2 XPath Notation Used in this Specification
New in JDF 1.2
A simple subset of the XPath Language [XPath] is used throughout this specification in the description of an element,
attribute, or value to identify other elements, attributes, and/or values. XPath gets its name from its use of a path notation (as
in URLs) for navigating through the hierarchical structure of an XML document. The simple subset of XPath used is:
• Element subelement hierarchy is indicated by a slash (ex. “element/element”)
• Element attribute hierarchy is indicated by a slash and an at (@) symbol) (ex., “element/@attribute”), and
• Attribute value hierarch is indicated by an equal sign (ex., @Attribute = “Value”)
• The text styles above in Section 1.3.1 are used to indicate whether an element is a resource, process, or other

element, or if the subject is an attribute or a value (e.g., enumeration, string, etc.).

Example:
The Xpath expression:

Surface/MarkObject/DynamicField/@Format = “Replacement Text for %s and %s go in
here at %s on %s” ...
Means:

The value “Replacement Text for %s and %s go in here at %s on %“ of the Format
attribute of the DynamicField subelement of the MarkObject element of the Surface resource element.

Locally, (and within context), just the basic attribute dependency may be noted (for instance — DynamicField/
@Format) where the discussion occurs within the section describing the element (e.g., DynamicField in our
example) elements or the element’s immediate parent, (e.g., MarkObject in our example).

1.3.3 Call-Outs
New in JDF 1.2
To help the reader familiar with JDF/1.0 or JDF/1.1, this specification indicates additions, deprecations, and clarifica-
tions using the following call-outs. Please note that not all changes are identified with modified or clarified call-out
flags. A few changes have been made globally and are explained in the body of the document and only significant
changes have been flagged with call-outs, as determined by CIP4 Working Groups.

Example Call-Out Meaning
New in JDF 1.2 New sections, attributes/elements, and attribute values
Deprecated in JDF 1.2 Deprecated sections, attributes/elements, and attribute values
Modified in JDF 1.2 Changed syntax or semantics of sections and attributes/elements, may include clarifi-

cation as well.

Clarified in JDF 1.2 Clarified sections or attributes.
Conventions Used in This Specification 3

Chapter 1 Introduction
1.3.4 Specification of Cardinality
The cardinality of JDF Data Types is expressed using a simple Extended Backus-Naur Form (EBNF) notation. The
symbols in this notation may be combined to indicate both simple and complex patterns, as demonstrated in the fol-
lowing table. A and B represent simple expressions.

1.4 Glossary of Terminology
The following terms are defined as they are used throughout this specification. For more detail on job and workflow
components, see Section 2.1, System Components. To locate the sections that explain these terms in more detail see
Terminology Usage.

Notation Description

(expression) Expression is treated as a unit and may be combined as described in this list.

A Matches A. A must occur exactly one time.

A ?
Matches A or nothing. A is optional, or is required only in the circumstances explained in the
description field. If A is an attribute, a default that is specified in the description will not be inserted
into the XML by a schema aware parser if no value is explicitly specified.

A + Matches one or more occurrences of A.

A * Matches zero or more occurrences of A.

A = “value”

Matches on occurrence of A set to the default value shown. A may be set to other values other than
the default. A default that is specified as A = “value” indicates a JDF default which must be
inserted into the XML by the JDF validator if no value is explicitly specified. If no schema is used in
validation, it is up to the application to apply these defaults. See “Conformance Requirements for
Support of Attributes and Attribute Values” on page 7. This notation is only valid for XML
attributes, not XML elements.

Term Definition

Agent The component of a JDF-based workflow that writes JDF.

Attribute An XML-based syntactic construct describing an unstructured characteristic of a JDF node or element.

Big job The combined job that independent jobs are merged into in the case of independent spawning
and merging.

Class A set of complex data types with common content in an object-oriented sense. A complex data
type may consist of elements and attributes.

Controller The component of a JDF-based workflow that initiates devices, routes JDF, and communicates
status information.

Default

Used to indicate the attribute value that a JDF Consumer must use if an Agent omits an
Optional attribute (as indicated by a “?” or Attribute=”DefaultValue” in this specifica-
tion) from a JDF instance. See Section 1.4.2.1, Conformance Requirements for Support of
Attributes and Attribute Values.

Deprecated

Indicates that a JDF element is being phased out of JDF usually in favor of newer JDF element(s). It
is recommended that an Agent not include such a JDF element in a JDF instance. Such an indicated
JDF element may be removed from a future version of the JDF specification. JDF Consumers should
only support such JDF elements for backward compatibility with previous versions of JDF. Depre-
cated items are flagged with Deprecated in JDF 1.X in this specification.

Device The component of a JDF workflow part that interprets JDF and executes the instructions. If a
Device controls a machine, it does so in a proprietary manner.

Document set A set of instance documents presumed to be related.

Element An XML-based syntactic construct describing structured data in JDF.
4 Glossary of Terminology

JDF Specification Release 1.2
Finished page

A page of a final product that normally has no folds inside. The folds of the finished product for
packaging (e.g., folding letters into an envelope) or z-folds of an oversized book, have no effect
on the finished page definition. A sheet of paper with no fold inside consists of two finished
pages (“recto” and “verso” or front and back side). If there are folds seen in a sheet in the final
product, the number of finished pages of one sheet is given by 2*(X+1)*(Y+1), where X
denotes the number of folds in X direction and Y denotes the number of folds in Y direction,
each seen in the completely opened sheet. Examples: One sheet in a book has two finished
pages, one front, one back; a brochure with one fold inside has four finished pages.

Folio
A numbered finished page of a printed book or publication. (Pages are not all necessarily num-
bered. A 72-page book may have 68 pages that are numbered, which are referred to as either
“folio pages” or “folios.”)

Form A collection of imposed (ordered) finished pages set for printing or imaging to plate or film.

Instance
document

A document that is part of the output of a job. This generally refers to personalized printing jobs. Each
of the individual documents produced from the same input template is referred to as an instance docu-
ment. For example, in a credit card statement run, each statement is an instance document.

JDF Job Definition Format. The overall name of this specification. There is also a JDF element,
which is a top-level element within JDF that encompasses a node (see below.)

JDF Consumer A Device, Controller, Process, Queue, or Agent that consumes JDF instances.

JMF
Job Messaging Format. A communication format with multi-level capabilities. Structures infor-
mation between MIS and controllers. There is also the JMF element, which is a top-level ele-
ment within JDF.

Job A hierarchical tree structure comprised of nodes. Describes the output that is desired by a customer.

Job part One or more nodes which comprise the smallest level of control of interest to MIS.

Leaf Both the recto and verso finished pages on one piece of paper with “leaves” being the plural usage.

Link A pointer to information that is located elsewhere in a JDF document or that is located in
another document.

Machine The part of a device that does not know JDF and is controlled by a JDF device in a proprietary manner.

MIS Management Information Systems. The functional part of a JDF workflow that oversees all pro-
cesses and communication between system components and system control.

Node The JDF element type detailing the resources and process specification required to produce a
final or intermediate product or resource.

Partition
Enumerations of the PartIDKeys attribute of the Resource element used to identify individ-
ual physical and logical parts of a job. (See Table 3-27, “Contents of the Partitionable Resource
Element,” on page 78.)

Partitioned
resource

Structured resource that represents multiple physical or logical entities, such as separated
plates.

PDL Page Description Language. A generic term for any language that describes pages which may
be printed. Examples are PDF®, PostScript® or PCL®.

Process An individual step in the workflow.

Queue Entity that accepts job entries via a JMF messaging system.

Reader page

A logical page as perceived by a reader, for example one RunList entry. One reader page may
span more than one finished page, (e.g., a centerfold). One finished page may contain contents
defined by multiple reader pages, (e.g., NUp imposition. Reader pages are defined indepen-
dently of finished pages).

Resource A physical or conceptual entity that is modified or used by a node. Examples include paper,
images, or process parameters.

Term Definition
Glossary of Terminology 5

Chapter 1 Introduction
Sheet The printer’s roll of paper or paper cut for press size, with “recto” and “verso” forms for identi-
fication of orientation through the press (facing up vs. facing down at the feeder or off the roll.)

Signature

A signature is a set of printed sheets that may be folded or unfolded.
Note that there are multiple usages of the word Signature in the industry. A sheet may contain
multiple BinderySignature that are the input to Folding. This is the standard usage in
conventional printing, where multi-page sheets are printed and potentially cut into multi-page
imposition signatures before folding. The Layout resource, on the other hand, describes a
Signature as a set of sheets. This is appropriate for digital printing, where typically only one or
two pages are printed per Surface and multiple sheets are gathered prior to folding.

Slave Controller The component of a JDF workflow that accepts JDF as a device from other controllers and/or
Slave Controllers and sends JDF to other Slave Controllers and/or Devices.

Small job An independent job that is merged into a big job.

Support

A JDF Consumer supports a JDF syntactic construct (processes, resources, elements,
attributes, and attribute values) if the JDF Consumer performs the action defined in this specifi-
cation for the JDF construct when consuming a JDF instance that includes the JDF syntactic
construct. If the Machine that a Device is representing supports a feature which is represented
by a JDF construct, then the Device should support that JDF syntactic construct.

Surface A single side of either a Sheet or a Signature

Tag A syntactic construct that marks the start or end of an element.

Work center An organizational unit, such as a department or a subcontracting company, that can accomplish a task.

Term Definition

 Getting Pages Straight

The term “page” is very common in everyday conversations regarding printing, but in context
of a technical specification for graphic arts it can be misleading. Is page “1” of a document the

same as the first page or page one of an imposition or the first page numbered one? The above glossary
includes more specific definitions, but, in general, a “reader page” is as the reader sees it in the final prod-
uct, and a “finished page” is one side of the final cut, folded, and bound product. “Recto” and “verso” fin-
ished pages describe the forward-facing and away-facing pages of a “leaf,” meaning both recto and verso
finished pages of one a piece of paper with “leaves” being the plural of leaf.
A “form” is an imposed (ordered) collection of finished pages set for printing on a “sheet” which is the
printer’s roll of paper or paper cut for press size. Sheets may also have “recto” and “verso” forms for iden-
tification of orientation through the press (facing up vs. facing down at the feeder or off the roll.) And
finally, a “signature” is the printed (folded or yet to be folded) sheet and a “surface” is a single side of
either a sheet or a signature.
Finished pages are not all necessarily numbered. A 72-page book may have 68 pages that are numbered,
which are referred to as either “folio pages” or “folios.” It is also a common convention that the page count
for a book does not include the cover pages. Hence, a book may be described as a “72-page book, plus
four cover pages” or just “plus cover.” Cover pages may be referenced as “cover 1” (front cover), “cover 2”
(inside of front cover), “cover 3” (inside of back cover), and “cover 4” (back cover).
Special arrangements, such as over-covers, wraps, and glue on pages applied to covers are treated as
inserts and other furnished material that is bound, but not printed, (e.g., treated as separate job parts until
bindery).
Where the word “page” is used in this document (as opposed to finished page or reader page), it should
be interpreted as “finished page.”
6 Glossary of Terminology

JDF Specification Release 1.2
1.4.1 Conformance Terminology
The words “must”, “must not”, “required”, “should”, “should not”, “recommended”, “may”, and “optional” are
used in this specification to define a requirement for the indicated Agent or the indicated JDF Consumer as follows.

1.4.2 Conformance Requirements for JDF Entities
The subsections of this section define the general conformance requirements for the JDF entities: 1.) attributes and
attribute values, 2.) resources, 3.) processes, and 4.) combined processes.

1.4.2.1 Conformance Requirements for Support of Attributes and Attribute Values
If a JDF Consumer supports an attribute, it must support all of the values that this specification indicates are required
for a JDF Consumer to support (whether or not the attribute is required for the Agent to supply in that context). If this
specification is silent on which values are required for support of an attribute, then the JDF Consumer must support at
least one value in order to claim support for the attribute.

Attributes that are optional for an Agent to include in a JDF instance are indicated by a “?” character following
the attribute name or by the notation Attribute = “DefaultValue” as indicated in Section 1.3.4, Specification of
Cardinality.

A Special Note on the Handling of Defaults. Prior to JDF 1.2 many Optional attributes included either explicit
default values or the default value was indicated as “system specified” or the “SystemSpecified” enu-
meration or NMTOKEN value. In JDF/1.2, the explicit default values are indicated as default values using the “=”
followed by the “value” (See Section 1.3.4). The “SystemSpecified” enumeration and NMTOKEN values have
been removed and the attribute remains as an optional attribute indicated with a “?” with no default value. The JDF

Table 1-2: Conformance Terminology

Term Meaning

Must,
Required

Mean that the definition is an absolute requirement of the specification.

Must not Means that the definition is an absolute prohibition of the specification.

Should,
Recommended

Mean that there may exist valid reasons in particular circumstances for an implementer to
ignore a particular item, but the implementer must fully understand the implications and
carefully weigh the alternatives before choosing a different course.

Should not,
Not recommended

Mean that there may exist valid reasons in particular circumstances when the particular
behavior is acceptable or even useful, but the implementer should fully understand the
implications and then carefully weigh the alternatives before implementing any behavior
described with this label.

May,
Optional

Mean that an item is truly optional. Unless specified otherwise, the word “optional” refers
to JDF syntax, (i.e., what an Agent may include in a JDF instance), and does not refer to a
JDF Consumer option, (i.e., not to what a JDF Consumer may support). If a JDF Consumer
is using a JDF parser, that parser will supply the default values indicated in this specifica-
tion, if any, for optional attributes that the Agent has omitted (indicated by Attribute =
”DefaultValue”in this specification). See Section 1.3.4, Specification of Cardinality
For features that are optional for a JDF Consumer to support, one vendor may choose to
support such an item because a particular marketplace requires it or because the vendor
feels that it enhances the product, while another vendor may omit support of that item.
Similarly, one vendor of an Agent may choose to supply such an item in a JDF instance,
while another vendor may omit the same item in a JDF instance. A JDF Consumer imple-
mentation which does not include support of a particular option (element or attribute) must
be prepared to interoperate with an Agent implementation which does supply the option,
though with reduced functionality. In the same vein, a JDF Consumer implementation
which does include support for a particular option must be prepared to interoperate with an
Agent implementation which does not supply the option in the JDF instance.
Glossary of Terminology 7

Chapter 1 Introduction
consuming application must supply the Default value when the attribute is omitted from the JDF instance. Such an
indicated default value must have the same semantic meaning as if an Agent includes the attribute in the JDF instance
with the same value. If an optional attribute does not have a default value indicated in its description and the JDF
instance does not include the attribute, then the JDF Consumer may use a system-specified value.

See Figure 1.1 below. Such a system-specified attribute value may be configurable by a system administrator for
the JDF Consumer or may depend on the values of other supplied attributes and/or the current setting of the JDF Con-
sumer Device or the actual machine for which the Device is providing a JDF interface.

1.4.2.2 Conformance Requirements for Support of Elements
If a JDF Consumer supports an element, it

1 must support all of the attributes (see Section 1.4.2.1) defined for that element that an Agent is required to
include in the element instance attributes with either no marks or a “+” as defined in Section 1.3.4, and

2 should support the SettingsPolicy, BestEffortExceptions, MustHonorExceptions, and
OperatorInterventionExceptions (see Section 3.1.1, Generic Contents of JDF Elements) attributes
and all of their defined values. These attributes control the policy that a JDF Consumer must follow when it
encounters unsupported settings, (i.e., subelements, attributes or attribute values in the resource.)

1.4.2.3 Conformance Requirements for Support of Processes
All processes are optional for a JDF Consumer to support. However, a Device must support at least one process or a
combined process. If a JDF Consumer supports a process, it

1 must support all of the input and output ResourceLinks and referenced Resources as described in
Section 1.4.2.2 that this specification defines for that process,

2 may make its own assumptions regarding attributes and subelements of an optional input resource (resources
with either a “?” or an “*” – see Section 1.3.4) that an Agent has omitted from the process in the JDF instance;
therefore, default attribute values defined in this specification are not guaranteed when the Agent omits the
resource from the process in the JDF instance (see Section 6.1, Process Template), and

3 should find the processes that it supports in a JDF instance and must ignore all other processes, independent
of the SettingsPolicy attribute for those other processes.

Figure 1.1: Handling of Default Values of JDF Attributes.
8 Glossary of Terminology

JDF Specification Release 1.2
1.4.2.4 Conformance Requirements for Support of Combined Processes
All combined processes are optional for a JDF Consumer to support. The rules for processes specified in Section
1.4.2.3 apply. If a JDF Consumer supports a combined process, it

1 must support all of the input resources as defined in Section 1.4.2.2 that this specification defines for the first pro-
cess in the combined process node, (i.e., the first process listed in the Types attribute),

2 must support all of the output resources as defined in Section 1.4.2.2 that this specification defines for the
last process in the combined process,

3 may support resources that are used as exchange resources between processes in the process chain of the
combined process, (i.e., resources that are both produced and consumed within the combined node),

4 must support resources in intermediate process steps that are not used as exchange resources between pro-
cesses in the process chain of the combined process.

1.4.3 Conformance to SettingsPolicy
The SettingsPolicy, BestEffortExceptions, MustHonorExceptions and OperatorIntervention-
Exceptions attributes defined in “Generic Contents of elements” on page 35 define the conformance policy of a
Device. A JDF Consumer should support these attributes and all of the defined values so that an Agent can depend on
the JDF Consumer following the policy requested by the Agent in a JDF instance.

1.5 Data Structures
Modified in JDF 1.2
The following table describes the data structures
as they are used in this specification. For more
details on JDF Schema and Datatypes, see
“Encoding” on page 565.

In JDF 1.2, some datatypes have been
enhanced to include unbounded values by defin-
ing the explicit tokens “INF” and “-INF”. For
instance, the IntegerRange “0 ~ INF” specifies all
positive integers including 0.

Table 1-3: JDF data types

Data Type Description
boolean Binary-valued logic: (true | false).
CMYKColor Represents a CMYK color specification.
date Represents a time period that starts at midnight of a specified day and lasts for 24 hours.
dateTime Represents a specific instant of time. It must be a UTC-time or a local time that includes the

time zone.
DateTimeRange Two dateTimes separated by a “~” (tilde) character that defines the closed interval of the two.

TimeRange corresponds semantically to the time interval (two time instants separated by a
slash) defined in ISO 8601.

DateTimeRange-
List

Whitespace-separated list of DateTimeRanges.

double Corresponds to IEEE754 double-precision, 64-bit floating point type, (see [IEEE754]), includ-
ing special tokens INF and -INF. This corresponds to the standard XML double with NaN
removed. For details, see [XMLSchema].
Note: Prior to JDF 1.2 the data type “number” was used. The double and number datatypes are
syntactically equivalent.

Data Types

A important reason for using a W3C Schema is to
make use of user-defined datatypes. Even

datatypes that are defined in the Schema specification have
been more narrowly defined in JDF, including boolean (JDF
doesn't permit 1, 0), double (JDF doesn't permit NaN), duration
(JDF has INF & -INF), and string (JDF doesn't permit CR LF &
FF). Be sure to check “Encoding” on page 565 for all datatype
definitions.
Data Structures 9

Chapter 1 Introduction
DoubleList
New in JDF1.2

Whitespace-separated list of doubles. Note that this datatype was named NumberList prior to
JDF 1.2.

DoubleRange
New in JDF1.2

Two doubles separated by a “~” (tilde) character that defines the closed interval of the two. Note
that this datatype was named NumberRange prior to JDF 1.2.

DoubleRangeList
New in JDF1.2

Whitespace-separated list of double and DoubleRanges. Note that this datatype was named
NumberRangeList prior to JDF 1.2.

duration Represents a duration of time.
DurationRange DurationRange is used to describe a range of time durations. More specifically, it describes a

time span that has a relative start and end.
DurationRange-
List

Whitespace-separated list of DurationRanges.

element Structured data. The specific data type is defined by the element name.
enumeration Limited set of NMTOKEN (see below).
enumerations Whitespace-separated list of enumeration data types.
gYearMonth Represents a specific Gregorian month in a specific Gregorian year.
hexBinary Represents arbitrary hex encoded binary data.
ID Unique identifier as defined by [XML Specification 1.0] (see Section 1.2, Document

References). Must be unique within the scope of the JDF-document.
IDREF Reference to an element holding the unique identifier as defined by [XML Specification 1.0].
IDREFS List of references (IDREFs) separated by white spaces as defined by [XML Specification 1.0].
integer Represents numerical integer values, including the special tokens INF and -INF. This corre-

sponds to the standard XML integer with INF and -INF added. Values greater than +/-2**31 are
not expected to occur for this datatype. For details, see [XMLSchema].

IntegerList Whitespace-separated list of integers.
IntegerRange Two integers separated by a “~” character that define a closed interval.
IntegerRangeList Whitespace-separated list of integers and IntegerRanges.
LabColor Represents a Lab color specification.
language Represents a language and country code (for example, en-US) for a natural language.
LongInteger Represents numerical integer values, including the special tokens INF and -INF. This corre-

sponds to the standard XML integer with INF and -INF added. Values greater than +/-2**31 are
expected to occur for this datatype. For details, see [XMLSchema].

matrix Whitespace-separated list of six numbers representing a coordinate transformation matrix.
NamedColor Represents a color definition by name. A list of valid NamedColor values is provided in Section

A.3.3.2, NamedColor.
NameRange Two NMTOKEN separated by a “~” (tilde) character that define an interval of NMTOKEN.
NameRangeList Whitespace-separated list of NMTOKEN and NameRanges.
NMTOKEN A continuous sequence of special characters as defined by the [XML Specification 1.0].
NMTOKENS Whitespace-separated list of NMTOKEN.
Orientation
New in JDF 1.2

Enumeration that specifies named orthogonal two-dimensional orientations.

Orientations
New in JDF 1.2

Whitespace separated list of Orientation enumerations that specify named orthogonal two-
dimensional orientations.

PDFpath Whitespace-separated list of path operators as defined in PDF.

Table 1-3: JDF data types

Data Type Description
10 Data Structures

JDF Specification Release 1.2
1.6 Units
JDF specifies most values in default units. That means you can't use alternate units instead of the defined default
units. All measurable quantities are stated in double precision. Processors should only specify a unit if no default
exists, such as when new resources are defined. Then the units must be based on metric units. Overriding the default
units that are defined in this table is non-standard and may lead to undefined behavior. Any exceptions are specified
in the appropriate descriptive tables.

rectangle Whitespace-separated list of four numbers representing a rectangle.
refelement element or a reference to an element. Used to define candidates for inter-resource linking in

resources.
regExp
New in JDF 1.2

Regular expression as defined by [XMLSchema]

shape Whitespace-separated list of three numbers representing a three-dimensional shape consisting of
a width, height, and length. Unless specified otherwise in the attribute description, these three
numbers are an X-dimension, a Y-dimension, and a Z-dimension, respectively.

ShapeRange Two Shapes separated by a “~” (tilde) character that defines a 3-dimensional box bounded by
x1 y1 z1~x2 y2 z2.

ShapeRangeList Whitespace-separated list of shapes or ShapeRanges.
sRGBColor Represents an sRGB color specification.
string
Modified in JDF
1.2

Character strings without tabs or line feeds. Corresponds to the standard XML normalizedString
datatype [XMLSchema].

telem Text elements that contain larger chunks of character data and may include line feeds.
text Text data contained in a telem (text element).
TimeRange Two dateTimes separated by a “~” (tilde) character that defines the closed interval of the two. Time-

Range corresponds semantically to the time interval (two time instants separated by a slash)
defined in ISO 8601.

TransferFunction Whitespace separated list of an even number of numbers representing a set of XY coordinates of
a transfer function.

URI URI-reference. Represents a Uniform Resource Identifier (URI) Reference as defined in Section
4 of [RFC 2396]. For the “file:’ URL scheme, see [RFC1738].

URL URL-reference. Represents a Uniform Resource Locator (URL) Reference as defined in Section
4 of [RFC 2396]. For the “file:’ URL scheme, see [RFC1738].

JDFJMFVersion Version label of a JDF or JMF instance. See Section 3.11, JDF Versioning for a discussion of
versioning in JDF.

JDFJMFVersions Whitespace separated list of JDFJMFVersion.
XPath Represents an XPath expression of an XML node set (attributes or elements), boolean, number,

or string.[XPath]
XYPair Whitespace-separated list of two numbers. Unless specified otherwise in the attribute Descrip-

tion, these two numbers are an X-dimension and a Y-dimension, respectively.
XYPairRange Two XYPairs separated by a “~” (tilde) character that defines a rectangle bounded by x1 y1 ~

x2 y2
XYPairRangeList Whitespace-separated list of XYPairRanges.
XYRelation
New in JDF 1.2

Defines the relationship between two ordered numbers. One of a set of NMTOKENs, a list of
valid values is provided in “XYRelation” on page 577.

Table 1-3: JDF data types

Data Type Description
Units 11

http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt

Chapter 1 Introduction
The following table lists the units used in JDF. The representation column specifies the XML representation in the
unit attribute of resources.

Table 1-4: Units used in JDF

Measurement Unit Representation Remarks
Length point (1/72 inch) pt Used for all except microscopic lengths (see below)

micron mu Used for microscopic lengths — where used (instead
of points) it will be explicitly stated in the definition of
the item. See Media/@Thickness.

Volume liter l —
Weight gram g —
Area m2 m2 —

Resolution dpi dpi The dots per inch (dpi) for print output and bitmap
image (TIFF, BMP, etc.) file resolution.

Line Screen lpi lpi The lines per inch (lpi) for conventionally screened
halftone, screened grayscale, and screened monotone
bitmap images.

Screen Resolution ppi ppi The pixels per inch (ppi) for screen display (e.g., soft-
proof display and user interface display), scanner cap-
ture settings, and digital camera settings.

Spot Resolution spi spi For imaging devices such as filmsetters, platesetters,
and proofers, the fundamental imaging unit, (e.g., one
“on” laser or imaging head imaged unit). Note: Many
imaging devices construct dots from multiple imaging
spots, so dpi and spots per inch (spi) are not equiva-
lent.

Paper weight g/m2 g/m2 —

Speed units/hour */h Replace the “*” in the representation with the appro-
priate unit

Temperature C° (Celsius) C degree centigrade
Angle degrees° degree —
Countable Objects 1 — Countable objects, such as sheets, have no unit specifi-

cation.
12 Units

JDF Specification Release 1.2
Chapter 2 Overview of JDF
Introduction
This chapter explains the basic aspects of JDF. It outlines the terminology that is used and is recognized by the for-
mat, and the components of a workflow necessary to execute a printing job using JDF. Also provided is a brief discus-
sion of JDF process structure and the role of messaging in a JDF job.

2.1 System Components
This section defines unique terminology used in this specification for the job and workflow components of JDF.
Links to additional information is included for some terms.

2.1.1 Job Components
This terminology describes how JDF is described conceptually and hierarchically.

2.1.1.1 Jobs and Nodes
A job is the entirety of a JDF project. Each job is organized in a tree structure containing all of the information
required to complete the intended project. The information is collected logically into what is called a node. Each node
in the tree structure represents an aspect of the job to be executed.

The nodes in a job are organized in a hierarchical structure that resembles a pyramid. The node at the top of the pyra-
mid describes the overall intention of the job. The intermediate nodes describe increasingly process-oriented aspects of the
job, until the nodes at the bottom of the pyramid each describe a single, simple process. Depending on where in the job
structure a node resides, it can represent a portion of the product to be created, one or many processing steps, or other job
parts. For more information about jobs and nodes, see Section 3, Structure of JDF Nodes and Jobs.

2.1.1.2 Elements
An element is a standard XML syntactic construct [XML]. (See also:
Section 2.1.1.3, Attributes.) Elements that are subparts of other ele-
ments are often referred to as subelements. JDF elements are repre-
sented by two kinds of data types: element and text element. The latter
is abbreviated as telem. For more information about elements, see
Section 3.1.2, JDF Node Attributes and Elements.

2.1.1.3 Attributes
An attribute is a standard XML syntactic construct [XML]. (See also: Section 2.1.1.2, Elements.) Attributes are
defined as various different data types, such as string, enumeration, dateTime, and so on.

For more information about attributes, see Section 3.1.2, JDF Node Attributes and Elements. Note that an attribute
with an empty (zero length) value string is illegal except when the attribute value is defined as an arbitrary string or as a list,
(e.g., when not used nor required, attributes should be omitted rather than included as empty attributes.)

2.1.1.4 Relationships
The hierarchical JDF structure implies relationships between nodes and elements within a JDF tree structure. The
terms used in this document to describe these relationships are defined below, and, in some cases, include a brief rep-
resentation of the encoding that would express them.
• Parent: An element that directly contains a child element.

<Parent><Child/></Parent>

• Child: An element that resides directly in the parent element.
• Sibling: An element that resides in the same parent element as another child element.

<Any><Sibling/><Sibling/></Any>

• Descendent: An element that is a child or a child of a child, etc.
• Ancestor: An element that is a parent or a parent’s parent, etc.

XML Crash Course

Need a crash course in XML?
XML101.com provides online

tutorials that non-programmers can easily
follow. The site includes examples. See
http://xml101.com/
System Components 13

http://xml101.com/

Chapter 2 Overview of JDF
<Ancestor>
 <Any>
 <Descendent/>
 <MoreAnys>
 <Descendent/>
 </MoreAnys>

</Any>
</Ancestor>

• Root: The single element that contains all other elements as descendents.
• Leaf: element without further child elements.
• Branch: An intermediate node in a hierarchy that contains at least one child node. A branch is never a leaf.

2.1.1.5 Links
There are two kinds of links in JDF: internal links and external links. Internal links are pointers to information that is
located elsewhere in a JDF document. The data that is referenced by the link is located in a target element. External
links are used to reference objects that are outside of the JDF document itself, such as content files or color profiles.
These objects are linked using standard URLs (Uniform Resource Locators).

JDF makes extensive use of links in order to reuse information that is relevant in more than one context of the
job. The same target may be referenced by multiple links. However, no link references more than one target.

2.1.2 Workflow Component Roles
The four components required to create, modify, route, interpret and execute a JDF job are known as agents, control-
lers, devices and machines. Overseeing the workflow created by these components is MIS, or Management Informa-
tion Systems. These five aspects of a JDF workflow are described in the sections that follow.

By defining these terms, this specification does not intend to dictate to manufacturers how a JDF/JMF system
should be designed, built, or implemented. The intention is to name the component mechanisms required for the
interaction of actual components in a workflow during the course of a JDF job. In practice, it is very likely that indi-
vidual system components will include a mixture of the capabilities described in the following sections. For example,
many controllers are also agents.

2.1.2.1 Machines
A machine is any part of the workflow system designed to execute a
process. Most often, this term refers to a piece of physical equipment,
such as a press or a binder, but it can also refer to the software compo-
nents used to run a particular machine. Computerized workstations,
whether run through automated batch files or controlled by a human
worker, are also considered machines if they have no JDF interface.

2.1.2.2 Devices
The most basic function of a device is to execute the information
specified by an agent and routed by a controller. Devices must be
able to execute JDF nodes and initiate machines that can perform the
physical execution. The communication between machines and
devices is not defined in this specification. Devices may, however,
support JMF messaging in order to interact dynamically with controllers.

2.1.2.3 Agents
Agents in a JDF workflow are responsible for writing JDF. An agent has the ability to create a job, to add nodes to an
existing job, and to modify existing nodes. Agents may be software processes, automated tools, or even text editors.
Anything that can be used in composing JDF can be considered an agent.

Actual implementations of devices or controllers will most often be able to modify JDF. These system compo-
nents have agent properties in the terms of this specification.

Agents,
Controllers & Devices

“Agents”, “Controllers”, and
“Devices” are special, logical descriptions.
You probably won’t ever buy one. An agent
(writes and reads JDF) may be any soft-
ware tool that can parse JDF. Controllers
communicate instructions that devices act
upon. They are functions that may be
embedded into your software, production
equipment, or MIS systems.
14 System Components

JDF Specification Release 1.2
2.1.2.4 Controllers
Agents create and modify JDF information; controllers route it to the
appropriate devices. The minimum requirement of a controller is that
it can initiate processes on at least one device, or at least one other
slave controller that will then initiate processes on a device. In other
words, a controller is not a controller if it has nothing to control. In
some cases, a pyramid-like hierarchy of controllers can be built, with
controllers at the top of the pyramid controlling a series of lower-level
controllers at the bottom. The lowest-level controllers in the pyramid,
however, must have device capability. Therefore, controllers must be
able to work in collaboration with other controllers. In order to com-
municate with one another, and to communicate with devices, control-
lers must support the JDF file-exchange protocol and may support
JMF. Controllers can also determine process planning and scheduling
data, such as process times and planned production amounts.

2.1.2.5 Management Information Systems—MIS
The overseer of the relationships between all of the units in a work-
flow is known as Management Information Systems, or MIS. MIS is,
in effect, a macrocosmic controller. It is responsible for dictating and
monitoring the execution of all of the diverse aspects of the workflow.
To do this, it must remain in contact with the actual production facili-
ties. This can be accomplished either in real time using JMF messag-
ing or post-facto using the audit records within JDF.

To allow MIS to communicate effectively with the other work-
flow components, JDF supplies what is essentially a messenger ser-
vice, in the form of JMF, to run between MIS and production. This format is equipped with a variety of message
types, ranging from simple, unidirectional notification to queries and even commands. System designers have a great
deal of flexibility in terms of how they choose to use the messaging architecture, so that they can tailor the processes
to the capabilities of the existing workflow mechanism. Figure 2.1 depicts how various communication threads can
run between MIS and production.

JDF also provides system components the ability to collect performance data for each node, which can then be
passed on to a job-tracking system for use by the MIS system. These data may be derived from the messages that the
controller receives or from the audit records in the job. (For more information on audits, see Section 3.9.1, Audit
Elements.) Alternatively, the completed job may be passed to the job accounting system, which examines the audit
records to determine the costs of all the processes in the job.

Automating Data
Flows

JDF-enabled workflow may
require a tremendous amount of informa-
tion. This could seem daunting to anyone
who expects to have to enter information
into a system, but it need not be the case.
From the style information in a layout file,
to automatically generated image file
header information, to the color profiles
tagged onto images automatically by digital
cameras or image editing systems, a great
deal of information can be captured and
passed along from one JDF-enabled appli-
cation to another. Furthermore, where, in
the specification, there are many options,
those options can be set to user-defined
default values that represents typical jobs
in your particular workflow. For instance,
JDF provides a variety of staple folds. If
your plant only supports a crown fold, that
becomes the default in your JDF-enabled
system and is rarely manually specified or
keyed.
System Components 15

Chapter 2 Overview of JDF
2.1.2.6 System Interaction
An example of the interaction and hierarchical structure of the components considered in the preceding sections is
shown in the following figure. Single arrows indicate uni-directional communication channels and double arrows
indicate bi-directional communication.

2.2 JDF Workflow
JDF does not dictate that a workflow be constructed in any pre-specified way for it to be usable. On the contrary, its
flexibility has allowed JDF to model existing custom solutions for the graphic arts, as well as those yet to be imag-
ined. JDF is equally as effective with a simple system using a single controller-agent and device as it is with a com-
pletely automated industrial press workflow with integrated pre- and postpress operations.

Because of workflow system construction in today’s industry, the principal subsection procedures of a printing
job—prepress, press, and postpress—remain largely disconnected from one another. JDF provides a solution for this
lack of unity. With JDF, a print job becomes an interconnected workflow that runs from job submission through trap-
ping, RIPing, filmmaking, platemaking, inking, printing, cutting, binding, and sometimes even through shipping. JDF
enables an architecture that defines the process necessary to produce each intended result and identifies the elements
necessary to complete the processes. All processes are separated into nodes, and the entire job is represented by a tree
of these nodes. All of the nodes taken together represent a desired printed product.

Each individual node in JDF is defined in terms of inputs and outputs. The inputs for a node consist of the
resources it uses and the parameters that control it. For example, the inputs in a node describing the process parame-
ters for imaging the cover of a brochure might include requirements for trapping, RIPing, and imposing the image.
The output of such a node might be a raster image.

Unless they represent the absolutely final product, resources that are produced by one node are in turn modified
or consumed by subsequent nodes. Therefore, the output of the process described above—the raster image—becomes
one of the input resources for a node describing the printing process for the brochure. This input resource would be
joined in the node by other input resources such as inks, press sheets, plates, and a set of parameters that indicate how
many sheets should be produced. The output would be a set of printed press sheets that in turn would become the
input resource for postpress operations such as folding and cutting. And so on until the brochure is completed.

Figure 2.1: Example of JDF and JMF workflow interactions
16 JDF Workflow

JDF Specification Release 1.2
This system of interlinked nodes effectively unites the prepress, press, and postpress processes, and even extends the
notion of where a job begins. A JDF job, like any printing job, is defined by the original intent for the end product.
The difference between a JDF job and a generic printing job, however, is that JDF allows the entire job, from prepress
through postpress, to be defined up front. All of the resources and processes necessary to produce an entire printed
product can be identified and organized into nodes before the first prepress process is set in motion. Furthermore, the
product intent specification can be extremely broad or extremely detailed, or anywhere in between. This means that a
job may be so well defined before production begins that the system administrator only has to set the wheels in
motion and let the job run its course. It may also mean that the person submitting the job has only a general idea of
what the final product will look like and that modifications to the intent will be made along the way, depending on the
course of the job.

For example, the person submitting the job specification for the brochure described above may know that she
wants 400 copies, that she wants it done on a four-color press with no spot colors, that the cover will be on a particu-
lar paper stock and the contents on another, that the binding will be stapled, and that she requires the job in two
weeks. Another person might know only that he wants the pages she’s designed to be put into some sort of brochure
form, although she doesn’t know exactly what. Either person’s request can be translated into a JDF product intent
node that will eventually branch into a tree structure describing each process required to complete the brochure. In the
first example, the prepress, press, and postpress processes will be well defined from the start. In the second example,
information will be included as it is gathered. The following sections describe the way in which nodes can combine to
form a job.

2.2.1 Job Structure
JDF jobs consist of a set of nodes that specify the production steps needed to create the desired end product. The
nodes, in addition to being connected through inputs and outputs, are arranged in a hierarchical tree structure.
Figure 2.2, below, shows a simple example of a tree of nodes.

Figure 2.2: JDF tree structure
JDF Workflow 17

Chapter 2 Overview of JDF
The following table provides a hypothetical breakdown of the nodes in the tree structure shown above.

The uppermost nodes (1, 2, & 3) represent the product intent in general terms. These nodes describe the desired end
product and the components of that product, which, in this case, are the cover and the content pages. As the tree
branches, the information contained within the nodes gets more specific. Each subnode defines a component of the
product that has a unique set of characteristics, such as different media, different physical size, or different color
requirements. The nodes that occur in the middle of the tree (4, 5, & 6) represent the groups of processes needed to
produce each component of the product. The nodes that occur closest to the bottom of the tree (7–17) each represent
individual processes.

In this example, there are two subcomponents of the job, the cover and the contents, each with distinct require-
ments. Therefore, two nodes—nodes 2 and 3—are required to describe the elements of the job in broad terms. Within
the content pages there are some black-and-white pages and some color pages. Since fabricating each requires a dif-
ferent set of processes, further branching is necessary. The following table arranges the nodes in groups according to
the processes they will be executing.

Table 2-1: Information contained in JDF nodes, arranged numerically

Node # Meaning
1 Entire book
2 Cover
3 Contents
4 Production of cover
5 Production of all color pages
6 Production of all black-and-white pages
7 Cover production process 1
8 Cover production process 2
9 Cover production process 3
10 Cover Finishing process
11 RIPing for color pages
12 Plate making for color pages
13 Printing for color pages
14 Color page finishing process
15 RIPing for black-and-white pages
16 Printing for black-and-white pages on a digital press
17 Binding process for entire book

Table 2-2: Information contained in JDF nodes, arranged by group

Process Group Node # Meaning

Entire book
1 Entire book
17 Assemble book

Cover

2 Cover
4 Cover assembly processes
7 Cover production process 1
8 Cover production process 2
9 Cover production process 3
10 Finishing process for cover

Contents 3 Contents
18 JDF Workflow

JDF Specification Release 1.2
This hierarchical structure is discussed in more detail in the following section.

2.3 Hierarchical Tree Structure and Networks in JDF
Output resources of JDF nodes are often the input resources for other
JDF nodes. Nodes must not begin executing until all of their input
resources are complete and available. This means that the nodes exe-
cute in a well defined sequence. One process follows the next. For
example, a process for making plates will produce, as output
r e s o u r c e s , p r e s s p l a t e s t h a t a r e r e q u i r e d b y a
ConventionalPrinting process.

In the hierarchical organization of a JDF job, nodes that occur higher
in the tree represent high level, more abstract operations, while lower
nodes represent more detailed process operations. More specifically,
nodes near the top of the tree may represent only intent regarding the com-
ponents or assemblies that make up the product, while the leaf nodes pro-
vide explicit instructions to a device to perform some operation.
Figure 2.3 shows an example of a hierarchical structure.

In addition to the hierarchical structure of the node tree, sibling nodes are linked in a process chain by their respective
resources. In other words, an output resource of one node ends up representing the input resource of the following
node (as represented in Figure 2.4). This interrelationship is known as resource linking.

Color Pages

5 Production of all color pages
11 RIPing for color pages
12 Plate making for color pages
13 Printing for color pages
14 Color page finishing

Black-and-white pages
6 Production of all black-and-white pages
15 RIPing for black-and-white pages
16 Printing for black-and-white pages on a digital press

Figure 2.3: Example of a hierarchical tree structure of JDF nodes

Table 2-2: Information contained in JDF nodes, arranged by group

Process Group Node # Meaning

Trees & Nodes

In the real world, if you wanted
to scan a photo, you would

probably go to the prepress department to
find a scanner. JDF uses this same com-
mon-sense approach to organization. Pro-
cesses (nodes) are organized into a
hierarchy (tree). Consider your own opera-
tions. If you were to group your depart-
ments, equipment, and processes into an
“org chart,” what would it look like?.
Hierarchical Tree Structure and Networks in JDF 19

Chapter 2 Overview of JDF
With resource linking, complex networks of processes can be formed. Figure 2.4 displays an alternate representation
of the process described in Figure 2.3. Whereas Figure 2.3 represents a hierarchical structure, Figure 2.4 shows an
example of the linking mechanism of the same job. Note that there are many possible process networks that map to
the same node hierarchy.

In the JDF specification, the linking of processes is not explicitly specified. In other words, nodes are not arranged in
an abstract chronology, dictating, for example, that the trapping node must come before the RIPing node. Rather, the
links are implicitly defined in the exchange of input and output Resources. Resource dependencies form a network of
processes, and the sequence of process execution—that is, the routing of processes—can be derived from these
dependencies. One resource dependency might have the possibility of multiple process routing scenarios. It is up to
MIS to define the proper solution to meet local constraints. Note that the type of exchange Resource effectively limits
the processes that can be linked.

The agent or set of agents employed by MIS to write the JDF job must be familiar with these local constraints.
They must take into account factors such as the control abilities of the applications that complete the prepress pro-
cesses, the transport distance between the prepress facility and the press itself, the load capabilities of the press, and
the time requirements for the job. All of the factors taken together build a process network representing the workflow
of production. To aid agents in defining the workflow, JDF provides the following four different and fundamental
types of process routing mechanisms, which may be combined in any way.

1 Serial processing that is subsequent production and consumption of resources as a whole, represented by a
simple process chain

2 Overlapping processing that is simultaneous production and consumption of resources by pipes

3 Parallel processing that involves the splitting and sharing of resources

4 Iterative processing that is a circular or back and forward processing for developing resources by repeated activity
These mechanisms are discussed in greater detail in Section 4.3, Execution Model.

2.4 Role of Messaging in JDF
Whereas JDF provides a container to define a job, the Job Messaging Format — JMF, defined in Chapter 5, JDF
Messaging with the Job Messaging Format — provides a method to generate snapshots of job status and to interac-
tively manipulate elements of a workflow system.

JMF is specifically designed for communication between the production system controller and the work centers
or devices with which it interacts. It provides a series of queries and commands to check the status of processes and,
in some cases, to dictate the next course of action. For example, the KnownDevices query allows the controller to
determine what processes can be executed by a particular device or work center. These processes are likely to be
determined at system initialization time. The SubmitQueueEntry message provides a means for the controller to

Figure 2.4: Example of a process chain linked by input and output resources
20 Role of Messaging in JDF

JDF Specification Release 1.2
submit a job ticket to individual work centers or devices. And the Status, Resource and Occupation messages
allow the device or work center to communicate quasi real-time1 processing status to a controller. Depending on the
system configuration, the message handler may choose to record status changes in the history logs. The status mes-
sage allows the controller to request status updates from the controller.

JDF also provides mechanisms to define recipients for individual messages on a node-by-node basis. This
enables controllers to define the aspects and the parts of jobs that they want to track. For more information about mes-
saging, see Chapter 5, JDF Messaging with the Job Messaging Format.

2.5 Coordinate Systems in JDF
This chapter explains how coordinate systems are defined and used in JDF. It also shows how the matrices are used to
specify a certain transformation and how these matrices can be used to transform coordinates from one coordinate
system to another coordinate system. In addition, it clarifies the meaning of terms like Top or Left.

2.5.1 Introduction
During the production of a printed product it often happens that one object is placed onto another object. During
imposition, for example, single pages and marks (like cut, fold, or register marks) are placed on a sheet surface. Later,
at image setting, a bitmap containing one separation of a sheet surface is imposed on a piece of film. In a following
step, the film is copied to a printing plate which then is mounted on a press. In postpress, the printed sheets are gath-
ered on a pile. The objects involved in all these operations have a certain orientation and size when they are put
together. In addition, one has to know where to place one object on the other.

The position of an object (e.g., a cut mark) on a plane can be specified by a two-dimensional coordinate. Every digi-
tal or physical resource has its own coordinate system. The origin of each coordinate system is located in the lower left
corner, (i.e., the X coordinate increases from left to the right, and the Y coordinate increases from bottom to top.)

Each page contained in a PDL file has its own coordinate system. In the same way a piece of film or a sheet of paper
has a coordinate system. Within JDF each of these coordinate systems is called resource coordinate system.

If a process has more than one input resource with a coordinate system, it is necessary to define the relationship
between these input coordinate systems. Therefore, a process coordinate system is defined for each process. JDF tickets
are written assuming an idealized Device that is defined in the process coordinate system for each process that the Device
implements. A real Device must map the idealized process coordinate system to its own device coordinate system.

The coordinate systems of the input resources are mapped to the process coordinate system. Each of those map-
pings is defined by a transformation matrix, which specifies how a coordinate (or position) of the input coordinate
system is transformed into a coordinate of the target coordinate system. (See Section 2.5.6, Homogeneous
Coordinates for mathematical background information.) In the same way, the mapping from the process coordinate

1. Quasi real-time is the time-scale typically associated with production control systems. JMF is not
intended for true real-time, lower level machine control.

Figure 2.5: Standard coordinate system
Coordinate Systems in JDF 21

Chapter 2 Overview of JDF
system to the coordinate systems of the output resources is defined. The process coordinate system is also used to
define the meaning of terms like Top or Left, which are used as values for parameters in some processes.

It is important that no implicit transformations (such as rotations) are assumed if the dimensions of the input
resources of a process do not match each other. Instead every transformation (e.g., a rotation) must be specified
explicitly by using the Orientation or Transformation attribute of the corresponding ResourceLink. The same
applies also to other areas in JDF, (e.g., the LayoutPreparation process). A FitPolicy element may define a
policy for implied transformations.

2.5.2 How and Where Coordinates and Transformations Are Used/Defined in
JDF

The following data types are used for the specification of coordinates and transformation:

Coordinates and transformations are used throughout JDF, to include:
Intent Resources, such as

• LayoutIntent: specifies size of finished product

• MediaIntent: specifies size of media

• InsertingIntent: specifies rotation and offset

Process Resources, such as

• Component: specifies coordinate system

• CutBlock: specifies cut block coordinate system

• FoldingParams: specifies folding operations

Figure 2.6: Relation between resource and process coordinate systems

Data Type Example
XYPair “612 792”
double “20.7”
Rectangle “0 0 595 843”

(Order of elements is “lower-left x, lower-left y, upper-right x, upper-right y” or “left, bottom,
right, top”.)

Matrix “1 0 0 1 30.0 235.3”
(The ordering of elements is defined in Section 2.5.6, Homogeneous Coordinates)

Orientation “Rotate180” or “Flip90”
22 Coordinate Systems in JDF

JDF Specification Release 1.2
2.5.3 Coordinate Systems of Resources and Processes
Modified in JDF 1.2
Each physical input Resource, (i.e., Component), of a process has, by default, its own coordinate system, which
is called the “resource coordinate system.” The coordinate system also implies a specific orientation of that
Resource. On the other hand there is a coordinate system that is used to define various process-specific parameters.
This coordinate system is called a target or process coordinate system.

It is often necessary to change the orientation of an input Resource before executing the operation. This can be
done by specifying a transformation matrix. It is stored in the Orientation or Transformation attribute of the
ResourceLink. This provides the ability to specify different matrices for the individual resources of a process. For
details on ResourceLinks, see section “Resource Links” on page 61.

2.5.3.1 Coordinate Systems of Combined Processes
New in JDF 1.2
Combined Processes (See “Combined Process Nodes” on page 46.) combine multiple individual processes and thus
also the processes respective coordinate systems. The process coordinate systems are not modified by the fact that the
processes are part of a combined process, they are identical to the process coordinate systems of the processes, were
they defined in a linked chain of individual processes. The coordinate systems of an exchange resource may be mod-
ified by defining it as a pipe by specifying Resource/@PipeID and Resource/@PipeProtocol=”Internal”.
(See “Overlapping Processing Using Pipes” on page 114.) and linking it to the combined process with both an input
and output ResourceLink. The input ResourceLink defines the coordinate transformation using the standard
Transformation or Orientation attributes. Resource/@Status of the exchange resource must be
“Complete”.

2.5.3.2 Coordinate System Transformations
The following table shows some matrices that can be used to change the orientation of a physical Resource. Most
of the transformations require the X- (w) and the Y-dimension (h) of the Component as specified in the
Dimension element. If these are unknown, it is still possible to define a general orientation in the Orientation
attribute of the ResourceLink. The naming of the attribute reflects the state of the Resource and not necessarily the
order of applied transformations. Thus Rotate90 and Flip90 specify that the original Y axis as represented by the
spine is on top. In the case of Flip90, the Component is additionally flipped front to back.
Coordinate Systems in JDF 23

Chapter 2 Overview of JDF
Table 2-3: Matrices and Orientation values used to describe the orientation of a Component

Orientation Value Source
Coordinate System

Transformation Matrix
According Action

Target
Coordinate System

Rotate0 1 0 0 1 0 0
No Action

Rotate90 0 1 -1 0 h 0
90° Counterclockwise Rotation

Rotate180 -1 0 0 -1 w h
180° Rotation

Rotate270 0 -1 1 0 0 w
270° Counterclockwise Rotation

Flip0 1 0 0 -1 0 h
Flip around X

Flip90 0 -1 -1 0 h w
90° Counterclockwise Rotation
+ Flip around X

Flip180 -1 0 0 1 w 0
180° Rotation + Flip around X

Flip270 0 1 1 0 0 0
270° Counterclockwise
Rotation + Flip around X

x

y

24 Coordinate Systems in JDF

JDF Specification Release 1.2
2.5.4 Product Example: Simple Brochure
To illustrate the use of coordinate systems in JDF, a simple saddle stitched brochure with eight pages is used as an
example. The brochure is printed on two sheets with front and back. The two sheets are then folded, collected on a
saddle, and saddle stitched. Finally the brochure is cut with a three-side trimmer. The following table lists the JDF
processes used for the production of the simple brochure.

At imposition, the layout describes a signature with two sheets, each having a front and a back surface. On each sur-
face, two content objects, (i.e., pages, are placed.)

Each surface has its own coordinate system, in which a surface contents box is defined. This coordinate system is also
referred to as the Layout coordinate system because the Surface, Sheet, and Signature elements are defined
within the hierarchy of the Layout resource. The content objects are placed by specifying the CTM attribute relative
to the surface contents box. If the position of an object within a page is given in the page coordinate system, this coor-
dinate can be transformed into a position within the surface coordinate system:

PSurface = PPage X CTMPage + [SurfaceContentsBoxXlowerleft SurfaceContentsBoxYlowerleft 0]

 Input Resources Process Output Resources
Layout
RunList (Document)
RunList (Marks)

Imposition RunList

RunList Interpreting RunList (InterpretedPDLData)
RunList (InterpretedPDLData)
Media
RenderingParams

Rendering RunList (rasterized ByteMaps)

RunList (rasterized ByteMaps) Screening RunList (Bitmaps)
ImageSetterParams
Media (Film)
RunList (Bitmaps)

ImageSetting (to Film) ExposedMedia (Film)

ExposedMedia (Film) ContactCopying ExposedMedia (Plate)
ExposedMedia (Plate)
ConventionalPrintingParams

ConventionalPrinting Component

FoldingParams
Component

Folding Component

CollectingParams
Component

Collecting Component

SaddleStitchingParams
Component

SaddleStitching Component

TrimmingParams
Component

Trimming Component

Figure 2.7: Layout of simple saddle stitched brochure (product example)
Coordinate Systems in JDF 25

Chapter 2 Overview of JDF
Please note, that the width and height of the surface are not known at this point.

The sheet coordinate system is identical with the coordinate system of the front surface. This means that no transfor-
mation is needed to convert a coordinate from one system to the other. Instead, the coordinates are valid (and equal)
in both coordinate systems. The relation between the coordinate system of the front and the back surfaces depends on
the value of the Sheet/@LockOrigins attribute. The sheet coordinate system is also identical with the signature
coordinate system, which in turn is identical with the coordinate system of the imposition process.

The output resource of the imposition process is a run list. Each element of the run list has its own coordinate
system, which is identical with the corresponding signature coordinate system. The interpretation, rendering, and
screening processes do not affect the coordinate systems. This means that the coordinate systems of all these pro-
cesses are identical.

At the image setting process, the digital data is set onto film. The process coordinate system is defined by the
media input resource. The width and height of the media are defined in the Media/@Dimension attribute. The
position of the signatures (as defined by the run list input resource) on the film is defined by the
ImageSetterParams/@CenterAcross attribute.

The coordinate system of the conventional and digital printing processes is called press coordinate system. It is
defined by the press: the X-axis is parallel to the press cylinder, and the Y-axis is going along the paper travel. Y = 0
is at begin of print, X = 0 is at the left edge of the maximum print area. The Front side of the press sheet faces up
towards the positive Z-axis. The relationship between the layout coordinate system and the press coordinate system is
defined by the CTM attributes of the corresponding TransferCurveSet elements located in the
TransferCurvePool.

Figure 2.8: Surface coordinate system

Figure 2.9: Press coordinate system used for sheet-fed printing
26 Coordinate Systems in JDF

JDF Specification Release 1.2
The output of the printing process (e.g., a pile of printed sheets) is described as a Component resource in JDF. The
coordinate system of the printed sheets is defined by the transformation given in the TransferCurveSet/CTM
attribute (where Name = “Paper”).

Each of the two sheets is folded in a separate folding process. In this example, the orientation of the sheets is not
changed before folding. This can be specified by setting the Orientation attribute of the input resource to
Rotate0 or by setting the Transformation attribute to “1 0 0 1 0 0”. The folding process changes the coor-
dinate system. In this example the origin of the coordinate system is moved from the lower left corner of the flat sheet
(input) to the lower left corner of the folded sheet (output), (i.e., it is moved to the right by half of the sheet width.)

Figure 2.10: Press coordinate system used for web printing

Figure 2.11: Coordinate systems after Folding (product example)
Coordinate Systems in JDF 27

Chapter 2 Overview of JDF
The two folded sheets are now collected. In this example, the orientation of the folded sheets is not changed before
collecting. This can be specified by setting the Orientation attribute of the input resource to Rotate0 or by setting
the Transformation attribute to “1 0 0 1 0 0”. The collecting process does not change the coordinate system.

The two collected and folded sheets are now trimmed to the final size of the simple brochure. In this example, the ori-
entation of the collected and folded sheets is not changed before trimming. This can be specified by setting the
Orientation attribute of the input resource to Rotate0 or by setting the Transformation attribute to “1 0 0 1 0
0”. The trimming process changes the coordinate system: the origin is moved to the lower left corner of the trimmed
product.

In looking at the whole production process, a series of coordinate systems is being involved. The relationship
between the separate coordinate systems is specified by transformation matrices. This allows transformation of a
coordinate from one coordinate system to another coordinate system. As an example, note the position of the title on
page 1 of the product example in Figure 2.12. By applying the first transformation, this position can be converted into
a position of the surface (or layout) coordinate system. This position can then be converted into the paper coordinate
system by applying (in this order) the Film, Plate, Press, and Paper transformations stored in the
TransferCurvePool.

From now on in the workflow, every process is using components as input and output resources. The resource
link of each input and output component contains a Transformation attribute or an Orientation attribute. The
Transformation attribute may be used if the width and the height of the component are known or a non-orthogonal
rotation is required. Otherwise the Orientation attribute may be used to specify a change of the orientation, (e.g., an
orthogonal rotation).

Since the folding process changes the coordinate system depending on the fold type, the transformations speci-
fied in the resource links are not sufficient to transform a position given in the paper coordinate system to a position
in the coordinate system of the folded sheets, (i.e. the resource coordinate system of the output component of the fold-
ing process.) An additional transformation depending on the fold type and details of the individual folds has to be
applied. The corresponding transformation matrix is not explicitly specified in the JDF file.

The collecting process does not change the coordinate system. Therefore, only the transformations specified in
the resource links of the input and output resources, (i.e., components, have to be applied.)

The trimming process again changes the coordinate system depending on the trimming parameters. Therefore, a
transformation depending on the trimming parameters has to be applied in addition to the transformations specified in
the resource links. The matrix for the additional transformation (depending on the trimming parameters) is not explic-
itly specified in the JDF file.

After having applied all transformations mentioned above, the resulting coordinate specifies the position of the
title in the coordinate system of the final product.

Figure 2.12: Coordinate systems after Collecting (product example)
28 Coordinate Systems in JDF

JDF Specification Release 1.2
Figure 2.13: Examples of Transformations and Coordinate Systems in JDF.
Coordinate Systems in JDF 29

Chapter 2 Overview of JDF
2.5.5 General Rules
The following rules summarize the use of coordinate systems in JDF.

• Every individual piece of material (film, plate, paper) has a resource coordinate system.

• Every process has a process coordinate system.

• Terms like top, left, etc., are used with respect to the process coordinate system in which they are used and are
independent of orientation, (i.e., landscape or portrait), and the human reading direction.

• The coordinate system of each input component is mapped to the process coordinate system.

• The coordinate system may change during processing, (e.g., in Folding).

• The description of a product in JDF is independent of particular machines used to produce this product. When
creating setup information for an individual machine, it might be necessary to compensate for certain machine
characteristics. At printing, for example, it might be necessary to rotate a landscape job because the printing
width of the press is not large enough to run the job without rotation.

2.5.6 Homogeneous Coordinates
A convenient way to calculate coordinate transformations in a two-dimensional space is by using so-called homoge-
neous coordinates. With this concept, a two-dimensional coordinate P=(x,y) is expressed in vector form as [x y 1].
The third element “1” is added to allow the vector being multiplied with a transformation matrix describing scaling,
rotation, and translation in one shot. Although this only requires a 2*3 matrix (e.g., as it is used in PostScript) in prac-
tice 3*3 matrices are much more common, because they can be concatenated very easily. Thus, the third column is set
to “0 0 1”.

would in JDF be written as “a b c d e f”

Some often used transformation matrices are

identity transformation

translation by dx, dy

rotation by ϕ degrees counter-clockwise
30 Coordinate Systems in JDF

JDF Specification Release 1.2
Transforming a point
In this example, the position P given in the coordinate system A is transformed to a position of coordinate system B.
The relationship between the two coordinate systems is given by the transformation matrix Trf

.

Figure 2.14: Transforming a point (example)

PA = (30, 100)

in JDF, Trf is written as “1 0 0 1 40 60”

PB = (70, 160)
Coordinate Systems in JDF 31

Chapter 2 Overview of JDF
32 Coordinate Systems in JDF

JDF Specification Release 1.2
Chapter 3 Structure of JDF Nodes and Jobs
Introduction
This chapter describes the structure of JDF nodes and how they interrelate to form a job. As described in Section
2.1.1, Job Components, a node is a construct, encoded as an XML element, that describes a particular part of a JDF
job. Each node represents an aspect of the job: 1.) in terms of a process necessary to produce the end result, such as
imposing, printing, or binding; 2.) in terms of a product that contributes to the end result, such as a brochure; or 3.) in
terms of some combination of the previous two. In short, a node describes a product or a process.

In addition to describing the structure of an individual JDF node, this chapter examines in what way those nodes
interact to form a coherent job structure. The visual correlative of this structure resembles a family tree with a single
node describing the entire job at the top, and a number of nodes at the bottom that each describes only one specific
process. JDF-supported, leaf-level processes are described in “Processes” on page 191.

Resource linking specifies the transformation of input Resources into output Resources, which in turn may
become inputs of other nodes. It also allows nodes to share the same Resource. The combination of hierarchical nest-
ing of nodes and Resource linking allows complex process networks to be constructed. In a simple case, however, a
JDF instance may contain only one node.The only way that a JDF Node can identify its input and output Resources is
by using ResourceLink elements.

The hierarchical structure of a JDF job achieves a functional grouping of processes. For example, a job may be
split into a prepress node, a press node, and a finishing node that contain the respective process nodes. Each and every
node in turn contains attributes that represent various characteristics of that node. Nodes also contain subelements of
certain types, such as resources, process information, customer information, audits, logging information, and other
JDF nodes. Some elements, such as those that deal with customer information, typically occur in the root structure,
while other elements, such as resources, may occur anywhere in the tree. Where the elements can reside depends on
their type and their usage scope.

This chapter describes the elements, subelements, and attributes commonly found in JDF nodes, and provides
the characteristics necessary to understand where each belongs and how it is used. Many of these characteristics are
presented in tables, and each of these tables includes the following three columns.

• Name — Identifies the element being discussed.

• Data Type — Refers to the data type, all of which are described in Section 1.5, Data Structures. Only the data
types element or telem (which is short for text element) are applied to elements. All other types are attributes.

• Description — Provides detail about the element or attribute being discussed.

The JDF workflow model is based on a resource/consumer model. JDF nodes are the consumers that are linked
by input resources and output resources. The ordering of siblings within a node, however, has no effect on the execu-
tion of a node. All chronological and logical dependencies are specified using ResourceLinks, which are defined in
Section 3.7, Resource Links.

Figure 3.1 is a schematic structure of the JDF node type. In this figure, generic attributes and elements (see
Section 3.1.1, Generic Contents of JDF Elements) are inserted only in the JDF root node. The element types that are
displayed in this figure are described in the subsequent sections. Abstract data types are surrounded by a dashed line.
Types derived from the abstract data type Resource are shown schematically in Figure 3.4.
33

Chapter 3 Structure of JDF Nodes and Jobs
Figure 3.1: Structure of the JDF Node
34

JDF Specification Release 1.2
3.1 JDF Nodes
The top-level element of a JDF instance is a JDF element. JDF elements may also be nested within other JDF ele-
ments. The individual JDF elements are referred to as “nodes” and nodes, in turn, contain various attributes and fur-
ther subelements, including nested JDF nodes.

3.1.1 Generic Contents of JDF Elements
JDF contains a set of generic structures that may occur in any element of a JDF or JMF document. Some of these are
provided as containers for human-readable comments and descriptions and are described below. Others define the
usage policy for attributes and subelements. .

Table 3-1: Generic Contents of elements

Name Data Type Description
BestEffortExceptions
?
New in JDF 1.1

NMTOKENS The names of the attributes in this element that are to have the best
effort policy applied when SettingsPolicy is not BestEffort.

CommentURL ? URL URL to an external, human-readable description of the element.
DescriptiveName ? string Human-readable descriptive name of the JDF element, (e.g., a descrip-

tive name of a resource, process, or product). It is strongly recom-
mended to supply DescriptiveName in all JDF nodes,Quantity
resources (for example: Component resources), and Handling
resources (for example, ExposedMedia) for communication from
applications to humans in order to reference the process or resource.

MustHonorExceptions
?
New in JDF 1.1

NMTOKENS The names of the attributes in this element that are to have the
MustHonor policy applied when SettingsPolicy is not
MustHonor.

OperatorIntervention
Exceptions ?
New in JDF 1.1

NMTOKENS The names of the attributes in this element that are to have the operator
intervention policy applied when SettingsPolicy is not
OperatorIntervention. If a device has no operator intervention
capabilities, OperatorIntervention is treated as MustHonor.

SettingsPolicy ?
New in JDF 1.2

enumeration The policy for this element indicates what happens when unsupported
settings, (i.e., subelements, attributes or attribute values), are present
in the element. Possible values are:
BestEffort – Substitute or ignore unsupported attributes, attribute
values, default attribute values, or elements and continue processing
the job.
MustHonor – Reject the job when any unsupported attributes,
attribute values, or elements are present.
OperatorIntervention – Pause job and query the operator
when any unsupported attributes, attribute values, or elements are
present. If a device has no operator intervention capabilities,
OperatorIntervention is treated as MustHonor.
If not specified, SettingsPolicy is inherited from the parent element,
and if not specified in the parent element or further superior element,
the default value defaults to “BestEffort”.
In JDF 1.1 SettingsPolicy was specified in “Contents of a JDF
node” on page 38 and “Contents of the abstract Resource element” on
page 53. It has been removed from JDF node and Resource and been
promoted to all JDF elements. For details on SettingsPolicy, see
“Conformance to SettingsPolicy” on page 9.

Comment * telem Any human-readable text. The Comment element is different from an
XML comment <!-- XML Comment -->. The JDF comment is
meant for display in a user interface whereas the XML comment is
used to add developers comments to the underlying XML.
JDF Nodes 35

Chapter 3 Structure of JDF Nodes and Jobs
Table 3-2: Contents of the Comment element

Name Data Type Description
Attribute ?
New in JDF 1.1

NMTOKEN Name of the attribute in this element that the comment refers to. The name
should include the prefix if the attribute is in a non-JDF namespace. If omitted,
the Comment refers to the entire element

Box ? rectangle The rectangle that is associated with the comment. The coordinate system of the
rectangle is the same as the coordinate system defined in the Path attribute.

Language ? language Human readable language of the Comment.
Name =
“Description”
Modified in JDF 1.2

NMTOKEN A name that defines the usage of a comment. For example, it may determine
whether two comments should fill two distinct fields of a user interface. Pre-
defined values include:
Description – Human readable description, which is required if the
Comment element is required in a given context, as is the case in the
Notification element (see Table 3-33, “Contents of the Notification element,”
on page 92).
Instruction – Message to the operator that contains information regarding
the processing of the job. New in JDF 1.2
JobDescription – Description of the Job. A Comment element that con-
tains Name = “JobDescription” must only be specified in a JDF node or
CustomerInfo element. See also CustomerInfo/
@CustomerJobName in Section 3.3, Customer Information in
CustomerInfo. New in JDF 1.2
OperatorText – Message from the operator that contains information
regarding the processing of the job.New in JDF 1.2
Orientation – Description of the orientation of a physical resource.
TemplateDescription – Description of the job ticket template. A
Comment element that contains Name = “TemplateDescription”
must only be specified in the root JDF node.New in JDF 1.2
UserText – Message to a user that contains information regarding the pro-
cessing of the job. Used in CustomerInfo/CustomerMessage. See
“Customer Information in CustomerInfo” on page 49. New in JDF 1.2

Path ? PDFPath Description of the area that the comment is associated with in the coordinate
system of the element where the path resides. In the case of physical resources,
Layout resources and resources that are related to Layout, Path is defined
within the coordinate system of the resource in which it resides. For example, if
the comment is inserted in an ExposedMedia resource that describes a
plate, the path refers to the plate coordinate system. In all other cases, it is
defined in the process coordinate system of the JDF node that contains the ele-
ment that the Comment element containing Path is defined in.
Note that there are cases where a coordinate system is not available and there-
fore defining Path is not recommended, (for example: CustomerInfo.)

text Body of the comment. Note that whitespace is preserved only as generic
whitespace in XML. Thus carriage returns, line feeds or tabs may be lost.
36 JDF Nodes

JDF Specification Release 1.2
The following figure shows the structure of the generic content defined above.

3.1.2 JDF Node Attributes and Elements
The following table presents the attributes and elements likely to be found in any given JDF node. Three of the
attributes in Table 3-4, below, are required and must appear in every JDF node. Although the rest are designated as
optional, they are optional in the sense that they are required only under certain circumstances, not that they may be
left out if desired. The circumstances under which they are required are described in the Description column.

The most important of the attributes is the Type attribute, which defines the node type. The value of the Type
attribute defines the product or process the JDF node represents. As is detailed in Section , , all nodes fall into one of
the following four general categories: process, process group, combined processes, and product intent. Each node is
identified as belonging to one of these categories by the value of its Type attribute, as described in the table below.
For example, if Type = “Product”, the node is a product intent node. Each of these categories is described in
greater detail in the sections that follow.

The table “Contents of a JDF node” on page 38 contains a fourth column that provides further details about the
valid range of the attribute/element content, how the content is inherited by descendents (children, grandchildren,
etc.), and where the attribute/element may reside in the JDF tree. The heading for this column is “Scope,” which is
short for “Scope and Position.” The following abbreviations are defined:

Figure 3.2: Structure of JDF Generic Contents

Table 3-3: Definition of “Scope” Terms used in Table 3-4 on page 38

Abbreviation Definition Description
D Descendent The content is valid locally within its node and in all descendent nodes, unless a

descendent contains an identical attribute that overrides the content.
L Local The content is only valid locally, within the node where the content is defined.
R Root The attribute may only be specified in the root node. An exception from the local-

ization only in the root node occurs if the spawning and merging mechanism for
independent job tickets is applied as described in Section 4.4, Spawning and
Merging. All attributes and elements listed in subsequent chapters should be consid-
ered local unless otherwise noted.
JDF Nodes 37

Chapter 3 Structure of JDF Nodes and Jobs
Table 3-4: Contents of a JDF node

Name Data Type

Sc
op

e

Description

Activation ?
Modified in JDF
1.1

enumeration
(D)

Describes the activation status of the JDF node. Allows for a range of activ-
ity, including deactivation and test running. Possible values, in order of
involvement from least to most active, are:
Inactive – The node and all its descendents must not be executed or
tested. This value is set if certain parts of a JDF job must not be executed or
tested.
Informative – The JDF ticket is for information only. If a job is
Informative, it must not be processed. Jobs with Activation =
“Informative” will generally be sent to an operator console for preview
but are still completely under the control of an external controller. When a
JDF ticket is supplied to a customer as proof of execution, its Activation
should also be Informative. When a new job ticket with an identical ID
attribute and a higher Activation is submitted to a Device, that JDF job
ticket must replace the JDF job ticket that was submitted to the Device with
an Activation of Informative.
Held – Execution has been held. If a job is Held, it must not be processed
until its Activation is changed to Active.
TestRun – The node requests a test run check by a controller or a device.
This does not imply that the node should be automatically executed when
the check is completed. Descendents of a node that is being test run are not
to be considered Active.
TestRunAndGo – Similar to TestRun, but requests a subsequent auto-
matic start if the testrun has been completed successfully.
Active – The default value if not specified in a parent node – The node
maybe executed as soon as all inputs are Available or Complete and all out-
puts are not incomplete.
A child node inherits the value of the Activation attribute from its parent.
The value of Activation corresponds to the least active value of
Activation of any ancestor, including itself. Therefore, if any ancestor has
an Activation of Inactive, the node itself is Inactive.
If no ancestor is Inactive but any ancestor is Informative, the node
is Informative unless the node itself is Inactive. If no ancestor is
Informative but any ancestor is TestRun, the node is TestRun
unless the node itself is Informative. If no ancestor has a value of
Inactive or TestRun and any ancestor has a value of
TestRunAndGo, the node has a value of TestRunAndGo unless that
node is Inactive or TestRun, and so on. The following table illustrates
the actions to be applied to a node depending on the value of Activation.
Activation Test Node Execute Node
Inactive false false
Informative false false
Held false false
Active false true
TestRun true false
TestRunAndGo true true
38 JDF Nodes

JDF Specification Release 1.2
Category ?
New in JDF 1.2

NMTOKEN L Named category of this node. Used when Type = “Combined” or Type
= “ProcessGroup” to identify the general node category. This allows
processors to identify the general purpose of a node without parsing the
Types field. For instance a RIP for final output and RIP for proof process
may have identical Types attribute values but will have Category =
“ProofRIPing” or Category = “RIPing” respectively. Values include:
• Binding – Binding of a bound product.
• DigitalPrinting – A RIP and print run on a digital printer that

produces final output.
• FinalImaging – A RIP and image that produces final output that is

ready for further processing, (e.g. film or plates).
• FinalRIPing – RIP process for generating final output. Includes

ContoneCalibration, ColorSpaceConversion,
ImageReplacement, Interpreting, Rendering, Screening,
Separation, and Trapping.

• Folding – Folding of a product.
• ImpositionPreparation: Setup for impositioning. Includes

LayoutPreparation or Stripping.
• PostPress – General postpress. Includes Folding and Binding.
• PrePress – General prepress. Includes PrePressPreparation,

ImpositionPreparation, Proof/FinalRIPing, and
Proof/FinalImaging.

• PrePressPreparation – contains all prepress processes needed
to prepare the content files ready for RIPing, (e.g. a preflighted,
normalized PDF or Postscript file). Includes AssetListCreation,
DigitalDelivery, Preflight, FormatConversion,
LayoutElementProduction, PStoPDFConversion, and
Trapping.

• Printing – A press run that produces final output.
• ProofImaging – A RIP&Proof that produces proof output.
• ProofRIPing – RIP process for generating a proof. The processes

are identical to those in specified for FinalRIPing.
ICSVersions ?
New in JDF 1.2

NMTO-
KENS

D CIP4 Interoperability Conformance Specification (ICS) Versions that this
JDF node complies with. The format is <ICSName>_L<ICSLevel>-<ICS-
Version>. For instance: DP_L1-1.0 for ICS for Digital Printing, level 1,
version 1.0. See “Interoperability Conformance Specifications” on page 564
for more information on ICS documents.

ID ID L Unique identifier of a JDF node. This ID is used to refer to the JDF node.
JobID ? string D Job identification used by the application that created the JDF job. Typically,

a job is identified by the internal order number of the MIS system that cre-
ated the job.

JobPartID ? string D Identification of a JDF node within a job, used by the application that cre-
ated the job. Typically, JobPartID is internal to the MIS system that cre-
ated the job and specifies a process or set of processes. Note that a product
that is produced by a process or set of processes is identified by Resource/
@ProductID and not by JobPartID.

Table 3-4: Contents of a JDF node

Name Data Type

Sc
op

e

Description
JDF Nodes 39

Chapter 3 Structure of JDF Nodes and Jobs
MaxVersion ?
New in JDF 1.2

JDFJMF-
Version

D Maximum JDF version to be written by an Agent that modifies this node. If
not specified, an Agent that processes the node may write any version it is
capable of writing. See Section 3.11, JDF Versioning for a discussion of ver-
sioning in JDF.

NamedFeature
s ?
New in JDF 1.2

NMTO-
KENS

L NamedFeatures represents an implementation dependent set of parame-
ters for setting up a Device that a Device must apply to the JDF ticket. It is
formatted as an ordered list of name value pairs with an even number of
entries. The NamedFeatures names supported by the Device may be
specified in DeviceCap elements. See “Structure of the DeviceCap
Subelement” on page 502. NamedFeatures must only be specified in
ProcessGroup nodes, typically with a Types attribute supplied, or
Product JDF nodes. See “Use of the NamedFeatures attribute in Product
and ProcessGroup nodes” on page 44 for details.

ProjectID ?
New in JDF 1.1

string D Identification of the project context that this JDF belongs to. Used by the
MIS to group a set of JDF jobs.

RelatedJobID ?
New in JDF 1.2

string D Job identification of a related job. Used to identify the JobID of a previous
run of this job or job with very similar settings. May be used to retrieve
additional job and device specific settings from a data store.

RelatedJobPar
tID ?
New in JDF 1.2

string D Job identification of a related job part. Used to identify the JobPartID of a
previous run of this job or job with very similar settings. May be used to
retrieve additional job and device specific settings from a data store.

SpawnID ?
New in JDF 1.1

NMTOKEN D Identification of a spawned part of a job. Typically this is used to map
Audits and JMF messages to a spawned processing step in the workflow.
For details on job spawning, see “Spawning and Merging” on page 118.

Status
Modified in JDF
1.1

enumeration L Identifies the status of the node. Possible values are:
Waiting – The node may be executed, but it has not completed a test run.
TestRunInProgress – The node is currently executing a test run.
Ready – As indicated by the successful completion of a test run, all
ResourceLinks are correct, required resources are available, and the
parameters of resources are valid. The node is ready to start.
FailedTestRun – An error occurred during the test run. Error informa-
tion is logged in the Notification element, which is an optional subelement
of the AuditPool element described in Section 3.9, AuditPool.
Setup – The process represented by this node is currently being set up.
InProgress – The node is currently executing.
Cleanup – The process represented by this node is currently being cleaned
up.Spawned – The node is spawned in the form of a separate spawned JDF.
The status Spawned can only be assigned to the original instance of the
spawned job. For details, see Section 4.4, Spawning and Merging.
Stopped – Execution has been stopped. If a job is Stopped, running may
be resumed later. This status may indicate a break, a pause, maintenance, or
a breakdown — in short, any pause that does not lead the job to be aborted.
Completed – Indicates that the node has been executed correctly, and is
finished.
Aborted – Indicates that the process executing the node has been aborted,
which means that execution will not be resumed again.

Table 3-4: Contents of a JDF node

Name Data Type

Sc
op

e

Description
40 JDF Nodes

JDF Specification Release 1.2
Pool – Indicates that the node processes partitioned resources and that the
Status varies depending on the partition keys. Details are provided in the
StatusPool element of the node.
Derivation of the Status of a parent node from the Status of child nodes
is non-trivial and implementation-dependent.

StatusDetails ?
New in JDF 1.2

string L Description of the status phase that provides details beyond the enumerative
values given by the Status attribute. For a list of supported values, see
“StatusDetails Supported Strings” on page 615.

Template =
“false”
New in JDF 1.1

boolean R Indicates that this JDF ticket (or instance) is a template that is used to gener-
ate JDFs but must not be exchanged as a job definition. A Device must
reject a job ticket that contains Template = “true”.

TemplateID ?
New in JDF 1.2

string D Name or ID that identifies a JDF template. Can be used to differentiate
between various templates. If Template = “false”, TemplateID iden-
tifies the template that was used to generate this JDF.

TemplateVersi
on ?
New in JDF 1.2

string D Provides the version of the JDF template. Can be used to differentiate
between various template versions. If Template = “false”,
TemplateVersion identifies the version of the template that was used to
generate this JDF.

Type NMTOKEN L Identifies the type of the node. Any JDF process name is a valid type. The
processes that have been predefined are listed in “Processes” on page 191,
although the flexibility of JDF allows anyone to create processes.
In addition to these, there are three values which are described in greater
detail in the sections that follow.
Combined
ProcessGroup
Product – Identifies a product intent node.

Types ?
Modified in JDF
1.2

NMTO-
KENS

L List of the Type attributes of the nodes that are combined to create this
node. This attribute is required if Type = “Combined”, optional when
Type = “ProcessGroup”, and is ignored if Type equals any other
value. For details on using Combined nodes, see Section 3.1.5, Combined
Process Nodes. If the Types attribute is specified, that JDF node must not
contain child JDF nodes. For details on using ProcessGroup nodes, see
Section 3.1.4, Process Group Nodes.
The following special tokens are defined to allow a JDF-enabled MIS or
workflow system to roughly specify finishing, proofing, and RIPing without
knowing the details of the respective combined processes. Use these special
tokens only for a ProcessGroup and not for a Combined Process. See the
Category attribute above for more details on the tokens:
Finishing
ImpositionPreparation: Setup for impositioning. Includes
LayoutPreparation or Stripping.
PrePressPreparation – contains all prepress processes needed to pre-
pare the content files ready for RIPing.
PrePress – General prepress
ProofImaging – A RIP&Proof that produces a proof.
RIPing

Table 3-4: Contents of a JDF node

Name Data Type

Sc
op

e

Description
JDF Nodes 41

Chapter 3 Structure of JDF Nodes and Jobs
3.1.2.1 Common Node Types
As was noted in the preceding section, the Type of a node can fall into four categories. The first is comprised of the
specific processes of the kind delineated in “Processes” on page 191, known simply as process nodes. The other cate-
gories are made up of three enumerative values of the Type attribute: ProcessGroup, Combined, and
Product, which is also known as product intent. These three node types are described in this section.

The figure below, which was also presented as an illustration in Chapter 2, represents a theoretical job hierarchy
comprised of Product nodes, ProcessGroup nodes, and nodes that represent individual or combined processes.
The diagram is divided into three levels to help illustrate the difference between the three kinds of nodes, but these
levels do not dictate the hierarchical nesting mechanism of a job. Note, however, that an individual process node may

Version ?
Modified in JDF
1.2

JDFJMF-
Version

RD Text that identifies the version of the JDF node. The Version attribute is
required in the JDF root node but optional in child nodes. The version of a
JDF node is defined by the highest version of the JDF node itself or any
child JDF node or element or any directly or indirectly linked resources. For
details on JDF versioning see “JDF Versioning” on page 101.

xmlns ?
New in JDF 1.1

URI RD JDF supports use of XML namespaces. The namespace must be declared in
the root JDF element. For details on using namespaces in XML,
see[XMLNS]. For version 1.1 and 1.2 of JDF, xmlns = “http://
www.CIP4.org/JDFSchema_1_1”.

xsi:type ?
New in JDF 1.2

NMTOKEN L Informs schema aware validators of the JDF node type definition that the
containing node is to be validated against. The schema for this version
includes definitions for all the JDF nodes defined in Section 6. If omitted,
then a general definition for JDF nodes will be used. See “JDF Nodes” on
page 35.

AncestorPool ? element R If this element is present, the current JDF node has been spawned, and this
element contains a list of all Ancestor elements prior to spawning. See
Section 3.2, AncestorPool.

AuditPool ? element L List of elements that contains all relevant audit information. Audit elements
are intended to serve the requirements of MIS for evaluation and post calcu-
lation. See Section 3.9, AuditPool.

CustomerInfo
?

element D Container element for customer-specific information. See Section 3.3,
Customer Information in CustomerInfo.

JDF * element L Child JDF nodes. The nesting of JDF nodes defines the JDF tree.
NodeInfo ? element L Container element for process-specific information such as scheduling and

messaging setup. Scheduling affects the planned times when a node should
be executed. Actual times are saved in the AuditPool. See Section 3.4,
Node Information in NodeInfo.

ResourceLinkP
ool ?

element L Container element for ResourceLink elements, which describe the input
and output resources of the node. See Section 3.7, Resource Links.

ResourcePool ? element La Container element for resources. See Section 3.5, StatusPool.

StatusPool ? element L Container for PartStatus elements that specify the details of a node’s par-
tition dependent Status related attributes if the Status of the node is
“Pool”.

a. Resources are unique and cannot be overwritten by descendents. Rather, they can only be used by descen-
dents. An exception to this is described in Section 4.4.5, Case 5: Spawning and Merging of Independent
Jobs . In this case, resources may also be used by a parent node.

Table 3-4: Contents of a JDF node

Name Data Type

Sc
op

e

Description
42 JDF Nodes

JDF Specification Release 1.2
be the child of a product intent node without first being the child of a process group node. Likewise, a process group
node may have child nodes that are also process groups.

3.1.3 Product Intent Nodes
Except in certain specific circumstances, the agent assigned to begin writing a JDF job will very likely not know
every process detail needed to produce the desired results. For example, an agent that is a job-estimating or job-sub-
mission tool may not know what devices can execute various steps or even which steps will be required.

If this is the case, the initiating agent creates a set of top-level nodes to specify the product intent without provid-
ing any of the processing details. Subsequent agents then add nodes below these top-level nodes to provide the pro-
cessing details needed to fulfill the intent specified.

These top-level nodes have a Type attribute value of Product to indicate that they do not specify any process-
ing, (and are referred to as “Product Intent Nodes”.) All processing needed to produce the products described in these
nodes must be specified in Process nodes, which exist lower in the job hierarchy.

Product Intent nodes include intent resources that describe the end results the customer is requesting. The intent
resources that have already been defined for JDF are easily recognizable, as they contain the word “intent” in their
titles. Examples include ColorIntent and FoldingIntent. All intent resources share a set of common subele-
ments, which are described in Section 7.1.1, Intent Resource Span Subelements. These resources do not attempt to
define the processing needed to achieve the desired results; instead they provide a forum to define a range of accept-
able possibilities for executing a job.

Each Product Intent node should contain at most one ResourceLink for one type of intent resource. If multiple
product parts with different intents are required, each part has its own Product Intent node. DeliveryIntent
resources are a notable exception. Specifying multiple DeliveryIntent resources effectively requests multiple
options of a quote. A Product Intent node produces one or more Components as Output Resources. For more
information about product intent, see Section 4.1.1, Product Intent Constructs.

3.1.4 Process Group Nodes
Intermediate nodes in the JDF job hierarchy, (i.e., nodes 4, 5, and 6 in Figure 3.3), describe groups of processes. The
Type attribute value of these kinds of nodes is ProcessGroup, (and the are referred to as “ProcessGroup Nodes”.)
These nodes are used to describe multiple steps in a process chain that have common resources or scheduling data.

Figure 3.3: Job hierarchy with process, process group, and product intent nodes
JDF Nodes 43

Chapter 3 Structure of JDF Nodes and Jobs
Since the agent writing the job has the option of grouping processes in any way that seems logical, custom workflows
can be modeled flexibly. ProcessGroup nodes may contain further ProcessGroup nodes, individual process nodes, or
a mixture of both node types. Sequencing of ProcessGroup nodes should be defined by linking resources of the
appropriate leaves or, if the nature of the interchange resources is unknown, by linking PlaceHolder resources.

The higher the level of the ProcessGroup nodes within the hierarchy, the larger the number of processes the
group contains. A high level ProcessGroup node (e.g., prepress, finishing, or printing processes) might include lower
level ProcessGroup nodes that define a set of individual steps which are executed as a group of steps in the individual
workflow hierarchy. For example, all steps performed by one designated individual may be grouped in a lower level
ProcessGroup node.

3.1.4.1 Use of the Types attribute in ProcessGroup nodes
New in JDF 1.2
ProcessGroup nodes may contain an optional Types attribute that allows a controller (e.g. an MIS system) to define
a set of processes that must be executed without defining the exact structure or grouping of these processes into indi-
vidual JDF nodes. A CombinedProcessIndex is used to link ResourceLinks to the Types in the Process-
Group. A ResourceLink/@CombinedProcessIndex is used to link ResourceLinks to JDF/@Types in the
ProcessGroup. ProcessGroup nodes with a non-empty Types attribute must not be executed. An Agent that receives
the ProcessGroup node must define the exact structure of the ProcessGroup node by executing the following steps
until the Types list referenced by the ProcessGroup node is empty:
Step 1 — Select at least one of the process types defined in Types and remove these values from the Types list of
values referenced by the ProcessGroup node.
Step 2 — Create one new JDF child node within the ProcessGroup that either:

• Has a Type attribute matching the removed Types entry value, or

• Is a JDF node with a Type attribute value of Combined or ProcessGroup that contains the removed
Types value or values.

Step 3 — Link the appropriate resources that were predefined in the original ProcessGroup node to the newly created
subordinate JDF node(s). The ResourceLink may either be retained or deleted from the ProcessGroup node. If it is
retained, the ProcessGroup node must not be executed before the Resource that is linked by that ResourceLink is
available. Otherwise, the ProcessGroup node may be executed, even if the Resource is not available.
Step 4 — Add missing Types to the subordinate JDF node where appropriate. For instance, the original Types
attribute list referenced by ProcessGroup node may have specified "Interpreting Rendering" or simply
"RIPing", but the newly created RIP node would specify "Interpreting Rendering Trapping
Screening".
Step 5 — Finalize the newly created subordinate JDF node by adding any missing Resources and Resource parame-
ters. Note that newly created resources must not be linked to the ProcessGroup node but only to the subordinate JDF
node created in this process.
An Agent must instantiate all of the processes in the Types attribute before releasing the created JDF nodes for pro-
cessing and production. The ordering of the processes in the Types attribute must be maintained when instantiating
the child nodes. JDF ProcessGroup nodes that contain both a non-empty Types attribute and child JDF nodes are
not supported, although a ProcessGroup node may contain child ProcessGroup nodes with a non-empty
Types attribute.

3.1.4.2 Use of the NamedFeatures attribute in Product and ProcessGroup nodes
New in JDF 1.2
ProcessGroup and Product nodes may contain an optional NamedFeatures attribute that allows a Controller (e.g.,
an MIS system) to define a named set of parameters for processes that must be executed without defining the details
or even the resources for the individual JDF nodes. The Agent (e.g., a Prepress Control System) populates the JDF
node with the values implied by NamedFeatures in an implementation-defined manner. This procedure may
include the addition of additional JDF sub-nodes. The precedence of parameters (attributes or elements) is as follows
in order of decreasing precedence:

1 Explicitly supplied parameters
2 Parameters supplied by the Device Agent that are associated with the supplied NamedFeatures attribute

closest to the process.
3 Parameters supplied by the Device Agent that are associated with the supplied NamedFeatures attribute

supplied by the Device agent at node levels closer to the root.
44 JDF Nodes

JDF Specification Release 1.2
An individual NamedFeaturesentry is selected by specifying an NMTOKEN pair that matches entries from
DeviceCap/FeaturePool/EnumerationSpan/@Name and DeviceCap/FeaturePool/
EnumerationSpan/@AllowedValueList (See “Structure of the DeviceCap Subelement” on page 502.), where
the first and all even (0 based) entries define the name of the parameter set name (e.g., “Screening”), and the second
and all odd entries(0 based) define the selected parameter set value, (e.g., “AM_HighRes”). Multiple
NamedFeatures may be selected. Names and values are implementation dependent. Each name must occur only
once in the NamedFeatures list.

Use of NamedFeatures is commonly combined with the use of Types in ProcessGroups as described in
“Use of the Types attribute in ProcessGroup nodes” on page 44. Types abstractly specifies the set of processes to
execute, whereas NamedFeatures abstractly specifies the set of Resources for the processes specified in Types.

3.1.4.3 ResourceLink Structure in ProcessGroup nodes
New in JDF 1.2
The contents of the ResourceLinkPool of a ProcessGroup node define the Resources that must be available for
the ProcessGroup Node itself to be executed.

The following example shows the ResourceLink structure for a ProcessGroup digital printing with near-
line finishing node. The input Media must be Available and the Output Component is of interest to the submit-
ting Controller. The Params resources are assumed to be supplied by the sub-controller that executes the Process-
Group node. Note the presence of intermediate component links that link the individual processes. The corresponding
ResourcePools and Resources have been omitted for brevity.

<JDF xmlns="http://www.CIP4.org/JDFSchema_1_1" ID="J1" Status="Waiting"
Type="ProcessGroup" Version="1.2">
 <!--the resource links in the ProcessGroup define the input resources that must be
available for the ProcessGroup to be submitted and the output resources that are
produced by the ProcessGroup -->
 <ResourceLinkPool>
 <!-- print input media -->
 <MediaLink Usage="Input" rRef="L2"/>
 <!-- gathered output components -->
 <ComponentLink Usage="Output" rRef="L7"/>
 </ResourceLinkPool>
 <JDF ID="J2" Status="Waiting" Type="DigitalPrinting">
 <ResourceLinkPool>
 <!-- digital printing parameters -->
 <DigitalPrintingParamsLink Usage="Input" rRef="L1"/>
 <!-- input sheets -->
 <MediaLink Usage="Input" rRef="L2"/>
 <!-- printed output components -->
 <ComponentLink Usage="Output" rRef="L3"/>
 </ResourceLinkPool>
 </JDF>
 <JDF ID="J3" Status="Waiting" Type="Gathering">
 <ResourceLinkPool>
 <!-- gathering parameters -->
 <GatheringParamsLink Usage="Input" rRef="L4"/>
 <!-- printed output components -->
 <ComponentLink Usage="Input" rRef="L3"/>
 <!-- gathered output components -->
 <ComponentLink Usage="Output" rRef="L5"/>
 </ResourceLinkPool>
 </JDF>
 <JDF ID="J4" Status="Waiting" Type="Stitching">
 <ResourceLinkPool>
 <!-- Stitching parameters -->
 <StitchingParamsLink Usage="Input" rRef="L6"/>
JDF Nodes 45

Chapter 3 Structure of JDF Nodes and Jobs
 <!-- gathered output components -->
 <ComponentLink Usage="Input" rRef="L5"/>
 <!-- stitched output components -->
 <ComponentLink Usage="Output" rRef="L7"/>
 </ResourceLinkPool>
 </JDF>
</JDF>

3.1.5 Combined Process Nodes
Clarified in JDF 1.2
The processes described in “Processes” on page 191 define individual workflow steps that are assumed to be executed
by a single-purpose device. Many devices, however, are able to combine the functionality of multiple single-purpose
devices and execute more than one process. For example, a digital printer may be able to execute the Interpreting,
Rendering, and DigitalPrinting processes. To accommodate such devices, JDF allows processes to be grouped
within a node whose Type = “Combined”, (referred to as “Combined Process nodes”.) Such a node must also con-
tain a Types attribute, which in turn contains an ordered list of the Type values of each of processes that the node
specifies. The ordering of the process names in the Types attribute specifies the ordering in which the processes are
assumed to be executed. If the final product result would be indistinguishable, the Device may change the execution
order of the processes from that given in the Types attribute.

F u r t h e r m o r e , ResourceLink e l e m e n t s i n C o m b i n e d P r o c e s s n o d e s s h o u l d s p e c i f y a
CombinedProcessIndex attribute in order to define the subprocess to which the resource belongs. Combined
Process nodes are leaf nodes and must not contain further nested JDF nodes.

A device with multiple processing capabilities is able to recognize the Combined Process node as a single unit of
work that it can execute. Therefore, all resources for each of the subtasks that define the Combined node and that are
explicitly defined as ResourceLinks must be available before the node can be executed. In addition, all input and out-
put resources that are consumed and produced externally by the process must be specified in the
ResourceLinkPool element of the node. This includes all required Parameter resources as well as the initial input
resources and final output resources. Intermediate resources that are internally produced and consumed, on the other
hand, need not be specified.

In a Combined Process node, the information defined by the various resources linked as input to the various sub-
processes are logically available to all processes of the combined node. In situations where the parameter resource of
more then one subprocess specifies the mapping of sheet surface content to media, the subprocess that specifies such
a mapping that is defined earliest in the Types attribute list must be used, and any other mappings specified by any
down-stream subprocess Resource must be ignored.

3.1.5.1 Combined Process Nodes with Multiple Processes of the Same Type
A Combined Process node may contain multiple instances of the same process type, (e.g., Types = “Cutting
Folding Cutting”). In this case, the ordering and mapping of links processes is significant — the parameters of
the first Cutting process are most likely to be different from those of the second Cutting process. Mapping is
accomplished using the CombinedProcessIndex attribute in the respective ResourceLink.

<JDF xmlns="http://www.CIP4.org/JDFSchema_1_1" ID="J1" Status="Waiting" Type="Combined" Types="Cutting
Folding Cutting" Version="1.2">
 <!--Resources (incomplete...) -->
 <ResourcePool>
 <!-- parameters of the first Cutting Process-->
 <CuttingParams Class="Parameter" ID="L1" Status="Available"/>
 <!-- Folding parameters -->
 <FoldingParams Class="Parameter" ID="L2" Status="Available"/>
 <!-- parameters of the third Cutting Process-->
 <CuttingParams Class="Parameter" ID="L3" Status="Available"/>
 <!-- raw input components -->
46 JDF Nodes

JDF Specification Release 1.2
 <Component Class="Quantity" ID="L4" Status="Available"/>
 <!-- completed output components -->
 <Component Class="Quantity" ID="L5" Status="Unavailable"/>
 </ResourcePool>
 <!-- Links -->
 <ResourceLinkPool>
 <!-- parameters of the first Cutting Process-->
 <CuttingParamsLink CombinedProcessIndex="0" Usage="Input" rRef="L1"/>
 <!-- Folding parameters -->
 <FoldingParamsLink CombinedProcessIndex="1" Usage="Input" rRef="L2"/>
 <!-- parameters of the first Cutting Process-->
 <CuttingParamsLink CombinedProcessIndex="2" Usage="Input" rRef="L3"/>
 <!-- raw input components -->
 <ComponentLink Usage="Input" rRef="L4"/>
 <!-- completed output components -->
 <ComponentLink Usage="Output" rRef="L5"/>
 </ResourceLinkPool>
</JDF>

3.1.5.2 Examples of Combined Process Nodes
The following example of the ResourceLinkPool of a JDF node describes digital printing with in-line finishing
and includes the same processes as the previous ProcessGroup example. The node requires the parameter resources
and consumable resources of all three processes as inputs, and produces a completed booklet as output. The interme-
diate printed sheets and gathered piles are not declared, since they exist only internally within the device and cannot
be accessed or manipulated by an external controller.

<JDF xmlns="http://www.CIP4.org/JDFSchema_1_1" ID="J1" Status="Waiting" Type="Combined"
Types="DigitalPrinting Gathering Stitching" Version="1.2">
 <ResourceLinkPool>
 <!-- digital printing input RunList -->
 <RunListLink CombinedProcessIndex="0" Usage="Input" rRef="L1"/>
 <!-- digital printing parameters -->
 <DigitalPrintingParamsLink CombinedProcessIndex="0" Usage="Input" rRef="L2"/>
 <!-- gathering parameters -->
 <GatheringParamsLink CombinedProcessIndex="1" Usage="Input" rRef="L3"/>
 <!-- Stitching parameters -->
 <StitchingParamsLink CombinedProcessIndex="2" Usage="Input" rRef="L4"/>
 <!-- input sheets -->
 <MediaLink CombinedProcessIndex="0" Usage="Input" rRef="L5"/>
 <!-- stitched output components -->
 <ComponentLink CombinedProcessIndex="2" Usage="Output" rRef="L6"/>
 </ResourceLinkPool>
</JDF>

3.1.6 Process Nodes
Process nodes represent the very lowest level in a job hierarchy. They must not contain further nested JDF nodes, as
every process node is a leaf node. These nodes define the smallest work unit that may be scheduled and executed
individually within the JDF workflow model. In Figure 3.6 below, nodes 7-17 represent process nodes. The various
individual process node types are specified in Section 6, Processes.
JDF Nodes 47

Chapter 3 Structure of JDF Nodes and Jobs
3.2 AncestorPool
When a job is spawned, an AncestorPool is created in the
spawned job to identify its parents and grandparents. This allows
storing of information about job context in a spawned node as well
as allowing the job to be correctly merged with its parent after it is
completed. The AncestorPool element is only required in the root
of a spawned job. Spawning and merging are described in Section
4.4, Spawning and Merging. The AncestorPool element contains
an ordered list of one or more Ancestor elements, which reflect the
family tree of a spawned job. Each Ancestor element identifies
exactly one ancestor node. The ancestor nodes reside in the original job where the job with the AncestorPool has
been spawned off. The position of the Ancestor element in the ordered list defines the position in the family tree.
The first element in the list is the original root element, the last element in the list is the parent, the last but one, the
grandparent, and so on. The following table lists the contents of an AncestorPool element.

An Ancestor element may contain read-only copies of all the attributes of the node that it represents with the excep-
tion of the ID attribute, which must be copied to the NodeID attribute of that Ancestor element. Ancestor ele-
ments cannot, however, contain further subelements except for read-only copies of CustomerInfo and NodeInfo.
The attributes of Ancestor elements are described in Table 3-6 below.

Table 3-5: Contents of the AncestorPool element

Name Data Type Description
Ancestor + element Ordered list of one or more Ancestor elements, which reflect the family tree of a

spawned job.
Part *
New in JDF 1.1

element List of parts that this node was spawned with. Used in case of parallel spawning of a
node. This defines the aggregated Part(s) in case of nested spawns, (i.e., a logical
AND of all spZawn Part(s)). For instance, the JDF that was spawned with a
Sheetname partition and subsequently spawned with a Separation would con-
tain both SheetName and Separation within Part.

Table 3-6: Attributes of the Ancestor element

Name Data Type Description
Activation ? enumeration Copy of the Activation attribute from the ancestor node. For details, see

Table 3-4, “Contents of a JDF node,” on page 38.
FileName ? URL The URL of the JDF file where the ancestor node resided prior to spawning.
JobID ? string Copy of the JobID attribute from the ancestor node. For details, see Table 3-4,

“Contents of a JDF node,” on page 38.
JobPartID ? string Copy of the JobPartID attribute from the original ancestor node. For details,

see Table 3-4, “Contents of a JDF node,” on page 38.
MaxVersion ?
New in JDF 1.2

JDFJMFVer-
sion

Copy of the MaxVersion attribute from the original ancestor node. For
details, see Table 3-4, “Contents of a JDF node,” on page 38.

NodeID NMTOKEN a Copy of the ID attribute of the ancestor node.

ProjectID ? string Identification of the project context that this JDF belongs to. Used by the appli-
cation that created the JDF job.

SpawnID ?
New in JDF 1.1

NMTOKEN Copy of the SpawnID attribute of the ancestor node.

Status ? enumeration Copy of the Status attribute from the original ancestor node. For details, see
Table 3-4, “Contents of a JDF node,” on page 38.

StatusDetails ?
New in JDF 1.2

string Copy of the StatusDetails attribute from the original ancestor node. For
details, see Table 3-4, “Contents of a JDF node,” on page 38.

Type ? NMTOKEN Copy of the Type attribute from the original ancestor node. For details, see
Table 3-4, “Contents of a JDF node,” on page 38.

Ancestor Pool

An ancestor pool contains the job’s context
when the job is spawned. This includes
scheduling information and optionally cus-
tomer information.
48 AncestorPool

JDF Specification Release 1.2
3.3 Customer Information
in CustomerInfo

The CustomerInfo element contains informa-
tion about the customer who orders the job. Usu-
ally this element is specified in the uppermost
node of a job, (i.e., the root node), although it is
also valid in lower nodes in situations such as
model subcontracting. Table 3-7, “Contents of the
CustomerInfo element,” on page 49 describes the
contents of this element.

Types ? NMTOKENS Copy of the Types attribute from the original ancestor node. For details, see
Table 3-4, “Contents of a JDF node,” on page 38.

Version ? JDFJMFVer-
sion

Copy of the Version attribute from the original ancestor node. For details, see
Table 3-4, “Contents of a JDF node,” on page 38.

CustomerInfo ?
New in JDF 1.1

element Reference copy of the CustomerInfo element from the original node. For
details, see Table 3-4, “Contents of a JDF node,” on page 38.

NodeInfo ?
New in JDF 1.1

element Reference copy of the NodeInfo element from the original node. For details,
see Table 3-4, “Contents of a JDF node,” on page 38.

a. The data type is NMTOKEN and not IDREF because the ID does not reside in the spawned job. The cor-
responding ID element resides in the original job.

Table 3-7: Contents of the CustomerInfo element

Name Data Type Description
BillingCode ? string A code to bill charges incurred while executing the node.
CustomerID ? string Customer identification used by the application that created the job. This is usu-

ally the internal customer number of the MIS system that created the job.
CustomerJobName ? string The name that the customer uses to refer to the job.
CustomerOrderID ? string The internal order number in the system of the customer. This number is

usually provided when the order is placed and then referenced on the order
confirmation or the bill.

CustomerProjectID
?
New in JDF 1.2

string The internal project id in the system of the customer. This number may be
provided when the order is placed and then referenced on the order confir-
mation or the bill.

rRefs ?
Deprecated in JDF 1.2

IDREFS Array of IDs of any elements that are specified as ResourceRef ele-
ments. In version 1.1 it was the IDREF of a ContactRef. In JDF 1.2 and
beyond, it is up to the implementation to maintain references.

Company ?
Deprecated in JDF 1.1

refelement Resource element describing the business or organization of the contact. In
JDF 1.1 and beyond, Company affiliation of Contacts is specified in
Contact.

Contact *
New in JDF 1.1

refelement Resource element describing contacts associated with the customer. There
should be one Contact which has ContactTypes including
“Customer”. The Contact with ContactTypes including
“Customer” specifies the name, address etc. of the primary customer.

CustomerMessage *
New in JDF 1.2

element Element that describes messages to the customer.

Table 3-6: Attributes of the Ancestor element

Name Data Type Description

Creating Better Job
Tracking & Reporting

Customer information within JDF can provide a bridge
between your CRM systems and production. How could JDF
be used to automate the process of reporting to customers on
the status of their jobs?
Customer Information in CustomerInfo 49

Chapter 3 Structure of JDF Nodes and Jobs
Structure of the CustomerMessage Element
New in JDF 1.2
CustomerMessage is an abstract definition of messages to the customer. Formatting and details of the content
generation of the message are system dependent.

Table 3-8: Contents of the CustomerMessage element

Name Data Type Description
ComChannel * refelement Communication channel for the desired CustomerMessage. In case it is

not specified, the CustomerMessage will be provided according to sys-
tem predefined information. If multiple ComChannel elements are speci-
fied, the CustomerMessage should be sent to all communication
channels.

Language ? language Language to be used for the CustomerMessage.
MessageEvents NMTO-

KENS
Defines the set of events that trigger a message that is defined or specified
by the system. A list of predefined values is provided in “MessageEvents
Values” on page 623.

ShowList ? NMTO-
KENS

List of parameters to display in the CustomerMessage. Values include:
Amount – Amount of the product that was produced.
DeviceID – ID of the device. This is a unique name within the workflow.
EndTime – Actual EndTime of the job.
Error – Errors that happened during the job.
FriendlyName – FriendlyName of the device.
JobName – DescriptiveName of the node that is executing.
JobRecipientName – Name of the recipient of the job.
JobSubmitterName – Name of the submitter of the job.
StartTime – Actual StartTime of the job.
MediaBrand – Brand of the media that is being printed.
MediaType – DescriptiveName of the media that is being printed.
Operator – Name of the Operator.
Resolution – Output resolution.
ResolutionX – Output resolution in X direction.
ResolutionY – Output resolution in Y direction.
ScreeningFamily – Name of the screening family of the output.
UserText – User defined text as defined in a Comment with
Comment/@Name="UserText".
Warning – Warnings that happened during the job.
50 Customer Information in CustomerInfo

JDF Specification Release 1.2
3.4 Node Information in NodeInfo
The NodeInfo element contains information about planned scheduling and message routing. It allows MIS to plan,
schedule and invoice jobs or job parts. Table 3-9 below describes the contents of the NodeInfo element.

Table 3-9: Contents of the NodeInfo element

Name Data Type Description
CleanupDuration ? duration Estimated duration of the clean-up phase of the process.
DueLevel ? enumeration Description of the severity of a missed deadline. Possible values are:

Unknown – Consequences of missing the deadline are not known. Depre-
cated in JDF 1.2
Trivial – Missing the deadline has minor or no consequences.
Penalty – Missing the deadline incurs a penalty.
JobCancelled – The job is cancelled if the deadline is missed.

End ? dateTime Date and time at which the process is scheduled to end.
FirstEnd ? dateTime Earliest date and time at which the process may end.
FirstStart ? dateTime Earliest date and time at which the process may begin.
IPPVersion ?
New in JDF 1.1

XYPair A pair of numbers (as integers) indicating the version of the IPP protocol to
use when communicating to IPP devices. The X value is the major version
number.

JobPriority = “50”
New in JDF 1.1

integer The scheduling priority for the job where 100 is the highest and 1 is the low-
est. Amongst the jobs that can be printed, all higher priority jobs should be
printed before any lower priority ones. If one of the deadline oriented
attributes (e.g., FirstStart or LastEnd and JobPriority are specified),
the deadline oriented attributes must be honored before considering
JobPriority.

LastEnd ? dateTime Latest date and time at which the process may end. This is the deadline to
which DueLevel refers.

LastStart ? dateTime Latest date and time at which the process may begin.
NaturalLang ?
New in JDF 1.1

language Language selected for communicating attributes. If not specified, the operat-
ing system language is assumed.

MergeTarget ?
Deprecated in JDF 1.1

boolean If MergeTarget = true and this node has been spawned, it must be
merged with its direct ancestor by the controller that executes this node. The
path of the ancestor is specified in the last Ancestor element located in the
AncestorPool of this node. It is an error to specify both MergeTarget
and TargetRoute in one node.
Note: MergeTarget has been deprecated in JDF 1.1 because avoiding
concurrent access to the ancestor node is ill defined and cannot be imple-
mented in an open system without proprietary locking mechanisms.

Route ? URL The URL of the controller or device that should execute this node. If Route
is not specified, the routing controller must determine a potential controller
or device independently. For details, see Section 4.2, Process Routing.
Note that Route must not be evaluated by the receiving Device, to determine
whether the node should be executed. Selecting a Device for execution is
specified by defining an input Device resource.

rRefs ?
Deprecated in JDF 1.2

IDREFS Array of IDs of any elements that are specified as ResourceRef elements.
In version 1.1, rRefs contained the IDREF of an Employee. In JDF 1.2
and beyond, it is up to the implementation to maintain references.

SetupDuration ? duration Estimated duration of the setup phase of the process.
Start ? dateTime Date and time of the planned process start.
Node Information in NodeInfo 51

Chapter 3 Structure of JDF Nodes and Jobs
3.5 StatusPool
The StatusPool describes the Status of a JDF node that processes partitioned resources. StatusPool elements
are only valid if the node’s Status = Pool, otherwise the node’s Status is valid for all parts, regardless of the con-
tents of StatusPool. It may contain PartStatus elements that define the node’s status with respect to specific par-
titions. It is an error to define PartStatus elements that reference identical or overlapping parts within one
StatusPool. Partitioned resources are described in Section 3.8.2, Description of Partitionable Resources.

TargetRoute ? URL The URL where the JDF should be sent after completion. If TargetRoute
is not specified, it defaults to the input Route attribute of the subsequent
node in the process chain. If this is also not known (e.g., because the node is
spawned), the JDF should be sent to the processor default output URL. JMF/
QueueSubmissionParams/@ReturnURL takes precedence over
NodeInfo/@TargetRoute of the JDF that is processed.

TotalDuration ? duration Estimated total duration of the process, including setup and cleanup.
BusinessInfo ? element Container for business related information. It is expected that JDF will be

utilized in conjunction with other E-commerce standards, and this container
is provided to store the E-commerce information within JDF in case a work-
flow with JDF as the root level document is desired. When JDF is used as
part of an E-commerce solution such as PrintTalk, the information given in
the envelope document overrides the information in BusinessInfo.

Employee? refelement The internal administrator or supervisor that is responsible for the product or
process defined in this node.

JMF * element Represents JMF query messages that set up a persistent channel, as
described in Section 5.2.2.3, Persistent Channels. These message elements
define the receiver that is designated to track jobs via JMF messages. These
message elements should be honored by any JMF-capable controller or
device that executes this node. When these messages are honored, a persis-
tent communication channel is established that allows devices to transmit,
(e.g., the status of the job as JMF Signals).

MISDetails?
New in JDF 1.2

refelement Definition how the costs for the execution of this node are to be charged.

NotificationFilter * element Defines the set of Notification elements that should be logged in the
AuditPool. This provides a logging method for devices that do no not sup-
port JMF messaging. For details of the NotificationFilter element, see
Section 5.5.1.1, Events.

Table 3-10: Contents of the StatusPool element

Name Data Type Description
Status ? enumeration Identifies the Status of the node when JDF/@Status=”Pool”. Individual

PartStatus elements may override this value for the partitions they represent.
Status applies to all partitions of the node except where it is overridden by
PartStatus/@Status. Possible values are all valid Status attributes of a JDF
node except Pool are valid as defined in Table 3-4, “Contents of a JDF node,” on
page 38, Status.

StatusDetails
?
New in JDF 1.2

string Identifies the StatusDetails of the node when JDF/@Status=”Pool”. Indi-
vidual PartStatus elements may override this value for the partitions they repre-
sent. StatusDetails applies to all partitions of the node except where it is
overridden by PartStatus/@StatusDetails. For a list of supported values, see
“StatusDetails Supported Strings” on page 615.

PartStatus * element Element that defines the node’s status for a set of parts.

Table 3-9: Contents of the NodeInfo element

Name Data Type Description
52 StatusPool

JDF Specification Release 1.2
The following table describes the PartStatus element.

3.6 Resources
Resources represent the “things” that are produced or consumed by processes. They may be physical items such as
inks, plates, or glue; electronic items such as files or images; or conceptual items such as parameters and device set-
tings. Processes describe what resources they input or output through ResourceLinks, discussed in Section 3.7,
Resource Links. By examining the input and outputs of a set of processes, it is possible to determine process depen-
dencies, and therefore job routing.

All resources are contained in the ResourcePool element of a node. The ResourcePool element is described
in the following table.

Like the Type attribute in abstract JDF nodes, the Class attribute in Resource elements helps to identify how par-
ticular resources should be used. These values are listed in Table 3-13, “Contents of the abstract Resource element,”
on page 53, below, and are described in greater detail in the sections that follow.

Table 3-11: Contents of the PartStatus element

Name Data Type Description
Status ? enumeration Identifies the status of an individual part of the node. If not specified,

defaults to StatusPool/@Status. Possible values are identical to those
defined in defined in Table 3-4, “Contents of a JDF node,” on page 38,
Status.

StatusDetails ?
New in JDF 1.2

string Description of the status that provides details beyond the enumerative val-
ues given by the Status attribute. If not specified, defaults to
StatusPool/@StatusDetails. For a list of supported values, see
“StatusDetails Supported Strings” on page 615.

Part a

Modified in JDF 1.2

a. The cardinality of Part in PartStatus has been changed from * to none, (e.g., exactly one element) in
version 1.1 of the JDF specification.

element Specifies the selected part that the PartStatus is valid for. This must be a
leaf or intermediate partition of the node’s output resource. Thus, if the
node’s output resource is partitioned by Side and Separation, the Part
may contain either Side only or Side and Separation, but not
Separation only. See “Contents of the Part element” on page 79 for
details of the Part element. For details on partitioned resources, see
“Description of Partitionable Resources” on page 74.

Table 3-12: Contents of the ResourcePool element

Name Data Type Description
Resource * element List of Resource elements. The Resource elements are abstract and serve as place-

holders for any resource type.

Table 3-13: Contents of the abstract Resource element

Name Data Type Description
AgentName ?
New in JDF 1.2

string The name of the agent application that created the resource. Both the company
name and the product name may appear, and should be consistent between ver-
sions of the application.

AgentVersion
?
New in JDF 1.2

string The version of the agent application that created the resource. The format of the
version string may vary from one application to another, but should be consistent
for an individual application.

Author ?
New in JDF 1.2

string Text that identifies the person who generated the resource.
Resources 53

Chapter 3 Structure of JDF Nodes and Jobs
CatalogID ? string Identification of the resource, (e.g., in a catalog environment). Defaults to the
value of ProductID.

CatalogDetails
?

string Additional details of a resource in a catalog environment.

Class enumeration Defines the abstract resource type. For details, see the sections that follow. Possi-
ble values are:
Consumable
Handling
Implementation
Intent
Parameter
PlaceHolder
Quantity
Class must be specified in the resource root and must not be overwritten in a
resource leaf.

ID ID Unique identifier of a resource. ID must be specified in the resource root and
must not be overwritten in a resource leaf.

Locked
=”false”

boolean If true, the resource is spawned in read-only mode or referenced by an Audit
and must not be modified without invalidating the Audit.

PartUsage =
“Explicit”
New in JDF 1.1
Modified in JDF
1.2

enumeration Description of the interpretation of partitions. One of:
Explicit – Require explicit partition matches. All referenced partitions refer-
enced in Part must exist, otherwise it is an error.
Implicit – Allow sparse overrides of default values. The closest matching par-
tition with no non-matching partition keys is returned.
PartUsage must only be specified in the root of a resource. For details on
PartUsage and partitioning, see Section 3.8.3.2, Implicit and Explicit
PartUsage in Partitioned Resources.
PartUsage was moved to this table from Table 3-27 on page 78 in JDF 1.2.

PipeID ? string If this attribute exists, the resource is a pipe. PipeID is used by JMF pipe-control
messages to identify the pipe. For more information, see “Overlapping
Processing Using Pipes” on page 114.

PipeProtocol ?
New in JDF 1.2

NMTOKEN Defines the protocol use for pipe handling. JMF and Internal are the only
non-proprietary piping protocols that are supported. Proprietary pipe protocols
may be specified in addition to those defined below but will not necessarily be
interoperable. Allowed values include:
Internal – Internal or virtual pipe used within a combined process.
JMF – JMF-based PipePush / PipePull messages.
None – No pipe support.

PipeURL ?
New in JDF 1.2

URL Pipe request URL. Dynamic pipe requests to this resource should be made to this
URL.a Note that this URL is only used for initiating pipe requests. Responses to a
pipe request are issued to the URL that is defined in the PipePush or PipePull
message. For details on using PipeURL, see Section 4.3.3, Overlapping
Processing Using Pipes.

ProductID ? string An ID of the resource as defined in the MIS system. For instance item codes or
article numbers or identifiers on semi-finished products or handling resources.

rRefs ?
Deprecated in
JDF 1.2

IDREFS Array of IDs of internally referenced resources.
In JDF 1.2 and beyond, it is up to the implementation to maintain references.

Table 3-13: Contents of the abstract Resource element

Name Data Type Description
54 Resources

JDF Specification Release 1.2
SpawnIDs ?
New in JDF 1.1

NMTOKENS List of SpawnIDs. This is used as a reference count for how often the resource
has been spawned.

SpawnStatus
=”NotSpawned
”

enumeration The spawn status of a resource indicates whether or not a resource has been
spawned, and under what circumstances. The list of possible values is assumed to
be ordered, so that the SpawnStatus of a resource that has ResourceRef ele-
ments is defined as the maximum SpawnStatus of all recursively linked
resources. Possible values, ordered from lowest to highest are:
NotSpawned — Indicates that the resource has not been copied to another pro-
cess.
SpawnedRO – Indicates that the resource has been copied to another process
where it cannot be modified. RO stands for read-only.
SpawnedRW – Indicates that the resource has been copied to another process
where it can be modified. RW stands for read/write.

Status
Modified in JDF
1.2

enumeration The status of a resource indicates under what circumstances it may be processed
or modified. The list of possible values is assumed to be ordered, so that the
Status of a resource that references further resources is defined as the minimum
Status of all recursively linked resources. Possible values, ordered from lowest
to highest, are:
Incomplete – Indicates that the resource does not exist, and the metadata is
not yet valid. Incomplete resources need not specify all attributes or elements
defined in Section 7 Resources. The structural attributes Class and ID must be
specified.
Rejected – Indicates that the resource has been rejected by an Approval
process. The metadata is valid. New in JDF 1.2
Unavailable – Indicates that the resource is not ready to be used or that the
resource in the real world represented by the physical resource in JDF is not
available for processing. The metadata is valid.InUse – Indicates that the
resource exists, but is in use by another process. Also used for active pipes (see
Section 3.6.3, Pipe Resources and Section 4.3.3, Overlapping Processing Using
Pipes).Draft – Indicates that the resource exists in a state that is sufficient for
setting up the next process but not for production.
Complete – Indicates that the resource is completely specified and the parame-
ters are valid for usage. A physical resource with Status = “Complete” is
not yet available for production, although it is sufficiently specified for a process
that references it through a ResourceRef from a parameter resource to com-
mence execution.
Available – Indicates that the whole resource is available for usage.

UpdateID ?
New in JDF 1.1

NMTOKEN Unique ID that identifies the Resource or Resource partition. Note that
only one Resource, Resource partition or ResourceUpdate with a given
value of UpdateID may occur per JDF document, even though the scope of the
ResourceUpdate is local to the resource that it is defined in.

QualityContr
olResult *
New in JDF 1.2

refelement Results of quality measurements which were performed during or after the pro-
duction of this resource.

a. Note that in most cases this is the URL of the controller of the other end of the pipe. This may seem coun-
terintuitive, but it allows parallel spawning and merging of processes that represent a dynamic pipe with-
out having to include the node that describes the other end in the spawned file.

Table 3-13: Contents of the abstract Resource element

Name Data Type Description
Resources 55

Chapter 3 Structure of JDF Nodes and Jobs
Figure 3.4 shows the structure of the abstract resource classes defined above. Arrows define inheritance relations and
the thin orthogonal lines describe containing relations.

3.6.1 Resource Classes
The following sections describe the functions of each of the
seven values of the Class attribute. All resources fall into one
of these classes. In Section 7, Resources, the class of each
resource is indicated in the Resource Properties subheading.

3.6.1.1 Parameter Resources
Parameter resources define the details of processes, as well
as any non-physical computer data such as files used by a pro-
cess. They are usually associated with a specific process. For
example, a required input resource of the DigitalPrinting
process is the DigitalPrintingParams resource. Most
predefined parameter resources contain the moniker “Params”
i n t h e i r t i t l e s . E x a m p l e s o f Parameter r e s o u r c e s i n c l u d e FoldingParams a n d
ConventionalPrintingParams.

Figure 3.4: Structure of the abstract resource types

Parameter & Intent
Resources

Parameter and Intent Resources are information
about the job. Intent resources may originate in
the customer’s RFQ and may include information
such as trim size, the number of colors, and so on.
Later on in the process of estimating and schedul-
ing the job, these intents may be transformed into
parameters for production process.
56 Resources

JDF Specification Release 1.2
3.6.1.2 Intent Resources
Intent resources define the details of products to be produced without defining the process to produce them. In
addition, they provide structures to define sets of allowable options and to match these selections with prices. The
details of all intent resources are described in Section 7.1, Intent Resources. The abstract Intent resource element
contains no attributes or elements besides those contained in the abstract Resource element.

3.6.1.3 Implementation Resources
Implementation resources define the devices and operators that execute a given node. Only two implementation
resource types are defined: Employee (see Section 7.2.61, Employee) and Device, each of which is described in
greater detail in Section 7, Resources.

Implementation resources can only be used as input resources and may be linked to any process. The
abstract Implementation resource element contains no attributes or elements besides those contained in the
abstract Resource element. An example demonstrating how to use implementation resources is provided in Section
3.7.2, Links to Implementation Resources.

Note that it is not recommended to specify the capabilities of a Device that is linked to a process to specify that
it should execute the given process.

3.6.1.4 Physical Resources (Consumable,
Quantity, Handling)

Any resource whose Class is Consumable, Quantity, or
Handling is considered a physical resource. They are defined as fol-
lows:

• Consumable resources are consumed during a process.
Examples include Ink and Media. They are the unmodified
inputs in a process chain.

• Quantity resources have been created by a process from either
a Consumable resource or an earlier Quantity resource. For
example, printed sheets are cut and a pile of cut blocks is created.
Component resources are an example of Quantity resources.

• A Handling resource is used during a process, but is not destroyed by that process. ExposedMedia and
Tool are examples of such a resource, although it does describe various kinds of items such as film and plates.
A Handling resource may be created from a Consumable resource.

Table 3-15, “Additional contents of the abstract physical Resource elements,” on page 58, defines the additional
attributes and elements that may be defined for physical resources. The processes that consume physical resources—
any kind of physical resource—have the option of using these attributes and elements to determine in what way the
resources should be consumed. Table 3-16 then describes the contents of the Location subelement of physical
resource elements.

Table 3-14: Additional contents of the abstract parameter Resource elements

Name Data Type Description
NoOp = ”false”
New in JDF 1.1
Clarified in JDF 1.2

boolean A value of true indicates that the process step that is parameterized by
this resource or resource partition must not be executed. If false or not
specified, the Resource is operational and that the process step that is
parameterized by this resource or resource partition must be executed. The
NoOp attribute must only be used for processes that input and output
exchange resources of identical resource types, (e.g., RunList or
Component).

AUTOMATING
INVENTORY
MANAGEMENT

JDF’s handling of physical resources pro-
vides a bridge between your JDF enabled
systems and inventory management,
ordering and replenishing systems. This
opens the door to just-in-time inventory
management driven by real-time schedul-
ing and consumption data.
Resources 57

Chapter 3 Structure of JDF Nodes and Jobs
Structure of Location Subelement

Table 3-15: Additional contents of the abstract physical Resource elements

Name Data Type Description
AlternateBrand ? string Information, such as the manufacturer or type, about a resource compati-

ble to that specified by the Brand attribute, which is described below.
Amount ? double Actual amount of the resource that is available. Note that the amount of

consumption and production of a node is specified in the corresponding
resource links. For details on amount handling, see Section 3.8.1,
Resource Amount.

AmountProduced ?
New in JDF 1.2

double Total amount of the resource that has been produced by all nodes that ref-
erence this resource as output. This corresponds to the sum of all
Actualmount values of output resource links of leaf JDF nodes with
Status = “Completed” that reference this resource

AmountRequired ? double Total amount of the resource that is referenced by all nodes that will con-
sume this resource. This corresponds to the sum of all Amount values of
input resource links that reference this resource.

BatchID ? string ID of a specific batch of the physical resource
Brand ?
Clarified in JDF 1.2

string Information, such as the manufacturer, model, part number, and/or type,
about the resource being used. Some examples are as follows.

• XYZ Premium InkProp Glossy 6x642A

• ZYX Premium Multipurpose 1234, 88 Bright 24 lb. Bond, 8-1/2 x 11,
White Copy Paper Reorder 4711

ResourceWeight ?
New in JDF 1.1

double Weight of a single component of the resource in grams.

Unit ? NMTO-
KEN

Unit of measurement for the values of Amount and
AmountRequired. Note that it is strongly discouraged to specify units
other than those that are defined in Section 1.6, Units.

Contact ? refelement If this element is specified, it describes the owner of the resource.
IdentificationField *
New in JDF 1.1

refelement If this element is specified, a bar code or label is associated with this phys-
ical resource.

Location ? refelement Description of details of the resource location.
Note, in order to describe multiple locations, resources may be partitioned
by the Location-key as described in Section 3.8.2, Description of
Partitionable Resources.

Table 3-16: Contents of the Location element

Name Data
Type Description

LocationName
?
New in JDF 1.1

string Name of the location, (e.g., in MIS). This part key allows the user to describe dis-
tributed resources.

LocID ? string Location identifier, (e.g., within a warehouse system).
Address ? refelement Address of the storage facility. For more information, see Section 7.2.2, Address.
58 Resources

JDF Specification Release 1.2
3.6.1.5 PlaceHolder Resources
PlaceHolder resources, unlike physical resources, do not describe any logical or physical entity. Rather, they
define process linking and help to define process ordering when the exact nature of interchange resources is still
unknown. In essence, they serve as placeholders that stand in for defined resources. Using PlaceHolder resources,
a processing skeleton can be constructed that gives a basic shape to a job. The appropriate resources can be substi-
tuted for PlaceHolder resources when they become known.

This kind of resource should only be used to link nodes of Type = ProcessGroup, since process leaf nodes
have well defined resources that should be used in preference. The only resource whose Class = PlaceHolder is
called PlaceHolderResource.

Like Implementation resources, PlaceHolder resources contain no attributes besides those contained in
the abstract Resource element.

3.6.2 Position of Resources within JDF Nodes
Resources may exist in any JDF node, but JDF nodes may only reference local or global resources. In other words,
JDF nodes may only reference resources in the two kinds of locations: in the node’s own ResourcePool element,
or in JDF nodes that are hierarchically closer to the JDF root. An exception to this rule, however, occurs if two inde-
pendent jobs are merged for a process step and are to be separated afterwards, as is the case when two independent
jobs are printed on the same web-fed press. For further details on independent job merging, see Section 4.4.5, Case 5:
Spawning and Merging of Independent Jobs .

It is good practice to put resources into the closest node that references the resource. For example, the
RenderingParams resource should be located in the Rendering node, unless it is used by multiple Rendering
processes, in which case it should be located in the ProcessGroup node that contains the Rendering process
nodes. Resources that link more than one node should be placed in the parent node of the siblings that are linked by
the resource.

A process that needs additional detailed process information specifying the creation of a resource must infer this
information by explicitly linking to the appropriate parameter resource.

3.6.3 Pipe Resources
A Pipe describes the resource dependency in which a process begins to consume a resource while it is being produced
by another process (e.g., stacking components while they are being printed) or consuming a data stream while it is
being written by an upstream process. Note that defining a Pipe resource does not automatically set up communica-
tion between processes. The Controllers/Agents that execute the process must still implement the protocol that
defines the Pipe.

Using dynamic pipe control, a downstream process may control the total quantity produced by an upstream pro-
cess, and/or the quantity buffered by an inter-process transport device, (i.e., Conveyor belt.) Additional description of
pipes and process communication via pipes is provided in Section 4.3.3, Overlapping Processing Using Pipes.

Resources may contain a string attribute called PipeID that declares the resource to be a pipe, and identifies it in
a dynamic-pipe messaging environment. A pipe that is also controlled by JMF pipe messages is called dynamic pipe.
For more information about dynamic pipes, see Section 4.3.3.2, Dynamic Pipes.

3.6.4 ResourceUpdate Elements
New in JDF 1.1
ResourceUpdate elements are an abstract element class that optionally contains any of the attributes and elements
valid for the Resource that they reside in. The naming convention for ResourceUpdate elements is to add the
suffix “Update” to the resource name. Required attributes and elements of resources are optional in the respective
ResourceUpdate. In addition, a ResourceUpdate defined within a Resource must contain a unique
UpdateID of type NMTOKEN. Only devices that process the resource as input can reference the UpdateID of a
ResourceUpdate. Such references to ResourceUpdate elements must update the current state of the device.
Resources 59

Chapter 3 Structure of JDF Nodes and Jobs
When a ResourceUpdate is referenced from a device (e.g., from a PPML TicketRef element [PPML]), said
device will update ONLY those elements that are explicitly specified within the ResourceUpdate. No attributes
are inherited from the Resource that contains the ResourceUpdate.

ResourceUpdate elements are useful for process input resources only and must not be applied to product
intent resources.

Example:
The following example shows ResourceUpdate elements in highlight.

<JDF xmlns="http://www.CIP4.org/JDFSchema_1_1" ID="MyCombinedProcessNode"
Status="Ready" Type="Combined" Types="Interpreting Rendering DigitalPrinting"
Version="1.2">
 <ResourceLinkPool>
 <InterpretingParamsLink CombinedProcessIndex="0" Usage="Input" rRef="PDFIParams"/>
 <RenderingParamsLink CombinedProcessIndex="1" Usage="Input" rRef="RParams"/>
 <DigitalPrintingParamsLink CombinedProcessIndex="2" Usage="Input" rRef="DPParams"/>
 <MediaLink CombinedProcessIndex="2" Usage="Input" rRef="White"/>
 <MediaLink CombinedProcessIndex="2" Usage="Input" rRef="Yellow"/>
 <RunListLink CombinedProcessIndex="0" Usage="Input" rRef="RunList"/>
 <ComponentLink Usage="Output" rRef="OutComp"/>
 </ResourceLinkPool>
 <ResourcePool>
 <Media Class="Consumable" ID="White" Status="Available"/>
 <Media Class="Consumable" ID="Yellow" Status="Available"/>
 <InterpretingParams Class="Parameter" ID="PDFIParams" Polarity="Positive"
PrintQuality="High" Status="Available" UpdateID="SetPrintQualityDefault">
 <InterpretingParamsUpdate Polarity="Negative" UpdateID="SetNegativePolarity"/>
 <InterpretingParamsUpdate Polarity="Positive" UpdateID="SetPositivePolarity"/>
 <InterpretingParamsUpdate PrintQuality="Draft" UpdateID="SetPrintQDraft"/>
 <InterpretingParamsUpdate PrintQuality="Normal" UpdateID="SetPrintQNormal"/>
 <InterpretingParamsUpdate PrintQuality="High" UpdateID="SetPrintQualityHigh"/>
 </InterpretingParams>
 <RenderingParams Class="Parameter" ID="RParams" Status="Available">
 <AutomatedOverprintParams OverPrintBlackLineArt="true" OverPrintBlackText="true"/>
 </RenderingParams>
 <DigitalPrintingParams Class="Parameter" ID="DPParams" PrintingType="SheetFed"
Status="Available">
 <MediaRef UpdateID="SetMediaDefault" rRef="White"/>
 <DigitalPrintingParamsUpdate UpdateID="SetMediaYellow">
 <MediaRef rRef="Yellow"/>
 </DigitalPrintingParamsUpdate>
 </DigitalPrintingParams>
 <RunList Class="Parameter" ID="RunList" Status="Available"/>
 <Component Class="Quantity" ID="OutComp" Status="Unavailable"/>
 </ResourcePool>
</JDF>

Table 3-17: Contents of the abstract ResourceUpdate Element

Name Data Type Description
UpdateID
New in JDF
1.1

NMTO-
KEN

Unique ID that identifies the ResourceUpdate. Note that only one Resource,
Resource partition, or ResourceUpdate with a given value of UpdateID may
occur per JDF document, even though the scope of the ResourceUpdate is local
to the resource that it is defined in.
60 Resources

JDF Specification Release 1.2
3.7 Resource Links
ResourceLink elements describe what resources a node uses, and how it uses them. They also allow node depen-
dencies to be calculated. The following diagram summarizes resource linking within a JDF node. In this example
there are two resources, A and B, which are placed in the node’s ResourcePool. To reference the resources, the node
has two resource links, ALink and BLink, in the ResourceLinkPool. The resource links are named by appending
“Link” to the type of resource referenced. Resource B also contains a reference to resource A, called ARef. Refer-
ences to resources from within resources are named by appending “Ref” to the type of resource referenced.

The previous section described resources used by the node in which it resides. This section describes how resources
may serve as links between nodes. As was described in Section 2.2, JDF Workflow, any resource that is the output of
one process will very likely serve as an input of a subsequent process. Furthermore, some resources are shared
between ancestor nodes and their child nodes.

Each JDF node contains a ResourceLinkPool element that in turn contains all of the ResourceLink ele-
ments that link the node to the resources it uses. They also define whether the resources are inputs or outputs. These
inputs and outputs provide conceptual links between the execution elements of JDF nodes. Outputs of one node may
in turn become inputs in another node, and a given node must not be executed before all required input resources are
available.1 Figure 3.6 shows two processes that are linked by a resource. The resource represents the output of Node
1, which in turn becomes an input for Node 2.

Figure 3.5: Resource Links and ResourceRefs

1. The availability of a resource that is consumed as a whole is given by the Resource attribute
Status = Available. In the case of pipe resources, the availability depends on the individual parame-
ter defining the dynamics of a pipe. For details see Section 4.3.3, Overlapping Processing Using Pipes.

Figure 3.6: Nodes linked by a resource
Resource Links 61

Chapter 3 Structure of JDF Nodes and Jobs
ResourceLink elements may also contain optional attributes to select a part of a resource, such as a single separa-
tion. A detailed description of resource partitioning is given in Section 3.8.2, Description of Partitionable Resources.

ProcessGroup and Product nodes may be defined without the knowledge of the individual process nodes
that define a specific workflow. In this case, these intermediate nodes will contain ResourceLink elements that link
the appropriate resources. For example, a prepress node may be defined that produces a set of plates. When the pro-
cesses for creating the plates are defined in detail, the agent that writes the nodes may remove the ResourceLink
elements from the intermediate node. Removing the ResourceLink specifies that the intermediate node may exe-
cute; (i.e., it may be sent to the appropriate controller or department), even though the specific resources are not yet
available. If the ResourceLinks are not removed, the intermediate node must not execute until the input resources
that are linked are available.

Resource links may be used for process control. For example, if a proof input resource is required for a print pro-
cess, a print run may only commence when the proof is signed. The JDF format specification also includes a complete
specification of how resources are managed when JDF tickets are spawned and merged.

In some cases, determining whether information should be stored in an input or an output resource may be diffi-
cult, as the distinction can be ambiguous. For example, is the definition of the color of a separation in the RIP process
a property of the output separation or a parameter that describes the RIP process? In order to reduce this ambiguity,
the following rules have been applied for the definition of input and output resources of processes as described in
Section 6, Processes and Section 7, Resources.

• Product intent and process parameters are generally input resources, except when one process defines the
parameters of a subsequent process.

• Consumable resources are always input resources.

• Quantity and Handling resources are used both as input and output resources. Their usage is defined by the
“natural” process usage. For example, a printing plate is described as an resource that is the output of a process
and the input of a process.

• Processed material is exchanged from node to node using the Component resource. Product intent nodes also
create Component output resources.

• Every detailed process description must be defined as an input parameter of the first process where it is
referenced. This means that a device must not infer process parameters from its output resources. For example,
paper weight in grams MAY be defined in the Component output resource of the printing process but MUST
be defined as an input parameter of the Media of the printing process.

• Any resource parameter that is used must be referenced explicitly. Resource parameters cannot be inferred by
following the chain of nodes backwards. This would make spawning of nodes non-local.

• The last process in a chain of processes defines the output resource of its parent process.

• In case of parallel processing, the sum of the outputs of all parallel subnodes defines the output of the parent
node.
62 Resource Links

JDF Specification Release 1.2
•

Like Resource elements, ResourceLink elements are an abstract data type. The class tree of abstract
ResourceLink elements is further subdivided into classes defined by the Class attribute of the resource that it ref-
erences. Individual instances of ResourceLink elements are named by appending the suffix “Link” to the name of
the referenced resource. For example, the link to a Component resource is entitled ComponentLink and the link
to a resource is entitled ScanParamsLink. The following seven abstract resource link classes exist:
• ConsumableLink
• HandlingLink
• ImplementationLink
• IntentLink
• ParameterLink
• PlaceHolderLink
• QuantityLink
Each listed class name is described in greater detail in the sections that follow. Figure Section 3.7, Structure of the
abstract ResourceLink types shows the abstract resource link types derived from the ResourceLink type.
The following table lists the contents of a ResourceLinkPool element.

Figure 3.7: Structure of the abstract ResourceLink types

Table 3-18: Contents of the ResourceLinkPool element

Name Data Type Description
ResourceLink * element List of ResourceLink elements. The ResourceLink elements are abstract

and are a placeholder for any resource link element.
Resource Links 63

Chapter 3 Structure of JDF Nodes and Jobs
The following table lists the possible contents of all ResourceLink elements.
Table 3-19: Contents of the abstract ResourceLink element

Name Data Type Description
CombinedProcessIndex
?
New in JDF 1.1

IntegerList Combined and ProcessGroup nodes may contain resources from
multiple process nodes. The CombinedProcessIndex attribute
specifies the indices of individual processes in the Types attribute to
which a ResourceLink in a Combined or ProcessGroup node
belongs. Multiple entries in CombinedProcessIndex specify that
the ResourceLink is used by the respective multiple processes in the
Combined node. Must be specified when multiple resources of the
same Resource/@Type and ResourceLink/@Usage are speci-
fied in one JDF node. If CombinedProcessIndex is not specified,
even though multiple processes in the Combined or
ProcessGroup node may link to the Resource, the ResourceLink
applies to all of these processes.

CombinedProcessType ?
Deprecated in JDF 1.1

NMTO-
KEN

Combined nodes contain input resources from multiple process
nodes. The CombinedProcessType attribute specifies the name
individual process to which a ResourceLink in a Combined node
belongs. It must match one of the entries in the Types attribute of the
node. It has been replaced by CombinedProcessIndex in JDF 1.1.

DraftOK = “false” boolean If true, the process may commence with a draft resource.
PipePartIDKeys ? enumera-

tions
Defines the granularity of a dynamic pipe for a partitioned resource.
For instance, a resource may be partitioned by sheet, surface, and sep-
aration (resource attribute PartIDKeys = “SheetName Side
Separation”), but pipe requests should only be issued once per
surface (resource link attribute PipePartIDKeys = “SheetName
Side”). The contents of PipePartIDKeys must be a subset of the
PartIDKeys attribute of the resource that is linked by this
ResourceLink. If PipePartIDKeys is not specified, it defaults to
the implied or explicit value of PipePartIDKeys of the referenced
resource.

PipeProtocol ?
New in JDF 1.1
Modified in JDF 1.2

NMTO-
KEN

Defines the protocol use for pipe handling. JMF and Internal are
the only non-proprietary piping protocols that are supported. Propri-
etary pipe protocols may be specified in addition to those defined
below but will not necessarily be interoperable. Allowed values
include:
Internal – Internal or virtual pipe used within a combined process.
New in JDF 1.2
JMF – JMF-based PipePush / PipePull messages.
None – No pipe support.
If PipeURL is specified and PipeProtocol is not specified, JMF is
assumed.
If not specified, defaults to the value of the referenced Resource/
@PipeProtocol.
64 Resource Links

JDF Specification Release 1.2
The following table lists the generic contents of an AmountPool element. Further parameters of the AmountPool
are described in the sections below.

The following table lists the generic contents of a PartAmount element. Further parameters of the PartAmount
are described in the respective sections below (Table 3-22, “Contents of the abstract ImplementationLink or
PartAmount element,” on page 66 and Table 3-23, “Additional contents of the abstract physical ResourceLink and
PartAmount element,” on page 67). Note that PartAmount inherits values from its parent ResourceLink.

PipeURL ?
Modified in JDF 1.2

URL Pipe request URL. Dynamic pipe requests from this end of a pipe
should be made to this URL.a If not specified, defaults to the value of
the referenced Resource/@PipeURL.
Note that this URL is only used for initiating pipe requests. Responses
to a pipe request are issued to the URL that is defined in the
PipePush or PipePull message. For details on using PipeURL, see
Section 4.3.3, Overlapping Processing Using Pipes.

ProcessUsage ? string Identifies the resource usage in the process if multiple resources of the
same type are required. For example, this attribute appears when two
components—one Cover and one BookBlock—are used in
AdhesiveBinding. The allowed values of ProcessUsage are
defined in the appropriate process descriptions in Section 6, Processes
and Section 6.1..

rRef IDREF Link to the target resource.
rSubRef ?
Deprecated in JDF 1.2

IDREF Link to a subelement within the resource. In JDF 1.2 and beyond,
resource links should only reference resources that are direct children
in a ResourcePool.

Usage enumera-
tion

Resource usage within this JDF node. Possible values are:
Input – The resource is an input.
Output – The resource is an output.

AmountPool ?
New in JDF 1.1
Modified in JDF 1.2

element Definition of partial amounts and pipe parameters for this
ResourceLink. The allowed contents of the AmountPool are
described for the various types of resource links in the sections below.
If AmountPool is specified, the ResourceLink must not contain
any of the amount related attributes defined in AmountPool/
PartAmount.

Part * element The Part elements identify the parts of a partitioned resource that are
referenced by the ResourceLink. The structure of the Part element
is defined in Table 3-28, “Contents of the Part element,” on page 79.
For details on partitioned resources, see Section 3.8.2, Description of
Partitionable Resources.

a. Note that in most cases this is the URL of the controller of the other end of the pipe. This may seem coun-
terintuitive, but it allows parallel spawning and merging of processes that represent a dynamic pipe with-
out having to include the node that describes the other end in the spawned file.

Table 3-20: Contents of the AmountPool element

Name Data
Type Description

PartAmount *
New in JDF 1.1

element Element that defines the amounts and pipe parameters for a partitioned resource.
The contents of a PartAmount depends on the type of the ResourceLink.

Table 3-19: Contents of the abstract ResourceLink element

Name Data Type Description
Resource Links 65

Chapter 3 Structure of JDF Nodes and Jobs

3.7.1 Links to Parameter Resources
Parameter resources are linked by an instance of a ParameterLink element. These elements contain no further
attributes or elements besides those found in the abstract ResourceLink element.

3.7.2 Links to Implementation Resources
Implementation resources are linked by an instance of an ImplementationLink element. Since implementation
ResourceLinks define the usage of a specific device during the course of a job, situations can arise where that
resource is not required during the whole processing time. For instance, a forklift that only has to transport the com-
pleted components is not required to be available during the entire process run, only during the times when it is
needed. This means that, contrary to the general rule that all resources must be Available for node execution to
commence, a node may commence when implementation resources are still InUse by other processes if Start or
StartOffset are specified. ImplementationLink elements always have a Usage of Input.

The following example shows how the operator Smith is linked to a ConventionalPrinting process as the only
valid operator.

 <ResourcePool>
 <Employee Class="Implementation" ID="L1" PersonalID="007">
 <Person FamilyName="Smith" JobTitle="Press Operator"/>
 </Employee>
 </ResourcePool>
 <ResourceLinkPool>
 <EmployeeLink Usage="Input" rRef="L1"/>
 </ResourceLinkPool>

Table 3-21: General contents of the PartAmount element

Name Data
Type Description

DraftOK ?
New in JDF 1.1

boolean If true, the process may commence with a draft resource partition.

PipeURL ?
New in JDF 1.1

URL Pipe request URL for this partition. Dynamic pipe requests from this end of a
pipe should be made to this URL.a Note that this URL is only used for initiat-
ing pipe requests. Responses to a pipe request are issued to the URL that is
defined in the PipePush or PipePull message. For details on using
PipeURL, see Section 4.3.3, Overlapping Processing Using Pipes.

a. Note that in most cases this is the URL of the controller of the other end of the pipe. This may seem
counterintuitive, but it allows parallel spawning and merging of processes that represent a dynamic pipe
without having to include the node that describes the other end in the spawned file.

Part
New in JDF 1.1

element Specifies the selected part that the PartAmount is valid for. This must be a
leaf partition of the resource.

Table 3-22: Contents of the abstract ImplementationLink or PartAmount element

Name Data
Type Description

Duration ? duration Estimated duration during which the resource will be used.
Recommendation ?
Deprecated in JDF 1.2

boolean If true and the request cannot be fulfilled, the change may be logged as a
Modified Audit and the job may continue. If false, an error occurs if the
request is not fulfilled. In JDF 1.2 and beyond use SettingsPolicy instead.

Start ? dateTime Time and date when the usage of the implementation resource starts.
StartOffset ? duration Offset time when the resource is required after processing has begun. If both

Start and StartOffset are specified, Start has precedence.
66 Resource Links

JDF Specification Release 1.2
3.7.3 Links to Physical Resources
Just as physical resources inherit the contents of the abstract resource element, physical resource links inherit the con-
tents of the abstract resource link element. They may, however, contain additional contents. These optional attributes
are described in Table 3-23, below. The attributes in this table may occur either directly in the physical
ResourceLink or in AmountPool and PartAmount elements of a resource link.

It is important to note that the order of occurrence of links to physical resources may be significant—most specif-
ically with QuantityLinks. For example, a Gathering process might have among its inputs, links to three compo-
nent resources. The order of these links indicates the order in which the components should occur in the new,
gathered output component.

Table 3-23: Additional contents of the abstract physical ResourceLink and PartAmount element

Name Data
Type Description

ActualAmount ?
New in JDF 1.2

double Total amount of the resource that has been produced (in a ResourceLink
with Usage = “Output”) or consumed (in a ResourceLink with
Usage = “Input”) by this node in every execution. For details see
Section 3.8.1, Resource Amount

Amount ? double For a link with a Usage of “Input”, specifies the amount of the resource
that is required by the process, in units as defined in the resource. For a link
with a Usage of “Output”, specifies the amount of the resource that is to
be produced by the process, in units as defined in the resource. Allows
resources to be only partially consumed or produced (see Section 3.8.1,
Resource Amount). If not specified, ResourceLink/@Amount defaults
to Resource/@Amount.

Orientation ?
New in JDF 1.1

Orienta-
tion

Named orientation describing the transformation of the orientation of a
physical resource relative to the ideal process coordinate that uses this
resource as input or output. If Orientation is specified for an output
resource, the node that processes the physical resource should manipulate
the resource in such a way as to reflect the transformation. The coordinate
system of the resource itself is not modified. Only one of Orientation or
Transformation must be specified. For details on coordinate systems, see
Section 2.5, Coordinate Systems in JDF.

PipePause ? double Parameter for controlling the pausing of a process if the resource amount in
the pipe buffer passes the specified value. For details on using PipePause,
see Section 4.3.3, Overlapping Processing Using Pipes.

PipeResume ? double Parameter for controlling the resumption of a process if the resource amount
in the pipe buffer passes the specified value. For details on using
PipeResume, see Section 4.3.3, Overlapping Processing Using Pipes.

RemotePipeEnd-
Pause ?

double Parameter for controlling the pausing of a process at the other end of the
pipe if the resource amount in the pipe buffer passes the specified value. For
details on using RemotePipeEndPause, see Section 4.3.3, Overlapping
Processing Using Pipes.

RemotePipeEnd-
Resume ?

double Parameter for controlling the resumption of a process at the other end of the
pipe if the resource amount in the pipe buffer passes the specified value. For
details on using RemotePipeEndResume, see Section 4.3.3,
Overlapping Processing Using Pipes.

Transformation ?
New in JDF 1.1

matrix Matrix describing the transformation of the orientation of a physical
resource relative to the ideal process coordinate using this resource as input
or output. If Transformation is specified for an output resource, the node
that processes the physical resource should manipulate the resource in such
a way as to reflect the transformation. The coordinate system of the resource
itself is not modified. Only one of Orientation or Transformation
must be specified. For details on coordinate systems, see Section 2.5,
Coordinate Systems in JDF.
Resource Links 67

Chapter 3 Structure of JDF Nodes and Jobs
The following example shows an InkLink with an AmountPool.
 <ResourcePool>
 <Ink Brand="NoName" Class="Consumable" ID="Link0015" PartIDKeys="Separation"
Status="Available">
 <Ink ColorName="Cyan" Separation="Cyan"/>
 <Ink ColorName="Magenta" Separation="Magenta"/>
 <Ink ColorName="Yellow" Separation="Yellow"/>
 <Ink ColorName="Black" Separation="Black"/>
 <Ink ColorName="Heidelberg Spot Blau" Separation="Heidelberg Spot Blau"/>
 </Ink>
 </ResourcePool>
 <ResourceLinkPool>
 <InkLink Usage="Input" rRef="Link0015">
 <AmountPool>
 <PartAmount Amount="1000">
 <Part Separation="Cyan"/>
 </PartAmount>
 <PartAmount Amount="1200">
 <Part Separation="Magenta"/>
 </PartAmount>
 <PartAmount Amount="700">
 <Part Separation="Yellow"/>
 </PartAmount>
 <PartAmount Amount="3000">
 <Part Separation="Black"/>
 </PartAmount>
 <PartAmount Amount="300">
 <Part Separation="Heidelberg Spot Blau"/>
 </PartAmount>
 </AmountPool>
 </InkLink>
 </ResourceLinkPool>

3.7.4 Links to PlaceHolder Resources
PlaceHolder resources are linked by a PlaceHolderLink element. PlaceHolder links, used together with the
PlaceHolderResource resource, can be employed to predefine a skeleton of a processing network consisting of pro-
cess group nodes without knowing the exact nature of the interchange resources. For instance, although the deadlines for
the job may be known, it may not be known whether a press run will be defined for a digital press or a conventional press.

3.7.5 Links to Intent Resources
Intent resources are linked by an instance of a IntentLink element. They have no additional parameters.

3.7.6 Inter-Resource Linking Using ResourceRef
Modified in JDF 1.2
In some cases, it is necessary to reference resource elements directly from other resources in order to reuse informa-
tion. These links are abstract ResourceRef elements. The ResourceRef’s name is generated by appending the
string “Ref” to the element name. Candidate elements for inter-resource linking have a data type of refelement in the
content description tables of this chapter and Section 7, Resources. The following table defines the attributes of the
abstract ResourceRef element (see also Figure 3.4 and ResourceElement in Table 3-13, “Contents of the
abstract Resource element,” on page 53).

Table 3-24: Contents of the abstract ResourceRef element

Name Data Type Description
rRef
Clarified in JDF 1.2

IDREF Reference to the resource. The linked resource must be a direct child of a
ResourcePool.

rSubRef ?
Deprecated in JDF 1.2

IDREF Reference to a subelement of the resource. In JDF 1.2 and beyond,
ResourceRef elements should only reference resources that are present in a
ResourcePool.

Part ?
New in JDF 1.1

element Definition of the partition that this ResourceRef references.
68 Resource Links

JDF Specification Release 1.2
The sub element of a resource, also called ResourceElement, is defined in the following table: Table 3-25.

The Part element in a ResourceRef defines the part of the target that this ResourceRef references. If both the
resource that contains ResourceRef element and the target resource are partitioned, the ResourceRef does not
implicitly reference the part of the target with the same partitioning attributes, but rather the parts of the target
resource that are explicitly specified by the Part element within the ResourceRef.

When a ResourceRef references a partitioned resource node that is not a resource leaf, the children of the ref-
erenced resource are ignored. Otherwise, the referenced structure would be a partitioned element and thus invalid
when inlined. Thus the following example equivalence applies.

ResourceRef example with partition:

 <Media Class="Consumable" Dimension="72 72" ID="MediaID" PartIDKeys="Location"
Status="Available">
 <Comment Name="foo">bar</Comment>
 <Media Location="desk"/>
 <Media Location="drawer"/>
 </Media>
 <Sheet Class="Parameter" ID="Sheet" Status="Available">
 <MediaRef rRef="MediaID"/>
 </Sheet>

Valid inlined ResourceRef example with no inline partition:

 <Sheet Class="Parameter" ID="Sheet" Status="Available">
 <Media Dimension="72 72" ID="MediaID">
 <Comment Name="foo">bar</Comment>
 </Media>
 </Sheet>

Invalid inlined ResourceRef example with partition:

 <Sheet Class="Parameter" ID="Sheet" Status="Available">
 <Media Dimension="72 72" ID="MediaID" PartIDKeys="Location">
 <Comment Name="foo">bar</Comment>
 <Media Location="desk"/>
 <Media Location="drawer"/>
 </Media>
 </Sheet>

ResourceRef elements may also occur in the NodeInfo and CustomerInfo element of a JDF node. Resource
elements that are referenced must reside in a ResourcePool. The restrictions on locations of resource elements
described in Section 3.6.2, Position of Resources within JDF Nodes that apply to resource links similarly apply to
refelements.

Table 3-25: Contents of the abstract ResourceElement

Name Data
Type Description

ID ?
Deprecated in JDF 1.2

ID Unique identifier of a resource element. In JDF 1.2 and beyond, ResourceRef
and ResourceLink elements should only reference resources that are present
in a ResourcePool. Therefore elements that are defined locally within a
resource should not be referenced directly and should not contain an ID.
Resource Links 69

Chapter 3 Structure of JDF Nodes and Jobs
3.7.6.1 Status of Resources That Contain rRef References
The Status of a resource that contains an rRef attribute is defined by the lowest Status of all recursively refer-
enced resources. The ordering is defined in Table 3-13, “Contents of the abstract Resource element,” on page 53:

Thus, if any referenced resource has a Status of Incomplete, the complete resource has a calculated Status
of Incomplete, even though its own Status attribute may be Unavailable, Draft, Available, etc.

3.7.6.2 Alignment of ResourceLink and ResourceRef
New in JDF 1.1A
ResourceRef elements must not contain any of the attributes and elements that may be specified in the
ResourceLink as defined in Section 3.7, Resource Links. The value of these properties is implied from the value of
the properties for the appropriate part in the AmountPool of the ResourceLink. The following example illustrates
the alignment of a MediaLink and MediaRef in a DigitalPrinting node.

<JDF xmlns="http://www.CIP4.org/JDFSchema_1_1" ID="n20020626134204" Status="Waiting"
Type="DigitalPrinting" Version="1.2">
 <ResourcePool>
 <!--Media is partitioned so that it can be referenced from the AmountPool -->
 <Media Class="Consumable" ID="r0006" PartIDKeys="RunIndex" Status="Available">
 <Media RunIndex="0 -1"/>
 <Media RunIndex="1~-2"/>
 </Media>
 <DigitalPrintingParams Class="Parameter" ID="r0007" PartIDKeys="RunIndex"
Status="Available">
 <DigitalPrintingParams RunIndex="0 -1">
 <!-- PartAmount with <Part RunIndex="0 -1"/> contains the partition details for
this MediaRef -->
 <MediaRef rRef="r0006">
 <Part RunIndex="0 -1"/>
 </MediaRef>
 </DigitalPrintingParams>
 <DigitalPrintingParams RunIndex="1~-2">
 <!-- PartAmount with <Part RunIndex="1~-2/> contains the partition details for
this MediaRef -->
 <MediaRef rRef="r0006">
 <Part RunIndex="1~-2"/>
 </MediaRef>
 </DigitalPrintingParams>
 </DigitalPrintingParams>
 </ResourcePool>
 <ResourceLinkPool>
 <MediaLink Usage="Input" rRef="r0006">
 <!-- the AmountPool contains the ResourceLink partition details -->
 <AmountPool>
 <PartAmount Orientation="Flip180">
 <Part RunIndex="0 -1"/>
 </PartAmount>
 <PartAmount Orientation="Rotate0">
 <Part RunIndex="1~-2"/>
 </PartAmount>
 </AmountPool>
 </MediaLink>
 <DigitalPrintingParamsLink Usage="Input" rRef="r0007"/>
 </ResourceLinkPool>
</JDF>
70 Resource Links

JDF Specification Release 1.2
3.8 Subsets of Resources
In many cases, a set of similar resources—such as separation films, plates, or RunList resources—is produced by one
process and consumed by another. When this occurs, it is convenient to define one resource element that describes the
complete set and allows individual subsets to be referenced. This mechanism also removes process ambiguity if multi-
ple input resource links and multiple output resource links exist that must be unambiguously correlated.

In other cases, there can be a need to change some attribute of a parameter resource for some subset of the process-
ing to be done by a device. For instance, when printing a document using DigitalPrinting, it would be a common
application to change the dimensions of the media to be selected based on the actual media box changes in a PDF file.

Resource elements and ResourceLink elements have optional attributes that enable an agent to specify an
explicit part of a structured resource. There are two ways to reference a subset of a resource. The first is by quantity,
(i.e., by specifying an Amount in a ResourceLink that is less than the Resource’s Amount.) The second is to select
certain parts of a partitioned resource by supplying a filtering Part element in the ResourceLink.

3.8.1 Resource Amount
Yet another flexible feature of resources is that they may be only partially consumed. For example, in a scenario in
which various versions of a product share identical parts—such as versioned books that all have the same cover—
each version will only use as many copies of the cover as it needs to fulfill its job requirement, even though all of the
covers can be printed in one step for all versions. This feature is specified in the Amount attribute of the resource
links and allows multiple JDF nodes to share resources. It allows both the sharing of output resources (when a bind-
ing process consumes identical sheets from multiple press lines) and the sharing of input resources (when the covers
for multiple jobs are identical and are all printed in one press run).

The Amount attribute of a physical resource element contains the actual amount of a given resource. It is
adjusted by the production or consumption amount of every process that is executed and refers to that amount in the
corresponding physical resource link element. Thus the value of the Amount attribute of a resource that is con-
sumed as an input should be reduced by the amount that is consumed. It is up to the agent that writes a JDF job to
ensure that the Amount attributes of resources and the resource links that reference them are consistent. The units
used in the Amount attribute of a physical resource link element is defined by the unit of the resource element to
which the link refers. The definition of Amount for partitioned resources is explained in detail in Section 3.8.2,
Description of Partitionable Resources.

Note that for resources which are the output of processes, the Amount attribute on the ResourceLink deter-
mines the quantity of the resource to be produced. For example, in a DigitalPrinting process that included a
RunList as its input with 16 pages to be printed and a ComponentLink to its output, the Amount and
AmountProduced attributes would indicate the number of copies of those 16 pages that the process would produce.

3.8.1.1 Evaluating and Updating Amount related attributes in a Device
ResourceLink/@Amount specifies the planned amount whereas ResourceLink/@ActualAmount specifies the
actual production amount. When a Device executes a JDF node that consumes and produces physical resources with an
amount, it must calculate the required production amount in the following order: Production Amount(Output)=

1 ComponentLink(Output)/AmountPool/PartAmount/@Amount -
ComponentLink(Output)/AmountPool/PartAmount/@ActualAmount

2 ComponentLink(Output)/@Amount -
ComponentLink(Output)/@ActualAmount

3 Component(Output)/@Amount -
ComponentLink(Output)/@ActualAmount

4 PhysicalResourceLink(Input)/AmountPool/PartAmount/@Amount -
PhysicalResourceLink(Input)/AmountPool/PartAmount/@ActualAmount

5 PhysicalResourceLink(Input)/@Amount -
PhysicalResourceLink(Input)/@ActualAmount

6 PhysicalResource(Input)/@Amount -
PhysicalResourceLink(Input)/@ActualAmount

7 Implied amount from consuming the complete Input resource.
Subsets of Resources 71

Chapter 3 Structure of JDF Nodes and Jobs
It is strongly recommended for MIS systems to explicitly specify the desired production amount of a process by spec-
ifying ComponentLink(Output)/@Amount or ComponentLink(Output)/AmountPool/PartAmount/
@Amount in case of partitioned resources. The Device should increment ResourceLink/@ActualAmount or
ResourceLink/AmountPool/PartAmount/@ActualAmount by the amount of actual consumption and pro-
duction. An MIS system that receives a completed process from a Device must update Resource/@Amount by
summing over all ResourceLink elements that are linked from leaf nodes:

ComponentLink(Output)/AmountPool/PartAmount/@Amount
- ComponentLink(Output)/AmountPool/PartAmount/@ActualAmount
or
ComponentLink(Output)/@Amount-ComponentLink(Output)/@ActualAmount
and subtracting all links that are linked from leaf nodes:
ComponentLink(Input)/AmountPool/PartAmount/@Amount
- ComponentLink(Input)/AmountPool/PartAmount/@ActualAmount
or
ComponentLink(Onput)/@Amount-ComponentLink(Input)/@ActualAmount

ComponentLinks from intermediate nodes (ProcessGroup or Product) must be ignored when summing, since
they redundantly link to the same resources without specifying and additional production amount.

3.8.1.2 Specifying Amount for a partially completed process
New in JDF 1.2
A process may be interrupted before the requested amount of output has been produced. When the job is resent from
the controller to the Device, only the remaining Amount must be produced by the Device. The following figure
shows the various processes, resources and ResourceLinks and their corresponding entries in Table 3-26 on page 73
which summarizes the values of the Amount, AmountProduced and AmountRequired attributes in the
Component, the Amount and ActualAmount of ComponentLink in various steps of the process. All
planned amounts are multiples of 1000 whereas all actual amounts are randomly adjusted for waste and production
overrun or underrun:

Figure 3.8: Amount Handling
72 Subsets of Resources

JDF Specification Release 1.2
Table 3-26: Example of Actual Amount and Amount Handling

Process Step

A1
P1
R1
S1

A11
C11

A21
C21

A12
C12

A22
C22

A2
P2
R2
S2

A13
C12

Original JDF, no processing has commenced.
A large Amount of Media(500000) is available.
Plan 10% waste.
The following processes are not yet setup.

500000
—
110000
Available

110000
0

—
—

100000
0

—
—

0
0

—
Unavailable

—
—

Break after producing exactly 30,000 good cop-
ies.
Actual waste=2957

467043
—
110000
Available

110000
32957

—
—

100000
30000

—
—

30000
30000
—
Available

—
—

Break after producing exactly an additional
40,000 copies
Accumulated actual waste=6545

423455
—
110000
Available

110000
76545

—
—

100000
70000

—
—

70000
70000
—
Available

—
—

Completed
Overrun=1234
Accumulated actual waste=9323

390677
—
110000
Available

110000
109323

—
—

100000
101234

—
—

101234
101234
—
Available

—
—

Consumption of the output by a subsequent process
A following process consumes 50,010 copies 390677

—
110000
Available

110000
109323

—
—

100000
101234

—
—

51224
101234
50000
Available

50000
50010

Additional Copy Request
A total of 120,000 copies are requested 390677

—
110000
Available

132000
109323

—
—

120000
101234

—
—

51224
101234
50000
Available

50000
50010

The 20,000 copies are produced(- underrun)
Accumulated actual waste=12123

367877
—
132000
Available

132000
132123

—
—

120000
119999

—
—

69989
119999
50000
Available

50000
50010
Subsets of Resources 73

Chapter 3 Structure of JDF Nodes and Jobs
3.8.2 Description of Partitionable Resources
Printing workflows contain a number of processes that are repeated over a potentially large number of individual
files, sheets, surfaces or separations. In order to define a partitioned resource in a concise manner without having to
create a large number of individual nodes and resources, a set of resources may be partitioned by factoring them by
one or more attributes. The common elements and defaults are placed in the parent element while partition-specific
attributes and overrides are placed in the child elements. This saves space. Also, by providing a single parent ID for
the resources, it allows easy access to the entire resource or iteration over each part.

To reference part of a resource, a ResourceLink references the parent resource and supplies a Part element that con-
tains an actual value for a partition. The result is all the child elements with matching partition values, including common
values and defaults from the parent resource. If PartUsage = “Implicit”, the parent attributes are returned if there is
no matching partition.

A partitionable resource may contain nested elements, each with the same name as the resource. The part-independent
resource elements and attributes are located in the root of the resource, while the partition-dependent elements are located in
the nested elements. Thus one individual part is defined by the convolution of the partition-independent elements and
attributes with the elements and attributes contained in the appropriate nested elements. The attributes of nested part ele-
ments may be overwritten by the equivalent attributes in descendent parts. If a leaf contains elements that may occur multi-
ply, and additional elements with the same name exist in nodes that are closer to the root, only the elements in the leaf are
valid for the respective part. For example, the following SeparationSpec is two color duo-tone (only Black and
SpotGreen) in the part with PageNumber = “1”.

Parallel Production by a second device
30,000 additional copies of the same resource
are requested from a different device.
20% waste is assumed

367877
—
168000
Available

132000
132123

36000
0

120000
119999

30000
0

69989
119999
50000
Available

50000
50010

The 30,000 copies are produced 331856
—
168000
Available

132000
132123

36000
36021

120000
119999

30000
30100

100089
150099
50000
Available

50000
50010

Consumption by the following process
The Consuming node is set up to consume all
available Components

331856
—
168000
Available

132000
132123

36000
36021

120000
119999

30000
30100

100089
150099
50000
Available

150000
50010

All intermediate copies are consumed 331856
—
168000
Available

132000
132123

36000
36021

120000
119999

30000
30100

0
150099
150000
Unavailable

150000
150099

Table 3-26: Example of Actual Amount and Amount Handling

Process Step

A1
P1
R1
S1

A11
C11

A21
C21

A12
C12

A22
C22

A2
P2
R2
S2

A13
C12
74 Subsets of Resources

JDF Specification Release 1.2
<LayoutElement Class="Parameter" ID="ID1" PartIDKeys="PageNumber" Status="Available">
 <SeparationSpec Name="Cyan"/>
 <SeparationSpec Name="Magenta"/>
 <SeparationSpec Name="Yellow"/>
 <SeparationSpec Name="Black"/>
 <FileSpec/>
 <LayoutElement PageNumber="0"/>
 <LayoutElement PageNumber="1">
 <SeparationSpec Name="Black"/>
 <SeparationSpec Name="SpotGreen"/>
 </LayoutElement>
</LayoutElement>

3.8.2.1 Amount in Partitionable Resources
New in JDF 1.2
The Amount attribute of a partitioned resource is treated formally exactly in the same manner as any other attribute.
This implies that the amount specified refers to the amount defined by one leaf and not to the amount defined by the
sum of leaves in a branch. The Amount attribute defined in the example below is, therefore, two, even though 24
physical plates are described.

The following example defines two sets of 12 plates for two sheets with three surfaces. Each has a common
brand attribute called “Gooey”. Each individual separation has its own ProductID.Furthermore, the Status attribute
varies from part to part. For example, if a yellow plate breaks, only it will need to be remade and, therefore, set to
Unavailable; the others, meanwhile, may remain Available.

 <ExposedMedia Amount="2" Brand="Gooey" Class="Handling" ID="L1"
 PartIDKeys="SheetName Side Separation" Status="Available">
 <Media Dimension="500 600" MediaType="Plate"/>
 <ExposedMedia SheetName="S1">
 <ExposedMedia Side="Front">
 <ExposedMedia ProductID="S1FCPlateJ42" Separation="Cyan"/>
 <ExposedMedia ProductID="S1FMPlateJ42" Separation="Magenta"/>
 <ExposedMedia ProductID="S1FYPlateJ42" Separation="Yellow"
 Status="Unavailable"/>
 <ExposedMedia ProductID="S1FKPlateJ42" Separation="Black"/>
 </ExposedMedia>
 <ExposedMedia Side="Back">
 <ExposedMedia ProductID="S1BCPlateJ42" Separation="Cyan"/>
 <ExposedMedia ProductID="S1BMPlateJ42" Separation="Magenta"/>
 <ExposedMedia ProductID="S1BYPlateJ42" Separation="Yellow"/>
 <ExposedMedia ProductID="S1BKPlateJ42" Separation="Black"/>
 </ExposedMedia>
 </ExposedMedia>
 <ExposedMedia SheetName="S2" Side="Front">
 <ExposedMedia ProductID="S2FCPlateJ42" Separation="Cyan"/>
 <ExposedMedia ProductID="S2FMPlateJ42" Separation="Magenta"/>
 <ExposedMedia ProductID="S2FYPlateJ42" Separation="Yellow"/>
 <ExposedMedia ProductID="S2FKPlateJ42" Separation="Black"/>
 </ExposedMedia>
 </ExposedMedia>

3.8.2.2 Relating PartIDKeys and Partitions
New in JDF 1.2
The PartIDKeys attribute describes the partition keys that may occur in a partitioned resource. The sequence and
number of keys is restricted in order and cardinality to ensure interoperability. The first entry in the PartIDKeys list
defines the partition closest to the root, the next entry defines the next intermediate partition node and so forth until
the last entry, which defines the partition leaves. Each partition key must occur exactly once in the PartIDKeys list.
Note that some of the restrictions specified in this section were assumed to be in place in versions before JDF 1.2 but
were not explicitly stated in the specification.
Subsets of Resources 75

Chapter 3 Structure of JDF Nodes and Jobs
3.8.2.2.1 Incomplete Partitions
New in JDF 1.2
Partitioned resources may be partitioned by a restricted subset of keys in the PartIDKeys list. Keys from the back of
the list may be omitted in individual partitions. If a key is omitted all following keys must also be omitted. The fol-
lowing example demonstrates a legal incomplete partition:
 <Preview Class="Parameter" ID="P1" PartIDKeys="PreviewType Separation"
 Status="Available">
 <Preview PreviewType="Separation">
 <Preview Separation="Cyan"/>
 <Preview Separation="Magenta"/>
 </Preview>
 <Preview PreviewType="ThumbNail"/>
 </Preview>

The following example demonstrates an illegal incomplete partition since the omitted keys are not at the end of the
PartIDKeys list:
 <Preview Class="Parameter" ID="P2" PartIDKeys="PreviewType Separation"
 Status="Available">
 <Preview Separation="Cyan"/>
 <Preview Separation="Magenta"/>
 </Preview>

3.8.2.2.2 Multiple Keys per Partitioned Leaf or Node
New in JDF 1.2
Exactly one partition key must be specified per leaf or node, excluding the root node. This allows XPath-type
searches on partitioned leaves. The following example demonstrates a legal partition:
 <Preview Class="Parameter" ID="P3" PartIDKeys="PreviewType Separation"
 Status="Available">
 <Preview PreviewType="Separation">
 <Preview Separation="Cyan"/>
 </Preview>
 </Preview>

The following example demonstrates an illegal incomplete partition since more than one partition key is specified in the leaf:
 <Preview Class="Parameter" ID="P4" PartIDKeys="PreviewType Separation"
 Status="Available">
 <Preview PreviewType="Separation" Separation="Cyan"/>
 </Preview>

3.8.2.2.3 Degenerate Partitions
New in JDF 1.2
A partitionable resource must not contain partition keys in the root. Mapping partitioned parameters to non-parti-
tioned resources is achieved by partitioning the Resource with exactly one leaf. The following example specifies that
only “c1” must be folded:
 <Component Class="Quantity" ID="c1" PartIDKeys="SheetName" Status="Available">
 <Component SheetName="Sheet 1"/>
 </Component>
 <Component Class="Quantity" ID="c2" PartIDKeys="SheetName" Status="Available">
 <Component SheetName="Sheet 2"/>
 </Component>
 <FoldingParams Class="Parameter" ID="fold" NoOp="true" PartIDKeys="SheetName"
 Status="Available">
 <FoldingParams NoOp="false" SheetName="Sheet 1"/>
 </FoldingParams>

The following example is NOT valid:
 <Component Class="Quantity" ID="c12" PartIDKeys="SheetName" SheetName="Sheet 1"
 Status="Available"/>
 <Component Class="Quantity" ID="c22" PartIDKeys="SheetName" SheetName="Sheet 2"
 Status="Available"/>
 <FoldingParams Class="Parameter" ID="fold2" NoOp="true" PartIDKeys="SheetName"
 Status="Available">
 <FoldingParams NoOp="false" SheetName="Sheet 1"/>
 </FoldingParams>
76 Subsets of Resources

JDF Specification Release 1.2
3.8.2.3 Partitioning of Resource sub-Elements
New in JDF 1.2
Only resources may be partitioned. If a resource contains subelements, the subelements must not be partitioned. Subele-
ments must always be specified completely in that part where they occur. The content of subelements is not convoluted with
the content of subelements in parts closer to the root. Five examples are provided below. The first and the fourth example
are valid, the second, third, and fifth are invalid. In the first example, the ExposedMedia resource is partitioned.
 <ExposedMedia Class="Handling" ID="L1" PartIDKeys="Separation" Status="Available">
 <Media Brand="foo" MediaType="Film"/>
 <ExposedMedia Separation="Cyan"/>
 <ExposedMedia Separation="Magenta">
 <Media Brand="bar" MediaType="Film"/>
 </ExposedMedia>
 </ExposedMedia>

In this valid but incomplete example #2, the Media in the leaves is not complete because it does not contain the
MediaType attribute. MediaType is not be inherited from the Media element in the root resource.
 <ExposedMedia Class="Handling" ID="L21" PartIDKeys="Separation" Status="Available">
 <Media MediaType="Film"/>
 <ExposedMedia Separation="Cyan">
 <Media Brand="foo"/>
 </ExposedMedia>
 <ExposedMedia Separation="Magenta">
 <Media Brand="bar" Class="Consumable"/>
 </ExposedMedia>
 </ExposedMedia>

In this invalid example #3, Media is a subelement that must not be partitioned.
 <ExposedMedia Class="Handling" ID="L31" PartIDKeys="Separation" Status="Available">
 <Media MediaType="Film">
 <Media Brand="foo" Separation="Cyan"/>
 <Media Brand="bar" Separation="Magenta"/>
 </Media>
 </ExposedMedia>

Partitioning may be combined with inter-resource links, (i.e., RefElements.) In the following valid example #4, each
MediaRef is equivalent to an in-lined leaf with the explicit Part elements to define the partition, (i.e., it is equivalent
to the valid example #1.)
 <Media Class="Consumable" ID="MediaID" MediaType="Film" PartIDKeys="Separation"
 Status="Available">
 <Media Brand="foo" Separation="Cyan"/>
 <Media Brand="bar" Separation="Magenta"/>
 </Media>
 <ExposedMedia Class="Handling" ID="L41" PartIDKeys="Separation" Status="Available">
 <ExposedMedia Separation="Cyan">
 <!--equivalent to <Media MediaType="Film" Brand="foo"/> -->
 <MediaRef rRef="MediaID">
 <Part Separation="Cyan"/>
 </MediaRef>
 </ExposedMedia>
 <ExposedMedia Separation="Magenta">
 <!--equivalent to <Media MediaType="Film" Brand="bar"/> -->
 <MediaRef rRef="MediaID">
 <Part Separation=" Magenta"/>
 </MediaRef>
 </ExposedMedia>
 </ExposedMedia>

In this invalid example #5, MediaRef does not reference the leaves of Media but, rather, to the root of Media. It is
equivalent to the invalid example #3.
 <Media Class="Consumable" ID="MediaID2" MediaType="Film" PartIDKeys="Separation"
 Status="Available">
 <Media Brand="foo" Separation="Cyan"/>
 <Media Brand="bar" Separation="Magenta"/>
 </Media>
 <ExposedMedia Class="Handling" ID="L51" PartIDKeys="Separation" Status="Available">
 <MediaRef rRef="MediaID2"/>
 </ExposedMedia>
Subsets of Resources 77

Chapter 3 Structure of JDF Nodes and Jobs
3.8.2.4 Additional Attributes for use with partitioned Resources
New in JDF 1.2
In addition to the usual resource attributes and elements, the partitionable Resource element has partition-specific
attributes and elements in its root. Specifying PartIDKeys in the root defines a partitioned resource. Further
attributes are listed in the following table.

Partitionable resources are uniquely identified by the attribute values listed in PartIDKeys attributes. The choice of
which attributes to use depends on how the agent organizes the job.

The following table lists the content of a Part element, which contains a set of attributes that have a well
described meaning. Each of the attributes, except Sorting, may be used in the nested resource elements of partition-
able resources as the part ID key (see example above).

Table 3-27: Contents of the Partitionable Resource Element

Name Data Type Description
PartIDKeys ?
Modified in JDF 1.2

enumerations List of attribute names that are used to separate the individual parts.
PartIDKeys also defines the sequence from root to leaf in which the
PartIDKeys must occur in the partitioned resource. Each entry in the
PartIDKeys list must occur only once. PartIDKeys must not be speci-
fied below the root of a partitioned resource. Note: PartIDKeys enumera-
tions are often referred to as “partition keys” or “part keys” throughout this
document and in common practice and discussions. Possible values are:
Bindery-
SignatureName
BlockName
BundleItemIndex
CellIndex
Condition
DocCopies
DocIndex
DocRunIndex
DocSheetIndex
FountainNumber
ItemNames

LayerIDs
Location
Option
PageNumber
PartVersion
PreflightRule
PreviewType
RibbonName
Run
RunIndex
RunTags
RunPage

SectionIndex
Separation
SetDocIndex
SetIndex
SetRunIndex
SetSheetIndex
SheetIndex
SheetName
Side
SignatureName
TileID
WebName

For details, see Table 3-28, “Contents of the Part element,” on page 79.
Note that Part/@Sorting and Part/@SortAmount are not valid entries
in PartIDKeys, although they are valid Part attributes.

PipePartIDKeys ?
New in JDF 1.2

enumerations Defines the granularity of a dynamic pipe for a partitioned resource. For
instance, a resource may be partitioned by sheet, surface and separation
(resource attribute PartIDKeys = “SheetName Side
Separation”), but pipe requests should only be issued once per surface
(resource link attribute PipePartIDKeys = “SheetName Side”). The
contents of PipePartIDKeys must be a subset of the PartIDKeys
attribute of the resource that is linked by this ResourceLink. If
PipePartIDKeys is not specified, it defaults to PartIDKeys, (i.e. maxi-
mum granularity.) For details on partitioned resources, see “Description of
Partitionable Resources” on page 74.

Resource * element Nested resource elements that contain the appropriate part ID(s). These ele-
ments must be of the same name and type as the root Resource element.
They represent the individual parts or groups of parts.
78 Subsets of Resources

JDF Specification Release 1.2
Part elements match a given partition when all of the attributes of a Part element match the attributes of the refer-
enced Resource. This corresponds to Boolean AND operation. Note that a Part element may specify only lower level
partition keys and thus implicitly select multiple partitions leaves or nodes from a partitioned resource. If multiple
Part elements are defined, the result is a Boolean OR of the multiple parts.

Table 3-28: Contents of the Part element

Name Data Type Description
BinderySignatureN
ame ?
New in JDF 1.2

NMTOKEN Name of the BinderySignature used in a StrippingParams
description.

BlockName ?
New in JDF 1.1

NMTOKEN Identifies a CutBlock from a Cutting process. The value of this
attribute must match the value of the BlockName attribute of a
CutBlock.

BundleItemIndex ?
New in JDF 1.2

IntegerRange-
List

The BundleItemIndex attribute selects a set of BundleItems from a
Component resource.

CellIndex ?
New in JDF 1.2

IntegerRange-
List

Index of SignatureCells in a StrippingParams or
BinderySignature.

Condition ?
New in JDF 1.2

NMTOKEN The Condition attribute was added to JDF 1.2 to allow users of JDF-
enabled systems to define and track different kinds of waste for improved
error reporting and production statistics. Values of Condition may
include:
Good – All correct components.
Waste – General waste.
Overrun – Excess Component(s) that were produced by running the
device after the specified amount has been produces.
xxxGood – Like Good above, but where “xxx” can be the name of any
JDF process, (e.g., “FeedingGood”, “TrimmingGood”, etc.). In the
case of a combined process or process group the name of the last JDF pro-
cess in the process chain is used.
xxxWaste – Like Waste above, but where “xxx” can be the name of any
JDF process, (e.g., “FeedingWaste”, “TrimmingWaste”, etc.). In
the case of a combined process or process group the name of the last JDF
process in the process chain is used.
BindingQualityTestFailed – Failed binding quality test.
Component(s) with this Condition belong to the batch of
Component(s) that did not pass the test.
BindingQualityTestPassed – Passed binding quality test.
Component(s) with this Condition belong to the batch of
Component(s) that passed the test but were not destroyed in the pro-
cess.
BindingQualityTestWaste – Passed binding quality test.
Component(s) with this Condition belong to the batch of
Component(s) that passed the test but were destroyed in the process.
CaliperWaste – Waste by caliper on gathering / collecting.
DoubleFeedWaste – Waste by DoubleFeed on feeders.
IncorrectComponentWaste – Waste by the attemted use of an
incorrect components, (for example on a feeder.)
BadFeedWaste – Waste caused by a bad feed.
ObliqueSheetWaste – Waste by oblique sheets on gathering / collect-
ing chains.
PaperJamWaste – Waste by paper or other media jam.
WhitePaperWaste – White paper waste.
Subsets of Resources 79

Chapter 3 Structure of JDF Nodes and Jobs
DocCopies ? IntegerRange-
List

Identifies a set of document copies to which the partition applies.
DocCopies is a logical reference that may be independent of the
RunList structure and must not be used as an explicit partition key for
RunList resources.

DocIndex ? IntegerRange-
List

The DocIndex attribute selects a set of logical instance documents from a
RunList resource. DocIndex is a logical reference that may be inde-
pendent of the RunList structure and must not be used as an explicit par-
tition key for RunList resources.

DocRunIndex ? IntegerRange-
List

The DocRunIndex attribute selects a set of logical pages from
instance documents of a RunList resource. For example,
DocRunIndex = “0 –1” specifies the first and last page of every
copy of every selected instance document (assuming that additional par-
titioning using DocCopies and/or DocIndex is not also specified).
DocRunIndex is a logical reference that may be independent of the
RunList structure and must not be used as an explicit partition key for
RunList resources. The index always refers to entries of the entire
RunList and must not be modified if only a part of the RunList is
spawned. Specifying DocRunIndex does not modify the index of a
RunList entry and therefore does not reposition pages on a Layout.

DocSheetIndex ? IntegerRange-
List

The DocSheetIndex attribute selects a set of logical sheets from indi-
vidual instance documents. For example DocSheetIndex = “0 –1”
specifies the first and last sheet of every selected copy of every instance
document (assuming that additional partitioning using DocCopies and/
or DocIndex is not also specified). DocSheetIndex is a logical ref-
erence that may be independent of the RunList structure and must not
be used as an explicit partition key for RunList resources. The index
always refers to entries of the entire RunList and must not be modi-
fied if only a part of the RunList is spawned.Specifying
DocSheetIndex does not modify the index of a RunList entry and
therefore does not reposition pages on a Layout.

FountainNumber ? integer Zero-based position index of the fountain. Used to partition fountains
along the axis of a roller; may be used for web printing.

ItemNames ?
New in JDF 1.2

NMTOKENS List of items to select from a Bundle. If not specified, all
BundleItems are processed.

LayerIDs ?
New in JDF 1.1

IntegerRange-
List

The LayerIDs attribute selects a set layers that are defined by LayerID.
If not specified, all layers are processed.

Location ? string Name of the location, (e.g., in MIS). This part key allows to describe
distributed resources. Note that this name does not define the location by
itself. See Section 3.8.2.6, Locations of Physical Resources for details
on specifying locations.

Option ? string Option of an RFQ. Used mainly in Intent resources.
PageNumber ? IntegerRange-

List
Page number in a Component or document, (e.g., FileSpec that is
not described as a RunList).

PartVersion ? string Version identifier, (e.g., the language version of a catalog).
PreflightRule ?
New in JDF 1.2

string Definition of the specific parts of a PreflightReportRulePool/
PRRule used in preflight applications.

Table 3-28: Contents of the Part element

Name Data Type Description
80 Subsets of Resources

JDF Specification Release 1.2
PreviewType ?
New in JDF 1.1
Modified in JDF 1.2

enumeration Type of the preview. Possible values are:
SeparatedThumbNail – Very low resolution separated preview.
Separation – Separated preview in medium resolution.
SeparationRaw – Separated preview in medium resolution.with no
compensation.New in JDF 1.2
ThumbNail – Very low resolution RGB preview.
Viewable – RGB preview in medium resolution.
If both PreviewType and Preview/@PreviewUsage or
PreviewGenerationParams/@PreviewUsage are specified,
they must match.

RibbonName ? string A string that uniquely identifies each ribbon. Multiple ribbons are cre-
ated out of one web after dividing in case of web printing.

Run ? string The Run attribute selects an individual RunList partition from a
RunList resource.

RunIndex ? IntegerRange-
List

The RunIndex attribute selects a set of logical pages from a RunList
resource in a manner that is independent from the internal structure of
the RunList. It contains an array of mixed ranges and individual indi-
ces separated by whitespace. Each range consists of two indices con-
nected with a tilde (~) and no whitespace. For example, RunIndex =
“2~5 8 10 22~-1”. Negative numbers reference pages from the
back of a file in base-1 counting. In other words, -1 is the last page, -2
the second to last, etc. Thus RunIndex = “0~-1” refers to a complete
range of pages, from first to last. RunIndex is a logical reference that
is independent of the RunList structure and must not be used as an
explicit partition key for RunList resources. The index always refers to
entries of the entire RunList and must not be modified if only a part of
the RunList is spawned. Specifying RunIndex does not modify the
index of a RunList entry and therefore does not reposition pages on a
Layout.

RunTags ?
New in JDF 1.1

NMTOKENS List of names in a named RunList. Used to partition resources that are
linked from processes that also have a RunList as input when the
sequence of the RunList is undefined. The partition is selected if the
explicit or implied (e.g., from the PDL) value of RunTag of the
RunList matches any of the entries in RunTags.

RunPage ?
New in JDF 1.1
Clarified in JDF 1.2

integer Zero-based page number. Used when a document/file-based RunList
is broken down into a page based RunList. For instance, a 2-page doc-
ument RunList:
<RunList URL=”doc.pdf”(…)/>
is split into:
<RunList PartIDKeys=”RunPage” (…)>
 <RunList URL="doc_page0.pdf" RunPage="0" (…)/>
 <RunList URL="doc_page1.pdf" RunPage="1" (…)/>
</RunList>

SectionIndex ?
New in JDF 1.2

IntegerRange-
List

List of sections in a StrippingParams.

Table 3-28: Contents of the Part element

Name Data Type Description
Subsets of Resources 81

Chapter 3 Structure of JDF Nodes and Jobs
Separation ? string Identifies the separation name. Possible values include:
Composite – Non-separated resource.
Separated – The resource is separated, but the separation definition
is handled internally by the resource, such as a PDF file that contains
SeparationInfo dictionaries.
Cyan – Process color.
Magenta – Process color.
Yellow – Process color.
Black – Process color.
Red – Additional process color.
Green – Additional process color.
Blue – Additional process color.
Orange – Additional process color.
Spot – Generic spot color. Used when the exact nature of the spot color
is unknown.
Varnish – Varnish.
Other values may be any separation name defined in the Name
attribute of a Color element in the ColorPool.
When Separation is applied to a ColorantControlLink, it defines
an implicit partition that selects a subset of separations for the process
that is described by the ColorantControl. For details, see
“ColorantControl” on page 303.

SetDocIndex ?
New in JDF 1.2

IntegerRange-
List

The SetDocIndex attribute selects a set of logical instance documents
from instance document sets of a RunList resource. For example,
SetDocIndex = “0 -1” specifies the first and last page of every
copy of every selected instance document set. SetDocIndex is a logi-
cal reference that may be independent of the RunList structure and
must not be used as an explicit partition key for RunList resources.
The index always refers to entries of the entire RunList and must not
be modified if only a part of the RunList is spawned. Specifying
SetDocIndex does not modify the index of a RunList entry and
therefore does not reposition pages on a Layout.

SetIndex ?
New in JDF 1.1

IntegerRange-
List

The SetIndex attribute selects a set of logical instance document sets
from a RunList resource. SetIndex is a logical reference that may
be independent of the RunList structure and must not be used as an
explicit partition key for RunList resources. The index always refers
to entries of the entire RunList and must not be modified if only a part
of the RunList is spawned. Specifying SetIndex does not modify
the index of a RunList entry and therefore does not reposition pages
on a Layout.

SetRunIndex ?
New in JDF 1.2

IntegerRange-
List

The SetRunIndex attribute selects a set of logical pages from in-
stance document sets of a RunList resource. For example,
SetRunIndex = “0 -1” specifies the first and last page of every
copy of every selected instance document set. SetRunIndex is a logi-
cal reference that may be independent of the RunList structure and
must not be used as an explicit partition key for RunList resources.
The index always refers to entries of the entire RunList and must not
be modified if only a part of the RunList is spawned. Specifying
SetRunIndex does not modify the index of a RunList entry and
therefore does not reposition pages on a Layout.

Table 3-28: Contents of the Part element

Name Data Type Description
82 Subsets of Resources

JDF Specification Release 1.2
SetSheetIndex ?
New in JDF 1.2

IntegerRange-
List

The SetSheetIndex attribute selects a set of logical sheets from indi-
vidual sets of instance documents. For example SetSheetIndex = “0
–1” specifies the first and last sheet of every selected copy of every set.
SetSheetIndex is a logical reference that may be independent of the
RunList structure and must not be used as an explicit partition key for
RunList resources. The index always refers to entries of the entire
RunList and must not be modified if only a part of the RunList is
spawned. Specifying SetSheetIndex does not modify the index of a
RunList entry and therefore does not reposition pages on a Layout.

SheetIndex ? IntegerRange-
List

The SheetIndex attribute selects a set of logical sheets from a
RunList resource. In 1-up simplex printing, it is identical to
RunIndex. SheetIndex is a logical reference that is independent of
the RunList structure and must not be used as an explicit partition key
for RunList resources.

SheetName ? string A string that uniquely identifies each sheet. The value of this attribute
must match the value of the Name attribute of a Sheet. (See “Sheet”
on page 469.)

Side ? enumeration Denotes the side of the sheet. Possible values are:
Front
Back
If Side is specified, the Part element refers to one surface of the sheet.
If it is not specified, it refers to both sides. In case of web printing,
Front is a synonym for the upper side and Back for the down side of
the web.

SignatureName ? string A string that uniquely identifies the signature within the partitionable
resource. The value of this attribute must match the value of the Name
attribute of a Signature. (See Layout/Signature/@Name in
“Layout” on page 405.

Sorting ? IntegerRange-
List

Mapping from the implied partitionable resource order to a process
order. The indices refer to the elements of the complete partitionable
resource, not to the index in the selection of parts defined by the Part
element.a If not specified the part order is the same as the sorting order.
Sorting must not be used as a partition key.

SortAmount ? boolean If a sorted resource has an Amount attribute and SortAmount = true,
each resource must be processed completely. If SortAmount = false
(the default), each Part element must be processed the number of times
specified in the Amount attribute before starting the next Part.
SortAmount must not be used as a partition key.

TileID ? XYPair XYPair of integer values that identifies the tile. Tiles are identified by
their X and Y indexes. Values are zero-based and expressed in the PS
coordinate system. So “0 0” is the lower left tile and “1 0” is the tile
next to it on the right. Tile resources are described in detail in the
Section 7.2.161, Tile.
May also be used to identify multiple plates per cylinder. Then the x-
index corresponds to a zero-based position index along the axis of a
roller and the y-value to a zero-based position index along the circum-
ference of a roller.

WebName ? string A string that uniquely identifies each web.

a. Note that Sorting and SortAmount are semantically different from the other attributes in this table as
they define the ordering of parts, whereas the other attributes define the selection of parts.

Table 3-28: Contents of the Part element

Name Data Type Description
Subsets of Resources 83

Chapter 3 Structure of JDF Nodes and Jobs
3.8.2.5 Options in Intent Resources
JDF defines Option as a part key in order to specify multiple options, (e.g., for multiple quotes in a non-redundant
manner). A ResourceLink that links to a resource with an Option partition but has no Part element to choose the
Option defaults to the root resource.

3.8.2.6 Locations of Physical Resources
Unlike other kinds of resources, physical resources may be stored at multiple, distributed locations. This is specified
by including a Location element in the resource element. A Location partition key is provided to define multiple
locations of one resource. The partition key carries no semantic meaning and does not by itself define the name of a
location. The following example describes a set of plates that are distributed over two locations. (Note: See “Input
Tray and Output Bin Names” on page 633 for additional detail on locating physical resources.)

 <ResourcePool>
 <ExposedMedia Class="Handling" ID="L1" PartIDKeys="Location" Status="Available">
 <ExposedMedia Amount="42" Location="dd1">
 <Location LocID="PP_01234" LocationName="Desk Drawer 1">
 <Address/>
 </Location>
 </ExposedMedia>
 <ExposedMedia Amount="100" Location="dd2">
 <Location LocID="PP_01235" LocationName="Desk Drawer 2">
 <Address/>
 </Location>
 </ExposedMedia>
 <Media/>
 </ExposedMedia>
 </ResourcePool>

 <ResourceLinkPool>
 <ExposedMediaLink Amount="50" Usage="Input" rRef="L1">
 <Part Location="dd2"/>
 <!-- Note that @Location may but is not required to match Location/@LocationName -->
 </ExposedMediaLink>
 </ResourceLinkPool>

The following example describes two different Media in the top and bottom tray of a LayoutPreparation process. The
Media is selected for the cover and inside pages respectively.
 <Media Class="Consumable" ID="TopMedia" Status="Available">
 <Location LocationName="Top"/>
 </Media>
 <Media Class="Consumable" ID="BottomMedia" Status="Available">
 <Location LocationName="Bottom"/>
 </Media>
 <LayoutPreparationParams Class="Parameter" ID="L1" PartIDKeys="RunIndex"
 Sides="TwoSidedFlipY" Status="Available">
 <!-- Partition that defines the first and last page of the document -->
 <LayoutPreparationParams RunIndex="0 1 -2 -1">
 <MediaRef rRef="TopMedia"/>
 </LayoutPreparationParams>
 <!-- Partition that defines the inside pages of the document -->
 <LayoutPreparationParams RunIndex="2~-3">
 <MediaRef rRef="BottomMedia"/>
 </LayoutPreparationParams>
 </LayoutPreparationParams>
84 Subsets of Resources

JDF Specification Release 1.2
3.8.3 Linking to Subsets of Resources
An agent can link to a subset of a resource by including a set of Part elements in a ResourceLink element in order
to define a specific subset of a resource. For details of the Part element, please refer to Table 3-28, “Contents of the
Part element,” on page 79.

Partitionable hierarchies define an implied ordering of the individual parts. In the example in Section 3.8.2,
Description of Partitionable Resources, the first element has a ProductID = S1FCPlateJ42 and the last has a
ProductId = S2FKPlateJ42. If process ordering of a partitionable resource is important, the Part element of the
ResourceLink must specify a Sorting attribute. If Sorting is not specified, process ordering is arbitrary. If
Sorting is specified multiple times, the resolution of the sorting must be unambiguous.

The Sorting attribute maps the implied part ordering to a specified process ordering in a 0-based list. The first
entry in Sorting defines the first entry to be processed. The following example, using a ResourceLink element,
describes how the plates described in the previous example could be ordered by separation for the first sheet followed
by the complete second sheet, in reverse order (back to front). Each set of two plates, as specified in the Amount
attribute of the resource, would be processed together.
 <ExposedMediaLink Usage="Input" rRef="E1">
 <Part SortAmount="false" Sorting="0 4 1 5 2 6 3 7 -1~8"/>
 </ExposedMediaLink>

A partitionable resource may also be split into individual resources by an agent. In this case, one resource must be
created for each individual part or set of parts. For example, a resource that describes a set of films that are also sepa-
rated may be split into a set of resources that each describe all separations of a sheet.

3.8.3.1 Handling Amount in a ResourceLink to a Partitioned Resource
The Amount specified in a ResourceLink to a physical resource specifies the sum of individual resource parti-
tions. Individual amounts are specified in the PartAmount elements of the AmountPool. The following example
shows the ResourceLink that refers to the previous example for a total of five plates.
 <ExposedMediaLink Usage="Input" rRef="E1">
 <Part Separation="Cyan" SheetName="S1"/>
 <Part Separation="Magenta" SheetName="S1"/>
 <AmountPool>
 <PartAmount>
 <Part Separation="Cyan" SheetName="S1" Side="Front"/>
 </PartAmount>
 <PartAmount>
 <Part Separation="Cyan" SheetName="S1" Side="Back"/>
 </PartAmount>
 <PartAmount>
 <Part Separation="Magenta" SheetName="S1" Side="Front"/>
 </PartAmount>
 <PartAmount Amount="2">
 <Part Separation="Magenta" SheetName="S1" Side="Back"/>
 </PartAmount>
 </AmountPool>
 </ExposedMediaLink>

3.8.3.2 Implicit and Explicit PartUsage in Partitioned Resources
New in JDF 1.2
The PartUsage attribute defines how over-specialized ResourceLinks are resolved. If PartUsage =
“Explicit”, ResourceLinks that do not point to an explicitly defined partition of a resource are an error. If
PartUsage = “Implicit”, ResourceLinks that do not point to an explicitly defined partition of a resource
refer to the closest matching resource partition.
 <ResourceLinkPool>
 <ExposedMediaLink Usage="Input" rRef="XM_ID">
 <Part Separation="z" SheetName="x" Side="Front"/>
 </ExposedMediaLink>
Subsets of Resources 85

Chapter 3 Structure of JDF Nodes and Jobs
 </ResourceLinkPool>
 <ResourcePool>
 <ExposedMedia Brand="Gooey" Class="Handling" ID="XM_ID" PartIDKeys=" SheetName Side
Separation" PartUsage="Implicit" ProductID="Root" Status="Available">
 <Media Dimension="500 600" MediaType="Plate"/>
 <ExposedMedia ProductID="S1" SheetName="S1">
 <ExposedMedia ProductID="S1F" Side="Front">
 <ExposedMedia ProductID="S1FC" Separation="Cyan"/>
 <ExposedMedia ProductID="S1FM" Separation="Magenta"/>
 <ExposedMedia ProductID="S1FY" Separation="Yellow"/>
 <ExposedMedia ProductID="S1FK" Separation="Black"/>
 </ExposedMedia>
 <ExposedMedia ProductID="S1B" Side="Back">
 <ExposedMedia ProductID="S1BC" Separation="Cyan"/>
 <ExposedMedia ProductID="S1BM" Separation="Magenta"/>
 <ExposedMedia ProductID="S1BY" Separation="Yellow"/>
 <ExposedMedia ProductID="S1BK" Separation="Black"/>
 </ExposedMedia>
 </ExposedMedia>
 <ExposedMedia ProductID="S2F" SheetName="S2">
 <ExposedMedia ProductID="S2F" Side="Front">
 <ExposedMedia ProductID="S2FC" Separation="Cyan"/>
 <ExposedMedia ProductID="S2FM" Separation="Magenta"/>
 <ExposedMedia ProductID="S2FY" Separation="Yellow"/>
 <ExposedMedia ProductID="S2FK" Separation="Black"/>
 </ExposedMedia>
 </ExposedMedia>
 </ExposedMedia>
 </ResourcePool>

The following table shows the ProductID of the Resource Partition that is selected for various values of
SheetName, Side, and Separation for PartUsage = Implicit and Explicit respectively.

3.8.3.3 Referencing Partitioned Resources from Nodes That Allow Multiple
ResourceLinks

Some processes (e.g., Collecting, Gathering) allow multiple input resources of the same type. These multiple
input resources may be represented by multiple individual resources or by partitioned resources or by a mixture of
both. If ordering is significant, the order of the leaves in a partitioned resource defines said ordering. The following
examples of gathering three input sheets are equivalent.

Table 3-29: PartUsage example uses

SheetName Side Separation Implicit Explicit
— — — Root Root
S1 — — S1 S1
S2 — — S2 S2

S3 — — Root —
S2 Back Cyan S2 —
S1 Back Cyan S1BC S1BC
S1 Back Orange S1B —
S1 — Cyan S1BC, S1FC S1BC, S1FC
86 Subsets of Resources

JDF Specification Release 1.2
Explicit reference of ordered partitioned resources
<JDF xmlns="http://www.CIP4.org/JDFSchema_1_1" ID="Link0037" Status="Waiting"
Type="Gathering" Version="1.2">
 <ResourcePool>
 <GatheringParams Class="Parameter" ID="Gath01" Locked="false" Status="Available"/>
 <Component Class="Quantity" ComponentType="Sheet" DescriptiveName="printed insert
sheets" ID="Sheets01" PartIDKeys="SheetName" Status="Available">
 <Component SheetName="Sheet1"/>
 <Component SheetName="Sheet2"/>
 <Component SheetName="Sheet3"/>
 </Component>
 </ResourcePool>
 <ResourceLinkPool>
 <GatheringParamsLink Usage="Input" rRef="Gath01"/>
 <!--three ComponentLink explicitly reference individual parts -->
 <ComponentLink Usage="Input" rRef="Sheets01">
 <Part SheetName="Sheet1"/>
 </ComponentLink>
 <ComponentLink Usage="Input" rRef="Sheets01">
 <Part SheetName="Sheet2"/>
 </ComponentLink>
 <ComponentLink Usage="Input" rRef="Sheets01">
 <Part SheetName="Sheet3"/>
 </ComponentLink>
 </ResourceLinkPool>
</JDF>

Implicit reference of ordered partitioned resources
<JDF xmlns="http://www.CIP4.org/JDFSchema_1_1" ID="Link0037" Status="Waiting"
Type="Gathering" Version="1.2">
 <ResourcePool>
 <GatheringParams Class="Parameter" ID="Gath01" Locked="false" Status="Available"/>
 <Component Class="Quantity" ComponentType="Sheet" DescriptiveName="printed insert
sheets" ID="Sheets01" PartIDKeys="SheetName" Status="Available">
 <Component SheetName="Sheet1"/>
 <Component SheetName="Sheet2"/>
 <Component SheetName="Sheet3"/>
 </Component>
 </ResourcePool>
 <ResourceLinkPool>
 <GatheringParamsLink Usage="Input" rRef="Gath01"/>
 <!--the ComponentLink implicitly references all three parts -->
 <ComponentLink Usage="Input" rRef="Sheets01"/>
 </ResourceLinkPool>
</JDF>

3.8.4 Splitting and Combining Resources
Depending on the circumstances, it may be appropriate either to split a resource into multiple new nodes or to specify
multiple locations or parts for an individual resource. There are four possible methods for splitting and combining
resources, each of which is illustrated in Figure 3.9, below. Both Case A and Case B in Figure 3.9 represent workflows
that use the Amount attribute of their resource links to share resources. This method is practical when one controller
controls all aspects of resource consumption or production. In Case A, the resource amount is split between subsequent
processes. In Case B, individual processes produce amounts that are then combined into a unified resource that is, in
turn, used by a single process. In both cases, a single, shared resource is employed. To enable independent parallel pro-
cessing by multiple controllers, however, independent resources are required. To create independent resources from one
resource, the Split process is used, as shown in Case C (for further details, see Section 6.2.10, Split). This process
allows multiple processes to be spawned off, after which multiple processes can consume the same resource in parallel
and may therefore run in parallel. Case D demonstrates the reverse situation, which occurs if resources have been pro-
duced by multiple processes and are then consumed, as a unified entity, by a single subsequent process. To accomplish
this, the Combine process combines multiple resources to create the single resource.
Subsets of Resources 87

Chapter 3 Structure of JDF Nodes and Jobs
3.9 AuditPool
Audit elements contain the post-facto recorded results of a process such
as the execution of a JDF node or modification of the JDF itself. Audit
elements become static after a process has been finished. They cannot
ever be modified after the process has been aborted or completed. There-
fore, if Audit elements link to resources, those resources should be
locked in order to inhibit accidental modification of audited information,
which is why JDF includes a locking mechanism for resources. Audit
elements record any event related to the following situations:

• The creation of a JDF node by a Created element.

• Spawning and merging, including resource copying by spawned and merged elements.

• Errors such as unnecessary ResourceLink elements, wrongly linked resources, missing resources, or missing
links, which may be detected by agents during a test run or by a Notification element.

• Actual data about the production and resource consumption by a ResourceAudit element.

Figure 3.9: Splitting and combining physical resources

Audit Pools

Audit information is the Job’s history and
can support your daily, quality control, and
troubleshooting management reporting
needs.
88 AuditPool

JDF Specification Release 1.2
• Any process phase times. Examples include setting up a device, maintenance, and washing, as well as down-
times as a result of failure, breaks, or pauses. Changes of implementation resource usage, such as a change of
operators by a PhaseTime element, would also constitute an example of a phase time.

• Actual process scheduling data. For example, the process start and end times, as well as the final process state, as
determined by a ProcessRun element.

• Any modification of a JDF node not covered by the preceding items, as recorded by a Modified or Deleted
element.

Audit information may be used by MIS for operations such as evaluation or invoicing. Figure 3.10 depicts the struc-
ture of the AuditPool and Audit element types derived from the abstract audit type. Audit entries are ordered chro-
nologically, with the last entry in the AuditPool representing the newest. A ProcessRun element containing the
scheduling data finalizes each process run. All subsequent entries belong to the next run. The following table defines
the contents of the AuditPool element.

Table 3-30: Contents of the AuditPool element

Name Data Type Description
rRefs ?
Deprecated in
JDF 1.2

IDREFS List of all resources that are referenced from within the AuditPool. In JDF 1.2 and
beyond, it is up to the implementation to maintain references.

Audit * element Chronologically ordered list of Audit elements. The Audit elements are abstract
and serve as placeholders for any audit. Audit elements are described in the sections
that follow.
AuditPool 89

Chapter 3 Structure of JDF Nodes and Jobs
Figure 3.10: Structure of Audit element types derived from the abstract Audit type
90 AuditPool

JDF Specification Release 1.2
3.9.1 Audit Elements
Modified in JDF 1.2
All Audit elements inherit the content from the abstract Audit data type, described in the following table.

Listed in the following sections are the elements derived from the abstract Audit type. Following the description of
each element is a table outlining the attributes associated with that element.

3.9.1.1 ProcessRun
This element serves two related functions. Its first is to summarize one complete execution run of a node. It contains
attributes that record the date and time of the start, the end time, the final process state when the run is finished and,
optionally, the process duration of the process run. These attributes are described in Table 3-32.

Table 3-31: Contents of the abstract Audit type

Name Data Type Description
AgentName ?
New in JDF 1.2

string The name of the agent application that added the audit element to the audit
pool (and was responsible for the creation or modification). Both the com-
pany name and the product name may appear, and should be consistent
between versions of the application.

AgentVersion ?
New in JDF 1.2

string The version of the agent application that added the audit element to the audit
pool (and was responsible for the creation or modification). The format of the
version string may vary from one application to another, but should be consis-
tent for an individual application.

Author ?
Modified in JDF 1.2

string Text that identifies the person who made the entry. Prior to JDF 1.2, Author
also contained information that is now encoded in AgentName and
AgentVersion.

ID ?
New in JDF 1.2

ID ID of the audit. ID must be specified to subsequently create correction Audit
elements.

refID ?
New in JDF 1.2

IDREF Reference to a previous Audit that this Audit corrects. The referenced Audit
must reside in the same AuditPool.

SpawnID ?
New in JDF 1.1

NMTO-
KEN

Text that identifies the spawned processing step when the entry was gener-
ated. This is a copy of the SpawnID attribute of the root JDF node of the
process that generates the Audit at the time the Audit is generated.

TimeStamp dateTime In case of the audits Created, Modified, Spawned, Merged, and
Notification, this attribute records the date and time when the related event
occurred. In case of the audits PhaseTime, ProcessRun, and
ResourceAudit, the attribute describes the time when the entry was
appended to the audit pool.

Table 3-32: Contents of the ProcessRun element

Name Data Type Description
Duration ? duration Time span of the effective process runtime without intentional or unintentional

breaks. That time span is the sum of all process phases when the Status is
InProgress, Setup, or Cleanup.

End dateTime Date and time at which the process ended.
EndStatus enumera-

tion
The Status of the process at the end of the run. For a description of process states,
see Table 3-4, “Contents of a JDF node,” on page 38. Possible values are:
Aborted
Completed
FailedTestRun
Ready
Stopped. The execution of the node is stopped and may commence at a later time,
(e.g., on another device).

Start dateTime Date and time at which the process started.
AuditPool 91

Chapter 3 Structure of JDF Nodes and Jobs
The second function of a ProcessRun element is to delimit a group of audits for each individual process run. Every
group of audits terminates with a ProcessRun element, which contains the information described above. If a pro-
cess must be repeated (e.g., as a result of a late change in the order), all audits belonging to the new run will be
appended after the last ProcessRun element that terminates the audits of the previous run. The number of
ProcessRun elements is, therefore, always equivalent to the number of process runs. If a node describes partitioned
resources, one ProcessRun may be specified for each individual part.

3.9.1.2 Notification
This element contains information about individual events that occurred during processing. For a detailed discussion
of event properties, see Section 4.6, Error Handling.

Part *
New in JDF
1.1

element Describes which parts of a process this ProcessRun belongs to. If Part is not spec-
ified for a ProcessRun, it refers to all parts. For example, imagine a print job that
should produce three different sheets. All sheets are described by one partitioned
resource. The Part elements define, unambiguously, the processing of the sheet to
which the ProcessRun refers.

Table 3-33: Contents of the Notification element

Name Data Type Description
Class enumera-

tion
Class of the notification. Possible values, in order of severity from lowest to
highest, are:
Event – Indicates that a pure event due to any activity has occurred, (e.g.,
machine events, operator activities, etc.). This class is used for the transfer
of conventional event messages. In case of Class = “Event”, further
event information should be provided by the Type attribute and
NotificationDetails element.
Information – Any information about a process which cannot be
expressed by the other classes. No user interaction is required.
Warning – Indicates that a minor error has occurred, and an automatic fix
was applied. Execution continues.
Error – Indicates that an error has occurred that requires user interaction.
Execution cannot continue.
Fatal – Indicates that a fatal error led to abortion of the process.

Type ? NMTO-
KEN

Identifies the type of notification. Also defines the name of the abstract
NotificationDetails element.a A list of predefined Notification types is
compiled in “NotificationDetails” on page 621.

a. Type allows parsers that do not have access to the schema to find the instance of NotificationDetails.

Comment * telem The Notification element may contain Comment elements with a verbose,
human-readable description of the event. If the value of the Class attribute
is one of Information, Warning, Error, or Fatal, it should provide
at least one Comment element. In case of Class = “Event”,
Comment elements are optional.

CostCenter ? element The cost center to which this event should be charged.
Employee * refelement The employee associated with this event.
NotificationDetails
?

element Abstract element which is a placeholder for additional structured informa-
tion. It provides additional information beyond the Class and Type
attribute and beyond the Comment element. For a list of supported
NotificationDetails elements, see “NotificationDetails” on page 621.

Part *
New in JDF 1.1

element Describes which parts of a process this Notification belongs to. If Part is
not specified for a Notification, it refers to all parts. For example, imagine
a print job that should produce three different sheets. All sheets are
described by one partitioned resource. The Part elements define, unambigu-
ously, the sheet to which the audit refers.

Table 3-32: Contents of the ProcessRun element

Name Data Type Description
92 AuditPool

JDF Specification Release 1.2
3.9.1.2.1 NotificationDetails
The abstract NotificationDetails element is a placeholder only with no additional attributes. For a list of supported
NotificationDetails elements, see “NotificationDetails” on page 621.

3.9.1.3 PhaseTime
This element contains audit information about the start and end times of any process states and substates, denoted as
phases. Phases may reflect any arbitrary subdivisions of a process, such as maintenance, washing, plate changing,
failures, and breaks.

PhaseTime elements may also be used to log the actual time spans when implementation resources are used by
a process. For example, the temporary necessity of a fork lift can be logged if a PhaseTime element is added that
contains a link to the fork lift device resource and specifies the actual start and end time of the usage of that fork lift.

The times specified in the PhaseTime elements should not overlap with each other and should cover the com-
plete time range defined in the ProcessRun element that identifies the end of the run.

Table 3-34: Contents of the PhaseTime element

Name Data Type Description
End dateTime Date and time of the end of the phase.
Start dateTime Date and time of the beginning of the phase.
Status enumeration Status of the phase. Possible values of JDF node states are:

TestRunInProgress
Setup
InProgress
Cleanup
Spawned
Stopped
The states listed above are a subset of the possible states of a JDF node. For all
possible states of a JDF node see Table 3-4, “Contents of a JDF node,” on
page 38. The remaining set of states, i.e., Ready, FailedTestRun, Aborted
and Completed, are end states and are specified in ProcessRun/
@EndStatus.

StatusDetails ? string Description of the status phase that provides details beyond the enumerative val-
ues given by the Status attribute. For a list of supported values, see
“StatusDetails Supported Strings” on page 615.

Device * refelement Links to Device resources that are working during this phase.
Employee * refelement Links to Employee resources that are working during this phase.
MISDetails ?
New in JDF 1.2

refelement Definition how the costs for the execution of this PhaseTime are to be charged.

ModulePhase * element Additional phase information of individual device modules, such as print units.
Part * element Describes which parts of a job is currently being logged. If a Part is not specified

for a node that modifies partitioned resources, PhaseTime refers to all parts.
For example, imagine a print job that should produce three different sheets. All
sheets are described by one partitioned resource. In order to separate the different
print phases for each sheet, the Part elements define, unambiguously, the sheet to
which the audit refers.

ResourceLink *
New in JDF 1.1

element These resource links specify the actual consumption/usage or production of
resources during this production phase. All attributes apply to production and
consumption within this PhaseTime only, thusResourceLink/
@ActualAmount specifies the actual amount produced or consumed.
AuditPool 93

Chapter 3 Structure of JDF Nodes and Jobs
It is possible to monitor the states of individual modules of a complex device, such as a printer with multiple print
units, by defining ModulePhase elements. One PhaseTime element may contain multiple ModulePhase ele-
ments and can, therefore, record the status of multiple units in a device. In contrast to PhaseTime audit elements,
ModulePhase elements are allowed to overlap in time with one another. ModulePhase elements are defined in
the following table.

3.9.1.4 ResourceAudit
The ResourceAudit element describes the usage of resources during execution of a node or the modification of the
intended usage of a resource, (i.e., the modification of a resource link.) It logs consumption and production amounts
of any quantifiable resources, accumulated over one process run or one part of a process run. It contains one or two
abstract ResourceLink elements. The first is required and specifies the actual consumption/usage or production of
the resource. The second ResourceLink is optional and used to store information about the original resource link,
which also refers to the original resource. If the original resource does not need to be saved, a Boolean
ContentsModified attribute in the ResourceAudit should be used to indicate that a change has been made.

Table 3-35: Contents of the ModulePhase element

Name Data Type Description
DeviceID string Name of the device. This must be the DeviceID attribute of one of the

Device elements specified in the PhaseTime audit.
DeviceStatus enumeration Status of the device module. Possible values are:

Unknown. The module status is unknown.
Idle – The module is not used, (e.g., a color print module that is inactive dur-
ing a black-and-white print).
Down – The module cannot be used. It may be broken, switched off etc.
Setup – The module is currently being set up.
Running – The module is currently executing.
Cleanup – The module is currently being cleaned.
Stopped – The module has been stopped, but running may be resumed later.
This status may indicate any kind of break, including a pause, maintenance, or a
breakdown, as long as running can be easy resumed.
These states are analog to the device states of Table 5-61, “Contents of the
ModuleStatus element,” on page 167.

End dateTime Date and time of the end of the module phase.
ModuleIndex
Modified in JDF
1.2

IntegerRange-
List

0-based indices of the module or modules. The list is based on all modules of
the Device. If multiple module types are available on one device, each must be
unique in the scope of the device.

ModuleType NMTOKEN Module description. The allowed values depend on the type of device that is
described. The predefined values are listed in “ModuleType Supported Strings”
on page 617.

Start dateTime Date and time of the beginning of the module phase.
StatusDetails
?

string Description of the module status phase that provides details beyond the enumer-
ative values given by the DeviceStatus attribute. For a list of supported val-
ues, see “StatusDetails Supported Strings” on page 615.

Employee * refelement References to Employee resources that are working during this module
phase on this module. (The module is specified by the attributes
ModuleIndex and ModuleType).
94 AuditPool

JDF Specification Release 1.2
For details on ResourceLink elements and ResourceLink subclasses, see Section 3.7, Resource Links. The parti-
tioning of resources using Part elements is defined in Section 3.8.2, Description of Partitionable Resources.
3.9.1.4.1 Logging Machine Data by Using the ResourceAudit
If a resource is modified during processing, any nodes that also reference the resource may also be affected. The following
logging procedure is recommended in order to track the resource modification and to insure consistency of the job.

1 Create a copy of the original resource with a new ID.
2 Modify the original resource to reflect the changes.
3 Insert a ResourceAudit element that references the modified original resource with the first

ResourceLink and the copied resource with the second ResourceLink attribute.
The following example describes the logging of a modification of the media weight and amount. The JDF document
before modification requests 400 copies of 80 gram media.
<JDF xmlns="http://www.CIP4.org/JDFSchema_1_1" ID="J1" Status="Waiting"
Type="ConventionalPrinting" Version="1.2">
 <ResourceLinkPool>
 <MediaLink Amount="400" Usage="Input" rRef="RLink"/>
 </ResourceLinkPool>
 <ResourcePool>
 <Media Amount="400" ID="RLink" Weight="80"/>
 </ResourcePool>
 </JDF>
The JDF after modification specifies that 421 copies of 90-gram media have been consumed.
 <JDF xmlns="http://www.CIP4.org/JDFSchema_1_1" ID="J1" Status="Waiting"
 Type="ConventionalPrinting" Version="1.2">
 <ResourceLinkPool>
 <!-- Note that ActualAmount has been added to the ResourceLink -->
 <MediaLink ActualAmount="421" Amount="400" Usage="Input" rRef="RLink"/>
 </ResourceLinkPool>
 <ResourcePool>
 <Media Amount="400" ID="RPrev" Weight="80"/>
 <!--Copy of the original resource-->
 <Media Amount="421" ID="RLink" Weight="90"/>
 <!--modified resource-->
 </ResourcePool>
 <AuditPool>
 <ResourceAudit>
 <MediaLink ActualAmount="421" Amount="400" Usage="Input" rRef="RLink"/>
 <MediaLink Amount="400" Usage="Input" rRef="RPrev"/>
 </ResourceAudit>
 </AuditPool>
 </JDF>

Table 3-36: Contents of the ResourceAudit element

Name Data Type Description
ContentsModified
?

boolean Specifies that a modification has occurred but that the original resource has
been deleted.

Reason =
“ProcessResult”
New in JDF 1.1

enumeration Reason for the modification. One of:
OperatorInput – Human update that corrects inconsistencies from auto-
mated data collection.
PlanChange – The resource was modified due to a change of plan before
actual processing.
ProcessResult – The actual consumption.

ResourceLink element The first resource link specifies the actual consumption/usage or production
of a resource.

ResourceLink ? element The second optional resource link logs the modification of a resource link
and the modification of the resource it refers to. It holds the planned
resource link which also refers to the planned resource. The planned and
actual resource may be the same.
AuditPool 95

Chapter 3 Structure of JDF Nodes and Jobs
3.9.1.4.2 Logging Changes in Product Descriptions by Using the ResourceAudit
ResourceAudit elements may also be used to store the original intent resources of a product specification in a
change order or request for requote. The mechanism is the same as above. The following example shows the structure
of a MediaIntent with Option partitions, where a late change of options from Option1 (80 gram paper) to Option2 (90
gram paper) is requested.
 <JDF xmlns="http://www.CIP4.org/JDFSchema_1_1" ID="J1" Status="Waiting"
 Type="Product" Version="1.2">
 <ResourceLinkPool>
 <MediaIntentLink Usage="Input" rRef="id">
 <Part Option="Option2"/>
 </MediaIntentLink>
 </ResourceLinkPool>
 <ResourcePool>
 <MediaIntent PartIDKeys="Option">
 <!-- the common MediaIntent resource details -->
 <MediaIntent Option="Option1">
 <Weight Preferred="80"/>
 </MediaIntent>
 <MediaIntent Option="Option2">
 <Weight Preferred="90"/>
 </MediaIntent>
 </MediaIntent>
 </ResourcePool>
 <AuditPool>
 <ResourceAudit>
 <!-- the actual MediaIntent resource link -->
 <MediaIntentLink Usage="Input" rRef="id">
 <Part Option="Option2"/>
 </MediaIntentLink>
 <!-- the original MediaIntent resource link -->
 <MediaIntentLink Usage="Input" rRef="id">
 <Part Option="Option1"/>
 </MediaIntentLink>
 </ResourceAudit>
 </AuditPool>
 </JDF>

3.9.1.5 Created
This element allows the creation of a JDF node or resource to be logged. If the element refers to a JDF node, it can be
located in the AuditPool element of the node that has been created or in any ancestor node. If the element refers to a
resource, it must be located in the node where the resource resides so that the spawning and merging mechanism can
work effectively.

Table 3-37: Contents of the Created element

Name Data Type Description
ref ?
Deprecated in JDF 1.2

IDREF Represents the ID of the created element. Defaults to the ID of the
local JDF node. Replaced with XPath in JDF 1.2 and beyond.

TemplateID ?
New in JDF 1.2

string Defines the template JDF that was used as the template to create
the node.

TemplateVersion ?
New in JDF 1.2

string Defines the version of template JDF that was used as the template
to create the node.

XPath ?
New in JDF 1.2

XPath Location of the created elements or attributes relative to the parent
JDF node of the Created audit element.
96 AuditPool

JDF Specification Release 1.2
3.9.1.6 Deleted
New in JDF 1.2
This element allows any deletions of a JDF node or element to be logged. If the corresponding Created Audit was
not deleted (e.g. in the AuditPool of a deleted JDF node), the Deleted element should reside in the same AuditPool
as the corresponding Created Audit, otherwise it should reside in an ancestor of the deleted element.

3.9.1.7 Modified
This element allows any modifications affecting a JDF node (e.g., changes made to the NodeInfo element or
CustomerInfo element) to be logged. Changes that can be logged by other audit element types (e.g., resource
changes) must not use this common log entry. The modification can be described textually by adding a generic
Comment element to the Modified element. The Modified element must reside in the same AuditPool as the cor-
responding Created element.

3.9.1.8 Spawned
This element allows a job that has been spawned to be logged in the AuditPool of the parent node of the spawned
job-part or in the AuditPool of the node that has been spawned in case of spawning of individual partitions. For
details about spawning and merging, see Section 4.4, Spawning and Merging.

Table 3-38: Contents of the Deleted Element

Name Data Type Description
XPath ? XPath Location of the deleted elements or attributes relative to the parent

JDF node of the Deleted audit element.

Table 3-39: Contents of the Modified element

Name Data Type Description
jRef ?
Deprecated in
JDF 1.2

IDREF The ID of the modified node. The modified element resides in the modified node.
Defaults to the ID of the local JDF node. Replaced with XPath in JDF 1.2 and
beyond.

XPath ?
New in JDF 1.2

XPath Location of the modified elements or attributes relative to the parent JDF node of
the Modified audit element.

Table 3-40: Contents of the Spawned element

Name Data Type Description
Independent =
”false” ?

boolean Declares that independent jobs that have previously been merged into a big
job are spawned. If it is set to true, the attributes jRefDestination,
rRefsROCopied and rRefsRWCopied have no meaning and should be
omitted.

jRef IDREF ID of the JDF node that has been spawned.
jRefDestination ? NMTOKEN ID of the JDF node to which the job has been spawned.a This attribute must be

specified in the parent of the original node if independent jobs are spawned.
NewSpawnID
New in JDF 1.1

NMTOKEN Copy of the SpawnID of the newly spawned node. Note that a Spawned
audit may also contain a SpawnID attribute, which is the SpawnID of the
node that this audit is being placed into prior to spawning.

rRefsROCopied ? IDREFS List of IDs separated by whitespace. Identifies the resources copied to the
ResourcePool element of the spawned job during spawning. These
resources should not be modified by the spawned job.

rRefsRWCopied ? IDREFS List of IDs separated by white spaces. Identifies the resources copied to the
ResourcePool element of the spawned job during spawning. These
resources may be modified by the spawned job and must be copied back into
their original location by the merging agent.
Resource copying is required if resources are referenced simultaneously from
spawned nodes and from nodes in the original JDF document.
AuditPool 97

Chapter 3 Structure of JDF Nodes and Jobs
3.9.1.9 Merged
This element logs a merging event of a spawned node. For more details, see Section 4.4, Spawning and Merging.

3.10 JDF Extensibility
JDF is meant to be flexible and therefore useful to any vendor, as each vendor will have specific data to include in the
JDF files. JDF is able to provide this kind of versatility by using the XML namespaces. This section describes how
JDF uses the XML extension mechanisms.

3.10.1 Namespaces in XML
JDF Extensibility is implemented using XML Namespaces
[XMLNS]. XML namespaces are defined by xmlns attributes. A
general example is provided below. The example illustrates how
private namespaces are declared and used to extend an existing JDF
resource by adding private attributes and a private element.
<JDF xmlns="http://www.CIP4.org/JDFSchema_1_1"
xmlns:foo="fooschema URI" … >
 . . .
 <SomeJDFDefinedResource name="abc"
foo:specialname="cba">

Status ?
New in JDF 1.1

enumeration Status of the spawned node at the time of spawning. Allowed values are
defined in Status in Table 3-4, “Contents of a JDF node,” on page 38.

URL ?
New in JDF 1.1

URL Locator that specifies the location where the spawned node was stored by the
spawning process.

Part * element Identifies the parts that were selected for spawning in case of parallel spawn-
ing of partitionable resources. See Section 3.8.2, Description of Partitionable
Resources.

a. The data type is NMTOKEN and not IDREF because the attribute refers to an external ID.

Table 3-41: Contents of the Merged element

Name Data Type Description
Independent =
“false”

boolean Declares that independent jobs are merged into a big job for common produc-
tion. If it is set to true, the attributes jRefSource and
rRefsOverwritten have no meaning and should be omitted.

jRef IDREF ID of the JDF node that has been returned or merged.
jRefSource ? NMTO-

KEN
ID of the JDF root node of the big job from which the spawned structure has
been returned. a

a. The data type is NMTOKEN and not IDREF because the attribute refers to an external ID.

MergeID
New in JDF 1.1

NMTO-
KEN

Copy of the SpawnID of the merged node. Note that a Merged audit may
also contain a SpawnID attribute, which is the SpawnID of the node that
this audit is being placed into prior to merging.

rRefsOverwritten
?

IDREFS Identifies the copied resources that have been overwritten during merging.
Resources are usually overwritten during return if they have been copied dur-
ing spawning with read/write access.

URL ?
New in JDF 1.1

URL Locator that specifies the location of the merged node prior to merging by the
merging process.

Part * element Specifies the selected parts of the resource that were merged in case of paral-
lel spawning and merging of partitionable resources. See Section 3.8.2,
Description of Partitionable Resources.

Table 3-40: Contents of the Spawned element

Name Data Type Description

Using Namespaces in
JDF

It is required to define the JDF namespace in a
JDF document, even if no non-JDF extensions
are used. JDF may be defined either in the
default namespace or in a qualified namespace.
98 JDF Extensibility

JDF Specification Release 1.2
 . . .
 <foo:PrivateStuff type=""/>
 . . .
 </SomeJDFDefinedResource>
 . . .
</JDF>

Namespaces are inserted in front of attribute and element names. The associated namespace of element names with
no prefix is the default namespace defined by the xmlns attribute. The associated namespace of attributes with no pre-
fix is that one of the element (see Section A.3.3, Defined JDF enumeration Data Types). All namespace prefixes must
be declared using standard xmlns:xxx attributes.

3.10.1.1 JDF Namespace
The official namespace URI for JDF Version 1.0 is: http://www.CIP4.org/JDFSchema_1. The official namespace URI
for JDF Version 1.1 through JDF 1.X is: http://www.CIP4.org/JDFSchema_1_1. It is strongly recommended to use
either the default namespace with no prefix or a prefix of “JDF” as the JDF namespace prefix.

3.10.1.2 JDF Extension Namespace
CIP4 defines an extension namespace where new features that are anticipated to be included in a future version of the
specification are defined. The official extension namespace URI for JDF Version 1.x is: http://www.CIP4.org/
JDFSchema_1_1_X. It is strongly recommended to use a prefix of “JDFX” as the JDF extension namespace prefix.

3.10.2 Extending Process Types
JDF defines a basic set of process types. However, because JDF allows flexible encoding, this list, by definition, will
not be complete. Vendors that have specific processes that do not fit in the general JDF processes and that are not
combinations of individual JDF processes (see Section 3.1.5, Combined Process Nodes) can create JDF process
nodes of their own type. Then the content of the Type attribute may be specified with a prefix that identifies the
organization. The prefix and name must be separated by a single colon (:) as shown in the following example.
<JDF Type="myCompaniesNS:MyVeryImportantProcess" xmlns=
"http://www.CIP4.org/JDFSchema_1_1" xmlns:myCompaniesNS="my companies namespace URI" …
>
 . . .
</JDF>

The use of namespace prefixes in the Type attribute is for extensions only. Standard JDF process types must be spec-
ified without a prefix in the Type attribute or the Types attribute of a combined node. If a process is simply an
extension of an existing process, it is possible to describe the private data by extending the existing resource types.
This is described in greater detail in the sections below.

 EXTENSIBILITY CAUTION

JDF “Extensibility” simply means that you can add your own XML elements, attributes, and enumerations to a
JDF application. Although JDF is quite extensive, odds are you’ll find that your current databases and workflow
systems use information elements that are unique to your client market or company … they may have even
been defined by your internal MIS staff. CIP4 acknowledges that it can’t define everything, nor should it prevent
innovation by codifying everything in a static manner, and JDF’s extensibility provides both printers and technol-
ogy providers with the flexibility they need to make JDF a success.

However, if you or your technology vendors extend JDF, please do so with caution. JDF’s success depends on
the ability of MIS systems and JDF-enabled devices to write, read, parse, and use JDF. Extensions are custom
integration applications and great care needs to be made to ensure that extensions made for one systems or
device will not jam the JDF workflow or other JDF enabled systems and devices. If they use extensions to JDF,
your technology providers should be able to provide you with a fully validated JDF schema and documentation
that includes the use of their extensions. Extensions that are not documented, or that may not be disclosed to
third parties for integration purposes, should be viewed skeptically.
JDF Extensibility 99

Chapter 3 Structure of JDF Nodes and Jobs
Extending the NodeInfo and CustomerInfo nodes is achieved in a manner analogous to the extension of
resources, which is described below. On the other hand, extending the direct contents of JDF nodes by adding new
elements or attributes is discouraged.

3.10.3 Extending Existing Resources
All resources defined by JDF may be extended by adding attributes and elements using one’s own namespace for
these resource extensions. This is useful when the predefined resource types need only a small amount of private data
added, or if those resources are the only appropriate place to put the data. The namespace of the resource extended
must not be modified. However, the mechanism for creating new resources in a separate namespace is provided in the
next section.

This does not mean that duplicate functionality may be added into these resource types. You must make sure to
use the JDF-defined attributes and elements where possible and extend them with additional information that cannot
be described using JDF-defined constructs. For example, it is not allowed to extend the RIP resource that controls the
resolution with a foo:Resolution or foo:Res attribute that overrides the JDF defined resolution parameter (see
attribute Resolution of resource RenderingParams in Section 7.2.135, RenderingParams).

3.10.4 Extending NMTOKEN Lists
Clarified in JDF 1.2
Many resources contain attributes of type NMTOKEN and some of these have a set of predefined, suggested enumer-
ative values. These lists may be extended with private keywords. In order to identify private keywords, it is strongly
recommended to prefix these keywords with a namespace-like syntax, (i.e., a namespace prefix separated by a single
colon “:”). The namespace prefix that is used should be defined in the JDF ticket with the standard xmlns:Pre-
fix=”URI” notation, even if no extension elements or attributes from that namespace occur in the JDF ticket. Imple-
mentations that find an unknown NMTOKEN prefixed by a namespace prefix may then attempt to use the default
value of that attribute if the value of SettingsPolicy in effect is BestEffort. For instance, if a JDF instruction
contains the following text.

<TrappingParams TrapEndStyle=”HDM:FooBar” (…)/>

Based on the definition of TrappingParams, the best assumption is to use TrapEndStyle = Miter.

3.10.5 Creating New Resources
There are certain process implementations that have functionality that cannot be specified by the predefined Resource
types. In these cases, it is necessary to create a new Resource-type element, which must be clearly specified using its
own namespace. These resource types may only be linked to custom-type JDF process nodes.

3.10.6 Future JDF Extensions
In future versions, certain private extensions will become more widely used, even by different vendors. As private
extensions become more of a general rule, those extensions will be candidates for inclusion in the next version of the
JDF specification. At that time the specific extensions will have to be described and will be included into the JDF
namespace.

Table 3-42: Example from TrappingParams

Name Data Type Description
TrapEndStyle
= “Miter”

NMTOKEN Instructs the trap engine how to form the end of a trap that touches another
object. Possible values include:
Miter
Overlap
Other values may be added later as a result of customer requests.
100 JDF Extensibility

JDF Specification Release 1.2
3.10.7 Maintaining Extensions
Given the mix of vendors that will use JDF, it is likely that there
will be a number of private extensions. Therefore, JDF control-
lers must be prepared to receive JDF files that have extensions.
These controllers can and should ignore all extensions they
don’t understand, but under no circumstance are they allowed
to remove these extensions when making modifications to the
JDF. If they do, it will break the extensibility mechanism. For
example, imagine that JDF Agent A creates a JDF and inserts
private information for Process P. Furthermore, the information
is only understood by agent A and the appropriate device D for
executing P. If the JDF needs to be processed first by another
Agent/Device C and that process removes all private data for P,
Process P will not be able to produce the correct results on
device D that were specified by Agent A.

3.10.8 Processing Unknown Extensions
If a node is processed by a controller or device and it encounters an unknown extension in one of its input resources,
the expected behavior depends on the current value of SettingsPolicy.
If SettingsPolicy = “BestEffort”, a Notification audit element with Class = “warning” should be
logged.
If SettingsPolicy = “MustHonor”, the process must not continue and a Notification audit element with Class
= “error” should be logged.
If SettingsPolicy = “OperatorIntervention”, the process must stop and wait for an operator intervention
and a Notification audit element with Class = “warning” should be logged.

3.10.9 Derivation of Types in XMLSchema
The XML Schema definition http://www.w3.org/TR/xmlschema-1/ describes a mechanism to create new types by
derivation from old types. This is an alternative to extend or create new elements and is described in Section 4 of
http://www.w3.org/TR/xmlschema-0/. This mechanism is not allowed to be applied to any elements defined by JDF
because such new element types can only be understood by agents/devices that know the extension. The use of the
derivation mechanism is allowed only for private extensions but not required.

3.11 JDF Versioning
New in JDF 1.2
The JDF Specification is an evolving document that exists in multiple versions. Real workflows will be executed by
devices that individually support different versions of the specification. Complete JDF workflow descriptions may
therefore contain sub-JDF nodes that must be specified with different versions in one document.

3.11.1 JDF Versioning Requirements
The following list of requirements take the specific needs of a mixed version JDF workflow into account:
• JDF Documents with mixed versions must be supported.

– Environments with devices that support different JDF versions will exist.
– It is not feasible to enforce simultaneous software upgrades for devices from multiple vendors in one

production facility.
• MIS systems will NOT always support all versions of all devices that are described in the JDF.

– Customers may update a workflow system or device without updating the MIS system.
• Archived JDF documents must remain valid when a new version of the JDF specification and schema is

published.

SUBMIT YOUR EXTENSIONS
TO CIP4

Writing JDF extensions? CIP4 encourages you to
become part of the standard and submit your pri-
vate extensions for review and possible inclusion
in future versions of the JDF standard. Not only
may adoption of extensions into the JDF standard
help make it easier for customers to decide to buy
your products, but CIP4 is also considering
adopting a formal review process for extensions
with future editions of the JDF standard. By par-
ticipating in JDF’s development now, you could
save time and customer confusion in the future.
JDF Versioning 101

http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-0/

Chapter 3 Structure of JDF Nodes and Jobs
3.11.2 JDF Version Definition
The version of a JDF node is defined as the highest version of all attributes or elements and linked resources. The ver-
sion of a resource is defined as the highest version of all elements, attributes, or resources that are linked via refele-
ments.

3.11.3 JDF Version Policies
The following specifies the policies for evolving JDF 1.x versions. When the term “JDF” is used in the remainder of
this section the reader should also interpret these policies to apply to JMF as well. Version policies include three areas
of application: JDF specification rules, JDF schema definition rules, and JDF application behavior. The policies are
applicable to the transition from JDF 1.1/1.1a to JDF 1.2, as well as future versions of JDF, but are not applicable to
JDF 1.0.

3.11.3.1 JDF Specification Version Policies
The following list defines the policies that will be followed when extending the JDF specification.
• Changes to the JDF specification must be backwards compatible.

– Extension elements or attributes must not be required.
º New attributes in existing elements must be optional.
º New elements in existing elements must be optional.
º New elements may contain required elements or attributes.

– Elements and attributes must not be removed.
º Deprecated elements or attributes are still valid in all versions of JDF 1.x

– Data type changes must be extensions of existing data types. In other words the datatype of an extended
attribute must be a complete superset of the existing datatype. For instance, only the extensions defined by
the arrow directions are valid.
º enumeration —> NMTOKEN
º NMTOKEN —> string
º integer —> IntegerList
º integer —> double

• The JDF/@Version and JMF/@Version attributes are required in the respective root of JDF or JMF instance
documents.

• The semantics of attributes and elements will not be altered.
– No new attributes or elements will be introduced that conditionally modify the semantics of existing

attributes and elements.
– Semantics will only be altered when the previous definition is clearly wrong and the result is unpredictable

with the previous definition, (e.g., bug fixes in the specification). These changes will be clearly marked in
the specification.

• The default values of attributes and elements will not be altered.
– The default behavior that is specified when an attribute or element is missing will not be altered.

3.11.3.2 JDF Schema Version Policies
The following list defines the policies that will be followed when generating new schemas for new versions of the
JDF specification.
• Changes to the JDF schema must be backwards compatible.

– JDF 1.x documents must validate against JDF 1.(x+n) schemas.
• Only one JDF schema namespace will be defined for all versions of JDF 1.x.

– The namespace is http://www.CIP4.org/JDFSchema_1_1.
• The xs:version attribute will be defined in the schema.
102 JDF Versioning

JDF Specification Release 1.2
– Applications that read a schema may verify that they are compatible with the version of the schema.
– Applications may choose a schema based on the schema's version tag.

º The schema version selection can be based on a best match to both application and JDF ticket or even
JDF node.

• The JDF/@Version attribute is defined as an enumeration that contains all valid versions for the schema, (e.g.
“1.1” and “1.2” for the JDF 1.2 version of the schema). The schema data type of a JDF of JMF version is
JDFJMFVersion.
– This allow schema validators to detect incompatible versions when parsing a local legacy schema.

• The version annotations in the schema will be maintained wherever possible.
• Explicit copies of published legacy schema versions will be available on the CIP4 website.
• The schema default values of deprecated attributes will be removed from the schema. Deprecated attributes will

still be valid but not explicitly defaulted in the schema.

3.11.3.3 JDF Application Version Policies
This section specifies the policies that implementations should follow in order to support multiple versions of JDF.
The policies are specified for Agents and Controllers/Devices separately.

3.11.3.3.1 JDF Agent Version Policies
JDF agents must ensure that the JDF that they generate is consistently versioned.
• An agent must update the JDF/@Version attribute when inserting new attributes or elements.

– If an Agent is not aware of versions, it must assume that anything that it writes belongs to the Agent's
maximum version. In this case, the Version of any node that is affected is the maximum of its prior version
or the Agent's version.

• It is strongly recommended that an agent should honor the JDF/@MaxVersion attribute.
– An Agent should not add attributes, elements or attribute values that were introduced in a version that is

higher than JDF/@MaxVersion.
• An Agent should insert the lowest possible JDF/@Version attribute that is applicable to the nodes version as

described in Section 3.11.2, JDF Version Definition.
• The JDF/@Version of a spawned JDF node is identical to the JDF/@Version of that node in a complete JDF.

3.11.3.3.2 JDF Device/Controller Version Policies
A JDF Device/Controller, (i.e. any implementation that reads JDF), should be backwards compatible:
• Implementations are strongly encouraged to handle deprecated elements and attributes gracefully.
JDF Devices/Controllers, (i.e. any implementation that reads JDF) should attempt to be forwards compatible.
• Schema validation errors that find an unknown attribute, element or attribute value in a JDF with a version that is

higher than the schema should not lead to an abort.
– A Device or Controller that reads a JDF with an element or attribute or attribute value with a version that is

higher than the version that it was developed for should attempt to execute the JDF if SettingsPolicy =
“BestEffort”.

– A Device or Controller that reads a JDF with an element or attribute or attribute value with a version that is
higher than the version that it was developed for must not execute the JDF if SettingsPolicy =
“MustHonor”.

– Implementations are strongly encouraged to handle non-fatal version schema validation errors gracefully.
º Unknown attributes/elements in the JDF namespace should be treated the same as foreign namespace

attributes/elements when handling nodes that are not executed by the Device or Controller.
º Unknown versions of the JDF namespace should be treated analog to foreign namespace elements when

handling nodes that are not executed by the Device or Controller.
JDF Versioning 103

Chapter 3 Structure of JDF Nodes and Jobs
104 JDF Versioning

JDF Specification Release 1.2
Chapter 4 Life Cycle of JDF
Introduction
This chapter describes the life cycle of a JDF job, from creation through modification to processing. Information is
provided about the spawning of individual steps of jobs and in what way they are merged into the job once the pro-
cess step is completed. Ancillary aspects of the life cycle, such as test running and error handling, are also discussed.

4.1 Creation and Modification
The life cycle of a JDF job will likely follow one of two scenarios. In the first scenario, a job is created all at once by
a single agent and then is consumed by a set of devices. More often, however, a job is created by one agent and is then
transformed, or modified, over time by a series of other agents. This process may require specification of product
intent, which is defined in Section 4.1.1, Product Intent Constructs.

Jobs can be modified in a variety of ways. In essence, any job is modified as it is executed, since information
about the execution is logged. Another instance of modification of a JDF job, however, occurs during processing
when more detailed information is learned or understood and then added along the way. This information may be
added because an agent knows more about the processing needed to achieve some result specified in a JDF node than
the original, creating agent knew. For example, one agent may create a product node that specifies the product intent
of a series of pages. This product node may include information about the number of pages and the paper properties.
Another node may then be inserted that includes a resource describing how the pages should be RIP’d. Later, another
agent may provide more detail about the RIP’ing process by appending optional information to the RIP parameter
resource.

Regardless of where in the life cycle they are written, nodes and their required resources must be valid and
include all required information in order to have a Status of Ready (in case of nodes) or Available (in case of
resources). This restriction allows for the definition of incomplete output resources. For example, a URL resource
without a file name may be completed by a process. On the other hand, it is impossible to define a valid and execut-
able node with insufficient input parameters.

Once all of the inputs and parameters for the process requested by a node are completely specified, a controller
can route the JDF job containing this node to a device that can execute the process. When the process is completed,
the agent/controller in charge of the device will modify the node to record the results of the process.

4.1.1 Product Intent Constructs
JDF jobs, in essence, are requests made by customers for the production
of quantities of some product or products. In other words, a job begins
with a particular goal in mind. In JDF, product goals are often specified
by using a construct called “product intent” and represented by intent
resources. In contrast to process resources that define precise values,
intent resources allow ranges or sets of preferred values to be specified.
Resources of this kind include FoldingIntent, ColorIntent,
MediaIntent, and ShapeCuttingIntent, all of which are
described in Section 7, Resources.

The product intent of a job is like a blue print of a product. The blue
print may be extremely vague, detailing only the general goal, or it may
be very specific, stipulating the specific requirements inherent in meet-
ing that goal. Product intent may be defined for an end product about
which little is known or about which the processing details for the job are entirely unknown. Product intent constructs also
allow agents to describe jobs that comprise multiple product components and that may share some parts.

Product intent is defined by the initiating agent of a job. It is not required, however. Many JDF jobs are written
with full knowledge of the necessary processes, and are therefore comprised entirely of the various kinds of process
nodes described in Section 3.1.3, Section 3.1.4, and Section 3.1.5. Any job that specifies product intent, however,
must include nodes whose Type = Product. This representation is described in the following section.

Product Intent

“Product intent” is another way of saying “Job
Specifications”. Rather than describing how a
job will be made, product intent describes
what a finished product (or some aspect of a
product) will look like when it is completed.
Product intents may initiate with the customer
and in rather vague terms, and they may be
later fleshed out or completed by a printer’s
customer service representative, estimating
department, or production planners.
Creation and Modification 105

Chapter 4 Life Cycle of JDF
4.1.1.1 Representation of Product Intent
The product description of a job is a hierarchy of Product nodes, and the bottom-most level of the product hierar-
chy represents portions of the product that are each homogeneous in terms of their materials and formats. All nodes
below these Product nodes begin specifying the processes required to produce the products.

Product nodes are required to contain only one thing, and that is a resource that represents the physical result
specified by the node. This resource is generally a Component. In addition, somewhere in the hierarchy of prod-
uct nodes, it is a good idea to include an intent resource to describe the characteristics of the intended product.
Although these are the only resources that should occur, product nodes can contain multiple resources. For example,
some resource types, such as LayoutIntent and MediaIntent, are defined to provide more general mecha-
nisms to specify product intent. The resulting product of a product intent node is specified as an output
Component resource of the product intent node.

In some cases, more than one high level product node will use the output of a product node. These high level
nodes represent the combination of homogeneous product parts. In this case, the Amount attribute of the
ResourceLinks that connect the nodes will identify how the lower level product is shared.

4.1.1.2 Representation of Product Binding
Some product intent nodes, such as BindingIntent, define how to combine multiple products. To accomplish this,
the respective Component resources must be labeled according to their usage. For example, the Cover and
Insert attributes use the ProcessUsage attribute of the respective resource links. For more information about
product intent, see Section 3.1.3, Product Intent Nodes.

4.1.2 Defining Business Objects Using Intent Resources
Business objects like requests-for-quote, quote, invoice, etc. need
to reference processes at a level that is well represented by product
intent nodes. It is assumed that business object metadata such as
financial information, business document type, customer informa-
tion, etc. is defined by an XML envelope that contains JDF as a job
description. If this is not the case, the business related metadata
may be placed into the root JDF/NodeInfoBusinessInfo
element, and the customer related data may be placed into the
root JDF/CustomerInfo element.

This section sketches the usage of JDF in an E-commerce environment using the business object model that was
defined by the PrintTalk www.PrintTalk.org consortium.

The following table describes the individual business objects and their relationships. “Object type” defines the
name of the XML element that defines the metadata. All object types are inherited from the abstract PrintTalk
Request element. “References” defines the business objects that are responded to when generating the business
object, and the “buyer-provider” arrow defines the direction of the transaction.

Table 4-1: Business Objects as defined by PrintTalk

Object Type Description References Direction
RFQ
(Request for Quote)

Initiated by a buyer to a print supplier. It may instigate a
new product process or it may supersede an existing
RFQ. The Change Order and Request for Requote varia-
tions are included within Request for Quote.

None, Quote,
Confirmation

B—›P

Quote Normally sent in response to a RFQ. The Requote
and Change Order Quote variations are included
within Quote. A Quote may supersede an existing
Quote before the Print Buyer has answered with a
RFQ or an Order.

RFQ, PO,
Confirmation

B‹—P

Purchase Order Typically sent as a response to a quote but may be the
initial document in a well defined buyer / print sup-
plier relationship or when ordering finished goods
items. The Change Order variation is included within
Purchase Order. An order may supersede an existing
Order prior to the Print Provider having confirmed it.

None, Quote,
Confirmation

B—›P

PrintTalk Implementation

A PrintTalk implementation guide can be found at
http://www.printtalk.org/implementation.html
106 Creation and Modification

http://www.PrintTalk.org
http://www.printtalk.org/implementation.html

JDF Specification Release 1.2
In the following figure the workflow of these business objects is partly illustrated in a simplified manner. See the
PrintTalk specification at www.printtalk.org for a complete picture.

The node that defines an RFQ must contain one or more DeliveryIntent resources that define the amounts and
methods of delivery. The Usage of the ResourceLinks is Input, its Type is Product and the Business object
is an RFQ.

(Order)
Confirmation

Sent by the print supplier to the buyer acknowledging
receipt of the purchase order. It may contain informa-
tion about expected due dates and final pricing that
were undetermined at the time of the quote.

PO B‹—P

Cancellation Cancels a complete job. If only parts of a job should
be cancelled, one must send a new RFQ, Quote, or
PO. In case of canceling parts of a confirmed order,
the Change Order variations of these Business
Objects must be sent.

RFQ, Quote, PO,
Confirmation

B‹–›P

Refusal Used to explicitly decline a Business Object sent by
the counter party. Alternatively, the non-accepted
Business Object expires.

RFQ, Quote, PO B‹–›P

Order Status
Request

Generated anytime one party requests status from
another party.

Confirmation B‹–›P

Order Status
Response

An Order Status Response can be sent as a
response to an Order Status Request or it can be
sent automatically.

Confirmation, Order
Status Request

B‹–›P

Proof Approval
Request

Provides a transport for proofing from supplier to
buyer. This may contain MIME data or a URL where
the proof is located.

Confirmation B‹—P

Proof Approval
Response

Contains buyer’s approval or denial of a proof. Proof Approval
Request

B—›P

Invoice Typically sent once the job is shipped, but can also be
sent several times when certain milestones during
production are reached. May include additional
charges or discounts.

Confirmation,
Cancellation

B‹—P

Figure 4.1: Simplified PrintTalk workflow (negotiation phase)

Table 4-1: Business Objects as defined by PrintTalk

Object Type Description References Direction
Creation and Modification 107

http://www.printtalk.org

Chapter 4 Life Cycle of JDF
The examples quoted in this section use an object model as defined by PrintTalk with the business objects defined in
BusinessInfo. This does not preclude the use of other E-commerce systems. The following examples show equivalent
PrintTalk and pure JDF document text. The highlights show the respective position of an RFQ.

PrintTalk example
<PrintTalk xmlns="http://www.printtalk.org/schema">
 <Header>
 Standard CXML header
 </Header>
 <Request>
 <RFQ AgentDisplayName="Lara Garcia-Daniels" AgentID="Lara" BusinessID="RFQ_ID"
Currency="EUR" Estimate="false" Expires="2002-04-15T1700- 0800" RequestDate="2002-04-
05T1700-0800">
 <jdf:JDF xmlns:jdf="http://www.CIP4.org/JDFSchema_1_1" ID="ScreenTest"
JobID="ScreenJob" Status="Waiting" Type="Product" Version="1.2">
 <jdf:NodeInfo LastEnd="2000-12-24T06:02:42+01:00"/>
 </jdf:JDF>
 </RFQ>
 </Request>
</PrintTalk>

Equivalent pure JDF Example
<JDF xmlns="http://www.CIP4.org/JDFSchema_1_1" ID="ScreenTest" JobID="ScreenJob"
Status="Waiting" Type="Product" Version="1.2">
 <NodeInfo LastEnd="2000-12-24T06:02:42+01:00">
 <BusinessInfo>
 <pt:RFQ xmlns:pt="http://www.printtalk.org/schema" AgentDisplayName="Lara Garcia-
Daniels" AgentID="Lara" BusinessID="RFQ_ID" Currency="EUR" Estimate="false"
Expires="2002-04-15T1700- 0800" RequestDate="2002-04-05T1700-0800"/>
 </BusinessInfo>
 </NodeInfo>
</JDF>

4.1.3 Specification of Delivery of End Products
A job may define one or more products and specify a set of deliveries of end products. To accomplish this, a node of
Type = Product is created to define each product to be produced. The root product intent node should contain a
DeliveryIntent resource that specifies a set of Drops. Each Drop has a common delivery address and time, and a
set of DropItems that specifies the amount of individual Components that must be delivered to this address.
Quote generation as defined in the previous chapter includes the specification of delivery addresses. For more informa-
tion, see Section 6.2.4, Delivery.

4.1.4 Specification of Process Specifics for Product Intent Nodes
Product intent nodes are designed to represent a customer’s view of the product. In some instances, a knowledgeable
customer may want to specify production details that are only available in JDF process resources for a given product.
Examples include scanning or screening parameters. This customer will still have no knowledge or control of the pro-
cess workflow.

Individual JDF process or ProcessGroup nodes may be inserted into a product intent node. These nodes will con-
tain the requested process resource definitions as input resource links. The Status attribute of these resources should
be Incomplete. No output resources should be defined. In other words, the actual specification of the process
workflow should be left undefined. The application that sets up the actual workflow can then use these resource tem-
plates as a starting point for defining the process. It is recommended to specify a ProcessGroup node that does not
define the process granularity. For details see “Use of the Types attribute in ProcessGroup nodes” on page 44. The
following example shows how an ellipse spot function is requested within a simple product description. The JDF
node in highlight defines the screening parameters of the product.
108 Creation and Modification

JDF Specification Release 1.2
<JDF xmlns="http://www.CIP4.org/JDFSchema_1_1" ID="Job1" JobID="J1" Status="Waiting"
Type="Product" Version="1.2">
 <ResourcePool>
 <Component Amount="10000" Class="Quantity"
 DescriptiveName="Complete 16-page Brochure" ID="Link0003" Status="Unavailable"/>
 <LayoutIntent Class="Intent" ID="Link0004" Status="Available">
 <Dimensions DataType="XYPairSpan" Preferred="612 792" Range="576 720~648 864"/>
 <Pages DataType="IntegerSpan" Preferred="16"/>
 </LayoutIntent>
 <MediaIntent Class="Intent" ID="Link0005" PartIDKeys="Option" Status="Available">
 <FrontCoatings DataType="NameSpan" Preferred="None"/>
 <MediaIntent Option="1">
 <FrontCoatings DataType="NameSpan" Preferred="Glossy"/>
 </MediaIntent>
 <BackCoatings DataType="NameSpan" Preferred="None"/>
 </MediaIntent>
 </ResourcePool>
 <ResourceLinkPool>
 <ComponentLink Usage="Output" rRef="Link0003"/>
 <LayoutIntentLink Usage="Input" rRef="Link0004"/>
 <MediaIntentLink Usage="Input" rRef="Link0005"/>
 </ResourceLinkPool>
 <JDF ID="Link0006" Status="Waiting" Type="ProcessGroup" Types="Screening">
 <ResourcePool>
 <ScreeningParams Class="Parameter" ID="ScreenID" Status="Incomplete">
 <ScreenSelector ScreeningFamily="My favorite screen" SpotFunction="Ellipse"/>
 </ScreeningParams>
 </ResourcePool>
 <ResourceLinkPool>
 <ScreeningParamsLink Usage="Input" rRef="ScreenID"/>
 </ResourceLinkPool>
 </JDF>
</JDF>

4.2 Process Routing
A controller in a JDF workflow system has two tasks. The first is to determine which of the nodes in a JDF document
are executable, and the second is to route these nodes to a device that is capable of executing them. Both of these pro-
cedures are explained in the sections that follow.

In a distributed environment with multiple controllers and devices, finding the right device or controller to exe-
cute a specific node may be a non-trivial task. Systems with a centralized, smart master controller may want to route
jobs dynamically by sending them to the appropriate locations. Simple systems, on the other hand, may have a static,
well defined routing path. Such a system may, for example, pass the job from hot folder to hot folder. Both of these
extremes are valid examples of JDF systems that have no need for additional routing metadata.

In order to accommodate systems between these extremes, the NodeInfo element of a node contains optional
Route and TargetRoute attributes that let an agent define a static process route on a node-by-node basis. JMF/
QueueSubmissionParams/@ReturnURL takes precedence over NodeInfo/@TargetRoute of the JDF that
is processed. If no Route or TargetRoute attribute is specified and if a controller has multiple options where to route
a job, it is up to the implementation to decide which route to use.

The controller or device reading the JDF job is responsible for processing the nodes. A device examines the job
and attempts to execute those nodes that it knows how to execute, whereas a controller routes the job to the next con-
troller or device that has the appropriate capabilities.
Process Routing 109

Chapter 4 Life Cycle of JDF
4.2.1 Determining Executable Nodes
In order to determine which node should be
executed, the controller/device uses the follow-
ing procedures.
1It searches the JDF document for node types it
can execute by comparing the Type and
Types attributes and optionally the Category
attribute of the node to its own capabilities and
by determining the Activation of the nodes. It
should also verify that the Status of the node
is either Waiting or Ready. If a Device
resource is specified as input to the node, the
resource must match the controller/device.
Devices may opt to limit the scope of the node
search. The limitations should be specified in
the device capability description by appropri-
ately setting DeviceCap/
@ExecutionPolicy.

2The controller/device may then determine if
no resources have a Status of Incomplete
or a SpawnStatus of SpawnedRW. It should
also determine if all of the input resources of
the respective nodes have a Status of
Available and that all processes that are
attached through pipes are ready to execute. A
controller may optionally skip these checks and
expect the lower level controller or device that
it controls to perform this step and return with
an error if it fails.

3If scheduling information is provided in the
NodeInfo element, the specified start and/or
end time must be taken into account by the exe-
cuting device. If no process times are specified,
it is up to the device in charge of queue han-
dling to execute the process node.

4If no executable nodes are found the Device must return the node to the controller. A Notification audit with Notification/@Class=
“Error” should be appended to the AuditPool of the root JDF node. Notification/
Error/@ReturnCode = “102” specifies that no executable node was found.
The node will go through various states during
its life time as is described in Figure 4.2.

4.2.2 Distributing Processing to Work Centers or Devices
JDF syntax supports two means of distributing processes to work centers or devices. Its first option is to use a “smart”
controller that has the ability to parse a JDF job and identify individual processes or process groups that may be dis-
tributed to a particular work center or device. This smart controller may use spawning and merging facilities to subdi-
vide the job ticket and pass specific instructions to a work center or device.

The second option, which is applicable when the controller being used isn’t smart, is to employ a simple control-
ler implementation that routes the entire job to each workcenter or device, thus leaving it up to the recipient to deter-
mine which processing it can accomplish. For this option to work, each JDF-capable device must be able to identify
process nodes it is capable of executing. Furthermore, each device must have sufficient JDF-handling capabilities to
identify processes that are ready to run.

Figure 4.2: Life Cycle of a JDF node
110 Process Routing

JDF Specification Release 1.2
4.2.3 Device / Controller Selection
The method used to determine which is the appropriate device or lower level controller to use to execute a given node
depends greatly on the implemented workflow being used. Although JDF provides a method for storing routing infor-
mation in the Route attribute of the NodeInfo element of a node, it does not prescribe any specific routing meth-
ods. However, some of the tools available to figure out alternative workflows are described below.

Knowledge of the capabilities of lower level controllers/devices either may be hard-wired into the system or
gained using the KnownDevices message. Since JDF does not yet provide mechanisms to determine if a given
device is capable of processing a node without actually performing a test run, a controller must either have a prior
knowledge of the detailed capabilities of devices that it controls or it must perform a test run to determine if a device
is capable of executing a node. Furthermore, in addition to the explicit routing information in the Route attribute of
the NodeInfo element of a node, JDF may contain implicit routing information in the form of Device implementa-
tion resources.

JMF defines the KnownControllers query to find controllers and the KnownDevices query to find devices that
are controlled by a controller. The information provided by these queries can be used by a controller to infer the appropri-
ate routing for a node. In a system that does not support messaging, this information must be provided outside of JDF.

4.3 Execution Model
JDF provides a range of options that help controllers tailor a processing system to the needs of the workflow and of
the job itself. The following sections explain the ways in which controllers execute processes using these various
options.

The processing model of JDF is based on a producer/consumer model, which means that the sequencing of
events is controlled by the availability of input resources. As has been described, nodes act both as producers and
consumers of resources. When all necessary inputs are available in a given node, and not before, the process may exe-
cute. The sequence of processing, therefore, is implied by the chain of resources in which the output resources of one
node become the input resources of a subsequent node.

JDF supports four kinds of process sequences: serial processing, overlapping processing, parallel processing, and
iterative processing. All four are described in the following sections.

4.3.1 Serial Processing
The simplest kind of process routing, known as serial processing, executes nodes sequentially and with no overlap. In
other words, no nodes are executed simultaneously. Once the process has acted upon the resource in some way, the
resource availability is described by the Status attribute of the resource, as described above. When the process state
is Ready or Waiting, the process can begin executing.

In a workflow using serial processing, the controller is responsible for comparing the actual amount available
with the specified amount in the corresponding PhysicalLink element to determine whether or not the input
resource can be considered available. If no amount is specified in the PhysicalLink, the process is assumed to con-
sume the entire physical resource.

Figure 4.3 depicts a simple process chain that produces and consumes Quantity resources and uses an implemen-
tation resource. The resources R1, R2, and R3 represent Quantity resources. Process P1 consumes resource R1
and produces resource R2. R2 is then completely consumed by P2, which also requires the implementation resource
R4 for processing. Process P2 uses these two resources and produces resource R3. All of this is accomplished along a
linear time axis.

Figure 4.3: Example of a simple process chain linked by resources
Execution Model 111

Chapter 4 Life Cycle of JDF
Table 4-2 shows the value of the Status attribute of each of the resources and processes used in Figure 4.3. The time
axis runs from left to right both in Figure 4.3 and in Table 4-2. Note that no process may execute until all resources
leading up to that process are Available. In other words, the job executes serially and sequentially. For more infor-
mation about the values of the Status attribute of resources, see Table 3-13, “Contents of the abstract Resource
element,” on page 53. For more information about the values of the Status attribute of processes, see Table 3-4,
“Contents of a JDF node,” on page 38.

If a process aborts before completion, its output resources are Unavailable unless the output has been partially pro-
duced in which case the device may update the amount and set the output to Available.

When the attribute Amount is used in connection with the quantifiable resources R1, R2, or R3 and their links,
then the controller must decide whether or not a resource is available by comparing the individual values. If the
amounts are used to define the availability, then the resource Status may be set to Available for all Quantity
resources. Note that when the value of the Status attribute of the resource is Unavailable, the resource is not
available even if a sufficient Amount is specified.

If amounts are specified in the resource element, they represent the actual available amount. If they are not spec-
ified, the actual amount is unknown, and it is assumed that the process will consume the entire resource. Amounts of
PhysicalLink elements must be specified for output resources that represent the intended production amount. The
specification of the Amount attribute for input resources is not required, although it can be specified. For details, see
“Resource Amount” on page 71. If the controller cannot determine the amounts, this constitutes a JDF content error,
which is logged by error handling. This process is described in Section 4.6, Error Handling.

If a process in a serial processing run does not finish successfully, the final process status is designated as
aborted. In an aborted job, only a part of the intended production may be available. If this occurs, the actual pro-
duced amount is logged into the audit pool by a resource audit element.

4.3.2 Partial Processing of Nodes with Partitioned Resources
New in JDF 1.2
JDF nodes themselves may not be partitioned, although the input and output resources may. If the input and output
ResourceLinks reference one or more individual partitions, the JDF node executes using only the referenced
resources.

If multiple input resources are input to a process, the resource with the highest granularity defines the partition-
i n g . F o r i n s t a n c e , a Convent ionalPr int ing p r o c e s s m a y c o n s u m e a n o n - p a r t i t i o n e d
ConventionalPrintingParams, and a set of Ink and ExposedMedia (Plate) resources that are partitioned by
Separation. The partition granularity will be defined by the Ink and ExposedMedia (Plate) resources to be
Separation. The Separation partition set is defined by the superset of all defined partition key values. If the
Separation key values of Ink were Black and Varnish , and the Separation key values of
ExposedMedia (Plate) were Black, the resulting set is Black and Varnish.

The partition keys of both input and output restrict the process. If the partition keys are not identical, both must
be applied to restrict the node. If the partition keys are non-overlapping (e.g. in an Imposition node where a
RunList based input partition is mapped to a sheet based output partition), the application must explicitly calculate
the result. The following examples illustrate the restriction algorithms:

Table 4-2: Examples of resource and process states in the case of simple process routing

 Object
Status

before
running P1

during
running P1

after running P1,
before P2 during P2 after P2

resource R1 Available InUse Unavailable Unavailable Unavailable
resource R2 Unavailable Unavailable Available InUse Unavailable
resource R3 Unavailable Unavailable Unavailable Unavailable Available
resource R4 Available Available Available InUse Available
process P1 Waiting or Ready InProgress Completed Completed Completed
process P2 Waiting or Ready Waiting or Ready Waiting or Ready InProgress Completed
112 Execution Model

JDF Specification Release 1.2
Input Partition 1 Input Partition 2 Output Partition Node Partition Description
SheetName =
“S1”

— — SheetName =
“S1”

If only the input is partitioned, the
node partition is defined by the
input.

SheetName =
“S1”
Separation =
“Cyan”

— — SheetName =
“S1”
Separation =
“Cyan”

If only the input is partitioned, the
node partition is defined by the
input.

SheetName =
“S1”
Separation =
“Cyan”

Separation =
"Cyan" +
Separation =
"Black"
(PartUsage =
"Implicit")

— SheetName =
“S1”
Separation =
“Cyan” +
SheetName =
“S1”
Separation =
“Black”

The first input is partitioned by
SheetName and Separation
which defines the partition key
granularity. The second input is
partitioned by Separation only
but has an implied SheetName
and has a larger but overlapping
set of separation values. The sepa-
ration value set is therefore
defined by the second key.

SheetName =
“S1”

— SheetName =
“S1”
Separation =
“Cyan”

SheetName =
“S1”
Separation =
“Cyan”

The input and output base parti-
tions are identical. The output fur-
ther restricts the partition.

SheetName =
“S1”

— SheetName =
“S2”
Separation =
“Cyan”

Error Input and output are not overlap-
ping. This specifies the null set.

SheetName =
“S1”
Separation =
“Magenta”

Separation =
"Cyan" +
Separation =
"Black"

— Error This is an error and defines the
null set. The first input is parti-
tioned by SheetName and
Separation which defines the
partition key granularity. The sec-
ond input is partitioned by
Separation only and has a
larger but non-overlapping set of
separation values. The separation
value set is therefore the null set.

SheetName =
“S1”
Separation =
“Cyan”

Separation =
"Cyan" +
Separation =
"Black"
(PartUsage =
"Explicit")

— Error The first input is partitioned by
SheetName and Separation
which defines the partition key
granularity. The second input is
partitioned by Separation only
but has no implied SheetName
and therefore has a non-overlap-
ping set of partition keys. The sep-
aration value set is therefore
defined by the second key.

RunIndex =
“0~7”

— SheetName =
“s2”

Special This specifies sheet s2, with all
PlacedObject elements with an
Ord in the range of 0 to 7. This
special case is important when
RunList entries occur multiply
on different imposition sheets.
Execution Model 113

Chapter 4 Life Cycle of JDF
4.3.3 Overlapping Processing Using Pipes
Whereas pipes themselves are identified in the resource that represents the pipe, pipe dynamics are declared in the
resource links that reference the pipe. This allows multiple nodes to access one pipe, each of them with its own pipe
buffering parameters.

In some situations, resource linking is a continuous process rather than a chronological one. In other words, one
process may require the output resources of another process before that process has completely finished producing
them. The ability to accomplish this kind of resource transfer is known as overlapping processing, and it is accom-
plished with the use of a mechanism known as pipes. Pipes are considered to be active if any process linking to the
pipe simultaneously consumes or produces that pipe resource.

Any resource may be transformed into a pipe
resource. All that is required is that the PipeID
attribute be specified in the resource. Pipes of quantifi-
able resources resemble reservoir containers that hang
between processes. Processes connected to the pipe via
output links fill the container with necessary resources,
while processes connected via input links deplete it (see
F igu re 4 .4) . The l eve l i s con t ro l l ed by the
Phys ica lL ink a t t r i bu te s PipeResume,
PipePause , RemotePipeEndPause , and
RemotePipeEndResume (see Table 3-23,
“Additional contents of the abstract physical
ResourceLink and PartAmount element,” on page 67).
If none of them are specif ied, any produced
Quantity may be immediately consumed by the con-
suming end of the pipe. The unit of the buffers is
defined by the Unit attribute of the resource.

The two following diagrams show the ways in which pipes mediate between the process producing the resource
and the process consuming the resource. The following optional attribute values are defined for pipes:

PipePartIDKeys
PipePause
PipeProtocol
PipeResume
RemotePipeEndPause
RemotePipeEndResume

The latter two—RemotePipeEndPause and RemotePipeEndResume—are use to control the level in context
with pipe command messages which will be described in Section 4.3.3.2, Dynamic Pipes. The specified value of each
of these attributes in any given node dictates the levels at which a pipe should resume or pause execution. Figure 4.5
gives an example of a view on the dynamics of a pipe resource. The available level of the pipe resource, represented
as R2, and the availability status of two entity resources, represented as R1 and R3, are changing along a consistent
time line. Below the progressions of these resources is the status of two processes—P1 and P2. P1 represents the pro-
cess producing the pipe resource and P2 represents the process consuming that resource. The resource status of a
active pipe, represented here as R2, is defined to be Status = InUse (see also Table 3-13, “Contents of the abstract
Resource element,” on page 53).

Figure 4.4: Example of a Pipe resource linking two processes

PIPE RESOURCES

A pipe resource is simply an input to a process that can be
exhausted and may be replenished. Examples may include
rolls of paper feeding into a press, ink well levels, fountain
solution, or even proofing stock loaded into a proofer.
Another type of pipe resource in every-day use is a “hot-
folder” or “watched file.” Hot folders are used to automate
functions such as preflighting. When a file is saved to a hot-
folder, the system knows to automatically apply a defined
process to the new file. When the folder is empty the pro-
cessing stops.
114 Execution Model

JDF Specification Release 1.2
Figure 4.4 is a view on the structure and Figure 4.5 a view on the dynamics of the pipe example considered here. R1
represents an input resource for P1, which feeds into the intermediate pipe resource R2. Once the container R2 is
filled to the predetermined level, it is used as the input resource for P2, which in turn produces output resource R3.

Resource linking through pipes is controlled through the specification of the PipePause and PipeResume
attributes. The intended amount of a resource must be specified in advance in the output link. Whenever the level rep-
resenting the available quantity of the pipe resource exceeds the PipePause level of the output link, the process P1
is halted (Status = Stopped) so that the process does not overproduce. Once the level falls below the
PipeResume value, the process P1 resumes execution. P1 is completed when it has produced the intended amount.
Once P1 has performed its task, the resources still in the pipe are consumed by the subsequent process without level
control. In other words, after a process filling a pipe buffer has completed, pipe buffering becomes disabled.

Conversely, if the level representing the actual amount exceeds the PipeResume level of the input link, P2 can
start or resume execution. If it falls below the PipePause level, P2 is halted (Status = Stopped) unless the
intended amount of the pipe resource R2 has already been produced. Then the PipePause level is ignored and the
pipe resource is completely consumed.

In the case of output links, the PipeResume value must be smaller than the PipePause value, whereas in the
case of input links, the PipeResume value must be greater than the PipePause value. If PipePause is specified
for an input or an output link and PipeResume is not specified, the related process may run into a deadlock state. In
other words, the process stops and cannot resume execution automatically. Once a process is stopped under these cir-
cumstances it can only be resumed manually or by sending a pipe control message for resumption that allows intercon-
nected execution control (halting and resumption of processes by pipe control messages is described in Section 5.5.3,
Pipe Control). If the attributes PipeResume or PipePause of links to pipe resources are not specified, the controller
is responsible when the linked processes start and stop independent of the level.

Figure 4.5: Example of status transitions in case of overlapping processing
Execution Model 115

Chapter 4 Life Cycle of JDF
4.3.3.1 Pipes of Partitionable Resources
Pipes of partitionable resources may also define the granularity of the resources that are considered to be one part. To
accomplish this, the PipePartIDKeys attribute may be specified in the appropriate ResourceLink element. For
instance, a partitioned ImageSetting process may be defined for multiple sheet separations, but a complete set con-
taining all separations of both sides of a single sheet should be sent to the pressroom as one pipe request. In this case, the
value of the PartIDKeys attribute of the ExposedMedia resource would be SheetName Side Separation
and the value of the PipePartIDKeys attribute of the resource link to the pipe would be SheetName.

4.3.3.2 Dynamic Pipes
In addition to abstractly declaring pipe properties, JMF provides pipe messages that allow dynamic control of pipes.
Dynamic pipes can be used to model situations where the required amount of resources is not known beforehand but
becomes known during processing. An example of this behavior is a long press run where new plates are required
during a press run because of quality deterioration. The exact point in time where quality becomes unacceptable is not
predetermined and may even vary from separation to separation. Dynamic pipes provide the flexibility to adjust to
changing situations of this nature.

Dynamic pipes provide a PipeURL attribute that allows dynamic requests for a status change of the pipe while a
process is executing. Dynamic requests use JMF pipe control messages (see Section 5.5.3, Pipe Control) sent to
another controller whose URL address is specified by the PipeURL attribute of the respective resource link. Depend-
ing on the values of the resource link's Usage attribute, the following actions are possible.

• Input: The consumer sends a PipePull message to its PipeURL in order to request additional resources or a
PipePause to halt production by the creator. The consumer sends a PipeClose message to the producer if the
consumer does not require any further resources.

• Output: The creator sends a PipePush message to its PipeURL in order to deliver additional resources or a
PipePause to halt consumption by the consumer.

When dynamic pipes are used, (i.e., when the PipeURL attribute is specified), the pipe buffering parameters
RemotePipeEndResume and RemotePipeEndPause define the buffering parameters of the remote (con-
trolled) end. PipeResume and PipePause, meanwhile, define the buffering parameters of the local node as
described in Section 4.3.3, Overlapping Processing Using Pipes. The buffering parameters of a non-dynamic pipe may
control the process that contains the resource link, whereas the buffering parameters of a dynamic pipe control the pro-
cess at the other end of the pipe. The pipe control messages described later in Section 5.5.3, Pipe Control are designed
to establish communication between processes at both ends of dynamic pipe, even if the corresponding processes are
spawned separately.

The following table summarizes the actions to be taken when the buffer in a dynamic pipe reaches a certain level
“L”.

Table 4-3: Actions generated when a dynamic-pipe buffer passes various levels

Controlling Pipe End Situation Message Description
Output (creator) L > RemotePipeEndResume PipePush Sufficient resources have been pro-

duced by the creator and are ready for
delivery to the consumer.

Output (creator) L < RemotePipeEndPause PipePause The consumer has consumed to the
low water mark and must pause until a
sufficient amount of resources have
been produced.

Input (consumer) L < RemotePipeEndResume PipePull More resources are requested from the
creator and processing may continue
by the consumer.

Input (consumer) L > RemotePipeEndPause PipePause The creator has produced to the high
water mark and must wait until a suffi-
cient amount of resources have been
consumed.
116 Execution Model

JDF Specification Release 1.2
Dynamic pipes are initially dormant and must be activated by an explicit request. Dynamic pipe requests may be ini-
tiated by both ends of the pipe. For example, a print process may notify an off-line finishing process when a certain
amount is ready by sending a PipePush message, or the printing process may request a new plate by sending a
PipePull message.

4.3.3.3 Comparison of Non-Dynamic and Dynamic Pipes
The resource link between non-dynamic pipes provides the buffering parameters for the process to which the link
belongs. Therefore, many processes can link to the same pipe resource. Furthermore, each process has its own buffer-
ing parameters, whether it is a consumer or a producer. In order to control non-dynamic pipes, one master controller
must control all processes linked to the pipe resource.

In contrast, dynamic pipes provide a URL address to control a process at the other pipe end. Then the buffering
parameters of the resource link control the process at the other end. In the case of dynamic pipes, no master controller
is required to control the pipe. Control is accomplished by sending pipe messages. If pipe resources are linked to mul-
tiple consumers or producers, such as two finishing lines that consume the output of one press one palette at a time, it
is up to implementation to ensure consistency of the processes.

When using pipe resources, it is recommended that scheduling data for the process be specified only in the
NodeInfo element of the parent node of the processes linked by pipe resources in order to avoid scheduling dead-
locks. In Figure 4.5, for instance, the actual start and end time of the corresponding parent of P1 and P2 are marked
on the time axis.

4.3.4 Parallel Processing
While serial processing assumes that all resources will be produced and consumed in a linear fashion, and while over-
lapping processing uses multiple processes that work together to use and create resources, there are times when it
makes sense to run more than one process simultaneously, creating a multi-pronged workflow. This kind of process
routing is known as parallel processing. Subsections of jobs are spawned off so that nodes may be executed individu-
ally and simultaneously by the appropriate devices. Once the processes are complete, the spawned nodes are merged
back into the original job. The output resources of the merged nodes become inputs for later processes. For example,
an insert may be produced independently of a cover, and both will be bound together later.

In parallel processing, processes can be run in a coordinated parallel fashion by using independent resources. An
independent resource is a resource that is not shared between multiple processes. Implementation resources, for
example, cannot be shared and are therefore always independent, and Consumable and Quantity resources can
each be split to function as independent resources. Individual partitions of partitionable resources are independent
and may be processed in parallel. Read-only resources, such as parameters, can be shared without any restrictions,
and can, therefore, be used in read-only mode for parallel processing. Process chains created by the use of indepen-
dent resources are known as independent process chains.

Parallel processing can proceed in one of two ways. Either a controller may organize the JDF nodes in a way that
allows it to initiate parallel processing, or it can use the spawning-and-merging mechanism to field out chunks of the
job to execute simultaneously. If a controller chooses the latter method, parent nodes that contain independent process
chains can be spawned off and processed independently. For example, in order to improve production capacity, an
agent may split consumable resources and create independent process chains in which each chain consumes its own
resource part. Afterwards, the agent can submit one of the created job parts to a subcontractor and process the other
part with its own facilities.

Parallel processing is used only to process multiple aspects of a job simultaneously; it is not used to process mul-
tiple copies of a JDF job. In other words, a job must not be copied and sent to different controllers for parallel pro-
cessing. For more information about spawning of jobs, see Section 4.4, Spawning and Merging.

4.3.5 Iterative Processing
Some processes, especially in the prepress area of production, cannot be described as a serial or parallel set of process
steps. Instead, a set of interdependent processes is iterated in a non-deterministic order. These processes are known as
iterative processes. For example, an advertisement is laid out that requires a photographic image. During the layout
phase, changes must be made to the color settings of the image, which is then reinserted to the layout. Changes such as
these can be described in a high level fashion by defining a resource Status attribute of Draft. As long as an input
resource to a process has a status of Draft, the Status of the output resource must not be Available.
Execution Model 117

Chapter 4 Life Cycle of JDF
The ResourceLink that links to a draft input resource must include a DraftOK attribute to state that a draft input
resource is acceptable for a process. Thus a prepress layout process can be abstractly defined to work on draft
resources until an acceptable output has been achieved, but the output PDL file must not be used for printing until it is
Available and no longer designated as a Draft.

Iterative processes may be set up in a formal fashion using dynamic pipes to convey parameter change requests
or in an informal way that assumes that the operators of the various processes have an informal communication chan-
nel. Both are described in greater detail below.

4.3.5.1 Informal Iterative Processing
Informal iterative processing does not require a complete redefinition of the required resources at every iteration.
This kind of processing is generally used in a creative workflow where a job is defined and gets refined in a series of
steps until it is completed. The information about the changes is transferred through channels that bypass JDF. None-
theless, the description of these processes in JDF is useful for accounting purposes, as the status of each process may
be monitored individually.

The ResourceLink elements for informal processing contain an additional DraftOK attribute, but in all other
ways they are identical to the ResourceLink elements used in simple sequential processing. Furthermore, the nodes
run through the same set of phases as they would in sequential processing. Nodes are designated only as Stopped
and not as Completed after being processed for an iterative cycle. They are marked as completed after their output
resources lose their Status of Draft.

4.3.5.2 Formal Iterative Processing
In formal iterative processing, all ResourceLink elements between interacting processes are dynamic pipes. Every
request for a new resource is initiated by a PipePush or PipePull message that contains at least one Resource ele-
ment with the updated parameters. This resource is used by the process, and the resulting new output resource can be
consumed by the requesting process. The Status of Draft can be removed from a resource by sending the creator
a PipeClose message that has the optional UpdatedStatus attribute set to Available. A node can only reach a
Status of Completed if it has no remaining draft resources. Another method to remove the draft status is to define
a node for an Approval process that accepts draft resources as inputs and has non-draft resources representing the
same entities as outputs.

4.3.6 Approval, Quality Control, and Verification
Modified in JDF 1.2
In many cases, it is desirable to ensure that an executed process or set of processes have been executed completely
and/or correctly. In the graphic arts industry this is verified by generating approvals and signing them. JDF allows
modeling of the approval process and modeling of the verification processes by allowing an optional
ApprovalSuccess input resource in any process.

The Approval, QualityControl, and Verification processes accept any resource as input and output
that resource along with ApprovalSuccess resource if approved. An ApprovalSuccess resource may only
be set as Available if it has been signed by an authorized person. For hard copy proofing, a combined process
(e.g., ending with the ImageSetting, ConventionalPrinting, or DigitalPrinting process) generates
the hard proof which is input to a separate Approval process. For soft proofing, a combined process (ending with
Approval process) generates the soft proof which is approved by that Approval process.

JDF provides a QualityControl process to verify that the output of a process fulfills certain quality criteria.
This differs from the Verification process, which verifies the completeness of a given set of resources.

4.4 Spawning and Merging
JDF spawning is the process of extracting a JDF subnode from a job and creating a new, complete JDF document that
contains all of the information needed to process the subnode in the original job. Merging is the process of recombin-
ing the information from a spawned job part with the original JDF job, even after both documents have evolved inde-
pendently. By using the mechanism for spawning and merging different parts of a job, it is possible to submit job
parts to distributed controllers, devices, other work areas, or other work centers.
118 Spawning and Merging

JDF Specification Release 1.2
The JDF spawning-and-merging mechanism can be applied recursively, which means that subjobs that have already
been spawned may in turn spawn other sub-subjobs, and so on. This does not mean, however, that a node may be re-
spawned. If a node is spawned a second time, the previously submitted version must first be deleted, and the spawn-
ing procedure must be applied again to the original node.

No matter how many job parts have been spawned, however, merging is realized by copying nodes back to their orig-
inal location and synchronizing the appropriate resources. Therefore, each spawning must be logged in the job by the agent
performing the actions that result in a spawned job. Furthermore, in order to avoid inconsistent JDF states after merging,
each merging should be logged, or the appropriate spawn audit must be removed from the AuditPool element.

Figure 4.6 shows, schematically, the spawning and merging of a subjob, designated as P.b. The following three
phases are defined on a demonstrational time scale.

1 The first phase occurs before the subjob is spawned off.
2 The second phase occurs during the spawn phase, when the spawned subjob is executed separately.
3 The third phase occurs after the spawned job has been merged back into the original job.

The three phases of the job part are bordered by the spawning point and the merging point. On a job scale, denoted as
spawning depth in Figure 4.6, one job ticket exists during the phases before and after spawning, and the following
two job tickets exist during the spawning phase: the job with the parent (P) of the original job part (P.b', also denoted
as a subjob) that has been spawned; and the spawned job (P.bs) itself.

This section provides examples that outline the various ways in which spawning and merging can be applied.
The following cases are considered in the next six sections.

1 Standard spawning and merging
2 Spawning and merging with resource copying

Figure 4.6: The spawning and merging mechanism and its phases
Spawning and Merging 119

Chapter 4 Life Cycle of JDF
3 Parallel spawning and merging of partitioned resources
4 Nested spawning and merging in reverse sequence
5 Spawning and merging of independent job tickets
6 Simultaneous spawning and merging of multiple nodes

JDF can support any combination of the cases described, but these six represent a cross-section of likely scenarios.
Case one is the simplest of all of the cases and is required in every instance of spawning and merging, regardless of
the circumstances surrounding the process. Each subsequent case requires additional processing that builds upon the
processing described in the cases that precede it.

4.4.1 Case 1: Standard Spawning and Merging
The actions described in this case must be applied in every spawning and merging process. All cases described in this
chapter, as well as any other that may be invented, begin with these procedures.

Spawning
To indicate that a process has been spawned, the Status attribute of the original JDF node must be set to the value
Spawned (see Table 3-4, “Contents of a JDF node,” on page 38). The Status attribute of the spawned node remains
unchanged.

A unique SpawnID attribute should be set in the spawned node, and a copy of its value should be set in the
NewSpawnID of the newly created Spawned audit. This simplifies bookkeeping of audits and merging in case a
node is multiply spawned, either due to error conditions or in parallel with individual partitions. The value of
SpawnID should also be appended to the SpawnIDs list of all spawned resources.

In order to identify all of the ancestors of a job that has been spawned, an AncestorPool element is included in
the root node of every spawned job. This element contains an Ancestor element that identifies every parent, grand-
parent, great-grandparent, and so on of the spawned subnode. In this way, the family tree of every spawned node is
tracked in an ordered sequence that allows an unbroken trace back through all predecessors. Consequently, the ele-
ments that comprise the AncestorPool of a spawned job must be copied into the AncestorPool element of the
newly spawned job before the ancestor information of the previously spawned job is appended to the AncestorPool
element of the newly spawned job. The last Ancestor element in each AncestorPool is the parent, the second-to-
last the grandparent, and so on. NodeInfo and CustomerInfo elements may optionally be copied into the respec-
tive Ancestor elements. The following code is an example of a family tree:
 <AncestorPool>
 <Ancestor FileName="file:///grandparent.jdf" NodeID="p_01"/>
 <Ancestor FileName="file:///parent.jdf" NodeID="p_02"/>
 </AncestorPool>

The complete ancestor information is required in order to merge back semi-finished jobs with nested spawns. If the
last spawn is always merged first (“LIFO”—Last In, First Out), then knowing the direct parent is sufficient as each
parent will in turn know its own parent back to the original and a complete ancestor line may be inferred.

When a job is spawned, the action must be logged in the parent node of the spawned node in the original job.
This is accomplished by creating a Spawned element with the jRef attribute set to the ID of the spawned JDF node.
This Spawned element must be appended to the AuditPool container of the original parent node. If no AuditPool
container exists in the parent node, one must be created for the purpose.

Merging
After processing, the spawned job must be merged back to its original location. Before this can occur, however, dupli-
cate information contained in any elements that are not required for further processing (such as CustomerInfo or
NodeInfo) may optionally be deleted by the agent executing the spawning and merging. Once this has been accom-
plished, the spawned node is copied to the location of the original node, completely overwriting the original node.
The Status of the original node is then overwritten with the result.

To complete the merging process, the merging agent must add a Merged audit to the AuditPool (see Section
3.9, AuditPool). The MergeID of the Merged audit should be set to the value of the SpawnID attribute of the
merged node. Furthermore, the AncestorPool container with all child elements must be removed, and the value of
SpawnID should be removed from the SpawnIDs attribute of the appropriate resources.

A JDF agent that receives a JDF node that has been spawned individually, and thus has no Part element in the
AncestorPool, may modify any elements except for Resources that were spawned as read-only data.
120 Spawning and Merging

JDF Specification Release 1.2
4.4.2 Case 2: Spawning and Merging with Resource Copying
The following figure represents an example of a job that requires that resources be copied during spawning. In this
job, the nodes B1 and B2 are linked to the same resource, which is localized in the resource pool of an ancestor node,
denoted as node A. This node is the parent node.

When node B1 is spawned, its resources must also be duplicated. To accomplish this, the affected resources must be
copied to the spawned job and purged during merging, a process that is described below.

4.4.2.1 Spawning of Resources with Inter-Resource Links
Resources may be linked to a node by three mechanisms.

• Explicit links defined by a ResourceLink in the ResourceLinkPool of the node.

• Implicit links defined by the ResourceRef elements of linked Resources (implicit links are recursive).

• Implicit links defined by the ResourceRef elements of the AuditPool, CustomerInfo, or NodeInfo
element of the node.

A spawning or merging agent must resolve all of these links by copying any non-local resources into the local
ResourcePool.

Spawning
Spawning begins as it did in Case 1. The affected resources must then be copied to the resource pool of the spawned job.
The copied resources retain the same ID values as the original resources. These resources can be spawned for read-only
access, which allows multiple simultaneous spawning of one resource, or for read/write access, where a resource may
only be spawned one time. The read/write spawning of a resource locks the resource in the original file in order to avoid
conflicts that result from simultaneous modification or reading and modification of a resource. The SpawnStatus
attribute of the original resource must be set to SpawnedRW (which stands for “spawned read/write”) or SpawnedRO
(which stands for “spawned read-only”) to indicate that the resource is spawned. In other words, a copy of the resource
is spawned together with the spawned job. Read/write access effectively locks the original resources, just as if the
attribute Locked = true1 were present. If a resource is spawned as read-only, it is not a good idea to modify the orig-

Figure 4.7: JDF node structure that requires resource copying during spawning and merging

1. Usually resources become locked (Locked = true) if they are referenced by audit elements (see also
Section 3.9, AuditPool).
Spawning and Merging 121

Chapter 4 Life Cycle of JDF
inal resource that remains in the parent job ticket as this may lead to inconsistencies. The Locked attribute of spawned
resources that are copied read-only should also be set true. Furthermore, the value of the ID attribute of each copied
resource must be appended to the appropriate rRefsROCopied or rRefsRWCopied values of the Spawned ele-
ment that resides in the AuditPool of the parent node.

Merging
Merging begins as it did in Case 1. Then, if resources have been copied for spawning, they must be purged after merging.
Read-only resources may simply be deleted in the spawned node before merging. If the original resource and the spawned
resource are not identical, however, a JDF content error should be logged by a Notification element of Class = Error
(see Section 4.6, Error Handling). Read/write resources must be copied into their original location, completely overwrit-
ing the original resource. The ID attributes of the overwritten resources must be specified in the rRefsOverwritten
attribute of the Merged element. The Merged element is then inserted into the AuditPool container of the parent dur-
ing the usual merging procedure, which is shown as the return point in the spawning diagram.

4.4.3 Case 3: Parallel Spawning and Merging of Partitioned Resources
In many cases, it is desirable to define a parallel workflow for partitioned resources. This is modeled by spawning a
node that defines the process for each part that is to be processed individually.

Spawning
Spawning begins as it did in Case 1 or Case 2. Then the spawning agent must loop over all ResourceLinks and
ensure that the appropriate Part element or elements exist in any resources in the spawned ticket, where only the
individual parts are required. This is accomplished either by adding Part elements if none exist in ResourceLinks
of the parent node or by modifying the copies of existing Part elements. Part elements must be included in all
ResourceLinks that point to resources that are spawned with write access. Part elements may be included in
ResourceLinks that point to resources that are spawned with read only access, (e.g., physical resources where only
a part is provided to a process as input). In addition, copies of the Part elements are appended to the Spawned
audit element. The Status of any partitioned resource is defined individually for each partition. The Status of the
parent node is set to “Pool” and a StatusPool is generated with the appropriate information. The PartStatus that
describes the newly spawned node is set to “Spawned”.

Exactly one Part element that contains the partition keys of this spawn and all partition keys of previous spawns
must be present in the AncestorPool of the spawned JDF node.

The spawning procedure described in this section can be performed iteratively for multiple parts, effectively gen-
erating one Spawned audit element and one PartStatus in the StatusPool per part. The Spawned and
Merged audit elements are not placed in the parent node of the node to be spawned, but rather in the node itself.

An Agent that receives a JDF node that has been spawned in parallel and thus has a Part element in the
AncestorPool must not modify any elements except for:

• Resources that were spawned with read-write permission, and

• Adding Audit elements.
Synchronizing multiple NodeInfo, CustomerInfo elements, or newly inserted sub JDF nodes in spawned JDF
nodes is not required or supported.

Merging
After an individual partitioned spawned node has been processed, it is merged back to the parent as described in Case
1. In addition, a copy of the Part elements of the corresponding Spawned audit is appended to the Merged ele-
ment and any read/write resources are merged into their appropriate parts. The Status of the spawned node is copied
into the appropriate PartStatus in the StatusPool.

An example of partitioned Spawning and Merging can be found in “Spawning and Merging” on page 672.

4.4.4 Case 4: Nested Spawning and Merging in Reverse Sequence
Deprecated in JDF 1.2
 Note that nested Spawning and Merging in Reverse Sequence has been deprecated because it is highly probable that
applications implementing it will not interoperate.
122 Spawning and Merging

JDF Specification Release 1.2
Figure 4.8 shows an example of nested spawning and merging in reverse sequence. Process A spawns node B, and
node B spawns node C. Even if B is merged back to A for any reason before C is merged back to B, C still contains the
information of its grandparent in the AncestorPool element. In this way, C can trace back its ancestors and find the
location of its parent, node B, in node A even though the spawned job, with B as root node, has already been deleted.

4.4.5 Case 5: Spawning and Merging of Independent Jobs

It is useful to spawn and merge independent jobs in situations where the execution of separate, independent small
jobs is not efficient in a commercial sense. Business cards for individual customers that are printed on one set of
sheets and subsequently cut are an example of this kind of situation. In cases such as these, small jobs can be col-
lected in order to form a big job that may then be executed as a whole. This allows job aspects such as production,
equipment load, and balancing of implementation resources to be performed more efficiently.

Note that production devices will generally require their resources to unambiguously define the production
details. Thus a JDF Agent must prepare the resources in a way that the exact positioning of the contents of individual
small jobs is specified. It is therefore recommended to use the procedure that is described in this section for Product
intent nodes only.

In this example, diagrammed in Figure 4.9, nodes C and E represent small jobs of identical type. Node bigF rep-
resents a big job, which may exist already or which may have been created for the purposes of this spawning-and-
merging process. Once nodes C and E are gathered beneath node bigF, as described below, a big job may then be exe-

Figure 4.8: Example for a JDF node structure with nested spawning

Compatibility Warning. Note that Spawning and Merging of Independent Jobs is under develop-
ment and subject to major changes in a future release of this specification.
Spawning and Merging 123

Chapter 4 Life Cycle of JDF
cuted as a whole for the sake of efficiency. When the big job is executed, the small jobs are effectively executed
simultaneously. Nodes A, B, and D are provided to demonstrate that spawned nodes in this example may be related to
other nodes in various ways.

Spawning
Spawning begins as it did in Case 1 or Case 2. Then, the process to be spawned (job C in Figure 4.9) is copied into a
newly created or already existing big job (big job bigZ in Figure 4.9). The process type of the root node of the big job must
be identical to that of the spawned processes. The Activation state of the spawned processes is set to Inactive, and
an AncestorPool element is added to the inactive spawned job to define the ancestry (as was described above). A
Merged element containing information about the spawned independent jobs and when they have been received is added
to the big job.

In the original jobs, the Status of the process is designated as Spawned, and a Spawned element with the
optional attribute jRefDestination specified is added to the parent of the original job. The attribute jRefDestination
contains the ID of the big job beneath which the spawned process has been placed. The changes in the parent are the equiv-
alent of those described in Case 1 except for the specification of the attribute jRefDestination in the Spawned ele-
ment.

Where necessary, resource instances must be copied and logged as in Case 2 by appending the IDs to the appro-
priate attribute (rRefsROCopied or rRefsRWCopied) of the Spawned element in the parent of the original job.
This is required in single spawning and merging. Furthermore, the ResourceLink elements of the spawned process
must be copied to the ResourceLinkPool of the active, big process node. In this way, the input resources and the
resources to be produced are linked to the big job.

Figure 4.9: Example of the spawning and merging of independent jobs
124 Spawning and Merging

JDF Specification Release 1.2
Merging
For each of the spawned small jobs, the return procedure is performed as it was in the preceding cases. Once the pro-
cess explained in Case 1 is performed, the completed job is copied back to its original location and the attribute
Activation is restored by setting it to the activation of the big-job node after completion.

Eventually, copied resources must be purged and handled just as they were in Case 2. Then, the merging must be
logged by appending the Merged element to the AuditPool container of the parent of the original node. In indepen-
dent spawning and merging, the attribute jRefSource must be specified in the appropriate Merged element.

If the big job is retained, a Spawned element with the attribute Independent = true must be appended to
the AuditPool of the big job. For instance, saving the finished big job may be desirable if the audit information con-
tained in the big job should be available for individual invoicing. Finally, the newly created big JDF should be deleted
to avoid the double existence of nodes.

4.4.6 Case 6: Simultaneous Spawning and Merging of Multiple Nodes
It is not possible to explicitly spawn multiple nodes simultaneously. The nodes must be grouped into a single
ProcessGroup node. This node can then be spawned and merged as described in the previous sections.

4.5 Node and Resource IDs
Clarified in JDF 1.2
All nodes and resources must contain a unique identifier, not only because it is important to be able to identify indi-
vidual components of a job, but also because JDF uses these IDs for internal linking purposes. Each agent that creates
resources and subnodes or that performs spawning and merging is responsible for providing IDs that are unique in the
scope of the file, taking into account all of the phases of a job’s life cycle.

IDs come in two flavors: pure and composite. A pure ID is an ID that does not contain a period character (.). A
composite ID is made up of pure IDs separated by periods. IDs are used differently under different circumstances.
Several different circumstances are described below.

In case of no spawning. If an agent inserts new elements requiring IDs into an original job, then the agent assigns
pure IDs to the new elements and must guarantee their uniqueness.

In case of single spawning. If an agent inserts new elements into a spawned job, then the agent creates composite
IDs by using the ID of the root node and appending a unique pure ID delimited by a period. For example:
• ID of spawned root node: ID = “Job_01234.Proc1”
• ID used for new element: ID = “Job_01234.Proc1.newpureID”

In case of independent spawning. The agent that merges the independent jobs beneath a big job inserts a unique,
pure ID (delimited by a period) in front of all IDs of each small job it receives. That means that the agent must replace
all IDs of each job it receives whenever it encounters an ID collision. If an agent inserts new elements into a spawned
job, then the agent creates composite IDs by using the ID of the respective root node of the small job and appends a
unique pureID, delimited by a period. For example:
• ID of the big job with node ID = “A”
• Receives small job A1 with some IDs: ID = “A” ID = “A.A” ID = “A.B” where the first is the ID of the root node.

• Receives small job A2 with some IDs: ID = “A” ID = “A.A” ID = “anything” …

• The agent creates locally unique pure IDs: ID = “A1” and ID = “A2” each prepended to all IDs of each received
small job; the IDs of the small job A1 become: ID = “A1.A” ID = “A1.A.A” ID = “A1.A.B”, and the IDs of the
small job A2 become: ID = “A2.A” ID = “A2.A.A” ID = “A2.anything”. All IDs in the big job are unique.

• The agent creates a new element added to the small job A1 with ID: ID = “A1.A.C”. Here the agent must resolve
the possible conflict if it would append the pure ID = “A” to the root ID = “A1.A”. That means the agent has to
check the uniqueness of each created ID.

• Before merging the jobs back to their original location, the agent must remove the prepended pure IDs of all IDs,
here “A1”, “A2” respectively. Then the newly created element will be merged back with the ID = “A.C”.
Node and Resource IDs 125

Chapter 4 Life Cycle of JDF
4.6 Error Handling
Error handling is an implementation-dependent feature of JDF-based systems. The AuditPool element provides a
container where errors that occur during the execution of a JDF may be logged using Notification elements.
Notification elements may also be sent in JMF Signal messages. The content of the Notification element is
described in Table 3-33, “Contents of the Notification element,” on page 92. For a list of predefined error codes, see
“Supported Error Codes in JMF and Notification elements” on page 619. Further details about error handling are pro-
vided in the next four sections.

4.6.1 Classification of Notifications
Notification elements are classified by the attribute Class. Every workflow implementation must associate a class
with all events on an event-by-event basis. The following list shows the possible values for Class.

4.6.2 Event Description
A description of the event is given by a generic Comment element, which is required for the notification classes
Information, Warning, Error, or Fatal. For example, after a process is aborted, error information describing
a device error may be logged in the Comment element of the Notification element. If phase times are logged, the
PhaseTime element that logged the transition to the Aborted state may also contain a local Comment element
that describes the cause of the process abortion. PhaseTime and Notification elements are optional subelements
of the AuditPool, which is described in Section 3.9, AuditPool.

4.6.3 Error Logging in the JDF File
A JDF-compliant controller/agent should log an error by inserting a Notification element in the AuditPool of the
node that generated the error. The NodeInfo element may contain NotificationFilter elements to define the noti-
fication events (or, more specifically, errors) that should be logged.

4.6.4 Error Handling via Messaging (JMF)
A JMF Signal message with a Notification element in the message body should be sent through all persistent
channels that subscribed events of class error. How to subscribe error events via JMF, see Section 5.2.2.3,
Persistent Channels and Section 5.5.1.1, Events. Note that this is different from the NotificationFilter elements of
the NodeInfo element, which is defined for logging events by Notification elements to the AuditPool.

4.7 Test Running
In JDF, the notion of a test run is similar to the press notion of preflight. The goal is to detect JDF content errors and
inconsistencies in a job before the job is executed.

The ability to perform a test run may be built into individual devices or controllers. Alternatively, a controller
implementation may perform test runs on behalf of its devices. A test run may be routed through all of the different
devices and controllers in a workflow, just as if the test run were a standard execution run. For the routing of jobs and
nodes through different devices and controllers for a test, the spawning and merging mechanism may also be applied.
The devices/controllers receiving a job read and analyze it WITHOUT initiating execution. Rather, they investigate
the content of the node they would execute. A device/controller with agent capabilities may record results into the
audit pool associated with a given process.

Event Indicates a pure event which occurred due to a certain operation-related action,
(e.g., machine events, operator activities, etc.). This class is used for messaging.

Information Indicates not an error, but rather any information about a process that cannot be
expressed by the other classes, (e.g., the beginning of execution).

Warning Indicates that a minor error has occurred, and an automatic fix was applied. Execu-
tion continues. The node’s Status is unchanged. This appears in situations such as
A4-Letter substitutions when toner is low or when unknown extensions are encoun-
tered in a required resource

Error Indicates that an error has occurred that requires user interaction. Execution cannot
continue until the problem has been fixed. The node’s Status is Stopped. This
value appears in situations such as when resources are missing, when major incom-
patibilities are detected, or when the toner is empty.

Fatal Execution must be aborted. The node’s Status is Aborted. This value is seen
with most protocol errors or when major device malfunction has occurred.
126 Error Handling

JDF Specification Release 1.2
During test running, the requirements of the processes specified are compared to the capabilities of the devices targeted. A
device or controller explicitly tests if the inputs that have been specified as required are actually the inputs that are required,
and that none are missing or in error. For example, an input requirement may be a URL that, when a test run is performed,
is found to point to an item that no longer exists in that location. Test running is meant to prevent errors as a result of that
kind of misinformation. It is particularly useful when running expensive or time-consuming jobs.

It is also possible to test run specific parts of a workflow, or even individual nodes. An agent may request a test
of certain nodes by setting the JDF attribute Activation to TestRun (see Table 3-4, “Contents of a JDF node,” on
page 38), which is inherited by all descendent nodes that are not inactive (Activation = Inactive). If a device or
controller1 detects an error in a node a Notification element containing a textual description should be appended to
the AuditPool element of the node in which the error occurred, and, if messaging is supported, the error should be
also communicated to the connected listeners via messaging. For more information, see Section 5.4, Error and Event
Messages. If an error has been detected, the agent can modify the job in order to correct the error. Once a test run has
been completed successfully, the device/controller with agent capabilities changes the Status attribute of the tested
node to Ready. If a test run fails, the device/controller is required to record the process status as FailedTestRun.
After the test run has finished, the agent should log the result by appending a ProcessRun element to the
AuditPool element. For more information about audits, see Section 3.9, AuditPool.

In principle, execution and test runs may be run simultaneously. For example, one job part may be executed
while another part requests only a test. JDF also defines an Activation value of TestRunAndGo that requests a
test run and, upon successful completion, automatically initiates processing.

4.7.1 Resource Status During Testrun
In order to test run a complete set of nodes, it is sometimes necessary to imply the Status of resources that are pro-
duced by prior nodes. Successful test running does not set the Status attribute of a resource to Available unless
the resource actually is available. Nodes that require an output resource from a node that has completed test running
for purposes of test running itself may assume that these resources have a Status of Available for the purpose of
test running as long as the producing node has a Status of Ready.

4.8 Capability and Constraint Definitions
New in JDF 1.1
Modified in JDF 1.2
While the JDF schema describes the structure of all JDF, it does not provide for a way to allow a specific JDF device
to provide details on how it subsets (or extends) the JDF language. This ability is provided by the JDF Device Capa-
bilities features. With it, a JDF device may describe details on supported processes, resources, attributes, and attribute
values (and details about constraints and their interaction).

1. Note that only devices and controllers with agent capabilities can write in a JDF document.

Figure 4.10: Parameter Space in device Capabilitiesa

a. Note that the restriction to three dimensions is for graphical demonstration purposes only.
Capability and Constraint Definitions 127

Chapter 4 Life Cycle of JDF
A JDF device’s capabilities are described as a space of allowed resource parameter values within JDF. A device in
this context is assumed to execute one or more JDF nodes. Its capabilities are defined by the space of acceptable JDF
resources for the product intent or process described by the node. An individual JDF job definition can be compared
to the capabilities of a JDF device by looping over all resource parameters of a JDF node that is to be executed by a
device. The job can be executed as specified (attributes can be ignored if the SettingsPolicy is “BestEffort”)
if all job parameter values are within the ranges specified by the capabilities. If the capabilities describe product
intent, the job is executable as specified when all product intent ranges overlap with the capabilities description.

Details of the elements needed for capability description are specified in “Device Capability Definitions” on
page 502.

It is assumed that Device elements that describe capabilities will be transported in JMF KnownDevices mes-
sages. It is not recommended to specify the capabilities of a device that is linked to a process to specify that it should
execute the given process.

A capabilities description can also provide information necessary for the construction of a user interface to allow
entry of the values to use for a JDF. This includes specifying the NMTOKEN, enumeration, or string values that are
supported, hints for how to group features on the user interface, and macro definitions for features of the device
(allowing multiple JDF controls to be presented as a single user control).
128 Capability and Constraint Definitions

Chapter 5 JDF Messaging with the Job Messaging
Format

Introduction
A workflow system is a dynamic set of interacting processes,
devices and MIS systems. For the workflow to run efficiently,
these processes and devices must communicate and interact in
a well defined manner. Messaging is a simple but powerful
way to establish this kind of dynamic interaction. The JDF-
based Job Messaging Format (JMF) provides a wide range of
capabilities to facilitate interaction between the various
aspects of a workflow, from simple unidirectional notification
through the issuing of direct commands. This chapter outlines
the way in which JMF, accomplishes these interactions. The
following list of use cases is considered:
• System setup
• Dynamic status and error tracking for jobs and devices
• Pipe control
• Device setup and job changes
• Queue handling and job submission
• Device Capability description
Both Controllers and Devices may support JMF. This support requires hosting by a HTTP(S) server. JMF messages
are most often encoded in pure XML, without an additional MIME/Multipart wrapper. Only controllers that support
JDF job submission via the message channel must support MIME for messages.

There are two types of JMF messaging: bidirectional and unidirectional. Bidirectional JMF messaging uses a
Bidirectional protocol — currently HTTP and HTTPS. Unidirectional JMF messaging uses JMF files, placed into a
“hot folder” using either a network shared folder or FTP folder to move the file between client and server.

There is a special case of unidirectional JMF messaging: a JDF file may be placed in the input folder of a JDF
controller or device. Placing a JDF file rather than a JMF file implies the SubmitQueueEntry message and is
analogous to placing a JMF file containing the SubmitQueueEntry message with a reference to the JDF file.

JDF messaging supports combining the JMF message, the JDF job ticket(s) to which it refers, and, optionally, the
digital assets to which the JDF job tickets refer into a single package. See “JDF Packaging” on page 560

Certain attributes in various JDF and JMF elements exist only to facilitate unidirectional JMF Messaging. To
reduce confusion such attributes are marked as Unidirectional in the tables through which they are defined. Others
exist only for bidirectional JMF Messaging and are marked as Bidirectional in the tables through which they are
defined.

5.1 JMF Root
JMF and JDF have inherently different structures. In order to allow immediate identification of messages, JMF uses
the unique name JMF as its own root-element name.

The root element of the XML fragment that encodes a message, like the root element of a JDF fragment, contains a
series of predictable attributes and instances of Message elements. These contents are defined in the tables that follow
and are illustrated in Figure 5.1. Message elements are abstract, as is indicated by the dashed line surrounding the
Message element in Figure 5.1.

In order to automate aspects of your
production without JDF, your technical
staff must become proficient in each of the
command languages that each of your
devices employ. By only buying JDF-
enabled devices that use JMF as their
control language, you only have to learn
one new device command language …
eventually, the only one your MIS staff will
need.

J M F = R O I
JMF Root 129

Chapter 5 JDF Messaging with the Job Messaging Format
The following table describes the contents of the abstract Message element. All messages contain an ID and a
Type attribute.

Table 5-1: Contents of the JMF element

Name Data Type Description
DeviceID ? string Identifies the recipient device or controller. The envelope of the mes-

sage contains the URL address of the controller that receives the mes-
sage via HTTP. Therefore, if DeviceID does not specify a recipient,
that controller is assumed to be the recipient.

ResponseURL ?
New in JDF 1.2
Unidirectional

URL URL of the direct response to this JMF. Required when using an unidi-
rectional protocol that does not automatically provide a response chan-
nel, (e.g., the file protocol). If ResponseURL is specified, a
Response must be generated and written to ResponseURL, even if
no ResponseTypeObject is required for the Message. The
Response may be empty. Must not be present when a bidirectional
protocol is used, (e.g., in HTTP). The URL must be an explicit locator.
It is up to the sending agent to generate a unique locator for the
response. Example:
"file://master/JMFResponseFolder/Rip1/
r12345.jmf"

SenderID string String that identifies the sender device, controller or agent.
TimeStamp dateTime Time stamp that identifies when the message was created.
Version
Modified in JDF 1.2

JDFJMFVersion Text that identifies the version of the JMF message. The current ver-
sion of this specification are “1.1” and “1.2”. The version of a
JMF message is defined by the highest version of the JMF message
itself or any child element. For details on JDF versioning see “JDF
Versioning” on page 101.
Note that Version was optional below JDF 1.2, but is required in
instances that conform to JDF 1.2 and beyond. If not specified, the
XML schema value for Version will default to “1.1”.

xmlns ?
New in JDF 1.1

URI JDF supports use of XML namespaces. The namespace must be
declared. For details on using namespaces in XML, see http://
www.w3.org/TR/REC-xml-names/.

Message + element Abstract message element(s). Note that while a JMF instance may
include multiple messages, the order of execution of the Message
elements within a JMF is not deterministic.

Table 5-2: Contents of the abstract Message element

Name Data Type Description
ID ID Identifies the message.
Time ? dateTime Time at which the message was generated. This attribute is only

required if this time is different from the time specified in the
TimeStamp attribute of the JMF element.

Type NMTOKEN Name that identifies the message type. Message types are described in
Section 5.6 and Section 5.7.

xsi:type ?
New in JDF 1.2

NMTOKEN Informs schema aware validators of the JMF message type definition
that the message is to be validated against. The schema for this version
includes definitions for all the standard JMF messages defined in
Section 5.5, Standard Messages. If omitted then a general definition
for the JMF message will be used. See “JDF Nodes” on page 35
130 JMF Root

http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/

JDF Specification Release 1.2
The following figure depicts the basic JMF messaging structure and the message families. Dashed boxes show
abstract objects.

5.2 JMF Semantics
JMF encodes messages of several types. The first part of this section describes message elements that contain and
convey content, while the second describes the way in which these element types can be used to establish communi-
cation.

5.2.1 Message Families
A message contains one or more of the following five high level elements, referred to as message families, in the root
node. These families are Query, Command, Response, Acknowledge, and Signal. An explanation of each
family is provided in the following sections, along with an encoding example.

Figure 5.1: Contents of a JMF root element and the message families
JMF Semantics 131

Chapter 5 JDF Messaging with the Job Messaging Format
5.2.1.1 Query
A Query element is used as a message that retrieves information from a controller without changing the state of that
controller. A query is sent to a controller. After a Query is sent, a Response is returned. If the Query included a
Subscription, Signals are sent to the designated URL until a StopPersistentChannel Command is sent.

The Query contains an ID attribute and a Type attribute, which it inherits from the abstract message type described in
Table 5-2, “Contents of the abstract Message element,” on page 130. JMF supports a number of well defined query
types, and each query type can contain additional descriptive elements, which are described in Section 5.6 and Section
5.7. The following table shows the content of a Query message element.

Figure 5.2: Interaction of Messages with a subscription

Table 5-3: Contents of the Query message element

Name Data Type Description
QueryTypeObj * element Abstract element that is a placeholder for any descriptive elements that

provide details required for the query. The element type of
QueryTypeObj is defined by the Type attribute of the abstract
Message element.

Subscription ? element If specified creates a persistent channel. For the structure of a
Subscription element, see Section 5.2.2.3, Persistent Channels.

Response & Acknowledgement

The terminology used for message families contradicts common usage but will be retained for back-
wards compatibility. The Response actually functions as an Acknowledgement that a Com-
mand will be acted upon, while the Acknowledge could more properly be named Completion

or Result. The naming was defined to be consistent with HTTP naming conventions so that a Response is
always transported on an HTTP response in case HTTP is used as the JMF transport protocol layer.
132 JMF Semantics

JDF Specification Release 1.2
The following is an example of a query message:
<JMF xmlns="http://www.CIP4.org/JDFSchema_1_1" SenderID="Controller-1"
 TimeStamp="2000-07-25T11:38:23.3+02:00" Version="1.2">
 <Query ID="M007" Type="KnownDevices"/>
</JMF>

5.2.1.2 Response
A Response element is used to reply to a Query or a Command and is always a direct answer of a Query or a
Command. A Response is returned from a controller to the controller that submitted the Query or Command;
however, Response(s) are not acknowledged themselves.

A command response indicates that the command has been received and interpreted. The response of commands
with short latency also includes the information about the execution. Commands with long latency may additionally
generate a separate Acknowledge message (see Section 5.2.1.5, Acknowledge) to broadcast the execution of the
command. Command responses should contain a Notification element that describes the return status in text, if
ReturnCode is greater than 0. Responses contain an attribute called refID, which identifies the initiating query or
command. The following table shows the content of a Response message.

An example of a response on a command is provided in the Section 5.2.1.4, Command. The encoding example for the
query, shown above, might generate the following response:
<JMF xmlns="http:/ /www.CIP4.org/JDFSchema_1_1" SenderID="RIP-1" TimeStamp="2000-07-
25T11:38:25+02:00" Version="1.2">
 <Response ID="M107" Type="KnownDevices" refID="M007">
 <DeviceList>
 <DeviceInfo DeviceStatus="Unknown">
 <Device DeviceID="Rip1"/>
 </DeviceInfo>
 <DeviceInfo DeviceStatus="Unknown">
 <Device DeviceID="Rip2"/>
 </DeviceInfo>
 </DeviceList>
 </Response>
</JMF>

Table 5-4: Contents of the Response message element

Name Data Type Description
Acknowledged =
“false”

boolean Used only in responses to command messages. Indicates whether the
command will be acknowledged separately. If “true”, an
Acknowledge message will be supplied after command execution.
If “false”, no Acknowledge message will be supplied.

refID ?
Modified in JDF 1.2

NMTOKEN Copy of the ID attribute of the initiating query or command message
to which the response refers. If not specified, the response refers to the
entire JMF message, (e.g., if the JMF was not parsable). Response/
@Type is set to “Notification” if the Type of the incoming
Message is corrupted or unknown.

ReturnCode = “0” integer Describes the result. “0” indicates success. For all other possible
codes see “Supported Error Codes in JMF and Notification elements”
on page 619.

Subscribed ? boolean If a Subscription element has been supplied by the corresponding
query, this attribute indicates whether the subscription has been
refused or accepted. If true, the requested subscription is accepted. If
false, the subscription is refused because the controller does not
support persistent channels. For details, see Section 5.2.2.3, Persistent
Channels.

Notification ? element Additional information including textual description of the return code.
The Notification element should be provided if the ReturnCode is
greater than 0, which indicates that an error has occurred.

ResponseTypeObj * element Abstract element that is a placeholder for any descriptive elements that
provide details queried for or details about command execution.
JMF Semantics 133

Chapter 5 JDF Messaging with the Job Messaging Format
5.2.1.3 Signal
A Signal element is used as a message, which is equivalent to a combination of a Query message and a Response
message. It is a unidirectional message sent on any event to other controllers. This kind of message may be used to
automatically broadcast status changes.

Controllers can get signal messages in one of three ways. The first way is to subscribe for them with an initiating
query transmitted via a message channel that includes a Subscription element. The second way is to subscribe for
them with an initiating query defined in the NodeInfo element of a JDF node that also includes a Subscription
element (see JMF elements in Table 3-9, “Contents of the NodeInfo element,” on page 51). The first query is trans-
mitted separately via a mechanism such as HTTP, whereas the second is read together with the corresponding JDF
node. Once the subscription has been established, signals are sent to the subscribing controllers via persistent chan-
nels. In both cases, however, the Signal message contains a refID attribute that refers to the persistent channel. The
value of the refID attribute identifies the persistent channel that initiated the Signal.

The third way in which a controller may receive a signal is to have the signal channels hard-wired, for example,
by a tool such as a list of controller-URLs read from an initialization file. For example, signals may be generated
independently when a service is started, or when subcontrollers that are newly connected to a network want to inform
other controllers about their capabilities. Hard-wired signals, however, must not have a refID attribute. If no refID
is specified, the corresponding query parameters must be specified instead.

The following table describes the structure of the Trigger element.

Table 5-5: Contents of the Signal message element

Name Data Type Description
LastRepeat =
“false”

boolean If true, the persistent channel is being closed by the Device and no
further messages will be generated that fulfill the persistent channel
criteria. If false, further signals will be sent. For further details, see
Section 5.2.2.3, Persistent Channels.

refID ? NMTOKEN Identifies the initiating query message that subscribed this signal mes-
sage. Hard-wired signals must not contain a refID attribute.

Notification ? element Textual description of the signal. The Notification element should be
provided if the severity of the event that caused this signal is greater
than warning, or if pure events have been subscribed. For details
about subscribing pure events see Section 5.5.1.1, Events.

QueryTypeObj *
Modified in JDF 1.2

element If no refID is specified, the corresponding query parameters must be
specified instead by providing this element.
This element is an abstract element and a placeholder for any descrip-
tive elements that provide details for the virtual Query, which, if sent,
would convey the same ResponseTypeObj elements. The element
type of QueryTypeObj is defined by the Type attribute of the
abstract Message element.

ResponseTypeObj * element Abstract element that is a placeholder for any descriptive elements that
provide details subscribed. These element types are the same as in the
Response message element.

Trigger ? element Describes the trigger event which caused this signal. The Trigger ele-
ment recalls some information provided during the subscription of the
signal messages. For details on subscribing signals see Section 5.2.2.3,
Persistent Channels.

Table 5-6: Table 5-6 Contents of the Trigger element

Name Data Type Description
RepeatStep ? integer Recalls the RepeatStep attribute specified during subscription of

the signal. For details see Table 5-13.
RepeatTime ? double Recalls the RepeatTime attribute specified during subscription of

the signal. For details see Table 5-13.
134 JMF Semantics

JDF Specification Release 1.2
New in JDF 1.2
The following describes the structure of the ChangedPath element.ChangedPath replaces the
ChangedAttribute, Added and Removed elements.

Deprecated in JDF 1.2
The following describes the structure of the ChangedAttribute element.

Added ?
Deprecated in JDF 1.2

element A pool that contains the description of trigger events caused by the
adding of elements like services, controllers, devices, or messages.
Replaced by ChangedPath in JDF 1.2 and above.

ChangedAttribute *
Deprecated in JDF 1.2

element If a change of an attribute triggered this signal, this element describes
the attribute that changed.
Replaced by ChangedPath in JDF 1.2 and above.

ChangedPath *
New in JDF 1.2

element If a change of an attribute or element triggered this signal, this element
describes the details of the element or attribute that changed.

Removed ?
Deprecated in JDF 1.2

element A pool that contains the description of trigger events caused by the
removal of elements like services, controllers, devices, or messages.
Replaced by ChangedPath in JDF 1.2 and above.

Table 5-7: Contents of the ChangedPath element

Name Data Type Description
Path XPath XPath of the element or attribute that was modified.
Modification enumeration Specifies the modification that occurred with the object specified in

Path. Allowed values are:
Create – The object was created.
Delete – The object was deleted.
Modify – The object was modified.

OldValue ? string Old value of the attribute, if Path specifies an attribute and
Modification!=Create. The string must be cast to the appropri-
ate data type that depends on the attribute’s data type.

NewValue ? string New value of the attribute, if Path specifies an attribute and
Modification!=Delete. The string must be cast to the appropriate
data type that depends on the attribute’s data type.

Table 5-8: Contents of the ChangedAttribute element

Name Data Type Description
AttributeName NMTOKEN Name of the attribute that changed.
ElementID ? NMTOKEN ID of the element that changed. Used only in conjunction with a

change of a certain resource or node which cannot uniquely be
addressed by the other attributes of this element.

ElementType NMTOKEN Name of the element which contains the changed attribute.
OldValue string Old value. The string has to be cast to the appropriate data type that

depends on the attribute’s data type.
NewValue string New value of the attribute.

Table 5-6: Table 5-6 Contents of the Trigger element

Name Data Type Description
JMF Semantics 135

Chapter 5 JDF Messaging with the Job Messaging Format
Deprecated in JDF 1.2
The following describes the structure of the Added element referenced in Table 5-6.

Deprecated in JDF 1.2
The following describes the structure of the Removed element referenced in Table 5-6.

The following is an example of a signal message:
<JMF xmlns="http://www.CIP4.org/JDFSchema_1_1" SenderID="Press 45" TimeStamp="2000-07-
25T12:28:01+02:00" Version="1.2">
 <Signal ID="s123" Type="Status">
 <StatusQuParams JobID="42" JobPartID="66"/>
 <DeviceInfo DeviceStatus="Setup"/>
 </Signal>
</JMF>

5.2.1.4 Command
A Command element is syntactically equivalent to a Query, but rather than simply retrieving information, it also causes
a state change in the target device. The following table contains the contents of a Command message. A Response is
returned immediately after a Command. If the Command included an AcknowledgeURL, and the Command
was going to take a while, the device controller may select to return the Response with Acknowledge = “true”,
and send an Acknowledge to the AcknowledgeURL when the Command completes.

Table 5-9: Contents of the Added element

Name Data Type Description
AddedElement * element If the appending of an element like a service, controller, device, or

message triggered this signal, this element describes which service,
controller, device, message, etc. has been added.
This is an abstract element. It is a placeholder for a ResponseTypeObj
like NotificationDef, a JDFController, a Device, a
JDFService, or a MessageService.
For details on these elements see Section 5.5.1, Controller Registration
and Communication Messages.

Table 5-10: Contents of the Removed element

Name Data Type Description
RemovedElement * element If the removal of an element like a service, controller, device, or mes-

sage triggered this signal, this element describes which service, con-
troller, device, message, etc. has been removed.
This is an abstract element. It is a placeholder for a ResponseTypeObj
like NotificationDef, a JDFController, a Device, a
JDFService, or a MessageService.
For details on these elements see Section 5.5.1, Controller Registration
and Communication Messages.

Table 5-11: Contents of the Command message element

Name Data Type Description
AcknowledgeFormat ?
New in JDF 1.2
Unidirectional

string A formatting string used with the AcknowledgeTemplate attribute
to define a sequence of generated URLs. AcknowledgeFormat and
AcknowledgeTemplate are used in an analogous manner to
FileFormat and FileTemplate attributes of the FileSpec
resource. (See “FileSpec” on page 359) Only one of
AcknowledgeFormat and AcknowledgeTemplate or
AcknowledgeURL must be specified.

AckknowledgeTempla
te ?
New in JDF 1.2
Unidirectional

string A template, used with AcknowledgeFormat, to define a sequence
of generated URLs. The resulting set of URLs must be qualified URLs
and not a folder.
136 JMF Semantics

JDF Specification Release 1.2
The following example demonstrates how a ResumeQueueEntry command may cause a job in a queue to begin executing:
<JMF xmlns="http://www.CIP4.org/JDFSchema_1_1" DeviceID="A3 Printer" SenderID="MIS
master A" TimeStamp="2000-07-25T12:32:48+02:00" Version="1.2">
 <Command ID="M009" Type="ResumeQueueEntry">
 <QueueEntryDef QueueEntryID="job-0032"/>
 </Command>
</JMF>

The following example shows a possible response to the command example above:
<JMF xmlns="http://www.CIP4.org/JDFSchema_1_1" DeviceID="A3 Printer" SenderID="A3
Printer" TimeStamp="2000-07-25T12:32:48+02:00" Version="1.2">
 <Response ID="M109" Type="ResumeQueueEntry" refID="M009">
 <Queue DeviceID="A3 Printer" Status="Full">
 <QueueEntry JobID="job-0032" QueueEntryID="job-0032" Status="Running"/>
 </Queue>
 </Response>
</JMF>

5.2.1.5 Acknowledge
An Acknowledge element is a message that is an asynchronous answer to a Command issued by a controller.
Each Acknowledge message is unidirectional and similar to a Response, and the refID attribute of each refers to
the initiating command. Acknowledge messages are generated if commands with long latency have been executed
in order to inform the command sender about the results. Acknowledge messages are only generated if the initiat-
ing command has specified the attribute AcknowledgeURL.

AcknowledgeURL ?
Modified in JDF 1.2
Bidirectional

URL URL of the recipient of any Acknowledge. If specified, the com-
mand requests for a Acknowledge message depending on the value
of AcknowledgeType. The protocol of the acknowledgement is
specified either by the scheme of AcknowledgeURL for bidirectional
JMF messaging or through the use of AcknowledgeFormat for uni-
directional JMF messaging.

AcknowledgeType =
“Completed”
New in JDF 1.1

enumerations Defines the actions that should be acknowledged. This is necessary mainly
for device-machine pairs where the machine is not accessible online.
Received – The Command has been received and understood, (e.g.,
by an operator).
Applied – The Command has been applied to the machine, (e.g., by an operator).
Completed – The Command has been executed.

CommandTypeObj * element Abstract element that is a placeholder for any descriptive elements that
provide details of the command.

Figure 5.3: Interaction of Command and Acknowledge Messages

Table 5-11: Contents of the Command message element

Name Data Type Description
JMF Semantics 137

Chapter 5 JDF Messaging with the Job Messaging Format
They are announced in the Response message to the command by the setting the attribute Acknowledged = true.

The following is an example of an Acknowledge message:
<JMF xmlns="http://www.CIP4.org/JDFSchema_1_1" DeviceID="A3 Printer" SenderID="A3
Printer" TimeStamp="2000-07-25T12:32:48+02:00" Version="1.2">
 <Acknowledge ID="M109" Type="PipePush" refID="M010">
 <JobPhase JobID="J1" JobPartID="1" Status="InProgress"/>
 </Acknowledge>
</JMF>

5.2.2 JMF Handshaking
JMF can seek to establish communication between system components in several ways. This section describes the
actions and appropriate reactions in a communication using JMF.

5.2.2.1 Single Query/Command Response Communication
The handshaking mechanisms for queries and commands are equivalent. The initiating controller sends a Query or
Command message to the target controller. The target parses the Query or Command and immediately issues an
appropriate Response message. If a Command with long latency is issued, an additional Acknowledge mes-
sage may be sent to acknowledge when the command has been executed.

5.2.2.2 Signal
JMF signal messages are “fire and forget.” In other words, no acknowledgment is sent by the receiver besides the
standard protocol HTTP response that is sent when a communication link is sought.

5.2.2.3 Persistent Channels
Queries may be made persistent by including a Subscription element that defines the persistent channel-receiving
end (see also Figure 5.1). The responding controller should initially send a Response to the subscribing controller.
Then the responding controller should send Signal messages whenever the condition specified by one of the
attributes in the following table is true. This is referred to as a persistent channel. The refID attribute of the Signal
is defined by the ID attribute of the Query. In other words, the refID of the signal identifies the persistent channel.

Table 5-12: Contents of the Acknowledge message element

Name Data Type Description
AcknowledgeType =
“Completed”
New in JDF 1.1

enumerations Defines the context of this message. This is necessary mainly for
device-machine pairs where the machine is not accessible online.
Received – The initiating Command has been received and
understood, (e.g., by an operator).
Applied – The initiating Command has been applied to the
machine, (e.g., by an operator).
Completed – The initiating Command has been executed. No
further acknowledgement will be sent after an acknowledgement with
AcknowledgeType = “Completed” has been sent.

refID NMTOKEN Identifies the initiating command message that the Acknowledge
refers to.

ReturnCode = “0” integer Describes the result. “0” indicates success. For all other possible
codes see “Supported Error Codes in JMF and Notification elements”
on page 619.

Notification ?
Modified in JDF 1.1A

element Textual description of the command execution.

ResponseTypeObj * element Abstract element that is a placeholder for any descriptive elements that
provide details about command execution.
Delayed Acknowledge messages contain the same
ResponseTypeObj elements as direct Response messages.
138 JMF Semantics

JDF Specification Release 1.2
Any Query may be set up as a persistent channel, although in some cases this may not make sense. Whether or not a
responding controllers implements a JDF Persistent Channel as an HTTP/1.1 [RFC2616] persistent connection
depends on implementation.

If a persistent signal channel has been set up and the device knows that this is the last time that the condition for sig-
naling will be true, it should set the LastRepeat flag of the corresponding Signal message to true. In general,
this will happen for a Status query, as when the job that has been tracked is completed. It may also happen when a
device is shut down and will, therefore, not send any further updates. If a controller that does not support persistent
channels is queried to set up a persistent channel, it must answer the query with a Response, set Subscribed to
“false”, and set the ReturnCode to “111”.

Table 5-13: Contents of the Subscription element

Name Data Type Description
Format ?
New in JDF 1.2
Unidirectional

string A formatting string used with the Template attribute to define a
sequence of generated URLs. Format and Template are used in an
analogous manner to FileFormat and FileTemplate attributes of
the FileSpec resource. (See “FileSpec” on page 359) Only one of
Format and Template or URL must be specified.

Template ?
New in JDF 1.2
Unidirectional

string A template, used with Format, to define a sequence of generated
URLs.

RepeatStep ? integer Requests an update signal whenever the Amount associated with the
query is an integer multiple of RepeatStep.
If not specified, it is up to the sending controller to generate signals.

RepeatTime ? double Requests an update signal every RepeatTime seconds. If defined,
the signal is generated periodically independent of any other trigger
conditions.

URL ?
Modified in JDF 1.2
Bidirectional

URL URL of the persistent channel receiving end. The protocol of the sub-
scription is specified by the scheme of URL for bidirectional JMF
messaging or Format for unidirectional JMF messaging.

ObservationTarget * element Requests an updating Signal message whenever the value of one of
the attributes specified in ObservationTarget changes.

Table 5-14: Contents of the ObservationTarget element

Name Data Type Description
Attributes ?
Deprecated in JDF 1.2

NMTOKENS Requests an update signal whenever the value of one of the attributes
specified by Attributes is modified. A value of “*” denotes a mes-
sage request for any attribute change which is the default. Replaced
with ElementPath in JDF 1.2 and above.

ElementType ?
Deprecated in JDF 1.2

NMTOKEN Name of the element that contains attributes that may change. Defaults
to the abstract ResponseTypeObj of the message. Replaced with
ElementPath in JDF 1.2 and above.

ElementIDs ?
Deprecated in JDF 1.2

NMTOKENS IDs of the elements that contain attributes that may change. Used only
in conjunction with a query of the state change of a certain resource or
node which cannot uniquely be addressed by the other attributes of this
element. Replaced with ElementPath in JDF 1.2 and above.

ObservationPath ?
New in JDF 1.2

XPath XPath of the elements or attributes that are observed. If not specified, a
Signal is emitted on any change in the abstract ResponseType of
the message.
JMF Semantics 139

Chapter 5 JDF Messaging with the Job Messaging Format
Multiple attributes of a Subscription element are combined as a Boolean OR operation of these attributes. For
instance, if RepeatStep and ObservationTarget are both specified, messages fulfilling either of the require-
ments are requested. If the subscription element contains only a URL, it is up to the emitting controller to define
when to emit messages.

Creating Persistent Channels in a JDF Node
The NodeInfo element of a JDF node may contain JMF elements that contains a set of queries (not commands)
that define persistent channels. Parsing a JDF instance that contains JMF with a Subscription element is equivalent
to receiving the messages that are specified in the JMF node. If the parsing controller cannot handle the request, it
may generate a Response with ReturnCode = “111” and Subscribed = “false”, accompanied by a
Notification element describing the rejection. It is not required to emit the Response, (e.g., if the agent parses a
Resource request but has no access to the device information).

Deleting Persistent Channels
A persistent channel may be deleted by sending a StopPersistentChannel command, as described in Section
5.5.1.6, StopPersistentChannel.

5.3 JMF Messaging Levels
A JDF-conforming controller may opt to support one of the following
messaging compliance levels offered by JMF:

• No messaging — Controllers have the option of supporting no
messaging at all. For this level, JDF includes Audit records for
each process that allow the results of the process to be recorded.

• Notification — Most controllers will choose to support some
level of messaging capability. Notification is the most basic level
of support. Devices that support notification provide
unidirectional messaging by sending Signal messages.
Notification messages inform the controller when they begin and
complete execution of some process within a job. They may also provide notice of some error conditions. Setup
of the notification channel can be defined in a JDF node or hard-wired. In order to set up notification messages
via a NodeInfo element, the controller must be able to read JMF query elements from a JDF document.

• Query support — The next level of communication supports queries. Controllers that support queries respond
to requests from other controllers by communicating their status using such tools as current JobID attributes,
queued JobID attributes, or current job progress. Queries require bi-directional communication capabilities.

• Command support — This level of support provides controllers with the ability to process commands. The
controller can receive commands, for instance, to interrupt the current job, to restart a job, or to change the status
of jobs in a queue.

• Submission support — Finally, controllers may accept JDF jobs via an HTTP post request to the messaging
channel. In this case, the messaging channel must support MIME/Multipart/Related documents. For more details
on submission, see Section 5.6.4.8, SubmissionMethods.

Each messaging level encompasses all of the lower messaging levels. Note that the message levels are provided for
information and are not normative.

5.4 Error and Event Messages
If a command or a query message is not successfully handled, a processor must reply with a standardized response
that may contain a Notification element. Notification elements, described in detail in Section 3.9.1.2,
Notification, convey a textual description. The information contained in the Notification element may be used by a
user interface to visualize errors.

The response messages Response and Acknowledge contain a ReturnCode attribute. ReturnCode
defaults to 0, which indicates that the response is successful. In case of success and in responses to commands an

What’s your JMF
SOP?

As part of your strategic equip-
ment purchasing procedures and require-
ments, consider what the JDF Messaging
Levels are desired, and what the minimum
level of conformance will be for your new
equipment purchases.
140 JMF Messaging Levels

JDF Specification Release 1.2
informational Notification element (Class = “Information”) may be provided. In case of a warning, error, or
fatal error, the ReturnCode is greater than 0 and indicates the kind of error committed. In this case, a Notification
element should be provided. Error codes are defined in “Supported Error Codes in JMF and Notification elements”
on page 619. The following example uses a Notification element to describe an error:
<JMF xmlns="http://www.CIP4.org/JDFSchema_1_1" SenderID="A3 Printer" TimeStamp="2000-
07-25T12:32:48+02:00" Version="1.2">
 <Response ID="M109" ReturnCode="5" Type="ResumeQueueEntry" refID="M009">
 <Notification Class="Error" TimeStamp="2000-07-25T12:32:48+02:00" Type="Error">
 <Comment>StartJob unsuccessful - Device does not handle commands</Comment>
 <Error ErrorID="1234"/>
 </Notification>
 </Response>
</JMF>

5.4.1 Pure Event Messages
Notification elements are also used to signal usual events due to any activities of a device, operator, etc., (e.g., scan-
ning a bar code). Such pure events can be subscribed to by the Events message described in Section 5.5.1.1, Events.
These Signals always have a Type = “Notification”:
<JMF xmlns="http://www.CIP4.org/JDFSchema_1_1" SenderID="A3 Printer" TimeStamp="2000-
07-25T12:32:48+02:00" Version="1.2">
 <Signal ID="S1" Type="Notification">
 <Notification Class="Event" TimeStamp="2000-07-25T12:32:48+02:00" Type="Barcode">
 <Comment>Palette completed</Comment>
 <Barcode Code="99923AAA123"/>
 </Notification>
 </Signal>
</JMF>

5.5 Standard Messages
The previous sections in this chapter provide a description of the overall structure of JMF messages. This section con-
tains a list of the standard messages that are defined within the JDF framework. It is not required that every JDF-com-
pliant application support every one of the signals and queries described in this list. It is, however, possible to
discover which messages are supported in a workflow. A controller responds to the KnownMessages query by
publishing a list of all the messages it supports (see Section , KnownDevices, below).

At the beginning of each section there is a table that lists all of the message types in that category. These tables contain three
columns. The first is entitled “Message Type,” and it lists the names of each message type. The second column is entitled “Family.”
The values in this (family) column describe the kind of message element that is applicable in the circumstance being illustrated.
The following abbreviations are used to describe the values used in the tables below to describe these major message element
types. (Note: That these are XML elements that are direct children of the JMF element.)

Q: Query
C: Command
R: Response
S: Signal

More than one of these values may be valid simultaneously. If that is the case, then all applicable letters are included
in the column. Additionally, there are a few special circumstances indicated by particular combinations of these let-
ters. The letters “QR” or “CR” indicate that all Query and Command messages cause a Response message to be
returned. If the message may occur as a Signal, either from a subscription or independently, the “Family” field in the
table also contains the letter “S”. Finally, the third column provides a description of each element.

At the beginning of each section describing the contents and function of the message types listed in the tables
described above is a table containing the instantiation (i.e., the type) of all of the abstract subelements applicable to the
message being described. Each table contains an entry that describes the details of the query or command as well as an
additional entry that describes the details of the corresponding response. The tables resemble the following template:

Table 5-15: Messaging table template

Object Type Element name Description
Abstract subelement of the
query or command:

Name and type of the subelement that defines spe-
cifics of the query or command, followed by a car-
dinality symbol.

Short description of the subele-
ment(s), if applicable.

Abstract subelement of the
response to a query or
command:

Name and type of subelement that contains specific
information about the response to the query or
command followed by cardinality symbol.

Short description of the subele-
ment(s), if applicable.
Standard Messages 141

Chapter 5 JDF Messaging with the Job Messaging Format
The name of the abstract subelement of a Query element is QueryTypeObj, the name of the abstract subelement of
a Command element is CommandTypeObj, and the name of the abstract subelement of a Response as well as
an Acknowledge element is ResponseTypeObj.

5.5.1 Controller Registration and Communication Messages
The message types of the following table are defined in order to exchange metadata about controller or device abili-
ties and for general communication.

5.5.1.1 Events
Modified in JDF 1.2

The Events message type is intended to be used to query for supported Signal messages and to subscribe for asyn-
chronous, randomly occurring Signals of a device or controller. These events are described in Section 4.6.1,
Classification of Notifications and can only be transmitted via Signal messages. If the query contains a
Subscription element, a NotificationFilter element is combined by a logical AND operation with the
Subscription element for selective subscriptions. An empty Events message (without a Subscription and
NotificationFilter element) can be used to query for all events as described in “Pure Event Messages” on page 141,
which are supported by a device or controller. If all signals are requested, a NotificationFilter with SignalTypes
= “all” must be included in the query.

The controller that subscribes for Events messages receives Signal messages. In JDF 1.2, the Events mes-
sage was enhanced to subscribe for all types of Signals, not only Notification Signals. The event type and val-
ues of Notification messages may then be provided by specifying a Type attribute and an abstract
NotificationDetails element in the Notification element, as described in Section 3.9.1.2, Notification. Possible
NotificationDetails elements are defined in “NotificationDetails” on page 621. Example of a subscription of all
Events and the response, including the JDF 1.2 feature of subscribing for all messages by setting
NotificationFilter/@SignalTypes=”All”:

<JMF xmlns="http://www.CIP4.org/JDFSchema_1_1" SenderID="A3 Printer" TimeStamp="2000-
07-25T12:32:48+02:00" Version="1.2">
 <Query ID="M170" Type="Events">
 <Subscription URL="http://www.anycompany.com/MIS/JMF/JobTracker"/>
 <NotificationFilter Classes="Event Warning Error Fatal" SignalTypes="All"/>
 </Query>
</JMF>

Table 5-16: Process registration and communication messages

Message type Family Description
Events QRS Used to subscribe pure events occurring randomly like scanning of a bar

code, activation of function keys at a console, error messages, etc.
KnownControllers QRS Returns a list of JMF-capable controllers.
KnownDevices QRS Returns information about the devices that are controlled by a controller.
KnownJDFServices
Deprecated in JDF 1.2

QRS Returns a list of services (JDF Node Types) that are defined in the JDF
specification.

KnownMessages QRS Returns a list of all messages that are supported by the controller.
RepeatMessages QR Returns a set of previously sent messages that have been stored by the

controller.
StopPersistentChannel CR Closes a persistent channel.

Table 5-17: Contents of the Events message

Object Type Element name Description
QueryTypeObj NotificationFilter ? Refines the list of events queried.
ResponseTypeObj NotificationDef * List of Notification types that match NotificationFilter.
142 Standard Messages

JDF Specification Release 1.2
<JMF xmlns="http://www.CIP4.org/JDFSchema_1_1" SenderID="A3 Printer" TimeStamp="2000-
07-25T12:32:48+02:00" Version="1.2">
 <Response ID="M1001" Type="Events" refID="M170">
 <NotificationDef Classes="Warning Error Fatal" Type="Error"/>
 <NotificationDef Classes="Event" Type="FCNKey"/>
 <NotificationDef Classes="Event Error" Type="Barcode"/>
 <NotificationDef Classes="Event" Type="SystemTimeSet"/>
 <NotificationDef Classes="Event" Type="anycompany:PrivateEvent_1"/>
 <NotificationDef Classes="Event" Type="anycompany:PrivateEvent_2"/>
 <NotificationDef Classes="Event" Type="anycompany:PrivateEvent_2"/>
 <NotificationDef SignalType="Status"/>
 <NotificationDef SignalType="Resource"/>
 </Response>
</JMF>

Structure of the NotificationFilter Element
Table 5-18: Contents of the NotificationFilter element

Name Data Type Description
DeviceID ? string ID of the device whose messages are queried/subscribed. May be

specified for device selection if the controller controls more than
one device.

JobID ? string JobID of the job whose messages are queried/subscribed.
JobPartID ? string JobPartID of the job whose messages are queried/subscribed.
QueueEntryID ?
New in JDF 1.2

string QueueEntryID of the job whose messages are queried/sub-
scribed. If QueueEntryID is specified, JobID , JobPartID, and
Part are ignored. If none of JobID, JobPartID, Part, or
QueueEntryID are specified, NotificationFilter applies to all
jobs.

SignalTypes =
“Notification”
New in JDF 1.2

NMTOKENS Possible Signal/@Type values of the subscribed messages. The
special token “all” specifies that all Signals, regardless of Type
are queried/subscribed.

Types ? NMTOKENS Possible Notification/@Type names are defined in
“NotificationDetails” on page 621. Matching notification types are
returned/subscribed. Defaults to all supported notification types.

Classes ? enumerations Defines the set of Notification/@Classes to be queried/sub-
scribed for. Possible values are:
Event
Information
Warning
Error
Fatal
If not specified, all notification classes are subscribed to.
If the values both Classes and Types are lists of values, the
NotificationFilter defines an OR of all combinations.

Part *
New in JDF 1.2

element Part elements that describe the partition of the job whose messages
are queried/subscribed. See“Partial Processing of Nodes with
Partitioned Resources” on page 112 for details on job partitions.
Standard Messages 143

Chapter 5 JDF Messaging with the Job Messaging Format
Structure of the NotificationDef Element

5.5.1.2 KnownControllers

The KnownControllers query requests information about the controllers and devices that are known to the controller
and may be directly accessed by JMF messaging. KnownControllers is designed to define a registration server. A
processor that needs information about its system environment can query a registration server for a list of known con-
trollers. A single controller that supports multiple URLs or protocols is defined using multiple JDFController ele-
ments with the same ControllerID attribute. This list can subsequently be iterated using the other process registration
queries in this section. The URL of the master registration server must be defined using a method outside of JDF.

JDFController

The following is an example of a response to a KnownControllers query:

 <Response ID="M1" Type="KnownControllers" refID="Q1">
 <JDFController DescriptiveName="Printer Controller" URL="http://www.anycompany.com/
controller"/>
 </Response>

Table 5-19: Contents of the NotificationDef element

Name Data Type Description
Classes ?
Modified in JDF 1.2

enumerations Notification/@Class of the Notification in a Signal. Possible
values are:
Event
Information
Warning
Error
Fatal
Classes must not be specified unless SignalType =
“Notification”. For details, see Section 4.6.1, Classification
of Notifications.

SignalType =
“Notification”
New in JDF 1.2

NMTOKEN Signal/@Type value of the subscribed message.

Type ?
Modified in JDF 1.2

NMTOKEN Notification type, that is the name of the element derived from the
abstract NotificationDetails element. Type must not be speci-
fied unless SignalType = “Notification”.For a list of pre-
defined names see “NotificationDetails” on page 621.

Table 5-20: Contents of the KnownControllers message

Object Type Element name Description
QueryTypeObj - -
ResponseTypeObj JDFController * Known controllers.

Table 5-21: Contents of the JDFController element

Name Data Type Description
ControllerID ?
New in JDF 1.2

string String that identifies the Controller or Agent. The ControllerID
is used as the SenderID of JMF messages that are produced by
this Controller.

URL URL URL of the controller. If the URL scheme is “file:”, URL
must specify a directory where the JMF messages must be depos-
ited.
144 Standard Messages

JDF Specification Release 1.2
KnownDevices

The KnownDevices query requests information about the devices that are controlled by a controller. If a high level
controller controls lower level controllers, it should also list the devices that are controlled by these. The response is a
list of Device resources (see Section 7.2.50, Device) controlled by the controller that receives the query, as demon-
strated in the following example:
 <Response ID="M1" Type="KnownDevices" refID="Q1">
 <DeviceList>
 <DeviceInfo DeviceStatus="Unknown">
 <Device DeviceID="Joe SpeedMaster" DeviceType="Heidelberg SM102/6 rev. 47"/>
 </DeviceInfo>
 </DeviceList>
 </Response>

Structure of the DeviceFilter Element
The DeviceFilter element refines the list of devices that should be returned. Only devices that match all parameters
of one of the Device resources specified in the DeviceFilter element are included.

Table 5-22: Contents of the KnownDevices message

Object Type Element name Description
QueryTypeObj DeviceFilter ? Refines the list of devices queried. Only devices that

match the DeviceFilter are listed. The default is to
return a list of all known devices.

ResponseTypeObj
Modified in JDF 1.1A

DeviceList ? The list of known devices.a

a. This was Device* prior to version 1.1 a. It was changed due to inconsistencies of the inheritance model
in the JDF schema.

Table 5-23: Contents of the DeviceFilter element

Name Data Type Description
DeviceDetails
= “None”
New in JDF 1.1

enumeration Refines the level of provided information about the device. Possible values are:
None –
Brief – Provide all available device information except for Device elements.
Modules – ModuleStatus elements should be provided without module
specific status details and without module specific employee information.
Details – Provide maximum available device information excluding device
capability descriptions. Includes Device elements which represent details of
the device.
NamedFeature – Provide maximum available device information including
limited device capability descriptions. Includes Device elements which rep-
resent details of the device and Device/DeviceCap/FeaturePool subele-
ments which represent named features of the device.
Capability – Provide Device/DeviceCap subelements which represent
details of the capabilities of the device.
Full – Provide maximum available device information including device capabil-
ity descriptions. Includes Device elements which represent details of the device.

Localization ?
New in JDF 1.2

languages or
“all”

If present, Localization defines the language code(s) specifying the localiza-
tion(s) to be returned for each Device (see the DeviceCap subelement
description for details of what entries are localized). If "all" is specified,
then all localizations for the Device are returned.
If not specified, no localizations are returned.

Device * element Only devices that match the attribute values specified in one of these Device
resources are included. Devices match the criteria if the attribute values speci-
fied here in the Device resource match the equivalent attribute values of the
known devices. Unspecified attributes always match. If Device is not speci-
fied, all known Devices are returned. As this is a filter, only information that
can be used to identify a device must be specified. This precludes use of
DeviceCap and IconList in this Device.
Standard Messages 145

Chapter 5 JDF Messaging with the Job Messaging Format
Structure of the DeviceList Element
The DeviceList element contains a list of information about devices that are returned.
New in JDF 1.1 a

5.5.1.3 KnownJDFServices
Deprecated in JDF 1.2
In JDF 1.2 and beyond, KnownJDFServices has been replaced with KnownDevices and DeviceDetails =
“Capabilities”. See “KnownJDFServices” on page 772 for the details of this deprecated element.

5.5.1.4 KnownMessages

The KnownMessages query returns a list of all message types that are supported by the controller.

KnownMsgQuParams
The flags of the KnownMsgQuParams element filter out the types of messages that should be included in the
response list. Multiple flags are allowed.

MessageService
The response is a list of MessageService elements, one for each supported message type. The flags of the
MessageService response element are set in each MessageService entry. They define the supported usage of the
message by the controller. Note that no Response attribute is included in the list, since the capability to process one of
the other message families implies the capability to generate an appropriate Response. Multiple flags are allowed.

Table 5-24: Contents of the DeviceList element

Name Data Type Description
DeviceInfo * element List of information about known devices as requested by the DeviceFilter element.

For details of the DeviceInfo element, see Table 5-59, “Contents of the DeviceInfo
element,” on page 164 in the message description Section 5.5.2.8, Status.

Table 5-25: Contents of the KnownMessages message

Object Type Element name Description
QueryTypeObj KnownMsgQuParams ? Refines the query for known messages. If not specified,

list all supported message types.
ResponseTypeObj MessageService * Specifies the supported messages.

Table 5-26: Contents of the KnownMsgQuParams element

Name Data Type Description
Exact = “false”
New in JDF 1.1

boolean Requests an exact description of the known messages. If true, the
response should also return the requested DevCaps of the messages.

ListCommands =
“true”

boolean Lists all supported Command types.

ListQueries = “true” boolean Lists all supported Query types.
ListSignals = “true” boolean Lists all supported Signal types.
Persistent = “false” boolean If true, only lists messages that may use persistent channels. If false,

ignores the ability to use persistent channels.

Table 5-27: Contents of the MessageService element

Name Data Type Description
Acknowledge =
“false”
New in JDF 1.1

boolean If true the device supports asynchronous Acknowledge answers
to this message.

Command =
“false”

boolean If true the message is supported as a Command.

Persistent =
“false”

boolean If true the message is supported as a persistent channel.
146 Standard Messages

JDF Specification Release 1.2
The following is an example of a response to a KnownMessages query:
 <Response ID="M1" Type="KnownMessages" refID="Q1">
 <MessageService Query="true" Type="KnownMessages"/>
 <MessageService Persistent="true" Query="true" Signal="true" Type="Status"/>
 </Response>

5.5.1.5 RepeatMessages

The RepeatMessages query returns a list of messages that have been previously sent by the controller. The
optional MsgFilter element allows the list to be filtered. The list of JMF messages that fulfill the filter criteria may
be sorted by time, with the most recent listed first. This specification places no requirements on the size of the mes-
sage buffer of a controller that supports RepeatMessages.

Structure of the MsgFilter Element

Query = “false” boolean If true the message is supported as a Query.
Signal = “false” boolean If true the message is supported as a Signal.
Type NMTOKEN Type of the supported message. Extension types may be specified by

stating the namespace in the value.
DevCaps *
New in JDF 1.1

element Specifies the restrictions of the parameter space of the supported mes-
sages. For details on using DevCaps, see Section 7.3.1.2, Structure
of the DevCaps Subelement.

Table 5-28: Contents of the RepeatMessages message

Object Type Element name Description
QueryTypeObj MsgFilter ? A filter for the messages to be repeated. For details, see

Section 5.5.1.1, Events.
ResponseTypeObj Message * The recent messages queried.

Table 5-29: Contents of the MsgFilter element

Name Data Type Description
After ? dateTime Messages sent only after a certain time.
Before ? dateTime Messages sent only before a certain time.
Count ? integer Maximum number of messages, most recent first.
DeviceID ? string ID of the device whose messages are required.
Family ? enumeration Filter for Message family. Possible values are:

Acknowledge
Response
Signal
All – Response, Signal, and Acknowledge messages are
queried. Deprecated in JDF 1.2.

JobID ?
New in JDF 1.2

string JobID of the job whose messages are queried/subscribed.

JobPartID ?
New in JDF 1.2

string JobPartID of the job whose messages are queried/subscribed.

MessageRefID ? NMTOKEN The refID attribute must match the value of MessageRefID.
MessageID ? NMTOKEN The ID attribute must match the value of MessageID.
MessageType ? NMTOKEN Type attribute of the requested messages.

Table 5-27: Contents of the MessageService element

Name Data Type Description
Standard Messages 147

Chapter 5 JDF Messaging with the Job Messaging Format
If the returned list is incomplete because the parameters supplied in the MsgFilter element cannot be fulfilled by the
application, the ReturnCode may be 108 (empty list) or 109 (incomplete list) and should be flagged as a warning.

The following is an example of a response to a RepeatMessages query. Note the nesting of Response mes-
sages, where the first layer is the response to the RepeatMessages query and its contents are the repeated messages.
<JMF xmlns="http://www.CIP4.org/JDFSchema_1_1" SenderID="A3 Printer" TimeStamp="2000-
07-25T12:32:48+02:00" Version="1.2">
 <Response ID="RepMsg" Type="RepeatMessages">
 <Response ID="R1" Time="2000-06-14T11:00+02:00" Type="Status"/>
 <Response ID="R2" Time="2000-06-14T10:50+02:00" Type="Occupation"/>
 <Signal ID="R3" Time="2000-06-14T08:20+02:00" Type="Resource"/>
 <Signal ID="R4" Time="2000-06-14T03:01+02:00" Type="Notification"/>
 </Response>
</JMF>

5.5.1.6 StopPersistentChannel

The StopPersistentChannel command unregisters a listening controller from a persistent channel. No more mes-
sages are sent to the controller once the command has been issued. A certain subset of signals may be addressed for
unsubscription by specifying a StopPersChParams element.

Structure of the StopPersChParams Element
If the optional attributes are not specified, those attributes default to match anything. Therefore, it may be possible to
cancel the persistent channel for messages belonging to a certain type of message or to a certain job.

QueueEntryID ?
New in JDF 1.2

string QueueEntryID of the job whose messages are queried/sub-
scribed. If QueueEntryID is specified, JobID , JobPartID, and
Part are ignored. If none of JobID, JobPartID, Part, or
QueueEntryID are specified, MsgFilter applies to all jobs that
will be processed by the receiver.

ReceiverURL ? URL URL for which the messages are intended.
Part *
New in JDF 1.2

element Part of the job whose messages are queried/subscribed. For details
on Node partitions, see “Partial Processing of Nodes with
Partitioned Resources” on page 112.

Table 5-30: Contents of the StopPersistentChannel message

Object Type Element name Description
CommandTypeObj StopPersChParams Specifies the persistent channel and the message

types to be unsubscribed.
ResponseTypeObj — —

Table 5-31: Contents of the StopPersChParams element

Name Data Type Description
ChannelID ? NMTOKEN ChannelID of the persistent channel to be deleted. If the channel has been cre-

ated with a Query message, the ChannelID specifies the ID of the Query
message (identical to the refID of the Response message).

MessageType ? NMTOKEN Only messages with a matching message type are suppressed. Message types
are specified in the Type attribute of each Message element. Defaults to all
message types.

DeviceID ? string Only messages from devices or controllers with a matching DeviceID
attribute are suppressed.

JobID ? string Only messages with a matching JobID attribute are suppressed.
JobPartID ? string Only messages with a matching JobPartID attribute are suppressed.

Table 5-29: Contents of the MsgFilter element

Name Data Type Description
148 Standard Messages

JDF Specification Release 1.2
5.5.2 Device/Operator Status and Job Progress Messages
JDF Messaging provides methods to trace the status of individual devices and resources and additional job-dependent
job-tracking data. The status of a job is described by the Status elements of that job.

Devices are uniquely identified by a name — that is, by the attribute DeviceID of the Device resource (see
Section 7.2.50, Device) — while controllers are uniquely identified by their URL. In other words, controllers are
implicitly identified as a result of the fact that they are responding to a message. One controller may control multiple
devices. The following queries and commands are defined for status and progress tracking:

QueueEntryID ?
New in JDF 1.2

string QueueEntryID of the job whose messages are queried/subscribed. If
QueueEntryID is specified, JobID , JobPartID, and Part are ignored. If
none of JobID, JobPartID, Part, or QueueEntryID are specified,
StopPersChParams applies to all jobs that will be processed by the receiver.

URL URL URL of the receiving controller. This must be identical to the URL that was
used to create the persistent channel. If no ChannelID is specified, all persis-
tent channels to this URL are deleted.

Part *
New in JDF 1.2

element Part elements that describe the partition of the job whose messages are
supressed. For details on Node partitions, see “Partial Processing of Nodes with
Partitioned Resources” on page 112.

Table 5-32: Status and progress messages

Message type Family Description
FlushResources
New in JDF 1.2

CRS Remove temporary resource from a Device.

NewJDF
New in JDF 1.2

CQRS Initiates or reports modifications of JDF nodes.

NodeInfo
New in JDF 1.2

CQRS Initiates or reports modifications of JDF node information, (e.g., schedul-
ing).

Occupation QRS Queries the occupation of an employee.
Resource CQRS Queries and/or modifies JDF resources that are used by a device, such as

device settings, or by a job. This message can also be used to query the level
of consumables in a device.

ResourcePull
New in JDF 1.2

CR Creates a new QueueEntry from an already existing QueueEntry and
submits it to the queue in order to be executed.

Shutdown
New in JDF 1.2

CRS Shuts down a device.

Status QRS Queries the general status of a device, controller or job.
Track QRS Queries the location of a given job or job part.
WakeUp
New in JDF 1.2

CRS Wakes up a device that is in standby mode.

Table 5-31: Contents of the StopPersChParams element

Name Data Type Description
Standard Messages 149

Chapter 5 JDF Messaging with the Job Messaging Format
5.5.2.1 FlushResources
New in JDF 1.2

FlushResources is used to remove temporary resources from a Device. FlushResourceParams allows the
specification of which resources to remove. The QueueFilter in the FlushQueue message is applied to the
Queue returned after the command is executed. The QueueFilter contained within the FlushResourceParams
is used to specify QueueEntrys to which the resources to be removed belong.

5.5.2.2 NewJDF
New in JDF 1.2
The NewJDF message can be used to query and initiate the modification of JDF nodes by either a subordinate con-
troller or a master controller. It is mainly used to synchronize JDF/@JobID and JDF/@JobPartID between an
MIS and a Device or Controller. Both sides may initiate synchronization. A query or signal informs a Controller or
MIS system that a JDF node has been created. A command initiates a modification.

Structure of the NewJDF Query Message

The NewJDF query is sent to a Device or Controller in order to extract information about previously unknown JDF
nodes. For instance, an MIS that has received a JMF with an unknown JobPartID may query the JMF sender about
details of the JDF with that JobPartID. When used as a Signal, the Signaling device specifies that it has created a
new JDF with the properties defined by IDInfo, for instance when a Workflow Controller has instantiated an
abs t rac t ProcessGroup node wi th new sub-nodes . NewJDF i s made se lec t ive by spec i fy ing a
NewJDFDQuParams element.

The query response returns a list of IDInfo elements that contains the queried information concerning the newly
created Nodes.

Table 5.33: Contents of the FlushResources message

Object Type Element Name Description
CommandTypeObj QueueFilter ? Defines a filter for the returned Queue element in the

FlushResources message.
FlushResourceParams ? Defines the resources to be removed.

ResponseTypeObj FlushedResources ? This element is a placeholder for future use.
For the definition of the Queue element, see “Queue-Handling Elements” on page 187.

Table 5.34: Contents of the FlushResourceParams element

Name Data Type Description
QueueFilter ? element Defines a QueueFilter that specifies the QueueEntrys to which

the resources to be removed belong. If not specified, all temporary re-
sources on the device are completely flushed.

FlushPolicy =
“QueueEntry”

enumeration Policy that defines how much of the QueueEntry resources should
be flushed. One of:
Complete – Remove the entire temporary resources belonging to the
QueueEntry.
QueueEntry – The resources belonging to QueueEntry are com-
pletely re-moved and no longer available — the default.
Intermediate – Remove any intermediate resources that belong to
the QueueEntry (e.g., intermediate raster files in a combined RIP
and Image-Setting process) and retain the original input resources. A
ResourcePull message is possible.

Table 5-35: Contents of the NewJDF query message

Object Type Element Name Description
QueryTypeObj NewJDFQuParams Specifies the details of the nodes that information is

requested about.
ResponseTypeObj IDInfo * Contains the information about the newly created

nodes.
150 Standard Messages

JDF Specification Release 1.2
Structure of the NewJDFQuParams Element

The NewJDF command is sent to an MIS, Device or Controller to initiate creation of new JDF nodes by that Device
or Controller. For instance, a Workflow Controller may have received content data and now requires a JDF job from
an MIS to which work on the content can be booked. The NewJDF command does not imply any job submission or
request for job submission. Job queue submission must still be requested with a RequestQueueEntry message,
and the MIS must still subsequently submit the job to the requesting Controller.

Structure of the NewJDF Command Message

Structure of the NewJDFCmdParams Element

Structure of the IDInfo Element

Table 5-36: Contents of the NewJDFQuParams element

Name Data Type Description
JobID ? string Job ID of the JDF node that is being queried.
JobPartID ? string Job part ID of the JDF node that is being queried.
QueueEntryID ? string QueueEntryID of the job that is currently being executed. If

QueueEntryID is specified, JobID, JobPartID, and Part are
ignored.

Table 5-37: Contents of the NewJDF Command Message

Object Type Element Name Description
CommandTypeObj NewJDFCmdParams Specifies the details of the nodes that are to be created
ResponseTypeObj IDInfo ? Contains the information about the newly created node.

Table 5-38: Contents of the NewJDFCmdParams element

Name Data Type Description
JDFDetails ="Brief" string Level of detail requested for the returned IDInfo elements. Values

are:
None: Do not return any IDInfo elements.
Brief: Return IDInfo elements without embedded JDF or Device.
Full: Return IDInfo elements with embedded JDF and Device.

IDInfo element Details of the new JDF node that should be created.

Table 5-39: Contents of the IDInfo element

Name Data Type Description
Category ? NMTOKEN JDF/@Category of the JDF node.
JobID ? string Job ID of the JDF node.
JobPartID ? string Job part ID of the JDF node.
ParentJobID ? string JobID of the parent node of the JDF node. If not specified, it defaults

to the value of JobID.
ParentJobPartID ? string Job part ID of the parent node of the JDF node.
Type ? NMTOKEN JDF/@Type of the JDF node.
Types ? NMTOKENS JDF/@Types of the JDF node.
Device ? element Description of the Device that the JDF is targeted for
JDF ? element Detailed JDF description. Contains information that allows the

receiver of the NewJDF message to properly respond. Note that the
JDF is not implicitly submitted.
Standard Messages 151

Chapter 5 JDF Messaging with the Job Messaging Format
5.5.2.3 NodeInfo
New in JDF 1.2
The NodeInfo message can be used as a command or a query to modify or to query JDF NodeInfo elements. The
query simply retrieves information about the NodeInfo without modifying it, while the command modifies those
settings within the NodeInfo that is specified. Settings that are not specified remain unchanged.

Structure of the NodeInfo Query Message

The NodeInfo query is made selective by specifying a NodeInfoQuParams element. The presence of the JobID
attribute determines whether global device resources or job-related resources are returned. The query response
returns a list of NodeInfoResp elements that contains the queried information concerning the resources. If the list
is empty because the selective query parameters of the NodeInfoQuParams lead to a null selection, then the
ReturnCode may be 103 (JobID unknown), 104 (JobPartID unknown), or 108 (empty list) and should be flagged as
a warning.

Structure of the NodeInfoQuParams Element

Structure of the NodeInfo Command Message

The NodeInfo command may be used to modify the NodeInfo – generally scheduling information – of a submitted
JDF node. It is made selective by specifying the optional attributes in the NodeInfoCmdParams element. The
presence of the JobID attribute determines whether global device resources or job-related resources are modified.

The Response contains a list of NodeInfoResp elements with a copy of NodeInfo after the changes have
been applied. If the NodeInfo command was successful, the value of the ReturnCode attribute is “0”. If it is not
successful, the value of ReturnCode may be one of those that have been described above in the section about the
NodeInfo query message, “200” (invalid parameters), or “201” (insufficient parameters). Partial application of
the NodeInfo should also be flagged as a warning. If the value of ReturnCode is larger than “0”, the controller
that issued the command can evaluate the returned NodeInfo in order to find the setting that could not be applied.

Table 5-40: Contents of the NodeInfo query message

Object Type Element Name Description
QueryTypeObj NodeInfoQuParams Specifies the node queried.
ResponseTypeObj NodeInfoResp * Details of the NodeInfo elements

Table 5-41: Contents of the NodeInfoQuParams element

Name Data Type Description
JobID string Job ID of the JDF node that is being queried.
JobPartID ? string Job part ID of the JDF node that is being queried.
QueueEntryID ? string QueueEntryID of the job that is currently being executed. If

QueueEntryID is specified, JobID, JobPartID, and Part are
ignored. If none of JobID, JobPartID, Part, or QueueEntryID
are specified, ResourceQuParams applies to all jobs.

Part * element Part elements that describe the partition of the job whose NodeInfo
is modified. For details on Node partitions, see “Partial Processing of
Nodes with Partitioned Resources” on page 112.

Table 5-42: Contents of the NodeInfo Command Message

Object Type Element name Description
CommandTypeObj NodeInfoCmdParams Specifies the NodeInfo elements to be modified.
ResponseTypeObj NodeInfoResp * Contains information about the NodeInfo and the

NodeInfo after modification.
152 Standard Messages

JDF Specification Release 1.2
Structure of the NodeInfoCmdParams Element

Structure of the NodeInfoResp Element

The following is an example for retrieving NodeInfo settings:
 <Query ID="Q1" Type="NodeInfo">
 <NodeInfoQuParams JobID="J1"/>
 </Query>

The following is a possible response to the query above:
 <Response ID="M1" Type="NodeInfo" refID="Q1">
 <NodeInfoResp JobID="J1" JobPartID="P1">
 <NodeInfo/>
 </NodeInfoResp>
 <NodeInfoResp JobID="J1" JobPartID="P2">
 <NodeInfo/>
 </NodeInfoResp>
 </Response>

Table 5-43: Contents of the NodeInfoCmdParams element

Name Data Type Description
JobID string Job ID of the JDF node that is being modified.
JobPartID ? string Job part ID of the JDF node that is being modified.
QueueEntryID ? string QueueEntryID of the job that is currently being executed. If

QueueEntryID is specified, JobID, JobPartID, and Part are
ignored. If none of JobID, JobPartID, Part, or QueueEntryID
are specified, NodeInfoCmdParams applies to all jobs.

UpdateMethod =
”Complete”

enumeration Method how NodeInfo is applied to the JDF. Values are:
Complete – The NodeInfo in the JDF is completely overwritten by
NodeInfo in this message.
Incremental – The NodeInfo in the JDF is incrementally
updated by the values that are explicitly set in NodeInfo in this mes-
sage.

Part * element Part elements that describe the partition of the job whose NodeInfo
is modified. For details on Node partitions, see “Partial Processing of
Nodes with Partitioned Resources” on page 112.

NodeInfo ? element NodeInfo to be uploaded to the Device.

Table 5-44: Contents of the NodeInfoResp element

Name Data Type Description
JobID string Job ID of the JDF node that is being modified.
JobPartID ? string Job part ID of the JDF node that is being modified.
QueueEntryID ? string QueueEntryID of the job that is currently being executed. If

QueueEntryID is specified, JobID, JobPartID, and Part are
ignored. If none of JobID, JobPartID, Part, or QueueEntryID are
specified, NodeInfoResp applies to all jobs.

Part * element Part elements that describe the partition of the job NodeInfo is modi-
fied. For details on Node partitions, see “Partial Processing of Nodes
with Partitioned Resources” on page 112.

NodeInfo ? element NodeInfo after uploading to the controller.
Standard Messages 153

Chapter 5 JDF Messaging with the Job Messaging Format
5.5.2.4 Occupation

Occupation queries the occupation status of an employee. No job context is required to issue an Occupation mes-
sage.

Structure of the EmployeeDef Element
The Occupation query may be focused to certain employees specifying a EmployeeDef element. If no
EmployeeDef element is specified, a list of all known employees is returned.

Structure of the Occupation Element
The response returns a list of Occupation elements for the queried employees. These elements consist of one entry
for every job that is currently being executed. The list format accommodates both employees that service multiple
jobs or job parts in parallel and multiple employees working on one job.

The following is an example of response to an Occupation query:
<Response ID="M1" Type="Occupation" refID="Q1">
 <!--Two jobs on one device with one operator-->
 <Occupation Busy="30" JobID="J1">
 <Employee PersonalID="P1234"/>
 <Device DeviceID="Press1"/>
 </Occupation>
 <Occupation Busy="70" JobID="J2">
 <Employee PersonalID="P1234"/>
 <Device DeviceID="Press1"/>
 </Occupation>
 <!--Another operator on job j2 -->
 <Occupation Busy="50" JobID="J2">

Table 5-45: Contents of the Occupation message

Object Type Element name Description
QueryTypeObj EmployeeDef * Defines the employees queried.
ResponseTypeObj Occupation * The occupation status of the employees.

Table 5-46: Contents of the EmployeeDef element

Name Data Type Description
PersonalID ? string PersonalID of the employee being tracked.

Table 5-47: Contents of the Occupation element

Name Data Type Description
Busy =”100” double Busy state of the employee in percentage. A value of 100 means that the

employee is fully occupied with this task. The sum of all Busy values of one
should not exceed 100.

JobID ? string JobID of the JDF node that the employee is assigned to. If no JobID is speci-
fied but devices are, the employee is performing tasks not related to a job.

JobPartID ? string Job part ID of the JDF node that is currently being executed.
QueueEntryID ?
New in JDF 1.2

string QueueEntryID of the job that is currently being executed. If
QueueEntryID is specified, JobID, JobPartID, and Part are ignored. If
none of JobID, JobPartID, Part, or QueueEntryID are specified,
Occupation applies to all jobs.

Device * element Devices that the employee is currently assigned to.
Employee element Description of the employee being tracked.
Part *
New in JDF 1.2

element Part elements that describe the partition of the that is being executed. For
details on Node partitions, see “Partial Processing of Nodes with Partitioned
Resources” on page 112
154 Standard Messages

JDF Specification Release 1.2
 <Employee PersonalID="P4321"/>
 <Device DeviceID="Press1"/>
 </Occupation>
 <!--No Job context -->
 <Occupation Busy="0">
 <Device DeviceID="Press2"/>
 <Employee PersonalID="P5678"/>
 </Occupation>
 </Response>

5.5.2.5 Resource
The Resource message can be used as a command or a query to modify or to query JDF resources. In both cases
(query and command), it is possible to address either global device resources, such as device settings, or job-specific
resources. The query simply retrieves information about the resources without modifying them, while the command
modifies those settings within the resource that are specified. Settings that are not specified remain unchanged.

Structure of the Resource Query Message

The Resource query may be made selective by specifying a ResourceQuParams element. The presence of the
JobID attribute determines whether global device resources or job-related resources are returned. If no
ResourceQuParams element is specified, only the global device resources are returned.

The query Response returns a list of ResourceInfo elements that contains the queried information concern-
ing the resources. If the list is empty because the selective query parameters of the ResourceQuParams lead to a
null selection of the known device/job resources, then the ReturnCode may be 103 (JobID unknown), 104 (Job-
PartID unknown), or 108 (empty list) and should be flagged as a warning.

Structure of the ResourceQuParams Element

Table 5-48: Contents of the Resource query message

Object Type Element Name Description
QueryTypeObj ResourceQuParams ? Specifies the resources queried.
ResponseTypeObj ResourceInfo * Contains the amount data of resources and, if

requested, the resources itself.

Table 5-49: Contents of the ResourceQuParams element

Name Data Type Description
Classes ? enumerations List of the resource classes to be queried. For example, in order to

query the actual level of consumables in a device outside of any job
context, specify Classes = “Consumable” in the query without a
JobID attribute. If Classes is not used or empty, then all classes
known shall be queried. For possible resource class names, see the
Class attribute in Table 3-13, “Contents of the abstract Resource
element,” on page 53.

Exact = “false” boolean Requests an exact description of the JDF resource. If true, the
response should also return the requested JDF resource.

JobID ? string Job ID of the JDF node that is being queried. If no JobID is specified,
global device settings are queried.

JobPartID ? string Job part ID of the JDF node that is being queried.
Location ? string Identifies the location of a resource, such as paper tray, ink container,

or thread holder. The name is the same name used in the Partition-key
Location of distributed resources (see also Section 3.8.2.6, Locations
of Physical Resources). If not specified, the location will be selected
by the device.
Standard Messages 155

Chapter 5 JDF Messaging with the Job Messaging Format
Structure of the Resource Command Message

The Resource command may be used to modify either global device settings or a running job. It may be made
selective by specifying the optional attributes in the ResourceCmdParams element. The presence of the JobID
attribute determines whether global device resources or job-related resources are modified.

The Response contains a list of ResourceInfo elements with all resources and private extensions of the
device after the changes have been applied. The type of the resource that is given as a response depends on the type of
the resource given in the command.

If the Resource command was successful, the value of the ReturnCode attribute is “0”. If it is not successful,
the value of ReturnCode may be one of those that have been described above in the section about the Resource
query message, “200” (invalid resource parameters), or “201” (insufficient resource parameters). Partial applica-
tion of the resource should also be flagged as a warning. If the value of ReturnCode is larger than “0”, the control-
ler that issued the command can evaluate the returned resource in order to find the setting that could not be applied.

ProcessUsage ? string Selects a resource in which the value of the ProcessUsage attribute
of the resource link (see Table 3-19, “Contents of the abstract
ResourceLink element,” on page 64) matches the token specified here
in this attribute.
Only necessary if a resource name is used more than once by one
node. For example, the Component input ExposedMedia of a
ConventionalPrinting process can be distinguished by specifying
ProcessUsage = “Plate” and ProcessUsage = “Proof”,
respectively.
The ResourceName, Usage, and ProcessUsage attributes are
combined by a logical AND conjunction to select the resource to be
queried.

ProductID ?
New in JDF 1.2

string ProductID of the resource that is queried.

QueueEntryID ?
New in JDF 1.2

string QueueEntryID of the job that is currently being executed. If
QueueEntryID is specified, JobID, JobPartID, and Part are
ignored. If none of JobID, JobPartID, Part, or QueueEntryID
are specified, ResourceQuParams applies to all jobs.

ResourceName ? NMTOKEN Name of the resource being queried. For possible resource names, see
titles in Section 7, Resources.

Usage ? enumeration Input – The resource is an input.
Output – The resource is an output.
Selects a resource in which the value of the Usage attribute of the
resource link (see Table 3-19, “Contents of the abstract ResourceLink
element,” on page 64) matches the token specified here in this
attribute. Only necessary if a resource name is used both as input and
output by one node.

Part *
New in JDF 1.2

element Part elements that describe the resource whose messages are queried.

Table 5-50: Contents of the Resource command message

Object Type Element name Description
CommandTypeObj ResourceCmdParams Specifies the resources to be modified.
ResponseTypeObj ResourceInfo * Contains information about the resources after modifica-

tion.

Table 5-49: Contents of the ResourceQuParams element

Name Data Type Description
156 Standard Messages

JDF Specification Release 1.2
Structure of the ResourceCmdParams Element
Table 5-51: Contents of the ResourceCmdParams element

Name Data Type Description
Activation =
“Active”
New in JDF 1.1

enumeration Describes the activation status of the uploaded resource. Allows for a
range of activity, including deactivation and test running. Possible val-
ues, in order of involvement from least to most active, are:
Held – Used for uploading a resource that requires operator interven-
tion before being applied.
TestRun – Used for a test run check by the controller or a device.
This does not imply that the update should be automatically applied
when the check is completed.
TestRunAndGo – Similar to TestRun, but requests a subsequent
automatic update of the resource if the test run has been completed
successfully.
Active – The update must be applied immediately.
Note that the Inactive value defined in JDF/@Activation is not a
valid value in this list.

Exact = “false” boolean Requests an exact description of the JDF resource. If “true”, the
response should also return the requested JDF resource.

JobID ? string JobID of the JDF node that the resource being modified is linked to.
If no JobID is specified, global resource settings are modified.

JobPartID ? string JobPartID of the JDF node that the resource being modified is linked to.
ProcessUsage ? NMTOKEN Selects a resource in which the value of the ProcessUsage attribute

of the resource link (seeTable 3-19, “Contents of the abstract
ResourceLink element,” on page 64) matches the token specified here
in this attribute.
Only necessary if a resource name is used more than once by one
node. For example, the ExposedMedia input resources of a
ConventionalPrinting process can be distinguished by specifying
ProcessUsage = Plate and ProcessUsage = Proof, respec-
tively.
The ResourceName and ProcessUsage attributes are combined
by a logical AND conjunction to select the resource to be queried.

ProductID ?
New in JDF 1.2

string ProductID of the resource that is updated.

ProductionAmount ? double New amount of resource production. This value replaces the Amount
in the resource link of the resource specified by ResourceName.

QueueEntryID ?
New in JDF 1.2

string QueueEntryID of the job that is currently being executed. If
QueueEntryID is specified, JobID, JobPartID, and Part are
ignored. If none of JobID, JobPartID, Part, or QueueEntryID
are specified, ResourceCmdParams applies to all jobs.

ResourceName ? NMTOKEN Name of the resource whose production amount will be modified. For
possible resource names see titles in Section 7, Resources.

Status ?
New in JDF 1.2

enumeration Updated Status of the selected resource. The list of possible values is
defined in Table 3-13, “Contents of the abstract Resource element,” on
page 53.
Standard Messages 157

Chapter 5 JDF Messaging with the Job Messaging Format
Structure of the ResourceInfo Element

UpdateIDs ?
New in JDF 1.1

NMTOKENS The UpdateID attributes of one or more ResourceUpdate that are
defined in resources known to the recipient. The data type is NMTO-
KENS and not IDREFS because no matching IDs exist within this
message. The order of tokens in defines the order in which the updates
are applied.

MISDetails ?
New in JDF 1.2

refelement Definition how the costs for the production of the Resource are to be
charged.

Part *
New in JDF 1.2

element Part elements that describe the partitions of the resource that is being
modified. If not specified, the entire resource is selected.

Resource * element Resources to be uploaded to the Device. They completely replace the
original resources with the same ID.
The resources to be modified are identified by their ID values, which
means that the ID attributes must be known to the controller that
issued the Resource command.

Table 5-52: Contents of the ResourceInfo element

Name Data Type Description
ActualAmount ?
New in JDF 1.2

double Reflects the current accumulated amount of the resource that has been
consumed (input) or produced (output) by the process. This corresponds
to the value of the ActualAmount attribute in the corresponding
resource link of the resource were it to be written now.

Amount ? double Reflects the intended accumulated amount of the resource that should be
consumed (input) or produced (output) by the process. This corresponds
to the value of the Amount attribute in the corresponding resource link
of the resource were it to be written now.

AvailableAmount ? double Device-specific amount of the Consumable resource that is available in
the device.

Level = “OK” enumeration This attribute is device dependent. A device may specify the level status
that describes a low or empty consumable level. Possible values are:
Empty – Specification is left to the device manufacturer.
Low – Specification is left to the device manufacturer.
OK – Specification is left to the device manufacturer.

Location ? string Device-specific string to identify the location of a given consumable, such
as paper tray, ink container, or thread holder. The name is the same name
used in the Partition-key Location of distributed resources (see also
Section 3.8.2.6, Locations of Physical Resources). If not specified, the
location will be defined by the device.

ResourceName ? NMTOKEN Name of the resource if Exact = false in the query. Only one of
Resource or ResourceName must be specified.

Table 5-51: Contents of the ResourceCmdParams element

Name Data Type Description
158 Standard Messages

JDF Specification Release 1.2
The following is an example for retrieving settings:
 <Query ID="Q1" Type="Resource">
 <ResourceQuParams Classes="Consumable" Exact="true"/>
 </Query>

The following is a possible response to the query above:
 <Response ID="M1" Type="Resource" refID="Q1">
 <ResourceInfo AvailableAmount="2120" Location="Paper Tray 1">
 <Media>
 <!-- Media resource defined in JDF -->
 </Media>
 </ResourceInfo>
 <ResourceInfo AvailableAmount="0" Level="Empty" Location="Ink1" Unit="l">
 <Ink>
 <!-- Ink description resource defined in JDF -->
 </Ink>
 </ResourceInfo>

 </Response>
The following is an example for modifying the production amount of a specific job to produce brochures
 <Command ID="C1" Type="Resource">
 <ResourceCmdParams JobID="MakeBrochure 012" ProductionAmount="7500"
ResourceName="Component"/>
 </Command>

ProcessUsage ? NMTOKEN Selects a resource in which the value of the ProcessUsage attribute of
the resource link (see Table 3-19, “Contents of the abstract ResourceLink
element,” on page 64) matches the token specified here in this attribute.
Only necessary if a resource name is used more than once by one node.
For example, the ExposedMedia input resources of a
ConventionalPrinting process can be distinguished by specifying
ProcessUsage = Proof and ProcessUsage = Plate, respectively.
The ResourceName and ProcessUsage attributes are combined by
a logical AND conjunction to select the resource to be queried.

ProductID ?
New in JDF 1.2

string ProductID of the resource.

Status ?
New in JDF 1.2

enumeration Updated Status of the selected resource. The list of possible values is
defined in Table 3-13, “Contents of the abstract Resource element,” on
page 53.

Unit ? string Unit of the amount attributes.
In a job context it is strongly discouraged to specify a unit other than the
unit defined in the respective JDF resource, although this may be neces-
sary due to technical considerations, such as when ink is specified in
weight (g) and ink measurement is specified in volume (liter).

CostCenter ? element Cost center to which the resource consumption is allocated.
MISDetails ?
New in JDF 1.2

refelement Definition how the costs for the production of the Resource are to be
charged.

Part *
New in JDF 1.2

element Part elements that describe the resource.

Resource ? element JDF description of the resource. If the query or command leading to this
response element contains Part elements, the resource must only contain
the appropriate matching partitions.

Table 5-52: Contents of the ResourceInfo element

Name Data Type Description
Standard Messages 159

Chapter 5 JDF Messaging with the Job Messaging Format
The following is a possible response to the resource command above:
 <Response ID="M2" Type="Resource" refID="C1">
 <ResourceInfo Amount="7500" ResourceName="Component"/>
 </Response>

5.5.2.6 ResourcePull
New in JDF 1.2

The ResourcePull message requests a resource from a Controller or Device. The resource is specified as the output
resource of a JDF node. The requested resource may be a subset of the resource specified in the original JDF. The
ResourcePullParams element provides the required parameters. It may be used to regenerate the output of a
QueueEntry or JDF node with any Status.

Workflow Integration with ResourcePull
When ResourcePull is submitted directly to a Device in a workflow that is monitored by an MIS system, the MIS
system must be informed about the re-execution of the JDF node, so that it can update the state of the entire job
appropriately.

Note: It is preferred to pull a resource from a Device in a workflow that is monitored by an MIS system by send-
ing the ResourcePull message to the MIS. The MIS can then control the Device in the standard manner and also
maintain consistency of its internal job representation.

Structure of the ResourcePullParams Element
The ResourcePullParams may contain queue-ordering attributes equivalent to those used by the
SetQueueEntryPriority, and SetQueueEntryPosition messages. The optional list of Part elements refers to
the output resource that is produced by the JDF node.

For example, if an ImageSetting process produces a partitioned set of plates, the following example message
would request only the yellow plate of the Front Surface of Sheet1.
 <Command ID="C2" Type="ResourcePull">
 <ResourcePullParams Priority="100" QueueEntryID="AllPlates">
 <Part Separation="Yellow" SheetName="Sheet1" Side="Front"/>
 </ResourcePullParams>
 </Command>

Table 5.53: Contents of the ResourcePull message

Object Type Element Description
CommandTypeObj ResourcePullParams Defines the parameters of the repeated job.

QueueFilter Defines a filter for the returned Queue element in the
ResourcePull message.

ResponseTypeObj QueueEntry Provides the queue entry of the repeated job.
Queue Describes the state of the queue after the command has been

executed.
Definition of the QueueEntry and Queue elements, see “Queue-Handling Elements” on page 187.

Table 5.54: Contents of the ResourcePullParams element

Name Data Type Description
Amount ? double The Amount attribute identifies the amount of the output resource to

be created by the JDF node that is executed by the cloned
QueueEntry. This Amount is the amount to be produced by the
process that is executed due to the resourcePull. Thus if 200 copies
had been created previously and 100 copies are requested by the
ResourcePull, Amount = "100" and not "300".

Hold = “false” boolean If “true”, the entry is submitted as held.
160 Standard Messages

JDF Specification Release 1.2
NextQueueEntryID ? string ID of the queue entry that should be ordered directly behind the entry.
PrevQueueEntryID ? string ID of the queue entry that should be ordered directly in front of the

entry.
JobID ? string Job ID of the JDF node that creates the requested resource. If

QueueEntryID is specified, JobID is ignored. One of JobID or
QueueEntryID must be specified.

Priority = “1” integer Number from 0 to 100, where 0 is the lowest priority and 100 is the
maximum priority.

QueueEntryID ? string QueueEntryID of the JDF node that creates the requested resource.
If QueueEntryID is specified, JobID is ignored. One of JobID or
QueueEntryID must be specified.

RepeatPolicy ? enumeration Policy that defines how to reuse intermediate resources that were gen-
erated in the original processing step, (e.g., intermediate raster files in
a combined RIP and ImageSetting process). One of:
Complete – Restart from the original input resources, if they are
available. The process may run based on intermediate resources if any
original resources are not available.
CompleteOnly – Restart from the original input resources. The pro-
cess must not run if any original resources are not available.
Fast – Reuse as many intermediate resources as possible, (e.g.,
restart ImageSetting from stored intermediate raster files and do not
reRIP, if possible).

ResourceID string ID attribute of the Resource requested.
ReturnURL ? URL URL where the JDF file should be written when the job is completed

or aborted. If not specified, the JDF should be placed in the default
output hot folder of the queue controller. ReturnURL takes prece-
dence when NodeInfo/@TargetRoute is specified in the previ-
ously submitted JDF.

WatchURL ? URL URL of the controller that should be notified when the status of the
QueueEntry or the underlying job changes. Specifying WatchURL
is equivalent to sending a subscription for an Events message with
SignalTypes=”All”.

Part * element The Part elements identify the parts of a partitioned output resource to
be created by the JDF node. The structure of the Part element is
defined in Table 3-28, “Contents of the Part element,” on page 79. For
details on partitioned resources, see Section 3.8.2, Description of
Partitionable Resources. For details on Node partitions, see “Partial
Processing of Nodes with Partitioned Resources” on page 112.

Disposition ? element Definition how long the QueueEntry must be retained in the queue.
If not specified, the QueueEntry must be removed from the queue
immediately after process completion of the QueueEntry.

MISDetails ? refelement Definition how the costs for the production of the Resource are to be
charged.

Table 5.54: Contents of the ResourcePullParams element

Name Data Type Description
Standard Messages 161

Chapter 5 JDF Messaging with the Job Messaging Format
5.5.2.7 Shutdown
New in JDF 1.2
The ShutDown message shuts down a controller or device. Note that a Device that signals its own shutdown must
use the Status message.

Structure of the ShutDownCmdParams Element

5.5.2.8 Status

The Status message queries the general status of a device or a controller and the status of jobs associated with this
device or controller. No job context is required to issue a Status message. The response contains one or more Devi-
ceInfo elements, which contain the device specific information and which may contain other JobPhase elements
that in turn contain the job specific information. The response may also provide a Queue element.

Structure of the StatusQuParams Element
The various aspects of the device, queue, and job states may be refined by the StatusQuParams element. This ele-
ment contains three groups of parameters. The first group serves to refine the device-specific status information que-
ried. The parameters EmployeeInfo and DeviceDetails belong to this group. The second group serves to refine
the job specific status information. These are JobDetails, JobID, and JobPartID. And the third determines sim-
ply whether a queue element should be appended. This is specified by the attribute QueueInfo.

Table 5.55: Contents of the ShutDown message

Object Type Element Description
CommandTypeObj ShutDownCmdParams Defines the details of a shutdown.

QueueFilter Defines a filter for the returned Queue element in the
ShutDown message.

ResponseTypeObj DeviceInfo Describes the device status as anticipated after the shut-
down.

Queue Provides information about the queue and all its entries as
anticipated after the shutdown. This element will only be
provided if the device has queue capabilities. The Queue
element is described in “Queue-Handling Elements” on
page 187s.

Table 5.56: Contents of the ShutdownCmdParams element

Name Data Type Description
ShutDownType =
“StandBy”

enumeration Defines the device shutdown method. Possible values are:
StandBy – The device is set to standby mode. It may be restarted
with a WakeUp JMF message.
Full – Completely shut down the device. It is no longer accessible
via JMF after the shutdown.

FlushQueueParams ? element Defines the policy for flushing the queue upon Shutdown. If not speci-
fied, the queue is not flushed. The behavior of a queue after shutdown
is system specific.

Table 5-57: Contents of the Status message

Object Type Element
name Description

QueryTypeObj StatusQuPar
ams

Refines the query to include various aspects of the device and job states.

ResponseTypeObj
Modified in JDF 1.2

DeviceInfo + Describes the actual device status. If the queue handles multiple devices,
one DeviceInfo must be specified for each device.

Queue ? Provides information about the queue and all its entries. This element will
only be provided if the device has queue capabilities. The Queue ele-
ment is described in Section 5.6.5, Queue-Handling Elements.
162 Standard Messages

JDF Specification Release 1.2
In order to focus on the status of a certain job, the job must be uniquely identified using the JobID attribute. It may
be necessary to define a process or a part of a job as the query target under certain circumstances, such as when a job is
processed in parallel. This is accomplished using the JobPartID attribute of the StatusQuParams element. A value
of JobDetails = “Full” requests a complete JDF description of a snapshot of the specified job or job part.

If the specified job or job part is unknown, the value of the ReturnCode attribute is 103 or 104 (for error codes,
see “Supported Error Codes in JMF and Notification elements” on page 619).

Table 5-58: Contents of the StatusQuParams element

Name Data Type Description
DeviceDetails =
“None”

enumeration Refines the provided status information about the device. Possible values are:
None
Brief – Provide all available device information except for Device elements.
Modules – ModuleStatus elements should be provided without module
specific status details and without module specific employee information.
Details – Provide maximum available device information excluding device
capability descriptions. Includes Device elements which represent details of
the device.
Capability – Provide Device elements with DeviceCap subelements
which represent details of the capabilities of the device.
Full – Provide maximum available device information including device capa-
bility descriptions. Includes Device elements which represent details of the
device.

EmployeeInfo =
“false”

boolean If true, Employee elements may be provided in the response. Those ele-
ments describe the employees which are associated to the device independent on
any job.

JobDetails =
“None”
Modified in JDF
1.2

enumeration Refines the provided status information about the jobs associated with the
device. Each higher entry includes the values specified in the lower entries. Pos-
sible values are:
None – Specify only JobID, JobPartID and Amount, and/or
PercentCompleted.
MIS – Provide business with the relevant information contained in the
CostCenter element and the DeadLine, DeviceStatus, Status,
StatusDetails, and the various Counter attributes. In JDF 1.2 and beyond,
this value is identical to Brief. Deprecated in JDF 1.2
Brief – Provide all available status information including JobPhase ele-
ments except for JDF.
Full – Provide maximum available status information. Includes an actual JDF
which represents a snapshot of the current job state.

JobID ? string Job ID of the JDF node whose status is being queried. If not specified, list all
known jobs.

JobPartID ? string JobPart ID of the JDF node whose status is being queried.
QueueEntryID ?
New in JDF 1.2

string QueueEntryID of the job that is being queried. If QueueEntryID is speci-
fied, JobID, JobPartID, and Part are ignored. If none of JobID,
JobPartID, Part, or QueueEntryID are specified, StatusQuParams
applies to all jobs.

QueueInfo =
“false”

boolean If true, a Queue element may be provided. This is analogous to a
QueueStatus query (see Section 5.6.4.6, QueueStatus).

Part *
New in JDF 1.2

element Part elements that describe the partition of the job whose status is queried. For
details on Node partitions, see “Partial Processing of Nodes with Partitioned
Resources” on page 112.
Standard Messages 163

Chapter 5 JDF Messaging with the Job Messaging Format
Structure of the DeviceInfo Element
The response returns a DeviceInfo element for the queried device.

Table 5-59: Contents of the DeviceInfo element

Name Data Type Description
CounterUnit ? string The unit of the ProductionCounter, the

TotalProductionCounter and numerator unit of Speed.
The default unit is the default unit defined by JDF for the output
resource of the node executed by the device. For example, in case of
a sheet printer, it is the number of sheets; in case of a web printer, it
is the length of printed web in meters.

DeviceCondition ?
New in JDF 1.2

enumeration The general condition of a device.
OK – The device is in working condition.
NeedsAttention – The device is still in working condition but
requires attention.
Failure – The device is not in working condition.
OffLine – The device is off line and its condition is unknown.

DeviceOperationMode ?
New in JDF 1.2

enumeration DeviceOperationMode shows the operation mode that the
device is in. It is used to show if the production of a device is aimed
at producing good products or not. The latter case applies when a
device is used to produce a job for testing, calibration, etc. without
the intention to produce good output.
Productive – The device is used to produce good product. Any
times recorded in this mode should be allocated against the job.
NonProductive – The device is used without the intention to
produce good product. Any times recorded in this mode should not
be allocated against the job.
Maintenance –The device is used without the intention to pro-
duce good product, e.g. to perform (preventative) maintenance.

DeviceStatus enumeration The status of a device. Possible values are:
Unknown – No device is known or the device cannot provide a
DeviceStatus.
Idle – No job is being processed and the device is accepting new jobs.
Down – No job is being processed and the device currently cannot
execute a job. The device may be broken, switched off, etc.
Setup – The device is currently being set up. This state is allowed
to occur also during the execution of a job.
Running – The device is currently executing a job.
Cleanup – The device is currently being cleaned. This state is
allowed to occur also during the execution of a job.
Stopped – The device has been stopped, but running may be
resumed later. This status may indicate any kind of break, including
a pause, maintenance, or a breakdown, as long as execution has not
been aborted.

HourCounter ? duration The total integrated time (life time) of device operation in hours.
PowerOnTime ? dateTime Date and time when the device was switched on.
ProductionCounter ? double The current machine production counter. This counter can be reset.

Typically, it starts counting at power-on time. The reset of this
counter may be signaled by an Events message of Type =
CounterReset (see “NotificationDetails” on page 621).

Speed ? double The current machine speed. Speed is defined in the same units as
ProductionCounter / hour.
164 Standard Messages

JDF Specification Release 1.2
Structure of the JobPhase Element
A Status response may provide JobPhase elements. The JobPhase element represents the actual state of a job.
The JobPhase element is an analogue to the PhaseTime audit element described in Section 3.9.1.3, PhaseTime.
The main difference between a JobPhase element and a PhaseTime audit element is that a JobPhase message
element reflects a snapshot of the current job status whereas the PhaseTime audit reflects a time span bordered by
two (sub-) status transitions. JobPhase elements must not overlap in time.

For exact information about the job phase, a JobPhase element may embed a copy of the current state of the
job described as JDF. If Part elements are specified, all attributes in JobPhase applies only to the specified parts. If
an actual JDF is not supported by the controller, the same rules apply for the Status response as those which apply
for the Resource response.

StatusDetails ? string String that defines the device state more specifically. For a list of
supported values, see “StatusDetails Supported Strings” on
page 615.

TotalProductionCounter ? double The current total machine production counter since the machine was
produced.

Device ? element A Device resource that describes details of the device.
Employee * element Employee resources that describe which employees are currently

working at the device.
JobPhase *
Clarified in JDF 1.2

element Describes the actual status of jobs in the device. All jobs that are
active on the device must be specified. Supplying no JobPhase
specifies that no job is currently active on the device.
Active jobs have JDF/@Activation=Active, TestRun or
TestRunAndGo and JDF/@Status or JDF/StatusPool/
PartStatus@Status = TestRunInProgress, Setup,
InProgress, Cleanup or Stopped.
For details on using JobPhase elements, see Table 5-60 on page 165.

ModuleStatus * element Status of individual modules. For details on using ModuleStatus
elements, see Table 5-61 on page 167.

Table 5-60: Contents of the JobPhase element

Name Data Type Description
Activation ?
New in JDF 1.1

enumeration The activation of the JDF node. Possible values are the same as the pos-
sible values of a JDF node’s Activation attribute. For details, see
Table 3-4, “Contents of a JDF node,” on page 38.

Amount ? double Total Amount that the node defined in this JobPhase produced since
StartTime. If Waste is also specified, the value is without waste. The
unit is specified in the CounterUnit attribute of the parent element
DeviceInfo.

DeadLine ? enumeration Scheduling state of the job. Possible values are:
InTime – The job or job part will probably not miss the deadline.
Warning – The job or job part could miss the deadline.
Late – The job or job part will miss the deadline.
For more details on scheduling, see Section 3.4, Node Information in
NodeInfo.

JobID ? string Job ID of the JDF node that the JobPhase belongs to.
JobPartID ? string Job part ID of the JDF node that the JobPhase belongs to.
PercentCompleted ? double Node processing progress in percent (%) completed.

Table 5-59: Contents of the DeviceInfo element

Name Data Type Description
Standard Messages 165

Chapter 5 JDF Messaging with the Job Messaging Format
PhaseAmount ?
New in JDF 1.2

double Amount that the node defined in this JobPhase produced during this
JobPhase. If PhaseWaste is also specified, the value is without
waste. The unit is specified in the CounterUnit attribute of the parent
element DeviceInfo.

PhaseStartTime ?
New in JDF 1.2

dateTime Time that this JobPhase started.

PhaseWaste ?
New in JDF 1.2

double Amount of waste that the node defined in this JobPhase produced dur-
ing this JobPhase. The unit is specified in the CounterUnit attribute
of the parent element DeviceInfo.

QueueEntryID ? string If the job was submitted to a Queue, and the QueueEntryID is
known, this attribute should be provided.

RestTime ?
New in JDF 1.1

duration Estimated duration required for finishing of processing of this node.

Speed ? double The current job speed. Speed is defined in the same units as
ProductionCounter / hour. Defaults to the speed specified in the
DeviceInfo element.

StartTime ?
New in JDF 1.1

dateTime Time when execution of the node that is described by this JobPhase
has been started, defined by the transition of JDF/@Status from
Waiting or Ready to any active value.

Status enumeration The status of the JDF node. Possible values are the same as the possible
values of a JDF node’s Status attribute. For details, see Table 3-4,
“Contents of a JDF node,” on page 38.

StatusDetails ? string String that defines the job state more specifically. For a list of supported
values, see “StatusDetails Supported Strings” on page 615.

TotalAmount ?
New in JDF 1.1

double Amount that will be produced when this job phase is 100% completed.
The unit is specified in the CounterUnit attribute of the parent element
DeviceInfo.

Waste ?
New in JDF 1.1

double Total Amount of waste that the node defined in this JobPhase pro-
duced since StartTime. The unit is specified in the CounterUnit
attribute of the parent element DeviceInfo.

CostCenter ? element The cost center that the job is currently being charged to. Defaults to the
cost center specified in the DeviceInfo element.

JDF ? element Complete JDF node that represents a snapshot of the job that is currently
being processed. This element is for reference only and must not be
merged with the main JDF of the job using spawning and merging meth-
ods. JDF/@Activation must be set to "Informative" in this JDF
element.

MISDetails ?
New in JDF 1.2

refelement Definition how the costs for this JobPhase are to be charged.

Part *
Modified in JDF 1.1

element Describes which parts of a job are currently being processed. For details
on Node partitions, see “Partial Processing of Nodes with Partitioned
Resources” on page 112.

Table 5-60: Contents of the JobPhase element

Name Data Type Description
166 Standard Messages

JDF Specification Release 1.2
Structure of the ModuleStatus Element
The ModuleStatus element is identical to the ModulePhase element of the PhaseTime audit element (see
Table 3-35, “Contents of the ModulePhase element,” on page 94), except that the attributes Start and End are miss-
ing. These attributes specify the time interval in the audit pendant ModulePhase and the DeviceID attribute,
which is unnecessary here. The ModuleStatus element is described in the following table.

The following is an example of a response to a Status query. The device in this example holds one job and executes
another job that is currently printed duplex (each side) on four-color modules for the front and three-color modules
for the back, with one idle:
 <Response ID="M1" Type="Status" refID="Q1">
 <DeviceInfo DeviceStatus="Running" StatusDetails="Waste">
 <JobPhase Amount="2560" DeadLine="InTime" JobID="678" JobPartID="01"
PercentCompleted="52" QueueEntryID="Job-05" Status="InProgress" StatusDetails="Waste"/>
 <JobPhase Amount="0" DeadLine="Warning" JobID="679" JobPartID="01"
PercentCompleted="0" QueueEntryID="Job-06" Status="Ready"/>
 <ModuleStatus DeviceStatus="Running" ModuleIndex="0~3 6~8"
ModuleType="PrintModule"/>
 <ModuleStatus DeviceStatus="Idle" ModuleIndex="4" ModuleType="PrintModule"/>
 <ModuleStatus DeviceStatus="Running" ModuleIndex="5"
ModuleType="PerfectingModule"/>
 </DeviceInfo>
 </Response>

Table 5-61: Contents of the ModuleStatus element

Name Data Type Description
DeviceStatus enumeration Status of the module. Possible values are:

Unknown – The module status is unknown.
Idle – The module is not used. An example is a color print module that is
inactive during a black-and-white print.
Down – The module cannot be used. It may be broken, switched off etc.
Setup – The module is currently being set up.
Running – The module is currently executing.
Cleanup – The module is currently being cleaned.
Stopped – The module has been stopped, but running may be resumed
later. This status may indicate any kind of break, including a pause, main-
tenance, or a breakdown, as long as running can be easily resumed.

ModuleIndex IntegerRange-
List

0-based indices of the module or modules. If multiple module types are
available on one machine, indices must also be unique.

ModuleType NMTOKEN Module description. The allowed values depend on the type of device that
is described. The predefined values are listed in “ModuleType Supported
Strings” on page 617.

StatusDetails ? string Description of the module status phase that provides details beyond the
enumerative values given by the DeviceStatus attribute. For a list of
supported values, see “StatusDetails Supported Strings” on page 615.

Employee * element Links to Employee resources that are working at this module (the mod-
ule is specified by the attributes ModuleIndex and ModuleType).
Standard Messages 167

Chapter 5 JDF Messaging with the Job Messaging Format
5.5.2.9 Track

The Track query requests information about the location of Jobs that are known by a controller. If a high level con-
troller controls lower level controllers, it should also list the jobs that are controlled by these. The response is a list of
TrackResult elements.

Structure of the TrackFilter Element
The TrackFilter element refines the list of TrackResults that should be returned. Only jobs that match all parame-
ters specified are included.

Table 5-62: Contents of the Track message

Object Type Element name Description
QueryTypeObj TrackFilter ? Refines the Track query.
ResponseTypeObj TrackResult * Details of the tracked jobs.

Table 5-63: Contents of the TrackFilter element

Name Data Type Description
JobID ? string JobID of the JDF node that is being tracked. Defaults to list Job-

Phase elements of all known nodes.
JobPartID ? string JobPartID of the JDF node that is being tracked.
ProjectID ?
New in JDF 1.2

string ProjectID of the JDF node that is being tracked.

QueueEntryID ?
New in JDF 1.2

string QueueEntryID of the job that is currently being executed. If
QueueEntryID is specified, JobID, JobPartID, and Part are
ignored. If none of JobID, JobPartID, Part, ProjectID, or
QueueEntryID are specified, TrackFilter applies to all jobs.

Status ? enumerations The JDF/@Status of the jobs being tracked. Possible values are a
combination of any of the possible values of a JDF node’s Status
attribute. When not known or specified, all enumerations are applica-
ble. Possible values are:
Waiting
Ready
FailedTestRun
Setup
InProgress
Cleanup
Spawned
Stopped
Completed
Aborted
For details, see Table 3-4, “Contents of a JDF node,” on page 38.

Part *
New in JDF 1.2

element Part elements that describe the partition of the job that is being
tracked. For details on Node partitions, see “Partial Processing of
Nodes with Partitioned Resources” on page 112.
168 Standard Messages

JDF Specification Release 1.2
Structure of the TrackResult Element
One TrackResult is returned for each known job or spawned job part. TrackResult elements contain information
about the location of distributed jobs.

The following is an example of a response on a Track message:
 <Response ID="M1" Type="Track" refID="Q1">
 <TrackResult IsDevice="true" JobID="1" JobPartID="42" URL="http://www.anycompany.com/controller"/>
 </Response>

5.5.2.10 WakeUp
New in JDF 1.2
All queues that belong to the device are held upon wakeup and must be resumed with an explicit ResumeQueue
message. All jobs that were running on the device at shutdown are also in a held state and must be explicitly resumed
with a ResumeQueueEntry message.

Structure of the WakeUpCmdParams Element
WakeUpCmdParams is a placeholder for future use and for extensions to the WakeUp message.

Table 5-64: Contents of the TrackResult element

Name Data Type Description
JobID string JobID of the JDF node that is being tracked.
JobPartID ? string JobPartID of the highest level node of the JDF node that is being

tracked.
ProjectID ?
New in JDF 1.2

string ProjectID of the highest level node of the JDF node that is being
tracked.

QueueEntryID ?
New in JDF 1.2

string QueueEntryID of the job that is currently being tracked.

URL URL URL of the controller that owns this job.
IsDevice boolean If true, the controller that emitted this message is the device that has

access to the job and may be queried for details of the job.
Part *
New in JDF 1.2

element Part elements that describe the partition of the job that is being tracked.
For details on Node partitions, see “Partial Processing of Nodes with
Partitioned Resources” on page 112.

Table 5.65: Contents of the WakeUp message

Object Type Element Name Description
CommandTypeObj WakeUpCmdParams ? Defines the details of the WakeUp message.
ResponseTypeObj DeviceInfo Describes the device status immediately after the

WakeUp message has been sent. The device should also
send an Acknowledge/WakeUp message after its warm
up cycle has been completed, if applicable.

Table 5.66: Contents of the WakeUpCmdParams element

Name Data Type Description
— — —
Standard Messages 169

Chapter 5 JDF Messaging with the Job Messaging Format
5.5.3 Pipe Control
JDF Messaging provides methods to control dynamic pipes. Dynamic pipes are described in detail in Section 4.3.3,
Overlapping Processing Using Pipes.

5.5.3.1 PipeClose

The PipeClose message notifies the process at the other end of a dynamic pipe that the sender of this message needs
no further resources or will produce no further resources through the pipe. The PipeClose command response is
equivalent to the PipePull and PipePush command responses described below.

5.5.3.2 PipePull

The PipePull message requests resources that are described in a JDF dynamic pipe (see Section 3.6.3, Pipe
Resources and Section 4.3.3, Overlapping Processing Using Pipes). PipePull messages are the JMF equivalent of a
dynamic input resource link, below, depicts the mode of operation of a PipePull message.

The PipePull command response returns a ReturnCode of 0 if the command has been accepted by the receiv-
ing controller. If not successful the ReturnCode may be one of the codes presented in Supported Error Codes in
JMF and Notification elements. The Response may contain a Notification element. The JobPhase element (see
Section 5.5.2.8, Status) returned should provide only the Status attribute that describes the job status of the respond-
ing process after receiving the command.

Table 5-67: Dynamic pipe messages

Message type Family Description
PipeClose CR Closes a pipe because no further resources are required. This is typically

used to terminate the producing process.
PipePull CR Requests a new resource from a pipe.
PipePush CR Notifies that a new resource is available in a pipe.
PipePause CR Pauses a process if no further resources can be consumed or produced.

Table 5-68: Contents of the PipeClose message

Object Type Element name Description
CommandTypeObj PipeParams Describes the pipe resource. The PipeParams ele-

ment is described in Section 5.5.3.2, PipePull.
ResponseTypeObj JobPhase The status of the responding process. The JobPhase

element is defined in Table 5-60 on page 165.

Table 5-69: Contents of the PipePull message

Object Type Element name Description
CommandTypeObj PipeParams Describes the requested pipe resource.
ResponseTypeObj JobPhase The status of the responding process. The JobPhase

element is defined in Table 5-60 on page 165.
170 Standard Messages

JDF Specification Release 1.2
Structure of the PipeParams Element
The PipeParams element is also used by the messages PipeClose, PipePush, and PipePause. The URL where
an optional Acknowledge should be sent when the pipe command has been executed may be defined in the initiat-
ing command message by the attribute AcknowledgeURL. The Acknowledge is sent for the following com-
mands:

• for PipeClose: when the process has been finished,

• for PipePull: when the resource is available,

• for PipePush: when the resource has been accepted, and

• for PipePause: when the process has been stopped.

Figure 5.4: Mechanism of a PipePull message

Table 5-70: Contents of the PipeParams element

Name Data Type Description
JobID ?
New in JDF 1.2

string Specifies the JobID of the node at the receiving end of the message that
links to the resource specified in PipeID.

JobPartID ?
New in JDF 1.2

string Specifies the JobPartID of the node at the receiving end of the message
that links to the resource specified in PipeID.

PipeID string Pipe ID of the JDF resource that defines the dynamic pipe.
Status =
“InProgress”

enumeration Process status after the request. Possible values are defined in Table 3-4,
“Contents of a JDF node,” on page 38.

UpdatedStatus ? enumeration This value represents the actual status of the pipe resource and may be
used by the receiving process for process termination control. For details
see Section 4.3.5.2, Formal Iterative Processing.
For possible values of the resource Status attribute see Table 3-13,
“Contents of the abstract Resource element,” on page 53.
Standard Messages 171

Chapter 5 JDF Messaging with the Job Messaging Format
5.5.3.3 PipePush

The PipePush message notifies the availability of pipe resources that are described in a JDF dynamic pipe (see
Section 3.6.3, Pipe Resources and Section 4.3.3, Overlapping Processing Using Pipes). PipePush messages are the
JMF equivalent of a dynamic output resource link. Figure 5.5 depicts the mode of operation of a PipePush message.
The PipePush command response is equivalent to the PipePull command response described above.

Resource * element Updated input resources to be used by the process that receives the pipe
command: PipePull (the receiver creates the pipe resource), PipePush
(the receiver consumes the pipe resource), and PipePause (the receiver
only updates the inputs).
The resource to be updated is identified by the ID, that means the ID
attribute must be known to the controller that issued the pipe command.
Possible commands are: PipePull, PipePush, or PipePause. In case
of the PipeClose command, the resources are ignored.

ResourceLink ? element Updated resource link to the pipe resource: PipePull (it is an output
link), PipePush (it is an input link), and PipePause (depends on the
pipe end). This resource link may be used by the process that links to the
pipe resource.
The attributes rRef and Usage of a ResourceLink must not be modi-
fied by the agent that sends the Pipe message because these attributes
are used by the JMF receiver to identify the ResourceLink that is to be
modified. For details see Section 3.6.4, ResourceUpdate Elements. In the
context of dynamic pipes these two attributes have no meaning.
In case of the PipeClose command, the resource link is ignored.

Table 5-71: Contents of the PipePush message

Object Type Element name Description
CommandTypeObj PipeParams Describes the produced pipe resource. The PipeParams

element is described in Section 5.5.3.2, PipePull.
ResponseTypeObj JobPhase The status of the responding process. The JobPhase

element is defined in Table 5-60 on page 165.

Figure 5.5: Mechanism of a PipePush message

Table 5-70: Contents of the PipeParams element

Name Data Type Description
172 Standard Messages

JDF Specification Release 1.2
5.5.3.4 PipePause

The PipePause message pauses execution of a process that is at the other end of a dynamic pipe. The PipePause
command response is equivalent to the PipePull command response described above.

5.6 Queue Support
In JMF, a device is assumed to have one input queue that accepts submitted jobs. If a real device supports multiple
queues, it is represented by multiple logical devices in JDF. The simple case of a device with no queue can be mapped
to a queue with two Status states: Waiting and Full. JMF supports simple handling of priority queues. The fol-
lowing assumptions are made:

• Queues support priority. Priority may only be changed for waiting jobs. A queue may round priorities to the
number of supported priorities, which may be one, indicating no priority handling.

• Priority is described by an integer from 0 to 100. Priority 100 defines a job that should pause another job that is
in progress and commence immediately. If a device does not support the pausing of running jobs, it should queue
a priority 100 job before the last pending priority 100 job.

• A controller may control multiple devices/queues.

• Queue entries can be unambiguously identified by a QueueEntryID.

• A queue controller may decide to analyze a JDF that is submitted to a queue at submission or execution time. A
Queue may treat a JDF as a closed envelope that is passed on to the Device without checking. The behavior is
implementation dependent.

Some conventions used in the following sections have already been introduced in Section 5.5, Standard Messages.
This affects the message families and the descriptive tables at the beginning of each message section that describe the
type objects related to the corresponding message. The type objects are QueryTypeObj, CommandTypeObj,
and ResponseTypeObj (see also Figure 5.1).

5.6.1 Queue Entry ID Generation
Queue entries are accessed using a QueueEntryID attribute, which is generated by the controller of the queue
when the job is submitted and is returned in the SubmitQueueEntry response. This attribute must uniquely iden-
tify an entry within the scope of one queue. An implementation is free to choose the algorithm that generates
QueueEntryIDs.

5.6.2 Use of QueueFilter in Queue Entry Handling commands
New in JDF 1.2
Each of the Queue Handling Commands contains an optional QueueFilter element (See “Contents of the
QueueFilter Element” on page 189) which selects the queue entries to be returned and the contents of each. If multi-
ple filter attributes are supplied in the QueueFilter, the individual filters are all applied, resulting in a Queue ele-
ment that contains only QueueEnty elements that fulfill all conditions defined by QueueFilter. If QueueFilter
is not supplied, the entire Queue is returned.

Table 5-72: Contents of the PipePause message

Object Type Element name Description
CommandTypeObj PipeParams Describes the pipe resource. The PipeParams element

is described in Section 5.5.3.2, PipePull.
ResponseTypeObj JobPhase The status of the responding process. The JobPhase

element is defined in Table 5-60 on page 165.
Queue Support 173

Chapter 5 JDF Messaging with the Job Messaging Format
5.6.3 Queue Entry Handling Commands
Queue-entry handling is provided so that the state of individual jobs within a queue can be changed. Job submission,
queue-entry grouping, priorities, and hold / suspend / resume of entries are all supported. The individual commands
are defined in the table and explained in greater detail in the sections that follow.

The following table specifies the status transitions for the respective queue entry handling messages. The error(n)
indicates the ReturnCode which is returned on an illegal Status transition and the queue entry Status is unchanged.
For details on error codes, see “Supported Error Codes in JMF and Notification elements” on page 619.

Table 5-73: QueueEntry handling messages

Message type Family Description
AbortQueueEntry
Modified in JDF 1.2

CR The QueueEntry is aborted and remains in the Queue with
QueueEntry/@Status="Aborted".

HoldQueueEntry CR The entry remains in queue but is not executed until a Resume-
QueueEntry command is received.

RemoveQueueEntry CR A job is removed from the queue.
RequestQueueEntry
New in JDF 1.2

CR A new job is requested by the device. This message is used to signal that
a Device has processing resources available.

ResubmitQueueEntry CR Replaces a queue entry without affecting the entry’s parameters. The
command is used, for example, for late changes to a submitted JDF.

ResumeQueueEntry CR A held job is resumed. The job is re-queued at the position defined by its
current priority. Submission time is set to the current time stamp.

ReturnQueueEntry
New in JDF 1.2

CR Returns a job that had been submitted with a SubmitQueueEntry to
the queue that represents the controller that originally submitted the job.

SetQueueEntryPosition CR Queues a job behind a given position n, where n represents a numerical value.
“0” = pole position. Priority is set to the priority of the job at position n.

SetQueueEntryPriority CR Sets the priority of a queued job to a new value. This does not apply to
jobs that are already running.

SubmitQueueEntry CR A job is submitted to a queue in order to be executed.
SuspendQueueEntry
New in JDF 1.2

CR The entry is suspended if it is already running. It remains suspended until
a ResumeQueueEntry command is received.

Table 5-74: Status transitions for QueueEntry handling messages

Old Status
Message type

N
on

 e
xi

st
en

t

W
ai

tin
g

H
el

d

R
un

ni
ng

Su
sp

en
de

d

C
om

pl
et

ed

A
bo

rt
ed

AbortQueueEntry error(105) Aborted Aborted Aborted Aborted error(114) error(113)
HoldQueueEntry error(105) Held error(113) error(106) error(106) error(114) error(114)
RemoveQueueEntry error(105) Removed Removed error(106) error(106) Removed Removed
RequestQueueEntry RequestQueueEntry is emitted by the controller of the queue and not sent to the

queue. Therefore it is not applicable in this section.
ResubmitQueueEntry error(105) Waiting Held error(107) error(107) error(114) error(114)
ResumeQueueEntry error(105) error(113) Waiting error(113) Running error(114) error(114)
ReturnQueueEntry ReturnQueueEntry is emitted by the controller of the queue and not sent to the

queue. Therefore it is not applicable in this section.
SetQueueEntryPosition error(105) Waiting Held error(107) error(107) error(114) error(114)
SetQueueEntryPriority error(105) Waiting Held error(107) error(107) error(114) error(114)
174 Queue Support

JDF Specification Release 1.2
The following Status transition diagram depicts the life cycle of a queue entry.

SubmitQueueEntry Waiting,
Held,
Running

A new QueueEntryID is generated by the queue owner on submission.
Therefore these states are not applicable.

SuspendQueueEntry error(105) error(115) error(115) Suspended error(113) error(114) error(114)

Figure 5.6: JMF QueueEntry Status Transition Diagram

Table 5-74: Status transitions for QueueEntry handling messages

Old Status
Message type

N
on

 e
xi

st
en

t

W
ai

tin
g

H
el

d

R
un

ni
ng

Su
sp

en
de

d

C
om

pl
et

ed

A
bo

rt
ed
Queue Support 175

Chapter 5 JDF Messaging with the Job Messaging Format
5.6.3.1 AbortQueueEntry
Modified in JDF 1.2

Once this command is issued, the entry specified by QueueEntryDef is aborted and remains in the Queue with
QueueEntry/@Status="Aborted". The Audits and JDF/@Status of the JDF that is being processed should
be appropriately set to “Aborted” and the JDF should be delivered to the URL as specified by SubmitQueueEn-
try/@ReturnURL, SubmitQueueEntry/@ReturnJMF or NodeInfo/@TargetRoute.

The following example demonstrates how an AbortQueueEntry command may cause a job in a queue to be
aborted and only return the Status of the aborted QueueEntry in the response, rather than the entire Queue:
<JMF xmlns="http://www.CIP4.org/JDFSchema_1_1" DeviceID="A3 Printer"
 SenderID="MIS master A" TimeStamp="2003-07-25T12:32:48+02:00" Version="1.2">
 <Command ID="M009" Type="AbortQueueEntry">
 <QueueEntryDef QueueEntryID="job-0032"/>
 <QueueFilter>
 <QueueEntryDef QueueEntryID="job-0032"/>
 </QueueFilter>
 </Command>
</JMF>

The following example shows a possible response to the command example above:
<JMF xmlns="http://www.CIP4.org/JDFSchema_1_1" SenderID="A3 Printer"
TimeStamp="2003-07-25T12:32:48+02:00" Version="1.2">
 <Response ID="M109" Type="AbortQueueEntry" refID="M009">
 <Queue DeviceID="A3 Printer" Status="Running">
 <QueueEntry JobID="job-0032" QueueEntryID="job-0032" Status="Aborted"/>
 </Queue>
 </Response>
</JMF>

5.6.3.2 HoldQueueEntry
Modified in JDF 1.2

The entry specified by QueueEntryDef remains in the queue but is never executed. If its Status is “Waiting”,
its Status is set to “Held”. The HoldQueueEntry command has no effect on jobs with a Status other than
“Waiting”. For details, see “Status transitions for QueueEntry handling messages” on page 174.

Table 5-75: Contents of the AbortQueueEntry message

Object Type Element name Description
CommandTypeObj
Modified in JDF 1.2

QueueEntryDef Defines the queue entry.
QueueFilter ?
New in JDF 1.2

Defines a filter for the returned Queue element in the
AbortQueueEntry message.

ResponseTypeObj Queue Describes the state of the queue after the command has
been executed.

For the definition of the elements listed above, see Section 5.6.5, Queue-Handling Elements.

Table 5-76: Contents of the HoldQueueEntry message

Object Type Element name Description
CommandTypeObj
Modified in JDF 1.2

QueueEntryDef Defines the queue entry.
QueueFilter ?
New in JDF 1.2

Defines a filter for the returned Queue element in the
HoldQueueEntry message.

ResponseTypeObj Queue Describes the state of the queue after the command has
been executed.

For the definition of the elements listed above, see Section 5.6.5, Queue-Handling Elements.
176 Queue Support

JDF Specification Release 1.2
5.6.3.3 RemoveQueueEntry
Modified in JDF 1.2

This command causes the entry specified by QueueEntryDef to be removed from the queue. It does not affect
QueueEntrys with a Status = “Running” or “Suspended”. Use AbortQueueEntry to stop a running or
suspended job and then remove it with RemoveQueueEntry. For details, see “Status transitions for QueueEntry
handling messages” on page 174

5.6.3.4 RequestQueueEntry
New in JDF 1.2

This command requests a new queue entry from a potential submitting agent. The actual submission is still handled
by the standard queue entry handling parameters. Note that this command is emitted from the Device that is repre-
sented by the queue to a controller or dispatcher and not to the queue, as is the case with most other queue handling
commands.

Structure of the RequestQueueEntryParams Element

Table 5-77: Contents of the RemoveQueueEntry message

Object Type Element name Description
CommandTypeObj
Modified in JDF 1.2

QueueEntryDef Defines the queue entry.
QueueFilter ?
New in JDF 1.2

Defines a filter for the returned Queue element in the
RemoveQueueEntry message.

ResponseTypeObj Queue Describes the state of the queue after the command has
been executed.

For the definition of the elements listed above see, Section 5.6.5, Queue-Handling Elements.

Table 5-78: Contents of the RequestQueueEntry message

Object Type Element name Description
CommandTypeObj RequestQueueEntryPar

ams
Defines the specifics for the requested job.

ResponseTypeObj — The controller does not send any immediate response.
Any job submission is handled using hot folders or the
standard SubmitQueueEntry message.

For the definition of the elements listed above see, Section 5.6.5, Queue-Handling Elements.

Name Data Type Description
JobID ? string JobID of the requested QueueEntry.
JobPartID ? string JobPartID of the requested QueueEntry.
QueueURL URL URL of the Queue controller that is requesting the QueueEntry and will

accept Queue manipulation messages.
Part * element Partition Parts of the requested QueueEntry.
Queue ? element Representation of the current status of the device's Queue.
Queue Support 177

Chapter 5 JDF Messaging with the Job Messaging Format
5.6.3.5 ResubmitQueueEntry
Modified in JDF 1.2

A job is resubmitted to a queue using the ResubmitQueueEntry message. This allows late changes to be made to
a job without affecting queue parameters and without exporting the internal structure of a queue. Resubmission over-
writes the job specified in ResubmissionParams/@URL The QueueEntry/@Status must be “Waiting”
or “Held”. Job resubmission does not affect other queue parameters as specified. For example, resubmission does
not affect queue ordering. For details, see “Status transitions for QueueEntry handling messages” on page 174

Structure of the ResubmissionParams Element

5.6.3.6 ResumeQueueEntry
Modified in JDF 1.2

The hold status of the queue entry specified by QueueEntryDef is removed. A QueueEntry with Status =
“Held” gets a Status of “Waiting”. A QueueEntry with Status = “Suspended” gets a Status of
“Running”. For details, see “Status transitions for QueueEntry handling messages” on page 174.

5.6.3.7 ReturnQueueEntry
New in JDF 1.2

Table 5-79: Contents of the ResubmitQueueEntry message

Object Type Element name Description
CommandTypeObj
Modified in JDF 1.2

ResubmissionParams Defines the job resubmission.
QueueFilter ?
New in JDF 1.2

Defines a filter for the returned Queue element in the
ResubmitQueueEntry message.

ResponseTypeObj Queue Describes the state of the queue after the command has
been executed.

For the definition of the Queue element, see Section Section 5.6.5, Queue-Handling Elements.

Table 5-80: Contents of the ResubmissionParams element

Name Data Type Description
QueueEntryID string ID of the queue entry to be replaced.
URL URL Location of the JDF to be submitted. May be either a URL or, in the case of

MIME/Multipart/Related, a CID.

Table 5-81: Contents of the ResumeQueueEntry message

Object Type Element name Description
CommandTypeObj
Modified in JDF 1.2

QueueEntryDef Defines the queue entry.
QueueFilter ?
New in JDF 1.2

Defines a filter for the returned Queue element in the
ResumeQueueEntry message.

ResponseTypeObj Queue Describes the state of the queue after the command has
been executed.

For the definition of the elements listed above, see Section 5.6.5, Queue-Handling Elements.

Table 5-82: Contents of the ReturnQueueEntry message

Object Type Element name Description
CommandTypeObj ReturnQueueEntryPara

ms
Defines the job being returned from Device to Control-
ler after processing is completed or aborted.

ResponseTypeObj -
For the definition of the elements listed above, see Section 5.6.5, Queue-Handling Elements.
178 Queue Support

JDF Specification Release 1.2
The ReturnQueueEntry message returns a job that had been submitted with a SubmitQueueEntry to the
queue that represents the controller that originally submitted the job. JDF Packaging may be supported by a return
queue and should be determined by use of a SubmissionMethods query. The ReturnQueueEntryParams
element provides the required parameters. Note that this command is emitted from the Device that is represented by
the queue to a controller or dispatcher and not to the queue, as is the case with most other queue handling commands.

Structure of the ReturnQueueEntryParams Element
The URL attribute specifies the location where the JDF file to be submitted can be retrieved by the Controller. The
scheme of the URL attribute (such as File, http or CID) defines the retrieval method to be used to retrieve the JDF.

5.6.3.8 SetQueueEntryPosition
Modified in JDF 1.2

The position of the queue entry is modified. The QueueEntryPosParams element provides the required parame-
ters. The position of a queue entry must only be modified if Status = “Waiting” or Status = “Held”. For
details, see “Status transitions for QueueEntry handling messages” on page 174.

Structure of the QueueEntryPosParams Element
QueueEntryID specifies the queue entry to be moved. Jobs may either be set to a specific position within the queue or
positioned next to an existing queue entry. The priority of the entry matches the priority of the entry that precedes it, after it
has been repositioned. Only one of NextQueueEntryID, PrevQueueEntryID or Position may be specified.

Table 5-83: Contents of the ReturnQueueEntryParams element

Name Data Type Description
Aborted ? IDREFS ID of the JDF nodes that have been executed and aborted or failed test

running. If Aborted and Completed are empty, no executable node
was found.

Completed ? IDREFS ID of the JDF nodes that have been executed and completed or suc-
ceeded in test run.

Priority ? integer The priority of the QueueEntry when it was executed on the device.
The controller receiving this message may prioritize this job for contin-
ued processing based on this value.

URL URL Location of the JDF to be returned.

Table 5-84: Contents of the SetQueueEntry message

Object Type Element name Description
CommandTypeObj
Modified in JDF 1.2

QueueEntryPosParams Defines the queue entry.
QueueFilter ?
New in JDF 1.2

Defines a filter for the returned Queue element in the
SetQueueEntryPosition message.

ResponseTypeObj Queue Describes the state of the queue after the command has
been executed.

For the definition of the Queue element, see Section 5.6.5, Queue-Handling Elements.

Table 5-85: Contents of the QueueEntryPosParams element

Name Data Type Description
NextQueueEntryID ? string ID of the queue entry that should be ordered directly behind the entry.
QueueEntryID string ID of a queue entry.
PrevQueueEntryID ? string ID of the queue entry that should be ordered directly in front of the entry.
Position ? integer Position in the queue. “0” = pole position. Note that the position is

based on the queue before modification. Thus if a queue entry is moved
back in the queue, its final position is one lower than specified in
Position.
Queue Support 179

Chapter 5 JDF Messaging with the Job Messaging Format
5.6.3.9 SetQueueEntryPriority
Modified in JDF 1.2

The priority of the queue entry is modified. The QueueEntryPriParams element provides the required parame-
ters. For details, see “Status transitions for QueueEntry handling messages” on page 174.

Structure of the QueueEntryPriParams Element
QueueEntryID, described in the table below, specifies the queue entry that has its priority modified.

5.6.3.10 SubmitQueueEntry
Modified in JDF 1.2

The SubmitQueueEntry message submits a job to a queue. The QueueSubmissionParams element provides
the required parameters.

Structure of the QueueSubmissionParams Element
T he jo b s ub m is s i on m a y c o n t a in q ue u e - o rd e r in g a t t r ib u t e s e qu iv a l e n t t o t ho s e u s e d by t he
SetQueueEntryPriority and SetQueueEntryPosition messages. The URL attribute specifies the location
where the JDF file to be submitted can be retrieved by the queue controller. The location type in the URL attribute
(such as File, http or CID) defines the submission method. The optional ReturnURL attribute specifies the loca-
tion where the modified JDF should be sent after the job is completed or aborted.

Table 5-86: Contents of the SetQueueEntryPriority message

Object Type Element name Description
CommandTypeObj
Modified in JDF 1.2

QueueEntryPriParams Defines the queue entry.
QueueFilter ?
New in JDF 1.2

Defines a filter for the returned Queue element in the
SetQueueEntryPriority message.

ResponseTypeObj Queue Describes the state of the queue after the command has
been executed.

For the definition of the Queue element, see Section 5.6.5, Queue-Handling Elements.

Table 5-87: Contents of the QueueEntryPriParams element

Name Data Type Description
Priority integer Number from 0 to 100, where “0” = lowest priority and “100” = maximum

priority.
QueueEntryID string ID of a queue entry.

Table 5-88: Contents of the SubmitQueueEntry message

Object Type Element name Description
CommandTypeObj
Modified in JDF 1.2

QueueSubmissionParams Defines the job submission.
QueueFilter ?
New in JDF 1.2

Defines a filter for the returned Queue element in the
SubmitQueueEntry message.

ResponseTypeObj QueueEntry ?
Modified in JDF 1.2

Provides the queue entry of the submitted job.
QueueEntry must be specified if the submission
was successful and must be omitted in case the sub-
mission was rejected.

Queue Describes the state of the queue after the command has
been executed.

Definition of the QueueEntry and Queue elements, see Section 5.6.5, Queue-Handling Elements.
180 Queue Support

JDF Specification Release 1.2
File Submission
If the URL defines a file, the Device may retrieve the file at the location specified in the URL attribute. The following
example declares a file on the network:
 <Command ID="M1" Type="SubmitQueueEntry">
 <QueueSubmissionParams URL="File://MyNetWorkShare/AnyDirectory/job1.jdf"/>
 </Command>

Table 5-89: Contents of the QueueSubmissionParams element

Name Data Type Description
Hold = “false” boolean If true, the entry is submitted as held. If a JDF node is not executable

due to resources being unavailable, it must be submitted with Hold =
“true”.

NextQueueEntryID ? string ID of the queue entry that should be ordered directly behind the entry.
PrevQueueEntryID ? string ID of the queue entry that should be ordered directly in front of the entry.
Priority = “1” integer Number from 0 to 100, where “0” = lowest priority and “100” = max-

imum priority. Note that QueueSubmissionParams/@Priority is not
the same as JDF/NodeInfo/@Priority. QueueSubmissionParams/
@Priority specifies the priority in the context of the device queue
whereas JDF/NodeInfo/@Priority specifies the priority of the task in
general. QueueSubmissionParams/@Priority may be modified due
to additional scheduling information, (e.g., JDF/NodeInfo/@First-
Start).

refID ?
New in JDF 1.2

NMTOKEN Copy of the ID attribute of the initiating RequestQueueEntry mes-
sage.

ReturnJMF ?
New in JDF 1.2

URL Address of a JMF queue where a ReturnQueueEntry message must
be sent when the QueueEntry is completed or aborted. Note that the
ReturnJMF queue should be queried with a SubmissionMethods
query to determine whether MIME is supported by the return queue.

ReturnURL ?
Modified in JDF 1.2

URL URL where the JDF file should be written when the QueueEntry is
completed or aborted. Only the JDF and not a MIME multipart package
must be returned to the URL specified by ReturnURL. ReturnURL
takes precedence when NodeInfo/@TargetRoute is specified in the
submitted JDF. Note: It is not valid to return the JDF file by performing a
SubmitQueueEntry or ReturnQueueEntry to the ReturnURL
address, nor to write a multipart/related file to ReturnURL. The con-
troller specified by ReturnURL must not accept JMF messages. See
instead ReturnJMF.
Only one of ReturnURL or ReturnJMF must be specified.

URL
Modified in JDF 1.2

URL Location of the JDF to be submitted. In the case of MIME/Multipart/
Related, the location may be either a URL or a CID.

WatchURL ?
Modified in JDF 1.2

URL URL of the controller that should be notified when the status of the
QueueEntry or the underlying job changes. Specifying WatchURL is
equivalent to sending a subscription for an Events message with
SignalTypes=”All”.

Disposition ?
New in JDF 1.2

element Definition how long the QueueEntry must be retained in the queue. If
not specified, the QueueEntry must be removed from the queue imme-
diately after process completion of the QueueEntry.
Queue Support 181

Chapter 5 JDF Messaging with the Job Messaging Format
HTTP External JDF Submission
The following example declares an intranet or Internet location. In this example, the queue controller can retrieve the
file with a standard HTTP get command. Note that the job itself may be a MIME/Multipart entity. It may also be
dynamically generated by a CGI script or another such tool.
 <Command ID="M2" Type="SubmitQueueEntry">
 <QueueSubmissionParams URL="http://JobServer.JDF.COM?job1"/>
 </Command>

JDF Package Submission
If a controller is capable of decoding mime, it is legal to submit a MIME/Multipart/Related message. See “JDF

Packaging” on page 560 for details of MIME/Multipart/Related packaging.

5.6.3.11 SuspendQueueEntry
New in JDF 1.2

The entry specified by QueueEntryDef is suspended if its Status is “Running”. Its Status is set to
“Suspended”. Whether other queue entries can be run while the queue entry remains suspended depends on imple-
mentation. The SuspendQueueEntry command has no effect on jobs with a Status other than
“Running”.For details, see “Status transitions for QueueEntry handling messages” on page 174.

5.6.4 Global Queue Handling
Whereas the commands in the preceding section change the state of an individual queue entry, the commands in this
section modify the state of an entire queue. Note that entries that are executing in a device are not affected by the glo-
bal queue-handling commands and must be accessed individually. An individual queue can be selected by specifying
the target device/queue in the DeviceID attribute of the JMF root. If no DeviceID is specified, the commands or
queries are applied to all devices/queues that are controlled by the controller that received the message. The following
individual messages are defined:

Table 5-90: Contents of the SuspendQueueEntry message

Object Type Element name Description
CommandTypeObj QueueEntryDef Defines the queue entry.

QueueFilter ? Defines a filter for the returned Queue element in the
SuspendQueueEntry message.

ResponseTypeObj Queue Describes the state of the queue after the command has
been executed. See “Queue-Handling Elements” on
page 187 for the definition of the elements listed above.
The entry specified by QueueEntryDef remains in the
queue but moved into the Suspended state.

For the definition of the elements listed above, see Section 5.6.5, Queue-Handling Elements.

Table 5-91: Global queue-handling commands

Message type Family Description
CloseQueue CR The queue is closed. No jobs may be accepted by the queue.
FlushQueue CQRS All entries in the queue are removed.
HoldQueue CR The queue is held. No jobs within the queue may be executed.
OpenQueue CR The queue is opened. Jobs may be accepted.
QueueEntryStatus
Deprecated in JDF 1.2

QRS Returns a QueueEntry element.

QueueStatus QRS Returns the Queue elements that describe a queue or set of queues.
ResumeQueue CR The queue is activated and queue entries may be executed.
SubmissionMethods QR Queries a list of supported submission methods to the queue.
182 Queue Support

JDF Specification Release 1.2
The following table shows the resulting status of a Queue in dependence on global queue commands Close-
Queue/OpenQueue and HoldQueue/ResumeQueue as well as the load of queue and its processor. The first
command pair determines the logical state of the first column “Closed” and the second of the column “Held”. The
Queue is held if the Queue manager doesn't send existing entries to the Queue's processor.

5.6.4.1 CloseQueue
Modified in JDF 1.2

Table 5-92: Definition of the Queue Status Attribute values

Closed Held Queue Full Processor Full Status
Yes Yes Any Any Blocked
Yes No Any Any Closed
No Yes Any Any Held
No No Any No Waiting
No No No Yes Running
No No Yes Yes Full

Figure 5.7: Effects of the global queue messages on the queue Status

Table 5-93: Contents of the CloseQueue message

Object Type Element name Description
CommandTypeObj
Modified in JDF 1.2

QueueFilter ?
New in JDF 1.2

Defines a filter for the returned Queue element in the CloseQueue
message.

ResponseTypeObj Queue Describes the state of the queue after the command has been executed.
For the definition of the Queue element, see Section 5.6.5, Queue-Handling Elements.
Queue Support 183

Chapter 5 JDF Messaging with the Job Messaging Format
The queue is closed. No further queue entries are accepted by the queue. The status of entries that are already in the
queue remains unchanged and prior entries may be executed.

5.6.4.2 FlushQueue
Modified in JDF 1.2

Structure of the FlushQueue Command Message

FlushQueue is used to remove QueueEntrys from the Queue. Note: A QueueEntry is not automatically
deleted when executed or aborted, but rather it remains in the Queue and its Status is changed to “Completed”
or “Aborted” accordingly. FlushQueueParams allows the specification of which QueueEntrys to remove.
The QueueFilter in the FlushQueue message is applied to the Queue returned after the command is executed.
The QueueFilter contained within the FlushQueueParams is used to specify which QueueEntrys to remove.
Structure of the FlushQueue Query Message

When used as a Signal or Query, FlushQueue allows a controller to monitor queue flushing that is initiated by the
device, (e.g. due to resource constraints.) The QueueFilter in the FlushQueue message is applied to the Queue
returned after the command is executed. The QueueFilter contained within the FlushQueueInfo is used to spec-
ify which QueueEntrys were removed.

Structure of the FlushQueueInfo Element
New in JDF 1.2

Table 5-94: Contents of the FlushQueue Command message

Object Type Element name Description
CommandTypeObj
Modified in JDF 1.2

QueueFilter ?
New in JDF 1.2

Defines a filter for the returned Queue element in the FlushQueue
message.

FlushQueuePar
ams ?
New in JDF 1.2

Defines the QueueEntrys to be removed. If not specified then only
pending (Status = “Waiting” and Status = “Held” queue
entries are removed.)

ResponseTypeObj
Modified in JDF 1.2

Queue Describes the state of the queue after the command has been executed.
FlushQueueInfo
?
New in JDF 1.2

Defines the QueueEntrys that were removed.

For the definition of the Queue element, see Section 5.6.5, Queue-Handling Elements.

Table 5-95: Contents of the FlushQueue Query message

Object Type Element name Description
QueryTypeObj QueueFilter ? Defines a filter for the returned Queue element in the FlushQueue

message.

ResponseTypeObj Queue Describes the state of the queue after the elements have been flushed.

FlushQueueInfo
? New in JDF 1.2

Defines the QueueEntrys that were removed.

For the definition of the Queue element, see Section 5.6.5, Queue-Handling Elements.

Table 5.1: Contents of the FlushQueueParams element

Name Data Type Description
QueueFilter element Defines a QueueFilter that specifies the QueueEntrys that were

removed.
184 Queue Support

JDF Specification Release 1.2
The QueueFilter in FlushQueueParams defines the QueueEntrys to be removed by FlushQueue. Those
QueueEntrys meeting the criteria set in the QueueFilter will be removed.

Structure of the FlushQueueParams Element
New in JDF 1.2

5.6.4.3 HoldQueue
Modified in JDF 1.2

The queue is held. No entries will start execution. Note that the status of a held entry prior to HoldQueue is retained
so that held jobs should remain held after a ResumeQueue. New entries may still be submitted to a held queue.
HoldQueue only has effect on jobs that have not commenced processing. Queue entries that are already running
must be suspended individually using the SuspendQueueEntry command.

5.6.4.4 OpenQueue
Modified in JDF 1.2

The queue is opened and new queue entries may be accepted by the queue. A held queue remains held. The
OpenQueue command is the opposite of a CloseQueue command.

5.6.4.5 QueueEntryStatus
Deprecated in JDF 1.2
In JDF 1.2 and beyond, use QueueStatus with an appropriate QueueFilter instead of QueueEntryStatus.
See “QueueEntryStatus” on page 773 for details of this deprecated JMF element.

5.6.4.6 QueueStatus
Modified in JDF 1.2

Returns a queue description.

Table 5.2: Contents of the FlushQueueParams element

Name Data Type Description
QueueFilter ? element Defines a QueueFilter that specifies the QueueEntrys to be removed. If

not specified, the Queue is completely flushed.

Table 5-96: Contents of the HoldQueue message

Object Type Element name Description
CommandTypeObj
Modified in JDF 1.2

QueueFilter ?
New in JDF 1.2

Defines a filter for the returned Queue element in the HoldQueue
message.

ResponseTypeObj Queue Describes the state of the queue after the command has been executed.
For the definition of the Queue element, see Section 5.6.5, Queue-Handling Elements.

Table 5-97: Contents of the OpenQueue message

Object Type Element name Description
CommandTypeObj
Modified in JDF 1.2

QueueFilter ?
New in JDF 1.2

Defines a filter for the returned Queue element in the OpenQueue
message.

ResponseTypeObj Queue Describes the state of the queue after the command has been exe-
cuted.

For the definition of the Queue element, see Section 5.6.5, Queue-Handling Elements.

Table 5-98: Contents of the QueueStatus message

Object Type Element name Description
QueryTypeObj
Modified in JDF 1.2

QueueFilter ?
New in JDF 1.2

Defines a filter for the QueueStatus message.

ResponseTypeObj Queue Describes the status of the queue.
For the definition of the Queue element, see Section 5.6.5, Queue-Handling Elements.
Queue Support 185

Chapter 5 JDF Messaging with the Job Messaging Format
5.6.4.7 ResumeQueue
Modified in JDF 1.2

The queue is activated and queue entries may be executed. The ResumeQueue command is the opposite of a
HoldQueue command.

5.6.4.8 SubmissionMethods

The SubmissionMethods message returns the submission methods that are supported by a queue controller.

Structure of the SubmissionMethods Element
The response element may contain multiple attributes, as defined below. If an attribute is not specified, the corre-
sponding submission method is not supported.

Table 5-99: Contents of the ResumeQueue message

Object Type Element name Description
CommandTypeObj
Modified in JDF 1.2

QueueFilter ?
New in JDF 1.2

Defines a filter for the ResumeQueue message.

ResponseTypeObj Queue Describes the state of the queue after the command has been executed.

For the definition of the Queue element, see Section 5.6.5, Queue-Handling Elements.

Table 5-100: Contents of the SubmissionMethods message

Object Type Element name Description
QueryTypeObj — —
ResponseTypeObj SubmissionMethods ? Describes the submission methods supported by the queue.

Table 5-101: Contents of the SubmissionMethods element

Name Data Type Description
File ?
Deprecated in JDF
1.2

boolean Can retrieve a JDF from a File specified in the URL
In JDF 1.2 and beyond, include “file” in URLSchemes.

HotFolder ? URL URL specification of a hot folder location.
HttpGet ?
Deprecated in JDF
1.2

boolean Can retrieve a JDF via HTTP get commands. In JDF 1.2 and beyond, include
“http” in URLSchemes.

Packaging ?
New in JDF 1.2

enumerations List of packaging methods supported. If not specified the controller does not
support receiving packaged messages and must retrieve JDF files using a
URLScheme. Allowed values are.
MIME – Accepts MIME/Multipart/Related packaging of JMF, JDF, and digital
assets. This pacakging is intended for bidirectional JMF messaging. When used
for unidirectional JMF messaging, the package must be saved as a single file
with a “.mjm” extension.

MIME ?
Deprecated in JDF
1.2

boolean Accepts MIME/Multipart/Related submission messages via a message post. In
JDF 1.2 and beyond, use Packaging=”MIME”.

URLSchemes ?
New in JDF 1.2

NMTOKENS List of schemes supported in for retrieving JDF files. If not specified, the con-
troller does not support retrieving JDF files from remote URLs. Values include:
file – The file scheme according to [RFC 1738].
ftp – FTP (File Transfer Protocol)
http – HTTP (Hypertext Transport Protocol)
https – HTTPS (Hypertext Transport Protocol — Secure)
186 Queue Support

JDF Specification Release 1.2
The following is an example of a response to a SubmissionMethods query:
 <Response ID="M1" Type="SubmissionMethods" refID="Q1">
 <SubmissionMethods HotFolder="file://MyDevice/HotFolder" MIME="false"
 URLSchemes="http file ftp"/>
 </Response>

5.6.5 Queue-Handling Elements
In this section elements used by queue-handling commands are defined.

Structure of the Queue Element
The attributes in the following table are defined for Queue message elements Queue elements represent the queue
of a device including QueueEntry elements that represent both pending and running queue entries.

Table 5-102: Contents of the Queue element

Name Data Type Description
Status enumeration Status of the queue. Possible values are:

Blocked – Queue is completely inactive. No entries may be added and no entries
are executed. The queue is closed and held. The queue requires an interaction like
OpenQueue or ResumeQueue to reactivate it.
Closed – Queue entries that are in the queue are executed, but no new entries
may be submitted. The lock must be removed explicitly by the OpenQueue
command.
Full – Queue entries that are in the queue are executed but no new entries may
be submitted. The lock is removed by the queue controller as soon as it is able to
do so.
Running – A process is executing. Entries may be submitted and will be exe-
cuted when they reach their turn in the queue.
Waiting – Queue accepts new entries and has free resources to immediately
commence processing.
Held – Entries may be submitted but will not be executed until the queue is
resumed by the ResumeQueue command.

QueueSize ?
New in JDF 1.2

integer The maximum number of QueueEntrys that can be in the Queue.
Note: QueueEntrys with Status = “Completed” or Status = “Aborted”
must not count towards determining Queue/@Status based on the number of
QueueEntrys versus the QueueSize.

DeviceID string Identifies the device that is represented by the queue.
Device * element The devices that execute entries in this queue. Only Device/@DeviceID should

be specified in these elements.
QueueEntry *
Modified in JDF
1.2

element QueueEntry elements (see Table 5-103, “Contents of the QueueEntry element,”
on page 188, below). The entries are ordered in the sequence they have been or
will be executed, beginning with the running entries, followed by the waiting
entries, highest QueueEntry/@Priority first, which are then followed by the
completed entries, sorted beginning with the youngest QueueEntry/
@EndTime. The Queue will display a list of all QueueEntries that are still
accessible on the device using the queue entry handling messages that are defined
in Table 5-103, “Contents of the QueueEntry element,” on page 188.
A QueueEntry is not automatically deleted when executed or aborted, but rather
it remains in the Queue and its status is changed to Completed or Aborted
accordingly. QueueEntrys with Status = “Completed” or Status =
“Aborted” must not count towards determining Queue/@Status based on
the number of QueueEntrys versus the QueueSize.
Queue Support 187

Chapter 5 JDF Messaging with the Job Messaging Format
Example of a Queue message element:
 <Queue DeviceID="Q12345" Status="Running">
 <QueueEntry JobID="111" JobPartID="0" Priority="1" QueueEntryID="111-0"
Status="Completed"/>
 <QueueEntry JobID="111" JobPartID="1" Priority="1" QueueEntryID="111-1"
Status="Running"/>
 <QueueEntry JobID="111" JobPartID="2" Priority="1" QueueEntryID="111-2"
Status="Waiting"/>
 <QueueEntry JobID="112" JobPartID="1" Priority="55" QueueEntryID="112-1"
Status="Held"/>
 </Queue>

Structure of the QueueEntry Element
Modified in JDF 1.2

Table 5-103: Contents of the QueueEntry element

Name Data Type Description
DeviceID ?
New in JDF 1.2

string Identification of the Device that the QueueEntry will be or was exe-
cuted on. If not specified, it defaults to the default device of the queue.

EndTime ?
New in JDF 1.2

dateTime Time when the job has been ended.

JobID ?
Modified in JDF 1.1

string The Job ID of the JDF process.

JobPartID ? string The JobPartID of the JDF process.
Priority = “1” integer Priority of the QueueEntry. Values are 0-100. “0” is the lowest pri-

ority, while “100” is the highest priority.
QueueEntryID string ID of a QueueEntry. This ID is generated by the queue owner.
StartTime ?
New in JDF 1.1

dateTime Time when the job has been started.

Status
Modified in JDF 1.2

enumeration Status of the individual entry. Possible values are:
Running – The queue entry is running on the device.
Waiting – The queue entry is waiting and will be executed when
resources are available.
Held – The queue entry is held and will not execute until resumed.
Removed – The queue entry has been removed. This status can only be
sent when a persistent channel watches a queue and the queue entry is
removed.
Suspended – The queue entry was running and has been held. It will
not continue to execute until resumed. New in JDF 1.2
Completed – Indicates that the queue entry has been executed cor-
rectly, and is finished. New in JDF 1.2
Aborted – Indicates that the process executing the node has been
aborted, which means that execution will not be resumed again. New in
JDF 1.2

SubmissionTime ? dateTime Time when the entry was submitted to the queue.
JobPhase ?
New in JDF 1.2

element Description of the current status of the Job that is associated with the
QueueEntry.

Part *
New in JDF 1.2

element Describes which parts of a job were submitted to the queue.

Preview *
New in JDF 1.2

element Any number of previews may be associated with a QueueEntry and
used for display purposes. Preview/@PreviewUsage should be
ThumbNail or Viewable.
188 Queue Support

JDF Specification Release 1.2
Structure of the QueueEntryDef Element
The element specifies a queue entry and is used to refer to a certain queue entry.

Structure of the QueueFilter Element
New in JDF 1.2
The QueueFilter element defines a filter for all messages that return a queue. The supplied elements of the
QueueFilter define a matching criteria that is a logical “and”. Only QueueEntry elements that match all restric-
tions specified by the QueueFilter are included in the Queue element that is returned by the queue-handling mes-
sage. The QueueFilter element is also used to specify the QueueEntrys to be removed by the FlushQueue
message.

Table 5-104: Contents of the QueueEntryDef element

Name Data Type Description
QueueEntryID string ID of the queue entry. The ID is generated by the queue owner.

Table 5.105: Contents of the QueueFilter Element

Name Data Type Description
MaxEntries ? integer Maximum number of QueueEntrys to provide in the Queue ele-

ment. If not specified, fill in all matching QueueEntrys.
OlderThan ? dateTime Only QueueEntrys with a SubmissionTime older than or equal

to this dateTime are provided in the Queue element or removed by
the FlushQueue message. If not specified, there is no dateTime
lower bound on candidates.

NewerThan ? dateTime Only QueueEntrys with a SubmissionTime newer than or equal
to this dateTime are provided in the Queue element or removed by
the FlushQueue message. If not specified, there is no dateTime
upper bound on candidates.

QueueEntryDetails =
“Brief”

enumeration Refines the level of provided information about the Queue. Possible
values are:
None – Do not fill in the QueueEntry elements into the Queue.
Brief – Provide all available QueueEntry information except for
the associated JobPhase element.
JobPhase – Provide all available QueueEntry information includ-
ing the associated JobPhase element
JDF – Provide all available QueueEntry information including the
associated JobPhase element and the associated JDF element in the
JobPhase element.
Full – Provide maximum available information including device
capability descriptions. Includes Device elements which represent
details of the device.

StatusList ? enumerations Only QueueEntry elements with a Status matching one of the
entries in StatusList are considered. For a list of allowed values, see
Table 5-103, “Contents of the QueueEntry element,” on page 188.

QueueEntryDef * element Defines an explicit list of queue entries. If not specified, all entries in
the Queue are considered.

Device * element Filter of the Devices that queue entries returned should be targeted for.
QueueEntry/@DeviceID must match QueueFilter/Device/
@DeviceID for the QueueEntry to be returned in the queue. If not
specified, all entries in the Queue are considered.
Queue Support 189

Chapter 5 JDF Messaging with the Job Messaging Format
5.7 Extending Messages
This specification defines a set of predefined messages for general usage. Extensions to existing messages and addi-
tional message types may be defined using the standard extension rules described in Section 3.10, JDF Extensibility.
Note, the generic content of Section 3.1.1, Generic Contents of JDF Elements is also valid for JMF elements. It is not
allowed to define message extensions which duplicate the functionality of messaging types, messaging elements, or
message attributes that are already defined in this specification.

For example the content of the Type attribute may be specified with a prefix that identifies the organization that
defined the extension. The prefix and name should be separated by a single colon (‘:’). Any additional attributes and
elements are allowed, and internal elements may be declared with explicit namespaces. The official namespace of
JMF elements is xmlns=”http://www.CIP4.org/JDFSchema_1_1”. This namespace is identical to that defined for JDF
in Section 3.10, JDF Extensibility. An example is provided:
<JMF xmlns="http://www.CIP4.org/JDFSchema_1_1" SenderID="Circus" TimeStamp="2003-07-
25T12:32:48+02:00" Version="1.2" xmlns:Circus="Circus Schema URI">
 <Query ID="Q1" Type="Circus:IsClownHappy">
 <Circus:ClownParams Gender="male"/>
 </Query>
</JMF>
The response will also have the “Circus:” namespace identifier. All Circus elements are explicitly declared.
<JMF xmlns="http://www.CIP4.org/JDFSchema_1_1" SenderID="Circus 2" TimeStamp="2003-07-
25T12:32:48+02:00" Version="1.2" xmlns:Circus="Circus Schema URI">
 <Response ID="M1" Type="Circus:IsClownHappy" refID="Q1">
 <Circus:Clown happy="true" name="Joe"/>
 <Circus:Clown happy="false" name="John"/>
 </Response>
</JMF>

5.7.1 IfraTrack Support
 The extending mechanism can be used
to implement compatibility with other
XML-based messaging standards, for
example version 3.0 of IfraTrack. The
Type attribute is set to the appropriate
namespace, and the foreign message is
included, as demonstrated in the follow-
ing example:

<JMF xmlns="http://www.CIP4.org/JDFSchema_1_1" SenderID="IFRA" TimeStamp="2003-07-
25T12:32:48+02:00" Version="1.2" xmlns:IFRA="IfraTrack URI">
 <Query ID="Q1" Type="IFRA:IMF">
 <imf:IMF xmlns:imf="IfraTrack URI">
 Whatever you want (may be multiple top level elements)
 </imf:IMF>
 </Query>
</JMF>
The legal response would be:

<JMF xmlns="http://www.CIP4.org/JDFSchema_1_1" SenderID="IFRA" TimeStamp="2003-07-
25T12:32:48+02:00" Version="1.2" xmlns:IFRA="IfraTrack URI">
 <Response ID="M1" Type="IFRA:IMF" refID="Q1">
 <imf:IMF xmlns:imf="IfraTrack URI">
 The appropriate IFRA response(s)
 </imf:IMF>
 </Response>
</JMF>
Note that the application is free to select the appropriate response types in order to fulfill its local (IfraTrack) protocol
requirements if it uses its own namespace. In the examples above the default namespace associated with the IMF
query and response elements has been overwritten by the Ifra-namespace. Additional information on using IfraTrack
and JDF is in “Modeling IfraTrack in JDF” on page 611.

More on IfraTrack

IfraTrack is a specification for the interchange of status and
management information between local and global produc-

tion management systems in newspaper production. For more informa-
tion on IfraTrack, including a case study paper, please see http://
www.ifra.com/WebSite/news.nsf/
(StructuredSearchAll)?OpenAgent&IFRATRACK
190 Extending Messages

http://www.ifra.com/WebSite/news.nsf/(StructuredSearchAll)?OpenAgent&IFRATRACK
http://www.ifra.com/WebSite/news.nsf/(StructuredSearchAll)?OpenAgent&IFRATRACK
http://www.ifra.com/WebSite/news.nsf/(StructuredSearchAll)?OpenAgent&IFRATRACK

Chapter 6 Processes
The following chapter describes the processes that are defined in detail for JDF.

6.1 Process Template
Processes are defined by their input and output resources, therefore,
all relevant resource information is provided in tables for each pro-
cess. Furthermore, although they are not listed for each process,
additional, optional input resources as defined in the following table
as well as any implementation resources are implied for all processes
defined in this chapter.

Input Resources

Output Resources

6.2 General Processes
6.2.1 Approval
The Approval process can take place at various steps in a workflow. For example, a resource (e.g., a printed sheet or
a finished book) is used as the input to be approved, and an ApprovalSuccess (given, for example, by a customer
or foreman) is produced. Combining the Approval process with any other process can be used to represent a request
for a receipt. The process that follows the Approval process in the workflow chain will most often require the
ApprovalSuccess as Input.

Name Description
Resource Represents any input resource. If an optional resource is not specified in a JDF

instance, the JDF Consumer may make its own assumption regarding attributes
and subelements of the resource. Specification-defined attribute defaults cannot
be guaranteed.

Res1 (usage1) A resource of type Res1 with the ProcessUsage = “usage1”
Res1 (usage2) A resource of type Res1 with the ProcessUsage = “usage2”
 ApprovalSuccess * Any number of ApprovalSuccess resources may be appended to processes

in order to model proofing and verification requirements. This is implied and
not specified explicitly in the tables in the following section. For more informa-
tion on the Approval process, see Section 6.2.1, Approval.

Implementation * Abstract resource that is a placeholder for any implementation resource (exam-
ples are Employee or Device) that is associated with processing this node.

PreflightReport *
New in JDF1.2

Any number of PreflightReport resources may be appended to processes in
order to convey the results of previous preflighting steps. This is implied and
not specified explicitly in the tables in the following section. For more informa-
tion on the Preflight process, See “Preflight” on page 204.

 Preview *
New in JDF1.1A

Any number of previews may be associated with a process and used for display
purposes. Preview/@PreviewUsage should be ThumbNail or
Viewable.

Name Description
Resource Represents any output resource.
Res1 (usage1) A resource of type Res1 with the ProcessUsage = “usage1”
Res1 (usage2) A resource of type Res1 with the ProcessUsage = “usage2”

The JDF Cookbook

Chapter 6 and Chapter 7 are
"the list of ingredients" in the

JDF "cookbook." The following processes
and resources are fairly exhaustive. You can
choose to use only what fits your workflow.
Process Template 191

Chapter 6 Processes
Resources may either have a Status = “Draft” before the Approval and a Status = “Available” after a
successful Approval. They may also have a Status = “Available” before the Approval and a Status =
“Rejected” after an unsuccessful Approval.

Input Resources

Output Resources

6.2.2 Buffer
New in JDF 1.1
The Buffer process is used to buffer a resource for a certain time period. This can be buffering of a complete
resource or of a partial resource, (e.g., in a pipe). The quantity of the input and output of resources should be equal.
Waiting for printed material to dry before finishing is an example of the Buffer process.

Input Resources

Output Resources

6.2.3 Combine
The Combine process is used to combine multiple physical resources or logical resources, (e.g., RunLists of the
same content to form one resource). The quantity of the input and output of resources should be equal. The ordering
of the input ResourceLinks must be honored.
Input Resources

Output Resources

Name Description
ApprovalParams Details of the approval process.
Resource * The resources to be proofed. The input will most often be a resource of class

Handling or Quantity. When the input resource of an Approval process is a
ByteMap, it is assumed that it will be displayed on a viewing device

Name Description
ApprovalSuccess Result of any proofing process given, for example, by a customer or foreman. Note

that ApprovalSuccess resources are only available on success.
Resource * (Accepted) Represents the input resources that have been accepted for further processing by

the approval process as output resources. This is typically used to transfer the
resource Status of Draft to Available (see also Section 4.3.5.2, Formal
Iterative Processing).

Resource * (Rejected) Represents the input resources that have been rejected for further processing by the
approval process as output resources. This may be used to define additional processing
for rejected resources. Resource/@Status should be set to Rejected.

Name Description
BufferParams The parameters, (e.g. times and locations of the Buffer process).
Resource The physical resources to be buffered. These may be any resource whose class

is Consumable, Handling, or Quantity.

Name Description
Resource The same resource after buffering. The resource must have a class of Consum-

able, Handling, or Quantity.

Name Description
Resource + The resources to be combined.

Name Description
Resource Result of combining. The resource formed as a result of the Combine process.
192 General Processes

JDF Specification Release 1.2
6.2.4 Delivery
This process can be used to describe the delivery of a physical resource to or from a location. This delivery may be
internal – meaning within the company – or to an external company or customer. The CustomerInfo element of the
JDF node can also be used if the delivery to is to be made to only one customer. Note that a delivery receipt can be
requested by combining the Delivery process with an Approval process.

 Input Resources

 Output Resources

6.2.5 ManualLabor
New in JDF 1.1
This process can be used to describe any process where resources are handled manually. The ManualLabor process
is designed to monitor any type of non-automated labor from an MIS system.

 Input Resources

 Output Resources

6.2.6 Ordering
This process can be used to describe the Ordering (requisition) of a Resource element. Orders can be placed inter-
nally, (i.e., within the company, or externally).

 Input Resources

 Output Resources

Name Description
DeliveryParams Necessary information about the physical item or items to be delivered is stored here.
Resource ?
Deprecated in JDF 1.2

Any resource delivered to a location. This can be a physical resource or a Parameter
resource that is delivered electronically. In JDF 1.2 and beyond the delivered resources
are defined as refelements in elements of DeliveryParams/Drop/DropItem.

Name Description
Resource +
Modified in JDF 1.2

Any resources delivered from a location. These must be physical resources.

Name Description
Resource * Resources that are required to create the output Resource.
ManualLaborParams Details on the ManualLabor process.

Name Description
Resource The resource that was created by manual work. In general these will be

Components, but handling resources may also be processed manually.

Name Description
OrderingParams Necessary information about the items to be ordered, (e.g., the supplier address, item

quantity, or unit type).

Name Description
Resource +
Modified in JDF 1.1

All kinds of physical resources can be ordered.
General Processes 193

Chapter 6 Processes
6.2.7 Packing
Deprecated in JDF 1.1
See “ Packing” on page 743 for details of this deprecated process.

6.2.8 QualityControl
New in JDF 1.2
This process defines the setup and frequency of quality controls for a process. QualityControl is generally per-
formed on Components produced as intermediate or final output of a process. The QualityControlResult
element should additionally be referenced from the output resource of the QualityControl process.

Input Resources

Output Resources

6.2.9 ResourceDefinition
This process can be used to describe the interactive or automated process of defining resources such as set-up infor-
mation. This process creates output resources or modifies input resources of the same type as the output resources.
The ResourceDefinition process is designed to monitor interactive work such as creating imposition templates. It
can also be used to model a hot folder process that accepts resources from outside of a JDF based workflow.

Input Resources

Output Resources

6.2.10 Split
This process is used for splitting one physical or logical resource into multiple physical or logical resources contain-
ing the same content as the original. The quantity of the input and output of resources should be equal.

Input Resources

Output Resources

Name Description
Resource The resource to be quality controlled. In general this will be a

Component resource.
QualityControlParams Detailed definition of the QualityControl process.

Name Description
QualityControlResult Results of the process, (e.g. measurement statistics).
Resource The resource after QualityControl is applied. Note that this resource will generally

be partitioned by Condition to track the amount of accepted and rejected resources.

Name Description
Resource *
Modified in JDF 1.1

Any type of resource. Generally these will be templates.

ResourceDefinitionParams ? Details on how to handle defaults.

Name Description
Resource +
Modified in JDF 1.1

The same type of resource as one of the input resources.

Name Description
Resource The resource to be split.

Name Description
Resource + The resources formed as a result of splitting.
194 General Processes

JDF Specification Release 1.2
6.2.11 Verification
The Verification process is used to confirm that a process has been completely executed. In the case of variable
data printing in which every document is unique and must be validated individually, database access is required. Ver-
ification in this situation may involve scanning the physical sheet and interpreting a bar code or alphanumeric charac-
ters. The decoded data may then be either recorded in a database to be later cross referenced with a verification list, or
cross referenced and validated immediately in real time.

Verification differs from QualityControl in that Verification verifies the existence of a given set of
resources, whereas QualityControl verifies that the existing resources fulfill certain quality criteria.

Input Resources

Output Resources

6.3 Product Intent Descriptions
Product intent is also described as a JDF node. The following table defines the list of JDF intent resources used to
describe product intent.

Input Resources

Name Description
 DBSchema ? Schema description of the cross-reference database.
 DBSelection ? Database link that defines the database that contains cross-reference data.
 IdentificationField * Identifies the position and type of data for an automated, OCR-based verification

process.
Resource ?
New in JDF 1.2

The resource to be verified. The input will most often be a resource with
Class=”Quantity”, e.g. Component or “Parameter”, e.g. RunList.

VerificationParams Controls the verification requirements.

Name Description
 ApprovalSuccess ? Signature file that defines verification success.
 DBSelection ? Database link where the verification data should be recorded.
Resource ?
New in JDF 1.2

The resource after verification. Most often the Resource will not be
modified by Verification. It has been added here to allow modeling of
Verification in a Combined processes.

Name Description
Component * Components that are partial products of the product described by this node. If input

Components are specified, a BindingIntent is required.
ArtDeliveryIntent ? This resource specifies the prepress art delivery intent for a JDF job.
BindingIntent ? This resource specifies the binding intent for a JDF job.
ColorIntent ? This resource specifies the type of ink to be used for a JDF job.
DeliveryIntent ? Summarizes the options that describe pickup or delivery time and location of the

physical resources of a job.
EmbossingIntent ? This resource specifies the embossing and/or foil stamping intent for a JDF job.
FoldingIntent ? This resource specifies the fold intent for a JDF job using information that identifies

the number of folds, the height and width of the folds, and the folding catalog number.
HoleMakingIntent ? This resource specifies the holemaking intent for a JDF job.
InsertingIntent ? This resource specifies the placing or inserting of one component within another,

using information that identifies page location, position and attachment method.
Product Intent Descriptions 195

Chapter 6 Processes
Output Resources

6.4 Prepress Processes

6.4.1 AssetListCreation
New in JDF 1.2
The purpose of this process is to provide a listing of all assets and their dependent assets required in order to use the
input assets. This process analyzes the input RunList to find dependent assets to provides a complete listing of files
in the output RunList. AssetListCreation does not package, encode, or compress the list of files.

Input Resources

Output Resources

LaminatingIntent ? This resource specifies the laminating intent for a JDF job using information that
identifies whether or not the product is laminated.

LayoutIntent ? This resource records the size of the finished pages for the product component.
MediaIntent ? This resource describes the media to be used for the product component.
NumberingIntent ? This resource describes the parameters of stamping or applying variable marks in

order to produce unique components, for items such as lottery notes or currency.
PackingIntent ? This resource specifies the packaging intent for a JDF job, using information that

identifies the type of package, the wrapping used, and the shape of the package.
ProductionIntent ? This resource specifies the manufacturing intent and considerations for a JDF job

using information that identifies the desired result or specified manufacturing path.
ProofingIntent ? This resource specifies the prepress proofing intent for a JDF job, using information

that identifies the type, quality, brand name and overlay of the proof.
ScreeningIntent ? This resource specifies the screening intent parameters desired for a JDF job.
ShapeCuttingIntent ? This resource specifies form and line cutting for a JDF job.
SizeIntent ?
Deprecated in JDF 1.2

This resource records the size of the finished pages for the product component.
SizeIntent has been deprecated in JDF 1.1. All contents have been moved to
LayoutIntent.

Name Description
 Component + Resource representation of the output this Product Intent Node. Multiple Components

must be specified in a root node that contains a DeliveryIntent that references multi-
ple Components as delivery end products.

Name Description
RunList List of assets used to create a listing of dependent assets.
AssetListCreationParams Parameters of the AssetListCreation process

Name Description
RunList A listing of all assets that the assets listed in the input RunList are dependent on

including the input assets. The dependent assets should be inserted into the output
RunList as RunList/LayoutElement/Dependencies/
LayoutElement.

Name Description
196 Prepress Processes

JDF Specification Release 1.2
6.4.2 ColorCorrection
Modified in JDF 1.2
ColorCorrection is the process of modifying the specification of colors in documents to achieve some desired
visual result. The process may be performed to ensure consistent colors across multiple files of a job or to achieve a
specific design intent, (e.g., “brighten the image up a little”).

ColorCorrection is distinct from ColorSpaceConversion, which is the process of changing how the col-
ors specified in the job will be produced on paper. Rather, ColorCorrection is the process of modifying the desired
result, whatever the specified colorspace might be.

The ColorCorrection process may be combined with the ColorSpaceConversion process, in which case
the source and destination profiles used by the ColorSpaceConversion process would be supplied from
ColorSpaceConversionParams. Either the direct Adjustment attribute or the ICC profile attribute
ColorCorrectionOp/FileSpec with ResourceUsage = “AbstractProfile” can be used in this scenario to
apply color corrections in the device independent ICC Profile Connection Space interpreted from the ICC source pro-
file before the ICC destination profile is applied.

Alternatively, a ColorCorrection process may occur after a ColorSpaceConversion process. In this sce-
nario only the ColorCorrectionOp/FileSpec with ResourceUsage = “DeviceLinkProfile” supplied in
ColorCorrectionOp is used.

Input Resources

Output Resources

6.4.3 ColorSpaceConversion
ColorSpaceConversion, as the name implies, is the process of converting all colors used in the job to a known
colorspace. There are two ways in which a controller can use this process to accomplish the color conversion. It can
simply order the colors to be converted by the device assigned to the task, or it can request that the process simply tag
the input data for eventual conversion. Additionally, the process may remove all tags from the content.

The parameters of this resource provide the ability to selectively control the conversion or tagging of raster data or
graphical objects based on object class and/or incoming color space.

Like all other color manipulation supported in JDF, the color conversion controls are based on the use of ICC
profiles. While the assumed characterization of input data can take many forms, each can internally be represented as
an ICC profile. In order to perform the transformations, input profiles must be paired with the identified final target
device profile to create the transformation.

In order to avoid the loss of black color fidelity resulting from the transformation from a four-component CMYK
to a three-component interchange space, the agent may select a DeviceLink1 profile as the assumed color space char-
acterization. In these instances, the final target profile is ignored. Since there is no algorithmic way to determine that
the output characterization in a device link profile is equivalent to another profile, some of the responsibility to select
a sensible combination falls on the agent or end user.

Name Description
ColorantControl ?
Modified in JDF1.1A

Identifies the assumed color model for the job.

ColorCorrectionParams
New in JDF 1.1

Parameters of the ColorCorrection process

RunList List of content elements that are to be operated on.

Name Description
RunList List of color-corrected pages.

1. DeviceLink profiles are ICC profiles that map directly from one device color space to another device
color space. Therefore, it represents a one-way link or connection between devices. Examples for Device-
Link profiles are CMYK to CMYK print process conversions or RGB to CMYK color separations.
Prepress Processes 197

Chapter 6 Processes
Input Resources

Output Resources

6.4.4 ContactCopying
New in JDF 1.1
ContactCopying is the process of making an analog copy of a film onto a another film or plate. It includes
FilmToPlateCopying as defined in JDF 1.0.

Input Resources

Output Resources

6.4.5 ContoneCalibration
This process specifies the process of contone calibration. It consumes contone raster data such as that output from an
interpreting and rendering process. It produces contone raster data which has been calibrated to a press using a well
defined screening process.

Input Resources

Output Resources

Name Description
ColorantControl ?
Modified in JDF1.1A

Identifies the assumed color model for the job.

ColorSpaceConversionParams Parameters that define how colorspaces will be converted in the file.
RunList List of pages, sheets, or ByteMaps on which to perform the selected

operation.

Name Description
ColorantControl ? Identifies the assumed color model for the job. The ColorantControl resource may be

modified by a ColorSpaceConversion Process.
RunList List of pages, sheets, or ByteMaps on which the selected operation has been performed.

Name Description
ContactCopyParams The settings of the contact copying task.
DevelopingParams ? Controls the physical and chemical specifics of the media development process.
ExposedMedia + The film or films to be copied onto the film or plate.
Media The unexposed film or plate.
TransferCurvePool ? Area coverage correction and coordinate transformations of the device.

Name Description
ExposedMedia The resulting exposed contact copy.

Name Description
RunList Ordered list of rasterized ByteMaps representing pages or surfaces.
ScreeningParams ?
Modified in JDF 1.1

Parameters specifying which halftoning mechanism is to be applied and
with what specific controls.

TransferFunctionControl ?
Modified in JDF 1.1

Specifies which calibration to apply.

Name Description
RunList Ordered list of rasterized ByteMaps representing pages or surfaces.
198 Prepress Processes

JDF Specification Release 1.2
6.4.6 DBDocTemplateLayout
This process specifies the creation of a master document template that is used as an input resource for the
DBTemplateMerging process. It is similar to the LayoutElementProduction process except that the out-
put is a set of document templates. Document template are represented in JDF as LayoutElement resources with
Template = “true”.

Input Resources

Output Resources

6.4.7 DBTemplateMerging
This process specifies the creation of personalized PDL instance documents by combining a document template and
instance data records from a database. The resulting instance documents will generally be consumed by an
Imposition, a RIPing, and ultimately by a DigitalPrinting process.

Input Resources

Output Resources

6.4.8 DigitalDelivery
New in JDF 1.2
This process specifies the delivery of digital assets in any stage of the flow. It could be images, documents, layout,
text files, ready to print raster files or any other file type. When ArtDeliveryIntent/ArtDelivery/
@ArtDeliveryType is “DigitalNetwork” or “DigitalFile”1 the corresponding process will be
DigitalDelivery.

It is not necessary to use the DigitalDelivery process to describe informal delivery of files during the work-
flow although DigitalDelivery may be used for asset collection purposes, (i.e. defining how an input RunList will
be collected in the output RunList describing the packing containers of compression or encoding). See example in
“Examples” on page 669.

Name Description
LayoutElement * Page elements without links to a database.
DBRules Description of the rules that should be applied to database records in order

to generate graphic output.
DBSchema Database schema that describe the structure of data in the database.

Name Description
LayoutElement * The document template is a LayoutElement with links to a database.

These links are proprietary to the linking application and are not described
in JDF. The Template attribute must be true.

Name Description
DBMergeParams Parameters of the merge process.
DBSelection Instance database records to be merged into the document.
LayoutElement * Document template page element with internal links to a database.

Name Description
RunList Page element without links to a database. This element usually contains a print-

able LayoutElement resource such as PPML, PDF or even plain ASCII.

1. When ArtDeliveryIntent/ArtDelivery/@ArtDeliveryType = ”DigitalFile”, the process
may also be Delivery, in case the file is delivered on digital media.
Prepress Processes 199

Chapter 6 Processes
Input Resources

Output Resources

6.4.9 FilmToPlateCopying
Deprecated in JDF 1.1
FilmToPlateCopying has been replaced by the more generic ContactCopying. See “FilmToPlateCopying”
on page 743 for details of this deprecated process.

6.4.10 FormatConversion
New in JDF 1.1
The FormatConversion process controls the conversion from one document type to another, for instance, TIFF to
BMP.

Input Resources

Output Resources

6.4.11 ImageReplacement
This process provides a mechanism for manipulating documents that contain referenced image data. It allows for the
“fattening” of files that simply contain a reference to external data or contain a low resolution proxy. Additionally, the
resource can be specified so that this process generates proxy images from referenced data. ImageReplacement
is intentionally neutral of the conventions used to identify the externally referenced image data.

Input Resources

Output Resources

Name Description
DigitalDeliveryParams Parameter specifying the artwork files delivery characteristics.
RunList The list of digital files to be delivered.

Name Description
RunList The list of digital files which were actually delivered to the destination.

Name Description
FormatConversionParams Set of parameters required to control the FormatConversion process.
RunList List of documents and/or pages to be converted.

Name Description
RunList List of documents and pages that have been converted.

Name Description
ImageCompressionParams ?
New in JDF 1.1

This resource provides a set of controls that determines how images will be
compressed in the resulting “fat” PDL pages.

ImageReplacementParams Describes the controls selected for the manipulation of images.
RunList List of page contents on which to perform the selected operation.

Name Description
RunList List of page contents with images that have been manipulated as indicated

by the ImageReplacementParams resource.
200 Prepress Processes

JDF Specification Release 1.2
6.4.12 ImageSetting
The ImageSetting process is executed by an imagesetter or platesetter that images a bitmap onto the film or plate
media. The ImageSetting process may also be used to describe hard copy proofing, (see “Approval” on
page 191.)

Input Resources

Output Resources

6.4.13 Imposition
The Imposition process is responsible for combining several pages of input graphical content on to a single surface
whose dimensions are reflective of the physical output media. Printer’s marks can be added to the surface in order to
facilitate various aspects of the production process. Among other things, these marks are used for press alignment,
color calibration, job identification, and as guides for cutting and folding.

Note that the Imposition process specifies the task of combining pages and marks on sheets. The task of setting
up the parameters needed for Imposition (e.g., Layout) is defined either by LayoutPreparation,
Stripping or by the generic ResourceDefinition process.

There are two mechanisms provided for controlling the flow of page images onto Media. The default mecha-
nism, which provides the functionality of Layout in PJTF, explicitly identifies all page content for each Sheet
imaged and references these pages by means of the Documents and/or MarkDocuments array. Setting the
Automated attribute of the Layout resource to true activates a template approach to printing and relies upon the
full Documents hierarchy to specify the page content to image. Automated impositioning is equivalent to the Print-
Layout functionality in PJTF.

In JDF, there is a single Layout resource definition. Its structure is broad enough to encompass the needs of both
fully specified and template-driven imposition. When described fully, the Layout resources include an array of
Signatures. Each Signature in turn specifies an array of Sheets, and each Sheet can have up to two Surfaces
(Front and Back), on which the page images and any marks are to be placed using PlacedObjects. A Sheet
that specifies no Surface content will be blank. Pages that are to be printed must be placed onto Surfaces using
ContentObject subelements which explicitly identify the page (via the Ord attribute which specifies an index into
the document RunList). Thus, the Layout hierarchy specifies explicitly which pages will be imaged.

When describing automated imposition, Layout resources specify a single Signature of Sheet(s) where page
contents are imaged. The (virtual) sequence of pages which is to be imaged via automated layout is defined by the Docu-
ment RunList. Pages are drawn in order from this sequence to satisfy the ContentObjects in the Surfaces for the
Signature in the Layout, and the Signature is repeated until all pages of the sequence are consumed. Each time the
Signature is repeated, pages are consumed in “chunks”. The total of number of pages per iteration of the Layout is
determined by the value of MaxOrd + 1 (if present in the Layout), or by the largest Ord value or calculated
OrdExpression value for any ContentObject in the Signature (if MaxOrd is absent).

Name Description
ColorantControl ?
New in JDF 1.2

The ColorantControl resources that define the ordering and usage of inks dur-
ing marking on the imagesetter.

DevelopingParams ?
New in JDF 1.1

Controls the physical and chemical specifics of the media development process.

ImageSetterParams ?
Modified in JDF 1.1

Controls the device specific features of the imagesetter.

Media The unexposed media.
RunList Identifies the set of bitmaps to image. May contain bytemaps or images.
TransferCurvePool ?
New in JDF 1.1

Area coverage correction and coordinate transformations of the device.

Name Description
ExposedMedia The exposed media resource.
Prepress Processes 201

Chapter 6 Processes
Attributes of the Media are given for each Sheet used in printing. Because the same Signature is repeated until all
pages are consumed, the Layout hierarchy can provide hints or preferences about special needs for sets of page content
via InsertSheet elements. Inserting media is a way to separate sections of the document content. Thus alternate content
is printed only as necessary to fill areas which would normally have page content because new media has been added or to
designate where a document section will begin as specified by the odd or even position of the Signature.

In a JDF model, impositioning is defined separately from other processes, which may precede or follow it. A
Combined node may combine Imposition with other processes (e.g., Separation or Interpreting) to
describe a device that happens to perform both in a single execution module.

Input Resources

Output Resources

6.4.14 InkZoneCalculation
The InkZoneCalculation process takes place in order to preset the ink zones before printing. The Preview data
are used to calculate a coverage profile that represents the ink distribution along and perpendicular to the ink zones
within the printable area of the preview. The InkZoneProfile can be combined with additional, vendor-specific
data in order to preset the ink zones and the oscillating rollers of an offset printing press.

Input Resources

Output Resources

Name Description
Layout A Layout resource that indicates how the content pages from the Document RunList

and marks from the Marks RunList (see below) are combined onto imposed surfaces.
RunList (Document) Structured list of incoming page contents which is transformed to produce the imposed

surface images.
RunList ? (Marks) Structured list of incoming marks. These are typically printer’s marks such as fold marks,

cut marks, punch marks, or color bars.

Name Description
RunList Structured list of imposed surfaces. The Type of the LayoutElements must all be Surface. Typ-

ically the output RunList will be partitioned by PartIDKeys = “SheetName Side
Separation”. If the Imposition process is executed before RIPing, this will generally be con-
sumed by an Interpreting process. In the case of post-RIP Imposition, it will be consumed by
DigitalPrinting or ImageSetting.

Name Description
InkZoneCalculationParams Specific information about the printing press geometry (e.g., the number of

zones) to calculate the InkZoneProfile.
Layout ?
New in JDF 1.1

Specific information about the Media (including type and color) and
about the Sheet (placement coordinates on the printing cylinder).

Preview A low resolution bitmap file representing the content to be printed.
Sheet ?
Deprecated in JDF 1.1

Specific information about the Media (including type and color) and
about the Sheet (placement coordinates on the printing cylinder).
Replaced by Layout in JDF 1.1.

TransferCurvePool ? Function to apply ContactCopying, DigitalPrinting, and
ConventionalPrinting process characteristics (e.g., press, climate, and
substrate) under certain standardized circumstances. This function can be
used to generate an accurate InkZoneProfile.

Name Description
InkZoneProfile Contains information about ink coverage along and perpendicular to the

ink zones for a specific press geometry.
202 Prepress Processes

JDF Specification Release 1.2
6.4.15 Interpreting
The interpreting device consumes page descriptions and instructions for controlling the marking device, (e.g., image-
setter, digital printers, CTP, combined digital printing processes, etc.). The parsing of graphical content in the page
descriptions produces a canonical display list of the elements to be drawn on each page.

The interpreter may encounter, and must act upon, device control instructions that affect the physical functioning
of the marking device such as media selection and page delivery, and implied ColorSpaceConversion.
Media selection determines which type of medium is used for printing and where that medium can be obtained. Page
delivery controls the location, orientation, and quantity of physical output.

The interpreter is also responsible for resolving all system resource references. This includes handling font sub-
stitutions and dealing with resource aliases. However, the interpreter specifically does not get involved with any func-
tions of the device that could be considered finishing features such as stapling, duplexing, and collating.
Input Resources

Output Resources

6.4.16 LayoutElementProduction
This process describes the creation of page elements. It also explains how to create a layout that can put together all
of the necessary page elements, including text, bitmap images, vector graphics, PDL, or application files such as
Adobe InDesign®, Adobe PageMaker®, and Quark XPress®. The elements might be produced using any of a num-
ber of various software tools. This process is often performed several times in a row before the final
LayoutElement, representing a final layout file, is produced.
Input Resources

Output Resources

Name Description
ColorantControl ?
Modified in JDF 1.1

Identifies the color model used by the job.

FontPolicy ? Describes the behavior of the font machinery in absence of requested fonts.
InterpretingParams Provides the parameters needed to interpret the PDL pages specified in the RunList

resource.
PDLResourceAlias * These resources allow a JDF to reference resources which are defined in a Page

Description Language (PDL). For example, a PDLResourceAlias resource could
refer to a font embedded in a PostScript file.

RunList This resource identifies a set of PDL pages or surfaces which will be interpreted.

Name Description
RunList ?
New in JDF 1.2

Pipe of streamed data which represents the results of Interpreting the pages in the
RunList. The data is specified in InterpretedPDLData sub-elements. The
format and detail of these is implementation specific. In general, it is assumed that
the Interpreting and Rendering processes are tightly coupled and that there is
no value in attempting to develop a general specification for the format of this data.

InterpretedPDLData
?
Deprecated in JDF 1.2

Pipe of streamed data which represents the results of Interpreting the pages in the
RunList. In JDF 1.2 and beyond, a RunList with InterpretedPDLData subele-
ments describes the output content data for Interpreting.

Name Description
LayoutElement * Metadata about the PDL or application file, bitmap image file, text file, vector graphics file, etc.

Name Description
LayoutElement ? A URL of the PDL or application file is produced by this process. Only one of

LayoutElement or RunList must be specified.
RunList ? A RunList of LayoutElement resources of ElementType Page or Document is

produced if this LayoutElementProduction task is the last process of type
LayoutElementProduction.
Prepress Processes 203

Chapter 6 Processes
6.4.17 LayoutPreparation
New in JDF 1.1
The LayoutPreparation process specifies the process of defining the Layout resource for the Imposition
process. Note that it is possible to create a Combined process that includes both LayoutPreparation and
Imposition. In this case, the Layout and RunList (Marks) resource would not be explicitly defined, since
they are exchange resources between the two processes.

Input Resources

Output Resources

6.4.18 PDFToPSConversion
The PDFToPSConversion process controls the generation of PostScript from a single PDF document. This pro-
cess may be used at any time in a host-based PDF workflow to exit to PostScript for use of tools that consume such
data. Additionally, it may be used to actively control the physical printing of data to a device that consumes Post-
Script data. The JDF model of this may include a PDFToPSConversion process in a Combined node with a
PSToPDFConversion process.

Input Resources

Output Resources

6.4.19 Preflight
Modified in JDF 1.2
Preflighting is the process of examining the components of a print job to ensure that the job will print successfully
and with the expected results. Preflight checks may be performed on each document or finished page identified
within the associated RunList resource.

Preflighting a file is generally a two-step process. First, the documents are analyzed and compared to the set of
tests. Then, a preflight report is built to list the encountered issues (according to the tests).

Agents record the instructions for, and devices record the results of, preflight operations in JDF jobs, using two
types of resources: PreflightParams and PreflightReport.

Name Description
LayoutPreparationParams Set of parameters required to control the LayoutPreparation process.
RunList ? (Document)
Modified in JDF 1.2

List of documents and/or pages that will be input into the layout. Note that
this Runlist is for information only and not modified by the
LayoutPreparation process.

RunList ? (Marks) List of marks that will be input into the layout. These are typically printer’s
marks such as fold marks, cut marks, punch marks, or color bars.

Name Description
Layout The layout of the document to be imposed.
RunList (Marks) ? List of marks that may be used as input of the following Imposition process.
TransferCurvePool ? Definition of the transfer curves and coordinate systems of the devices.

Name Description
PDFToPSConversionParams Set of parameters required to control the generation of PostScript.
RunList List of documents and pages to be converted to PostScript.

Name Description
RunList Stream or streams of resulting PostScript code. This PostScript code may end up physically stored in a

file or be piped to another process. PDFToPSConversionParams/
@GeneratePageStreams determines whether there is a single stream generated for all pages in
the RunList or whether each page is generated in to a separate consecutive stream.
204 Prepress Processes

JDF Specification Release 1.2
Input Resources

Output Resources

6.4.20 PreviewGeneration
The PreviewGeneration process produces a low resolution Preview of each separation that will be printed. The
Preview can be used in later processes such as InkZoneCalculation. The PreviewGeneration process typi-
cally takes place after Imposition or RIPing.

The PreviewGeneration can be performed in one of the following two ways: 1.) the imaged printing plate is
scanned by a conventional plate scanner or 2.) medium to high resolution digital data are used to generate the
Preview for the separation(s). The extent of the PDL coordinate system (as specified by the MediaBox attribute,
the resolution of the preview image, and width and height of the image) must fulfill the following requirements:

MediaBox length / 72 * x-resolution = width ± 1

MediaBox height / 72 * y-resolution = height ± 1
A gray value of 0 represents full ink, while a value of 255 represents no ink (see the DeviceGray color model in

Chapter 4.8.2. of the PostScript Language Reference Manual).

Rules for the Generation of the Preview Image
To be useful for the ink consumption calculation, the preview data must be generated with an appropriate resolution.
This means not only spatial resolution, but also color or tonal resolution. Spatial resolution is important for thin lines,
while tonal resolution becomes important with large areas filled with a certain tonal value. The maximum error
caused by limited spatial and tonal resolution should be less than 1%.

Spatial Resolution
Since some pixel of the preview image might fall on the border between two zones, their tonal values must be split
up. In a worst case scenario, the pixels fall just in the middle between a totally white and a totally black zone. In this
case, the tonal value is 50%, but only 25% contributes to the black zone. With the resolution of the preview image and
the zone width as variables, the maximum error can be calculated using the following equation:

Name Description
PreflightParams A specified list of tests against which documents and/or pages should be

tested.
PreflightReportRulePool A list of rules used to build the PreflightReport. Those rules are attached to

actions in the ActionPool.
RunList The list of documents and/or pages to be preflighted.

Name Description
PreflightReport PreflightReport is a container for logging information that is generated by

the Preflight process.

][_*]/[*4
100

mmwidthzonemmLresolution
[%]=error

Compatibility Warning. Preflight has been modified substantially in JDF 1.2 and is no longer compatible
with previous versions of JDF.
Prepress Processes 205

Chapter 6 Processes
For zone width broader than 25 mm, a resolution of 2 lines per mm will always result in an error less than 0.5%.
Therefore, a resolution of 2 lines per mm (equal to 50.8 dpi) is suggested.

Tonal Resolution
The kind of error caused by color quantization depends on the number of shades available. If the real tonal value is
rounded to the closest (lower or higher) available shade, the error can be calculated using the following equation:

Therefore, at least 64 shades should be used.

Line Art Resolution
When rasterizing line art elements, the minimal line width is 1 pixel, which means 1/resolution. Therefore, the rela-
tionship between the printing resolution and the (spatial) resolution of the preview image is important for these kind
of elements. In addition, a specific characteristic of PostScript RIPs adds another error: within PostScript, each pixel
that is touched by a line is set. Tests with different PostScript jobs have shown that a line art resolution of more than
300 dpi is normally sufficient for ink-consumption calculation.

Conclusion
There are quite a few different ways to meet the requirements listed above. The following list includes several exam-
ples:

• The job can be RIPed with 406.4 dpi monochrome.

• With anti-aliasing, the image data can be filtered down by a factor of 8 in both directions. This results in an
image of 50.8 dpi with 65 color shades.

• High resolution data can also be filtered using anti-aliasing. First, the RIPed data, at 2540 dpi monochrome, are
taken and filtered down by a factor of 50 in both directions. This produces an image of 50.8 dpi with 2501 color
shades. Finally those shades are mapped to 256 shades, without affecting the spatial resolution.

Rasterizing a job with 50.8 dpi and 256 shades of gray is not sufficient. The problem in this case is the rendering of
thin lines (see Line Art Resolution above).

Recommendations for Implementation
The following three guidelines are strongly recommended:

• The resolution of RIPed line art should be at least 300 dpi.

• The spatial resolution of the preview image should be approximately 20 pixel/cm (= 50.8 dpi).

• The tonal resolution of the preview image should be at least 64 shades.

Figure 6.1: Worst case scenario for area coverage calculation

Zone 2Zone 1

Border between zones

Overlapping pixel

shadesofnumber
[%]=error

__*2
100
206 Prepress Processes

JDF Specification Release 1.2
Input Resources

Output Resources

6.4.21 Proofing
Deprecated in JDF 1.2
The Proofing process is deprecated in JDF/1.2. Instead, use a combined process to produces the hard proof, (e.g.,
one that includes the ImageSetting, ConventionalPrinting, or DigitalPrinting process). Then input
the hard proof to a separate Approval process. See “Proofing” on page 747 for details of this deprecated process.
In JDF 1.2 and beyond, proofing is a combined process.

6.4.22 PSToPDFConversion
This section defines the controls required to invoke a device that accepts a PostScript stream and produces a set of
PDF pages as output.

Input Resources

Output Resources

Name Description
ColorantControl ?
New in JDF 1.1

The ColorantControl resources that define the ordering and usage of
inks in print modules. Needed for generating thumbnails.

ExposedMedia ? The PreviewGeneration process can use an exposed printing plate to
produce a Preview resource. This task is performed using an analog
plate-scanner. Only one of ExposedMedia, Preview, or RunList
must be specified in any PreviewGeneration process.

Preview ?
New in JDF 1.1

Medium or low resolution bitmap file that can be used for calculation of
overviews and thumbnails. Only one of ExposedMedia, Preview,
or RunList must be specified in any PreviewGeneration process.

PreviewGenerationParams Parameters specifying the size and the type of the preview.
RunList ? High resolution bitmap data are consumed by the PreviewGeneration

process. These data represent the content of a separation that is recorded on
a printing plate or other such item. Only one of ExposedMedia,
Preview, or RunList must be specified in any
PreviewGeneration process.

TransferCurvePool ?
New in JDF 1.1

Area coverage correction and coordinate transformations of the device.

Name Description
Preview The Preview data are comprised of low to medium resolution bitmap

files representing, for example, the content of a separation that is recorded
on a printing plate or other such item. Preview may also be used to visu-
alize resources as thumbnail images.

Name Description
FontParams ? These parameters determine how the conversion process will handle font

errors encountered in the PostScript stream.
ImageCompressionParams ? This resource provides a set of controls that determines how images will

be compressed in the resulting PDF pages.
PSToPDFConversionParams ? These parameters control the operation of the process that interprets the

PostScript stream and produces the resulting PDF pages.
RunList This resource specifies where the PostScript stream is to be found.

Name Description
RunList This resource identifies the location of the resulting PDF pages.
Prepress Processes 207

Chapter 6 Processes
6.4.23 Rendering
The Rendering process consumes the display list of graphical elements generated by an interpreter. It color man-
ages and scans/converts the graphical elements according to the geometric and graphic state information contained
within the display list. The controls governing the external rendering processes provide overrides and additional
parameters for controlling the behavior of the process.

Input Resources

Output Resources

6.4.24 RIPing
RIPing is a Combined process that is a combination of at least two processes. Most often it includes
Interpreting and Rendering, but it may also include ColorSpaceConversion, Trapping,
Separation, Imposition, and Screening. Thus a typical RIP node is of Type Combined, as shown in the
following example:
<JDF Type="Combined" Types="ColorSpaceConversion Interpreting Rendering Screening" … />

It may also be specified as an abstract process group (See “Process Group Nodes” on page 43.) with JDF/@Types
including the special token”RIPing”.

The RIPing process consumes page descriptions and instructions for producing the graphical output. It parses
the graphical contents in the page descriptions, renders the contents, and produces a rasterized image of the page.
This raster may contain contone data and be represented upon output as a ByteMap. Alternatively, the RIPing pro-
cess may also perform halftone screening, in which case the output is in the form of a bitmap. It is also responsible for
resolving all system resource references that include font handling and resource aliasing.

Instructions read by the RIP include information about the media, halftoning, color transformations, colorant
controls and other items that affect that rasterized output. They do not, however, represent any specific controls for the
physical output device, nor do they deal with any instructions intended for the finishing device.

The RIP must consider the color information parsed from the graphical content in the page descriptions, evaluate
the instructions in the ColorantControl resource, and consider the Media resource attributes given in
InterpretingParams. The RIP process may determine, and must perform if required, one or more
ColorSpaceConversion process iteration(s) in conjunction with an Interpreting process.

In most cases, RIPing will be combined with a process that specifies physical marking, (e.g.,
DigitalPrinting or ImageSetting). In this case, the interpreter may encounter, and must act upon, device
control instructions that affect the physical functioning of the printing device such as media selection and page deliv-
ery. Media selection determines which type of medium is used for marking and where that medium can be obtained.

Name Description
Media ?
Deprecated in JDF 1.1

This resource provides a description of the physical media which will be marked.
The physical characteristics of the media may affect decisions made during
Rendering.

RunList ?
New in JDF 1.2

Pipe of streamed data that represents the results of Interpreting the pages in the
RunList. The data is specified in InterpretedPDLData sub-elements. The
format and detail of these is implementation specific. In general, it is assumed that
the Interpreting and Rendering processes are tightly coupled and that there is
no value in attempting to develop a general specification for the format of this data.

InterpretedPDLData ?
Deprecated in JDF 1.2

Pipe of streamed data that represents the results of Interpreting the pages in the
RunList. In JDF 1.2 and beyond, a RunList/InterpretedPDLData sub-
element describes the input content data for Rendering.

RenderingParams ? This resource describes the format of the ByteMaps to be created and other spe-
cifics of the Rendering process.

Name Description
RunList Ordered list of rasterized ByteMaps representing pages
208 Prepress Processes

JDF Specification Release 1.2
Page delivery controls the location, orientation, and quantity of physical output. The RIP is also responsible for
resolving all system resource references. This includes handling font substitutions and dealing with resource aliases.
However, the RIP specifically does not get involved with any functions of the device that could be considered finish-
ing features such as stapling, duplexing, and collating.

When a RIPing process is comprised of only the Interpreting and Rendering processes, various interme-
diary steps are required before the output can be run through a ConventionalPrinting process. In theory, how-
ever, a workflow could include no intermediary steps between a RIPing process and a DigitalPrinting process.
The following workflow scenarios represent possible process chains in each circumstance:

RIP→Screening→ImageSetting→ContactCopying→ConventionalPrinting

RIP→(Screening)→DigitalPrinting
Since RIPing is not a predefined JDF process, see the processes that contribute to the RIP for input and output
resources.

6.4.25 Scanning
The Scanning process creates bitmaps from analog images using a scanner.

Input Resources

Output Resources

6.4.26 Screening
This process specifies the process of halftone screening. It consumes contone raster data, (e.g., the output from an
interpreting and rendering process). It produces monochrome which has been filtered through a halftone screen to
identify which pixels are required to approximate the original shades of color in the document.

This process definition includes capabilities for post-RIP halftoning according to the PostScript definitions.
Alternatively it allows for the selection of FM screening/error diffusion techniques. In general, an actual screening
process will be a Combined process of ContoneCalibration and Screening.

Input Resources

Output Resources

Name Description
ExposedMedia Description of the media to be scanned. The ExposedMedia should be parti-

tioned by RunIndex, in order to provide unique mapping from
ExposedMedia to the output RunList.

ScanParams High level scanner settings. These settings are specifically not intended as a
replacement for low-level device interfaces such as TWAIN.

Name Description
RunList List of ByteMap resources or LayoutElement resources of Type = “Image”.

Name Description
RunList Ordered list of rasterized ByteMap or InterpretedPDLData representing pages

or surfaces.
ScreeningParams Parameters specifying which halftone mechanism is to be applied and with what specific

controls.

Name Description
RunList Ordered list of rasterized and screened output pages. Assumes that the resolution remains the

same and that resulting data are one bit per component. Furthermore, the organization of
planes within the data does not change.
Prepress Processes 209

Chapter 6 Processes
6.4.27 Separation
The Separation process specifies the controls associated with the generation of color-separated data. It is designed
to be flexible enough to allow a variety of possible methods for accomplishing this task. First of all, it sponsors host-
based PDF separating operations, in which a RunList of pre-separated PDF data is generated. It can also be com-
bined with a RIP to allow control of In-RIP separations. In this scenario a RunList containing ByteMaps is gener-
ated as the output. Yet another anticipated combination is with the process to deal with incoming device-dependent
data. And finally, it may be combined with an ImageReplacement process in order to do image substitution for
omitted or proxy images.

Input Resources

Output Resources

6.4.28 SoftProofing
Deprecated in JDF 1.2
The SoftProofing process is deprecated in JDF/1.2. Instead, use a combined process to produce the soft proof in
which the last process is the Approval process that approves the soft proof. See “SoftProofing” on page 748 for
details of this deprecated process. In JDF 1.2 and beyond, soft proofing is a combined process.

6.4.29 Stripping
New in JDF 1.2
An important aspect of the interface between an MIS system and a prepress workflow system is imposition. When an
order is accepted or even during the estimation phase, the MIS system determines how the product will be produced
using the available equipment (e.g., presses, folders, cutters, etc.) in the most cost-efficient way. The result of this
exercise has a large impact on imposition in prepress.

The Stripping process specifies the process of translating a high level structured description of the imposition
of one or multiple job parts or part versions represented by the StrippingParams resource into a Layout
resource for the Imposition process. Note that the Stripping process can generate all resources needed for the
Imposition process, thus also the RunList (Marks.)

Input Resources

Name Description
ColorantControl ?
Modified in JDF1.1A

Identifies which colorants in the job are to be output.

RunList List of pages that are to be operated on.
SeparationControlParams Controls for the separation process.

Name Description
RunList List of separated pages or separated raster bytemaps.

Name Description
StrippingParams High level structured description of the imposition of one or multiple job parts or part versions.
RunList (Document) ? List of documents. When available, this list can be used to generate a Layout and

populated RunList (no LayoutElements of ElementType =
“Reservation”) which can be fed into a subsequent Imposition process.

TransferCurvePool ? Definition of the transfer curves and coordinate systems of the devices.The coordinate
system of the StrippingParams coincides with the Layout coordinate system speci-
fied in the TransferCurvePool.

Assembly + Describes how the sections of the different job parts imposed together are combined.
If multiple Assembly resources are defined, mapping between StrippingParams
and Assembly is achieved by matching the respective JobID and JobPartID
attributes. JobPartID must be replaced by AssemblyID (similar to
StrippingParams/@SectionList).
210 Prepress Processes

JDF Specification Release 1.2
Output Resources

Examples
The first example specifies three sheets based on folding catalog example F16-6. More examples can be found in
Section V.8, Stripping

<StrippingParams ID="FoldCatalogSample" Class="Parameter" Status="Available"
WorkStyle="WorkAndBack" PartIDKeys="SheetName">
 <BinderySignature FoldCatalog="F16-6"/>
 <StrippingParams SheetName="Sheet1"/>
 <StrippingParams SheetName="Sheet2"/>
 <StrippingParams SheetName="Sheet3"/>
</StrippingParams>

The following example specifies three sheets: sheet1 and sheet2 are based on a B2x4 BinderySignature using the
WorkAndBack workstyle, while sheet3 is based on BinderySignature B2x2 using the WorkAndTurn work-
style.

<BinderySignature ID="B2x4" Class="Parameter" Status="Available" NumberUp="4 2" >
 <SignatureCell FrontPages="15 0 3 12" BackPages="14 1 2 13" Orientation="Up"/>
 <SignatureCell FrontPages="8 7 4 11" BackPages="9 6 5 10" Orientation="Down"/>
</BinderySignature>
<BinderySignature ID="B2x2" Class="Parameter" Status="Available" NumberUp="2 2">
 <SignatureCell FrontPages="7 0" BackPages="6 1" Orientation="Up"/>
 <SignatureCell FrontPages="4 3" BackPages="5 2" Orientation="Down"/>
</BinderySignature>
<StrippingParams ID="L1" Class="Parameter" Status="Available" WorkStyle="WorkAndBack"
PartIDKeys="SheetName">
 <StrippingParams SheetName="Sheet1">
 <BinderySignatureRef rRef="B2x4"/>
 </StrippingParams>
 <StrippingParams SheetName="Sheet2">
 <BinderySignatureRef rRef="B2x4"/>
 </StrippingParams>
 <StrippingParams WorkStyle="WorkAndTurn" SheetName="Sheet3">
 <BinderySignatureRef rRef="B2x2"/>
 <Position RelativeBox="0 0 0.5 1"/>
 <Position RelativeBox="0.5 0 1 1" Orientation="Flip180"/>
 </StrippingParams>
</StrippingParams>

Name Description
Layout The layout of the document to be imposed.
RunList (Document) ? List of documents that may be used as input of the following Imposition process.
RunList (Marks) ? List of marks that may be used as input of the following Imposition process.

0
78

3 1215
114

WorkAndBack B2x4

0
78

3 1215
114

WorkAndBack B2x4

0
78

3 1215
114

WorkAndBack B2x4

0
34

7

WorkAndTurn B2x2

6
52
10

34
7

WorkAndTurn B2x2

6
52
10

34
7

WorkAndTurn B2x2

6
52
1

Prepress Processes 211

Chapter 6 Processes
6.4.30 Tiling
The Tiling process allows the contents of Surfaces to be imaged onto separate pieces of media. Note that many
different workflows are possible. Tiling must always follow Imposition, but it can operate on imposed PDL page
contents or on contone or halftone data. Tiling will generally be combined with other processes. For example,
Tiling might be combined with ImageSetting. In that case, the input would be a RunList that contains
ByteMaps for each Surface.

Input Resources

Output Resources

6.4.31 Trapping
Trapping is a prepress process that modifies PDL files to compensate for a type of error that occurs on presses.
Specifically, when more than one colorant is applied to a piece of media using more than one inking station, the
media may not stay in perfect alignment when moving between inking stations. Any misalignment will result in an
error called misregistration. The visual effect of this error is either that inks are erroneously layered on top of one
another, or, more seriously, that gaps occur between inks that should abut. In this second case, the color of the media
is revealed in the gap and is frequently quite noticeable. Trapping, in short, is the process of modifying PDL files
so that abutting colorant edges intentionally overlap slightly, in order to reduce the risk of gaps.

The Trapping process specifies that a set of document pages should be modified to reduce or (ideally) eliminate
visible misregistration errors in the final printed output. The process may be combined with RIPing or specified as a
stand-alone process.

Input Resources

Output Resources

Name Description
RunList (Surface) Structured list of imposed page contents or ByteMaps that are to be decomposed to produce

the images for each tile. The Type value of LayoutElement resources must all be
Surface.

RunList ? (Marks) Structured list of incoming marks. These are typically printer’s marks that provide the infor-
mation needed to combine the tiles.

Tile A partitioned Tile resource that describes how the Surface contents are to be decomposed.

Name Description
RunList Structured list of portions of the decomposed surfaces. The value of the

Type attribute of the LayoutElement resources must be Tile.

Name Description
ColorantControl ?
Modified in JDF1.1A

Identifies color model used by the job.

FontPolicy ?
New in JDF 1.1

Describes the behavior of the font machinery in absence of requested fonts.

RunList Structured list of incoming page contents that are to be trapped.
TrappingDetails Describes the general setting needed to perform trapping.

Name Description
RunList Structured list of the modified page contents after Trapping has been executed.
212 Prepress Processes

JDF Specification Release 1.2
6.5 Press Processes
Press processes are various technological procedures involving the transfer of ink to a substrate. From a technical
standpoint they are often classified in impact and non-impact printing technologies. The impact printing class can be
further subdivided into relief, intaglio, planograph, or screen technologies, which in turn can be divided in further
subparts. Because of the way a workflow is constructed in JDF, however, a different approach to classification was
used. All of the various printing technologies are gathered into two categories: 1.) ConventionalPrinting, which
involves printing from a physical master, 2.) DigitalPrinting, which involves generic commercial printing from a
digital master.

The most prominent physical, planographic printing technologies are offset lithography and electrophotography.
They are also the printing processes with the highest adoption in today’s graphic arts industry. Consequently, the
ConventionalPrinting process in JDF takes them as models. That does not mean, however, that other printing
techniques can not make use of the ConventionalPrinting process and its resources. The extensibility features of
JDF may be used to fill other requirements related to printing technology.

6.5.1 ConventionalPrinting
Clarified in JDF 1.2
This process covers several conventional printing tasks, including sheetfed printing, web printing, web/ribbon coat-
ing, converting, and varnishing. Typically, each takes place after prepress and before postpress processes. Press
machinery often includes postpress processes (e.g., Folding, Numbering, and Cutting) as in-line finishing oper-
ations. The ConventionalPrinting process itself does not cover these postpress tasks. Using a conventional print-
ing press for producing a pressproof can be performed in the following two ways:

• A proof of type Component is produced with a ConventionalPrinting process. The result of this process
is then sent to the Approval process, which in turn produces an ApprovalSuccess resource. That resource
is then passed on to a second ConventionalPrinting process, which requires that the press be set up a second
time.

• The DirectProof attribute of the ConventionalPrintingParams can be used to specify the proof if it is
produced during the ConventionalPrinting process. In this case, the press need only be set up once.

Note that the definition and ordering of separations is specified by the DeviceColorantOrder attribute of the
appropriate ColorantControl resource.

Input Resources
Name Description

ColorantControl ? The ColorantControl resources that define the ordering and usage of
inks in print modules. The ColorantControl resource specifies the com-
plete set of colors that will be printed on a sheet.

Component ? (Input) Various components in the form of preprints can be used in
ConventionalPrinting in lieu of Media. Examples include waste or a
set of preprinted sheets.

Component ? (Proof)
Clarified in JDF 1.2

A Proof component is used if a proof was produced during an earlier print
run. Note that the proof may be a Component produced in a previous run
and must not necessarily have been produced explicitly as a proof. In gen-
eral, only one of Component (Proof) or ExposedMedia (Proof)
should be specified.

ConventionalPrintingParams Specific parameters to set up the press.
ExposedMedia ? (Proof) A Proof is used to compare color and content during ConventionalPrinting.

This Proof is produced by a prepress proofing device.
ExposedMedia (Plate) The printing plates and information about them are used to set up the press.

The ExposedMedia (Plate) resource defines the set of plates to be
used in the press run that is described by this node.
Press Processes 213

Chapter 6 Processes
Output Resources

6.5.2 DigitalPrinting
DigitalPrinting is a direct printing process that, like ConventionalPrinting, occurs after prepress processes
but before postpress processes. In DigitalPrinting, the data to be printed are not stored on an extra medium (e.g., a
printing plate or a printing foil), but instead are stored digitally. The printed image is generated for every output using
the digital data. Electrophotography, inkjet, and other technologies are used for transferring ink (both liquid ink and
dry toner) onto the substrate. Furthermore, both sheet and web presses can be used as machinery for
DigitalPrinting.

DigitalPrinting is often used to image a small area on preprinted Components to perform actions such as
addressing or numbering another Component. This kind of process can be executed by imaging with an inkjet
printer during press, postpress, or packaging operations. Therefore, DigitalPrinting is not only a press or prepress
operation but sometimes also a postpress process.

Ink ?
Modified in JDF 1.1

Information about the ink (e.g. brand, color) is useful to set up the press.

InkZoneProfile ? The InkZoneProfile contains information about how much ink is
needed along the printing cylinder of a specific printing press. It is only
useful for Offset Lithography presses with ink key adjustment functions.

Layout ?
New in JDF 1.1

Sheet and Surface elements from the Layout tree (e.g.,
CIELABMeasuringField, DensityMeasuringField, or
ColorControlStrip) can be used for quality control at the press. The
quality control field value and position can be of interest for automatic
quality control systems. RegisterMark can be used to line up the print-
ing plates for the press run, and its position can in turn be used to position
items such as a camera.

Media ? The physical substrate (e.g., paper or foil) and information about the
Media (e.g., thickness, type, and size) are useful in setting up paper travel
in the press. This resource must be present if no preprinted Component
(Input) resource is used.

PrintCondition ?
New in JDF 1.2

Used to control the use of colorants when printing pages on a specific
media. The attributes and elements of the PrintCondition resource
describe the aim values for a given printing process.

Sheet ?
Deprecated in JDF 1.1

Specific information about the Media (including type and color) and
about the Sheet, (e.g., placement coordinates on the printing cylinder).
Replaced by Layout in JDF 1.1.

TransferCurvePool ?
New in JDF 1.1

Area coverage correction and coordinate transformations of the device.

Name Description
Component
Modified in JDF 1.2

Describes the printed sheets or ribbons which may be used by another
printing process or postpress processes. Note that the Amount attribute of
the ResourceLink to this resource indicates the number of copies of the
entire job which will be produced. Prior to JDF 1.2 this Component was
marked with a ProcessUsage = “Good”. This is supported but not
required in JDF 1.2 and beyond.

Component ? (Waste)
Deprecated in JDF 1.2

Produced waste of printed sheets or ribbons. In JDF 1.2 and beyond,
ConventionalPrinting produces one Component that is optionally
partitioned by Condition.

Name Description
214 Press Processes

JDF Specification Release 1.2
Digital printing devices which provide some degree of finishing capabilities (e.g., collating and stapling) as well as
some automated layout capabilities (e.g., N-up and duplex printing) may be modeled as a combined process which
includes DigitalPrinting. Such a combined process may also include other processes, (e.g., Approval,
ColorCorrection, ColorSpaceConversion, ContoneCalibration, Cutting, Folding, HoleMaking,
ImageReplacement, Imposition, Interpreting, LayoutPreparation, Perforating, Rendering,
Screening, Stacking, Stitching, Trapping, or Trimming).

Controls for DigitalPrinting are provided in the DigitalPrintingParams resource. The set of input
resources of a combined process which includes DigitalPrinting may be used to represent an Internet Printing Pro-
tocol (IPP) job or a PPML job. See Application Notes for IPP and Variable Data printing. Note that putting a label on
a product or DropItem is not DigitalPrinting but Inserting.

Input Resources
Name Description

ColorantControl ? The ColorantControl resources that define the ordering and usage of
inks in print modules.

Component * (Input) Various components can be used in DigitalPrinting instead of Media.
Examples include preprinted covers, waste, precut Media, or a set of pre-
printed sheets or webs. If multiple Component * (Input) resources are
linked to one process, the mapping of media to content is defined in the
partitions of DigitalPrintingParams.

Component ? (Proof)
Clarified in JDF 1.2

A Proof component is used if a proof was produced during an earlier print
run, (see description in Section 6.5.1, ConventionalPrinting). Note that the
proof may be a Component produced in a previous run and must not
necessarily have been produced explicitly as a proof. In general, only one
of Component (Proof) or ExposedMedia should be specified.

DigitalPrintingParams Specific parameters to set up the machinery.
ExposedMedia ? A Proof is useful for comparisons (completeness, color accuracy) with the

print out of the DigitalPrinting process.
Ink ? Ink or toner and information that is needed for DigitalPrinting.
Layout ?
New in JDF 1.1

Sheet and Surface elements from a Layout (e.g., the
CIELABMeasuringField, DensityMeasuringField, or
ColorControlStrip) can be used for quality control at the press. The
value and position of the quality can be of interest for automatic quality
control systems. RegisterMarks can be used to line up the printing reg-
istration during press run, and its position can in turn be used to position an
item such as a camera.

Media * The physical Media and information about the Media (e.g., thickness,
type, and size), is used to set up paper travel in the press. This has to be
present if no preprinted Component (Input) resource is present.
Unprinted Media used for covers are also defined as Media.
Note that printing a job on more than one web or sheet at the same time is
parallel processing.

PrintCondition ? Used to control the use of colorants when printing pages on a specific
media. The attributes and elements of the PrintCondition resource
describe the aim values for a given printing process.

RunList Rendered data in ByteMaps that will be printed on the digital press are
needed for DigitalPrinting. The RunList contains only ByteMaps.

Sheet ?
Deprecated in JDF 1.1

Specific information about the Media (including type and color) and
about the Sheet (placement coordinates on the printing cylinder).
Replaced by Layout in JDF 1.1.

TransferCurvePool ?
New in JDF 1.1

Area coverage correction and coordinate transformations of the device.
Press Processes 215

Chapter 6 Processes
Output Resources

6.5.3 IDPrinting
Deprecated in JDF 1.1
The IDPrinting process was deprecated in JDF/1.1. Instead, implementations should use the DigitalPrinting pro-
cess combined with other processes, thus improving interoperability by reducing one of the combinations of pro-
cesses. Also the IDPrinting process defined a number of resources and subelements which are deprecated since
they duplicate other resources. See “IDPrinting” on page 749 for details of this deprecated process.

6.6 Postpress Processes
In this specification, the postpress processes are presented in two parts: an alphabetical list of processes that is then fol-
lowed by a Postpress Processes Structure section that divides these processes into subchapters for structuring purposes.
This structuring is useful to find specific processes. Please note that processes, in some cases can be used to describe
operations that go beyond the scope of a specific chapter. Therefore, it is a good idea not only to look at certain processes
within a subchapter but also to find out what functionality other processes offer if a specific task needs to be addressed.

6.6.1 AdhesiveBinding
Deprecated in JDF 1.1
The AdhesiveBinding has been split into the following individual processes:
• CoverApplication
• Gluing
• SpinePreparation
• SpineTaping
Note t ha t t he pa r ame te r s o f t he GlueAppl icat ion ABOperat ions h ave been move d i n to
CoverApplicationParams and SpineTapingParams as GlueApplication subelements. The generic
GlueApplication ABOperation is now described by the Gluing process.

6.6.2 BlockPreparation
New in JDF 1.1
As there are many options for a hardcover book, the block preparation is more complex than what has already been
described for other types of binding above. Those options are the ribbon band (numbers of bands, materials, and col-
ors), gauze (material and glue), headband (material and colors), kraft paper (material and glue), and tightbacking (dif-
ferent geometry and measurements).

Input Resources

Output Resources

Name Description
Component (Good)
Modified in JDF 1.2

Components are produced for other printing processes or postpress processes. Note that the
Amount attribute of the ResourceLink to this resource indicates the number of copies of
the entire job which will be produced. Prior to JDF 1.2 this Component was marked with
a ProcessUsage = “Good”. This is supported but not required in JDF 1.2 and beyond.

Component ? (Waste)
Deprecated in JDF 1.2

Produced waste, may be used by other processes. In JDF 1.2 and beyond, waste is
tracked by partitioning the output using the Condition PartIDKey.

Name Description
Component The BlockPreparation process consumes one Component and cre-

ates a book block.
BlockPreparationParams Specific parameters to set up the machinery.

Name Description
Component One Component is produced: the prepared book block. Its ProductType = “BookBlock”
216 Postpress Processes

JDF Specification Release 1.2
6.6.3 BoxPacking
New in JDF 1.1
A pile, stack or bundle of products can be packed into a box or cartoon.

Input Resources

Output Resources

6.6.4 Bundling
New in JDF 1.2
JDF-Spec 1.1 contains no process for bundling products. The Bundling process normally will be followed by a
Strapping process. In a Bundling process, single products like sheets or signatures are bundled. The bundle is the
output Component of the process and is used to store the products. As input a Component to a consuming or
subsequent process (e.g., Gathering, Collecting, or Inserting), the single components of a bundle are used.

Name Description
Component The BoxPacking process puts a set of Components into the box

Component.
BoxPackingParams Specific parameters to set up the machinery.
Component (Box) ? Details of the box or carton.

Name Description
Component One Component is produced: the boxed Component.
Postpress Processes 217

Chapter 6 Processes
Input Resources

Output Resources

Parameters like manufacturer and device type are defined in the Device element.

6.6.5 CaseMaking
New in JDF 1.1
Case making is the process where a hard case is produced. As there are many different kinds of hardcover cases, they
will be described in a later version of the JDF specification.

Input Resources

Output Resources

6.6.6 CasingIn
New in JDF 1.1
The hard cover book case and the book block are joined in the CasingIn process.

Input Resources

Output Resources

Name Description
Component Component to be bundled
BundlingParams Bundling parameters.
Media ? End boards to protect the bundle. For each bundle a pair of end boards is needed.

Name Description
Component The completed bundle.

Name Description
Component (CoverMaterial) ? The cover material which may be either a preprinted and processed sheet of paper.

If no Component is specified, a Media (CoverMaterial) must be specified.
CaseMakingParams Specific parameters to set up the machinery.
Media (CoverMaterial)? The CaseMaking process may also consume unprocessed Media as

cover material. Only one of Media (CoverMaterial) or Component
(CoverMaterial) must be specified.

Media (CoverBoard)
Modified in JDF 1.1A

The cardboard Media used for the cover board.

Media (SpineBoard)? The cardboard Media used for the spine board. If not specified, the same
media as used for Media (CoverBoard) is used.

Name Description
Component One Component is produced: the produced book case. Its ProductType = “BookCase”.

Name Description
Component The prepared book block.
Component (Case) The hard cover book case.
CasingInParams Specific parameters to set up the machinery.

Name Description
Component Onea Component is produced: the completed hard cover book.

a.Note that JDF 1.1 defined two output Component resources. This was an editing error in the specification.
218 Postpress Processes

JDF Specification Release 1.2
6.6.7 ChannelBinding
Various sizes of metal clamps can be used in ChannelBinding. The process can be executed in two ways. In the
first, a pile of single sheets – sometimes together with a front and back cover – is inserted into a U-shaped clamp and
crimped in special machinery. In the second, a pre-assembled cover that includes the open U-shaped clamp is used
instead of the U-shaped clamp alone. The thickness of the pile of sheets determines in both cases the width of the U-
shaped clamp to be used for forming the fixed document, which is not meant to be reopened later.

Input Resources

Output Resources

6.6.8 CoilBinding
Another name for CoilBinding is spiral binding. Metal wire, wire with plastic, or pure plastic is used to fasten
prepunched sheets of paper, cardboard, or other materials. First, automated machinery forms a spiral of proper diam-
eter and length. The ends of the spiral are then “tucked-in”. Finally, the content is permanently fixed. Note that every
time a coil-bound book is opened, a vertical shift occurs as a result of the coil action. This is a characteristic of the
process.

Input Resources

Output Resources

6.6.9 Collecting
This process collects folded sheets or partial products, some of which may have been
cut. The first Component to enter the workflow lies at the bottom of the pile col-
lected on a saddle, and the sequence of the input components that follows depends
upon the produced component. The figure to the right shows a typical collected pile.

The operation coordinate system is defined as follows: The y-axis is aligned with
the binding edge. It increases from the registered edge to the edge opposite to the registered edge. The x-axis is
aligned with the registered edge. It increases from the binding edge to the edge opposite to the binding edge, (i.e., the
product front edge).

Name Description
Component (BookBlock) The operation requires one component: the block of sheets to be bound.
Component ? (Cover) The empty cover with the U-shaped clamp that might, for example, have

been printed before it is used during the ChannelBinding process.
ChannelBindingParams Specific parameters to set up the machinery.

Name Description
Component One Component is produced: the channel-bound component forming an item such as a brochure.

Name Description
Component The operation requires one component: the pile of prepunched sheets often

including a top and button cover.
CoilBindingParams Specific parameters to set up the machinery.

Name Description
Component One Component is produced: the coil-bound component forming an item such as a calendar.
Postpress Processes 219

Chapter 6 Processes
Input Resources

Output Resources

6.6.10 CoverApplication
New in JDF 1.1
CoverApplication describes the process of applying a soft cover to a book block.

Input Resources

Output Resources

6.6.11 Creasing
New in JDF 1.1
Sheets are creased or grooved to enable folding or to create even, finished page delimiters.

Input Resources

Output Resources

Name Description
CollectingParams ? Specific parameters to set up the machinery.
Component + Variable amount of sheets to be collected.
DBRules * Database input that describes which sheets should be collected for a particular

instance component. In this version the schema is only human readable text. One rule
is applied for each individual component.

DBSelection ? Database input that describes which sheets should be collected for a particular
instance component.

IdentificationField ?
Deprecated in JDF 1.2

Information about identification marks on the component. In JDF 1.2 and beyond,
this information is defined in the Component itself.

Name Description
Component A block of collected sheets is produced. This Component can be joined in further postpress

processes.

Name Description
CoverApplicationParams Specific parameters to set up the machinery.
Component The book block on which the cover is applied
Component (Cover) The soft cover that is applied.

Name Description
Component The book block with the applied soft cover.

Name Description
Component
Modified in JDF 1.2

This process consumes one Component: the printed sheets.
Note that prior to JDF 1.2 this Component was optional, which was
clearly a typing mistake in the specification.

CreasingParams Details of the Creasing process.

Name Description
Component One creased Component is produced.
220 Postpress Processes

JDF Specification Release 1.2
6.6.12 Cutting
Sheets are cut using a guillotine Cutting machine. Before Cutting, the sheets might be jogged and buffered.
CutBlocks and or CutMarks can be used for positioning the knife. After the Cutting process is performed, the
blocks are often again buffered on a pallet.

Since Cutting is described here in a way that is machine independent as much as possible, the CutBlock ele-
ments specified do not directly imply a certain cutting sequence. Therefore, a sequence must be determined by a spe-
cialized agent.

Input Resources

Output Resources

6.6.13 Dividing
Deprecated in JDF 1.1
Dividing has been replaced by Cutting. See “Dividing” on page 750 for details of this deprecated process.

6.6.14 Embossing
New in JDF 1.1
The Embossing process is performed after printing to stamp a raised or depressed image (artwork or typography)
into the surface of paper using engraved metal embossing dies, extreme pressure, and heat. Embossing styles include
blind, deboss, and foil-embossed.

Input Resources

Output Resources

Name Description
Component ? This process consumes one Component: the printed sheets.
CutBlock *
Deprecated in JDF 1.1

One or several CutBlocks can be used to find the Cutting sequence. Only one of
CutBlock or Cut may be specified.

CutMark *
Deprecated in JDF 1.1

CutMark resources can be used to adapt the theoretical cut positions to the real positions
of the corresponding blocks on the Component to be cut.

CuttingParams
New in JDF 1.1

Details of the Cutting process.

Media ? Cutting can be performed to unprinted Media in order to adjust size or shape.

Name Description
Component + One or several blocks of cut components are produced. When Media are cut, the output

Components can be input resources for processes such as ConventionalPrinting.

Name Description
Component This process consumes one Component:
EmbossingParams Parameters to setup the machinery.
Media ? If foil stamping or foil embossing, the stamping foil material is required.
Tool ? The embossing stamp or calendar.

Name Description
 Component One Component is created.
Postpress Processes 221

Chapter 6 Processes
6.6.15 EndSheetGluing
EndSheetGluing finalizes the folded Sheet or book block in preparation for case binding. It requires three
Components – the back-end sheet, the book block, and the front-end sheet – and information about how they are
merged together. Back-end sheets and front-end sheets are in most cases sheets folded once before
EndSheetGluing takes place. The end sheets serve as connections between the book block and the cover boards.

Input Resources

Output Resources

6.6.16 Feeding
New in JDF 1.2
The Feeding process separates sheets or signatures from a stack or stream and feeds single Component(s) to pro-
cesses such as Folding, Gathering, Collecting, ConventionalPrinting, etc. In general, the Feeding pro-
cess will be combined with the processes that consume the feed of Component(s) or Media.

Input Resources

Output Resources

Name Description
Component (BackEndSheet) A back-end sheet to be mounted on the book block.
Component (BookBlock) A back-end sheet and a front-end sheet are glued onto the book block.
Component (FrontEndSheet) A front-end sheet to be mounted on the book block.
EndSheetGluingParams Specific parameters to set up the machinery.

Name Description
Component A book block is produced that includes the end sheets.

Name Description
Component * Sheets or signatures to be fed to the machinery. The ProcessUsage of

the Component may be specified as any valid ProcessUsage of the a
feed consuming process.

FeedingParams Specific parameters to set up the Feeding Process
Media * Media to be fed to the feeder machinery.

Name Description
Component * Component(s) fed to the consuming process.
Media * Media fed to the consuming process.
222 Postpress Processes

JDF Specification Release 1.2
When used in a combined process with feed consuming process (e.g., Gathering), the Feeding process allows an
arbitrary complex selection of input Component elements in any number, and in any order, as long as elements are
consumed consecutively, (i.e., no random access within a single input component).

In our example above, one input component is a bundle component (BundleType = Stack) consisting of a col-
lated set of three sheets, the other one is a collated set consisting of two sheets per set. Both sets are oriented face-up:

The output would then look like this in case of Gathering.

Note that, by default, none of the sheets is flipped, so surfaces of sheet 1 of Component A do not show in a differ-
ent direction. If required, sheets need to be flipped via orientation settings set in FeedingParams/
CollatingItem/@Orientation.

6.6.17 Folding
Buckle folders or knife folders are used for Folding sheets. One or more sheets can be folded at the same time. Web
presses often provide in-line Folding equipment. Longitudinal Folding is often performed using a former, a plow
folder, or a belt, while jaw folding, chopper folding, or drum folding equipment is used for folding the sheets that
have been divided.

The JDF Folding process covers both operations done in stand-alone Folding machinery – typically found for
processing sheet fed printed materials – and in-line equipment of web printing presses. Creasing and/or slot perforating
are sometimes necessary parts of the Folding operation that guarantee exact process execution. They depend on the
folder used, the Media, and the folding layout. These operations are specified in the Creasing and
Perforating processes respectively.

Input Resources

Output Resources

Name Description
Component Components, including a printed sheet or a pile of sheets, are used in the Folding process.
FoldingParams Specific parameters to set up the machinery.

Name Description
Component
Modified in JDF 1.1

The process produces a Component, which in most cases is a folded Sheet.
Postpress Processes 223

Chapter 6 Processes
6.6.18 Gathering
In the Gathering process, ribbons, sheets, or other Components are accu-
mulated on a pile that will eventually be stitched or glued in some way to create
an individual Component. The input Components may be output
resources of a web-printing machine used in Collecting or of any machine
that executes a ConventionalPrinting or DigitalPrinting process. In
sheet applications, a moving gathering channel is used to transport the pile. But
no matter what the inception of the Gathering process, the sequence of the
input components dictates the produced component. The figure on the right
shows typical gathered piles.

Input Resources

Output Resources

6.6.19 Gluing
New in JDF 1.1
Gluing describes arbitrary methods of applying glue to a Component.

Input Resources

Output Resources

6.6.20 HeadBandApplication
New in JDF 1.1
Head bands are applied to the hard cover book block.

Input Resources

Name Description
Component + Variable amount of components including single sheets or folded sheets are used in the

Gathering process. The first Component in the list lies at the bottom of the gathered pile.
GatheringParams Specific parameters to set up the machinery.
DBRules * Database input that describes which sheets should be gathered for a particular instance

component. The schema are only in the form of human-readable text. One rule is
applied for each individual component.

DBSelection ? Database input that describes which sheets should be gathered for a particular instance
component.

IdentificationField ?
Deprecated in JDF 1.2

Information about identification marks on the component. In JDF 1.2 and beyond, this
information is defined in the Component itself.

Name Description
Component Components gathered together, (e.g., a pile of folded sheets).

Name Description
Component This process consumes one Component: the printed sheets.
GluingParams Details of the Gluing process.

Name Description
Component One Component is produced, the input Component with glue applied

to it.

Name Description
Component The prepared book block.
HeadBandApplicationParams Specific parameters to set up the machinery.
224 Postpress Processes

JDF Specification Release 1.2
Output Resources

6.6.21 HoleMaking
A variety of machines (e.g., those responsible for stamping and drilling) can perform the HoleMaking process. This
postpress process is needed for different binding techniques, (e.g., spiral binding). One or several holes with different
shapes can be made that are later on used for binding the book block together.

Input Resources

Output Resources

6.6.22 Inserting
This process can be performed at several stages in postpress. The process can be used to describe the labeling of prod-
ucts, of packages, or the gluing-in of a Component, (e.g., a card, sheet, or CD-ROM). Two Components are
required for the Inserting process: the “mother” Component and the “child” Component. Inserting can be a
selective process by means of inserting different “child” Components. Information about the placement is
needed to perform the process. Inserting multiple child components is specified as a Combined process with multiple
individual Inserting steps.

Input Resources

Output Resources

Name Description
Component One Component is produced: the hard cover block with head bands.

Name Description
Component One Component (e.g., a printed sheet or a pile of sheets) are modified in the

HoleMaking process.
HoleMakingParams Specific parameters, including hole diameter and positions, used to set up the machin-

ery.

Name Description
Component A Component with holes (e.g., a book block or a single sheet) is produced for further

postpress processes.

Name Description
Component (Mother) Designates where to insert the child Component.
Component (Child) The Component to be inserted in the mother Component.
InsertingParams Specific parameters (e.g., placement) to set up the machinery.
DBRules ? Database input that describes whether the child should be inserted for a particular

instance Component. In this version the schema is only human readable text.
DBSelection ? Database input that describes whether the child should be inserted for a particular

instance Component.
IdentificationField ?
Deprecated in JDF 1.2

Information about identification marks on the Component. In JDF 1.2 and beyond,
this information is defined in the Component itself.

Name Description
Component A mother Component is produced containing the inserted child Component.
Postpress Processes 225

Chapter 6 Processes
6.6.23 Jacketing
New in JDF 1.1
Jacketing is the process where the book is wrapped by a jacket that needs to be folded twice. As long as the book is
specified and the jacket dimensions are known, there are just a few important details. If the jacketing device also
creases the jacket, this can be described with a Combined process of Jacketing and Creasing.

Input Resources

Output Resources

6.6.24 Labeling
New in JDF 1.1
A label can be attached to a bundle. The label can contain information on the addressee, the product, the product
quantities, etc., which can be different for each bundle.

Input Resources

Output Resources

6.6.25 Laminating
In the Laminating process, a plastic film is bonded to one or both sides of a Component's media, and adhered
under pressure with either a thermal setting or pressure sensitive adhesive.

Input Resources

Output Resources

Name Description
JacketingParams Specific parameters to set up the machinery.
Component (Book) The book that the jacket is wrapped around.
Component (Jacket) The description of the jacket.

Name Description
Component The jacketed book.

Name Description
Component The Labeling process labels one Component with a set of labels.
Component (Label) ? The label to be attached to the Component.
LabelingParams Specific parameters to set up the machinery.

Name Description
Component One Component is produced: the labeled Component.

Name Description
Component A Component is required for Laminating.
LaminatingParams Specific parameters to set up the machinery.
Media ? The laminating foil material.

Name Description
Component One Component is produced: the laminated component.
226 Postpress Processes

JDF Specification Release 1.2
6.6.26 LongitudinalRibbonOperations
Deprecated in JDF 1.1
 In version 1.1 of JDF and beyond, in-line finishing is described using the “standard” finishing processes (e.g.,
Creasing , Cutting , Folding) or in a combined node with ConventionalPrinting . See
“LongitudinalRibbonOperations” on page 751 for details of this deprecated process.

6.6.27 Numbering
Numbering is the process of stamping or applying variable marks in order to produce unique components for items
such as lottery notes or currency. No database access is required, and the counters automatically increase incremen-
tally. Numbering is also used for alphanumeric, automatic, and unique marking.

Input Resources

Output Resources

6.6.28 Palletizing
New in JDF 1.1
Bundles, stacks, piles or boxes can be loaded onto a palette.

Input Resources

Output Resources

6.6.29 Perforating
New in JDF 1.1
Perforating describes any process where a Component is perforated. Perforating includes production perfo-
ration applied as a preparation for Folding.

Input Resources

Output Resources

Name Description
Component One Component (e.g., a printed sheet or a pile of sheets) are modified

in the Numbering process.
NumberingParams Specific parameters to set up the machinery.

Name Description
Component One Component is produced: the numbered sheet.

Name Description
Component The Palletizing process describes placing the bundle that is represented

by the Component onto a palette.
PalletizingParams Specific parameters to set up the machinery.
Pallet The palette.

Name Description
Component One Component is produced: the loaded palette.

Name Description
Component This process consumes one Component: the printed sheets.
PerforatingParams Details of the Perforating process.

Name Description
Component One Component is produced.
Postpress Processes 227

Chapter 6 Processes
6.6.30 PlasticCombBinding
In the PlasticCombBinding process, a plastic insert wraps through prepunched holes in the substrate. Most often,
these holes are rectangular and elongated. After the plastic comb is opened with a special tool, the prepunched block
of sheets – often together with a top and button cover – is inserted onto the “teeth” of the plastic comb. When released
from the machine, the teeth return to their original cylindrical positions with the points tucked into the backside of the
spine area. Special machinery can be used to reopen the plastic comb binding.

Input Resources

Output Resources

6.6.31 PrintRolling
New in JDF 1.2
The single products like sheets, signatures, or partial products are
rolled. The roll is the output component of the process and is used to
store the products. As input component of a consuming process (e.g.,
Gathering, Collecting, and Inserting), the single components of
a roll are used.

Input Resources

Output Resources

6.6.32 RingBinding
In this process, prepunched sheets are placed in a ring binder. Ring binders have different numbers of rings that are fixed
to a metal backbone. In most cases, two, three, or four metal rings hold the sheets together as long as the binding is
closed. Depending on the amount of sheets to be bound together, ring binders of different thickness must be used.

Name Description
Component The operation requires one component: the pile of sheets often including a

top and button cover.
PlasticCombBindingParams Specific parameters to set up the machinery.

Name Description
Component One Component is produced: the plastic-comb-bound component form-

ing an item such as a calendar.

Name Description
Component Component to be rolled.
PrintRollingParams ? Print rolling parameters.
RollStand ? Rollstand to store the Component(s) as rolls.

Name Description
Component The print roll.
228 Postpress Processes

JDF Specification Release 1.2
Input Resources

Output Resources

6.6.33 SaddleStitching
Deprecated in JDF 1.1
SaddleStitching has been replaced by Stitching in JDF 1.1. See “SaddleStitching” on page 751 for details of
this deprecated process.

6.6.34 ShapeCutting
New in JDF 1.1
The ShapeCutting process can be performed using tools such as hollow form punching, perforating, or die-cutting
equipment.

Input Resources

Output Resources

6.6.35 Shrinking
New in JDF 1.1
Shrink-wrap foil must be treated in order to shrink.

Input Resources

Output Resources

Name Description
Component (BookBlock) The operation requires one component: the pile of prepunched sheets to be

inserted into the ring binder.
Component ? (RingBinder) The empty ring binder that might have been printed, for example, before it is

used during the RingBinding process.
RingBindingParams Specific parameters to set up the process/machinery.

Name Description
Component One Component is produced: the ring-bound component forming an item such as a calendar.

Name Description
Component This process consumes one Component: the printed sheets.
ShapeCuttingParams Details of the ShapeCutting process.
Tool ? The die-cut die.

Name Description
Component One Component is produced.

Name Description
Component The Shrinking process shrinks the shrink-wrap that is wrapped around a bundle. The

bundle including the shrink-wrap media is represented by this Component.
ShrinkingParams Specific parameters to set up the machinery.

Name Description
Component One Component is produced: the bundle including bundle including the

shrunk shrink-wrap media.
Postpress Processes 229

Chapter 6 Processes
6.6.36 SideSewing
Deprecated in JDF 1.1
Replaced by ThreadSewing. See “SideSewing” on page 751 for details of this deprecated process.

6.6.37 SpinePreparation
New in JDF 1.1
The SpinePreparation process describes the preparation of the spine of book blocks for hard and soft cover book
production, (e.g., milling and notching).

Input Resources

Output Resources

6.6.38 SpineTaping
New in JDF 1.1
SpineTaping describes the process of applying a tape strip to the spine of a book block. It also describes the pro-
cess of applying kraft paper to a hard cover book block.

Input Resources

Output Resources

6.6.39 Stacking
New in JDF 1.1
The stacking process collects physical resources (products) and produces a pile, stack or bundle for delivery. In a
standard production each bundle consists of the same amount of identical products, possibly followed by one or more
odd-count bundles. In a production with variable data (e.g., newspaper dispatch, demographic production, or individ-
ual addressed products), each bundle has a variable amount of products, and, in the worst case, each product can be
different from the others. The input components are single products; the output components are stacks of this product.

 Input Resources

Output Resources

Name Description
Component The raw book block.
SpinePreparationParams Specific parameters to set up the machinery.

Name Description
Component The book block with a processed spine.

Name Description
Component The book block that the spine is taped to.
SpineTapingParams Specific parameters to set up the machinery.

Name Description
Component The book block with the spine.

Name Description
Component The Stacking process consumes one Component and stacks it onto a stack.
StackingParams Specific parameters to set up the machinery.

Name Description
Component One Component is produced: the stack of input Components.
230 Postpress Processes

JDF Specification Release 1.2
6.6.40 Stitching
Clarified in JDF 1.2
Gathered or collected sheets or signatures are stitched together with a cover.

Input Resources

Output Resources

Components containing staples of different characteristics like shape, width, etc. are defined by a combined process.
For example:
<JDF xmlns="http://www.CIP4.org/JDFSchema_1_1" ID="CombinedStitch" JobID="Stitching
special" Type="Combined" Types="Stitching Stitching" Version="1.2">
 <ResourcePool>
 <StitchingParams Class="Parameter" ID="Stitch1" NumberOfStitches="2"
StapleShape="Butted" Status="Available" StitchPositions="100 700" StitchWidth="28.3"
WireBrand="Steel" WireGauge="2.3"/>
 <StitchingParams Class="Parameter" ID="Stitch2" NumberOfStitches="2"
StapleShape="Eyelet" Status="Available" StitchPositions="300 500" StitchWidth="42.5"
WireBrand="Steel" WireGauge="2.3"/>
 </ResourcePool>
 <ResourceLinkPool>
 <StitchingParamsLink CombinedProcessIndex="0" Usage="Input" rRef="Stitch1"/>
 <StitchingParamsLink CombinedProcessIndex="1" Usage="Input" rRef="Stitch2"/>
 </ResourceLinkPool>
</JDF>

6.6.41 Strapping
New in JDF 1.1
A bundle can be strapped. There are different kinds of strapping, (e.g., single (one strap around the bundle), double
(two parallel straps), and cross (two crossed straps)).

Input Resources

Output Resources

6.6.42 StripBinding
New in JDF 1.1
Hard plastic strips are held together by plastic pins, which in turn are bound to the strips with heat. The sheets to be
bound must be prepunched so that the top strip with multiple pins fits through the assembled material. It is then con-
nected to the bottom strip with matching holes for the pins. The binding edge is often compressed in a special
machine before the excess pin length is cut off. The backstrip is permanently fixed with plastic clamping bars and
cannot be removed without a special tool.

Name Description
Component The only required Component is the pile of gathered sheets, including the cover.
StitchingParams Specific parameters to set up the machinery.

Name Description
Component One Component is produced: the gathered or collected sheets including the cover stitched

together.

Name Description
Component The Strapping process puts straps around a bundle that is represented by a

Component.
Strap ? The straps used.
StrappingParams Specific parameters to set up the machinery.

Name Description
Component One Component is produced: the strapped Component.
Postpress Processes 231

Chapter 6 Processes
Input Resources

Output Resources

6.6.43 ThreadSealing
New in JDF 1.1
Similar to Smythe sewing, ThreadSealing involves sewing the signatures at the spine of the book. After the signa-
tures are sewn, they are gathered and run through the perfect binder. The perfect binder however does not grind the
spine. Instead the binding adhesive (which attaches the cover) envelops the thread that holds the book together. This
special thread holds to the glue to create a sewn book with most of the same properties as Smythe sewing.

Input Resources

Output Resources

6.6.44 ThreadSewing
This process may include a gluing application, which would be used principally between the first and the second
sheet or the last and the last sheet but one. Gluing may also be necessary if different types of paper are used.

Input Resources

Output Resources

6.6.45 Trimming
The Trimming process is performed to adjust a book block or sheet to its final size. In most cases, it follows a block
joining process, and the process is often executed as an in-line operation of a production chain. For example, the
binding station may deliver the book blocks to the trimmer. A Combined operation in the trimming machinery
would then execute a cut at the front, head, and tail in a cycle of two operations. Closed edges of folded signatures
would then be opened while the book block is trimmed to its predetermined dimensions.

Some trimming machines such as magazine production systems can produce N-ups. In every case, however, the
additional trimming cuts that divide the N-ups result in separated book blocks. Sometimes a stripe is trimmed out
between the book blocks. To describe these operations, multiple Trimming processes must be defined in JDF.

Name Description
Component The operation requires one component: the block of sheets to be bound.
StripBindingParams Specific parameters to set up the machinery.

Name Description
Component One Component is produced: the strip-bound component forming an item such as a book.

Name Description
Component This process consumes one Component: the printed sheets.
ThreadSealingParams Details of the ThreadSealing process.

Name Description
Component One Component is produced.

Name Description
Component The operation requires one component: the gathered sheets.
ThreadSewingParams Specific parameters to set up the machinery.

Name Description
Component One Component is produced: the thread-sewn components forming an item such as a raw book block.
232 Postpress Processes

JDF Specification Release 1.2
Input Resources

Output Resources

6.6.46 WireCombBinding
In WireCombBinding metal wire, wire with plastic, or pure plastic is used to fasten prepunched sheets of paper,
cardboard, or other such materials. The wire – often formed as a double wire – is inserted into the holes, then curled
to create a circular enclosure.

Input Resources

Output Resources

6.6.47 Wrapping
New in JDF 1.1
Single products, bundles, or pallets can be wrapped by film or paper.

Input Resources

Output Resources

6.6.48 Postpress Processes Structure
Modified in JDF 1.2

6.6.48.1 Block Production
This subcategory of the postpress processes merges together all the processes for making a book block. First the
block is compiled using the Collecting and Gathering processes. After that, it is combined using one or several of the
block joining processes, including CoverApplication, SaddleStitching, SideSewing, SpineTaping,
Stitching, and ThreadSewing. The workflow using these processes eventually produces a Component that
can be trimmed.

Name Description
Component
Modified in JDF 1.2

The bound book block or sheet that will be trimmed.

TrimmingParams Specific parameters (e.g., trim size) to set up the machinery.

Name Description
Component One Component is produced: the trimmed component.

Name Description
Component The operation requires one component: the pile of preprinted sheets often

including a front and back cover.
WireCombBindingParams Specific parameters to set up the machinery.

Name Description
Component One Component is produced: the wire-comb bound component forming

an item such as a calendar.

Name Description
Component The Wrapping process wraps a bundle that is represented by a

Component.
WrappingParams Specific parameters to set up the machinery.
Media ? The wrapping material.

Name Description
Component One Component is produced: the wrapped Component.
Postpress Processes 233

Chapter 6 Processes
6.6.48.1.1 Block Compiling
The Gathering and Collecting processes are used to position unfolded sheets and/or folded sheets in a planned
order. These operations set a fixed page sequence in preparation for three-side trimming and binding. Block compil-
ing includes:
• Collecting
• Gathering
• PrintRolling
• Feeding

6.6.48.1.2 Block Joining
The block joining processes can be grouped into two major subcategories: conventional binding methods, which
includes the processes of Stitching , CoverApplication, SpinePreparation, SpineTaping ,
ThreadSealing, and ThreadSewing; and single-leaf binding methods, which are listed in Section 6.6.48.1.2.1.
Together they form a subcategory of block-production processes. All of these processes, which are known as block
joining processes, unite sheets and/or folded sheets lying loose on top of each other.

There are numerous possible binding methods. The most prominent ones are modeled by the processes described
in the following sections. Many of them can be part of a combined production chain being performed as in-line tasks.
Block joining includes:
• AdhesiveBinding
• CoverApplication
• EndSheetGluing
• Gluing
• SpinePreparation
• SpineTaping
• Stitching
• ThreadSewing

6.6.48.1.2.1 Single-Leaf Binding Methods
Besides the conventional binding methods, there is a multifaceted group of binding methods for single-leaf bindings.
This group can again be subdivided into two subtypes: loose-leaf binding and mechanical binding, each of which is
described in the sections that follow.

6.6.48.1.2.2 Loose-Leaf Binding Method
This binding techniques allow contents to be changed, inserted, or removed at will. There are two essential groups of
loose-leaf binding systems: those that require the paper to be punched or drilled and those that do not. The
RingBinding method, described in the next section, is the most prominent binding in the loose-leaf binding category.
Loose-leaf binding methods include:
• RingBinding

6.6.48.1.2.2.1 Mechanical Binding Methods
Single leafs are fastened into what is essentially a permanent system that is not meant to be reopened. However, spe-
cial machinery can be used to reopen some of the mechanical binding systems described below.

In mechanical binding, printing and folding can be done in a conventional manner. The gathered sheets, however,
often require the back to be trimmed, as well as the other three sides. Mechanical bindings are often used for short-run
jobs such as ones that have been printed digitally. The most prominent mechanical binding processes are described in
the sections that follow. Mechanical binding methods include:
• ChannelBinding
• CoilBinding
• PlasticCombBinding
• RingBinding
• StripBinding
• WireCombBinding

6.6.48.2 HoleMaking
• HoleMaking
234 Postpress Processes

JDF Specification Release 1.2
6.6.48.3 Laminating
• Laminating.

6.6.48.4 Numbering
• Numbering.

6.6.48.5 Packaging Processes
The individual processes defined in this section replace the deprecated Packing process. Packaging processes include:
• BoxPacking
• Bundling
• Labeling
• Palletizing
• Shrinking
• Stacking
• Strapping
• Wrapping
Each of these processes share a common coordinate system as depicted below:

6.6.48.6 Processes in Hardcover Book Production
The following processes refer to the production of hard cover books. As there are several processes which are needed
to produce a hardcover, some of them are optional, others are essential. The processes described are in detail:
CaseMaking: Production of hard cover book cases.
BlockPreparation: The optional hardcover design elements (e.g., rounding and backing, ribbon band,

headband, side gluing, and tightbacking) are described here. Application of kraft
paper to the book block is described in the SpineTaping process.

CasingIn: In this process, the case and the prepared book block are brought together.
Jacketing: In the jacketing process, the jacket is wrapped around the hardcover book.
Processes in hardcover book production include:
• BlockPreparation
• CaseMaking
• CasingIn
• Collecting

Figure 6.2: Packaging Process Coordinate System

Y-Axis:
Along spine of bottom product

X-Axis

Z-Axis:
Height of bundle /

Origin:
Lower left corner of bottom product

Spine of
bottom
Postpress Processes 235

Chapter 6 Processes
• Gluing
• HeadBandApplication
• Jacketing
• SpinePreparation
• SpineTaping
• ThreadSealing
• ThreadSewing

6.6.48.7 Sheet Processes
Many printing processes produce sheets that must be processed further in finishing operations. The web processes
presented in the preceding sections result in sheets that are treated in much the same way as sheets produced by sheet-
fed printing presses. The following processes describe these sheet finishing operations. Sheet processes include:
• Creasing
• Cutting
• Embossing
• Feeding
• Folding
• Gathering
• Gluing
• Palletizing
• Perforating
• PrintRolling
• ShapeCutting
• ThreadSealing

6.6.48.8 Tip-on/in
The following processes, EndSheetGluing, Inserting, are part of the postpress operations. They can be grouped
together as the tip-on/in processes. Both processes can be performed by hand, tip-on/in machine, or by a press. Tip-
on/in includes:
• EndSheetGluing
• Inserting

6.6.48.9 Trimming
• Trimming.

6.6.48.10 Web Processes
This subchapter of the postpress processes is dedicated to web and ribbon operations, (i.e., operations that require a
web or a ribbon to execute). In essence, a ribbon is a web that has been slit or cross-cut. More specifically, a web is a
continuous strip of Media to be used for printing, (e.g., paper or foil). This substrate is called “web” while it is
threaded through the printing machinery, but once it has run through the Cutting process and been slit, the web no
longer exists. In its place are ribbons or sheets.

A ribbon, then, is the part of the web that enters the folder. If the web is never slit, however, the web and the rib-
bon are identical. Slitting and salvage-trim operations on a web can result in one or more ribbons. A ribbon can be
further subdivided after it has been slit. After the Cutting process, sheets are treated further. The Gathering process
and Folding process also handle web and ribbon applications.
236 Postpress Processes

Chapter 7 Resources
Introduction
Resources represent inputs and outputs, the “things” that are produced, modified, consumed, or in any way used by
nodes. A more thorough description was provided in Section 3.6, Resources. The resources in this chapter are divided
into two sections. The first section documents all of the resources of class Intent. The second section documents
the rest of the resources that have been defined for JDF.

7.1 Intent Resources
As was described in Section 4.1.1, Product Intent Constructs, intent resources are designed to narrow down the available
options when defining a JDF job. Many of the elements in intent resources are optional. If an optional element of an intent
resource is omitted and no additional information is specified in the description, the value defaults to “don’t care”. The
characteristics of the product that are not specified through the use of intent resources will be selected by the system that
processes the intent resources. The system that processes the intent data in a JDF job ticket may insert the details of its
selection into the JDF data for the job. See "Conformance Requirements for Support of Attributes and Attribute
Values" on page 7 for more information on the handling and processing of systems-specified default values.

All intent resources share a set of subelements that allow a Request for Quote to describe a range of acceptable values
for various aspects of the product. These elements, taken together, allow an administrator to provide a specific value for the
quote. Section 7.1.1, Intent Resource Span Subelements below, describes these elements.

Each of the following sections begins with a brief narrative description of the resource. Following that is a list con-
taining details about the properties of the resource, as shown below. The first item in the list provides the class of the
resource, which, in this section is always Intent. For more information on resource class, see Section 3.6.1, Resource
Classes. A template of this list is shown below.

After the list describing the resource properties, each section contains tables that outline the structure of each resource
and, when applicable, the abstract or subelement information that pertains to the resource structure. The first column con-
tains the name of the attribute or element. In some cases, a resource will contain an element with more than one value asso-
ciated with it. If this is the case, the element name is listed as often as it appears, and a term in parentheses that identifies
the kind of element is included in the column. A template of these tables is also provided below.

Resource Properties Template
Resource class: Defines the resource class.
Resource referenced by: List of parent resources that contain elements of this type. Only valid for elements.
Process Pairing: List of process resources to which an Intent Resource is generally identified with. In

practice, the process resources will contain the data with which the customer’s intent
is fulfilled in production and distribution of the printed product. This is a list of the
primary resources and not a complete list.

Example Partition: List of recommended partitioning keys: For a complete list of partition keys, see the
description of PartIDKeys in Table 3-27, “Contents of the Partitionable Resource
Element,” on page 78. Note that resources may be partitioned by keys that are not
specified in this list.

Input of processes: List of node types that create the resource as an input resource.
Output of processes: List of node types that create the resource as an output resource.
Resource Structure Template

Name Data Type Description
Name of attribute data type of attribute Usage of the attribute.
Name of element element Subelements that must be defined locally within the resource.
Name of element refelement Elements that are based on other atomic resources or resource elements.

These may either be in-line elements or instances of ResourceRef ele-
ments (see Section 3.7.6, Inter-Resource Linking Using
ResourceRef). In case of ResourceRef elements, a “Ref” must be
appended to the name specified in the table column entitled “Name”.

FileSpec
(ResourceUsage)

refelement FileSpec resources may have a FileSpec/@ResourceUsage
attribute that specifies the context in which to use the FileSpec.
FileSpec/@ResourceUsage must match the
(ResourceUsage) value specified in the parentheses.
Intent Resources 237

Chapter 7 Resources
7.1.1 Intent Resource Span Subelements
Intent resources contain subelements that allow spans of values to be specified. These subelements also provide
mechanisms to select a set of values from the provided range and map them to a set of quotes. These subelements are
called span elements. The abstract span element to be used is determined by the data type of the values to be
recorded. Span elements are defined to facilitate negotiation between buyer and provider as defined in Section 4.1.2,
Defining Business Objects Using Intent Resources.

Note: The tables used below to define the structure of intent resources may contain attributes with both JDF data
types (as defined in the "Data Structures" on page 9 and "Defined JDF enumeration Data Types" on page 575) as well
as the following span elements (used in the data type column of the intent resource’s structure table). All possible
span elements are listed in the following table. The formatting of XXXSpan elements was chosen to be the same as
attribute formatting although the Span elements are technically XML elements because the semantic usage of the
Span elements is equivalent to the usage of attributes in process resources.

Each span element contains further attributes or subelements. The contents shared by all span elements are listed
in Section 7.1.1.1, Structure of Abstract Span Subelement, below, and the contents particular to each span element
type are described in the sections that follow.

7.1.1.1 Structure of Abstract Span Subelement
Abstract span elements of intent resources have a common set of attributes and elements that define the priority, data
type, and requested identity of the element. These attributes are described in the following table. In addition, abstract
Span elements have three attributes that define the aspects of the span. The data type of these values depends on the
data type of the span and is defined in the following sections:

Actual –The intended value agreed to by the producer of the product.

Preferred – A preferred value defined by the recipient of the product.

Range – A proposed range of values defined by the recipient of the product.

Span Element Types Data Type Description
DurationSpan
New in JDF 1.1

element Describes a set of duration values.

EnumerationSpan element Describes a set of enumeration values.
IntegerSpan element Describes a numerical range of integer values.
NameSpan element Describes a set of NMTOKEN values.
NumberSpan element Describes a numerical range of values.
OptionSpan element Describes an intent in which the principal information is that a

specific option is requested.
ShapeSpan
New in JDF 1.1

element Describes a set of shape values.

StringSpan element Describes a set of string values.
TimeSpan element Describes a set of dateTime values.
XYPairSpan element Describes a set of XYPair values.
238 Intent Resources

JDF Specification Release 1.2
The following table describes the allowed values for filling the Actual attribute in a Span element defined by the
combination of Range, Preferred, and SettingsPolicy.

7.1.1.2 Structure of the DurationSpan Subelement
New in JDF 1.1
This Span subelement is used to describe a selection of instances in time. It inherits from the abstract Span element
described in Section 7.1.1.1, Structure of Abstract Span Subelement.

Name Data Type Description
DataType enumeration Describes the data type of the span element within an intent

resource. This attribute is provided for applications that do not have
access to schema validation. Possible values are:
DurationSpan
EnumerationSpan
IntegerSpan
NameSpan
NumberSpan

OptionSpan
ShapeSpan
StringSpan
TimeSpan
XYPairSpan

Priority ?
Deprecated in JDF 1.2

enumeration Indicates the importance of the specific intent. The following values
have prescribed meanings:
None
Suggested – The customer will accept a value of Actual that is
different than the value of Preferred or outside of Range.
Required – Actual must be equal to Preferred or within
Range. Note that the attribute Preferred is available in the data
types which inherit from this abstract type.
Note: Replaced by SettingsPolicy in JDF 1.2 and beyond.

SettingsPolicy Preferred Exists Range Exists Suggested Value
defined by:

Required Value
defined by:

BestEffort yes no Preferred —
BestEffort yes yes Preferred —
BestEffort no yes Range —
MustHonor yes no — Preferred
MustHonor yes yes Preferred Range
MustHonor no yes — Range

Name Data Type Description
Actual ? duration The actual value selected for the quote.
Preferred ? duration Provides a value specified by the person submitting the request, indicat-

ing what that person prefers. Preferred must fall within the range of
values specified in Range.

Range ? DurationRange Provides a valid range of time durations. If not specified, it defaults to
the value of Preferred.
Intent Resources 239

Chapter 7 Resources
7.1.1.3 Structure of the EnumerationSpan Subelement
This Span subelement is used to describe ranges of enumerative values. It inherits from the abstract Span element
described in Section 7.1.1.1, Structure of Abstract Span Subelement. It is identical to the NameSpan element
except for the fact that it describes a closed list of enumeration values.

7.1.1.4 Structure of the IntegerSpan Subelement
This Span subelement is used to describe ranges of integer values. It inherits from the abstract Span element
described in Section 7.1.1.1, Structure of Abstract Span Subelement.

7.1.1.5 Structure of the NameSpan Subelement
This Span subelement is used to describe name ranges. It inherits from the abstract Span element described in Section
7.1.1.1, Structure of Abstract Span Subelement. It is identical to the EnumerationSpan element except for the fact
that it describes an extensible list of NMTOKEN values.

7.1.1.5.1 Specifying New Values in a NameSpan Subelement
NameSpan elements generally define an open list of predefined values. If a value that is not included in the list
must be specified, a comment that defines that value can be included in the NameSpan using the new name as a
Name attribute of the comment, as demonstrated in the following example:

<HoleType DataType=”NameSpan” Range=”36Hole 42Hole”>
<Comment Name=”36Hole”>6 equidistant holes on each side of a hexagonal piece of paper </
Comment>
<Comment Name=”42Hole”>7 equidistant holes on each side of a hexagonal piece of paper </
Comment>
</HoleType>

Name Data Type Description
Actual ? enumeration The actual value selected for the quote.
Preferred ? enumeration Provides a value specified by the person submitting the request, indicat-

ing what that person prefers. Preferred must fall within the range of
values specified in Range.

Range ? enumerations Provides a set of discreet enumeration values. If not specified, it defaults
to the value of Preferred.

Name Data Type Description
Actual ? integer The actual value selected for the quote.
Preferred ? integer Provides a value specified by the person submitting the request, indicat-

ing what that person prefers. The value of Preferred must fall within
the range of values specified in Range.

Range ? IntegerRangeList Provides either a set of discreet values, a range of values, or a combina-
tion of the two that comprise all allowed values for the Span. If not spec-
ified, it defaults to the value of Preferred.

Name Data Type Description
Actual ? NMTOKEN The actual value selected for the quote.
Preferred ? NMTOKEN Provides a value specified by the person submitting the request, indicat-

ing what that person prefers. The value of Preferred must fall within
the range of values specified in Range.

Range ? NMTOKENS Provides either a set of discreet values, a range of values, or a combina-
tion of the two that comprise all allowed values for the Span. If not spec-
ified, it defaults to the value of Preferred.
240 Intent Resources

JDF Specification Release 1.2
7.1.1.6 Structure of the NumberSpan Subelement
This Span subelement is used to describe a numerical range of values. It inherits from the abstract Span element
described in Section 7.1.1.1, Structure of Abstract Span Subelement.

7.1.1.7 Structure of the OptionSpan Subelement
This Span subelement is used to describe a range of options or Boolean values. It inherits from the abstract Span ele-
ment described in Section 7.1.1.1, Structure of Abstract Span Subelement.

7.1.1.8 Structure of the ShapeSpan Subelement
New in JDF 1.1
This Span subelement is used to describe ranges of numerical value pairs. It inherits from the abstract Span element
described in Section 7.1.1.1, Structure of Abstract Span Subelement.

7.1.1.9 Structure of the StringSpan Subelement
This Span subelement is used to describe string ranges. It inherits from the abstract Span element described in Section
7.1.1.1, Structure of Abstract Span Subelement.

Name Data Type Description
Actual ? double The actual value selected for the quote.
Preferred ? double Provides a value specified by the person submitting the request, indicat-

ing what that person prefers. The value of Preferred must fall within
the range of values specified in Range.

Range ? DoubleRangeList Provides either a set of discreet values, a range of values, or a combina-
tion of the two that comprise all allowed values for the Span. When not
known, the value of Range shall default to the value of Preferred.

Name Data Type Description
Actual ? boolean The actual value selected for the quote. If the option is included =

“true”.
Preferred ? boolean Provides a value specified by the person submitting the request, indicat-

ing what that person prefers.
Range ? string Detail provides information about the option.

Name Data Type Description
Actual ? shape The actual value selected for the quote.
Preferred ? shape Provides a value specified by the person submitting the request, indicating

what that person prefers. The value of Preferred must fall within the range
of values specified in Range.

Range ? ShapeRangeList Provides either a set of discreet values, a range of values, or a combination of
the two that comprise all allowed values for the Span. If not specified, it
defaults to the value of Preferred.

Name Data Type Description
Actual ? string The actual value selected for the quote.
Preferred ? string Provides a value specified by the person submitting the request, indicat-

ing what that person prefers. The value of Preferred must fall within
the range of values specified in Range.

Range * telem Provides either a set of discreet values, a range of values, or a combina-
tion of the two that comprise all allowed values for the Span. If not spec-
ified, it defaults to the value of Preferred.
Intent Resources 241

Chapter 7 Resources
7.1.1.10 Structure of the TimeSpan Subelement
This Span subelement is used to describe a selection of instances in time. It inherits from the abstract Span element
described in Section 7.1.1.1, Structure of Abstract Span Subelement.

7.1.1.11 Structure of the XYPairSpan Subelement
This Span subelement is used to describe ranges of numerical value pairs. It inherits from the abstract Span element
described in Section 7.1.1.1, Structure of Abstract Span Subelement.

7.1.2 ArtDeliveryIntent
This resource specifies the prepress art delivery intent for a JDF job and maps the items to the appropriate reader
pages and separations. Art delivery refers to any physical or electronic asset that is required for processing the job.

Resource Properties
Resource class: Intent
Resource referenced by: —
Process Resource Pairing: DeliveryParams, DigitalDeliveryParams
Example Partition: Option
Input of processes: Any product node
Output of processes: —

Resource Structure

Name Data Type Description
Actual ? dateTime The actual value selected for the quote.
Preferred ? dateTime Provides a value specified by the person submitting the request, indicat-

ing what that person prefers. The value of Preferred must fall within
the range of values specified in Range.

Range ? DateTimeRange Provides either a set of discreet values, a range of values, or a combina-
tion of the two that comprise all allowed values for the Span. If not spec-
ified, it defaults to the value of Preferred.

Name Data Type Description
Actual ? XYPair The actual value selected for the quote.
Preferred ? XYPair Provides a value specified by the person submitting the request, indicat-

ing what that person prefers. The value of Preferred must fall within
the range of values specified in Range.

Range ? XYPairRangeList Provides either a set of discreet values, a range of values, or a combina-
tion of the two that comprise all allowed values for the Span. If not spec-
ified, it defaults to the value of Preferred.

Name Data Type Description
ArtDeliveryDate ?
New in JDF 1.1

TimeSpan Specifies the latest time by which the transfer of the artwork will be
made.

ArtDeliveryDuration ?
New in JDF 1.1

DurationSpan Specifies the latest time by which the transfer will be made relative
to the date of the purchase order. Within an RFQ or a Quote, only
one of either ArtDeliveryDate or ArtDeliveryDuration may
be specified. Within a purchase order, only ArtDeliveryDate is
allowed.
242 Intent Resources

JDF Specification Release 1.2
ArtHandling ?
New in JDF 1.1

EnumerationSpan Describes what should happen to the artwork after usage. The return
or pickup address must be specified by a Contact with
ContactTypes including “ArtReturn”. Possible values are:
ReturnWithProof – The artwork is delivered back to the cus-
tomer together with the proof, if there is any.
ReturnWithProduct – The artwork is delivered back to the cus-
tomer together with the final product.
Return – The artwork is delivered back independently directly
after usage.
Pickup – The customer picks up the artwork.
Destroy – The printer must destroy the artwork.
PrinterOwns – The artwork belongs to the printer.
Store – The printer has to store the artwork for future purposes.

DeliveryCharge ?
New in JDF 1.1

EnumerationSpan Specifies who pays for a delivery being made by a third party. Possi-
ble values are:
Printer
Buyer

Method ?
Modified in JDF 1.2

NameSpan Identifies a required delivery method, may be a generic item. Possi-
ble values are:
EMail
ExpressMail
InterofficeMail
OvernightService
Courier
CompanyTruck
ISDNSoftware
NetworkCopy – This includes LAN and VPN.
WebServer – Upload / download from HTTP / FTP server.
InstantMessaging
May also be a delivery service brand, such as:
UPS
DHL
FedEx
Or any digital delivery service brand.

PreflightStatus =
“NotPerformed”
New in JDF 1.1
Modified in JDF 1.2

enumeration Information about a preflight process probably applied to the art-
works before being submitted. Possible values are:
NotPerformed – No preflighting was applied.
WithErrors – Preflighting resulted in error messages and option-
ally warning messages.
WithWarnings – Preflighting resulted in warning messages and
no errors.
WithoutErrors – Preflighting was successful. No errors and no
warnings occurred.

Name Data Type Description
Intent Resources 243

Chapter 7 Resources
Structure of ArtDelivery Elements
Each ArtDelivery element defines a set of existing products that are required to create the specified product.
Attributes that are specified in an ArtDelivery element overwrite those that are specified in their parent
ArtDeliveryIntent element. If optional attributes are not specified, their values default to the values specified in
ArtDeliveryIntent.

ReturnList = “None”
New in JDF 1.1

NMTOKENS Type of printer created intermediate materials that should be sent to
the customer after usage. Possible values include:
DigitalMedia – Digital data on media, (e.g., a CD).
DigitalNetwork – Digital data via network.
ExposedPlate – Pre-exposed press plates, usually used for a
rerun.
ImposedFilm – Film of the imposed surfaces.
LooseFilm – Film of individual pages or sections.
OriginalPhysicalArt – Analog artwork, (e.g., reflective or
transparencies).
Tool – Tools required for processing the job, (e.g., a die for die cut-
ting or embossing stamp).
None – No intermediate materials should be returned to the cus-
tomer.

ReturnMethod ?
New in JDF 1.1

NameSpan Identifies a required delivery method for returning the artwork, if
ArtHandling = “Return” and for the printer created materials
listed in ReturnList. The predefined values are the same as the list
specified in Method.

ServiceLevel ?
New in JDF 1.2

StringSpan The service level of the specific carrier. Contain values “Next
Day”, “2nd Day Air”, “Ground”, etc.

Transfer ?
New in JDF 1.1

EnumerationSpan Describes the responsibility of the transfer. Possible values are:
BuyerToPrinterDeliver – The buyer delivers the artwork to
the printer. The printer may specify in the quote a special Contact
with ContactTypes including Delivery, where the buyer
should send the artwork.
BuyerToPrinterPickup – The printer picks up the artwork.
The Contact with ContactTypes including pickup describes,
where the printer has to pick up the artwork.

ArtDelivery +
Modified in JDF 1.1

element Individual delivery.

Company ?
Deprecated in JDF 1.1

refelement Address and further information of the art delivery. This must only
be specified if the printer is expected to pick up the art delivery at
this address. In JDF 1.1 and beyond, Company is a subelement of
Contact.

Contact *
New in JDF 1.1

refelement Address and further information about the transfer of the artwork.
The actual delivery address is specified as the Address of the
Contact/@ContactTypes including Delivery. Only one
Contact/@ContactTypes, including Delivery, may be speci-
fied. The actual pickup address is specified as the Address of the
Contact/@ContactTypes including Pickup. Only one
Contact/@ContactTypes, including Pickup, may be specified.

Name Data Type Description
244 Intent Resources

JDF Specification Release 1.2
Name Data Type Description
Amount ?
Modified in JDF 1.2

integer Number of physical objects to be delivered. Only valid if no detailed
resource description (e.g., ExposedMedia, RunList, ScanParams,
DigitalMedia, or Tool) is specified.

ArtDeliveryDate ?
New in JDF 1.1

TimeSpan Specifies the latest time by which the transfer of the artwork will be
made.

ArtDeliveryDuration ?
New in JDF 1.1

DurationSpan Specifies the latest time by which the transfer will be made relative to
the date of the purchase order. Within an RFQ or a Quote, only one of
either ArtDeliveryDate or ArtDeliveryDuration may be specified.
Within a purchase order, only the ArtDeliveryDate is allowed.

ArtDeliveryType
New in JDF 1.1
Modified in JDF 1.2

NMTOKEN Type of artwork supplied. Possible values include:
DigitalFile – Digital data irrespective of the delivery mechanism.
The union of DigitalMedia and DigitalNetwork. New in JDF
1.2
DigitalMedia – Digital data on media, (e.g., a CD).
DigitalNetwork – Digital data via network.
ExposedPlate – Pre-exposed press plates, usually used for a rerun.
ImposedFilm – Film of the imposed surfaces.
LooseFilm – Film of individual pages or sections.
OriginalPhysicalArt – Analog artwork, (e.g., reflective or trans-
parencies).
Proof – Physical proof delivered with digital scan or separated film
asset.
Tool – Tools required for processing the job, (e.g., a die for die cutting
or embossing stamp).
None – No artwork exists, and it must be created.

ArtHandling ?
New in JDF 1.1

Enumeration-
Span

Describes what should happen to the artwork after usage. The return or
pickup address must be specified by a Contact with ContactTypes
including “ArtReturn”. Possible values are:
ReturnWithProof – The artwork is delivered back to the customer
together with the proof, if there is any.
ReturnWithProduct – The artwork is delivered back to the cus-
tomer together with the final product.
Return – The artwork is delivered back independently directly after
usage.
Pickup – The customer picks up the artwork.
Destroy – The printer must destroy the artwork.
PrinterOwns – The artwork belongs to the printer.
Store – The printer has to store the artwork for future purposes.
Defaults to the value of ArtDeliveryIntent/@ArtHandling.

DeliveryCharge ?
New in JDF 1.1

Enumeration-
Span

Specifies who pays for a delivery being made by a third party. Possible
values are:
Printer
Buyer
Defaults to the value of ArtDeliveryIntent/@DeliveryCharge.

HasBleeds = “false” boolean If “true”, the file has bleeds.
IsTrapped = “false” boolean If “true”, the file has been trapped.
Intent Resources 245

Chapter 7 Resources
Method ?
Modified in JDF 1.2

NameSpan Identifies a required delivery method. It may be a generic item from the
list defined in Method in ArtDeliveryIntent. Defaults to the value
of ArtDeliveryIntent/@Method.

PageList ? Integer-
RangeList

Set of pages of the output Component that are filled by this
ArtDelivery. This maps the pages in the ArtDelivery to the Pages in
the product that is produced. For example if PageList = “3~5”, page 0
of the ArtDelivery (e.g., RunList) is page 3 in the product, page 1 is
page 4, etc. If not specified, the PageList must include all pages in
reader order. The indices specified in PageList reference the
PageData elements defined in PageList.

PreflightOutput ?
New in JDF 1.1

URL Pointer to the output information created by the preflight tool, if
PreflightStatus is either WithoutErrors or WithErrors.

PreflightStatus ?
New in JDF 1.1

enumeration Information about a preflight process. The values are identical to those
of PreflightStatus in ArtDeliveryIntent.
Defaults to the value of ArtDeliveryIntent/@PreflightStatus.

ReturnMethod ?
New in JDF 1.1

NameSpan Identifies a required delivery method for returning the artwork, if
ArtHandling = ”Return”. Defaults to the value of
ArtDeliveryIntent/@ReturnMethod.

ServiceLevel ?
New in JDF 1.2

StringSpan The service level of the specific carrier. Contain values “Next Day”,
“2nd Day Air”, “Ground”, etc. Defaults to the value of
ArtDeliveryIntent/@ServiceLevel.

Transfer ?
New in JDF 1.1

Enumeration-
Span

Describes the responsibility of the transfer. The values are identical to
those of Transfer in ArtDeliveryIntent.
Defaults to the value of ArtDeliveryIntent/@Transfer.

Company ?
Deprecated in JDF 1.1

refelement Address and further information about the art delivery. This must only be
specified if the printer is expected to pick up the art delivery at this address.
In JDF 1.1 and beyond, Company is a subelement of Contact.

Component ?
Deprecated in JDF 1.1

refelement Description of a physical component, (e.g., physical artwork). If neither
Component, ExposedMedia, nor RunList are specified, no details of
the ArtDelivery except the ArtDeliveryType and Amount are known.

Contact *
New in JDF 1.1

refelement Address and further information about the art transfer. Defaults to the
value of ArtDeliveryIntent/Contact.

DigitalMedia ?
New in JDF 1.2

refelement Description of any digital media, (e.g., CD or tape with artwork that will
be delivered). If neither ExposedMedia, RunList, DigitalMedia,
nor Tool are specified, no details of the ArtDelivery except the
ArtDeliveryType and Amount are known.

ExposedMedia ?
Modified in JDF 1.2

refelement Description of exposed media, (e.g., film, plate, or proof). If neither
ExposedMedia, RunList, DigitalMedia, nor Tool are specified, no
details of the ArtDelivery, except the ArtDeliveryType and
Amount, are known.

RunList ?
Modified in JDF 1.2

refelement Link to digital artwork that is accessible via a set of URLs that are defined
in the RunList/LayoutElement/FileSpec/@URL. If neither
DigitalMedia, ExposedMedia, RunList, DigitalMedia, nor Tool
are specified, no details of the ArtDelivery except the
ArtDeliveryType and Amount are known.

ScanParams ? refelement Description of a ScanParams that defines scanning details for the
exposed media defined by ExposedMedia.

Tool ?
New in JDF 1.1
Modified in JDF 1.2

refelement Details of the Tool if ArtDeliveryType = “Tool”. If
ExposedMedia, RunList, DigitalMedia, nor Tool are specified, no
details of the ArtDelivery except the ArtDeliveryType and
Amount are known.

Name Data Type Description
246 Intent Resources

JDF Specification Release 1.2
7.1.3 BindingIntent
This resource specifies the binding intent for a JDF job using information that identifies the type of binding required
and which side is to be bound. The input components that are used as a cover should have a ProcessUsage of
Cover. The input components that are used as a hard cover jacket should have a ProcessUsage of Jacket. All
other input components are bound in the order of their appearance in the ResourceLinkPool of the JDF node that con-
tains the BindingIntent.

Resource Properties
Resource class: Intent
Resource referenced by: —
Process Resource Pairing: BlockPreparationParams, CaseMakingParams,

CasingInParams, ChannelBindingParams, CoilBindingParams,
CoverApplicationParams, EndSheetGluingParams,
GlueApplication, GluingParams, GlueLine, InsertingParams,
JacketingParams, PlasticCombBindingParams,
RingBindingParams, SaddleStitchingParams,
SpinePreparationParams, SpineTapingParams,
StitchingParams, StripBindingParams, ThreadSealingParams,
ThreadSewingParams, WireCombBindingParams

Example Partition: Option
Input of processes: Any product node
Output of processes: —

Resource Structure
Name Data Type Description

BackCoverColor ?
New in JDF 1.1

Enumeration-
Span

Defines the color of the back cover material of the binding. Allowed val-
ues are defined in Section A.3.3.2, NamedColor. If not specified, it
defaults to the value of CoverColor.

BindingColor ? Enumeration-
Span

Defines the color of the spine material of the binding. Allowed values
are defined in Section A.3.3.2, NamedColor.

BindingLength ? Enumeration-
Span

Indicates which side should be bound when no content. Thus, no orien-
tation is available, but a quote for binding is required. Possible values
are:
Long
Short

BindingOrder =
“Gathering”
New in JDF 1.1

enumeration Specifies whether the child Components should be collected or gath-
ered if multiple child Components are combined. One of:
Collecting – The child Components are collected on a spine and
placed within one another. The first Component is on the outside.
Gathering – The child Components are gathered on a pile and
placed on top of one another. The first Component is on the top.
List – More complex ordering of child Components is specified
using the BindList in this intent resource for this product.

BindingSide ? Enumeration-
Span

Indicates which side should be bound. Possible values are:
Top
Bottom
Right
Left
Each of these values is intended to identify an edge of the job. These
edges are defined relative to the orientation of the first page in the job
with content on it. Default = BindingLength value, unless a non-
empty BindList was specified. If both BindingSide and
BindingLength are specified, BindingSide has precedence.
Intent Resources 247

Chapter 7 Resources
BindingType
Modified in JDF 1.2

Enumeration-
Span

Describes the desired binding for the job. Possible values are:
Adhesive – This type of binding can be handled with the
AdhesiveBinding process. It includes perfect binding. Deprecated in
JDF1.1 and replaced with SoftCover or HardCover.
ChannelBinding – This type of binding can be handled with the
ChannelBinding process.
CoilBinding – This type of binding can be handled with the
CoilBinding process.
CornerStitch – Stitch in the corner that is at the clockwise end bind-
ing edge. For example, to stitch in the top left corner, set BindingSide
= “Left”.This type of binding can be handled with the Stitching
process. New in JDF 1.2
EdgeGluing – Gluing gathered sheets at one edge of the pile. This
Type of Binding can be handled with the Gluing process.
HardCover – This type of binding defines a hard-cover bound book.
LooseBinding – This type of binding defines a stack of pages with
no additional binding.
PlasticComb – This type of binding can be handled with the
PlasticCombBinding process.
Ring – This type of binding can be handled with the RingBinding
process.
SaddleStitch – This type of binding can be handled with the
Stitching process.
Sewn – This type of binding can be handled with the ThreadSewing
process.
SideSewn – This type of binding can be handled with the
ThreadSewing process.
SideStitch – This type of binding can be handled with the
Stitching process.
SoftCover – This type of binding defines a soft cover bound book. It
includes perfect binding.
StripBind – This type of binding can be handled with the
StripBinding process.
Tape – This type of binding is an inexpensive version of the
SoftCover.
ThreadSealing – This type of binding can be handled with the
ThreadSealing process.
WireComb – This type of binding can be handled with the
WireCombBinding process.

CoverColor ? Enumeration-
Span

Defines the color of the cover material of the binding. Allowed values
are defined in Section A.3.3.2, NamedColor.

AdhesiveBinding ?
Deprecated in JDF 1.1

element Details of AdhesiveBinding. Replaced with SoftCoverBinding in
JDF 1.1.

BindList ?
New in JDF 1.1

element Details of binding of individual child Components.

BookCase ?
Deprecated in JDF 1.1

element Details of the Book Case. Used in Combination with
AdhesiveBinding, ThreadSewing or ThreadSealing. Replaced
with HardCoverBinding in JDF 1.1.

ChannelBinding ? element Details of ChannelBinding.
CoilBinding ? element Details of CoilBinding.
EdgeGluing ?
New in JDF 1.1

element Details of EdgeGluing.

Name Data Type Description
248 Intent Resources

JDF Specification Release 1.2
Structure of BindList Subelement
New in JDF 1.1
BindList is used to describe complex bindings where more than one child is bound into a cover, e.g. in promotional
products.

Structure of BindItem Subelement
New in JDF 1.1
A child BindItem is bound to a parent item. The position of the spine of the child BindItem is defined by
ChildFolio and the position of the child BindItem in the parent is defined by ParentFolio

.

HardCoverBinding ?
New in JDF 1.1

element Details of HardCoverBinding.

PlasticCombBinding ? element Details of PlasticCombBinding.
RingBinding ? element Details of RingBinding.
SaddleStitching ? element Details of SaddleStitching.
SideSewing ? element Details of SideSewing.
SideStitching ? element Details of SideStitching.
SoftCoverBinding ?
New in JDF 1.1

element Details of SoftCoverBinding.

Tape ?
New in JDF 1.1

element Details of Tape binding.

Tabs ? element Details of Tabs.
ThreadSealing ? element Details of ThreadSealing.
ThreadSewing ? element Details of ThreadSewing.
StripBinding ?
New in JDF 1.1

element Details of StripBinding.

VeloBinding ?
Removed in JDF 1.1

element Details of VeloBinding. Renamed to StripBinding in JDF 1.1.

WireCombBinding ? element Details of WireCombBinding.

Name Data Type Description
BindItem * element Individual bind item description.

Defaults to BindingIntent/BindingSide value if empty,
(i.e., as if the BindList element weren’t there).

Name Data Type Description
BindingType ? Enumeration-

Span
Describes the desired binding for the individual BindItem. The list
of possible values is defined in BindingIntent/@BindingType.
Defaults to the value of BindingIntent/@BindingType.

ChildFolio ? XYPair Definition of the fold between two pages in the BindItem compo-
nent that is bound to the cover. The two numbers (as integers) in the
ChildFolio attribute are the page numbers of the two outer pages of
the child Component which touch the cover or another child
Component. The pages are counted in the order as described in
FolioCount of the child product. Defaults to the spine of the child.

Name Data Type Description
Intent Resources 249

Chapter 7 Resources
Structure of the AdhesiveBinding Subelement.
Deprecated in JDF 1.1
The table defining the deprecated AdhesiveBinding subelement has been moved to "BindingIntent Deprecated
Subelements" on page 752.

Structure of the BookCase Subelement.
Deprecated in JDF 1.1
The table defining the deprecated BookCase subelement has been moved to "BindingIntent Deprecated
Subelements" on page 752.

Structure of the ChannelBinding Subelement.

ParentFolio XYPair Definition of the fold between two pages in the Cover Component
that receive the BindItem. The two numbers (as integers) in the
ParentFolio attribute are the page numbers in the Cover
Component which touch the child Component. The pages are
counted in the order as described in FolioCount of the cover prod-
uct.

Transformation ? matrix Rotation and offset between the Component to be inserted and the
parent Component. For details on transformations, see Section
2.5.2, How and Where Coordinates and Transformations Are Used/
Defined in JDF

WrapPages ? IntegerRangeList List of pages of the Cover that wrap around a BindItem after all
folds are correctly positioned. It is sufficient to specify the pages of
the Front surface of the cover. Note that this key must only be
specified if the folding is ambiguous.

BookCase ?
Deprecated in JDF 1.1

element Details of the hard cover Book Case. Used in Combination with
HardCoverBinding.

ChannelBinding ? element Details of ChannelBinding.
CoilBinding ? element Details of CoilBinding.
EdgeGluing ? element Details of EdgeGluing.
HardCoverBinding ? element Details of HardCoverBinding.
PlasticCombBinding ? element Details of PlasticCombBinding.
RingBinding ? element Details of RingBinding.
SaddleStitching ? element Details of SaddleStitching.
SideSewing ? element Details of SideSewing.
SideStitching ? element Details of SideStitching.
SoftCoverBinding ? element Details of SoftCoverBinding.
StripBinding ? element Details of StripBinding.
Tape ? element Details of Tape binding.
Tabs ? element Details of Tabs.
ThreadSealing ? element Details of ThreadSealing.
ThreadSewing ? element Details of ThreadSewing.
WireCombBinding ? element Details of WireCombBinding.

Name Data Type Description
Cover ? OptionSpan If “true”, the clamp used in ChannelBinding includes a preassembled cover.
Thickness ? NumberSpan Specifies thickness of board which is wrapped as front and back covers of a case

bound book, in points.

Name Data Type Description
250 Intent Resources

JDF Specification Release 1.2
Structure of the CoilBinding Subelement.

Structure of the EdgeGluing Subelement.
New in JDF 1.1

Structure of the HardCoverBinding Subelement.
New in JDF 1.1

Name Data Type Description
CoilMaterial ? EnumerationSpan The coil materials available for CoilBinding. Possible values are:

Steel – Plain steel.
ColorCoatedSteel – Coated steel.
Plastic – Plastic.

HoleList ?
New in JDF 1.2

refelement Details of the holes for coil binding.

Name Data Type Description
EdgeGlue ? EnumerationSpan Glue type used to glue the edge of the gathered sheets. Possible values are:

ColdGlue
Hotmelt
PUR – Polyurethane rubber.

Name Data Type Description
BlockThreadSewing ? OptionSpan Option if the block is also thread sewn.
EndSheets ? OptionSpan Option if end sheets are applied.
StripMaterial ? EnumerationSpan Spine taping strip material. Possible values are:

Calico
Cardboard
CrepePaper
Gauze
Paper
PaperlinedMules
Tape

HeadBands ? OptionSpan The following CaseBinding choice specifies the use of head-
bands on a case bound book.
If “true”, headbands are inserted both top and bottom.

HeadBandColor ? EnumerationSpan Defines the color of the headband. Allowed values are defined in
Section A.3.3.2, NamedColor.

Jacket ? EnumerationSpan Specifies whether a hard cover jacket is needed and how it is
attached. If specified, details of the jacket are described in the
Component with ProcessUsage of Jacket. Possible val-
ues:
None – No jacket is required.
Loose – The jacket is loosely wrapped.
Glue – Jacket is glued to the spine

JapanBind ? OptionSpan Bind the book block at the open edge, so that the folds are visible on
the outside. If not specified, explicitly, this option is never selected.

SpineBrushing ? OptionSpan Brushing option for SpinePreparation.
SpineFiberRoughing ? OptionSpan Fiber roughing option for SpinePreparation.
Intent Resources 251

Chapter 7 Resources
Structure of the PlasticCombBinding Subelement.

SpineGlue ? EnumerationSpan Glue type used to glue the book block to the cover. Possible values
are:
ColdGlue
Hotmelt
PUR – Polyurethane rubber.

SpineLevelling ? OptionSpan Leveling option for SpinePreparation.
SpineMilling ? OptionSpan Milling option for SpinePreparation.
SpineNotching ? OptionSpan Notching option for SpinePreparation.
SpineSanding ? OptionSpan Sanding option for SpinePreparation.
SpineShredding ? OptionSpan Shredding option for SpinePreparation.
Thickness ? NumberSpan Specifies thickness of board which is wrapped as front and back

covers of a case bound book, in points.
TightBacking ? EnumerationSpan Definition of the geometry of the back of the book block. This can

be one of:
Flat – Flat backing.
Round – Rounding way.
FlatBacked – Backing way.
RoundBacked – Rounding way, backing way.

RegisterRibbon * refelement Number, materials, colors and details of register ribbons.

Name Data
Type Description

PlasticCombType ?
Modified in JDF 1.1

NameSpan The distance between the “teeth” in PlasticCombBinding and the distance
between the holes of the prepunched leaves must be the same. The following
values from the hole type catalog in "JDF/CIP4 Hole Pattern Catalog" on
page 663 exist:
P12m-rect-02 – Distance = 12 mm; Holes = 7 mm x 3 mm
P16_9i-rect-0t – Distance = 14.28 mm; Holes = 8 mm x 3 mm
The following values are deprecated in JDF 1.1.
Euro – Distance = 12 mm; Holes = 7 mm x 3 mm
USA1 – Distance = 14.28 mm; Holes = 8 mm x 3 mm

HoleList ?
New in JDF 1.2

element Details of the holes for the plastic comb. Note that Shape is always rectan-
gular by design of the plastic combs.

Name Data Type Description
252 Intent Resources

JDF Specification Release 1.2
Structure of the RingBinding Subelement.

Structure of the SaddleStitching Subelement.

Name Data Type Description
BinderMaterial ? NameSpan The following describe RingBinding binder materials

used. Values include:
Cardboard – Cardboard with no covering.
ClothCovered – Cardboard with cloth covering.
Plastic – Binder cover fabricated from solid plastic
sheet material, (e.g., PVC sheet).
VinylCovered – Cardboard with colored vinyl cov-
ering.

HoleType ?
New in JDF 1.1

EnumerationSpan Predefined hole pattern for the ring system. Multiple
hole patterns are not allowed, (e.g., 3-hole ring binding
and 4-hole ring binding holes on one piece of media).
For details of the hole types and a list of allowed values,
refer to "JDF/CIP4 Hole Pattern Catalog" on page 663.

RingDiameter ? NumberSpan Size of the rings in points. The value used in production
must be suitable for specified HoleType(s). Note that
in ring shapes other than round, this size is specified by
industry-standard method.

RingMechanic ? OptionSpan The ring binder used includes a lever for opening and
closing.

RingShape ? NameSpan The following RingBinding shapes are used:
Round
Oval
D-shape
SlantD

RingSystem ?
Deprecated in JDF 1.1

NameSpan 2HoleEuro
3HoleUS
4HoleEuro
RingSystem have been replaced by HoleType.

RivetsExposed ? OptionSpan The following RingBinding choice describes mount-
ing of the ring mechanism in binder case.
If “true”, the heads of the rivets are visible on the
exterior of the binder. If “false”, the binder covering
material covers the rivet heads.

ViewBinder NameSpan The following RingBinding clear vinyl outer wrap
types are used on top of a colored base wrap:
Embedded – Printed material is embedded by sealing
between the colored and clear vinyl layers during binder
manufacturing.
Pocket – Binder is designed so that printed material
may be inserted between the color and clear vinyl layers
after binder manufacturing.

Name Data Type Description
StitchNumber ?
New in JDF 1.1

IntegerSpan Number of stitches used for saddle stitching.
Intent Resources 253

Chapter 7 Resources
Structure of the SideSewing Subelement.
This is a placeholder that may be filled with private or future data.

Structure of the SideStitching Subelement.

Structure of the SoftCoverBinding Subelement.
New in JDF 1.1

Structure of the StripBinding Subelement.
New in JDF 1.1

Structure of the Tape Subelement.
New in JDF 1.1

Name Data Type Description

Name Data Type Description
StitchNumber ?
New in JDF 1.2

IntegerSpan Number of stitches used for side stitching.

Name Data Type Description
BlockThreadSewing ? OptionSpan Specifies whether the block is also thread sewn.
GlueProcedure ? Enumeration-

Span
Glue procedure used to glue the book block to the cover. Possible val-
ues are:
Spine
SideOnly – Glued at the side/endsheets but not the spine.
SingleSide – Swiss Brochure.
SideSpine – Both side gluing and SpineGluing.

Scoring ? Enumeration-
Span

Scoring option for SoftCoverBinding. Possible values are:
TwiceScored
QuadScored
None
Values are based on viewing the cover in its flat, prebound state.

SpineBrushing ? OptionSpan Brushing option for SpinePreparation.
SpineFiberRoughing ? OptionSpan FiberRoughing option for SpinePreparation.
SpineGlue ? Enumeration-

Span
Glue type used to glue the book block to the cover. Possible values are:
ColdGlue
Hotmelt
PUR – Polyurethane rubber.

SpineLevelling ? OptionSpan Leveling option for SpinePreparation.
SpineMilling ? OptionSpan Milling option for SpinePreparation.
SpineNotching ? OptionSpan Notching option for SpinePreparation.
SpineSanding ? OptionSpan Sanding option for SpinePreparation.
SpineShredding ? OptionSpan Shredding option for SpinePreparation.

Name Data Type Description
HoleList ?
New in JDF 1.2

refelement Note that Shape is always round by design of the strip poles.

Name Data Type Description
TapeColor ? Enumeration-

Span
Defines the color of the tape material of the binding. Allowed values
are defined in Section A.3.3.2, NamedColor.
254 Intent Resources

JDF Specification Release 1.2
Structure of the Tabs Subelement.
Specifies tabs.

Structure of the ThreadSealing Subelement.
This is a placeholder that may be filled with private or future data.

Structure of the ThreadSewing Subelement.
.

Structure of the WireCombBinding Subelement.

7.1.4 ColorIntent
This resource specifies the type of ink to be used. Typically, the parameters consist of a manufacturer name and addi-
tional identifying information. The resource also specifies any coatings and colors to be used, including the process
color model and any spot colors.

Resource Properties
Resource class: Intent
Resource referenced by: —
Process Resource Pairing: Color, ColorantControl, ColorCorrectionParams, ColorPool,

ColorSpaceConversionParams
Example Partition: Option, PageNumber, Side
Input of processes: Any product node
Output of processes: —

Name Data Type Description
TabBanks = “1” Integer Number of rows of tabs on the face of the book.
TabsPerBank ? Integer Number of equal-sized tabs in a single bank, if all positions were filled.

Note that banks may have tabs only in some of the possible positions
TabExtensionDistance ? NumberSpan Distance tab extends beyond the body of the book block, in points.
TabExtensionMylar ? OptionSpan If “true”, the tab extension will be mylar reinforced.
TabBindMylar ? OptionSpan If “true”, the tab bind edge will be mylar reinforced.
TabBodyCopy ? OptionSpan If “true”, Color will be applied not only on tab extension, but also

on tab body. Note that lack of body copy allows all tabs within a
bank to be printed on a single sheet.

TabMylarColor ? Enumera-
tionSpan

Specifies the color of the mylar used to reinforce the tab extension.
This is conditional on TabExtensionMylar being “true”.
Allowed values are defined in Section A.3.3.2, NamedColor.

Name Data Type Description

Name Data Type Description
Sealing ? OptionSpan If “true”, thermo-sealing is required in ThreadSewing.

Name Data Type Description
WireCombMaterial ? Enumeration-

Span
The material used for forming the WireCombBinding. Possible val-
ues are:
Steel-Silver
ColorCoatedSteel

WireCombShape ? Enumeration-
Span

The shape of the WireCombBinding. Possible values are:
Single – Each “tooth” is made with one wire.
Twin – The shape of each “tooth” is made with a double wire, (e.g.,
Wire-O).

HoleList ?
New in JDF 1.2

refelement Details of the holes for the wire comb.
Intent Resources 255

Chapter 7 Resources
Resource Structure
Name Data Type Description

Coatings ?
Modified in JDF 1.1

StringSpan Material usually applied to a full surface on press as a protective or
gloss-enhancing layer over ink. Possible values include:
DullVarnish
GlossVarnish
UV
Aqueous
Silicone
The individual strings within Coatings are of type NMTOKENS
and may contain multiple entries from the above list.

ColorStandard ?
Modified in JDF 1.2

NameSpan The color process (i.e., printing condition) requested for the job. If
both of ColorStandard or ColorsUsed are specified, the union of the
two is specified. For example, if ColorStandard specifies CMYK
and ColorsUsed contains one Spot color, then CMYK + Spot is
specified. Possible values include:
CMYK – Generic four color process.
FIRST – Flexographic Image Reproduction Specifications & Tol-
erances.
GRACOL – General Requirements for Applications in Commercial
Offset Lithography
Hexachrome – 6 Colors CMYK+Orange and Green.
HIFI – 7 Colors CMYK+Red, Green and Blue.
ISO12647 – ISO offset standard. Deprecated in JDF 1.2
JapanColor2001 – Japan Color 2001 standard [japancolor].
Monochrome – Generic single color printing condition, (e.g., black
and white or one single spot color).
None – No marks. Used to define one-sided printing. Deprecated in
JDF 1.2 (Use LayoutIntent/@Sides instead.)
SNAP – Specifications for Newsprint Advertising Production
SWOP – Specifications for Web Offset Publications. Registered by
ANSI with the ICC as ICC:CGATSTR001 pertaining to printing
conditions that conform to ANSI CGATS.6 which is based on Publi-
cation printing in the US as defined by SWOP, Inc.
If both of ColorICCStandard and ColorStandard are speci-
fied, then ColorICCStandard defines the ICC specific details,
whereas ColorStandard defines the generic color standard.
256 Intent Resources

JDF Specification Release 1.2
ColorICCStandard ?
New in JDF 1.2

StringSpan ColorICCStandard may be used to identify a specific standard
printing condition, by reference to Characterization Data registered
with the ICC (http://www.color.org/drsection1.html). This printing
condition reference corresponds to the OutputIntent characterization
referencing capability in PDF/X .The syntax will be ReferenceName
as shown in the examples below. ReferenceName is the standard ref-
erence string name used in both JDF and PDF/X, defined for each
printing condition in the characterization registry on the ICC web-
site. Values include:
FOGRA11 – Registered by FOGRA pertaining to offset commercial
and specialty printing according to ISO 12647-2, positive plates,
paper type 1 (gloss-coated, above 70 g/m2), and paper type 2 (matte-
coated, above 70 g/m2), screen frequency 60/cm. Appropriate for
black-backing measurement.
FOGRA15 – Registered by FOGRA pertaining to offset commercial
and specialty printing according to ISO 12647-2, positive plates,
paper type 1 (gloss-coated, above 70 g/m2), and paper type 2 (matte-
coated, above 70 g/m2), screen frequency 60/cm. Appropriate for
self-backing measurement.
CGATS TR001 – pertaining to printing conditions that conform to
ANSI CGATS.6, which addresses Publication printing in the US as
defined by SWOP.
Note: If both of ColorICCStandard or ColorsUsed are speci-
fied, the union of the two is specified. If both of
ColorICCStandard and ColorStandard are specified, then
ColorICCStandard defines the ICC specific details, whereas
ColorStandard defines the generic color standard.

Coverage ? NumberSpan Cumulative colorant coverage percentage. For example, a full sheet
of 100% deep black in CMYK has Coverage = “400". Typical
coverages based on one color plane are:
Light = 1-9%
Medium = 10-35%
Heavy = 36+%

InkManufacturer ?
Deprecated in JDF 1.2

NameSpan Name of the manufacturer of the ink requested, (e.g.,
“CIP4_Ink_Company”, “ACMEInk”, etc.).

ColorPool ?
New in JDF 1.1
Clarified in JDF 1.2

refelement Additional details about the colors used. The ColorPool resource
may include some or all details about both ColorsUsed separation
spot colors, spot colors contained in job files that will be printed
using process color equivalents, and the ColorStandard process
colors.

ColorsUsed ? element Array of colorant separation names that are requested. If not speci-
fied, the values are implied from ColorStandard. If specified,
ColorsUsed must contain a list of all separation names used by the
job. Note: If additional information about the colors and colorants is
required, it can be specified in the referenced ColorPool resource.

Name Data Type Description
Intent Resources 257

Chapter 7 Resources
Structure of the ColorsUsed Subelement

7.1.5 DeliveryIntent
Summarizes the options that describe pickup or delivery time and location of the physical resources of a job. It also
defines the number of copies that are requested for a specific job or delivery. This includes delivery of both final
products and of proofs. DeliveryIntent may also be used to describe the delivery of intermediate products such as
partial products in a subcontracting description.

Resource Properties
Resource class: Intent
Resource referenced by: —
Process Resource Pairing: Address, DeliveryParams
Example Partition: Option
Input of processes: Any product node
Output of processes: —

Resource Structure

Name Data Type Description
SeparationSpec *
Modified in JDF 1.2

refelement These can be process colors, generic spot colors or named spot colors.
In addition, partial coating is specified by adding a SeparationSpec with
anything from Coatings as Name:
Aqueous
Bronzing
DullVarnish
GlossVarnish
Silicone
Spot – Generic spot color of which the details are unknown. Spot may be
specified multiple times in one ColorsUsed element.New in JDF 1.2
UV

Name Data Type Description
Accepted = “false” boolean The quote that is specified by this DeliveryIntent has been accepted.
AdditionalAmount
=”1”
New in JDF 1.2

integer Number of components used to calculate the value of the
AdditionalPrice attribute in the Pricing. This value applies to the
number of additional items in one DropIntent/DropItemIntent and
not to the total additional number of items.

BuyerAccount ? string Account ID of the buyer with the delivery service.
DeliveryCharge ?
New in JDF 1.1
Modified in JDF 1.2

Enumeration-
Span

Specifies who pays for a delivery being made by a third party. Possible
values are:
Printer – The Printer is defined as the person who creates the
resource that is delivered. This includes all suppliers, (e.g., binders, pre-
press suppliers, etc.).
Buyer – The customer specified in CustomerInfo.
Other – The contact with ContactType = “DeliveryCharge”.
New in JDF 1.2

Earliest ? TimeSpan Specifies the earliest time after which the transfer may be made.
EarliestDuration ? DurationSpan Specifies the earliest time by which the transfer must be made relative to

the date of the purchase order. Within an RFQ or a Quote, only one of
either Earliest or EarliestDuration may be specified. Within a pur-
chase order only the Earliest is allowed.
258 Intent Resources

JDF Specification Release 1.2
Method ? NameSpan Identifies a required delivery method, may be a generic item from the fol-
lowing list:
BestWay – The sender decides how to deliver.
CompanyTruck
Courier
Email
ExpressMail
InterofficeMail
Storage – The product must be stored by the supplier.
OvernightService
May also be a delivery service brand, for example:
UPS
DHL
FedEx

Ownership
=”Origin”

enumeration Point of transfer of ownership:
Origin – Ownership of goods is transferred upon leaving point of origin.
Destination – Ownership is transferred upon receipt at destination.

Overage ? NumberSpan Percentage value that defines the acceptable upwards variation of Amount.
Defaults to the trade custom defaults as defined by PIA, BVD, etc.

Pickup ?
Deprecated in JDF 1.1

boolean Specifies whether the delivery brings or picks up the merchandise.
If Pickup =“false”, the drop is delivered to the address specified in
Company.
If Pickup = “true”, the DeliveryIntent describes an input to the
job, (e.g., a CD for inserting, a preprinted cover, etc.). In this case
Company describes the location where the merchandise is picked up.

Required ? TimeSpan Specifies the time by which the transfer must be made.
RequiredDuration ? DurationSpan Specifies the time by which the transfer must be made relative to the date

of the purchase order. Within an RFQ or a Quote, only one of either
Required or RequiredDuration must be specified. Within a pur-
chase order, only Required is allowed.

ReturnMethod ?
New in JDF 1.1

NameSpan Identifies a required delivery method for returning the surplus material if
SurplusHandling = “Return”. The values may be of the same list as
specified in Method.

ServiceLevel ?
New in JDF 1.2

StringSpan The service level of the specific carrier. Contain values “Next Day”,
“2nd Day Air”, “Ground”, etc.

SurplusHandling ?
New in JDF 1.1

Enumeration-
Span

Describes what should happen with unused or redundant parts of the
transfer specified with Transfer = “BuyerToPrinterDeliver” or
“BuyerToPrinterPickup” after the job. The return delivery or
pickup address is specified in the Contact with ContactTypes includ-
ing SurplusReturn. Possible values are:
ReturnWithProduct – The surplus material is delivered back to the
customer together with the final product.
Return – The surplus material is delivered back independently directly
after usage.
Pickup – The customer picks up the surplus material.
Destroy – The printer must destroy the surplus material.
PrinterOwns – The surplus material belongs to the printer.
Store – The printer has to store the surplus material for future purposes.

Name Data Type Description
Intent Resources 259

Chapter 7 Resources
Structure of DeliveryIntent Elements
DropIntent
This element contains information about the intended individual drop of a delivery. Attributes that are specified in a
DropIntent element overwrite those that are specified in their parent DeliveryIntent element. If optional values
are not specified, they default to the values specified in the DeliveryIntent.

Transfer ?
New in JDF 1.1

Enumeration-
Span

Describes the direction and responsibility of the transfer. Possible values are:
BuyerToPrinterDeliver – The DeliveryIntent describes an
input to the job, (e.g., a CD for inserting, a preprinted cover, etc.). In this
case, the buyer delivers the merchandise to the printer. The printer may
specify in the quote a special Contact with ContactTypes including
“Delivery”, where the buyer should send the merchandise.
BuyerToPrinterPickup – The DeliveryIntent describes an
input to the job, (e.g., a CD for inserting, a preprinted cover, etc.). In this
case, the printer picks up the merchandise. The Contact with
ContactTypes including “Pickup”, where the printer has to pick up
the merchandise.
PrinterToBuyerDeliver – The DeliveryIntent describes an
output of the job. In this case, the printer delivers the merchandise to the
buyer. The Contact that has ContactTypes including “Delivery”,
where the printer should send the merchandise.
PrinterToBuyerPickup – The DeliveryIntent describes an out-
put of the job. In this case, the buyer picks up the merchandise. The
printer may specify in the quote a special Contact that has
ContactTypes including “Pickup”, where the buyer should pick up
the merchandise.

Underage ? NumberSpan Percentage value that defines the acceptable downwards variation of
Amount. Defaults to the trade custom defaults as defined by PIA, BVD, etc.

Company ?
Deprecated in JDF 1.1

refelement Address and further information of the addressee.
In JDF 1.1 and beyond, Company is referenced from Contact.

Contact *
New in JDF 1.1

refelement Address and further information of the Contact responsible for the
transfer. The actual delivery address is specified as the Address of the
Contact with ContactTypes that includes “Delivery”. The actual
pickup address is specified as the Address of the Contact with
ContactTypes that includes “Pickup”. For each of the values
“Delivery”, “Pickup”, and “Billing”, only one Contact with
ContactTypes including these values may be specified.

DropIntent + element Includes all locations where the product will be delivered. Note that multi-
ple DropIntents specify multiple deliveries and not options for delivery.

Pricing ? element Pricing elements that define the pricing of the complete
DeliveryIntent including any DropIntents or DropItemIntents
that may contain further Pricing elements.

Name Data Type Description
AdditionalAmount ?
New in JDF 1.2

integer Number of components used to calculate the value of the
AdditionalPrice attribute in the Pricing. This value applies to the num-
ber of additional items in one DropIntent/DropItemIntent and not
to the total additional number of items. If not specified, defaults to the
value of DeliveryIntent/@AdditionalAmount.

BuyerAccount ?
New in JDF 1.2

string Account ID of the buyer with the delivery service. Defaults to the value of
DeliveryIntent/@BuyerAccount.

Name Data Type Description
260 Intent Resources

JDF Specification Release 1.2
Earliest ? TimeSpan Specifies the earliest time after which the transfer may be made.
EarliestDuration ? DurationSpan Specifies the earliest time by which the transfer must be made relative to

the date of the purchase order. Within an RFQ or a Quote, only one of
either Earliest or EarliestDuration may be specified. Within a pur-
chase order, only the Earliest is allowed.

Method ? NameSpan Identifies a required delivery method. The values are identical to those of
Method in the DeliveryIntent root. Defaults to the value of
DeliveryIntent/@Method.

Pickup ?
Deprecated in JDF 1.1

boolean If “true”, the merchandise is picked up.
If Pickup = “false”, the DropIntent is delivered to the address
specified in Company.
If Pickup = “true”, the DropIntent describes an input to the job,
(e.g., a CD for inserting, a preprinted cover, etc.). In this case, Company
describes the location where the merchandise is picked up.

Required ? TimeSpan Specifies the time by which the delivery must be made.
RequiredDuration ? DurationSpan Specifies the time by which the delivery must be made relative to the date of

the purchase order. Within an RFQ or a Quote, only one of either
Required or RequiredDuration must be specified. Within a purchase
order, only Required is allowed.

ReturnMethod ?
New in JDF 1.1

NameSpan Identifies a required delivery method for returning the surplus material, if
SurplusHandling = “Return”. Defaults to the value of
DeliveryIntent/@ReturnMethod.

ServiceLevel ?
New in JDF 1.2

StringSpan The service level of the specific carrier. Contain values “Next Day”,
“2nd Day Air”, “Ground”, etc. Defaults to the value of
DeliveryIntent/@ServiceLevel.

SurplusHandling ?
New in JDF 1.1

Enumeration-
Span

Describes what should happen with unused or redundant parts of the trans-
fer. The values are identical to those of SurplusHandling in
DeliveryIntent. Defaults to the value of DeliveryIntent/
@SurplusHandling.

Transfer ?
New in JDF 1.1

Enumeration-
Span

Describes the direction and responsibility of the transfer. The values are
identical to those of Transfer in DeliveryIntent. Defaults to the
value of DeliveryIntent/@Transfer.

Company ?
Deprecated in JDF 1.1

refelement Address and further information of the addressee. In JDF 1.1 and beyond
Company is a subelement of Contact.

Contact *
New in JDF 1.1

refelement Address and further information of the Contact responsible for the trans-
fer. The actual delivery address is specified as the Address of the
Contact with ContactTypes that includes “Delivery”. The actual
pickup address is specified as the Address of the Contact with Con-
tactTypes that includes “Pickup”. For each of the values
“Delivery”, “Pickup”, and “Billing”, only one Contact with
ContactTypes including these values may be specified. Defaults to the
DeliveryIntent/Contact

DropItemIntent + element A DropIntent may consist of multiple products, which are represented
by their respective PhysicalResource resources. Each
DropItemIntent element describes a number of individual resources
that is part of this DropIntent.

Pricing ? element Pricing element that defines the pricing of the DropIntent.

Name Data Type Description
Intent Resources 261

Chapter 7 Resources
Structure of the DropItemIntent Subelement

Contents of the Pricing Subelement

Contents of the Payment Subelement
New in JDF 1.1

Name Data
Type Description

AdditionalAmount ?
Modified in JDF 1.2

integer Number of components used to calculate the value of the AdditionalPrice
attribute in the Pricing. If not specified, defaults to the value of
DropIntent/@AdditionalAmount.

Amount ? integer Specifies the final number of resources delivered. If not specified, defaults to
the total amount of the resource that is specified by PhysicalResource or 1
if this DropItemIntent specifies a proof.

OrderedAmount ? integer Specifies the original number of resources ordered. If not specified, defaults to
the value of Amount.

Proof ?
New in JDF 1.1

string This DropItem refers to a proof that is specified in a ProofItem of the
ProofingIntent of this product node. ProofingIntent/ProofItem/
@ProofName must match Proof. One of either PhysicalResource or
Proof must be specified.

Unit ? string Unit of measurement for the Amount specified in the PhysicalResource.
Defaults to the value of Unit defined in the resource described by the
PhysicalResource.

PhysicalResource ?
Modified in JDF 1.1

refelement Description of the individual item that is delivered. One of either
PhysicalResource or Proof must be specified. Note that
PhysicalResource is an abstract resource and that the element must be an
instance of PhysicalResource, (e.g., Component).

Pricing ? element Pricing element that defines the pricing of the DropItemIntent.

Name Data Type Description
AdditionalPrice ? double Price for ordering the number of copies specified in the AdditionalAmount

attribute as specified in the parent element of the Pricing.
Currency ? NMTOKEN Three digit currency definition according to ISO 4217. It defaults to the cur-

rency defined in the parent quote.
HasPrice =
“true”

boolean Specifies whether the line item defined by this quote has a price. If “false”,
the line item is not included in the parent quote, and the price is unknown and
must be added. If“true”, the line item is included in the parent quote.

Item ? string Name of the item that this particular quote element describes.
If not specified, Pricing applies to the entire DropItemIntent.

Price ? double Price for ordering the number of copies specified in the Amount attribute as
specified in the parent element of the Pricing. If not specified, it defaults to the
sum of prices of the direct child Pricing elements.

Payment ?
New in JDF 1.1

element Details of the payment method.

Pricing * element Individual items of the quote. Note that a parent quote defines the complete
quote, (i.e., including the values defined in the line items of any child quotes but
excluding all line items with HasPrice = “false”). The sum of line items
need not be identical to the parent quote.

Name Data Type Description
PayTerm ? telem Describes the payment terms & conditions.
CreditCard ? element Specifies credit card information
262 Intent Resources

JDF Specification Release 1.2
Contents of the CreditCard Subelement
New in JDF 1.1

7.1.6 EmbossingIntent
New in JDF 1.1
This resource specifies the embossing and/or foil stamping intent for a JDF job using information that identifies
whether or not the product is embossed or stamped and, if desired, the complexity of the affected area.

Resource Properties
Resource class: Intent
Resource referenced by: —
Process Resource Pairing: EmbossingParams
Example Partition: Option, PageNumber, Side
Input of processes: Any product node
Output of processes: —

Resource Structure

Structure of the EmbossingItem Subelement

Name Data Type Description
Authorization ? String Authorization code for this transaction.
AuthorizationExpires ? gYearMonth Expiration date of the Authorization.
Expires gYearMonth Expiration date of the credit card.
Number NMTOKEN Credit card number. The format is specified without blanks or any

other separator characters.
Type NMTOKEN Credit card brand. Possible values include:

Amex
DinersClub
Discovery
MasterCard – This includes derived brands, (e.g., EuroCard).
Visa

Name Data Type Description
EmbossingItem + element Each embossed image is described by one EmbossingItem.

Name Data Type Description
Direction EnumerationSpan The direction of the image. Possible values are:

Both – Both debossing and embossing in one stamp.
Depressed – Debossing.
Raised – Embossing.

EdgeAngle ? NumberSpan The angle of a beveled edge in degrees. Typical values are an angle of:
30, 40, 45, 50, or 60 degrees. For EdgeAngle to exist, EdgeShape =
“Beveled” must be specified.

EdgeShape ? EnumerationSpan The transition between the embossed surface and the surrounding media
may be rounded or beveled (angled). Possible values are:
Rounded
Beveled
Intent Resources 263

Chapter 7 Resources
7.1.7 FoldingIntent
This resource specifies the fold intent for a JDF job using information that identifies the number of folds, the height and width
of the folds, and the folding catalog number. Note that the folding catalog is described in "FoldingParams" on page 366.
Resource Properties
Resource class: Intent
Resource referenced by: —
Process Resource Pairing: CreasingParams, CuttingParams, Fold, FoldingParams,

PerforatingParams
Example Partition: Option
Input of processes: Any product node
Output of processes: —
Resource Structure

EmbossingType StringSpan The strings defined in EmbossingType are whitespace separated
combinations of the following tokens. Possible values for the tokens are:
BlindEmbossing – Embossed forms that are not inked or foiled. The
color of the image is the same as the paper.
FoilEmbossing – Combines embossing with foil stamping in one
single impression.
FoilStamping – Using a heated die to place a metallic or pigmented
image from a coated foil on the paper.
RegisteredEmbossing – Creates an embossed image that exactly
registers to a printed image.

FoilColor ? EnumerationSpan Defines the color of the foil material which is used within the FoilStamp
process. Allowed values are defined in Section A.3.3.2, NamedColor.

Height ? NumberSpan The height of the levels. This value specifies the vertical distance
between the highest and lowest point of the stamp, regardless of the
value of Direction.

ImageSize ? XYPairSpan The size of the bounding box of one single image.
Level ? EnumerationSpan The level of embossing. Possible values are:

SingleLevel
MultiLevel
Sculpted

Position ? XYPairSpan Position of the center of the bounding box of the embossed image in the
coordinate system of the Component.

Name Data
Type Description

FoldingCatalog NameSpan Description of the folding scheme as specified in the folding catalog attribute in
the format “Fn-i”. See JDF Folding Catalog descriptions in Figure 7.9 and
Figure 7.10.
Note: The folding scheme in this context refers to the folding of the finished
product as seen after the cutting, not the folding, of the sheet as seen in produc-
tion. See LayoutIntent/@Foliocount for a discussion of pagination of
folded end products.

Folds ?
Deprecated in JDF 1.1

XYPair Number of folds in x and in y direction. This attribute specifies the number of folds
seen in the sheet after folding not the number of fold operations needed to achieve
that result. If not specified, it must be inferred from FoldingCatalog. The product
2*(X+1)*(Y+1) of Folds must always match the n of “Fn-i” of FoldingCatalog.

Fold *
New in JDF 1.1

element This describes the details of folding operations in the sequence described by the value of
FoldingCatalog. Fold must be specified if non-symmetrical folds are requested.

Name Data Type Description
264 Intent Resources

JDF Specification Release 1.2
7.1.8 HoleMakingIntent
Clarified in JDF 1.2
This resource specifies the holemaking intent for a JDF job, using information that identifies the type of holemaking
operation or alternatively, an explicit list of holes. This resource does not specify whether the media will be pre-
drilled or the media will be drilled or punched as part of making the product.

Resource Properties
Resource class: Intent
Resource referenced by: —
Process Resource Pairing: Hole, HoleLine, HoleMakingParams, Media
Example Partition: Option
Input of processes: Any product node
Output of processes: —

Resource Structure

7.1.9 InsertingIntent
This resource specifies the placing or inserting of one component within another, using information that identifies
page location, position, and attachment method. The receiving component is defined by a ProcessUsage attribute
of “Parent”. All other input components are mapped to the Insert elements by their ordering in the
ResourceLinkPool.

Name Data Type Description
Extent ?
New in JDF 1.2

XYPair Size (bounding box) of the hole in points when specifying a standard
hole pattern in HoleType. If not specified the implied default defined
in "JDF/CIP4 Hole Pattern Catalog" on page 663 is assumed. Ignored
when HoleType = “Explicit”.

HoleReferenceEdge =
“Left”
New in JDF 1.1

enumeration The edge of the media relative to where the holes should be punched.
Use with HoleType. Possible values are:
Left
Right
Top
Bottom
Pattern – Specifies that the reference edge implied by the value of
HoleType in "JDF/CIP4 Hole Pattern Catalog" on page 663 is used.

HoleType
Modified in JDF 1.1

StringSpan Predefined hole pattern. Multiple hole patterns are specified as one
NMTOKENS string, (e.g., 3-hole ring binding and 4-hole ring binding
holes on one piece of media). For details of hole types and a list of addi-
tional allowed values, refer to "JDF/CIP4 Hole Pattern Catalog" on
page 663. Values are:
Explicit – Holes are defined in an array of Hole elements.
Additional values defined in "JDF/CIP4 Hole Pattern Catalog" on
page 663
The following values are deprecated from JDF 1.0
2HoleEuro – Replace by either R2m-DIN or R2m-ISO.
3HoleUS – Replace by R3I-US
4HoleEuro – Replace by R4m-DIN-A4 or R4m-DIN-A5.

HoleList ? element Array of all Hole elements. Used only when HoleType =
“Explicit”, otherwise this element is not used.
Intent Resources 265

Chapter 7 Resources
Resource Properties
Resource class: Intent
Resource referenced by: —
Process Resource Pairing: InsertingParams, InsertSheet
Example Partition: Option
Input of processes: Any product node
Output of processes: —

Resource Structure

Structure of InsertList Subelement

Structure of Insert Subelement

Name Data Type Description
GlueType ? EnumerationSpan Glue used to fasten the insert. Possible values are:

Permanent
Removable

InsertList Element List of individual inserts.
Method ? EnumerationSpan Possible values are:

BindIn – Apply glue to fasten the insert
BlowIn – Loose insert.

Name Data Type Description
Insert * element Individual insert description.

Name Data Type Description
Folio IntegerRangeList List of potential folios where the insert is to be placed. A Folio is

defined by its first page in case Method = “BlowIn” and by the page
that the glue is applied in case Method = “BindIn”. In general, a list
of folios will only be supplied for Method = “BlowIn”. The pages
are counted in the order, which is described in FolioCount of the par-
ent Component.

GlueType ? EnumerationSpan Glue used to fasten the insert. Possible values are:
Removable
Permanent
Defaults to the value of InsertingIntent/@GlueType.

Method ? EnumerationSpan Inserting method. Possible values are:
BindIn – Apply glue to fasten the insert.
BlowIn – Loose insert.
Defaults to the value of InsertingIntent/@Method.

SheetOffset ?
Deprecated in JDF 1.1

XYPair Offset between the Component to be inserted and finished page iden-
tified by folio in the parent Component. In JDF 1.2 and beyond, the
offset is specified in the offset part of Transformation.

Transformation ? matrix Rotation and offset between the Component to be inserted and the
parent Component. If not specified, the identity matrix is applied.

WrapPages ?
New in JDF 1.1

IntegerRangeList List of finished pages of the cover that wrap around an Insert after all
folds are correctly positioned. It is sufficient to specify the finished
page of the front surface of the cover, (e.g., Cover 1 and Cover 4). Note
that this key must only be specified if the folding is ambiguous.

GlueLine *
New in JDF 1.1

element Array of all GlueLine elements used to glue in the insert. Must not be
specified in conjunction with GlueType.
266 Intent Resources

JDF Specification Release 1.2
7.1.10 LaminatingIntent
This resource specifies the laminating intent for a JDF job using information that identifies whether or not the product
is laminated and, if desired, the temperature and thickness of the laminant.

Resource Properties
Resource class: Intent
Resource referenced by: —
Process Resource Pairing: LaminatingParams
Example Partition: Option
Input of processes: Any product node
Output of processes: —

Resource Structure

7.1.11 LayoutIntent
Modified in JDF 1.2
This resource records the size of the finished pages for the product component. It does not, however, specify the size
of any intermediate results such as press sheets. It also describes how the finished pages of the product component
should be imaged onto the finished media. The size definition of the finished media describes the size of a sheet that
is folded to create a product, not the size of a production sheet, (e.g., in the press).

Resource Properties
Resource class: Intent
Resource referenced by: —
Process Resource Pairing: Layout, LayoutPreparationParams, StrippingParams
Example Partition: Option
Input of processes: Any product node
Output of processes: —

Resource Structure

Name Data Type Description
Laminated ?
Deprecated in JDF 1.1

OptionSpan If “true”, the product is laminated.
If no LaminatingIntent is specified, the product must not be lam-
inated.

Temperature EnumerationSpan Temperature used in the lamination process. Possible values are:
Hot
Cold

Surface ? EnumerationSpan The surface to be laminated. One of:
Front
Back
Both

Thickness ? NumberSpan Thickness of the laminating material. Measured in microns [µm].

Name Data Type Description
Dimensions ?
New in JDF 1.1
Clarified in JDF 1.2

XYPair-
Span

Specifies the width (X) and height (Y) in points, respectively, of the media
or product Component unfolded. For example, Dimensions for a z-
fold is the unfolded dimensions, while FinishedDimensions is the
folded dimensions, if known. Use Dimensions if
FinishedDimensions is not known. Dimensions is provided for the
rare case that FinishedDimensions does not unambiguously define the
finished product, due to complex folding schemes. If both values are
present, FinishedDimensions takes precedence
Intent Resources 267

Chapter 7 Resources
FinishedDimensions ?
New in JDF 1.1
Clarified in JDF 1.2

ShapeSpan Specifies the width (X), height (Y), and depth (Z) in points, respectively,
of the finished product Component after all finishing operations,
including folding, trimming, etc. If the Z coordinate is 0, it is ignored.
Only FinishedDimensions should be specified if both
FinishedDimensions and Dimensions are known.

FinishedGrainDirection
?
New in JDF 1.2

enumera-
tionSpan

Specifies the media grain direction of the finished page with respect to the
binding edge. Possible values are:
ParallelToBind – Grain direction is parallel to the binding edge.
PerpendiculatToBind – Grain direction is perpendictular to the
binding edge.

FinishedPage-
Orientation ?
Deprecated in JDF 1.1

enumera-
tion

Indicates the desired orientation of the finished media. Possible values
are:
Portrait – The short edges of the media are the top and bottom.
Landscape – The long edges of the media are the top and bottom.
In JDF 1.1, the finished page orientation is implied by the value of
Dimensions and FinishedDimensions. If height (X) > width (Y),
the product is portrait.

FolioCount =
“Booklet”
New in JDF 1.1

enumera-
tion

Defines the method used when counting finished pages. One of:
Booklet – Each sample of the component consists of two finished
pages, (e.g., a leaf—the front side and the back side of one sample of the
component). Folds as specified by FoldingIntent/
@FoldingCatalog do not affect pagination. Finished pages are counted
in reader order of the pages of the component in the product.
Flat – The number of finished pages of one sheet of an individual com-
ponent is given by the product 2*(X+1)*(Y+1), where x denotes the num-
ber of folds in x direction and y denotes the number of folds in y direction.
The pages are counted from the top left of the front side of the top media
to the bottom right of the back side of the bottom media. Flat should be
used for non-standard products where the reader order is ambiguous. The
page breaks on a sheet are defined by the folds as specified by
FoldingIntent/@FoldingCatalog (see Figure 7.9 and Figure 7.10)
for the product. All sheets are counted, even if they are not included in the
product, (e.g., due to a ShapeCuttingIntent).

NumberUp = “1 1”
Modified in JDF 1.2

XYPair Specifies a regular, multi-up grid of page cells into which content pages
are mapped.

The first value specifies the number of columns of page cells and the sec-
ond value specifies the number of rows of page cells in the multi-up grid
(both numbers are integers).

Name Data Type Description

Compatibility Warning. In JDF 1.1 height and width were
erroneously switched in the description.

Compatibility Warning. In JDF 1.0 and 1.1 rows and columns
were erroneously switched in the description.
268 Intent Resources

JDF Specification Release 1.2
Pages ?
New in JDF 1.1
Modified in JDF 1.2

IntegerSpan Specifies the number of finished pages (surfaces) of the product compo-
nent, including blank pages.
Pages multiplied with Dimensions then divided by two (2) identifies
the amount of paper that is used in the product. Pages describes the
paper usage regardless of document layout. This value must be an even
number. For example, the value for Pages for a two-sided booklet with
seven reader pages would be “8”, whether the booklet were saddle
stitched or glued.

PageVariance ?
New in JDF 1.1
Clarified in JDF 1.2

IntegerSpan Specifies the number of non-identical finished pages of the product com-
ponent, (i.e., the number of distinct master pages copied to produce the
product). If not specified, the value of Pages is used as the default. For
example, if there are ten finished pages, in which three are identical,
PageVariance = “8” since it would take eight master copies to produce
the product.

RotatePolicy ?
New in JDF 1.2

enumera-
tion

Specifies the policy to automatically rotate the image to optimize the fit of
the image to the page container. For instance, individual landscape pages
in a portrait document may automatically be rotated. The page container is
one cell on the NUp grid of the Media defined in Dimensions or
FinishedDimensions.
NoRotate - Do not rotate.
RotateOrthogonal – Rotate by 90° in either direction.
RotateClockwise – Rotate clockwise by 90°.
RotateCounterClockwise – Rotate counter-clockwise by 90°.

Sides ?
Modified in JDF 1.2

enumera-
tion

Indicates whether contents should be printed on one or both sides of the
media. Possible values are:
OneSided – Page contents will only be imaged on the front side of the
media.
OneSidedBack – Page contents will only be imaged on the back side of
the media. New in JDF 1.2
TwoSidedHeadToHead – Impose pages upon the front and back sides
of media sheets so that the head (top) of page contents back up to each
other.
TwoSidedHeadToFoot – Impose pages upon the front and back sides
of media sheets so that the head (top) of the front backs up to the foot (bot-
tom) of the back.

Name Data Type Description

Compatibility Warning. The meaning of “pages” has been
modified in JDF 1.2 to clarify an ambiguity in its definition.
Prior to JDF 1.2, “pages” was ambiguously defined as the
number of two-sided leaves. It is now defined as the number of
surfaces and not the number of sheets which is different by a
factor of two.
Intent Resources 269

Chapter 7 Resources
7.1.12 MediaIntent
Modified and Clarified in JDF 1.2
This resource describes the media to be used for the product component. In some cases, the exact identity of the
medium is known, while in other cases, the characteristics are described and a particular stock is matched to those
characteristics.

Resource Properties
Resource class: Intent
Resource referenced by: —
Process Resource Pairing: Media
Example Partition: Option
Input of processes: Any product node
Output of processes:

Resource Structure

SizePolicy ?
New in JDF 1.2

Enumera-
tionSpan

Allows printing even if the container size defined in Dimensions or
FinishedDimensions does not match the requirements of the data. The
page container is one cell on the NUp grid of the Media defined in
Dimensions or FinishedDimensions.
ClipToMaxPage – The page contents should be clipped to the size of
the container. The printed area is centered in the source image.
FitToPage – The page contents should be scaled up or down to fit the
container. The aspect ratio is maintained.
ReduceToFit – The page contents should be scaled down but not
scaled up to fit the container. The aspect ratio is maintained.
Tile – the page contents should be split into several tiles, each printed on
its own container.

Layout ?
New in JDF 1.1
Clarified in JDF 1.2

refelement Specifies the details of a more complex Layout. Must not be specified
together with NumberUp. Note that the Layout specified in
LayoutIntent specifies the layout definition of the finished product and
not the layout of the production sheets.

Name Data Type Description
BackCoatings ? EnumerationSpan Identical to FrontCoatings, but applied to the back surface

of the media. Default = value of FrontCoatings.
Brightness ?
Clarified in JDF 1.2

NumberSpan Reflectance percentage of diffuse blue reflectance as defined
by ISO2470 – ISO 2470:1977 Paper and board—
Measurement of diffuse blue reflectance factor (ISO
brightness). The reflectance is reported per ISO2470 as the
diffuse blue reflectance factor of the paper or board in percent
to the nearest 0.5% reflectance factor.

BuyerSupplied ? OptionSpan Indicates whether the customer will supply the media. Note
that the Media resource can be used to specify additional
media requirements, particularly when the media is supplied
by the customer.

Name Data Type Description
270 Intent Resources

JDF Specification Release 1.2
Dimensions ?
Deprecated in JDF 1.2

XYPairSpan Specifies the size of the supplied media in points when
BuyerSupplied evaluates to “true”. Must be ignored if
BuyerSupplied evaluates to “false”. Note that the size
of the finished product is always specified in
LayoutIntent FinishedDimensions.
In JDF 1.2 and beyond the specifics of BuyerSupplied
media should be specified using a Media resource. The
dimensions of the finished product are specified with
LayoutIntent/@Dimensions or LayoutIntent/
@FinishedDimensions.

FrontCoatings ?
Modified in JDF 1.2

EnumerationSpan What pre-process coating has been applied to the front sur-
face of the media. Possible values are:
None
Coated – A coating of a system specified type. New in JDF
1.2
Glossy
HighGloss
InkJet – A coating intended for use with inkjet technology.
New in JDF 1.2
Matte
Satin
Semigloss

Grade ?
Clarified in JDF 1.2

IntegerSpan The intended grade of the media on a scale of 1 through 5.
Grade is ignored if MediaType is not “Paper”. Grade
of paper material is defined in accordance with the paper
“types” set forth in [iso12647-2]. Offset printing paper types
are defined with the following integer values:
1 “Gloss-coated paper”
2 “Matt-coated paper”
3 “Gloss-coated, web paper”
4 “Uncoated, white paper”
5 “Uncoated, yellowish paper”
Note: ISO 12647-2 paper type attribute values do not align
with U.S. GRACOL paper grade attribute values, (i.e., ISO
12647-2 type 1 does not equal U.S. GRACOL grade 1.)

GrainDirection ?
New in JDF 1.2

EnumerationSpan Direction of the grain in the coordinate system defined by
LayoutIntent/@Dimensions or LayoutIntent/
@FinishedDimensions. Possible values are:
ShortEdge – Parallel to the shorter axis of the finished page.
LongEdge – Parallel to the longer axis of the finished page.

HoleCount ?
Deprecated in JDF 1.1

IntegerSpan The intended number of holes that should be punched in the
media (either pre- or post-punched.) In JDF/1.1, use
HoleType which includes the number of holes.

Name Data Type Description
Intent Resources 271

Chapter 7 Resources
HoleType ?
New in JDF 1.1

StringSpan Predefined hole pattern that specifies the pre-punched holes
in the media. Multiple hole patterns are specified as one
NMTOKENS string, (e.g, 3-hole ring binding and 4-hole ring
binding holes on one piece of media.) For details of hole
types and a list of additional allowed values, refer to "JDF/
CIP4 Hole Pattern Catalog" on page 663. Values are:
None - no holes
Additional values are defined in "JDF/CIP4 Hole Pattern
Catalog" on page 663

MediaColor ? EnumerationSpan Color of the media. Allowed values are defined in Section
A.3.3.2, NamedColor. If more-specific, specialized, or site-
specific media color names are needed, use
MediaColorDetails.

MediaColorDetails ?
New in JDF 1.2

StringSpan A more specific, specialized, or site-defined name for the
media color. If MediaColorDetails is supplied,
MediaColor must also be supplied. Note that there is a one-
to-many relationship between entries in MediaColor and
MediaColorDetails, (e.g., MediaColorDetails values of
Burgundy and Ruby both correspond to a MediaColor of
DarkRed).

MediaSetCount ? integer When the input media is grouped in sets, identifies the num-
ber of pieces of media in each set. For example, if the
UserMediaType is “PreCutTabs”, a
MediaSetCount of 5 would indicate that each set includes
5 tab sheets.

MediaType ?
New in JDF 1.1
Modified in JDF 1.2

EnumerationSpan Describes the medium being employed. Possible values are:
Disc – CD or DVD disc to be printed on. New in JDF 1.2
Other – Any other media.
Paper
Transparency

MediaUnit ?
Deprecated in JDF 1.2

EnumerationSpan Describes the format of the media as it is delivered to the
device. Possible values are:
Roll
Sheet
Reason for deprecation: Intent attributes pertain to finished
product, not the raw media format. If BuyerSupplied =
“true”, then the Media resource can be used to provide
this attribute.

Opacity = “Opaque”
Modified in JDF 1.2

EnumerationSpan The opacity of the media. See OpacityLevel to specify the
degree of opacity for any of these values. Possible values are:
Opaque – the media is opaque. With two-sided printing the
printing on the other side does not show through under nor-
mal incident light.
Translucent – The media is translucent to a system spec-
ified amount. For example, translucent media can be used for
back lit viewing. New in JDF 1.2
Transparent – the media is transparent to a system speci-
fied amount.

Name Data Type Description
272 Intent Resources

JDF Specification Release 1.2
OpacityLevel ?
New in JDF 1.2

NumberSpan Normalized TAPPI Opacity, (Cn), as defined and computed
in ISO 2471:1998 “Paper and board—Determination of
opacity (paper backing)—Diffuse reflectance method”. Refer
also to TAPPI T 519 “Diffuse opacity of paper (d/0o paper
backing)” for calculation examples.

PrePrinted = “false” boolean Indicates whether the media is preprinted.

Recycled ?
Deprecated in JDF 1.2

OptionSpan If “true”, recycled media is requested. In JDF 1.2 and
beyond, use RecycledPercentage.

RecycledPercentage ?
New in JDF 1.2

NumberSpan The percentage, between 0 and 100, of recycled material that
the media must contain.

StockBrand ? StringSpan Strings providing available brand names. The customer may
know exactly what paper is to be used. Example is “Lustro”
or “Warren Lustro” even though the manufacturer name is
included.

StockType ? NameSpan Strings describing the available stock. Examples include:
Bristol
Cover
Bond
Newsprint
Index
Offset – This includes book stock.
Tag
Text

Texture ? NameSpan The intended texture of the media. Examples include:
Antique – Rougher than vellum surface.
Calendared – Extra-smooth or polished, uncoated paper.
Linen – Texture of coarse woven cloth.
Smooth
Stipple – Fine pebble finish.
Vellum – Slightly rough surface.

Thickness ?
New in JDF 1.1

NumberSpan The thickness of the chosen medium. Measured in microns
[µm].

Name Data Type Description
Intent Resources 273

Chapter 7 Resources
UserMediaType ? NMTOKEN A human-readable description of the type of media. The
value can be used by an operator to select the correct media
to load. The semantics of the values will be site-specific. Pos-
sible values include:
Continuous – Continuously connected sheets of an
opaque material. Which edge is connected is not specified.
ContinuousLong – Continuously connected sheets of an
opaque material connected along the long edge.
ContinuousShort – Continuously connected sheets of an
opaque material connected along the short edge.
Envelope – Envelopes that can be used for conventional
mailing purposes.
EnvelopePlain – Envelopes that are not preprinted and
have no windows.
EnvelopeWindow – Envelopes that have windows for
addressing purposes.
FullCutTabs – Media with a tab that runs the full length
of the medium so that only one tab is visible extending out
beyond the edge of non-tabbed media.
Labels – Label stock, (e.g., a sheet of peel-off labels).
Letterhead – Separately cut sheets of an opaque material
including a letterhead.
MultiLayer – Form medium composed of multiple layers
which are preattached to one another, (e.g., for use with
impact printers).
MultiPartForm – Form medium composed of multiple
layers not preattached to one another; each sheet may be
drawn separately from an input source.
Photographic – Separately cut sheets of an opaque mate-
rial to produce photographic quality images.
PreCutTabs – Media with tabs that are cut so that more
than one tab is visible extending out beyond the edge of non-
tabbed media.
Stationery – Separately cut sheets of an opaque material.
TabStock – Media with tabs (either precut or full-cut).
Transparency – Separately cut sheets of a transparent
material.

USWeight ?
Deprecated in JDF 1.2

NumberSpan The intended weight of the media, measured in pounds per
ream of basis size. Only one of Weight and USWeight
may be specified. If known, Weight should be specified in
grammage (g/m2.) In JDF 1.2 and beyond, use Weight.

Weight ?
Clarified in JDF 1.2

NumberSpan The intended weight of the media, measured in grammage (g/
m2) of the media. See "North American Media Weight
Explained" on page 627 for an explanation of how to calcu-
late the US weight from the grammage for different stock
types.

Name Data Type Description
274 Intent Resources

JDF Specification Release 1.2
7.1.13 NumberingIntent
This resource describes the parameters of stamping or applying variable marks in order to produce unique compo-
nents, for items such as lottery notes or currency.

Resource Properties
Resource class: Intent
Resource referenced by: —
Process Resource Pairing: NumberingParams
Example Partition: —
Input of processes: Numbering
Output of processes: —

Resource Structure

Structure of NumberItem Subelement

7.1.14 PackingIntent
This resource specifies the packaging intent for a JDF job, using information that identifies the type of package, the
wrapping used, and the shape of the package. Note that this specifies packing for shipping only, not packing of items
into custom boxes, etc. Boxes are convenience packaging and are not envisioned to be protection for shipping. Car-
tons perform this function. All quantities are specified as finished pieces per wrapped/boxed/carton or palletized
package. The model for packaging is that products are wrapped together, wrapped packages are placed in boxes,
boxes are placed in cartons, and cartons are stacked on pallets.
Resource Properties
Resource class: Intent
Resource referenced by: —
Process Resource Pairing: BoxPackingParams, Bundle, Component, PalletizingParams,

Pallet, ShrinkingParams, StackingParams, Strap,
StrappingParams, WrappingParams

Example Partition: Option
Input of processes: Any product node
Output of processes: —

Name Data Type Description
ColorName ? EnumerationSpan Defines the color of the numbering. Allowed values are defined in

Section A.3.3.2, NamedColor.
ColorPool ? refelement Additional details about the colors used.
NumberItem + element Individual position of the numbers on the finished page.

Name Data Type Description
ColorName ? Enumera-

tionSpan
Defines the color of the numbering. Allowed values are defined in Section
A.3.3.2, NamedColor. If not specified, it defaults to the values defined in
NumberingIntent/@ColorName.

Orientation? NumberSpan Rotation of the numbering machine in degrees. If Orientation = 0, the top
of the numbers is along the leading edge.

StartValue = “1” string First value of the numbering machine.
Step = “1” integer Number that specifies the difference between two subsequent numbers of the

numbering machine.
XPosition ? NumberSpan Position of the number in the X direction of the product.
YPosition ? NumberSpan Position of the number in the Y direction of the product.
SeparationSpe
c ?

refelement Specifies the name of the Color in the ColorPool that is used for Numbering.
Intent Resources 275

Chapter 7 Resources
Resource Structure

7.1.15 ProductionIntent
This resource specifies the manufacturing intent and considerations for a JDF job using information that identifies the
desired result or specified manufacturing path.

Resource Properties
Resource class: Intent
Resource referenced by: —
Process Resource Pairing: All
Example Partition: Option
Input of processes: Any product node
Output of processes: —

Name Data Type Description
BoxedQuantity ? IntegerSpan How many units of product in a box.
BoxShape ? ShapeSpan Describes the length, width, and height of the box, in points.
CartonQuantity ? IntegerSpan How many units of product in a carton.
CartonShape ? ShapeSpan Describes the length, width, and height of the carton, in points.

For example, 288 544 1012
CartonMaxWeight ? NumberSpan Maximum weight of an individual carton, in kilograms.
CartonStrength ? NumberSpan Strength of the carton, in kilograms.
FoldingCatalog ? NameSpan Description of the folding scheme for folding the product for

packaging as specified in the folding catalog attribute in the for-
mat “Fx-y”. See JDF Folding Catalog descriptions in Figure 7.9
and Figure 7.10.
Note: The folding scheme in this context refers to the folding of
the finished product for packaging only. The folding has no effect
on the page/folio definition.

PalletQuantity ? IntegerSpan Number of product per pallet
PalletSize ? XYPairSpan Describes the length and width of the pallet, in points, (e.g., “3500

3500”).
PalletMaxHeight ? NumberSpan Maximum height of a loaded pallet, in points.
PalletMaxWeight ? NumberSpan Maximum weight of a loaded pallet, in kilograms.
PalletType ? NameSpan Type of pallet used. Examples include:

2Way – Two-way entry
4Way – Four-way entry
Euro – Standard 1*1 m Euro pallet

PalletWrapping ? NameSpan Wrapping of the completed pallet. Examples include:
Banding
None – explicitly requests no wrapping.
StretchWrap

WrappedQuantity ? IntegerSpan Number of units of product per wrapped package.
WrappingMaterial ? NameSpan Examples include:

None – explicitly requests no wrapping.
PaperBand
Polyethylene
RubberBand
ShrinkWrap
276 Intent Resources

JDF Specification Release 1.2
Resource Structure

7.1.16 ProofingIntent
This resource specifies the prepress proofing intent for a JDF job using information that identifies the type, quality,
brand name, and overlay of the proof. The proofs defined in ProofingIntent define the proofs that will be pro-
vided to the customer and does not specify internal production proofs. The delivery options of proofs are specified in
DeliveryIntent.
Resource Properties
Resource class: Intent
Resource referenced by: —
Process Resource Pairing: ApprovalParams, ApprovalSuccess,ColorantControl,

ColorSpaceConversionParams, ExposedMedia,
ImageSetterParams, InterpretingParams, Layout,
LayoutPreparationParams, Media, RenderingParams,
ScreeningParams, SeparationControlParams,
StrippingParams

Example Partition: Option
Input of processes: Any product node
Output of processes: —

Resource Structure

Structure of the ProofItem Element
All parameters of ProofingIntent have been moved into ProofItem in JDF 1.1

Name Data Type Description
PrintPreference ? EnumerationSpan Intended result or goal. Possible values are:

Balanced – Request for a manufacturing process that balances the
requirements for cost, speed, and quality.
CostEffective – Request for the most cost effective manufactur-
ing process.
Fastest – Request for the most time effective manufacturing pro-
cess. Cost and Quality may be sacrificed for a fast turnaround time.
HighestQuality – Request for the manufacturing process which
will result in the highest quality.

PrintProcess ? EnumerationSpan Print process requested. Allowed values are:
Electrophotography
Flexography
Gravure
Inkjet
Lithography - Includes offset printing
Letterpress
Screen
Thermography

Name Data Type Description
ProofItem *
New in JDF 1.1

element Specifies the details of the proofs that are required. If no ProofItem exists
in a ProofingIntent, it explicitly specifies that no proofs are desired.

Name Data Type Description
Amount ?
Modified in JDF 1.1

IntegerSpan Specifies the total number of copies of this proof that is required. If not
specified, it defaults to an IntegerSpan with Preferred = “1”.

BrandName ?
Modified in JDF 1.1

StringSpan Brand name of the proof, (e.g., Iris).
Intent Resources 277

Chapter 7 Resources
ColorType ?
Modified in JDF 1.1

EnumerationSpan Color quality of the proof. Possible values are:
Monochrome – Generic single color printing condition, (e.g., black
and white or one single spot color).
BasicColor – Color does not match precisely. This implies the
absence of a color matching system.
MatchedColor – Color is matched to the output of the press using a
color matching system.

Contract =
“false”
Modified in JDF 1.1

boolean Requires proof to be a legally binding, accurate representation of the
image to be printed, (i.e., color quality requirements have been met
when the printed piece acceptably matches the proof).

HalfTone ?
Modified in JDF 1.1

OptionSpan Specifies whether the proof should emulate halftone screens.

ImageStrategy ?
New in JDF 1.2

EnumerationSpan Identifies which images (OPI or other) will be printed on a proof or
displayed as a soft proof.
NoImages – No images are imaged on the proof.
LowResolution – Low resolution images are imaged on the proof.
HighResolution – High resolution production images are imaged
on the proof, resulting in proofs that accurately represent the final
product.

PageIndex ?
New in JDF 1.1

IntegerRangeList List of pages in the numbering scheme given by the FolioCount
attribute of the component that should be proofed. Where no range is
specified then all pages shall be proofed.

ProofName ?
New in JDF 1.1

string Name of the ProofItem. This field must exist if delivery of a proof is
specified in DeliveryIntent.

ProofTarget ?
Modified in JDF 1.1

URL Identifies a remote target for the proof output in a remote proofing
environment. This can be either a soft or a hard proofing target. The
file to be displayed or output should be sent to the URL specified in
ProofTarget.

Technology ?
Modified in JDF 1.1

NameSpan Technology used for making the proof. Possible values are:
BlueLine
DyeSub
InkJet
Laser
PressProof
SoftProof

ProofType?
Modified in JDF 1.1

EnumerationSpan The kind of proof. Possible values are:
Page – Page proof
Imposition – Imposition proof
None – No proof is required.

SeparationSpec
*
New in JDF 1.1

refelement Separations that are to be proofed. If not specified, all separations are
proofed.

ApprovalParams
?
New in JDF 1.2

refelement List of people (e.g., a customer, printer, or manager) who can sign the
ApprovalSuccess.

Name Data Type Description
278 Intent Resources

JDF Specification Release 1.2
7.1.17 ScreeningIntent
New in JDF 1.2
This resource specifies the screening intent parameters desired for a JDF job.
Resource Properties
Resource class: Intent
Resource referenced by: —
Process Resource Pairing: ScreeningParams, SeparationControlParams
Example Partition: Option
Input of processes: Any product node
Output of processes: —
Resource Structure

7.1.18 ShapeCuttingIntent
This resource specifies form and line cutting for a JDF job. The cutting processes are applied for producing special
shapes like an envelope window or a heart-shaped beer mat. Information that identifies the type and shape of cuts can
be described. The cutting process(es) can be performed using tools such as hollow form punching, perforating, or die-
cutting equipment.

Resource Properties
Resource class: Intent
Resource referenced by: —
Process Resource Pairing: CuttingParams, ShapeCuttingParams
Example Partition: Option
Input of processes: Any product node
Output of processes: —

Resource Structure

Structure of ShapeCut Subelement

Name Data Type Description
DotSize ? NumberSpan Specifies the dot size of the screen in microns [µm] when FM

screening is used, otherwise DotSize is ignored.
Frequency ? NumberSpan Specifies the line frequency of the screen in lines per inch (lpi)

when AM screening is used, otherwise Frequency is ignored.
FrequencySelection ? EnumerationSpan Selects the AM or FM frequency range. Possible values are:

LowestFrequency – Lowest AM or FM frequency supported.
MiddleFrequency – Middle AM or FM frequency supported
HighestFrequency – Highest AM or FM frequency supported

ScreeningType ? EnumerationSpan General type of screening. Possible values are:
AM – May be line or dot.
FM

Name Data Type Description
ShapeCut * element Array of all ShapeCut elements. Used when each shape is exactly specified.

Name Data Type Description
CutBox ? rectangle Specification of a rectangular window. (See Section A.2.31,

rectangle for a definition of the rectangle data type.)
CutOut = “false” boolean If “true”, the inside of a specified shape must be removed. If

“false”, the outside of a specified shape must be removed. An
example of an inside shape is a window, while an example of an
outside shape is a shaped greeting card.
Intent Resources 279

Chapter 7 Resources
7.1.19 SizeIntent
Deprecated in JDF 1.1
SizeIntent has been deprecated in JDF 1.1. All contents have been moved to LayoutIntent.

7.2 Process Resources
The rest of the resources described in this chapter are what are known as process resources. This means that they
serve as necessary components in each of the JDF processes. Section 7.2.1 describes the template for all of the sec-
tions that follow. Then every resource already defined for JDF is chronicled, in alphabetical order, below.

7.2.1 Process Resource Template
Clarified in JDF 1.2
Each of the following sections begins with a brief narrative description of the resource. Following that is a list con-
taining details about the properties of the resource, as shown below. The first item in the list provides the class of the
resource. As was described in Section 3.6.1, Resource Classes, all resources are derived from one of the following
seven superclasses: Intent, Parameter, Implementation, Consumable, Quantity, Handling, and PlaceHolder. All
resources inherit additional contents (which may be attributes or elements) from their respective superclasses, and
those attributes and elements are not repeated in this section. Thus those attributes associated with a resource of class
Parameter, for example, can be found in Table 3-13, “Contents of the abstract Resource element,” on page 53. Note
that this inheritance is only valid for atomic resources, (i.e., resources that reside directly in a ResourcePool).

Resource elements are listed in separate sections if they may be referenced by more than one resource. For an
example, see the resource element SeparationSpec. If the resource is not referenced by multiple resources, it is
described inside the resource section of the resource to which it belongs. For example, see the Structure of the
BundleItem Element of the Bundle resource. If an element inside a resource section of the resource is needed to be
referenced by multiple resources in a revision of JDF, then that element is promoted to its own section. For example,
ColorSpaceConversionOp was a sub-element of ColorSpaceConversionParams in JDF/1.1. The
resource class of an atomic resource also defines the superclasses from which the resource inherits additional contents.
The Consumable, Quantity, and Handling resource elements inherit from the PhysicalResource element,
which in turn inherits from the Resource element. Parameter and Implementation resource elements inherit
from the Resource element directly. Non-atomic resources (i.e., resource subelements) do not inherit contents from
resource superclasses.

CutPath ?
Modified in JDF 1.2

PDFPath Specification of a complex path. This may be an open path in the
case of a single line.

Material ? StringSpan Transparent material that fills a shape (e.g., an envelope window)
that was cut out when CutOut = “true”.

CutType ?
Modified in JDF 1.1

EnumerationSpan Type of cut or perforation used. Possible values are:
Cut – Full cut.
Perforate – Interrupted perforation that does not span the entire
sheet.

ShapeDepth ?
New in JDF 1.1

NumberSpan Depth of the shape cut. Measured in microns [µm]. If not specified,
the shape is completely cut.

Pages ? IntegerRangeList List of Finished Pages to which this shape must be applied. Only
the recto finished page of a leaf should be specified.

ShapeType EnumerationSpan Describes any precision cutting other than hole making. Possible
values are:
Rectangular
Round
Path

TeethPerDimension ? NumberSpan Number of teeth in a given perforation extent in teeth/point.
MicroPerforation is defined by specifying a large number of teeth
(n>1000).

Name Data Type Description
280 Process Resources

JDF Specification Release 1.2
Examples for resources that may be used as atomic resources or resource elements are: Employee, InsertSheet,
LayoutElement, and Media. For example, if the Media is used as an atomic resource, it inherits all content
from the resource class Consumable. If it is used as a resource element, then the Media may have only an ID as
defined by Table 3-25, “Contents of the abstract ResourceElement,” on page 69.

After the list describing the resource properties, each section contains tables that outline the structure of each
resource and, when applicable, the abstract or subelement information that pertains to the resource structure. The first
column contains the name of the attribute or element. In some cases, a resource will contain an element with more
than one value associated with it. If this is the case, the element name is listed as often as it appears, and a term in
parentheses that identifies the kind of element is included in the column. For an example, see Section 7.2.62,
EndSheetGluingParams or Section 7.2.147, Sheet. An example of the tables in this section is provided below.

Resource Properties Template
Resource class: Defines the resource class or specifies ResourceElement if the element does not

inherit content from a resource class.
Resource referenced by: List of parent resources that contain elements of this type. Only valid for elements.
Example Partition: List of recommended partitioning keys: For a complete list of partition keys, see the

description of PartIDKeys in Table 3-27, “Contents of the Partitionable Resource
Element,” on page 78. Note that resources may be partitioned by keys that are not
specified in this list.

Input of processes: List of node types that use the resource as an input resource.
Output of processes: List of node types that create the resource as an output resource

Resource Structure Template

7.2.2 Address
Definition of an address. The structure is derived from the vCard format and, therefore, is comprised of all address
subtypes (ADR:) of the delivery address of the vCard format. The corresponding XML types of the vCard are quoted
in the table.

Resource Properties
Resource class: Parameter
Resource referenced by: Contact, Location (see Table 3-16, “Contents of the Location element,” on

page 58)
Example: —
Input of processes: —
Output of processes: —

Name Data Type Description
Name of attribute data type of attribute Usage of the attribute.
Name of element element Subelements that must be defined locally within the resource.
Name of element refelement Elements that are based on other atomic resources or resource ele-

ments. These may either be in-line elements or instances of
ResourceRef elements. (See Section 3.7.6, Inter-Resource Linking
Using ResourceRef). In case of ResourceRef elements, a “Ref”
must be appended to the name specified in the table column entitled
“Name”.

FileSpec
(ResourceUsage)

refelement FileSpec resources may have a FileSpec/@resourceUsage
attribute that specifies the context in which to use the Filespec.
FileSpec/@resourceUsage must match the
(ResourceUsage) value specified in the parentheses.
Process Resources 281

Chapter 7 Resources
Resource Structure

7.2.3 AdhesiveBindingParams
Deprecated in JDF 1.1 See "AdhesiveBindingParams" on page 753 for details of this deprecated resource.

7.2.4 ApprovalParams
This resource provides the details of an approval process.

Resource Properties
Resource class: Parameter
Resource referenced by: ConventionalPrintingParams, DigitalPrintingParams,

ProofingIntent
Example Partition: —
Input of processes: Approval
Output of processes:

Resource Structure

Structure of ApprovalPerson Subelement

Name Data Type Description
City ? string City or locality of address (vCard: ADR:locality).
Country ? string Country of address (vCard: ADR:country).
CountryCode ? string Country of address. This value conforms to the ISO 3166 standard in

which countries are represented as two-character codes.
PostBox ? string Post office address (vCard: ADR:pobox. For example: P.O. Box 101).
PostalCode ? string Zip code or postal code of address (vCard: ADR:pcode).
Region ? string State or province (vCard: ADR:region).
Street ? string Street address (vCard: ADR:street).
ExtendedAddress ? telem Extended address (vCard: ADR:extadd. For example: Suite 245).

Name Data Type Description
ApprovalPerson * element List of people (e.g., a customer, printer, or manager) who can sign the approval.
MinApprovals =
“1”
New in JDF 1.2

integer Minimum number of ApprovalPersons with ApprovalRole = “Group”
that must sign the ApprovalSuccess for the ApprovalSuccess to be
Available.

Name Data Type Description
Obligated ?
Deprecated in JDF 1.2

boolean If “true”, the person is required to sign this approval. In JDF 1.2 and
beyond, use ApprovalRole.

ApprovalRole =
“Obligated”
New in JDF 1.2

enumeration One of:
Group – The approver belongs to a group of which MinApprovals
members must sign.
Obligated – The approver must sign the approval.
Informative – The approver is informed of the approval process but
not required for success. If he does not approve, the approval is still valid.

Contact refelement Contact (e.g., a customer, printer, or manager) who must sign the
approval. One value included in the ContactTypes attribute of this
Contact element should be Administrator.
282 Process Resources

JDF Specification Release 1.2
7.2.5 ApprovalSuccess
The signed ApprovalSuccess resource provides the signature that indicates that a resource has been approved.
This is frequently used to model the success of a soft proof, color proof, printing proof, or any other sort of proof.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: DocIndex, DocRunIndex, RunIndex, RunPage, RunTags, SetIndex,

SheetName, Side, SignatureName, TileID
Input of processes: Any process
Output of processes: Approval, Verification

Resource Structure

7.2.6 Assembly
New in JDF 1.2
The Assembly describes how the sections of one or multiple jobs or job parts are bound together.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: Stripping
Output of processes: —

Resource Structure

Name Data Type Description
FileSpec ? refelement The file that contains the approval signature. If FileSpec does

not exist, ApprovalSuccess is a logical placeholder.
Contact *
New in JDF 1.2

refelement List of contacts that have signed off on this approval.

Name Data Type Description
AssemblyID ? string Identification of the Assembly if Stripping produces multiple

Assembly elements.
BindingSide = “Left” enumeration Indicates which side should be bound. One of:

Left
Right
Top
Bottom
BindingSide is ignored when Order = “None”.

JobID ? string Identification of the original job the Assembly belongs to. If not spec-
ified, it defaults to the value specified or implied in the JDF node.

Order = “Gathering” enumeration One of:
Collecting – The sections are placed within one another. The first
section is on the outside.
Gathering – The sections are placed on top of one another. The first
section is on the top.
None – The sections are not bound. Typically for flatwork jobs.
List – More complex ordering of the sections

AssemblySection * element Individual AssemblySection which are gathered.
AssemblySections must only be specified when Order = “List”.
Process Resources 283

Chapter 7 Resources
Structure of the AssemblySection Subelement

7.2.7 AssetListCreationParams
New in JDF 1.2
This resource provides controls for the AssetListCreation process.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: AssetListCreation
Output of processes:

Resource Structure

Name Data Type Description
AssemblyID ? string Identification of the AssemblySection if Stripping produces a

multi-section Assembly. If not specified, it defaults to the value spec-
ified or implied in the parent Assembly or AssemblySection.

JobID ? string Identification of the original job the AssemblySection belongs to. If
not specified, it defaults to the value specified or implied in the parent
Assembly or AssemblySection.

Order = “Gathering” enumeration One of:
Collecting – The child AssemblySections are placed within one
another. The first section is on the outside.
Gathering – The child AssemblySections are placed on top of
one another. The first section is on the top.

AssemblySection * element Additional AssemblySection elements which are collected or gath-
ered to create this AssemblySection.

Name Data
Types Description

AssetTypes ? regExp Specifies what type of assets should be listed.The regular expression repre-
sents the MimeType of the assets to be listed. The default behavior is to list
everything. In case an asset requires a plug-in or extension in order to be
opened in an application, this plug-in or extension should be listed as an
asset.

ListPolicy = “All” enumeration Policy that defines which assets must be added to the output RunList. Val-
ues are:
All – List all referenced assets, including those that are unavailable.
Available – List all referenced assets, excluding those that are unavail-
able.

FileSpec
(SearchPath) *

refelement An ordered list of search paths that indicates where to search for referenced
assets if they are not located in the same directory as the input asset. If no
FileSpec is specified, the search path is the directory in which the input
asset resides and must not be searched recursively.
284 Process Resources

JDF Specification Release 1.2
7.2.8 AutomatedOverPrintParams
Clarified in JDF 1.2
This resource provides controls for the automated selection of overprinting of black text or graphics.
RGBGray2Black a nd RGBGray2BlackThreshold i n ColorSpaceConversion /
ColorSpaceConversionOp are used by the ColorSpaceConversion process in determining the allocation
of RGB values to the black (K) channel. After the ColorSpaceConversion process is completed, then the
Rendering or Separation process uses AutomatedOverprintParams to determine overprint behavior
for the previously determined black (K) channel.

Resource Properties
Resource class: Parameter
Resource referenced by: RenderingParams, SeparationControlParams
Example Partition: —
Input of processes: —
Output of processes: —

Resource Structure

7.2.9 BinderySignature
New in JDF 1.2
The BinderySignature is conceptually a folding dummy. It represents multiple pieces of paper, which are folded
together in the folder. It is a reusable, size-independent object.

Resource Properties
Resource class: Parameter
Resource referenced by: StrippingParams
Example Partition: WebName
Input of processes: —
Output of processes: —

Name Data Types Description
OverPrintBlackLineArt =
“false”
Clarified in JDF 1.2

boolean Indicates whether overprint should be set to “true” for black line
art, (i.e., vector elements other than text). If “true”, overprint of
black line art is applied regardless of any values in the PDL. If
“false”, LineArtBlackLevel is ignored and PDL line art over-
print operators are processed.

OverPrintBlackText =
“false”
Clarified in JDF 1.2

boolean Indicates whether overprint should be set to “true” for black text.
If “true”, overprint of black line art is applied regardless of any
values in the PDL. If “false”, TextSizeThreshold and
TextBlackLevel are ignored and PDL line art overprint operators
are processed.

TextSizeThreshold ? integer Indicates the point size for text below which black text will be set to
overprint. For asymmetrically scaled text, the minimum point size
between both axes will be used. If not specified, all text is set to over-
print.

TextBlackLevel = “1” double A value between 0.0 and 1.0 which indicates the minimum black
level for the text stroke or fill colors that cause the text to be set to
overprint.

LineArtBlackLevel ? double A value between 0.0 and 1.0 which indicates the minimum black
level for the stroke or fill colors that cause the line art to be set to
overprint. Defaults to the value of TextBlackLevel.
Process Resources 285

Chapter 7 Resources
Resource Structure

Structure of the SignatureCell Subelement
SignatureCell elements describe a set of individual page cells in a BinderySignature.

Note: “Page number” in the table below refers to finished pages numbered from 0-n, as opposed to folio pages,
which are the numbers that appear in print with the content of the document; the difference being that pages without
folio numbering are counted. As the BinderySignature is a reusable object, the page numbers refer to finished
pages numbered from 0-n as if this BinderySignature were the only section of the Assembly. The consuming
device needs to calculate the final product page number using the Assembly and StrippingParams/
@SectionList. The BinderySignature cells may contain final page numbers only when Assembly/
@Order="None".

Name Data Types Description
NumberUp = “1 1” XYPair Specifies a regular, multi-up grid of SignatureCells into which con-

tent pages are mapped. The first value specifies the number of columns
of SignatureCells, and the second value specifies the number of
rows of SignatureCells in the multi-up grid (both numbers are inte-
gers). NumberUp must only be specified in the
BinderySignature root.

BindingEdge = “Left” enumeration Specifies the binding edge of this BinderySignature. One of:
Left
Right
Top
Bottom
None

FoldCatalog ? string Describes the type of fold according to the folding catalog in the format
"Fx-y" as shown in the Fold resource (See “Fold” on page 366.) One
of SignatureCell, FoldCatalog, or Fold must be specified.

Fold * element Describes the folding operations in the sequence in which they should
be carried out. When both Fold and FoldCatalog are specified,
FoldCatalog defines the topology of the folding scheme, and the spe-
cifics of each individual fold are described by the Fold elements. The
Fold elements have precedence. Only one of SignatureCell and
Fold must be specified.

SignatureCell * element Describes the SignatureCells used in this BinderySignature.
SignatureCell elements are ordered in X-Y direction starting at the
lower left-hand corner of the BinderySignature. When both
SignatureCell and FoldCatalog are specified, FoldCatalog
defines the topology of the folding scheme, and the specifics of each
individual signature cell are described by the SignatureCell ele-
ments. The SignatureCell elements have precedence. Only one of
SignatureCell or Fold must be specified.

Name Data Types Description
BackFacePages ? IntegerList Page numbers for the back finished pages forming a foldout.
BackPages ? IntegerList Page numbers of the back finished pages of a SignatureCell.

The number of entries in FrontPage and BackPage must be
identical. The entries with an identical index in FrontPages and
BackPages are back-to-back in the Layout. If not specified,
the layout is one-sided.

BottleAngle ? double Indicates the bottle angle, which is the slight rotation of the
SignatureCell required to compensate for the rotation fault
introduced when making cross-folds.
286 Process Resources

JDF Specification Release 1.2
7.2.10 BlockPreparationParams
New in JDF 1.1
This resource describes the settings of a BlockPreparation process. For the tightbacking there are four different
kinds of book forms:

For the rounding and for the backing there are two additional measurements:

Resource Properties
Resource class: Parameter
Resource referenced by:
Example Partition: —
Input of processes: BlockPreparation

BottleAxis ? enumeration Indicates the point around which the cell is bottled. One of:
FaceFoot
FaceHead
SpineFoot
SpineHead

FrontFacePages ? IntegerList Page numbers for the front finished pages forming a foldout.
FrontPages ? IntegerList Page numbers of the front finished pages of a SignatureCell.

Multiple page cells with the same properties except for the fin-
ished pages to which they are assigned may be summarized as one
SignatureCell with multiple entries in FrontPages.

Orientation = “Up” enumeration Indicates the orientation of the SignatureCell. One of:
Down – 180° rotation.
Up – 0° rotation.

SectionIndex = “0” integer Unique logical index of the page section that should fill this
SignatureCell. This is an undirected logical index. The actual
section index is defined in StrippingParams/
@SectionList.

flat
Flat

round
Round

flat and backed
FlatBacked

rounded and backed
RoundBacked

Rounding: rounding way Backing: backing way

Name Data Types Description
Process Resources 287

Chapter 7 Resources
Resource Structure

7.2.11 BoxPackingParams
New in JDF 1.1
This resource defines the parameters for packing a box of components. Details of the box used for BoxPacking
can be found in the Component (Box) resource that is also an input of the BoxPacking process.

Resource Properties
Resource class: Parameter
Resource referenced by:
Example Partition: —
Input of processes: BoxPacking
Output of processes: —

Resource Structure

7.2.12 BufferParams
New in JDF 1.1
This resource provides controls for Buffer process.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: Buffer
Output of processes: —

Resource Structure

Name Data Type Description
Backing ? double Backing distance in points.
Rounding ? double Rounding distance in points.
TightBacking ? enumeration Definition of the geometry of the back of the book block. Allowed values are:

Flat
FlatBacked – Backing way
Round – Rounding way
RoundBacked – Rounding way, backing way

RegisterRibbon * refelement Description of the register ribbons that are included within the book block.

Name Data Type Description
Pattern ? string Name of the box packing pattern. Used to store a predefined pattern that defines the

layers and positioning of individual component in the box or carton.
FillMaterial ? NMTOKEN Material to fill boxes that are not completely filled. Values include:

Any – Explicit request for system specified filling.
BlisterPack
None – Explicit request for no filling.
Paper
Styrofoam

Name Data Type Description
MinimumWait ? duration Minimum amount of time that an individual resource must be buffered.
288 Process Resources

JDF Specification Release 1.2
7.2.13 Bundle
New in JDF 1.1
Bundles are used to describe various kinds of sets of Components. Note that Bundles may be created by many
press or postpress processes and not only Bundling.

Resource Properties
Resource class: Quantity
Resource referenced by: Component
Example Partition: —
Input of processes: —
Output of processes: —

Resource Structure

Structure of the BundleItem Element
A Bundle is described as a set of BundleItems. Since BundleItems reference Components which themselves
may reference further Bundles, the structure is recursive.

Name Data Type Description
BundleType =
“Stack”

enumeration One of:
BoundSet – Stack of components that are bound together.
Box
Carton
CollectedStack - Components collected on a saddle, result of collect-
ing process
CompensatedStack - Loose stack of compensated components
Pallet
Roll - Rolled components on a print roll.
Sheet – Multiple individual items printed onto one Sheet.
Stack – Loose stack of equally stackedcomponents.
StrappedStack - Strapped stack of equaly stacked components.
StrappedCompensatedStack - Strapped stack of compensated com-
ponents.
WrappedBundle

FolioCount ? integer Total amount of individual finished pages that this bundle contains. If not
specified, it must be calculated from the individual BundleItems.

ReaderPageCount ? integer Total amount of individual reader pages that this bundle contains. If not
specified, it must be calculated from the individual BundleItems.

TotalAmount ? integer Total amount of individual products that this bundle contains. If not speci-
fied, it must be calculated from the individual BundleItems.

BundleItem * element References to the individual items that form this Bundle.

Name Data Type Description
Amount integer Number of this type of items.
ItemName ?
New in JDF 1.2

NMTOKEN Name of the bundle item. Used for referencing individual BundleItems in a
Bundle.

Orientation ? Orientation Named Orientation of the Component respective to the Bundle coordinate
system. For details, see Table 2-3, “Matrices and Orientation values used to
describe the orientation of a Component,” on page 24. Only one of
Orientation or Transformation must be specified.

Transformation ? matrix Orientation of the Component respective to the Bundle coordinate system.
Component refelement Reference to a Component that is part of this Bundle.
Process Resources 289

Chapter 7 Resources
The following example code shows a JDF that describes Boxing and Palletizing for 4200 books. The appropriate
Bundle elements are highlighted The resources have not yet been completely filled in.
<JDF xmlns="http://www.CIP4.org/JDFSchema_1_1" ID="Bundle" Status="Waiting"
Type="ProcessGroup" Version="1.2">
 <!-- The BoxPacking process consumes the thing to pack and the boxes-->
 <!-- The BoxPacking process creates packed boxes -->
 <JDF ID="n0235" Status="Waiting" Type="BoxPacking">
 <ResourceLinkPool>
 <ComponentLink ProcessUsage="Box" Usage="Input" rRef="BoxID"/>
 <BoxPackingParamsLink Usage="Input" rRef="BoxParamsID"/>
 <ComponentLink Usage="Input" rRef="ComponentID"/>
 <ComponentLink Usage="Output" rRef="PackedBoxID"/>
 </ResourceLinkPool>
 <!-- The BoxPacking process has the following local resources -->
 <ResourcePool>
 <BoxPackingParams Class="Parameter" ID="BoxParamsID" Status="Available"/>
 <Component Amount="100" Class="Quantity" ID="BoxID" Status="Available"/>
 </ResourcePool>
 </JDF>
 <ResourcePool>
 <!-- This Component describes a Box with 42 Books -->
 <Component Amount="100" Class="Quantity" ID="PackedBoxID" Status="Unavailable">
 <Bundle BundleType="Box" TotalAmount="42">
 <BundleItem Amount="42">
 <ComponentRef rRef="ComponentID"/>
 </BundleItem>
 </Bundle>
 </Component>
 <Component Amount="4200" Class="Quantity" ID="ComponentID" Status="Available"/>
 <!-- This Component describes the contents of the pallet: 100 Boxes w. 42 Books -->
 <Component Amount="10" Class="Quantity" ID="palletContentsID" Status="Unavailable">
 <Bundle BundleType="Pallet" TotalAmount="420">
 <BundleItem Amount="10">
 <ComponentRef rRef="PackedBoxID"/>
 </BundleItem>
 </Bundle>
 </Component>
 </ResourcePool>
 <JDF ID="n0239" Status="Waiting" Type="Palletizing">
 <ResourceLinkPool>
 <ComponentLink Usage="Input" rRef="PackedBoxID"/>
 <PalletLink Usage="Input" rRef="palletID"/>
 <PalletizingParamsLink Usage="Input" rRef="palletParamsID"/>
 <ComponentLink Usage="Output" rRef="palletContentsID"/>
 </ResourceLinkPool>
 <ResourcePool>
 <Pallet Amount="10" Class="Consumable" ID="palletID" Status="Available"/>
 <PalletizingParams Class="Parameter" ID="palletParamsID" Status="Available"/>
 </ResourcePool>
 </JDF>
</JDF>

7.2.14 BundlingParams
New in JDF 1.2
BundlingParams describes the details of a Bundling process.
Resource Properties
Resource class: Parameter
Resource references: —
Example Partition: —
Input of processes: Bundling
Output of processes: —
Resource Structure

Name Data Type Description
Copies ? integer Number of copies within a bundle. Only one of Copies and Length must be specified.
Length ? double Length of a bundle. Only one of Copies and Length must be specified.
290 Process Resources

JDF Specification Release 1.2
7.2.15 ByteMap
This resource specifies the structure of bytemaps produced by various processes within a JDF system. A ByteMap
represents a raster of image data. This data may have multiple bits per pixel, may represent a varying set of color
planes, and may or may not be interleaved. A Bitmap is a special case of a ByteMap in which each pixel is repre-
sented by a single bit per color.

Personalized printing requires that certain regions of a given page be dynamically replaced. The optional mask
associated with each band of data allows for omitting certain pixels from the base image represented by the
ByteMap so that they may be replaced.
Resource Properties
Resource class: Parameter
Resource references: RunList
Example Partition: —
Input of processes:
Output of processes:

Resource Structure

Structure of Band Subelement

Name Data Type Description
BandOrdering ? enumeration Identifies the precedence given when ordering the produced bands.

Possible values are:
BandMajor – The position of the bands on the page is prioritized
over the color.
ColorMajor – All bands of a single color are played in order before pro-
gressing to the next plane. This is only possible with non-interleaved data.
This field is required for non-interleaved data and is ignored for inter-
leaved data.

FrameHeight integer Height of the overall image that may be broken into multiple bands
FrameWidth integer Width of overall image that may be broken into multiple columns
Halftoned boolean Indicates whether or not the data has been halftoned.
Interleaved boolean If “true”, the data are interleaved, or chunky. Otherwise the data are

non-interleaved, or planar.
PixelSkip ? integer Number of bits to skip between pixels of interleaved data.
Resolution XYPair Output resolution.
Band + element Array of bands containing raster data.
ColorPool ?
New in JDF 1.2

refelement Details of the colors represented in this Bytemap.

FileSpec
(RasterFileLocation)?

refelement A FileSpec resource pointing to a location where the raster should be
(or already is) stored.

PixelColorant + element Ordered list containing information about which colorants are repre-
sented and how many bits per pixel are used.

Name Data Type Description
Data URL Actual bytes of data.
Height integer Height in pixels of the band.
Mask ? URL 1-bit mask of raster data indicating which bits of the band data should actually be

used. It is required that the mask dimensions and resolution be equivalent to the con-
tents of the band itself.

WasMarked boolean Indicates whether any rendering marks were made in this band. This attribute allows a
band to be skipped if no marks were made in the band.

Width integer Width in pixels of the band.
Process Resources 291

Chapter 7 Resources
Structure of PixelColorant Subelement

7.2.16 CaseMakingParams
New in JDF 1.1
This resource describes the settings of a CaseMaking process.
Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: CaseMaking

Name Data Type Description
ColorantName string Name of colorant.
PixelDepth integer Number of bits per pixel for each colorant.

Figure 7.1: CaseMakingParams
292 Process Resources

JDF Specification Release 1.2
Resource Structure

7.2.17 CasingInParams
New in JDF 1.1
This resource describes the settings of a CasingIn process. The geometry is always centered See Figure 7.2.

Name Data Type Description
BottomFoldIn ? double Defines the width of the part of the CoverMaterial on the lower edge inside of

the case. If not specified, defaults to TopFoldIn.
CoverWidth ? double Width of the cover cardboard in points.
CornerType ? NMTOKEN Method of wrapping the corners of the cover material around the corners of the

board. Possible values include:
LibraryCorner – The American Library Corner style.

FrontFoldIn ? double Defines the width of the part of the cover material on the front edges inside of
the case.

Height ? double Height of the book case, in points.
JointWidth ? double Width of the joint as seen when laying the cardboard on the cover material, in

points.
SpineWidth ? double Width of the spine cardboard, in points.
TopFoldIn ? double Defines the width of the cover material on the top edge inside of the case.
GlueLine ? refelement As the glue is applied to the whole back side of the cover material,

GlueLine/@AreaGluing must be set to “true”.

Figure 7.2: Parameters and Coordinate System for CasingIn
Process Resources 293

Chapter 7 Resources
Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: CasingIn

Resource Structure

7.2.18 ChannelBindingParams
This resource describes the details of the ChannelBinding process. Figure 7.3 depicts the ChannelBinding process.

The symbols W, L, and ClampD of Figure 7.3 are described by the attributes ClampD and ClampSize of the table below.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: ChannelBinding
Output of processes: —

Resource Structure

Name Data Type Description
CaseRadius ? double Inner radius of the case spine rounding. If not specified, no rounding of the case

spine is performed.
GlueLine + refelement Properties of the glue used.

Figure 7.3: Parameters used for channel binding

Name Data Type Description
Brand ? string The name of the clamp (or preassembled cover with clamp) manufacturer and

the name of the specific item.
ClampColor ? NamedColor Determines the color of the clamp/cover. If ClampSystem=true”, then the

color of the cover is also meant.
ClampD ? double The distance of the clamp that was “pressed away” (see Figure 7.3 Parameters

used for channel binding).
ClampSize ? shape The shape size of the clamp. The first number of the shape data type corre-

sponds to the clamp width W (see Figure 7.3) which is determined by the final
height of the block of sheets to be bound. The second number corresponds to
the length L (see Figure 7.3). The third corresponds to the spine length (not vis-
ible in Figure 7.3). The spine length is perpendicular on the paper plane.

ClampSystem
= “false”

boolean If “true” the clamp is inside of a preassembled cover.
294 Process Resources

JDF Specification Release 1.2
7.2.19 CIELABMeasuringField
Information about a color measuring field. The color is specified as CIE-L*a*b* value.

Resource Properties
Resource class: Parameter
Resource referenced by: ColorControlStrip, Surface
Example Partition: —
Input of processes: Any printing process
Output of processes: —

Resource Structure
Name Data Type Description

Center XYPair Position of the center of the color measuring field in the
coordinates of the MarkObject that contains this
mark. If the measuring field is defined within a
ColorControlStrip, Center refers to the rectangle
defined by Center and Size of the
ColorControlStrip.

CIELab LabColor L*a*b* color specification.
DensityStandard ?
Deprecated in JDF 1.1

enumeration Density filter standard used during density measure-
ments. Possible values are:
ANSIA – ANSI Status A
ANSIE – ANSI Status E
ANSII – ANSI Status I
ANSIT – ANSI Status T.
DIN16536
DIN16536NB
In JDF 1.1 and beyond, use
ColorMeasurementConditions/
@DensityStandard

Diameter ?
Modified in JDF 1.1

double Diameter of the measuring field.

Light
Deprecated in JDF 1.1

NMTOKEN Type of light. Possible values include:
D50
D65

Observer ?
Deprecated in JDF 1.1

integer Observer in degree (2 or 10). In JDF 1.1 and beyond,
use ColorMeasurementConditions/
@Observer

Percentages ? DoubleList Percentage values for each separation. The number of
array elements must match the number of separations.

ScreenRuling ? DoubleList Screen ruling values in lines per inch for each separa-
tion. The number of array elements must match the
number of separations.

ScreenShape ? string Shape of screening dots.
Setup ?
Deprecated in JDF 1.1

string Description of measurement setup. In JDF 1.1 and
beyond, use details from
ColorMeasurementConditions

Tolerance ?
Modified in JDF 1.1

double Tolerance in ∆E.

ColorMeasurementConditions ?
New in JDF 1.1

refelement Detailed description of the measurement conditions for
color measurements.
Process Resources 295

Chapter 7 Resources
7.2.20 CoilBindingParams
This resource describes the details of the CoilBinding process.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: CoilBinding
Output of processes: —

Resource Structure

7.2.21 CollectingParams
The Collecting process needs no special attributes. However, this resource is provided as a container for exten-
sions of the Collecting process.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Input of processes: Collecting
Output of processes:

Resource Structure

Name Data Type Description
Brand ? string The name of the coil manufacturer and the name of the specific item.
Color ? NamedColor Determines the color of the coil.
Diameter ? double The coil diameter to be produced is determined by the height of the block

of sheets to be bound.
Material ? enumeration The material used for forming the coil binding:

LaqueredSteel
NylonCoatedSteel
PVC
TinnedSteel
ZincsSteel

Shift ?
Deprecated in JDF 1.2

double Amount of vertical shift that occurs as a result of the coil action while
opening the document. It is determined by the distance between the holes.
In JDF 1.2 and beyond, use the value implied by HoleMakingParams/
@HoleType.

Thickness ? double The thickness of the coil.
Tucked = “false” boolean If “true”, the ends of the coils are “tucked in”.
HoleMakingPara
ms ?
New in JDF 1.2

refelement Details of the holes in CoilBinding.

Name Data Type Description
296 Process Resources

JDF Specification Release 1.2
7.2.22 Color
Clarified in JDF 1.2
JDF describes spot color inks and, along that line, process color inks. Spot colors are named colors that may either be
separated or converted to process colors. It is important to know the neutral density of the colorant for trapping and,
in many cases, the Lab values for representing them on screen. If you know the Lab value, you can calculate the neu-
tral density. When representing colors on screen, a conversion to process colors must be defined. This conversion is a
simple linear interpolation between the CMYK value of the 100% spot color and its tint.

A color is represented by a Color element. It has a required Name attribute, which represents the name of either
a spot color or a process color. When ColorantAlias has been used in ElementColorParams, and/or in
ColorantControl to clean up string names of spot colors, the resolved, not the uncorrected duplicate,
ColorantAlias/@ReplacementColorantName spot color name must match Color/@Name. The four names
that are reserved for representing process CMYK color names are Cyan, Magenta, Yellow, and Black. Every
colorant can have a Lab and/or CMYK color value. If both are specified and a system is capable of interpreting both
values, the Lab value overrides the CMYK definition, unless the target device is compatible with CMYK, (i.e.,
ColorantControl/@ProcessColorModel = “DeviceCMYK”). In this case the CMYK value has precedence.

The Lab value represents the L, a, b readings of the ink on certain media. This means that spot inks printed on three
different kinds of stocks have different Lab values. Pantone books, for example, provide Lab values for three kinds of
paper: coated (not necessarily glossy), matte, and uncoated. Thus a color of ink should identify the media for
which it is specified. CMYK colors are used to approximate spot colors when they are not separated. This conversion
can be done by a color management system, or there can be fixed CMYK representation defined by colorbooks such
as Pantone.

Figure 7.4: Coordinate systems used for collecting
Process Resources 297

Chapter 7 Resources
Resource Properties
Resource class: Parameter
Resource referenced by: ColorPool
Example Partition: —
Input of processes: —
Output of processes: —

Resource Structure
Name Data Type Description

CMYK ?
Modified in JDF 1.2

CMYKColor CMYK value of the 100% tint value of the colorant.
Although optional, it is highly recommended that this
value be filled when the colorant is a spot colorant, (i.e.,
not part of the ProcessColorModel). This preferred
CMYK may be associated with an ICC source profile
defined in the FileSpec element with a
ResourceUsage = “ColorProfile” when the
target CMYK is different from the PDL CMYK.

ColorBook ?
Modified in JDF 1.2

string Definition of the color identification book name that is
used to represent this color. The colorbook name must
match the name defined by the colorbook vendor.
Examples include:
PANTONE C
CIP4 ColorBook Uncoated Grade 5
Note: The data type was modified from NMTOKEN to
string in JDF 1.2.

ColorBookEntry ?
Modified in JDF 1.2

string Definition of the Color within the ColorBook stan-
dard. This entry must exactly match the Colorbook
entry as defined by the ColorBook vendor including
capitalization and media type extension. When using
ICC Profiles, this maps to the NCL2 value of a named-
ColorType tag of an ICC color profile. This entry is
used to map from the JDF Color to an ICC namedCol-
orType tag.

ColorBookPrefix ? string Definition of the name prefix of the colorbook entry
within a named ICC profile. This entry is used to map
from the JDF Color to an ICC namedColorType tag.

ColorBookSuffix ? string Definition of the name suffix of the color book entry
within a named ICC profile. This entry is used to map
from the JDF Color to an ICC namedColorType tag.

ColorName ?
New in JDF 1.1

NamedColor Mapping to a color name. Allowed values are defined in
Section A.3.3.2, NamedColor.
298 Process Resources

JDF Specification Release 1.2
ColorType ?
Modified in JDF 1.2

enumeration A name that characterizes the colorant. Possible values
are:
DieLine – Marks made with colorants of this type are
ignored for trapping. Trapping processes need not gen-
erate a color plane for this colorant. DieLine can be
used for auxiliary process separations. DieLine marks
will generally appear on proof output but will not not be
marked on final output, (e.g., plates). Note that the
ColorantControl resource must be correctly set up
for the RIP and that ColorType = “DieLine” does
not implicitly remove the DieLine separation from
final output.
Normal – Marks made with colorants of this type,
marks covered by colorants of this type, and marks on
top of colorants of this type are trapped.
Transparent – Marks made with colorants of this
type should be ignored for trapping. Trapping processes
should not generate a color plane for this colorant.
ColorType = “Transparent” should be used for
varnish.
Opaque – Marks covered by colorants of this type are
ignored for trapping. Opaque can be used for metallic
inks.
OpaqueIgnore – Marks made with colorants of this
type and marks covered by colorants of this type are
ignored for trapping. OpaqueIgnore can be used for
metallic inks.

Density ?
New in JDF 1.2

double Density value of colorant (100% tint). Whereas
NeutralDensity describes measurements of inks on
substrate with wide-band filter functions, Density is
derived from measurements of inks on substrate with
special small-band filter functions according to ANSI
and DIN.

Lab ? LabColor L, a, b value of the 100% tint value of the colorant.
MappingSelection =
“UsePDLValues”
New in JDF 1.2

enumeration This value specifies the mapping method to be used for
this Color. Possible values are:
UsePDLValues – Use color values specified in the
PDL for this color. See [ColorPS].
UseLocalPrinterValues – Use the Printer’s best
local mapping for this Color.
UseProcessColorValues – Use the values
defined in this Color.
Color/@MappingSelection can be specifically used
to indicate how a combination of process colorant val-
ues will be obtained for any spot color when the separa-
tion spot colorant itself is not to be used.

Name Data Type Description
Process Resources 299

Chapter 7 Resources
MediaType ?
Modified in JDF 1.2

string Specifies the media type. Possible values include:
Coated – Pertains to gloss coated.
Matte – Pertains to matte or dull coated.
Uncoated

Name
Clarified in JDF 1.2

string Name of the colorant. This is the value that must match
the Name attribute of a SeparationSpec that refer-
ences this color, (e.g., in ColorantControl/
DeviceNSpace/SeparationSpec/@Name or
ColorantControl/ColorantParams/
SeparationSpec/@Name).
This Name attribute may also be referenced from the
Name attribute in the Ink resource. Name may also be
referenced from ColorantAlias/
@ReplacementColorantName. Only one
Colorant with any given Name must be specified in a
ColorPool.

NeutralDensity ? double A number in the range of 0.001 to 10 that represents the
neutral density of the colorant, defined as 10*log(1/Y).
Y is the tristimulus value in CIEXYZ coordinates, nor-
malized to 1.0.

RawName ?
New in JDF 1.2

hexBinary Representation of the original 8-bit byte stream of the
Color Name. Used to transport the original byte repre-
sentation of a Color Name when moving JDF tickets
between computers with different locales. Only one
Colorant with any given RawName must be speci-
fied in a ColorPool.

sRGB ? sRGBColor sRGB value of the 100% tint value of the colorant.
UsePDLAlternateCS ?
Deprecated in JDF 1.2

boolean If “true”, the alternate color space definition defined
in the PDL must be used for color space transformations
when available. If “false”, the alternate color space
definitions defined in sRGB, CMYK or
DeviceNColor of this Color must be used depending
on the value of ProcessColorModel in
ColorantControl. In JDF 1.2 and beyond, use
MappingSelection.

ColorMeasurementConditions ?
New in JDF 1.1

refelement Detailed description of the measurement conditions for
color measurements.

DeviceNColor *
Clarified in JDF 1.2

element Elements that define the colorant in a non-standard
device-dependent process color space. DeviceNColor
can be specified when Name is a spot colorant (not one
of the DeviceNSpace colorants) and
ProcessColorModel = “DeviceN” in
ColorantControl.

FileSpec (ColorProfile)?
Clarified in JDF 1.2

refelement A FileSpec resource pointing to an ICC named color
profile that describes further details of the color. This
ICC profile is intended as a source profile for the named
color whose equivalent CMYK value is given in the
CMYK attribute.

Name Data Type Description
300 Process Resources

JDF Specification Release 1.2
Structure of DeviceNColor Subelement

Structure of PrintConditionColor Subelement
New in JDF 1.2
The PrintConditionColor element describes the specific properties of a colorant (named in Color/@Name)
when applied in a given printing condition, (i.e., media surface, media opacity, media color, screening/RIP, (e.g., half-
tone) technology). It is used to overwrite the generic values of Color, which are supplied as the default. See the
descriptions in Color for details of the individual attributes and elements.

FileSpec (TargetProfile)? refelement A FileSpec resource pointing to an ICC profile that
defines the target output device in case the object that
uses the Color has been color space converted to a
device color space. TargetProfile applies to the alternate
color defined by the value of UsePDLAlternateCS.

PrintConditionColor *
New in JDF 1.2

element Description of the printing condition specific color
properties of a colorant, (i.e., how is the printed color
result specific to media, screening, etc.).

TransferCurve *
Modified in JDF 1.1

refelement A list of color transfer functions that is used to convert a
tint value to one of the alternative color spaces. The
transfer functions that are not specified here default to a
linear transfer: “0 0 1 1”

Name Data Type Description
ColorList DoubleList Value of the 100% tint value of the colorant in the ordered DeviceN space. The list must

have N elements. A value of 0 specifies no ink and a value of 1 specifies full ink. The
mapping of indices to colors is specified in the DeviceNSpace element of the
ColorantControl resource.

N integer Number of colors that define the color space.
Name string Color space name, (e.g., HexaChrome or HiFi). Name must match

ColorantControl/DeviceNSpace/@Name.

Name Data Type Description
CMYK ? CMYK-

Color
CMYK of the PrintConditionColor. If not specified, defaults to the
parent Color/@CMYK.

ColorBook ? string ColorBook of the PrintConditionColor. If not specified, defaults to
the parent Color/@ColorBook.

ColorBookEntry ? string ColorBookEntry of the PrintConditionColor. If not specified,
defaults to the parent Color/@ColorBookEntry.

ColorBookPrefix ? string ColorBookPrefix of the PrintConditionColor. If not specified,
defaults to the parent Color/@ColorBookPrefix.

ColorBookSuffix ? string ColorBookSuffix of the PrintConditionColor. If not specified,
defaults to the parent Color/@ColorBookSuffix.

Density ? double Density of the PrintConditionColor. If not specified, defaults to the
parent Color/@Density.

Lab ? LabColor Lab of the PrintConditionColor. If not specified, defaults to the parent
Color/@Lab.

Name Data Type Description
Process Resources 301

Chapter 7 Resources
Color Example
This is an example of the structure for Color. The transfer curves in this example are defined for process CMYK and
sRGB, independently.
 <Color CMYK="0.2 0.3 0.4 0.5" Density="3.14" Lab="20. 30. 40." MediaType="Coated"
Name="PANTONE Deep Blue" sRGB="0.6 0.7 0.9">
 <TransferCurve Curve="0 0 .5 .4 1 1" Separation="Cyan"/>
 <TransferCurve Curve="0 0 .5 .6 1 1" Separation="Magenta"/>
 <TransferCurve Curve="0 0 1 1" Separation="Yellow"/>
 <TransferCurve Curve="0 0 1 1" Separation="Black"/>
 <TransferCurve Curve="0 0 1 1" Separation="sRed"/>
 <TransferCurve Curve="0 0 1 1" Separation="sGreen"/>
 <TransferCurve Curve="0 0 1 1" Separation="sBlue"/>
 </Color>

MappingSelection ?
New in JDF 1.2

enumeration This value specified the mapping method to be used for this Color. Possi-
ble values are:
UsePDLValues – Use color values specified in the PDL for this color.
See [ColorPS].
UseLocalPrinterValues – Use the Printer's best local mapping for
this Color.
UseProcessColorValues – Use the values defined in this Color.
If not specified, defaults to the parent Color/@MappingSelection.

MediaSide = “Both” enumeration Media front and back surfaces can be different, affecting color results. If
the Media/@Frontcoatings, Media/@BackCoatings, or
Media/@Gloss attributes indicate differences in surface then Media-
Side can be used to specify the side of the media to which the
PrintConditionColor attributes pertain. Values are:
Front
Back
Both

NeutralDensity ? double NeutralDensity of the PrintConditionColor. If not specified,
defaults to the parent Color/@NeutralDensity

PrintConditionName ? NMTOKEN PrintConditionName specifies a particular screening condition and
printing condition that this PrintConditionColor element applies to. In
order to map a PrintCondition with a PrintConditionColor,
PrintConditionName must match PrintCondition/@Name. If
not specified, this PrintConditionColor matches all
PrintCondition but may still be dependent on Media.

sRGB ? sRGBColor sRGB of the PrintConditionColor. If not specified, defaults to the par-
ent Color/@sRGB.

DeviceNColor * element DeviceNColor of the PrintConditionColor. If not specified, defaults
to the parent Color/@DeviceNColor.

FileSpec
(TargetProfile)

refelement FileSpec (TargetProfile) of the PrintConditionColor. If not
specified, defaults to the parent Color/FileSpec (TargetProfile)

Media * refelement Specifies one or more Media that this PrintConditionColor applies to.
When PrintConditionColor is present, the parent attribute, Color/
@MediaType, is ignored. If Media is not specified,
PrintConditionColor applies to print processes with a matching
PrintConditionName.

TransferCurve * refelement TransferCurve of the PrintConditionColor. If not specified,
defaults to the parent Color/TransferCurve.
302 Process Resources

JDF Specification Release 1.2
7.2.23 ColorantAlias
Modified in JDF 1.2
ColorantAlias is a resource that specifies a replacement colorant name string to be used instead of one or more
named colorant strings. For example, SeparationSpec = “Pantone 135 CV”, “PANTONE 135”, and
ReplacementColorantName = “PANTONE 135 C” maps string values: “Pantone 135 CV” and
“PANTONE 135” to the string value: “PANTONE 135 C”. Note that ColorantAlias was elevated from a sub-
element of ColorantControl to a top level resource in JDF 1.2.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: ColorIntent, ColorantControl
Input of Processes: —
Output of processes: —
Resource Structure

7.2.24 ColorantControl
Modified in JDF 1.2
ColorantControl is a resource used to control the use of color when processing PDL pages. The attributes and ele-
ments of the ColorantControl resource describe how color information embedded in PDL pages must be trans-
lated into device colorant information.

Colorants are referenced in ColorantControl by name only. Additional details about individual colorants can
be found in the Color element of the ColorPool resource. ColorantControl resources control which device col-
orants will be used as well as how document colors will be converted into device color spaces and how conflicting
color information should be resolved. Separation control is specified by the process being present. For example:

ColorantControl can be used as follows to define the specific colorants of a targeted output DeviceNSpace
when the DeviceNSpace process colors are the only colorants used on the job:
• ColorantControl/ColorPool/@ColorantNameSet matches ColorantControl/DeviceNSpace/

@Name, and
• a ColorantControl/ColorPool/Color resource (with correct Name of colorant and other defining attributes)

exists for each colorant of the DeviceNSpace as given in ...

– ColorantControl/DeviceNSpace/SeparationSpec/@Name.
ColorantControl can be used as follows to define the specific colorants of a targeted output when both CMYK
process colors and separate spot colorants are used for the final production printing, but a local printer equivalent of
the spot color is used for proofing:
• ColorPool/@ColorantNameSet is and expanded name set including Color resources for the CMYK

process primaries and the ReplacementColorantName spot colorant, and
• Then for that spot color...

– ColorPool/Color/@Name
– ColorPool/Color/@MappingSelection attribute value = “UseLocalPrinterValues”, (used by a

ColorSpaceConversion process only in the proofing instance).
• For proof printing:

– ColorantControl/@ColorantParams does not list that spot colorant.
• For production printing:

– ColorantControl/@ColorantParams and ColorantControl/@ColorantOrder both include that
spot colorant.

Name Data Type Description
ReplacementColorantName
Clarified in JDF 1.2

string The value of the colorant name string to be substituted for the
colorant name strings in the SeparationSpec element list.

SeparationSpec +
Modified in JDF 1.2

refelement The names of the colorants to be replaced in PDL files.
Process Resources 303

Chapter 7 Resources
Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: DocIndex, RunIndex, RunTags, SheetName, Side, SignatureName
Input of Processes: ConventionalPrinting, ColorSpaceConversion,

DigitalPrinting, ImageSetting, Interpreting,
PreviewGeneration, Separation, Trapping

Output of processes: —

Resource Structure
Name Data Type Description

ForceSeparations =
“false”

boolean If “true”, forces all colorants to be output as individual separations,
regardless of any values defined in ColorantControl, (i.e., all sepa-
rations in a document are assumed to be valid and are output individu-
ally). A value of “false” specifies to respect the parameters specified
in ColorantControl and elsewhere in the JDF.

ProcessColorModel ?
Clarified in JDF 1.2

NMTOKEN Specifies the model to be used for rendering the colorants defined in
color spaces into process colorants. Possible values include:
DeviceCMY
DeviceCMYK
DeviceGray
DeviceN – The specific DeviceN color space to operate on is defined
in the DeviceNSpace resource. If this value is specified then the
DeviceNSpace and ColorPool refelements must also be present.
DeviceRGB

ColorantAlias *
Modified in JDF 1.2

refelement Identify one or more named colorants that should be replaced with a
specified named colorant. The identified colorant remappings in this
ColorantAlias may be consolidated for processing from the informa-
tion received in the LayoutElement/
ElementColorParams/ColorantAlias resources with the
job content.

ColorantOrder ?
Clarified in JDF 1.2

element The ordering of named colorants to be processed, for example in the
RIP. All of the colorants named must either occur in the
ColorantParams list or be implied by the ProcessColorModel.
If present, then only the colorants specified by ColorantOrder must
be output. Colorants listed in the ColorantParams list, or implied by
the ProcessColorModel, but not listed in ColorantOrder, must not
be output. They must still be processed for side effects in the colorants
that are listed such as knockouts or trapping.
If not present, then all colorants specified in ColorantParams and
implied by ProcessColorModel are output. The explicit or implied
value of ColorantOrder may be modified by an implied partition of the
ColorantControlLink. If one or more ColorantControlLink/Part/
@Separation are specified, ColorantOrder is reduced to the list. It
is an error to specify values of ColorantControlLink/Part/
@Separation that are not explicitly stated or implied by
ColorantOrder.
304 Process Resources

JDF Specification Release 1.2
Structure of ColorantOrder, ColorantParams, and DeviceColorantOrder Elements

Structure of ColorSpaceSubstitute Subelement

ColorantParams ?
Clarified in JDF 1.2

element A set of named colorants. This list defines all the colorants that are
expected to be available on the device where the process will be exe-
cuted. Named colors found in the PDL that are not listed in
ColorantParams will be implemented through their
ProcessColorModel equivalents. (See ElementColorParams
and ColorSpaceConversion process.) The colorants implied by
the value of ProcessColorModel are assumed and must not be speci-
fied in this list. The spot colors defined in ColorIntent/ColorsUsed
will in general be mapped to ColorantParams for each spot color to
be used as part of any intent to process conversion.

ColorPool ?
Clarified in JDF 1.2

refelement Pool of Color elements that define the specifics of the colors implied by
ProcessColorModel and named in ColorantControl.
ColorantControl uses a subset of the total ColorPool. The subset
that ColorantControl uses from ColorPool is the subset of or all
ProcessColorModel colors, and the subset of or all spot colors desig-
nated to be processed in this instance using specific separation colorants.
ColorPool in total includes spot colors in the job for which a JDF pro-
cess color equivalent mapping is required. Those colors are used by
ColorSpaceConversion when ColorPool/Color/
@MappingSelection = “UseProcessColorValues”. In that
case, the process color equivalent for the spot color is taken from the
available information in the Color resource for that spot color.

ColorSpaceSubstitute * element These subelements identify a colorant that should be replaced by
another colorant.

DeviceColorantOrder ?
Clarified in JDF 1.2

element The ordering of named colorants (e.g., laydown order) to be output on
the devicea, such as press modules. All of the colorants named must
occur in ColorantOrder if it is present. If ColorantOrder is not
present, then all of the colorants named must occur in the
ColorantParams list, or be implied by the ProcessColorModel.
If the DeviceColorantOrder element is not specified, the colorant
laydown order defaults to ColorantOrder.

DeviceNSpace *
Modified in JDF 1.2

refelement Defines the colorants that make up a DeviceN color space. The
DeviceNSpace attribute is required when the ProcessColorModel
value is DeviceN.

a. Note that this must be synchronized with the device output ICC profile.

Name Data Type Description
SeparationSpec *
Modified in JDF 1.2

refelement The names of the colorants that define the respective lists.

Name Data Type Description
PDLResourceAlias
Clarified in JDF 1.2

refelement A reference to a color space description that replaces the color space
defined by the colorants described by the SeparationSpec element(s).

SeparationSpec +
Modified in JDF 1.2

refelement A list of names that defines the colorants to be replaced. This could be a
single name in the case of a Separation color space, or more than one
name in the case of a DeviceN color space.

Name Data Type Description
Process Resources 305

Chapter 7 Resources
The following table describes which separations are output for various values of ProcessColorModel, ColorantOrder,
ColorantControlLink, ColorantParams, and DeviceColorantOrder. Note that all separations that are neither specified in
ColorantParams nor implied by ProcessColorModel are mapped to the colors implied by ProcessColorModel prior to
any color selection defined by ColorantOrder.

7.2.25 ColorControlStrip
This resource describes a color control strip. The type of the color control strip is given in the StripType attribute.
The lower left corner of the control strip box is used as the origin of the coordinate system used for the definition of
the measuring fields. It can be calculated using the following formula:

where x = X element of the Center attribute
y = Y element of the Center attribute
w = X element of the Size attribute
h = Y element of the Size attribute
ϕ = Value of the Rotation attribute

Table 7.1: Example output for different values of ProcessColorModel, ColorantOrder, ColorantControlLink, Colorant-
Params, and DeviceColorantOrder Elements.

ProcessColorModel

C
ol

or
an

tP
ar

am
s

C
ol

or
an

tO
rd

er

C
ol

or
an

tC
on

tr
ol

Li
nk

/P
ar

t/@
Se

pa
ra

tio
n

C
ol

or
an

ts
 n

ot
 s

ho
w

n
in

 th
e

ou
tp

ut

Separations that are output
and ordered for press using

DeviceColorantOrder

DeviceCMYK Not Present Cyan
Magenta

— Yellow
Black

Cyan
Magenta
 (If DeviceColorantOrder is
not present then lay down order
will be Cyan first, Magenta last.)

DeviceCMYK Spot1
Spot2

Cyan
Magenta
Yellow
Black
Spot2

— Spot1 Cyan
Magenta
Yellow
Black
Spot2

DeviceCMYK Spot1
Spot2

Cyan
Magenta
Yellow
Black
Spot2

Cyan
Magenta

Spot1
Spot2
Yellow
Black

Cyan
Magenta

DeviceN (with example N=2 colo-
rants as identified in
DeviceNSpace)

Spot1
Spot2

Spot2
DeviceN 1
DeviceN 2

— Spot1 DeviceN 1
DeviceN 2
Spot2
The reordering is accomplished
using DeviceColorantOrder.

)cos(
2

)sin(
2

)sin(
2

)cos(
2

0

0

ϕϕ

ϕϕ

hwyy

hwxx

−−=

+−=
306 Process Resources

JDF Specification Release 1.2
Resource Properties
Resource class: Parameter
Resource referenced by: Surface
Example Partition: —
Input of processes: Any printing process.
Output of processes: —
Resource Structure

7.2.26 ColorCorrectionParams
Modified in JDF 1.2
This resource provides the information needed for an operator to correct colors on some PDL pages or content ele-
ments such as image, graphics, or formatted text.

The preferred color adjustment method allows for multi-dimensional adjustments through the use of either an
ICC Abstract profile or an ICC DeviceLink profile. The adjustments are not universally colorimetrically calibrated.
However, when either of the ICC profile adjustment methods are used, these standard ICC profile formats can be
interpreted and applied using generally recognized ICC profile processing techniques. Use of the ICC Abstract pro-
file adjustment will cause the adjustment to be applied in ICC Profile Connection Space, after each source profile is
applied, in sequence before final target color conversion. Use of the ICC DeviceLink profile adjustment will cause
the adjustment to be applied in final target device space, after the final target color conversion.

In addition to color adjustment using an ICC profile, the “AdjustXXX” attributes each provide a direct color
adjustment applied to the interpretation of the PDL data at an implementation dependent point in the processing after
each source profile is applied (if source-to-destination color conversion is required). The L*a*b* values range from -
100 to +100 to indicate the minimum and maximum of the range that the system supports. A “0” value means no
adjustment. The color adjustment attributes differ from the Tone Reproduction Curve (TRC) attributes that can be
applied later in the processing path in two key ways. First, the “AdjustXXX” use, even when included in the job, will
vary as a function of job content. Second, the data values associated with the “AdjustXXX” attributes are arbitrary,
and their interpretation will be printer dependent. For details see "Color Adjustment Attribute Description and Usage"
on page 625 attribute description.

Note: These color adjustments are not available in any product intent resource, (e.g., ColorIntent). In order to
request such adjustment in a product intent job ticket supplied to a print provider, attach to a product intent node an
incomplete ColorCorrection process with a ColorCorrectionParams resource specifying the requested
“AdjustXXX” attributes.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: DocIndex, RunIndex, RunTags, SheetName, Side, SignatureName
Input of processes: ColorCorrection
Output of processes: —

Name Data Type Description
Center XYPair Position of the center of the color control strip in the coordinates

of the MarkObject that contains this mark.
Rotation ? double Rotation in degrees. Positive graduation figures indicate counter-

clockwise rotation; negative figures indicate clockwise rotation.
Size XYPair Size of the color control strip.
StripType ? NMTOKEN Type of color control strip. This attribute can be used for specify-

ing a predefined, company-specific color control strip.
CIELABMeasuringField *
New in JDF 1.1

refelement Details of a CIELab measuring field that is part of this
ColorControlStrip.

DensityMeasuringField *
New in JDF 1.1

refelement Details of a density measuring field that is part of this
ColorControlStrip.
Process Resources 307

Chapter 7 Resources
Resource Structure

Structure of ColorCorrectionOp Subelement

Name Data
Type Description

ColorManagementSystem ?
Clarified in JDF 1.2

string Identifies the preferred ICC color-management system to use when
performing color transformations. When specified, this attribute
overrides any default selection of a color management system by an
application and overrides the “CMM Type” value (bytes 4-7 of an
ICC Profile Header) in any of the job related ICC profiles. This
string attribute value identifies the manufacturer of the preferred
CMM and must match one of the registered four-character ICC
CMM Type values. See the ICC Manufacturer's Signature Registry
at http://www.color.org. Example values: “ADBE” for the Adobe
CMM, and “KODA” for the Kodak CMM.

FileSpec
(FinalTargetDevice)?

refelement A FileSpec resource pointing to an ICC profile that describes the
characterization of the final output target device.

FileSpec
(WorkingColorSpace)?
Deprecated in JDF 1.1

refelement A FileSpec resource pointing to an ICC profile that describes the
assumed characterization of CMYK, RGB, and Gray color spaces.

ColorCorrectionOp * element List of ColorCorrectionOp subelements.

Name Data Type Description
SourceObjects = “All” enumerations Identifies which class(es) of incoming graphical objects will be oper-

ated on. Possible values are:
All
ImagePhotographic – Contone images.
ImageScreenShot – Images largely comprised of rasterized vector
art.
Text
LineArt – Vector objects other than text.
SmoothShades – Gradients and blends.

AdjustCyanRed ?
New in JDF 1.2

double Specifies the L*a*b* adjustment in the Cyan/Red axis in the range -
100 (maximum Cyan cast for the system) to + 100 (maximum Red cast
for the system) while maintaining lightness. (See explanation above.)

AdjustMagentaGreen ?
New in JDF 1.2

double Specifies the L*a*b* adjustment in the Magenta/Green axis in the
range -100 (maximum Magenta cast for the system) to + 100 (maxi-
mum Green cast for the system) while maintaining lightness. (See
explanation above.)

AdjustYellowBlue ?
New in JDF 1.2

double Specifies the L*a*b* adjustment in the Yellow/Blue axis in the range -100
(maximum Yellow cast for the system) to + 100 (maximum Blue cast for
the system) while maintaining lightness. (See explanation above.)

AdjustContrast ?
New in JDF 1.2

double Specifies the L*a*b* contrast adjustment in the range -100 (minimum
contrast for the system, (i.e., a solid midtone gray color)) to + 100
(maximum contrast for the system, (i.e., either use full color (the max-
imum is restricted by the system ink limit) or no color for each of
Cyan, Magenta, Yellow, and Black)). Increasing the contrast value
increases the variation between light and dark areas and decreasing the
contrast value decreases the variation between light and dark areas.
(See explanation above.)

AdjustHue ?
New in JDF 1.2

double Specifies the change in the L*a*b* hue in the range -180 to +180 of all
colors by the specified number of degrees of the color circle. (See
explanation above.)
308 Process Resources

http://www.color.org

JDF Specification Release 1.2
7.2.27 ColorMeasurementConditions
New in JDF 1.1
This resource contains information about the specific measurement conditions for spectral or densitometric color
measurements. Spectral measurements refer to CIE Publication 15.2 – 1986 “Colorimetry, Second Edition” and ISO
13655:1996 “Graphic technology—Spectral measurement and colorimetric computation for graphic arts images.”
The default measurement conditions for spectral measurements are illuminant D50 and 2 degree observer.

Density measurements refer to ISO 5-3:1995 “Photography—Density measurements—Part 3: Spectral condi-
tions” and ISO 5-4:1995 “Photography—Density measurements—Part 4: Geometric conditions for reflection den-
sity.” The default measurement conditions for densitometric measurements are density standard ISO/ANSI Status T,
calibration to absolute white and using no polarization filter.
Resource Properties
Resource class: Parameter
Resource referenced by: CIELABMeasuringField, Color, DensityMeasuringField,Media,

PrintCondition
Example Partition: —
Input of processes: —
Output of processes: —

Resource Structure

AdjustLightness ?
New in JDF 1.2

double Specifies the decrease or increase of the L*a*b* lightness in the range
-100 (minimum lightness for the system, (i.e., black)) to + 100 (maxi-
mum lightness for the system, (i.e., white)). Increasing the lightness
value causes the output to appear lighter and decreasing the lightness
value causes the output to appear darker. (See explanation above.)

AdjustSaturation ?
New in JDF 1.2

double Specifies the increase or decrease of the L*a*b* color saturation in the
range -100 (minimum saturation for the system) to +100 (maximum satu-
ration for the system). Increasing the saturation value causes the output to
contain more vibrant colors and decreasing the saturation value causes the
output to contain more pastel and gray colors. (See explanation above.)

FileSpec
(AbstractProfile)?
New in JDF 1.2

refelement A FileSpec resource pointing to an abstract ICC profile that has been
devised to apply a preference adjustment. (See explanation of adjust-
ment at the beginning of this section.)

FileSpec
(DeviceLinkProfile)?
New in JDF 1.2

refelement A FileSpec resource pointing to an ICC profile that describes the char-
acterization of an abstract profile for specifying a preference adjustment.
(See explanation of adjustment at the beginning of this section.)

Name Data Type Description
DensityStandard =
“ANSIT”

enumeration Density filter standard used during density measurements. Possible values
are:
ANSIA – ANSI Status A
ANSIE – ANSI Status E
ANSII – ANSI Status I
ANSIT – ANSI Status T
DIN16536
DIN16536NB

Illumination = “D50” enumeration Illumination used during spectral measurements. Possible values are:
D50
D65
Unknown

Name Data Type Description
Process Resources 309

Chapter 7 Resources
7.2.28 ColorPool
The ColorPool resource contains a pool of all Color elements referred to in the job. In general, it will be referenced
as a ResourceRef from within resources that require access to color information.

Resource Properties
Resource class: Parameter
Resource referenced by: ColorantControl
Example Partition: —
Input of processes: —
Output of processes: —

Resource Structure

InkState ? enumeration State of the ink during color measurements. Possible values are:
Dry
Wet
NA Deprecated in JDF 1.2

Instrumentation ? string Specific instrumentation used for color measurements, (e.g., manufac-
turer, model number, and serial number).

MeasurementFilter ? enumeration Optical Filter used during color measurements. Possible values are:
None – No filter used.
Pol – Polarization filter used
UV – Ultraviolet cut filter used

Observer = “2” integer CIE standard observer function (2 degree and 10 degree) used during
spectral measurements. Values are in degree (2 or 10).

SampleBacking ? enumeration Backing material used behind the sample during color measurements.
Possible values are:
Black
White
NA Deprecated in JDF 1.2

WhiteBase ? enumeration Reference for white calibration used for density measurements. Possible
values are:
Absolute – Means the instrument is calibrated to a device-specific cali-
bration target (absolute white) for absolute density measurements.
Paper – Means the instrument is calibrated relative to paper white

Name Data Type Description
Color * element Individual named color.
ColorantSetName ? string A string used to identify the named colorant parameter set. This

string will be used to identify a set of color definitions (typically
associated with a particular class of job or a particular press).
Note: This value will typically be identical to ColorIntent/
@ICCColorStandard or ColorIntent/@ColorStandard.

Name Data Type Description
310 Process Resources

JDF Specification Release 1.2
7.2.29 ColorSpaceConversionParams
This set of parameters defines the rules for a ColorSpaceConversion process, the elements of which define the
set of operations to be performed. Information inside the ColorSpaceConversionOp elements, described below,
defines the operation and identifies the color spaces and types of objects to operate on. Other attributes define the
color management system to use, as well as the working color space and the final target device.

Resource Properties
Resource class: ResourceElement
Resource referenced by: —
Example Partition: DocIndex, RunIndex, RunTags, SheetName, Side, SignatureName
Input of processes: ColorSpaceConversion
Output of processes: —

Resource Structure

Name Data
Type Description

ColorManagementSystem ?
Clarified in JDF 1.2

string Identifies the preferred ICC color management system to use
when performing color transformations. When specified, this
attribute overrides any default selection of a color management
system by an application and overrides the “CMM Type” value
(bytes 4-7 of an ICC Profile Header) in any of the job related ICC
profiles. This string attribute value identifies the manufacturer of
the preferred CMM and must match one of the registered four-
character ICC CMM Type values. See the ICC Manufacturer's
Signature Registry at http://www.color.org. Example values:
“ADBE” for the Adobe CMM, and “KODA” for the Kodak
CMM.

ConvertDevIndepColors ?
Deprecated in JDF 1.1

boolean When “true”, incoming device-independent colors are pro-
cessed to the selected device space. If the chosen operation is
untag and the characterization data are in the form of an ICC
profile, then the profile is removed. Otherwise, these colors are
left untouched. The functionality of
ConvertDevIndepColors is superseded by including one or
more ColorSpaceConversionOp with SourceCS =
“DevIndep” in JDF 1.1.
Process Resources 311

http://www.color.org

Chapter 7 Resources
ICCProfileUsage = “UsePDL”
New in JDF 1.2

enumera-
tion

This attribute specifies where to obtain the destination profile for
the current iteration of the ColorSpaceConversion process,
(i.e., either from the PDL (PDF/X job content) or supplied in the
JDF ColorSpaceConversionParams resource).
ICCProfileUsage provides an order precedence. Possible
ICCProfileUsage values are:
UsePDL :

1 Use the embedded profile.

2 Use the profile specified in the LayoutElement/
ElementColorParams/FileSpec(Reference-
OutputProfile).

3 Use the profile specified in the LayoutElement/
ElementColorParams/FileSpec(ActualOut-
putProfile).

4 Use the profile specified in
ColorSpaceConversionParams/
FileSpec(FinalTargetDevice).

5 Use the system specified profile.
UseSupplied:

1 Use the profile specified in the LayoutElement/
ElementColorParams/FileSpec(Reference-
OutputProfile).

2 Use the profile specified in the LayoutElement/
ElementColorParams/FileSpec(ActualOut-
putProfile).

3 Use the profile specified in
ColorSpaceConversionParams/
FileSpec(FinalTargetDevice).

4 Use the system specified profile.
FileSpec
(FinalTargetDevice) ?

refelement A FileSpec resource pointing to an ICC profile that describes
the characterization of the final output target device. This item is
required when converting, but optional for tagging or untagging.

FileSpec
(WorkingColorSpace)?
Deprecated in JDF 1.1

refelement A FileSpec resource pointing to an ICC profile that describes
the assumed characterization of CMYK, RGB, and Gray color
spaces.

ColorSpaceConversionOp *
Clarified in JDF 1.2

refelement List of ColorSpaceConversionOp elements, each of
which identifies a type of object, defines the source color space
for that type of object, and specifies the behavior of the conver-
sion operation for that type of object.
Note: ColorSpaceConversionOp was elevated from a sub-
element of ColorSpaceConversionParams in JDF 1.2.

Name Data
Type Description
312 Process Resources

JDF Specification Release 1.2
7.2.30 ColorSpaceConversionOp
Clarified in JDF 1.2
Note: ColorSpaceConversionOp was elevated from a sub-element of ColorSpaceConversionParams in
JDF 1.2. The ColorSpaceConversionOp resource identifies a type of object, defines the source color space for
that type of object, and specifies the behavior of the conversion operation for that type of object. Many of these
attribute descriptions refer to ICC Color Profiles[ICC.1]. See also the International Color Consortium (ICC) web site
at http://www.color.org.

Resource Properties
Resource class: ResourceElement
Resource referenced by: ColorSpaceConversionParams, LayoutElement
Example Partition: —
Input of processes:
Output of processes: —

Name Data Type Description
IgnoreEmbeddedICC =
“false”

boolean If “true”, specifies that embedded source ICC profiles must be
ignored and that the ICC profile [ICC.1] defined by SourceProfile
must be used instead.

Operation ?
Modified in JDF 1.2

enumeration Controls which of five functions the color space conversion utility
performs. Possible values are:
Convert – Transforms graphical elements to final target color
space.
Tag – Associates appropriate working space profile with uncharac-
terized graphical element.
Untag – Removes all profiles and color characterizations from
graphical elements.
Retag – Equivalent to a sequence of Untag –> Tag.
ConvertIgnore – Equivalent to a sequence of UnTag –>
Convert.
Operation must be specified in the context of
ColorspaceConversionParams and must not be specified in
the context of ElementColorParams.
Note: The table below describes the effect of this attribute in combi-
nation with the SourceCS and IgnoreEmbeddedICC attributes.

PreserveBlack = “false”
New in JDF 1.1

boolean Controls how the tints of black (K in CMYK) should be handled. If
PreserveBlack is “false”, these colors are processed through the
standard ICC workflow. If PreserveBlack is “true”, these colors
should be converted into other shades of black. The algorithm is
implementation-specific.
Process Resources 313

http://www.color.org

Chapter 7 Resources
RenderingIntent =
“ColorSpaceDependent
”
Modified in JDF 1.2

enumeration Identifies the rendering intents associated with SourceObjects
elements. Possible ICC-defined rendering intent values are:
Saturation
Perceptual
RelativeColorimetric
AbsoluteColorimetric
ColorSpaceDependent – Perceptual rendering intent is used
when the source color encoding is an RGB encoding. On the other
hand, RelativeColorimetric rendering intent is used when
the source and destination color encodings are identical.

RGBGray2Black =
“false”
Modified in JDF 1.2

boolean This feature controls what happens to gray values (R = G = B) when
converting from RGB to CMYK or the incoming graphical objects
indicated by SourceObjects. In the case of MS Office applica-
tions and screen dumps, there are a number of gray values in the
images and line art. Printers do not want to have CMY under the K
because it creates registration problems. They prefer to have K only,
so the printer converts the gray values to K. Gray values that exceed
the RGBGray2BlackThreshold are not converted.
RGBGray2Black and RGBGray2BlackThreshold are used by
the ColorSpaceConversion process in determining how to allo-
cate RGB values to the black (K) channel. After the
ColorSpaceConversion process is completed, the Rendering
process uses AutomatedOverprintParams to determine over-
print behavior for the previously determined black (K) channel.

RGBGray2BlackThreshol
d = “1”
New in JDF 1.2

double A value between “0.0” and “1.0” which specifies the threshold
value above which the Device must not convert gray (R = G = B) to
black (K only) when RGBGray2Black is “true”. So a “0”
value means convert only R = G = B = 0 (black) to K only. A value
of “1” specifies that all values of R = G = B are converted to K if
RGBGray2Black = “true”.

Name Data Type Description

Compatibility Warning. The default has changed in JDF 1.2. fr
Perceptual.
314 Process Resources

JDF Specification Release 1.2
SourceCS
Modified in JDF 1.2

enumeration Identifies which of the incoming color spaces will be operated on.
Possible values are:
Calibrated – Operates on CalGray and CalRGB color spaces.
New in JDF 1.2
CIEBased – Operates on CIE-based color spaces (CIEBasedA,
CIEBasedABC, CIEBasedDEF, and CIEBasedDEFG). New in
JDF 1.2
CMYK – Operates on deviceCMYK.
DeviceN – Identifies the source color encoding as a DeviceN
color space. The specific DeviceN color space to operate on is
defined in the DeviceNSpace resource. If DeviceN is speci-
fied, then the DeviceNSpace and ColorantControl/
ColorPool refelements must also be present. New in JDF 1.2
DevIndep – Operates on device independent color spaces (equiva-
lent to Calibrated, CIEBased, ICCBased, Lab, or YUV).
Clarified in JDF 1.2
Gray – Operates on deviceGray.
ICCBased – Operates on color spaces defined using ICC profiles.
ICCBased includes EPS, TIFF, or PICT files with embedded ICC
profiles. See [ICC.1]. If IgnoreEmbeddedICC is “true” then
nominally ICCBased files or elements should be treated as being
encoded in the Alternate or underlying color space, and a
ColorSpaceConversionOp where SourceCS = “DevIndep”
will not be applied, unless that color space is also device indepen-
dent. New in JDF 1.2
Lab – Operates on Lab. New in JDF 1.2
RGB – Operates on deviceRGB. Modified in JDF 1.2
Separation – Operates on Separation color spaces (spot col-
ors). The specific separation(s) to operate on are defined in the
SeparationSpec element(s). If no SeparationSpec is defined,
the operation will operate on all the separation color spaces in the
input RunList. New in JDF 1.2
YUV – Operates on YUV (Also known as YCbCr). See [CCIR601-2]
New in JDF 1.2
Note: JDF 1.1 defined that CalRGB be treated as RGB, CalGray as
Gray and ICCBased color spaces as one of Gray, RGB or CMYK
depending on the number of channels.
Note: See table below for a description on how the SourceCS val-
ues map into the most relevant file.

SourceObjects = “All” enumera-
tions

List of object classes that identifies which incoming graphical
objects will be operated on. Possible values are:
All
ImagePhotographic – Contone images.
ImageScreenShot – Images largely comprised of rasterized vec-
tor art.
Text
LineArt – Vector objects other than text.
SmoothShades – Gradients and blends.

Name Data Type Description
Process Resources 315

Chapter 7 Resources
Notes:
DevIndep has been retained for backwards compatibility with JDF 1.1 and because there will probably be cases
where the same processing should be applied to all device independent spaces. An equivalent “DevDep” has not been
added because it's less likely that all device-dependent spaces should be treated in the same way. The following table
summarizes how the SourceCS attribute is mapped to/from different file formats.

SourceRenderingIntent ?
New in JDF 1.2

enumeration Identifies the rendering intent transform elements to be selected from
the source profile that will be used to interpret objects of type identi-
fied by the SourceObjects and SourceCS attributes. Possible
ICC-defined [ICC.1] rendering intent values are:
Saturation
Perceptual
RelativeColorimetric
AbsoluteColorimetric
ColorSpaceDependent – Perceptual rendering intent is used
when the source color encoding is an RGB encoding. Relative colori-
metric rendering intent is used when the source and destination color
encodings are identical.
If not specified, SourceRenderingIntent inherits the value of
RenderingIntent.
Note: The SourceRenderingIntent will pertain to the source
profile used in a particular ColorSpaceConversion process,
(e.g., sources may be the native original color space, an intermediate
working color space, or an reference output simulation color space).

DeviceNSpace ?
New in JDF 1.2

refelement DeviceNSpace resource that describe the DeviceN color space on
which to operate when SourceCS = “DeviceN”. Individual colo-
rant definitions for the colorant names given in DeviceNSpace are
provided in the ColorantControl/ColorPool resource, which
must also be present

FileSpec
(AbstractProfile)?
New in JDF 1.2

refelement A FileSpec resource pointing to an ICC profile [ICC.1] that de-
scribes the characterization of an Abstract Profile for specifying a
preference adjustment.

FileSpec ?
(SourceProfile)
Clarified in JDF 1.2

refelement A FileSpec resource pointing to an ICC profile [ICC.1] that
describes the assumed source color space. See
IgnoreEmbeddedICC for policies on using external profiles.

SeparationSpec *
New in JDF 1.2

refelement SeparationSpec resource(s) defining on which separation(s) to
operate when SourceCS = “Separation”.

Table 7.2: Mapping of SourceCS enumeration values to color spaces in the most common input file formats.

SourceCS File Format Color Space
RGB PDF (2) DeviceRGB (1)

PostScript DeviceRGB
TIFF PhotometricInterp = 2

CMYK PDF (2) DeviceCMYK (1)
PostScript (2) DeviceCMYK
TIFF PhotometricInterp = 5

Samples per pixel = 4

Name Data Type Description
316 Process Resources

JDF Specification Release 1.2
(1) DeviceCMYK, DeviceRGB, and DeviceGray in PDF files should be mapped through
DefaultCMYK, DefaultRGB, or DefaultGray color spaces, if present, before determining whether
this operation should be applied.

Gray PDF (2) DeviceGray (1)
PostScript (2) DeviceGray
TIFF PhotometricInterp = 0 or 1

YUV PDF (2) n/a
PostScript (2) n/a
TIFF PhotometricInterp = 6

Calibrated PDF (2) CalGray, CalRGB
PostScript (2) n/a
TIFF n/a

CIEBased PDF (2) n/a
PostScript (2) CIEBasedABC, CIEBasedA, CIEBasedDEF,

and CIEBasedDEFG
TIFF n/a

LAB PDF (2) LAB
PostScript (2) n/a
TIFF PhotometricInterp = 8 (CIELab 1976 “normal”

encoding) or PhotometricInterp = 9 (CIELab
1976 using ICC profile v4 encoding).

ICCBased PDF (2) ICCBased
PostScript (2) n/a
PostScript/EPS The EPS file has an embedded ICC profile.
TIFF The TIFF file has an embedded ICC profile.

Separation PDF (2) Separation
PostScript (2) Separation
TIFF PhotometricInterp = 5 (Applies only to one of

the planes in the separated image.)
DeviceN PDF (2) DeviceN

PostScript (2) DeviceN
TIFF PhotometricInterp = 5,

Samples per pixel = 4

Table 7.2: Mapping of SourceCS enumeration values to color spaces in the most common input file formats.

SourceCS File Format Color Space
Process Resources 317

Chapter 7 Resources
(2) Where a Pattern or Indexed color space has been used, the base color space is used to determine if
this operation should be applied.

Table 7.3: Effect of color space conversion operations on color spaces.

Source
CS Operation

Ignore
Embedded

ICC

FileSpec
(Source-
Profile)

Description

CMYK Tag false CMYK ICC
profile

Changes the CMYK color spaces (i.e., those without ICC pro-
files) in the RunList to an ICCBased color space using the
SourceProfile ICC profile.

true CMYK ICC
profile

Changes the CMYK color spaces and all ICCBased color
spaces with four components (CMYK) in the RunList to an
ICCBased color space using the SourceProfile ICC profile.

Untag n/a n/a n/a
Convert false CMYK ICC

profile
Converts the objects and/or images in CMYK color spaces (i.e.,
those without ICC profiles) using the SourceProfile ICC
profile as input profile and the FinalTargetDevice ICC pro-
file as output profile

true CMYK ICC
profile

Converts the objects and/or images in CMYK color spaces and
in four components (CMYK) ICCBased color spaces, using
the SourceProfile ICC profile as input profile and the
FinalTargetDevice ICC profile as output profile.

RGB Tag false RGB ICC
profile

Changes the RGB color spaces (i.e., those without ICC pro-
files) in the RunList to an ICCBased color space using the
SourceProfile ICC profile.

true RGB ICC
profile

Changes the RGB color spaces and all ICCBased color spaces
with three components (RGB) in the RunList to an
ICCBased color space using the SourceProfile ICC profile.

Untag n/a n/a n/a
Convert false RGB ICC

profile
Converts the objects and/or images in RGB color spaces (i.e.,
those without ICC profiles) using the SourceProfile ICC
profile as input profile and the FinalTargetDevice ICC pro-
file as output profile.

true RGB ICC
profile

Converts the objects and/or images in RGB color spaces and in
three components (RGB) ICCBased color spaces, using the
SourceProfile ICC profile as input profile and the
FinalTargetDevice ICC profile as output profile.
318 Process Resources

JDF Specification Release 1.2
Gray Tag false Mono-
chrome ICC
profile

Changes the Gray color spaces (i.e., those without ICC pro-
files) in the RunList to an ICCBased color space using the
SourceProfile ICC profile

true Mono-
chrome ICC
profile

Changes the Gray color spaces and all ICCBased color
spaces with one component (Gray) in the RunList to an
ICCBased color space using the SourceProfile ICC profile.

Untag n/a n/a n/a
Convert false Mono-

chrome ICC
profile

Converts the objects and/or images in Gray color spaces (i.e.,
those without ICC profiles) using the SourceProfile ICC
profile as input profile and the FinalTargetDevice ICC pro-
file as output profile.

true Mono-
chrome ICC
profile

Converts the objects and/or images in Gray color spaces and
in one component (Gray) ICCBased color spaces, using the
SourceProfile ICC profile as input profile and the
FinalTargetDevice ICC profile as output profile.

YUV,
Lab

Tag n/a Lab or YUV
ICC profile

Changes the YUV or Lab color spaces in the RunList to an
ICCBased color space using the SourceProfile ICC profile.
If SourceProfile is a YUV profile only YUV color spaces are
affected; if SourceProfile is an Lab profile only Lab color
spaces are affected.

Untag n/a n/a This operation does not have any effect.
Convert n/a n/a Converts the objects and/or images in the specified color

spaces using the source definition embedded in the file and the
FinalTargetDevice ICC profile as output profile.

Cali-
brated

Tag n/a RGB or
Mono-
chrome ICC
profile

Changes the Calibrated color spaces in the RunList to an
ICCBased color space using the SourceProfile ICC profile.
If SourceProfile is an RGB profile only CalRGB color
spaces are affected; if SourceProfile is a monochrome pro-
file only CalGray color spaces are affected.

Untag n/a n/a Changes CalRGB color spaces to RGB color space and
CalGray color spaces to Gray color space.

Convert n/a n/a The corresponding objects in the specified color space(s) are
converted using the source definition embedded in the file and
the FinalTargetDevice ICC profile as output profile.

CIE-
Based

Tag n/a n/a This operation does not have any effect.
Untag n/a n/a This operation does not have any effect.
Convert n/a n/a The corresponding objects in the specified color space(s) are

converted using the source definition embedded in the file and
the FinalTargetDevice ICC profile as output profile.

Table 7.3: Effect of color space conversion operations on color spaces.

Source
CS Operation

Ignore
Embedded

ICC

FileSpec
(Source-
Profile)

Description
Process Resources 319

Chapter 7 Resources
ICC-
Based

Tag n/a n/a n/a
Note: In order to change the profile associated to an
ICCBased, an Untag operation (see below) should be per-
formed before tagging. These two operations can be combined
in a Retag operation.

Untag n/a n/a The ICC profiles in the input RunList are removed. The
resulting color spaces depend on the input file format:

• PDF – Use the corresponding alternate color space.

• EPS – Use the PostScript file color spaces; the ICC profile
comment in the EPS header is removed

• TIFF – Use the color space defined by the photometric
interpretation tag.

Convert false n/a The ICCBased color spaces are converted using the corre-
sponding embedded ICC profile as input profile and the
FinalTargetDevice ICC profile as output profile.

true n/a This operation does not have any effect (To ignore embedded
ICC profiles when converting, the CMYK, RGB or Gray
SourceCS enumeration values must be used with the
IgnoreEmbbededICC flag set to “true”. Each
SourceCS value will require a different
ColorSpaceConversionOp instance, with the correspond-
ing ICC profile.)

Dev-
Indep

Tag n/a n/a This operation does not have any effect. The specific
SourceCS enumeration values have to be used to select the
color spaces to tag.

Untag n/a n/a Untags ICCBased and Calibrated color spaces in the
RunList. It does not have any effect on the other device inde-
pendent color space.

Convert false n/a Converts all the device independent color spaces (CIEBased,
Lab, YUV, Calibrated and ICCBased) using the corre-
sponding characterizations embedded in the file and the
FinalTargetDevice ICC profile as output profile.

true n/a This operation does not have any effect. The specific
SourceCS enumeration values have to be used to select the
color spaces to convert.

Table 7.3: Effect of color space conversion operations on color spaces.

Source
CS Operation

Ignore
Embedded

ICC

FileSpec
(Source-
Profile)

Description
320 Process Resources

JDF Specification Release 1.2
Note: If the correct ICC profile is not specified for an operation that requires it, the operation does not have any
effect.

7.2.31 ComChannel
A communication channel to a person or company such as an E-mail address, phone number, or fax number.

Resource Properties
Resource class: Parameter
Resource referenced by: Contact, Person, CustomerMessage *
Example Partition: —
Input of processes: —
Output of processes: —

Separa-
tion

Tag n/a Named
color ICC
profile

In PostScript or PDF, it sets the alternate color space to an
ICCBased color space with the given ICC profile.

No profile
specified

In PostScript or PDF, it sets the alternate color space to the
color definition in the ColorPool, if present. If there is no
color definition in the ColorPool, this operation does not have
any effect.

Untag n/a n/a This operation does not have any effect.
Convert false n/a The specified separation(s) are converted using the alternate

color space definitions in the RunList.
true Named

color ICC
profile

Converts the specified separation(s) using the
SourceProfile profile as input profile and the
FinalTargetDevice ICC profile as output profile.

No profile
specified

Converts the specified separation(s) using the color definition
in the ColorPool and the FinalTargetDevice ICC pro-
file if needed

DeviceN Tag false N compo-
nent ICC
profile

Changes the DeviceN color spaces in the RunList to
ICCBased color spaces using the SourceProfile ICC pro-
file. This operation only affects the selected DeviceN color
spaces that have exactly the same number of components than
the SourceProfile.

Untag n/a n/a This operation does not have any effect.
Convert false n/a In PostScript or PDF, the specified DeviceN color spaces are

converted using the alternate color space.
true N compo-

nent ICC
profile

Converts the specified DeviceN color spaces using the
SourceProfile ICC profile as input profile and the
FinalTargetDevice ICC profile as output profile. This oper-
ation only affects the selected DeviceN color spaces that have
exactly the same number of components than the
SourceProfile.

Table 7.3: Effect of color space conversion operations on color spaces.

Source
CS Operation

Ignore
Embedded

ICC

FileSpec
(Source-
Profile)

Description
Process Resources 321

Chapter 7 Resources
Resource Structure

Examples
<ComChannel ChannelType="Phone" ChannelTypeDetails="Mobile" ChannelUsage="Business"
Locator="44 07808 907 919"/>

<ComChannel ChannelType="InstantMessaging" ChannelTypeDetails="MyIMService"
ChannelUsage="Private" Locator="123456789"/>

Name Data Type Description
ChannelType
Modified in JDF 1.2

enumeration Type of the communication channel. Possible values are:
Phone – Telephone number.
Email – E-mail address.
Fax – Fax machine.
WWW – WWW home page or form.
JMF – JMF messaging channel.
PrivateDirectory – Account of a registered customer of a certain ser-
vice. (The list of the registered accounts is maintained by the service vendor).
The private directory service vendor name should appear in
ChannelTypeDetails attribute.
 InstantMessaging – IM service address. The IM service vendor name
should appear in ChannelTypeDetails attribute.

ChannelTypeDet
ails ?
New in JDF 1.2

NMTOKEN Description of the value of the ChannelType attribute. See Table 7-1 on
page 322 for examples. Should be the service vendor name in case
ChannelType is PrivateDirectory or InstantMessaging.

ChannelUsage ?
New in JDF 1.2

NMTOKENS Communication channel usage. Possible values include:
Business – Business purpose usage, (e.g. office phone number, fax).
Private – Private purpose usage, (e.g., private phone number, fax, E-mail).
DayTime – Office hours in the time zone of the recipient.
NightTime – Out-of-office hours in the time zone of the recipient.
WeekEnd – Out-of-office hours in the time zone of the recipient.

Locator
Modified in JDF 1.2

string Locator of this type of channel in a form such as a phone number, a URL, or
an E-mail address. In case a URL is defined for the Channeltype
in[RFC2396] or [RFC2806] it is recommended to use the URL syntax, as fol-
lows:
“Mailto:a@b.com” instead of “a@b.com” if ChannelType =
“Email”,
“tel:+49-69-92058800” if ChannelType = “Phone”, and
“fax:+49.6151.155.299” if ChannelType = “Fax”.

Table 7-1: ChannelTypeDetails predefined values for different ChannelType values

ChannelType ChannelTypeDetails predefined value Description
Phone LandLine Land line telephone number.

Mobile Mobile/Cellular telephone number.
Secure Secure phone line.
ISDN ISDN line telephone number.

WWW Form Upload form.
Target Upload target URL.
322 Process Resources

JDF Specification Release 1.2
7.2.32 Company
Specifies contacts to a company including detailed information about contact persons and addresses. This structure
can be used in many situations where addresses or contact persons are needed. Examples of contacts are customer,
supplier, company, and addressees. The structure is derived from the vCard format. It comprises the organization
name and organizational units (ORG) of the organizational properties defined in the vCard format. The corresponding
XML types of the vCard are quoted in the table.

Resource Properties
Resource class: Parameter
Resource referenced by: Contact
Example Partition: —
Input of processes: —
Output of processes: —

Resource Structure

7.2.33 Component
Component is used to describe the various versions of semi-finished goods in the press and postpress area, such as
a pile of folded sheets that have been collected and must then be joined and trimmed. Nearly every postpress process
has a Component resource as an input as well as an output. Typically the first components in the process chain are
some printed sheets or ribbons, while the last component is a book or a brochure. Component resources are grouped
by kind in much the same way that nodes are classified as Combined, Process, or Product. The five categories of
Component resources are: Ribbon, Sheet, Block, PartialProduct, and FinalProduct. These catego-
ries are defined in greater detail below:
Ribbon — Part of the web that enters the folder, divider etc. In case the web is not slit, the web and the ribbon are
identical.
Sheet — This source type is appropriate if a flat sheet, (e.g., a postcard to be glued in is used as an input compo-
nent). "Flat" in this case means that the sheet has not been folded or cut before the operation.
Block — This source type is appropriate if a folded sheet, a cut portion of the sheet, or a cut and folded portion of a
sheet is used as an input component.
PartialProduct — This source type is appropriate if a partial product should be used as an input component.
FinalProduct — This source type is appropriate if this Component is the final product.

Terms and Definitions for Components
The descriptions of Component-specific attributes use some terms whose meaning depends on the culture in which
they are used. For example, different cultures mean different things when they refer to the “front” side of a magazine.
Other terms (e.g., binding) are defined by the production process and, therefore, do not depend on the culture.

Whenever possible, this specification endeavors to use culturally independent terms. In cases where this is not
possible, Western style (left-to-right writing) is assumed. Please note that these terms may have a different meaning
in other cultures, (i.e., those writing from right to left).

Name Data
Type Description

OrganizationName string Name of the organization or company (vCard: ORG:orgnam. For example:
ABC, Inc.).

Contact *
Deprecated in JDF 1.1

refelement A contact of the company. In JDF 1.1 and beyond, Contacts reference multi-
ple Companies.

OrganizationalUnit * telem Describes the organizational unit (vCard: ORG:orgunit. For example, if two
elements are present: 1. “North American Division” and 2. “Marketing”).
Process Resources 323

Chapter 7 Resources

The table below describes the terms used to define the components.

Resource Properties
Resource class: Quantity
Resource referenced by: —
Example Partition: Condition, RibbonName, SheetName, SignatureName, WebName
Input of processes: Many
Output of processes: Many

Figure 7.5: Terms and definitions for components

Table 7-2: Terms and definitions for components

Edge Description
Binding edge The edge on which the (partial) product is glued or stitched. This edge is also

often called working edge or spine.
Product front edge The side, where you open the (partial) product. This edge is opposite to the

binding edge.
Registered edge A side on which a collection of sheets or partial products is aligned during a

production step. All production steps require two registered edges, which must
not be opposite to each other. The two registered edges define the coordinate
system used within the production step. When there is a binding edge, this is
one of the registered edges.
324 Process Resources

JDF Specification Release 1.2
Resource Structure
Name Data Type Description

ComponentType
Modified in JDF 1.2

enumera-
tions

Specifies the category of the component. Possible values are:
Ribbon – The Component is a ribbon on a web press.
Sheet – Single layer (sheet) of paper.
Block – Folded or stacked product, (e.g., book block).
Proof – The Component is a proof.
Web – The Component is a web on a web press.
Further details of the component are specified in ProductType. Only one
of FinalProduct or PartialProduct may be specified in addition
to one of the five enumerations specified above.
FinalProduct – The Component is the final product that was ordered by
the customer.
PartialProduct – The Component has been partially processed.

Dimensions ? shape The dimensions of the component. These dimensions may differ from the
original size of the original product. For example, the dimensions of a
folded sheet may not be equal to the dimensions of the sheet before it was
folded. The dimension is always the bounding box around the
Component. If not specified, a portrait orientation (Y>X) is assumed
Note: It is crucial for enabling postpress to specify Dimensions unless
they really are unknown.

IsWaste = “false” boolean If “true”, the Component is waste from a previous process that may be
used to set up a machine.

MaxHeat ? double Maximum temperature the Component can resist (in degrees centigrade).
The default setting is to impose no restriction in terms of heat, (e.g., fusers
in electrophotographic process or shrink wrapping).

Overfold ?
New in JDF 1.1

double Expansion of the overfold of a Component. This attribute may be needed
for the Inserting or other postpress processes.

OverfoldSide ?
New in JDF 1.1

enumeration Specifies the longer side of a folded component. Values are:
Front
Back

ProductType ?
 Modified in JDF 1.2

NMTOKEN Type of product that this component specifies. Possible values include:
BackCover
Body – Generic content inside of a cover. New in JDF 1.2
Book
BookBlock
BookCase
Box – Convenience packaging that is not envisioned to be protection for
shipping.
Brochure
BusinessCard
Carton – Protection packaging for shipping.
Cover
FrontCover
Insert New in JDF 1.2
Jacket – Hard cover case jacket.
Label
Poster
Unknown – Deprecated in JDF 1.2

ReaderPageCount ?
New in JDF 1.1

integer Total amount of individual reader pages that this Component contains.
Count of -1 means “unknown.” If not specified, the value is unknown.
Process Resources 325

Chapter 7 Resources
Example Use of Condition Partition Key Attribute
New in JDF 1.2
The Condition partition key describes whether a Component partition is waste and what type of waste it is. The
amount of each Condition, in the standard manner for partitionable resources. See Section 3.8.2, Description of
Partitionable Resources.)
 <ResourcePool>
 <Component Class="Quantity" ID="Res6" PartIDKeys="Condition" PartUsage="Implicit"
Status="Available">
 <Component Condition="Good" IsWaste="false"/>
 <Component Condition="Waste" IsWaste="true"/>
 </Component>
 </ResourcePool>
 <ResourceLinkPool>
 <ComponentLink Amount="3057" Usage="Output" rRef="Res6">
 <AmountPool>
 <PartAmount Amount="2970">
 <Part Condition="Good"/>

SheetPart ? rectangle Only useful when ComponentType = Block and when SourceSheet
is present. Position of the block on the Sheet in SurfaceContentsBox
coordinates used in this Component.

SourceRibbon ? string Only required when ComponentType = Ribbon. RibbonName of
the ribbon used in this Component.

SourceSheet ? string Only required when ComponentType = Sheet or Block. Matches
the Layout/Signature/Sheet/@Name used in this Component.

SourceWeb ? string Only required when ComponentType = Ribbon. WebName of the
ribbon used in this Component.

SurfaceCount ?
New in JDF 1.1

integer Total amount of individual surfaces that this Component contains.

Transformation ?
Deprecated in JDF 1.1

matrix Matrix describing the transformation of the orientation of a Component
for the process using this resource as input. This is needed to convert the
coordinate system of the Component to the coordinate system of the pro-
cess. When this attribute is not present, the identity matrix (1 0 0 1 0 0) is
assumed.
In version 1.1 and beyond, use ResourceLink/@Transformation or
ResourceLink/@Orientation.

Bundle ?
New in JDF 1.1

refelement Description of a Bundle of Components if the Component represents
multiple individual items. If no Bundle is present, the Component repre-
sents an individual item. Note that it is essential to keep a reference of the
child Components that comprise a Component, as this information is
useful to postpress processes.

Disjointing ? refelement A stack of components can be processed using physical separators. This is
useful in operations such as feeding.

Sheet ?
Deprecated in JDF 1.2

refelement The Sheet resource that describes the details of this Component if
ComponentType = Sheet or Block.
Replaced with Layout in JDF 1.2 and beyond. The Sheet in the refer-
enced Layout is accessed by matching SourceSheet with Layout/
Signature/Sheet/@Name

Layout ?
New in JDF 1.2

refelement Specifies the original Layout of the source sheet of the Component
when ComponentType = “Sheet” or “Block”. The original
Sheet is the Sheet element where SourceSheet matches the
Layout/Signature/Sheet/@Name used in this Component

Name Data Type Description
326 Process Resources

JDF Specification Release 1.2
 </PartAmount>
 <PartAmount Amount="87">
 <Part Condition="Waste"/>
 </PartAmount>
 </AmountPool>
 </ComponentLink>
 </ResourceLinkPool>

7.2.34 Contact
Element describing a contact to a person or address.

Resource Properties
Resource class: Parameter
Resource referenced by: ApprovalParams, ArtDeliveryIntent, CustomerInfo

,DeliveryIntent , DeliveryParams, DropIntent
Example Partition: —
Input of processes: —
Output of processes: —

Resource Structure
Name Data Type Description

ContactTypes
Modified in JDF 1.2

NMTOKENS Classification of the contact. Possible values include:
Accounting – Address of where to send to the bill.
Administrator – Person to contact for queries concerning the execu-
tion of the job.
Approver – Person who approves this job. New in JDF 1.2
ArtReturn – Return delivery or pickup address for artwork of this job.
Billing – Contact information that refers to a payment method, (e.g.,
credit card).
Customer – The end customer.
Delivery – Delivery address for all products of this job.
DeliveryCharge – The Contact is charged for delivery of this job.
Owner – The owner of a resource.
Pickup – The pickup address for all products of this job.
Sender – The source address of the delivery. New in JDF 1.2
Supplier – Address of a supplier of needed goods.
SurplusReturn – Return delivery or pickup address for surplus prod-
ucts of this job.

ContactTypeDetai
ls ?

string Details of the Contact's role or roles. For instance if ContactTypes
includes "Delivery" this could be a description which delivery location
this Contact is responsible for.

Address ? refelement Element describing the address.
ComChannel *
Modified in JDF 1.2

refelement Communication channels to the contact. These elements define communi-
cation channels that may be assigned to multiple Persons, for instance
the communication channel of a reception area.

Company ?
New in JDF 1.1

refelement Company that this Contact is associated with.

Person ? refelement Name of the contact person.
Process Resources 327

Chapter 7 Resources
7.2.35 ContactCopyParams
New in JDF 1.1
Element describing the parameters of ContactCopying.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: ContactCopying
Output of processes: —

Resource Structure

7.2.36 ConventionalPrintingParams
This resource defines the attributes and elements of the ConventionalPrinting process. The specific parameters
of individual printer modules are modeled by using the standard partitioning methods. These methods are described
in Section 3.8.2, Description of Partitionable Resources.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: BlockName, FountainNumber, RibbonName, Separation,

SheetName, Side, SignatureName, WebName, PartVersion.
Input of processes: ConventionalPrinting
Output of processes: —

Name Data Type Description
ContactScreen =
“false”

boolean ContactScreen = “true”, if a halftone screen on film should be used
to produce halftones.

Cycle ? integer Number of exposure light units to be used. The amount depends on the
subject to be exposed.

Diffusion ? enumeration The diffusion foil setting. Possible values are:
On
Off

PolarityChange =
“true”

boolean PolarityChange = “true”, if the copy should change polarity w.r.t.
the original image.

RepeatStep = “1 1” XYPair Number (as integers) of copies in each direction for a Step/Repeat camera.
Vacuum ? double Amount of vacuum pressure to be used, measured in bars.
ScreeningParams ? refelement Properties of the halftone screen on film. Ignored if ContactScreen =

“false”.
328 Process Resources

JDF Specification Release 1.2
Resource Structure
Name Data Type Description

DirectProof = “false” boolean If “true”, the proof is directly produced and subsequently an
approval may be given by a person (e.g., the customer, foreman,
or floor manager) shortly after the first final-quality printed sheet
is printed. The approval is not required for setup, but it is required
for the actual print run. If the ConventionalPrinting process
is waiting for a DirectProof, the Status of the JDF node is
switched to Stopped with the StatusDetails =
“WaitForApproval”.

Drying ? enumeration The way in which ink is dried after a print run. Possible values
are:
UV – Ultraviolet dryer
Heatset – Heatset dryer
IR – Infrared dryer
On – Use the device default drying unit.
Off

FirstSurface ?
Modified in JDF 1.2

enumeration Printing order of the surfaces on the sheet. Possible values are:
Either- Deprecated in JDF 1.2 Omit FirstSurface to specify
either.
Front
Back

FountainSolution ? enumeration State of the fountain solution module in the printing units. Possi-
ble values are:
On
Off

MediaLocation ? string Identifies the location of the Media. The value identifies a physi-
cal location on the press, (e.g., unwinder 1, unwinder 2, and
unwinder 3).
If the media resource is partitioned by Location (see also
Section 3.8.2.6, Locations of Physical Resources) there should be
a match between one Location partition key and this
MediaLocation value.

ModuleAvailableIndex?
New in JDF 1.1

IntegerRange-
List

Zero-based list of print modules that are available for printing. In
some cases modules are not available because the print module is
replaced with in-line tooling, (e.g. a perforating unit). If not speci-
fied, all modules are used for printing. The list is based on all
modules of the printer and is not influenced by the value of
ModuleIndex.

ModuleDrying ? enumeration The way in which ink is dried in individual modules. Possible val-
ues are:
UV – Ultraviolet dryer
Heatset – Heatset dryer
IR – Infrared dryer
On – Use the device default drying unit.
Off

ModuleIndex ? IntegerRange-
List

Zero-based, ordered list of print modules that should be used.
ModuleIndex does not influence the ink sequence. It is used
only to skip individual modules. The list is based on all modules
of the printer and is not influenced by the value of
ModuleAvailableIndex.

PerfectingModule ?
New in JDF 1.1

integer Index of the perfecting module if WorkStyle = Perfecting
and multiple perfecting modules are installed.
Process Resources 329

Chapter 7 Resources
Powder ? double Quantity of powder in %.
PrintingType
Modified in JDF 1.2

enumeration Type of printing machine. Possible values are:
ContinuousFed – connected sheets including fan fold. New in
JDF 1.2
SheetFed – separate cut sheets.
WebFed – paper supplied to press on rolls.

SheetLay ? enumeration Lay of input media. Reference edge of where paper is placed in
feeder. Possible values are:
Left
Right
Center

Speed ? double Maximum print speed in sheets/hour (sheet fed) or meters/hour
(web fed). Defaults to device specific full speed.

WorkStyle ? enumeration The direction in which to turn the press sheet. Possible values are:
Simplex – No turning
WorkAndBack – This WorkStyle describes the printing on
both sides of the substrate with a different plate (set) in the second
run. After the first run the side lays are altered, but the front lays
stay as they were. Lays can be turned by hand or using a pile
reverser. Two-plate sets are necessary for WorkAndBack.
Perfecting – Many sheetfed printing presses have perfecting
cylinder(s) built in. The leading edge of the print sheet changes as
the sheet is turned by the perfecting cylinder, but the side lays
remain unaltered. In this regard, this WorkStyle is similar to
WorkAndTumble, but Perfecting is an in-line operation dur-
ing the press run. Therefore, an additional plate (set) is required
during this press run.
WorkAndTurn – Refers to the turning of the first-run sheet for
subsequent perfecting. The front lays remain unchanged but the
side lays must be altered. The alteration can be made by hand or
using a pile turner. Turning happens after the first press run and
the plate (set) is used again in the second press run, imaging the
other sheet surface.
WorkAndTumble – The WorkAndTumble method is also used
for perfecting. The leading edge of the print sheet changes as the
sheet is turned, but the side lays remain unaltered. Tumbling hap-
pens after the first press run and the plate (set) is used again in the
second press run, imaging the other sheet surface.
WorkAndTwist – Done between two press runs. The pallet is
twisted 180 degrees before the second run is performed so that the
front lay and the side lay both change. The surface to be imaged is
the same at both runs. Each run prints only part of the surface.
The plate (set) stays in the machine. This WorkStyle is used for
saving plate or film material. It is no longer a common
WorkStyle.

Name Data Type Description
330 Process Resources

JDF Specification Release 1.2
7.2.37 CostCenter
This resource describes an individual area of a company that has separated accounting.

Resource Properties
Resource class: ResourceElement
Resource referenced by: Device, Employee
Example Partition: —
Input of processes: —
Output of processes: —

Resource Structure

7.2.38 CoverApplicationParams
New in JDF 1.1
CoverApplicationParams define the parameters for applying a cover to a book block.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: CoverApplication
Output of processes: —

Resource Structure

ApprovalParams ?
New in JDF 1.2

refelement Details of the direct approval process, when DirectProof =
“true”.

Ink *
Modified in JDF 1.2

refelement Details of varnishing. Defines the varnish to be used for coatings
on printed sides. Coatings are applied after printing all the colors.
Other coating sequences must use the partition mechanism of this
parameter resource. Selective varnishing in print modules has to
use a separate separation for the respective varnish. Varnish is
specified by Ink/@Family = ”Varnish”. If both Ink and
ExposedMedia (Plate) are specified for a given separation,
spot varnishing is specified. If only Ink and not
ExposedMedia (Plate) is specified, overall varnishing is
specified.
In JDF 1.2 and beyond, Ink may occur in multiples in order to
specify multiple layers of varnish.
Note: The color inks are direct input resources of the process and
must not be specified here.

Name Data Type Description
CostCenterID string Identification of the cost center
Name ? string Name of the cost center.

Name Data Type Description
CoverOffset ?
Deprecated in JDF 1.2

XYPair Position of the cover in relation to the book block given in the cover-
sheet coordinate system. In JDF 1.2 and beyond, CoverOffset is
implied by the transformation matrix in ResourceLink/
@Transformation of the ComponentLink of the cover.

GlueApplication * refelement Describes where and how to apply glue to the book block.
Score * element Describes where and how to score the cover.

Name Data Type Description
Process Resources 331

Chapter 7 Resources
Structure of Score Subelement

7.2.39 CreasingParams
New in JDF 1.1
CreasingParams define the parameters for creasing or grooving a sheet.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: BlockName, RibbonName, SheetName, SignatureName, WebName
Input of processes: Creasing
Output of processes: —

Resource Structure

Name Data Type Description
Offset double Position of scoring given in the operation coordinate system.
Side =
“FromInside”

enumeration Specifies the side from which the scoring tool works. Possible values
are:
FromInside
FromOutside

Figure 7.6: Parameters and coordinate system for cover application

Name Data Type Description
Crease * element Defines one or more Crease lines.
332 Process Resources

JDF Specification Release 1.2
Crease
Crease defines an individual crease line on a Component.

7.2.40 CutBlock
Defines a cut block on a sheet. It is possible to define a block that contains a matrix of elements of equal size. In this
scenario, the intermediate cut dimension is calculated from the information about element size, block size and the
number of elements in both directions. Each cut block has its own coordinate system, which is defined by the
BlockTrf attribute.

Resource Properties
Resource class: Parameter
Resource referenced by: CuttingParams
Example Partition: —
Input of processes: —
Output of processes: —

Name Data Type Description
Depth ?
New in JDF 1.2

double Depth of the Crease, measured in microns [µm].

RelativeTravel ?
New in JDF 1.2

double Relative distance of the reference edge relative to From in the coordi-
nates of the incoming Component. RelativeTravel is always based
on the complete size of the input Component and not on the size of an
intermediate state of the folded sheet. The allowed value range is from
0.0 to 1.0, which specifies the full length of the input component.

RelativeStartPositio
n ?
New in JDF 1.2

XYPair Relative starting position of the tool. RelativeStartPosition is
always based on the complete size of the input Component and not on
the size of an intermediate state of the folded sheet. The allowed value
range is from 0.0 to 1.0 for each component of the XYPair, which speci-
fies the full size of the input Component.

RelativeWorkingPat
h ?
New in JDF 1.2

XYPair Relative working path of the tool beginning at
RelativeStartPosition. Since the tools can only work parallel to the
edges, one coordinate must be zero. RelativeWorkingPath is always
based on the complete size of the input Component and not on the
size of an intermediate state of the folded sheet. The allowed value range
is from 0.0 to 1.0 for each component of the XYPair, which specifies the
full size of the input Component.

StartPosition ?
Modified in JDF 1.2

XYPair Starting position of the tool. If both StartPosition and
RelativeStartPosition are specified, RelativeStartPosition is
ignored. At least one of StartPosition or RelativeStartPosition
must be specified.

Travel ?
New in JDF 1.2

double Distance of the reference edge relative to From. If both Travel and
RelativeTravel are specified, RelativeTravel is ignored. At least
one of Travel or RelativeTravel must be specified.

WorkingPath ? XYPair Working path of the tool beginning at StartPosition. Since the tools
can only work parallel to the edges, one coordinate must be zero. If both
WorkingPath and RelativeWorkingPath are specified,
RelativeWorkingPath is ignored. At least one of WorkingPath or
RelativeWorkingPath must be specified.

WorkingDirection enumeration Direction from which the tool is working. Possible values are:
Top – From above.
Bottom – From below.
Process Resources 333

Chapter 7 Resources
Resource Structure

7.2.41 CutMark
This resource, along with CutBlock, provides the means to position cut marks on the sheet. After printing, these
marks can be used to adapt the theoretical block positions (as specified in CutBlock) to the real position of the cor-
responding blocks on the printed sheet.

Resource Properties
Resource class: Parameter
Resource referenced by: CuttingParams, Surface
Example Partition: —
Input of processes: —
Output of processes: —

Resource Structure

Name Data Type Description
BlockElementSize ? XYPair Element dimension in X and Y direction. The default value should be equiv-

alent to the XYPair value in BlockSize.
BlockElementType ? enumeration Element type. Possible values are:

CutElement – Cutting element.
PunchElement – Punching element.

BlockName NMTOKEN Name of the block. Used for reference by the CutMark resource. Note that
CutBlock resources are not partitioned although they are nested. The
semantics of nested CutBlocks are different.

BlockSize XYPair Size of the block.
BlockSubdivision =
“1 1”

XYPair Number (as integers) of elements in X and Y direction.

BlockTrf =
“1 0 0 1 0 0”

matrix Block transformation matrix. Defines the position and orientation of the
block relative to the Component coordinate system.

BlockType enumeration Block type. Possible values are:
CutBlock – Block to be cut.
SaveBlock – Protected block, cut only via outer contour.
TempBlock – Auxiliary block that is not taken into account during cutting.
MarkBlock – Contains no elements, only marks.

Name Data Type Description
Blocks ?
Modified in JDF 1.1

NMTOKENS Values of the BlockName partition attributes of the blocks
defined by the CutMark resource.

MarkType enumeration Cut mark type. Possible values are:
CrossCutMark
TopVerticalCutMark
BottomVerticalCutMark
LeftHorizontalCutMark
RightHorizontalCutMark
LowerLeftCutMark
UpperLeftCutMark
LowerRightCutMark
UpperRightCutMark

Position XYPair Position of the logical center of the cut mark in the coordinates of
the MarkObject that contains this mark. Note that the logical
center of the cut mark does not always directly specify the center
of the visible cut mark symbol.
334 Process Resources

JDF Specification Release 1.2
7.2.42 CuttingParams
New in JDF 1.1
This resource describes the parameters of a Cutting process that uses nested CutBlocks as input.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: BlockName, RibbonName, SheetName, SignatureName, WebName
Input of processes: Cutting
Output of processes: —

Table 7-3: Cut Mark Types
Symbol Name Position of Symbol

CrossCutMark Centered at logical postion

TopVerticalCutMark Slightly above logical position

BottomVerticalCutMark Slightly below logical position

LeftHorizontalCutMark Slightly to the left of logical postion

RighHorizontalCutMark Slightly to the right of logical postion

LowerLeftCutMark Corner at logical postion

UpperLeftCutMark Corner at logical postion

LowerRightCutMark Corner at logical postion

UpperRightCutMark Corner at logical postion
Process Resources 335

Chapter 7 Resources
Resource Structure

Structure of the Cut Subelement
Cut describes one straight cut with an arbitrary tool.

7.2.43 DBMergeParams
This resource specifies the parameters of the DBTemplateMerging process.

Resource Properties
Resource class: Parameter
Resource references: —
Resource inheritance: —
Example Partition: —
Input of processes: DBTemplateMerging
Output of processes: —

Name Data
Type Description

CutBlock * refelement One or several CutBlocks can be used to find the Cutting sequence. Only one of
CutBlock or Cut may be specified.

CutMark * refelement CutMark resources can be used to adapt the theoretical cut positions to the real posi-
tions of the corresponding blocks on the Component to be cut.

Cut * element Cut elements describe an individual cut. Only one of CutBlock or Cut may be speci-
fied.

Name Data Type Description
RelativeStartPosition ?
New in JDF 1.2

XYPair Relative starting position of the tool. RelativeStartPosition is
always based on the complete size of the input Component and not
on the size of an intermediate state of the folded sheet. The allowed
value range is from 0.0 to 1.0 for each component of the XYPair,
which specifies the full size of the input Component.

RelativeWorkingPath ?
New in JDF 1.2

XYPair Relative working path of the tool beginning at
RelativeStartPosition. Since the tools can only work parallel to
the edges, one coordinate must be zero. RelativeWorkingPath is
always based on the complete size of the input Component and not
on the size of an intermediate state of the folded sheet. The allowed
value range is from 0.0 to 1.0 for each component of the XYPair,
which specifies the full size of the input Component.

StartPosition ?
Modified in JDF 1.2

XYPair Starting position of the tool. If both StartPosition and
RelativeStartPosition are specified, RelativeStartPosition is
ignored. At least one of StartPosition or RelativeStartPosition
must be specified.

WorkingPath ?
Modified in JDF 1.2

XYPair Working path of the tool beginning at StartPosition. Since the
tools can only work parallel to the edges, one coordinate must be
zero. If both WorkingPath and RelativeWorkingPath are spec-
ified, RelativeWorkingPath is ignored. At least one of
WorkingPath or RelativeWorkingPath must be specified.

WorkingDirection enumeration Direction from which the tool is working. Possible values are:
Top – From above.
Bottom – From below.
336 Process Resources

JDF Specification Release 1.2
Resource Structure

7.2.44 DBRules
This resource specifies the rules that should be applied to convert a database record into a graphic element. It is
described by a text element with a human-readable description of the selection rules. For example:

insert the “Age” field behind the birthday;
if income>100,000 use Porsche.gif, else use bicycle.jpeg for image #2.

The internal representation of the mapping of database fields to graphic content within the document template is
implementation-dependent. It can vary from fully variable, multi-page, automated document layout to simply insert-
ing some line-feed characters between database records in an address field. Therefore, DBRules is defined as a sim-
ple human-readable text element.

Resource Properties
Resource class: Parameter
Resource references: —
Resource inheritance: —
Example Partition: —
Input of processes: DBDocTemplateLayout, Inserting, Collecting, Gathering
Output of processes: —

Resource Structure

7.2.45 DBSchema
This resource specifies the formal structure of a database record, regardless of type. It is encoded as a text element
with a human-readable description of the database schema.

Resource Properties
Resource class: Parameter
Resource references: —
Resource inheritance: —
Example Partition: —
Input of processes: DBDocTemplateLayout, Verification
Output of processes: —

Resource Structure

Name Data Type Description
SplitDocuments ? integer Indicates how often to split documents to create a new file.
FileSpec ? refelement URL of the generated destination file. This is most often a printable

file type, (e.g., PDF of PPML). If FileSpec is not specified,
DBMergeParams must be a Pipe resource.

Name Data Type Description
Comment + telem Human-readable description of the database rules that map data-

base fields to image or text content.

Name Data Type Description
DBSchemaType enumeration Database type. Possible values are:

CommaDelimited
SQL
XML

Comment + telem Human-readable description of the database schema.
Process Resources 337

Chapter 7 Resources
7.2.46 DBSelection
This resource specifies a selection of records from a database.

Resource Properties
Resource class: Parameter
Resource references: —
Resource inheritance: —
Example Partition: —
Input of processes: DBTemplateMerging, Inserting, Collecting, Gathering,

Verification
Output of processes: Verification

Resource Structure

7.2.47 DeliveryParams
Provides information needed by a Delivery process. A Delivery process consists of sending a quantity of a product
to a specific location at, in some cases, a required date and time.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: Delivery
Output of processes: —

Resource Structure

Name Data Type Description
DataBase URL URL of the database
Records ? IntegerRangeList The indices of the database records.
Select ? string Database selection criteria in the native language of the database, (e.g., SQL).

Name Data Type Description
Earliest ? dateTime Specifies the earliest time after which the delivery may be made.
Method ? string Identifies a required delivery method, (e.g., ExpressMail or

InterofficeMail). Note that it is strongly recommended to use an
NMTOKEN compatible string in this attribute, without blanks. For a list of pre-
defined Method values, see DeliveryIntent/@Method.

Pickup ?
Deprecated in JDF 1.2

boolean If “true”, the merchandise is picked up. If “false”, the merchandise is
delivered. Replaced with Transfer in JDF 1.2.

Required ? dateTime Specifies the time by which the delivery must be made.
ServiceLevel ?
New in JDF 1.2

string The service level of the specific carrier. Contain values “Next Day”, “2nd
Day Air”, “Ground”, etc.
338 Process Resources

JDF Specification Release 1.2
Structure of the Drop Subelement

Transfer ?
New in JDF 1.2

enumera-
tion

Describes the direction and responsibility of the transfer. Possible values are:
BuyerToPrinterDeliver – The DeliveryIntent describes an input to
the job, (e.g., a CD for inserting, a preprinted cover, etc.). In this case, the buyer
delivers the merchandise to the printer. The printer may specify in the quote a
special Contact with ContactTypes, including “Delivery”, where the
buyer should send the merchandise to.
BuyerToPrinterPickup – The DeliveryIntent describes an input to
the job, (e.g., a CD for inserting, a preprinted cover, etc.). In this case, the
printer picks up the merchandise. The Contact with ContactTypes, includ-
ing “Pickup”, where the printer has to pick up the merchandise.
PrinterToBuyerDeliver – The DeliveryIntent describes an output of
the job. In this, case the printer delivers the merchandise to the buyer. The
Contact that has ContactTypes, including “Delivery”, specifies where
the printer should send the merchandise.
PrinterToBuyerPickup – the DeliveryIntent describes an output of
the job. In this case, the buyer picks up the merchandise. The printer may spec-
ify in the quote a special Contact that has ContactTypes including
“Pickup”, where the buyer should pick up the merchandise.

Company ?
Deprecated in JDF 1.1

refelement Address and further information of the addressee. In JDF 1.1 and beyond, use
Contact/Company

Contact *
New in JDF 1.1

refelement Address and further information of the Contact responsible for this delivery.

Drop + element All locations where the product will be delivered.

Name Data Type Description
Earliest ? dateTime Specified the earliest time after which the delivery may be made. Default =

DeliveryParams/@Earliest.
Method ? string Identifies a required delivery method, (e.g., ExpressMail or

InterofficeMail). Default = DeliveryParams/@Method. Note
that it is strongly recommended to use an NMTOKEN compatible string with-
out blank spaces in this attribute.For a list of predefined Method values, see
DeliveryIntent/@Method.

Pickup ?
Deprecated in JDF 1.2

boolean If “true”, the merchandise is picked up. If “false”, the merchandise is
delivered. Default = DeliveryParams/@Pickup. Replaced with
Transfer in JDF 1.2.

Required ? dateTime Specifies the time by which the delivery must be made. Default =
DeliveryParams/@Required.

ServiceLevel ?
New in JDF 1.2

string The service level of the specific carrier. Contain values “Next Day”, “2nd
Day Air”, “Ground”, etc. Default = DeliveryParams/
@ServiceLevel.

TrackingID ?
New in JDF 1.2

string The string that can help in tracking the delivery. The value of the
TrackingID attribute will depend on the carrier chosen to ship the products.

Transfer ?
New in JDF 1.2

enumera-
tion

Describes the direction and responsibility of the transfer. The default is and
possible values are defined in DeliveryParams/@Transfer.

Company ?
Deprecated in JDF 1.1

refelement Address and further information of the addressee. Defaults to the value of
Company specified in the root DeliveryParams resource.
Process Resources 339

Chapter 7 Resources
Structure of the DropItem Subelement

7.2.48 DensityMeasuringField
This resource contains information about a density measuring field.

Resource Properties
Resource class: Parameter
Resource referenced by: ColorControlStrip, Surface/PlacedObject
Example Partition: —
Input of processes: Any printing process
Output of processes:

Resource Structure

Contact *
New in JDF 1.1

refelement Address and further information of the Contact responsible for this deliv-
ery. Default = DeliveryParams/Contact.

DropItem + element A Drop may consist of multiple products, which are represented by their
respective PhysicalResource resources. Each DropItem describes an
individual resource that is part of this Drop.

Name Data Type Description
Amount ? integer Specifies the number of PhysicalResource ordered. If Amount is not

specified, defaults to the total amount of the resource that is referenced by
PhysicalResource.

Unit ? string Unit of measurement for the Amount of the resource that is referenced by
PhysicalResource. Defaults to the value of Unit defined in
PhysicalResource.

TrackingID ?
New in JDF 1.2

string The string that can help in tracking the delivery. The value of the
TrackingID attribute will depend on the carrier chosen to ship the prod-
ucts. Defaults to Drop/@TrackingID.

PhysicalResource
?
Modified in JDF 1.2

refelement Description of the individual item to be delivered. It can be any kind of
physical resource. This was Component prior to JDF 1.2.

Name Data Type Description
Center XYPair Position of the center of the density measuring field in the

coordinates of the MarkObject that contains this mark.
If the measuring field is defined within a
ColorControlStrip, Center refers to the rectangle
defined by Center and Size of the
ColorControlStrip.

Density
Modified in JDF 1.1A

DoubleList Density value for each process color measured with filter.
The data type was modified to NumberList in JDF 1.1A in
order to accommodate density values >1.0.

Diameter double Diameter of measuring field.
DotGain double Percentage of dot gain.
Percentage double Film percentage or equivalent.
Screen string Description of the screen.

Name Data Type Description
340 Process Resources

JDF Specification Release 1.2
7.2.49 DevelopingParams
New in JDF 1.1
DevelopingParams specifies information about the chemical and physical properties of the developing and fixing
process for film and plates. Includes details of preheating, postbaking, and postexposure.
• Preheating is necessary for negative working plates. It hardens the exposed areas of the plate to make it durable

for the following developing process. The stability and uniformity of the preheat temperature influence the
evenness of tints and the run length of the plate on press.

• Postbaking is an optional process of heating that is applied to most polymer plates to enhance the run length of
the plate. A factor 5 to 10 can be gained compared to plates that are not postbaked.

• Postexposure is an optional exposure process for photopolymer plates to enhance the run length of the plate. A
factor of 5 to 10 can be gained compared with plates that are not postexposed.

Note: Postbaking and postexposure are mutually exclusive.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: ContactCopying, FilmToPlateCopying, ImageSetting
Output of processes: —

Resource Structure

Separation string Reference to a Separation that this applies
DensityMeasuringField to.
When DensityMeasuringField is use as an element, it
is a standard attribute, otherwise when
DensityMeasuringField is used as a resource,
Separation must be defined as a Separation partition
key.

Setup ? string Description of measurement setup.
ToleranceCyan XYPair Upper and lower cyan measurement limits (in density

units).
ToleranceMagenta XYPair Upper and lower magenta measurement limits (in density

units).
ToleranceYellow XYPair Upper and lower yellow measurement limits (in density

units).
ToleranceBlack XYPair Upper and lower black measurement limits (in density

units).
ToleranceDotGain XYPair Upper and lower measurement limits (in %).
ColorMeasurementConditions ?
New in JDF 1.1

refelement Detailed description of the measurement conditions for
color measurements.

Name Data
Type Description

PreHeatTemp ? double Temperature of the preheating process in °C.
PreHeatTime ? duration Duration of the preheating process.
PostBakeTemp ? double Temperature of the postbaking process in °C.
PostBakeTime ? duration Duration of the postbaking process.
PostExposeTime ? duration Duration of the postexposing process. Only one of PostBakeTime and

PostExposeTime must be specified.
Process Resources 341

Chapter 7 Resources
7.2.50 Device
Information about a specific device. This optionally includes information about the devices capabilities. For more
information, see Section 3.6.1.3, Implementation Resources and Section 4.8, Capability and Constraint Definitions.
Resource Properties
Resource class: Implementation
Resource referenced by: —
Example Partition: —
Input of processes: Any process
Output of processes: —

Resource Structure
Name Data Type Description

DeviceFamily ?
Deprecated in JDF 1.1

string Manufacturer family type ID. DeviceFamily is replaced by the
appropriate ModelXXX attributes in this list.

DeviceID string Name of the device. This is a unique name within the workflow.
Must be the same over time for a specific device instance, (i.e.,
must survive reboots). For UPNP devices, this matches
UPNP:UDN. See [UPNP]

DeviceType ? string Manufacturer type ID, including a revision stamp.
Directory ?
New in JDF 1.1
Clarified in JDF 1.2

URL Defines a directory where the URLs that are associated with this Device
can be located. If Directory is specified, it must be an Absolute URI
[RFC2396] that specifies a Base URI to resolve each of the various URL
attributes of Device. See "Resolving RunList/@Directory and
FileSpec/@URL URI references" on page 649 and [FileURL].

FriendlyName ?
New in JDF 1.1

string Short user-friendly title.

JDFErrorURL ?
New in JDF 1.2

URL URL where, by default, the device may copy JDF output job tickets
that are aborted or in error.. If this is a directory, it specifies the
device default error output folder. If not specified, it defaults to the
value of JDFOutputURL.

JDFInputURL ?
New in JDF 1.2

URL URL where, by default, the device may accept JDF input job tick-
ets.. If this is a directory, it specifies the device default directory.
The persistence of JDF tickets in this location is implementation
dependent. If not specified, the Device does not accept JDF without
a JMF SubmitQueueEntry.

JDFOutputURL ?
New in JDF 1.2

URL URL where, by default, the device may copy succesfully com-
pleted JDF output job tickets. If this is a directory, it specifies the
device default output folder.

JDFVersions ?
New in JDF 1.1

JDFJMFVer-
sions

Whitespace separated list of supported JDF versions that this
device supports, (e.g, “1.0 1.1” specifies that both the 1.0 and 1.1
version are supported).

JMFSenderID ?
New in JDF 1.1

string ID of the controller will process JMF messages for the device. This
corresponds to the SenderID attribute that must be specified for
the device in JMF messages.

JMFURL ?
New in JDF 1.1

URL URL of the device port that will accept JMF messages.

KnownLocalizations ?
New in JDF 1.2

languages A list of all language codes supported by the device for localiza-
tion. If not specified, then the device supports no localizations.

Manufacturer ?
New in JDF 1.1

string Manufacturer name.

ManufacturerURL ?
New in JDF 1.1

string Web site for manufacturer.
342 Process Resources

JDF Specification Release 1.2
Structure of the IconList Subelement
New in JDF 1.1
The IconList is a list of individual icon descriptions.

Structure of the Icon Subelement
New in JDF 1.1
An Icon represents a device in the user interface.

ModelDescription ?
New in JDF 1.1

string Long description for end user.

ModelName ?
New in JDF 1.1

string Model name.

ModelNumber ?
New in JDF 1.1

string Model number.

ModelURL ?
New in JDF 1.1

string Web site for model.

SerialNumber ?
New in JDF 1.1

string Serial number of the device.

PresentationURL ?
New in JDF 1.1

string URL to presentation for device It is a URL to a device-provided UI for
user configuration, status, etc. Thus, if the device has an embedded Web
server, this is a URL to the configuration page hosted on that Web server.

UPC ?
New in JDF 1.1

string Universal Product Code for the device. A 12-digit, all-numeric code
that identifies the consumer package. Managed by the Uniform Code.

CostCenter ? element MIS cost center ID.
DeviceCap *
New in JDF 1.1

element Description of the capabilities of the device. The DeviceCap elements
are combined with a logical OR, (i.e., if a JDF resides within any param-
eter space defined by a DeviceCap, the device can process the job).
For details see Section 7.3, Device Capability Definitions.

IconList ?
New in JDF 1.1

element List of locations of icons that can be used to represent the device.

Name Data Type Description
Icon + refelement Individual icon description.

Name Data Type Description
Size XYPair Height and width of the icon.
BitDepth integer Bit depth of one color.
IconUsage ? enumerations Definition of the Status of the device that this Icon represents.

Any combination of:
Unknown – No link to the device exists
Idle
Down
Setup
Running
Cleanup
Stopped
If not specified, the Icon is used for all of the above. The mean-
ing of the individual enumerations is described in the
DeviceInfo message element. See Section , KnownDevices.

FileSpec element Details of the file containing the icon data.

Name Data Type Description
Process Resources 343

Chapter 7 Resources
7.2.51 DeviceMark
New in JDF 1.1 Promoted from subelement status in the Surface resource with new attributes defined below.

Resource Properties
Resource class: Parameter
Resource referenced by: Surface
Example Partition: Side
Input of processes: —
Output of processes: —

Resource Structure

7.2.52 DeviceNSpace
Modified in JDF 1.2
[Note: DeviceNSpace was elevated to a resource in JDF 1.2.] DeviceNSpace may be used in several ways. For
example, defining the specific colorants of a DeviceNSpace:

• ColorantControl/ColorPool/@ColorantNameSet matches ColorantControl/DeviceNSpace/
@Name, and a

• ColorantControl/ColorPool/Color resource (with correct Name of colorant and other defining attributes)
exists for each colorant of the DeviceNSpace as given in ...

• ColorantControl/DeviceNSpace/SeparationSpec/@Name
For example, defining a single colorant in terms of its values in a DeviceNSpace:

Name Data Type Description
Font ? NMTOKEN The name of the font that should be used for the DeviceMark. Values

include:
Courier
Helvetica
Helvetica-Condensed
Times-Roman

FontSize ? integer The size of the font that should be used for the DeviceMark, in points ≥ 0.

MarkJustification
?

enumeration Description of the preferred DeviceMark justification. Interpreted in con-
text of the MarkOrientation. One of:
Center
Left
Right

MarkOffset ? XYPair Description of the preferred DeviceMark offset. Interpreted in context of
the device dependent default position in the coordinate system defined by
MarkOrientation.

MarkOrientation ? enumeration Description of the preferred DeviceMark orientation One of:
Horizontal
Vertical

MarkPosition ? enumeration Description of the preferred DeviceMark position. One of:
Top
Bottom
Left
Right
344 Process Resources

JDF Specification Release 1.2
• ColorantControl/ColorantParams names a colorant, (e.g., a Pantone spot color).

• ColorantControl/DeviceNSpace names a DeviceN color space, which then the

– ColorantControl/ColorPool/@ColorantNameSet matches, and then the corresponding

– ColorantControl/ColorPool/Color/DeviceNColor/@ColorList attribute gives the set of
DeviceNSpace colorant percent values necessary to construct the,

– ColorantControl/@ColorantParams colorant (also named ColorantControl/ColorPool/Color/
@Name) in using DeviceNSpace colorants.

Resource Properties
Resource class: Parameter
Resource referenced by: ColorantControl, ColorSpaceConversionParams
Example Partition: —
Input of processes: —
Output of processes: —
Resource Structure

7.2.53 DigitalDeliveryParams
New in JDF 1.2
This resource specifies the parameters of the DigitalDelivery process.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: Location
Input of processes: DigitalDelivery
Output of processes: —

Resource Structure

Name Data Type Description
Name ? string Color space name, (e.g., HexaChrome or HiFi).
N integer The number of colors that define the color space.
SeparationSpec *
Modified in JDF 1.2

refelement Ordered list of colorant names that define the DeviceN color space. Note that
these colorants must be specified in a corresponding ColorantParams ele-
ment of the ColorantControl or be implied by ProcessColorModel. In
other words, they must be real, physical colorants.

Name Data Type Description
Contact * refelement Source and destination address for the transfer of the artwork. The destina-

tion delivery address is specified as the ComChannel of the Contact with
ContactTypes including Delivery. Only one Contact with
ContactTypes including Delivery may be specified per destination. If
multiple delivery destinations are specified within one DigitalDelivery
process, the Contact with ContactTypes including Delivery must be
partitioned by the partition key “Location”.
In case the output RunList completely specifies the destination, the
Contact with ContactTypes including Delivery should be omitted.
This may generally be the case when Method = “NetworkCopy” or
“WebServer”.
Contact with ContactTypes including “Sender” will specify the
source address.

DigitalDeliveryDire
ction ?

enumera-
tion

Describes which side activates the delivery.
Push – The artwork will be sent (the source end is active).
Pull – The artwork will be retrieved (the destination end is active).
Process Resources 345

Chapter 7 Resources
Compression & Encoding of the transferred files:
In order to instruct a digital delivery device to compress or encode the files one may use the input and output
RunList with FileSpec/@Compression attribute, even if no URL is specified. See “DigitalDelivery Examples”
on page 699. for a set of examples.

7.2.54 DigitalMedia
New in JDF 1.2
This resource represents a processed removable digital media-based handling resource such as tape or removable disk.

Resource Properties
Resource class: Handling
Resource referenced by: ArtDeliveryIntent, DeliveryParams
Example Partition: —
Input of processes: —
Output of processes: Delivery

Resource Structure

DigitalDeliveryProt
ocol ?

NMTO-
KEN

Identifies the delivery network protocol. Values include:
FTP
HTTP
HTTPS
SMTP

Method ? NMTO-
KEN

Identifies the delivery method. Values include:
EMail
ISDNSoftware
NetworkCopy – This includes LAN and VPN.
WebServer – Upload / Download from HTTP / FTP server.
InstantMessaging
May also be a digital delivery service brand, includes:
Vio
WAMNET

Name Data Type Description
Capacity ? integer Size of the digital media in megabytes.
MediaLabel ? string Electronic label of the media.
MediaType NMTO-

KEN
The digital media type. Values include:
CD – Recordable compact disc.
DAT – DAT tape backup media.
DLT – DLT tape backup media.
DVD – DVD disc.
Exabyte – Exabyte tape backup media.
HardDrive – Removable hard drives from a rack.
Jaz – Jaz removable disk drive.
Optical – Optical removable disk drive. Excluding CDs and DVDs.
Tape – Tape backup media. Use only when the explicit tape type is not
listed here.
Zip – Zip removable disk drive.

MediaTypeDetails ? string The digital media type details — could be vendor or model name. For exam-
ple: “8mm” or “VHS” for tape media.

RunList ? refelement Link to the relevant files on the media. The URL specified in this RunList
should be a relative path to the media's mount point.

Name Data Type Description
346 Process Resources

JDF Specification Release 1.2
7.2.55 DigitalPrintingParams
This resource contains attributes and elements used in executing the DigitalPrinting process. The PrintingType
attribute in this resource defines two types of printing: SheetFed and WebFed. The principal difference between
them is the shape of the paper each is equipped to accept. Presses that execute WebFed processes use substrates that
are continuous and cut after printing is accomplished. Most newspapers are printed on web-fed presses. SheetFed
printing, on the other hand, accepts precut substrates.

7.2.55.1 Coordinate systems in DigitalPrinting
New in JDF 1.2
Figure 2.10 in Section 2.5, Coordinate Systems in JDF defines the coordinate system for ConventionalPrinting
and DigitalPrinting. Note that the paper feed direction of the idealized process is towards the X-axis which corre-
sponds to bottom edge first.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: BlockName, DocRunIndex, DocSheetIndex, PartVersion, Run,

RunIndex, RunTags, SheetIndex, Separation, SheetName,
Side, SignatureName, DocIndex

Input of processes: DigitalPrinting
Output of processes: —

Resource Structure
Name Data Type Description

Collate ?
New in JDF 1.1

enumeration Determines the sequencing of the sheets in the document and the documents
in the job when multiple copies of a document or a job are requested as out-
put. Document copies can be requested by specifying RunList/
@DocCopies and job copies can be requested by specifying the output
Component Amount.
None – Do not collate sheets in the document or document(s) in the job.
Sheet – Collate the sheets in each document; do not collate the documents in
the job. The result of Sheet and SheetAndSet is the same when there is
one document in the set. The result of Sheet and SheetSetAndJob is the
same when there is one document in the set and one set in the job.
SheetAndSet – Collate the sheets in the document and collate the documents
in the set. Do not collate the sets in the job. The result of SheetAndSet and
SheetSetAndJob is the same when there is one set in the job.
SheetSetAndJob – Collate the sheets in the document and collate the doc-
uments in the set and collate the sets in the job.
The following example consists of two documents, A and B, each having two
sheets, A1, A2 and B1, B2. The number of document copies requested is one
for both documents and the number of job copies requested is three
(Component Amount = 3). The job contains no document set boundaries.
If Collate = “None”, the sheet order will be:
A1A1A1 A2A2A2 B1B1B1 B2B2B2
If Collate = “Sheet”, the sheet order will be:
A1A2 A1A2 A1A2 B1B2 B1B2 B1B2
If Collate = “SheetAndSet” or “SheetSetAndJob”, the sheet order
will be:
A1A2 B1B2 A1A2 B1B2 A1A2 B1B2
Process Resources 347

Chapter 7 Resources
DirectProofAmou
nt = “0”
New in JDF 1.2

integer If greater than zero (>0), a set of proofs is directly produced and subsequently
an approval may be given by a person (e.g., the customer, foreman, or floor
manager) shortly after the first final-quality printed sheet is printed. The
approval is not required for setup, but it is required for the actual print run. If
the DigitalPrinting process is waiting for a DirectProofAmount, the
JDF node’s Status is switched to “Stopped” with the StatusDetails =
“WaitForApproval”.

ManualFeed =
“false”
New in JDF 1.1

boolean Indicates whether the media will be fed manually.

NonPrintableMarg
inBottom ?
New in JDF 1.2

double The width in points of the bottom margin measured inward from the edge of
the media (before trimming, if any) with respect to the idealized process coor-
dinate system of the DigitalPrinting process. The DigitalPrinting pro-
cess must put marks up to, but not in, the non-printable margin area. The
Media’s origin is unaffected by NonPrintableMarginBottom. These
margins are independent of the PDL content.

NonPrintableMarg
inLeft ?
New in JDF 1.2

double Same as NonPrintableMarginBottom except for the left margin.

NonPrintableMarg
inRight ?
New in JDF 1.2

double Same as NonPrintableMarginBottom except for the right margin.

NonPrintableMarg
inTop ?
New in JDF 1.2

double Same as NonPrintableMarginBottom except for the top margin.

OutputBin ?
New in JDF 1.1
Modified in JDF 1.2

NMTOKEN Specifies the bin to which the finished document should be output. Suggested
values can be found in "Input Tray and Output Bin Names" on page 633.

PageDelivery ?
New in JDF 1.1

enumeration Indicates how pages are to be delivered to the output bin or finisher. Possible
values are:
FanFold – The output is alternating face-up, face down.
SameOrderFaceUp – Order as defined by the RunList, with the “front”
sides of the media up.
SameOrderFaceDown – Order as defined by the RunList, with the “front”
sides of the media down.
ReverseOrderFaceUp – Order reversed, as defined by the RunList, with
the “front” sides of the media up.
ReverseOrderFaceDown – Order reversed, as defined by the RunList,
with the “front” sides of the media down.

PrintingType ?
Modified in JDF 1.2

enumeration Type of printing machine. Possible values are:
ContinuousFed – connected sheets including fan fold. New in JDF 1.2
SheetFed
WebFed

PrintQuality ?
Deprecated in JDF 1.1

enumeration Indicates how pages are to be delivered to the output bin or finisher. Possible
values are:
High – Highest quality available on the printer.
Normal – The default quality provided by the printer.
Draft – Lowest quality available on the printer
Replaced by InterpretingParams/@PrintQuality

Name Data Type Description
348 Process Resources

JDF Specification Release 1.2
7.2.56 Disjointing
The Disjointing resource describes how individual components are separated from one another on a stack.

Resource Properties
Resource class: ResourceElement
Resource referenced by: Component, DigitalPrintingParams, GatheringParams
Example Partition: —
Input of processes: —
Output of processes: —

Resource Structure

SheetLay ? enumeration Lay of input media. Reference edge of where paper is placed in feeder. Possi-
ble values are:
Left
Right
Center

ApprovalParam
s ?
New in JDF 1.2

refelement Details of the direct approval process, when DirectProofAmount > 0.

Component ?
New in JDF 1.1

refelement Describes the preprocessed media to be used. Different Media and/or
Components may be specified in different partition leaves to enable con-
tent-driven input Media selection. For any given partition, only one of
Media or Component must be specified per partition.

Disjointing ?
New in JDF 1.1

refelement Describes how individual components are separated from one another in the
output bin.

Media ?
New in JDF 1.1

refelement Describes the media to be used. Different Media and/or Components may
be specified in different partition leaves to enable content driven input Media
selection. For any given partition, only one of Media or Component must
be specified per partition.

MediaSource ?
Deprecated in JDF 1.1

refelement Describes the media to be used. For any given partition, only one of MediaSource
or Component may be specified. Replaced with Media in JDF 1.1.

Name Data Type Description
Number ? integer Number of sheets that make up one component.
Offset ? XYPair Offset dimension in X- and Y-dimensions that separates the components.
OffsetAmount ? integer The number of components that are shifted in OffsetDirection simulta-

neously.
OffsetDirection ?
Clarified in JDF 1.2

enumeration Offset-shift action for the first component. A component can be offset to
one of two positions—left or right. Possible values are:
Alternate – The position of the first component is opposite to the posi-
tion of the previous component and subsequent components are each offset
to alternating positions. For example, if the last item in the stack was posi-
tioned to the right then the subsequent items will be positioned to the left,
right, left, right, and so on.
Left – Offset consecutive components sideways to the left, next to the
right.
None – Do not offset consecutive components. The position of all compo-
nents is the same as the position of the previous component.
Right – Offset consecutive components sideways to the right, next to the
left.
Straight – Same as None. Deprecated in JDF 1.2

Name Data Type Description
Process Resources 349

Chapter 7 Resources
7.2.57 Disposition
New in JDF 1.2
This element describes how long an asset must be maintained by a device. The device will perform an action defined
by Disposition/@DispositionAction when a “disposition time” occurs. Disposition time is defined
either as:

Until <= "Disposition time" <= Until + ExtraDuration

ProcessCompleteTime+MinDuration <= "Disposition time" <=

ProcessCompleteTime+MinDuration+ExtraDuration

Resource Properties
Resource class: ResourceElement
Resource referenced by: FileSpec, SubmitQueueEntry/QueueSubmissionParams,

RunList
Example Partition: —
Input of processes: —
Output of processes: —

Resource Structure

Overfold ?
Deprecated in JDF 1.1

double Expansion of the overfold of a sheet. This attribute may be needed for the
Inserting or other postpress processes. Moved to Component.

IdentificationField *
Modified in JDF 1.1

element Marks that identify the range of sheets to be used in a process. A scanner
will scan the sheets and detect a component boundary by scanning a mark
(e.g., a bar code) that matches the description in the IdentificationField
element.

InsertSheet ? refelement Some kind of physical marker (e.g., a paper strip or a yellow paper sheet)
that separates the components.

Name Data Type Description
DispositionAction
= “Delete”

enumeration Delete – The asset must be deleted when disposition time occurs.
Archive – The asset must be archived when disposition time occurs.

DispositionUsage
?

enumeration Specifies the usage of the asset by the process. If not specified, Disposition
applies to all processes that link to the resource.
Input – Disposition applies only to processes that use the asset as an input
resource.
Output – Disposition applies only to processes that use the asset as an out-
put resource.

ExtraDuration ? duration Indicates the maximum duration that the device is allowed to retain the asset
after the time specified by MinDuration or Until. If neither
ExtraDuration, MinDuration, nor Until are specified, the asset is
retained for a system specified time.

MinDuration ? duration Indicates the minimum duration that the device should retain the asset after
the process that uses the asset completes.

Priority = “0” integer Value between 0 and 100 that specifies the order in which assets will be
deleted or archived when the values of Duration, MinDuration, nor Until
cannot be honored, (e.g. when local storage runs low). Assets with Priority =
“0” will be deleted first.

Until ? dateTime Indicates an absolute point in time when the device or application should stop
the asset retention. If Until is specified, MinDuration must be ignored.

Name Data Type Description
350 Process Resources

JDF Specification Release 1.2
7.2.58 DividingParams
Deprecated in JDF 1.1.
Since the Dividing process has been replaced by Cutting, this resource is no longer required. See
"DividingParams" on page 755 for details of this deprecated resource.

7.2.59 ElementColorParams
New in JDF 1.2
This resource provides a container for color metadata applicable to a LayoutElement.
Resource Properties
Resource class: Parameter
Resource referenced by: LayoutElement, PageList
Example Partition: —
Input of processes: —
Output of processes: —
Resource Structure

Name Data Type Description
ColorManagementSystem ? NMTOKEN Identifies the preferred ICC color management system to use when

performing color transformations on the particular
LayoutElement. When specified, this attribute overrides any
default selection of a color management system by an application and
overrides the “CMM Type” value (bytes 4-7 of an ICC Profile Header)
in any of the job related ICC profiles. This string attribute value identi-
fies the manufacturer of the preferred CMM and must match one of the
registered four-character ICC CMM Type values. See the ICC Manu-
facturer’s Signature Registry at http://www.color.org. Example val-
ues: “ACME” for the Acme Corp. CMM.

ICCOutputProfileUsage ? enumeration This attribute specifies the usage of the output intent profile or
specified printing condition from the PDL. Possible values are:
PDLActual – The embedded PDL output printing condition
defines the actual output intent profile, (e.g., the final press output).
PDLReference – The embedded PDL output printing condition
defines the reference output intent profile, (e.g., the press profile
for proofing).
IgnorePDL – The embedded ICC output profile is incorrect and
should be ignored.

AutomatedOverPrintPara
ms ?

refelement A resource that provides controls for the automated selection of
overprinting of black text or graphics.

ColorantAlias * refelement Each resource instance specifies a replacement colorant name
string to be used instead of one or more named colorant strings
found in the layout element.

ColorSpaceConversionOp
?

refelement List of ColorSpaceConversionOp subelements, each of which
identifies a type of object, defines the source color space for that
type of object, and specifies the behavior of the conversion opera-
tion for that type of object. If not present, the default conversion
behavior is derived from ColorStandard.
ColorSpaceConversionOp/@Operation is ignored in the
context of ElementColorParams.

FileSpec ?
(ActualOutputProfile)

refelement A FileSpec resource pointing to an ICC profile that describes the
characterization of an actual output target device.

FileSpec ?
(ReferenceOutputProfile)

refelement A FileSpec resource pointing to an ICC profile that describes a
reference output print condition behavior that should be simulated
as a part of a requested color transformation. This profile corre-
sponds to the output intent contained in a PDF/X file. It should be a
specific implementation of ColorIntent/@ColorStandard.
Process Resources 351

http://www.color.org

Chapter 7 Resources
7.2.60 EmbossingParams
New in JDF 1.1
This resource contains attributes and elements used in executing the Embossing process.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: BlockName, RibbonName, SheetName, SignatureName, WebName
Input of processes: Embossing
Output of processes: —

Resource Structure

Structure of the Emboss Subelement

Name Data Type Description
Emboss * element One Emboss element is specified for each impression.

Name Data Type Description
Direction enumeration The direction of the image. Possible values are:

Both – Both debossing and embossing in one stamp.
Raised – Embossing.
Depressed – Debossing.

EdgeAngle ? double The angle of a beveled edge in degrees. Typical values are an angle of: 30, 40,
45, 50, or 60 degrees. For EdgeAngle to exist, EdgeShape = Beveled
must be specified.

EdgeShape =
“Rounded”

enumeration The transition between the embossed surface and the surrounding media may be
rounded or beveled (angled). Possible values are:
Rounded
Beveled

EmbossingType enumeration Possible values include
BlindEmbossing – Embossed forms that are not inked or foiled. The color
of the image is the same as the paper.
EmbossedFinish – The overall design or pattern impressed in laminated
paper when passed between metal rolls engraved with the desired pattern. Pro-
duced on a special embossing to create finishes such as linen.
FoilEmbossing – Combines embossing with foil stamping in one single
impression.
FoilStamping – Using a heated die to place a metallic or pigmented image
from a coated foil on the paper.
RegisteredEmbossing – Creates an embossed image that exactly regis-
ters to a printed image.

Height ? double The height of the levels. This value specifies the vertical distance between the
highest and lowest point of the stamp, regardless of the value of Direction.

ImageSize ? XYPair The size of the bounding box of one single image.
Level ? enumeration The level of embossing. Possible values are:

SingleLevel
MultiLevel
Sculpted

Position ? XYPair Position of the lower left corner of the bounding box of the embossed image in
the coordinate system of the Component.
352 Process Resources

JDF Specification Release 1.2
7.2.61 Employee
Information about a specific device or machine operator (see Section 3.6.1.3, Implementation Resources).
Employee is also used to describe the contact person who is responsible for executing a node, as defined in the
NodeInfo field of a JDF node.

Resource Properties
Resource class: Implementation
Resource referenced by: NodeInfo
Example Partition: —
Input of processes: Any process
Output of processes: —

Resource Structure

7.2.62 EndSheetGluingParams
This resource describes the attributes and elements used in executing the EndSheetGluing process.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: EndSheetGluing
Output of processes: —

Resource Structure

Name Data Type Description
PersonalID ? string ID of the relevant MIS employee.
Roles ?
New in JDF 1.2

NMTO-
KENS

Defines the list of roles that the employee fills. Values include:
Apprentice – Employee that is in training, (“Auszubildender” / “Auszubil-
dende” in German).
Assistant – Assistant operator.
Craftsman – Trained employee, (“Geselle” / “Facharbeiter” in German).
CSR - Customer Service Representative
Manager – Manager.
Master – Highly trained employee, (“Meister” in German).
Operator – Operator.
ShiftLeader – The leader of the shift.

Shift ? string Defines the shift to which the employee belongs.
CostCenter
?

element MIS cost center ID.

Person ? refelement Describes the employee. If no Person element is specified, the Employee
resource represents any employee who fulfills the selection criteria.

Name Data Type Description
EndSheet (Front) element Information about the front-end sheet. The Side attribute of this element

must be “Front”.
EndSheet (Back) element Information about the back-end sheet. The Side attribute of this element

must be “Back”.
Process Resources 353

Chapter 7 Resources
Structure of EndSheetGluingParams Elements
EndSheet

The process coordinate system is defined as follows: The Y-axis is aligned with the binding edge of the book block. It
increases from the registered edge to the edge opposite to the registered edge. The X-axis is aligned with the regis-
tered edge. It increases from the binding edge to the edge opposite the binding edge, (i.e., the product front edge).

Name Data Type Description
Offset ?
Deprecated in JDF 1.2

XYPair Offset of end sheet in X and Y direction. In JDF 1.2 and beyond,
Offset is implied by the Transformation matrix in ResourceLink/
@Transformation of the EndSheet’s ComponentLink.

Side enumeration Location of the end sheet. Possible values are:
Front
Back

GlueLine element Description of the glue line.

Figure 7.7: Parameters and coordinate system used for end-sheet gluing
354 Process Resources

JDF Specification Release 1.2
7.2.63 ExposedMedia
This resource represents a processed Media-based handling resource such as film, plate, or paper proof. It is also
used as an input resource for the Scanning process.

Resource Properties
Resource class: Handling
Resource referenced by: —
Example Partition: DocIndex, RunIndex, RunTags, Separation, SheetName, Side,

SignatureName, TileID, WebName
Input of processes: ContactCopying, ConventionalPrinting, PreviewGeneration,

DigitalPrinting, Scanning
Output of processes: ContactCopying, ImageSetting, FilmToPlateCopying,

Proofing

Resource Structure
Name Data Type Description

ColorType ? enumeration Possible values are:
Color
GrayScale
Monochrome – Black and white.

Polarity = “true” boolean false if the media contains a negative image.
ProofName ?
New in JDF 1.2

string When this ExposedMedia specifies a proof, ProofName is the
name of the ProofingIntent/ProofItem that specified this proof
in the product intent section.

ProofQuality ?
Modified in JDF 1.2

enumeration This attribute is present if the ExposedMedia resource describes a
proof. Possible values are:
None – Not a proof or the quality is unknown. Deprecated in JDF 1.2
Halftone – The halftones are emulated.
Contone – No halftones, but exact color.
Conceptual – Color does not match precisely.

ProofType ?
Modified in JDF 1.2

enumeration None – Not a proof or the type is unknown. Deprecated in JDF 1.2
Page – Page proof.
Imposition – Imposition proof.

PunchType ? string Name of the registration punch scheme. Possible values include, but
are not limited to:
Bacher
Stoesser
If not specified, no holes are punched.

Resolution ? XYPair Resolution of the output.
FileSpec
(OutputProfile) ?

refelement A FileSpec resource pointing to an ICC profile that describes the
output process for which this media was exposed.

Media refelement Describes media specifics such as size and type.
ScreeningParams ? refelement Used to describe the screening in case of rasterized media.
Process Resources 355

Chapter 7 Resources
7.2.64 FeedingParams
New in JDF 1.2
The parameters for any JDF Feeder processing device.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: DocIndex, RunIndex, RunTags, Separation, SheetName, Side,

SignatureName, TileID, WebName
Input of processes: Feeding
Output of processes: —

Resource Structure

Structure of the Feeder Element

Name Data Type Description
Feeder * element Defines the specifics of an individual Feeder. If a Component or

Media from the input resource list is not referenced from a Feeder
in this list, a system defined Feeder will be used.

CollatingItem * element Defines the collating sequence of the input Component(s). If a
CollatingItem is not defined, then one Component in the order
of input resource link list is consumed.

Name Data Type Description
AlternatePositions ? IntegerList Positions of alternate feeders including the feeder specified in

Position on a feeding chain. Alternate feeders share the load accord-
ing to the policy defined in FeederSynchronization. If not speci-
fied, it defaults to the value of Position. AlternatePositions must
be non-negative.

Position ? integer Position of feeder on a collecting and gathering chain in chain
movement direction. Position = “0” is first feeder feeding to the
collecting and gathering chain. Only one Feeder may be specified
for any given Position. If Position is negative, it specifies the posi-
tion counted from the back of the chain, (e.g., “-1” = last position,
“-2” = next to last position, etc.).

FeederSynchronization
= “Primary”

enumeration Specifies the synchronization of multiple Feeder(s) with identical
Component(s): Values include:
Alternate – The feeders specified in Position alternate.
Backup – This Feeder is the backup feeder for the Component
in case of a misfeed or malfunction. The priority of backup feeders is
defined by their position in AlternatePositions.
Chain – This feeder is activated as soon as the feeder prior to it in
the list is empty.
Primary – This Feeder is the primary feeder for the
Component.

FeederType ? NMTOKEN Specifies the feeder type. Values include:
Sheet – Single sheet feeder.
Signature – Single signature feeder.
Folding – Folding feeder that folds the input Component or Media.
Gluing – Gluing feeder
AddOn – Add on feeder, (e.g., CDs).
356 Process Resources

JDF Specification Release 1.2
Structure of the FeederQualityParams Subelement
The FeederQualityParams element defines the setup and policy for feeding quality control. It may be specified
individually for each Feeder.

Loading ? NMTOKEN Specifies the feeder loading. Values include:
Bundle – Stream feeder, using the output of the Bundling pro-
cess.
FanFold – Automatic loading of FanFold Media.
Manual – Manual loading of stacks
Online – Loaded by a gripper or conveyor.
PrintRoll – Automatic loading of single products from a print
roll, using the output of the PrintRolling process.

Opening = “None” enumeration Specifies the opening of signatures:
Back – Overfold on back.
Front – Overfold on front.
None – Signatures are not opened.
Sucker – Sucker opening, no overfold.

Component ? refelement Specifies the Component that is to be loaded into this Feeder.
Only one of Component or Media must be specified.

FeederQualityParams ? element Definition of the setup and policy for feeding quality.
Media ? refelement Specifies the Media that is to be loaded into this Feeder. Only one

of Component or Media must be specified.

Name Data Type Description
IncorrectComponentQu
ality ?

enumeration Defines the operation of the incorrect components quality control:
Supported values are:
NotActive – Quality control is not active.
Check – Check the quality and register.
Waste – Check the quality and register. A component failing the test
is waste.
StopNoWaste – Check the quality and register. Device will stop
after the defined number of consecutive errors. The error will be cor-
rected, (e.g., manually).
StopWaste – Check the quality and register. A component failing
the test is waste, and the device will stop after the defined number of
consecutive errors.

IncorrectComponents ? integer Number of consecutive incorrect components until the device stops.
DoubleFeedQuality ? enumeration Defines the operation of the double feed quality control. For a list of

supported values see: IncorrectComponentQuality.
DoubleFeeds ? integer Number of consecutive double feeds until the device stops.
BadFeedQuality ? enumeration Defines the operation of the bad feed quality control. For a list of sup-

ported values see: IncorrectComponentQuality.
BadFeeds ? integer Number of consecutive bad feeds until the device stops.

Name Data Type Description
Process Resources 357

Chapter 7 Resources
CollatingItem Element Structure

Examples:
Example 1: For al l CollationItems , Orientation = “Flip0” , TransformationContext =
“StackItem” or “Component”. The output would exactly look like before, except that each sheet is now face-
down.
TransformationContext = “Component” is equivalent in this case, since “StackItems” and
“Component” are referring to the same thing — a single sheet.

Example 2: For all CollationItems, Orientation = Flip0, TransformationContext = CollateItem:

Name Data Type Description
Amount = “1” integer Determines, how many consecutive items shall be consumed.
BundleDepth ? integer In case of nested bundles with BundleType = “Stack”, this

parameter addresses the element to be consumed within the “tree” of
such bundles. If the real bundle depth level (BundleType =
“Stack”) is smaller than the value of BundleDepth, individual
stack items (i.e., the smallest available level) shall be consumed. If
the input component referenced does not contain bundles, then this
parameter is ignored.

Orientation ? Orientation Named Orientation of the CollatingItem relative to the input
coordinate system. For details see Table 2-3 on page 24. Only one of
Orientation or Transformation must be specified. This transfor-
mation specified here is applied in addition to orientation/transforma-
tion specified in the respective resource link.

Transformation ? matrix Orientation of the Component respective to the input coordinate
system. This Transformation specified here is applied in addition
to orientation/transformation specified in the respective resource link.
Only one of Orientation and Transformation must be specified.
In neither are specified, no transformation is applied.

TransformationContext
= “StackItem”

enumeration This parameter specifies the object, which is to be manipulated in ori-
entation/transformation, and it is important to determine the sequence
of stack items after flipping.
StackItem – Apply individually to the smallest element on the
stack which can be manipulated individually, (e.g., to a single sheet
in the case of a stack of sheets).
Component – Apply to each single element of a CollateItem
individually.
CollateItem – apply to an CollateItem as a whole.
Note: If Amount = “1”, Component and CollateItem are
referring to the same object and, therefore, result in the same output.

Component ? refelement References one of the input components to the process to be (par-
tially) consumed by the CollatingItem element. It is an error to ref-
erence components which are not input components of the process.

Media ? refelement References one of the input media to the process to be consumed by
the CollatingItem element. It is an error to reference media, which
are not input media of the process.

(All face down)
358 Process Resources

JDF Specification Release 1.2
Note: Most real world devices are processing stack items one by one and hence will hardly support
TransformationContext = “CollateItem”. This requires some kind of buffer for the stack items belonging
to a single collating item plus a flipping mechanism for PrintRoll process.

7.2.65 FileSpec
Modified in JDF 1.2
Specification of a file or a set of files. If a single FileSpec instance specifies a set of files, it must do so using the
FileFormat and FileTemplate attributes to specify a sequence of URLs. Otherwise, each FileSpec instance
specifies a single file. If that single file is inside a container file (e.g., a Zip file or is compressed or encoded as indi-
cated by Compression), the FileSpec instance must define a Container subelement which defines another
FileSpec instance that specifies the container file. In such a case, the attributes of each FileSpec instance must
apply only to the properties of the file at that level.

Resource Properties
Resource class: Parameter
Resource referenced by: DBMergeParams, LayoutElement, PDLResourceAlias,

ScanParams
Example Partition: Separation
Input of processes: —
Output of processes: —

Resource Structure
Name Data Type Description

Application ? string Creator application. See AppVersion for the application version
number.

AppOS ?
Modified in JDF 1.2

string Operating system of the application that created the file. Possible val-
ues include:
DG_UX
HP_UX
IRIX
Linux
Mac
Solaris
Windows
Additional values may be used from the IANA Operating System
Names [iana-os] which allows up to 40 uppercase US ASCII alpha-
betical values as well as “-”, “_”, and “/” — but only for values not
covered by the above values. For example, “OS/2”. See "AppOS
and OSVersion Attributes" on page 651 for combinations of AppOS
and OSVersion values.

AppVersion ?
Clarified in JDF 1.2

string Version of the value of the Application attribute. The following are
some examples:
“8.1”
“8.1 (4331)”
“9.0.3 SR3437”

CheckSum ?
New in JDF 1.1
Modified in JDF 1.1A

hexBinary Checksum of the file being referenced using the RSA MD5 algo-
rithm. In JDF 1.1a, the term RSA MD was completed to RSA MD5.
The data type was modified to hexBinary to accommodate the 128
bit output of the MD5 algorithm. The CheckSum must be for the
entire file, not just parts of the file.
Process Resources 359

Chapter 7 Resources
Compression = “None”
Modified in JDF 1.2

NMTOKEN Indicates the compression or encoding for the entire file. This is not
compression used internally within the file.
Possible values include:
Base64 – A format for encoding arbitrary binary information for
transmission by electronic mail. [RFC3548]
BinHex – BinHex encoding converts an 8-bit file into a 7-bit for-
mat, similar to UUencoding [RFC1741].
Compress – UNIX compression [RFC1977].
Deflate – The file is compressed using Zip public domain com-
pression format [RFC1951].
Gzip – GNU Zip compression technology [RFC1952].
MacBinary – A format that combines the two forks of a Mac file,
together with the file information into a single binary data stream,
suitable for storage or transferring through non-Mac systems.
[macbinary]
None – The file is neither compressed nor encoded.
UUEncode – A set of algorithms for converting files into a series of
7-bit ASCII characters that can be transmitted over the Internet.
[uuencode]
ZLIB – ZLIB compression [RFC1950].

Disposition ?
Deprecated in JDF 1.2

enumeration Indicates what the device should do with the file when the process
that uses this resource as an input resource completes. Possible val-
ues include:
Unlink – The device should release the file.
Delete – The device should attempt to delete the file.
Retain – The device should do nothing with the file.
In JDF 1.2 and beyond, retention of assets is specified in the
Disposition element.

DocumentNaturalLang ? language The natural language of the document this FileSpec refers to. If the
document contains more than one language, the value is the primary
language of the document.

FileFormat ?
Clarified in JDF 1.2

string A formatting string used with the FileTemplate attribute to define
a sequence of URLs in a batch process, each of which has the same
semantics as the URL attribute.
If neither URL nor UID is present, both FileFormat and
FileTemplate must be present, unless the resource is a pipe. If
either URL or UID is specified, then FileFormat and
FileTemplate must not be specified. For more information, see the
text following this table.

FileSize ?
Modified in JDF 1.2

LongInteger Size of the file in bytes. The datatype was changed from integer to
LongInteger in JDF 1.2.

Name Data Type Description
360 Process Resources

JDF Specification Release 1.2
FileTargetDeviceModel ?
New in JDF 1.2

string Identifies the model of the JDF device for which the document was
formatted, including manufacturer name, when the file is device-
dependent. The value of this attribute must exactly match the IEEE
1284-2000 Device ID string, except the length field must not be
specified. See the Microsoft Universal Plug-and-Play [UPNP] sec-
tion 2.2.6 DeviceId parameter for details. Here is an example show-
ing only the required fields for a PostScript document formatted for a
LaserBeam 9:
MANUFACTURER:ACME Co.;COMMAND
SET:PS;MODEL:LaserBeam 9;
(See [IEEE1284] clause 7.6)
If this attribute is not present, it is assumed that the file is device
independent.

FileTemplate ? string A template, used with FileFormat, to define a sequence of URLs in
a batch process, each of which has the same semantics as the URL
attribute. If neither URL nor UID is present, both FileFormat and
FileTemplate must be present, unless the resource is a pipe.

FileVersion ?
New in JDF 1.1

string Version of the file referenced by this FileSpec.

MimeType ?
Modified in JDF 1.2

string MIME type or file type of the file (or files of identical type when
specifying a sequence of file names using the FileFormat and
FileTemplate attributes). See Compression for the indication of
compression or encoding of the file. See MimeTypeVersion for
the format version.
If the file format has a MIME Media Type [iana-mt] registered with
IANA, that value must be used. [RFC2046] defines that MIME
Media Types are case-insensitive.
If the file format does not have a MIME Media Type registered with
IANA, then the JDF spec defines string values, called file types,
which must be used.
See "FileSpec Attribute Examples for MimeType and
MimeTypeVersion Attributes" on page 635 for examples in common
use by JDF applications.

MimeTypeVersion ?
New in JDF 1.2

string The level or version of the file format identified by MimeType,
whether the value of MimeType is a MIME Media Type or a file
type value defined by the JDF spec. Example values include:
“PDF/1.3”, “PDF/1.4”, and “PDF/X-1a:2001” for
MimeType = “application/pdf”
“TIFF-IT/FP:1998”, “TIFF-IT/CT:1998”, and “TIFF-
IT/LW/P1:1998” for MimeType = “TIFF/IT”
See "FileSpec Attribute Examples for MimeType and
MimeTypeVersion Attributes" on page 635 for examples in common
use by JDF applications.

OSVersion ?
Modified in JDF 1.2

string Version of the operating system specified by AppOS. The IANA
Registry provides a list. See "AppOS and OSVersion Attributes" on
page 651, for combinations of AppOS and OSVersion values.

Name Data Type Description
Process Resources 361

Chapter 7 Resources
OverwritePolicy ?
New in JDF 1.2

enumeration Policy that specifies the policy to follow when a file already exists
and the Filespec is used as an output resource. One of:
Overwrite – Overwrite the old file.
RenameNew – Rename the new file.
RenameOld – Rename the old file.
NewVersion – Create a new file version. Only valid when the
FileSpec references a file on a version aware file system.
OperatorIntervention – Present a dialog to an operator.
Abort – Abort the process without modifying the old file.

PageOrder ? enumeration Indicates the order of pages in the file containing pages. Possible
values are:
Ascending – The first page in the file is the lowest numbered
page.
Descending – The first page in the file is the highest numbered
page.

ResourceUsage ? NMTOKEN If an element uses more than one FileSpec subelement, this
attribute is used to refer from the parent element to a certain child
element of this type, for example, see
FormatConversionParams.

SearchDeph ?
New in JDF 1.2

integer Used when ResourceUsage=”SearchPath” to specify the
maximum directory depth that will be recursively searched. 0 speci-
fies this directory only, INF specifies an unlimited search.

UID ?
New in JDF 1.1

string Unique internal ID of the referenced file. This attribute is dependent
on the type of file that is referenced:
PDF – Variable unique identifier in the ID field of the PDF file’s
trailer.
ICC Profile – Profile ID in bytes 84-99 of the ICC profile header.
Others – Format specific.
If neither URL nor UID is present on an input FileSpec, and neither
FileFormat nor FileTemplate is present, the referencing resource
must be a pipe. If either URL or UID is specified, then FileFormat
and FileTemplate must not be specified.

URL ?
Clarified in JDF 1.2

URL Location of the file specified as either an Absolute URI or a Relative
URI. If neither URL nor UID is present on an input FileSpec, and
neither FileFormat nor FileTemplate is present, the referencing
resource must be a pipe. If either URL or UID is specified, then
FileFormat and FileTemplate must not be specified.
If URL is not specified in an output resource, the system-specified
location will be assumed, but this value must be updated as soon as
the output resource is available. For example, an instruction for a
digital delivery JDF device to compress the files may specify the out-
put RunList with the Compression attribute without the URL
attribute.
See [RFC2396] and "Resolving RunList/@Directory and FileSpec/
@URL URI references" on page 649 and "FileSpec MimeType,
URL, and Compression attributes, and Container subelement" on
page 641 for the syntax and examples. For the “file:” URL scheme
see also [RFC1738] and [FileURL].

Name Data Type Description
362 Process Resources

JDF Specification Release 1.2
Structure of the Container Subelement
New in JDF 1.2

The Container specifies the containing file for a FileSpec, e.g. a zip file or tar archive. Containers may be
specified recursively in their respective child FileSpecs.

Structure of FileAlias Subelement

UserFileName ? string A user-friendly name which may be used to identify the file.
Container ?
New in JDF 1.2

element Specifies the container for this file. When a container FileSpec is
pointed to by Container, that FileSpec must not also specify a
FileFormat/FileTemplate attribute pair.
The container mechanism may be used recursively, (e.g., for a Zip
file held in a tar file, a Zip file in a Zip file, an encoded Zip file, etc.).
See "Resolving RunList/@Directory and FileSpec/@URL URI
references" on page 649 for details.

Disposition ?
New in JDF 1.2

refelement Indicates what the device should do with the file when the process
that uses this resource completes. If not specified, the file specified
by this FileSpec must not be deleted by the Device. FileSpec/
Disposition takes precedence over RunList/Disposition.

FileAlias * element Defines a set of mappings between file names that may occur in the
document and URLs (which may refer to external files or parts of a
MIME message).

Name Data Type Description
FileSpec refelement Link to another FileSpec resource that describes the container, (e.g., a

packaging file, such as Zip, multipart/related, tar file, or an otherwise
compressed, or encoded file that contains the file represented by this
FileSpec resource). The link value is only to be used for locating that
container FileSpec resource. See "Resolving RunList/@Directory
and FileSpec/@URL URI references" on page 649 for details.

Name Data Type Description
Alias string The filename which is expected to occur in the file.
Disposition ?
Deprecated in JDF 1.2

enumeration Indicates what the device should do with the file referenced by this alias
when the process that uses this resource as an input resource completes.
Possible values are:
Unlink – The device should release the file.
Delete – The device should attempt to delete the file.
Retain – The device should do nothing with the file.
 In JDF/1.2 and beyond, use FileSpec/Disposition.

MimeType ?
Deprecated in JDF 1.2

string MIME type of the file. In JDF/1.2 and beyond, use FileSpec/
@MimeType.

RawAlias ?
New in JDF 1.2

hexBinary Representation of the original 8-bit byte stream of the Alias Name. Used
to transport the original byte representation of an Alias name when mov-
ing JDF tickets between computers with different locales.

URL ?
Deprecated in JDF 1.2

URL The URL which identifies the file the alias refers to. In JDF/1.2 and
beyond, use FileSpec/@URL.

FileSpec ?
New in JDF 1.2

refelement For JDF version 1.2 and beyond, this refelement must be present and refer-
ence a FileSpec resource that must contain a URL attribute, and may
contain additional properties of the file, (e.g., Disposition,
MimeType, MimeTypeVersion, etc.).

Name Data Type Description
Process Resources 363

Chapter 7 Resources
Usage of FileFormat and FileTemplate Attributes to Define a Set of Files
The function defined when using the attributes FileFormat and FileTemplate is based on the standard C printf()
function. (See [K&R].) FileFormat is the first argument and FileTemplate is a comma-separated list of the addi-
tional arguments. FileTemplate may contain the following operators: +,-,*,/,%,(,) which are evaluated using stan-
dard C-operator precedence and the variables defined in the following table:

Example:
<FileSpec FileFormat = "file://myserver.mydomain.com/next/%s/%4.i/m%4.i.pdf"
FileTemplate = "JobID,i/100,i%100"/>
... with JobID = “j001” and a RunList defining 2023 created files will iterate all created files and place them into:
"file://myserver.mydomain.com/next/j001/0000/m0000.pdf"
…
"file://myserver.mydomain.com/next/j001/0020/m0023.pdf"

Table 7-4: Predefined variables used in FileTemplate

Name Description
Acknowledge-
Type

Corresponds to the JMF AcknowledgeType in the Acknowledge message. See
"Acknowledge" on page 137.

all Selects all matching elements. Valid only when FileSpec is used as an input resource.
CustomerID CustomerID.
Date Current Date in ISO 8601 format.
element Integer iterator over all elements in a given page. Restarts at 0 for each page.
Generated System generated file name.
i Integer iterator over all files produced by this process. 0-based numbering.
input Local file name of the input file. Valid only when FileSpec is used as an output resource.
jobID Job ID string.
jobName DescriptiveName of the Node that is being processed.
jobPartID JobPartID string.
page Integer iterator over the page number of a document. This is equivalent to r for the case that each

run contains exactly one page.
PartVersion PartVersion string of a partitioned resource.
r Integer iterator over all RunList partitions with a partition key of “Run” in an input RunList.
ri Integer iterator over all indices in an input “Run” of a RunList. This index is equivalent to loop-

ing over a RunIndex.
sep Separation as defined in the separation PartIDKey(s) of a partitioned resource.
SheetName SheetName string of a partitioned resource.
SignatureName SignatureName string of a partitioned resource.
surf Surface string, “Front” or “Back”.
SystemRoot Root of system directory file structure. This token provides an operating system, independent way

to refer to the root.
TileX X coordinate of a Tile.
TileY Y coordinate of a Tile.
Time Current Time in ISO 8601 format.
364 Process Resources

JDF Specification Release 1.2
7.2.66 FitPolicy
New in JDF 1.1
This resource specifies how to fit content into a receiving container (e.g., a RunList entry into a PlacedObject) or
image onto media.

Resource Properties
Resource class: Parameter
Resource referenced by: InterpretingParams, LayoutPreparationParams
Example Partition: —
Input of processes: —
Output of processes: —

Resource Structure
Name Data Type Description

ClipOffset ? XYPair Defines the offset (position) of the imaged area in the non-rotated source
image when SizePolicy is ClipToMaxPage. The values 0.0 0.0 mean that
the imaged area starts at the lower left point of the job. If absent, the imaged
area is taken from the center of the image source. If FitPolicy is defined in
the context of a PageCell, ClipOffset is ignored when PageCell/
@ImageShift is specified.

GutterPolicy =
“Fixed”

enumeration Allows printing of NUp grids even if the media size does not match the
requirements of the data. One of:
Distribute – The gutters may grow or shrink to the value specified in
MinGutter.
Fixed – The gutters are fixed.

MinGutter ? XYPair Minimum width in points of the horizontal and vertical gutters formed
between rows and columns of pages of a multi-up sheet layout.
The first value specifies the width of all horizontal gutters and the second
value specifies the minimum width of all vertical gutters.

RotatePolicy ? enumeration Specifies the policy for the device to automatically rotate the image to opti-
mize the fit of the image to the container.
NoRotate - Do not rotate.
RotateOrthogonal – Rotate by 90° in either direction.
RotateClockwise – Rotate clockwise by 90°.
RotateCounterClockwise – Rotate counterclockwise by 90°.

SizePolicy ?
Modified in JDF 1.1A

enumeration Allows printing even if the container size does not match the requirements of
the data.
ClipToMaxPage – The page contents should be clipped to the size of the
container. The printed area is either centered in the source image, if no
ClipOffset key is given, or from that position which is determined by
ClipOffset.
Abort – Emit an error and abort printing.
FitToPage – The page contents should be scaled up or down to fit the con-
tainer. The aspect ratio is maintained.
ReduceToFit – The page contents should be scaled down but not scaled
up to fit the container. The aspect ratio is maintained.
Tile – the page contents should be split into several tiles, each printed on its
own surface.
Process Resources 365

Chapter 7 Resources
7.2.67 Fold
New in JDF 1.1
Fold describes an individual folding operation of the Component.

Resource Properties
Resource class: Parameter
Resource referenced by: FoldingIntent, FoldingParams
Example Partition: —
Input of processes: —
Output of processes: —

Resource Structure

7.2.68 FoldingParams
This resource describes the folding parameters, including the sequence of folding steps. It is also possible to execute
the predefined steps of the folding catalog. After each folding step of a folding procedure, the origin of the coordinate
system is moved to the lower left corner of the intermediate folding product. For details see "Product Example:
Simple Brochure" on page 25.

The specification of reference edges (e.g., Front, Rear, Left, and Right) for the description of an operation
(e.g., the positioning of a tool) done by means of determined names. These names are case-sensitive. They must be
written exactly as shown in Figure 7.8, below.

Name Data Type Description
From enumeration Edge from which the page is folded. Possible values are:

Front
Left

To enumeration Direction in which it is folded. Possible values are:
Up – Upwards.
Down – Downwards.

Travel ?
Modified in JDF 1.2

double Distance of the reference edge relative to From. If both Travel and
RelativeTravel are specified, RelativeTravel is ignored. At least
one of Travel or RelativeTravel must be specified.

RelativeTravel ?
New in JDF 1.2

double Relative distance of the reference edge relative to From in the coordi-
nates of the incoming Component. RelativeTravel is always
based on the complete size of the input Component and not on the
size of an intermediate state of the folded sheet. The allowed value
range is from 0.0 to 1.0, which specifies the full length of the input
Component.

Figure 7.8: Names of the reference edges of a sheet in the FoldingParams resource
366 Process Resources

JDF Specification Release 1.2
Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: BlockName, RibbonName, SheetName, SignatureName, WebName
Input of processes: Folding
Output of processes: —

Resource Structure
Name Data Type Description

DescriptionType ?
Deprecated in JDF 1.2

enumeration How the folding operations are described. Possible values are:
FoldProc – Detailed description of each individual fold.
FoldCatalog – Selection of fold procedure from FoldCatalog.
In JDF 1.2 and beyond, the FoldCatalog defines the topology of the
folding scheme. The specifics of each individual Fold may be described
using Fold elements. If both FoldCatalog and Fold are specified,
Fold takes precedence

FoldCatalog ?
Clarified in JDF 1.2

string Describes the type of fold according to the folding catalog in the format
“Fx-y” as shown in Table 7.9 and Table 7.10 on page 369.
Imposition folds define finished pages. Thus, a sheet with a “F6-2” Z-
fold is comprised of six (6) finished pages.

FoldSheetIn ?
Deprecated in JDF 1.1

XYPair Input sheet format. If the specified size does not match the size of the X
and Y dimensions of the input Component, all coordinates of the fold-
ing procedure are scaled accordingly. The scaling factors in X and Y
direction may differ.
Implementation Note: This attribute should always match the Size
attribute of the input Component, which is the default.

SheetLay = “Left” enumeration Lay of input media. Possible values are:
Left
Right

Fold *
New in JDF 1.1
Clarified in JDF 1.2

element Describes the folding operations in the sequence in which they should be
carried out.
It is recommended to specify a set of subsequent Fold operations as
multiple Fold elements in one Folding procedure, rather than specify-
ing a Combined process that combines multiple Folding processes.
If both FoldCatalog and Fold elements are specified, the Fold ele-
ments have precedence, and the FoldCatalog specifies only the topol-
ogy. For instance a cover-fold with a page size ratio of 0.52 to 0.48
would still be defined as an “F4-1”.

FoldOperation *
Deprecated in JDF 1.1

element Abstract element that describes the folding operations in the sequence in
which they should be carried out. Replaced by the explicit element Fold
* in JDF 1.1 and beyond.
Process Resources 367

Chapter 7 Resources
Figure 7.9: Fold Catalog part 1
368 Process Resources

JDF Specification Release 1.2
Figure 7.10: Fold Catalog part 2
Process Resources 369

Chapter 7 Resources
7.2.69 FontParams
This resource describes how fonts must be handled when converting PostScript files to PDF.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: DocIndex, RunIndex, RunTags, SheetName, Side, SignatureName
Input of processes: PDFToPSConversionParams
Output of processes: —

Resource Structure

7.2.70 FontPolicy
This resource defines the policies that devices must follow when font errors occur while PDL files are being pro-
cessed. When fonts are referenced by PDL files but are not provided, devices may provide one of the following two
fallback behaviors:

1 The device may provide a standard default font which is substituted whenever a font cannot be found.

2 The device may provide an emulation of the missing font.
If neither fallback behavior is requested (i.e., both UseDefaultFont and UseFontEmulation are “false”),
then the job will fail if a referenced font is not provided. FontPolicy allows jobs to specify whether or not either of
these fallback behaviors should be employed when missing fonts occur.

Name Data Type Description
AlwaysEmbed ? NMTOKENS One or more names of fonts that are always to be embedded in the

PDF file. Each name must be the PostScript language name of the
font. An entry that occurs in both the AlwaysEmbed and
NeverEmbed lists constitutes an error.

CannotEmbedFontPolicy =
“Warning”

enumeration Determines what occurs when a font cannot be embedded. Possible
values are:
Error – Log an error and abort the process if any font can not be
found or embedded.
Warning – Warn and continue if any font cannot be found or
embedded.
OK – Continue without warning or error if any font can not be
found or embedded.

EmbedAllFonts = “false” boolean If “true”, specifies that all fonts, except those in the
NeverEmbed list, are to be embedded in the PDF file.

MaxSubsetPct ? integer The maximum percentage of glyphs in a font that can be used
before the entire font is embedded instead of a subset. This value is
only used if SubsetFonts = “true”.

NeverEmbed ? NMTOKENS One or more names of fonts that are never to be embedded in the
PDF file. Each name must be the PostScript language name of the
font. An entry that occurs in both the AlwaysEmbed and
NeverEmbed lists constitutes an error.

SubsetFonts ? boolean If “true”, font subsetting is enabled. If “false”, it is not. Font
subsetting embeds only those glyphs that are used, instead of the
entire font. This reduces the size of a PDF file that contains embed-
ded fonts. If font subsetting is enabled, the decision whether to
embed the entire font or a subset is determined by number of
glyphs in the font that are used and the value of MaxSubsetPct.
Note: Embedded instances of multiple master fonts are always
subsetted, regardless of the setting of SubsetFonts.
370 Process Resources

JDF Specification Release 1.2
Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: DocIndex, RunIndex, RunTags, SheetName, Side, SignatureName
Input of processes: IDPrinting, Interpreting, Trapping
Output of processes: —

Resource Structure

7.2.71 FormatConversionParams
New in JDF 1.1
This resource defines the parameters needed for generic FormatConversion of digital files.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: DocIndex, RunIndex, RunTags
Input of processes: FormatConversion
Output of processes: —

Resource Structure

Name Data Type Description
PreferredFont NMTOKEN The name of a font to be used as the default font for this job. It is not an error

if the device cannot use the specified font as its default font.
UseDefaultFont boolean If “true”, the device must resort to a default font if a font cannot be found.

This is the normal behavior of the PostScript interpreter, which defaults to
Courier when a font cannot be found.

UseFontEmulation boolean If “true”, the device must emulate a required font if a font cannot be
found.

Name Data Type Description
FileSpec ?
(InputFormat)
Deprecated in JDF 1.2

refelement The format of the original file is specified in a FileSpec with
ResourceUsage = InputFormat. No URL should be spec-
ified because the list of files is given by the input RunList of
the FormatConversion process.
The purpose of this element in JDF 1.1 and earlier was to pro-
vide the MIME type of the file to be created. This is now defined
directly using the FileSpec of the input RunList of the
FormatConversion process.

FileSpec ?
(OutputFormat)
Deprecated in JDF 1.2

refelement The format of the converted file is specified in a FileSpec with
ResourceUsage = OutputFormat. No URL should be
specified because the list of files is given by the output RunList
of the FormatConversion process.
The purpose of this element in JDF 1.1 and earlier was to pro-
vide the MIME type of the file to be created. This is now defined
directly using the FileSpec of the output RunList.

TIFFFormatParams ?
New in JDF 1.2

element Parameters specific to conversion of rasters to TIFF files. (See
below.) FormatConversion should not be used to convert
non-raster files to TIFF. The appropriate Interpreting and
Rendering processes should be used first.
Process Resources 371

Chapter 7 Resources
To control the creation of files in formats other than TIFF, equivalent subelements to TIFFFormatParams may be
defined. It is possible to use ImageCompressionParams to request de-screening of 1-bit per channel rasters to
contone rasters (usually accompanied by a reduction in resolution). Additional data regarding the screens used in the
original rasters may be provided as a ScreeningParams resource supplied in a LayoutElement as part of the
input RunList.

Structure of the TIFFFormatParams element
New in JDF 1.2

ImageCompressionPara
ms ?
New in JDF 1.2

refelement Provides a set of controls that determines how images will be
down-sampled and compressed in the converted documents

ColorPool ?
New in JDF 1.2

refelement Additional detail about the colors used in the file to be con-
verted.

Name Data Type Description
ByteOrder ? enumeration Byte order of the TIFF file. Possible values are:

II – Low byte first.
MM – high byte first.
The identifiers have been selected to match the identifier with
the same purpose within the TIFF file itself.

Interleaving = “1” integer How the components of each pixel are stored. The values are
taken from TIFF tag 284—PlanarConfiguration:
1 – “Chunky” format, which is pixel interleaved.
2 – “Planar” format, which is strip interleaved.

WhiteIsZero = “true” boolean When writing monochrome or grayscale files, this flag indi-
cates whether the data should be written as “WhiteIsZero” or
“BlackIsZero.”

Segmentation ? enumeration How the image data are segmented. Possible values are:
SingleStrip – all data are included in one segment. This is
encoded in the TIFF file by setting RowsPerStrip to a num-
ber equal to or larger than the number of pixel rows in the
image.
Stripped – Data are segmented into strips.
Tiled – Data are segmented into tiles.

RowsPerStrip ? integer The number of image scan lines per strip, encoded in the TIFF
file as RowsPerStrip. This attribute is ignored if
Segmentation! = “Stripped”.
The default, when not known, is set by the processing system
with the exception that when converting from ByteMap to
TIFF, ByteMap/@BandHeight should be used as the
default.

TileSize ? XYPair Two integers. The X value provides width of tiles, and the Y
value provides height of tiles. This attribute is ignored if
Segmentation is not Tiled.

Name Data Type Description
372 Process Resources

JDF Specification Release 1.2
The number of channels should be derived from the raster data to be converted.

When PhotometricInterpretation = 5 and InkSe t= 2, it is strongly recommended that the NumberOfInks and
InkNames tags be completed—separation names may be obtained from the ColorPool resource supplied to
FormatConversion.

Flate and JPEG compression in resulting TIFF files should use Compression = 8 and Compression = 7 respec-
tively, as documented in [TIFFPS]. In particular, the JPEG encoding using Compression = 6, as described in [TIFF6]
should not be used.

Structure of the TIFFtag Subelement
New in JDF 1.2

One and only of IntegerValue, NumberValue, StringValue, or BinaryValue must be present, depending on
the type of the TIFF tag to be carried. TIFFtag elements must not be used for any tags related to the image data and its
encoding (ImageWidth, Compression, etc.), but may include informational tags such as OPIProxy, ImageID, Copy-
right, DateTime, ImageDescription, etc.

SeparationNameTag = “270” integer When color separations are stored in individual TIFF files it is
often useful to mark each with the name of the colorant that it
represents, but there is no universally accepted way to do this.
In order to avoid the need for explicit partitioning, the tag to
be used to encode the separation name (as a string) can be
entered here as the TIFF tag number.
If the same TIFF tag number is also supplied as a TIFFtag sub
element, then the TIFFtag element takes priority over
SeparationNameTag.
The tag should only be filled in the resulting TIFF files if the
name of the separation is known, (e.g., from a ColorPool
resource supplied to FormatConversion, or because the
FormatConversion process forms a part of a compound
process with a Separation process). The default of “270” is
the TIFF ImageDescription tag.

TIFFtag * element Specific tag values for inclusion in the TIFF file.

TIFFEmbeddedFile * element Files to be embedded within the created TIFF file. These
might include an ICC profile, XMP data, etc.

Name Data Type Description
TagNumber integer Tag number of the required tag, (e.g., 270 (decimal) for ImageDescription).

TagType integer The type of the tag as defined in [TIFF6] (1 = BYTE, 2 = SHORT, etc.)

IntegerValue ? IntegerList If the type of the tag should be BYTE, SHORT, LONG, SBYTE, SSHORT, or
SLONG, then IntegerValue should be used to encode that data

NumberValue ? DoubleList If the type of the tag should be RATIONAL, SRATIONAL, FLOAT, or DOU-
BLE, then NumberValue must be used to encode that data

StringValue ? string If the type of the tag should be ASCII, then StringValue should be used to encode
the data.

BinaryValue ? hexBinary If the type of the tag should be UNDEFINED, then BinaryValue should be used
to encode the data

Name Data Type Description
Process Resources 373

Chapter 7 Resources
Structure of the TIFFEmbeddedFile Subelement
New in JDF 1.2

7.2.72 GatheringParams
This resource contains the attributes of the Gathering process.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Input of processes: Gathering
Output of processes: —
Resource Structure

Name Data Type Description
TagNumber integer Tag number of the required tag, (e.g., 34675 (decimal) for an ICC pro-

file, or 700 for XMP).
TagType integer The type of the tag as defined in [TIFF6]. This will usually be 1 (BYTE)

or 7 (UNDEFINED).
FileSpec refelement Reference to the file to be embedded.

Figure 7.11: Coordinate system used for gathering

Name Data Type Description
Disjointing ? element Description of the separation properties between individual compo-

nents on a gathered pile. The default case is that no physical separation
between components is used and this element is omitted.
374 Process Resources

JDF Specification Release 1.2
7.2.73 GlueApplication
New in JDF 1.1
This resource specifies glue application in hard and soft cover book production.

Resource Properties
Resource class: Parameter
Resource referenced by: CoverApplicationParams, GluingParams,

SpineTapingParams
Input of processes: —
Output of processes: —

Resource Structure
Name Data Type Description

GluingTechnique enumera-
tion

Type or technique of gluing application. Possible values are:
SpineGluing
SideGluingFront
SideGluingBack

GlueLine refelement Structure of the glue line.

Figure 7.12: Parameters and coordinate system for glue application
Process Resources 375

Chapter 7 Resources
7.2.74 GluingParams
New in JDF 1.1
GluingParams define the parameters applying a generic line of glue to a component.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: Gluing
Output of processes: —

Resource Structure

Properties of the Glue Element
The Glue element describes how to apply a line of glue.

7.2.75 GlueLine
This resource provides the information to determine where and how to apply glue.

Resource Properties
Resource class: Parameter
Resource referenced by: CaseMakingParams, EndSheetGluingParams,

FoldingParams, CoverApplicationParams, InsertingParams,
SpineTapingParams, ThreadSealingParams

Example Partition: —
Input of processes: —
Output of processes: —

Resource Structure

Name Data Type Description
Glue * element Definition of one or more Glue line applications.

Name Data Type Description
WorkingDirection enumeration Direction from which the tool is working. Possible values are:

Top – From above.
Bottom – From below.

GlueApplication refelement Describes the glue application.

Name Data Type Description
AreaGlue = “false”
New in JDF 1.1

boolean Specifies that this GlueLine should cover the complete width of the
Component it is applied to.

GlueBrand ? string Glue brand.
GlueLineWidth ? double Width of the glue line. Note that in extreme cases, the glue line could

cover the input component over the hole width.
GluingPattern ? XYPair Glue line pattern defined by the length of a glue line segment (X ele-

ment) and glue line gap (Y element). A solid line is expressed by the
pattern (1 0).
376 Process Resources

JDF Specification Release 1.2
7.2.76 HeadBandApplicationParams
New in JDF 1.1
This resource specifies how to apply headbands in hard cover book production.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: HeadBandApplication
Output of processes: —

Resource Structure

GlueType ? enumeration Glue type. Possible values are:
ColdGlue – Any type of glue that needs no heat treatment.
Hotmelt – Hotmelt EVA (Ethyl-Vinyl-Acetate-Copolymere)
PUR – Polyurethane

MeltingTemperature ? integer Required temperature for melting the glue, in degrees centigrade.
Used only when GlueType = “Hotmelt” or GlueType = “PUR”.

RelativeStartPosition
?
New in JDF 1.2

XYPair Relative starting position of the tool. RelativeStartPosition is
always based on the complete size of the input Component and not on
the size of an intermediate state of the folded sheet. The allowed value
range is from 0.0 to 1.0 for each component of the XYPair, which speci-
fies the full size of the input Component.

RelativeWorkingPath
?
New in JDF 1.2

XYPair Relative working path of the tool beginning at
RelativeStartPosition. RelativeWorkingPath is always based on
the complete size of the input Component and not on the size of an
intermediate state of the folded sheet. The allowed value range is from
0.0 to 1.0 for each component of the XYPair, which specifies the full
size of the input Component.

StartPosition ?
Modified in JDF 1.2

XYPair Start position of glue line. The start position is given in the coordinate
system of the mother sheet. If both StartPosition and
RelativeStartPosition are specified, RelativeStartPosition is
ignored.

WorkingPath ?
Modified in JDF 1.2

XYPair Relative working path of the gluing tool. If both WorkingPath and
RelativeWorkingPath are specified, RelativeWorkingPath is
ignored.

Name Data Type Description
BottomBrand ? string Bottom head band brand. If not specified, defaults to the value of TopBrand.
BottomColor ? NamedColor Color of the bottom head band. If not specified, defaults to the value of

TopColor.
BottomLength ? double Length of the carrier material of the bottom head band along binding edge. If

not specified, both head bands are on one carrier.
TopBrand ? string Top head band brand.
TopColor ? NamedColor Color of the top head band.
TopLength ? double Length of carrier material of the top head band along binding edge. If not spec-

ified, both head bands are on one carrier which has the length of the book block.

Name Data Type Description
Process Resources 377

Chapter 7 Resources
7.2.77 Hole
The Hole element describes an individual hole.

Resource Properties
Resource class: Parameter
Resource referenced by: HoleLine, HoleMakingIntent, HoleMakingParams
Example Partition: —
Input of processes: —
Output of processes: —

Resource Structure

7.2.78 HoleLine
New in JDF 1.1
Line hole punching generates a series of holes with identical distance (pitch) running parallel to the edge of a web,
which is mainly used to transport paper through continuous-feed printers and finishing devices (form processing).
The final product typically is a web with two lines of holes, one at each edge of the web. The parameters for one line
of holes are specified in the HoleLine element. The distance between holes within each line of holes is identical
(constant pitch).

Resource Properties
Resource class: Parameter
Resource referenced by: HoleMakingIntent, HoleMakingParams
Example Partition: —
Input of processes: —
Output of processes: —

StripMaterial ? enumeration Strip material. Possible values are:
Calico
Cardboard
CrepePaper
Gauze
Paper
PaperlinedMules
Tape

Width ? double Width of the head bands and carrier.
GlueLine * refelement The carrier may be applied to the bookblock with glue. The coordinate system

for the GlueLine is defined in the Section 7.2.62, EndSheetGluingParams.

Name Data Type Description
Center XYPair Position of the center of the hole relative to the Component coordinate sys-

tem. For more information, see Section 6.6.48.2, HoleMaking.
Extent XYPair Size (Bounding Box) of the hole, in points. If Shape is Round, only the first

entry of Extent is evaluated and defines the hole diameter.
Shape
Modified in JDF 1.1

enumeration Shape of the hole. Possible values are:
Elliptic
Round
Rectangular

Name Data Type Description
378 Process Resources

JDF Specification Release 1.2
The parameters of the HoleLine element are:

Resource Structure

However, sometimes Line Hole Punching is performed for multiple webs before dividing the web after the HoleMak-
ing process as illustrated below:

Name Data Type Description
Pitch double Center-hole to center-hole distance within a line of holes.
Hole element Size and position of the first hole in the HoleLine.
Process Resources 379

Chapter 7 Resources
7.2.79 HoleList
Modified in JDF 1.2
This resource is used to describe holes or rows of holes in intent resources. Note that it was an intent resource sub ele-
ment prior to JDF 1.2.

Resource Properties
Resource class: Parameter
Resource referenced by: BindingIntent, HoleMakingIntent
Example Partition: —
Input of processes: —
Output of processes: —

Resource Structure.

7.2.80 HoleMakingParams
This resource specifies where to make a hole of what shape in components. This information is used by the
HoleMaking process.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: SheetName, SignatureName
Input of processes: HoleMaking
Output of processes: —

Resource Structure

Name Data Type Description
Hole *
Modified in JDF 1.1

refelement Description of individual holes. See Section 7.2.77, Hole.

HoleLine *
New in JDF 1.1

refelement Array of all HoleLine elements. See Section 7.2.78, HoleLine.

Name Data Type Description
Center ?
Modified in JDF 1.1

XYPair Position of the center of the hole pattern relative to the Component
coordinate system if HoleType is not Explicit. If not specified, it
defaults to the value implied by HoleType.

CenterReference =
“TrailingEdge”
New in JDF 1.1

enumeration Defines the reference coordinate system for Center. One of:
TrailingEdge – Physical coordinate system of the component.
RegistrationMark – The center is relative to a registration mark.

Extent ? XYPair Size (Bounding Box) of the hole in points if HoleType is not
Explicit. If Shape is Round, only the first entry of Extent is eval-
uated and defines the hole diameter. If not specified, it defaults to the
value implied by HoleType.

HoleCount ?
New in JDF 1.2

IntegerList For patterns with HoleType whose enumeration values begin with a
“P”, “W”, or “C”, this parameter specifies the number of consecutive
holes and spaces.a The first entry defines the number of holes, the sec-
ond entry defines the number of spaces, and consecutive entries alter-
nately define holes (h) and spaces (s), for instance:
“2 2 2” = “h h s s h h”.
“0 3 3 3 3” = “s s s h h h s s s h h h”.
380 Process Resources

JDF Specification Release 1.2
HoleReferenceEdge ?
New in JDF 1.1
Deprecated in JDF 1.2

enumeration The edge of the media relative to where the holes should be punched.
Use with HoleType. Possible values are:
Left
Right
Top
Bottom
Pattern – Specifies that the reference edge implied by the value of
HoleType in "JDF/CIP4 Hole Pattern Catalog" on page 663 is used.
The default if HoleType is Explicit, otherwise Left.
HoleReferenceEdge has been replaced with an explicit
Transformation or Orientation of the input Component. If both
Transformation or Orientation and HoleReferenceEdge are
specified, the result is the matrix product of both transformations.
Transformation or Orientation must be applied first.

HoleType
New in JDF 1.1

enumera-
tions

Predefined hole pattern. Multiple hole patterns are specified as one
NMTOKENS string, (e.g., 3-hole ring binding and 4-hole ring binding
holes on one piece of media). For details of hole types and a list of addi-
tional allowed values, refer to "JDF/CIP4 Hole Pattern Catalog" on
page 663. Values are:
Explicit – Holes are defined in an array of Hole elements.
Additional values defined in "JDF/CIP4 Hole Pattern Catalog" on
page 663
The following values are deprecated from JDF 1.0
2HoleEuro – Replaced by either R2m-DIN or R2m-ISO.
3HoleUS – Replaced by R3I-US.
4HoleEuro – Replaced by either R4m-DIN-A4 or R4m-DIN-A5.

Shape ?
Modified in JDF 1.1

enumeration Shape of the holes if HoleType is not Explicit. Possible values are:
Elliptic
Round
Rectangular
If not specified, it defaults to the value implied by HoleType.

Hole * element Description of individual Hole elements.
HoleLine *
New in JDF 1.1

element Description of HoleLine elements.

RegisterMark ?
New in JDF 1.1

refelement Reference to the registration mark that defines the coordinate system ori-
gin for HoleMaking.

a. Application Note: For dealing with the “default” case, intelligent systems will take into consideration
job parameters like the length of the binding edge or distance of holes to the paper edges to calculate the
appropriate number of holes. For production of the holes and selection/production of the matching bind-
ing element, the “system specified” values need to match 100% between the HoleMaking and the
Binding process for obvious reasons. In practice, if no details are specified for HoleMaking, they
should also be absent for Binding. In this case, either the operator provides the missing value when set-
ting up the binding device for the job, or the device itself needs to have some kind of automatic hole
detection mechanism.

Name Data Type Description
Process Resources 381

Chapter 7 Resources
7.2.81 IdentificationField
This resource contains information about a mark on a document (e.g., a bar code) used for OCR-based verification
purposes or document separation.

Resource Properties
Resource class: Parameter
Resource referenced by: Disjointing, Sheet, Surface, and any physical resource
Example Partition: —
Input of processes: Collecting, Gathering, Inserting, Verification
Output of processes: —

Resource Structure
Name Data Type Description

BoundingBox ? rectangle Box that provides the boundaries in the coordinate system of the mark that indi-
cates where the component is to be placed. If no BoundingBox is defined, the
complete visible surface must be scanned for an appropriate bar code.

Encoding enumeration Encoding of the information. Possible values are:
ASCII – Plain-text font.
BarCode1D – One-dimensional bar code.
BarCode2D – Two-dimensional bar code.

EncodingDetails NMTOKEN Details about the encoding type. An example is the bar code scheme. Possible
values are:
Code39
Interleave25
Plessey
EAN

Format ?
Modified in JDF
1.2

regExp Regular expression that defines the expected format of the expression, (e.g., the
number of digits, alphanumeric, or numeric). Note that this field may also be
used to define constant fields, (e.g., the end of document markers or packaging
labels). If not specified, any expression is valid.

Orientation ? matrix Orientation of the contents within the IdentificationField. The coordinate
system is defined in the system of the sheet or component where the
IdentificationField resides.

Position ? enumeration Position with respect to the instance document or physical resource to which the
resource refers. Possible values are:
Header – Sheet before the document.
Trailer – Sheet after the document.
Page – A page of the document.
Top – The top of the resource.
Bottom – The bottom of the resource.
Left – The left side of the resource.
Right – The right side of the resource.
Front – The front side of the resource.
Back – The back side of the resource.
Any – Deprecated in JDF 1.2

Page ? integer If Position = Page, this refers to the page where the IdentificationField
can be found. Negative values denote an offset relative to the last page in a
stack of pages.
382 Process Resources

JDF Specification Release 1.2
7.2.82 IDPrintingParams
Deprecated in JDF 1.1 See "IDPrintingParams" on page 755 for details of this deprecated resource.

7.2.83 ImageCompressionParams
Modified in JDF 1.2
Prior to JDF 1.2 the filtering in ImageCompressionParams was based on the terminology in PostScript and PDF.
Many image compression and decompression filters require additional information in the form of a filter parameter
dictionary, and additional filter parameters have been added to meet this need.

Resource Properties
Resource class: Parameter
Resource referenced by: Sheet
Example Partition: DocIndex, RunIndex, RunTags, SheetName, Side, SignatureName
Input of processes: ImageReplacement
Output of processes: —

Resource Structure

Structure of ImageCompression Subelement

Purpose ? enumeration Purpose defines the usage of the field. Possible values are:
Label – Used to mark a product or component.
Separation – Used to separate documents.
Verification – Used for verification of documents.

Value ?
New in JDF 1.1

string Fixed value of the IdentificationField, (e.g., on a label).

Name Data Type Description
ImageCompression * element Specifies how images are to be compressed.

Name Data Type Description
AntiAliasImages =
“false”

boolean If “true”, anti-aliasing is permitted on images. If “false”, anti-alias-
ing is not permitted.
Anti-aliasing increases the number of bits per component in downsampled
images to preserve some of the information that is otherwise lost by down-
sampling. Anti-aliasing is only performed if the image is actually down-
sampled and if ImageDepth has a value greater than the number of bits
per color component in the input image.

AutoFilterImages =
“true”
Modified in JDF1.2

boolean Used only if EncodeImages is “true”. This attribute is not used if
ImageType = Monochrome.
If “true”, the filter defined by ImageAutoFilterStrategy is applied
to photos and the FlateEncode filter is applied to screen shots. If
“false”, the ImageFilter compression method is applied to all
images.

ConvertImagesToInd
exed ?

boolean If “true”, the application converts images that use fewer than 257 colors
to an indexed color space for compactness. This attribute is used only
when ImageType = Color.

Name Data Type Description
Process Resources 383

Chapter 7 Resources
DCTQuality = “0” double A value between 0 and 1 that indicates “how much” the process should
compress images when using a DCTEncode filter. 0.0 means “do as loss-
less compression as possible.” 1.0 means “do the maximum compression
possible.”

DownsampleImages
= “false”
Modified in JDF1.1A

boolean If “true”, sampled color images are downsampled using the resolution
specified by ImageResolution. If “false”, downsampling is not car-
ried out and the image resolution in the PDF file is the same as that in the
source file.

EncodeColorImages ?
Deprecated in JDF 1.1

boolean If “true”, color images are encoded using the compression filter speci-
fied by the value of the ImageFilter key. If “false”, no compression
filters are applied to color sampled images.

EncodeImages =
“false”
New in JDF 1.1
Modified in JDF1.1A

boolean If “true”, images are encoded using the compression filter specified by
the value of the ImageFilter key. If “false”, no compression filters
are applied to sampled images.

ImageAutoFilterStrat
egy ?
New in JDF 1.2

NMTOKEN Selects what image compression strategy to employ if passing through an
image that is not already compressed. Possible values include:
JPEG – Lossy JPEG compression for low-frequency images and lossless
Flate compression for high-frequency images.
JPEG2000 – Lossy JPEG2000 compression for low-frequency images
and lossless JPEG2000 compression for high-frequency images.

ImageDepth ? integer Specifies the number of bits per component in the downsampled image
when DownsampleImages = “true”. If not specified, the down-
sampled image has the same number of bits per sample as the original
image.

ImageDownsampleT
hreshold = “2.0”

double Sets the image downsample threshold for images. This is the ratio of
image resolution to output resolution above which downsampling may be
performed. The following short examples provide a hypothetical configu-
ration:
To use ImageDownsampleThreshold, set the following attributes to
the values indicated:
ImageResolution = 72
ImageDownsampleThreshold = 1.5
The input image would not be downsampled unless it has a resolution
greater than (72 * 1.5) = 108dpi

ImageDownsampleT
ype ?

enumeration Downsampling algorithm for images. Possible values are:
Average – The program averages groups of samples to get the new
downsampled value.
Bicubic – The program uses bicubic interpolation on a group of sam-
ples to get a new downsampled value.
Subsample – The program picks the middle sample from a group of
samples to get the new downsampled value.

Name Data Type Description
384 Process Resources

JDF Specification Release 1.2
Structure of the CCITTFaxParams Element
New in JDF 1.2

ImageFilter ?
Modified in JDF 1.2

NMTOKEN Specifies the compression filter to be used for images. Ignored if
AutoFilterImages = “true” or if EncodeImages = “false”.
Possible values are:
CCITTFaxEncode – Used to select CCITT Group 3 or 4 facsimile
encoding. Used only if ImageType = monochrome.
DCTEncode – Used to select JPEG compression.
FlateEncode – Used to select ZIP compression.
JPEG2000 – Used to select JPEG2000/Wavelet compression. New in
JDF 1.2
LZWEncode – LZW Compression.
PackBits – A simple byte-oriented run length scheme.
In JDF 1.1 and below, the data type was enumeration. It has been extended
to NMTOKEN in order to allow for extensions.

ImageResolution ? double Specifies the minimum resolution for downsampled color images in dots
per inch. This value is used only when DownsampleImages =
“true”. The application downsamples only images that are above that
resolution to that actual resolution.

ImageType enumeration Specifies the kind of images that are to be manipulated. Possible values
are:
Color
Grayscale
Monochrome

JPXQuality ?
New in JDF 1.2

integer Specifies the required image quality. Valid values are greater than or equal
to one (1) and less than or equal to 100. One (1) means lowest quality
(highest compression), 99 means visually lossless compression, and 100
means numerically lossless compression.

CCITTFaxParams ?
New in JDF 1.2

element The equivalent of the PostScript Rows and BlackIs1 parameters, which
are implicit in the raster data to be compressed.

DCTParams ?
New in JDF 1.2

element Provides the equivalents of the PostScript Columns, Rows, and Colors
attributes, which are assumed to be implicit in the raster data to be com-
pressed.

FlateParams ?
New in JDF 1.2

element The equivalent of the PostScript Columns, BitsPerComponent, and Colors
parameters, which are implicit in the raster data to be compressed.

LZWParams ?
New in JDF 1.2

element The equivalent of the PostScript Columns, BitsPerComponent, and Colors
parameters, which are implicit in the raster data to be compressed

Name Data Type Description
Uncompressed =
“false”

boolean A flag to indicate whether the file generated may use uncompressed
encoding when advantageous.

K = “0” integer An integer that selects the encoding scheme to be used.
<0 – Pure two-dimensional encoding (Group 4, TIFF Compression
= 4)
0 – Pure one-dimensional encoding (Group 3, 1-D, TIFF Compres-
sion = 2)
>0 – Mixed one- and two-dimensional encoding (Group 3, 2-D,
TIFF Compression = 3), in which a line encoded one-dimensionally
can be followed by at most K - 1 lines encoded two-dimensionally

Name Data Type Description
Process Resources 385

Chapter 7 Resources
Structure of the DCTParams Element
New in JDF 1.2

EndOfLine ? boolean A flag indicating whether the CCITTFaxEncode filter prefixes an
end-of-line bit pattern to each line of encoded data.

EncodedByteAlign ? boolean A flag indicating whether the CCITTFaxEncode filter inserts an
extra 0 bits before each encoded line so that the line begins on a byte
boundary.

EndOfBlock ? boolean A flag indicating whether the CCITTFaxEncode filter appends an
end-of-block pattern to the encoded data

Name Data Type Description
SourceCSs enumeration Identifies which of the incoming color spaces will be operated on.

Possible values are:
Calibrated – Operates on CalGray and CalRGB color spaces.
New in JDF 1.2
CIEBased – Operates on CIE-Based color spaces (CIEBasedA,
CIEBasedABC, CIEBasedDEF, CIEBasedDEFG).
CMYK – Operates on deviceCMYK.
DeviceN – Identifies the source color encoding as a DeviceN color
space. The specific DeviceN color space to operate on is defined in
the DeviceNSpace resource. If this value is specified then the
DeviceNSpace and ColorPool refelements must also be present.
DevIndep – Operates on device independent color spaces (equiva-
lent to Calibrated or CIE-Based or ICC-Based or Lab or YUV).
Gray – Operates on deviceGray.
ICCBased – Operates on color spaces defined using ICC profiles.
ICC-Based includes EPS, TIFF, or PICT files with embedded ICC
profiles. See [ICC.1].
If IgnoreEmbeddedICC is “true”, then nominally ICC-Based files
or elements should be treated as being encoded in the alternate or
underlying color space, and a ColorSpaceConversionOp where
SourceCS = “DevIndep” will not be applied, unless that color
space is also device independent.
Lab – Operates on Lab.
RGB – Operates on deviceRGB
Separation – Operates on Separation color spaces (spot colors).
The specific separation(s) to operate on are defined in the Separa-
tionSpec resource(s). If no SeparationSpec is defined, the operation
will operate on all the separation color spaces in the input RunList.
YUV – Operates on YUV (Also known as YCbCr). See [CCIR601-
2].
Note: JDF 1.1 defined that CalRGB be treated as RGB, CalGray as
Gray, and ICC-Based color spaces as one of Gray, RGB, or CMYK
depending on the number of channels.

HSamples ? IntegerList A sequence of horizontal sampling factors—one entry per color
channel in the raster data. If not specified, the implied default is “1”
for every channel.

Name Data Type Description
386 Process Resources

JDF Specification Release 1.2
When the DCTParams e lement i s a subelement of ImageCompressionParams used in a
FormatConversion process to generate TIFF files, YUV is equivalent to YCbCr in TIFF terminology. The HSam-
ples and VSamples values are used to set YCbCrSubSampling or CIELabSubSampling. This means that they are only
relevant for data supplied as Lab, or data where ColorTransform is “YUV”; that the first element must be 1 in each
case; that the fourth element must be 1 where CMYK data is to be compressed; and that the second and third elements
must equal each other.

Structure of the FlateParams Element
New in JDF 1.2

VSamples ? IntegerList A sequence of vertical sampling factors—one entry per color chan-
nel in the raster data. If not specified, the implied default is “1” for
every channel.

QFactor = “1.0” double A scale factor applied to the elements of QuantTable.
QuantTable ? DoubleList Quantization tables. If present there must be one QuantTable

entry for each color channel.
HuffTable ? DoubleList Huffman tables for DC and AC components. If present there must be

at least one HuffTable element for each color channel.
ColorTransform =
“Automatic”

enumeration Color transformation algorithm: Values are:
None – Colors should not be transformed.
YUV – RGB raster values should be transformed to YUV before
encoding and from YUV to RGB after decoding. If four channels
are present, transform CMYK values to YUVK before encoding and
from YUVK to CMYK after decoding.
Automatic – “YUV” for 3-channel raster data, “None” other-
wise.
Note that YUV is equivalent to YCbCr in TIFF terminology.

Name Data Type Description
Effort ? integer A code controlling the amount of memory used and the execution

speed for Flate compression. Allowed values range from -1 to 9. A
value of 0 compresses rapidly but not tightly, using little auxiliary
memory. A value of 9 compresses slowly but as tightly as possible,
using a large amount of auxiliary memory.

Predictor = “1” integer A code that selects the predictor function:
1 – No predictor (normal encoding or decoding).
2 – TIFF Predictor 2.
10 – PNG predictor, None function.
11 – PNG predictor, Sub function.
12 – PNG predictor, Up function.
13 – PNG predictor, Average function.
14 – PNG predictor, Path function.
15 – PNG predictor in which the encoding filter automatically
chooses the optimum function separately for each row.
Note: On 1X PNG predictors, these values select the specific PNG
predictor function(s) to be used, as indicated above. When decoding
the predictor function is explicitly encoded in the incoming data.

Name Data Type Description
Process Resources 387

Chapter 7 Resources
Structure of the LZWParams Element
New in JDF 1.2

7.2.84 ImageReplacementParams
This resource specifies parameters required to control image replacement within production workflows.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: DocIndex, RunIndex, RunTags, SheetName, Side, SignatureName
Input of processes: ImageReplacement
Output of processes: —

Name Data Type Description
EarlyChange = “1” integer A code indicating when to increase the code word length. The TIFF

specification can be interpreted to imply that code word length
increases are postponed as long as possible. However, some existing
implementations of LZW increase the code word length one code
word earlier than necessary. The PostScript language supports both
interpretations. If EarlyChange is “0”, code word length
increases are postponed as long as possible. If it is “1”, they occur
one code word early.
Note: The default should not be used when this LZWParams ele-
ment is in ImageCompressionParams used as an input
resource to a FormatConversion process that is creating TIFF
files.

Predictor = “1” integer A code that selects the predictor function:
1 – No predictor (normal encoding or decoding).
2 – TIFF Predictor 2.
10 – PNG predictor, None function.
11 – PNG predictor, Sub function.
12 – PNG predictor, Up function.
13 – PNG predictor, Average function.
14 – PNG predictor, Path function.
15 – PNG predictor in which the encoding filter automatically
chooses the optimum function separately for each row.
Note: On 1X PNG predictors, these values select the specific PNG
predictor function(s) to be used, as indicated above. When decoding,
the predictor function is explicitly encoded in the incoming data.
388 Process Resources

JDF Specification Release 1.2
Resource Structure
Name Data Type Description

ImagePreScanStrategy ?
New in JDF 1.2

NMTOKEN Specifies the image pre-scanning strategy to be used on the input
document data before starting the RIPing process. Possible values
are:
NoPreScan – Do not pre-scan the document looking for refer-
ences to images.
PreScan – Pre-scan the document looking for references to
images and making sure the data are accessible now so that the RIP
will not encounter a fault later.
PreScanAndGather – Pre-scan the document looking for refer-
ences to images, and copy the data to a temporary place so that the
RIP will be able to access the data with a predictable and small
well-bounded delay later.

ImageReplacementStrat
egy

enumeration Identifies how externally referenced images will be handled within
the associated process. Possible values are:
Omit – Complete process maintaining only references to external
data.
Proxy – Complete process using available proxy images.
Replace – Replace external references with image data during
processing.
AttemptReplacement – Attempt to replace external references
with image data during processing. If replacement fails, complete
the process using available proxy images.

MaxResolution ?
Deprecated in JDF 1.1

double Reduces the resolution of images with a resolution higher than
MaxResolution. Replaced with a link to
ImageCompressionParams in the process.

MinResolution ? double Specifies the minimum resolution that an image must have in order
to be embedded. If not specified, images of any resolution may be
embedded.

ResolutionReductionStra
tegy ?
Deprecated in JDF 1.1

enumeration Identifies the mechanism used for reducing the image resolution.
Possible values are:
Downsample
Subsample
Bicubic
Replaced with a link to ImageCompressionParams in the
process.

IgnoreExtensions ? NMTOKENS Identifies a set of filename extensions that will be trimmed during
searches for high-resolution images. These extensions are what will
be stripped from the end of an image name to find a base name. The
leading dot “.” is included. Examples include:
.lay
.e
.samp

MaxSearchRecursion ? integer Identifies how many levels of recursion in the search path will be
traversed while trying to locate images. A value of 0 indicates that
no recursion is desired.

FileSpec +
(SearchPath)
New in JDF 1.1

refelement Specification of the paths to search when trying to locate the refer-
enced data. Filespec replaces the SearchPath text element.

SearchPath *
Deprecated in JDF 1.1

telem String that identifies the paths to search when trying to locate the
referenced data.
Process Resources 389

Chapter 7 Resources
7.2.85 ImageSetterParams
This resource specifies the settings for the imagesetter. A number of settings are OEM-specific, while others are so
widely used they may be supported between vendors. Both filmsetter settings and platesetter settings are described
with this resource.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: ImageSetting
Output of processes: —

Resource Structure
Name Data Type Description

AdvanceDistance ? double Additional media advancement beyond the media dimensions on a roll-fed
device.

BurnOutArea ?
New in JDF 1.1

XYPair Size of the burnout area. The area defined by BurnOutArea is exposed,
regardless of the size of the image. If not specified or “0 0”, only the area
defined by the image is exposed.

CenterAcross ? enumeration Specifies the axis around which a device may center an image if the device
is capable of doing so. Possible values are:
None – Do not center.
FeedDirection – Image is centered around the feed-direction axis.
MediaWidth – Image is centered around the media-width axis.
Both – Image is centered around both axes.

CutMedia ? boolean Indicates whether or not to cut the media (roll-fed).
ManualFeed ?
New in JDF 1.2

boolean Indicates whether the media will be fed manually.

MirrorAround
=”None”

enumeration This attribute specifies the axis around which a device must mirror an image
if the device is capable of doing so. Possible values are:
None – Do not mirror the image.
FeedDirection – Image is mirrored around the feed-direction axis.
MediaWidth – Image is mirrored around the media-width axis.
Both – Image is mirrored around both possible axes.

Polarity =
“Positive”

enumeration Some devices can invert the image (in hardware). Possible values are:
Positive
Negative

Punch = “false” boolean If “true”, indicates that the device must create registration punch holes.
PunchType ? string Name of the registration punch scheme, (e.g., Bacher).
Resolution ? XYPair Resolution of the output. If not specified, the default is taken from the reso-

lution of the input ByteMap.
RollCut ? double Length of media to be cut off of a roll, in points.
390 Process Resources

JDF Specification Release 1.2
7.2.86 Ink
Resource describing what kind of ink or other colorant (e.g., toner, varnish) is to be used during printing or varnish-
ing. The default unit of measurement for Ink is Unit = “g” (gram).

Resource Properties
Resource class: Consumable
Resource referenced by: ConventionalPrintingParams
Example Partition: FountainNumber, Separation, SheetName, Side, SignatureName,

WebName
Input of processes: ConventionalPrinting, DigitalPrinting
Output of processes: —

Sides =
“OneSidedFront”
New in JDF 1.2

enumeration Indicates whether the content layout should be imaged on one or both sides
of the media. Must only be used when ImageSetterParams describes
output to a proofer. Possible values are:
OneSidedBackFlipX – Page content is imaged on the back side of
media so that the corresponding page cells back up to a blank front cell
when flipping around the X axis. Equivalent to “WorkAndTumble” with a
blank front side.
OneSidedBackFlipY – Page content is imaged on the back side of
media so that the corresponding page cells back up to a blank front cell
when flipping around the Y axis. Equivalent to “WorkAndTurn” with a
blank front side.
OneSidedFront – Page content is imaged on the front side of media.
This is the only value that is valid for filmSetting and plateSetting. The
default.
 TwoSidedFlipX – Page content is imaged on both the front and back
sides of media sheets so that the corresponding page cells back up to each
other when flipping around the X axis. Equivalent to “WorkAndTumble”.
TwoSidedFlipY – Page content is imaged on both the front and back
sides of media sheets so that the corresponding page cells back up to each
other when flipping around the Y axis. Equivalent to “WorkAndTurn”.

SourceWorkStyle ?
New in JDF 1.2

enumeration When proofing in a “RIP once, output many” (ROOM) workflow,
SourceWorkStyle specifies the direction in which the bytemaps have
been prepared for press. The device should use this information to calculate
a transformation that results in a proof that is identical to the press sheet.
Possible values are identical to ConventionalPrintingParams/
@WorkStyle.

TransferCurve ? Transfer-
Function

Area coverage correction of the device.

Media ?
New in JDF 1.1

refelement Describes the media to be used. Different Media may be specified in differ-
ent partition leaves to enable content driven Media selection.

FitPolicy ?
New in JDF 1.2

refelement Describes the hardware image fitting algorithms. Allows printing even if the
size of the imageable area of the media does not match the requirements of
the data.

Name Data Type Description
Process Resources 391

Chapter 7 Resources
Resource Structure

7.2.87 InkZoneCalculationParams
This resource specifies the parameters for the InkZoneCalculation process.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: TileID, WebName
Input of processes: InkZoneCalculation
Output of processes: —

Name Data Type Description
ColorName ?
Clarified in JDF 1.2

string Link to a definition of the color specifics. The value of ColorName color
should match the Name attribute of a Color defined in a ColorPool
resource that is linked to the process that is using the Ink resource. Instead
of linking the ColorPool resource directly, it may be referenced by
another resource that is linked to the process.
Note: A ColorName attribute is used differently in other resources where
it refers to a NamedColor as defined in "NamedColor" on page 576.

Family ? NMTOKEN Ink family. Possible values include:
HKS
PANTONE
Toyo
ISO – ISO 2846-1 (used by SWOP) Clarified in JDF 1.2
InkJet
It is also possible to specify liquids that are similar to ink. Possible values of
this type include:
Varnish
Silicon
Toner

InkName ?
Modified in JDF 1.1

string The name of ink is dependent on its Family. For example, the InkName
“138 CVC” is a member of the Pantone Family.

SpecialInk ? NMTOKEN Specific ink attributes. Possible values include:
Metallic

SpecificYield ? double Weight per area at total coverage in g/m2.
392 Process Resources

JDF Specification Release 1.2
Resource Structure

7.2.88 InkZoneProfile
This resource specifies ink zone settings that are specific to the geometry of the printing device being used.
InkZoneProfiles are independent of the device details.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: FountainNumber, Separation, SheetName, Side, SignatureName,

WebName
Input of processes: ConventionalPrinting
Output of processes: InkZoneCalculation

Resource Structure

Name Data Type Description
FountainPositions ? DoubleList Even number of positions. Each pair specifies the begin and end of

the ink slides belonging to a certain fountain. The positions are in
coordinates of the printable width along the cylinder axis. The first
pair is associated to the first fountain position (corresponds to the
partition FountainNumber = “0”), the second to the second
position (FountainNumber = “1”), etc.

PrintableArea ? rectangle Position and size of the printable area of the print cylinder in the
coordinates of the Preview resource.
The Partition TileID must be used for each plate together with
this attribute in case of multiple plates per cylinder. Multiple plates
per cylinder may be used in web printing.
The default case is to specify a rectangle that encompasses the
complete image to be printed.

ZoneHeight ? double The width of one zone in the feed direction of the printing machine
being used.

ZoneWidth ?
Modified in JDF 1.2

double The width of one zone of the printing machine being used. Typi-
cally, the width of a zone is the width of an ink slide.

Zones ?
Modified in JDF 1.2

integer The number of ink zones of the press.

ZonesY ? integer Number of ink zones in feed direction of the press.
Device ?
New in JDF 1.2

refelement Device provides a reference to the press that the
InkZoneProfile is defined for and is used to gather informa-
tion about ink zone geometry.

Name Data Type Description
ZoneHeight ? double The width of one zone in the feed direction of the printing machine being used.
ZoneSettingsX DoubleList Each entry of the ZoneSettingsX attribute is the value of one ink zone. The

first entry is the first zone, and the number of entries equals the number of
zones of the printing device being used. Allowed values are in the range [0.1]
where 0 is no ink and 1 is 100% coverage.

ZoneSettingsY ? DoubleList Each entry of the ZoneSettingsY attribute is the value of one ink zone in Y-
Direction. The first entry is the first zone, and the number of entries equals the
number of zones of the printing device being used. Allowed values are in the
range [0.1] where 0 is no ink and 1 is 100% coverage.

ZoneWidth double The width of one zone of the printing machine being used. Typically, the width
of a zone is the width of an ink slide.
Process Resources 393

Chapter 7 Resources
7.2.89 InsertingParams
This resource specifies the parameters for the Inserting process. Figure 7.13 shows the various components
involved in an inserting process, and how they interact.

The process coordinate system is defined as follows: The Y-axis is aligned with the binding edge and increases from
the registered edge to the edge opposite the registered edge. The X-axis, meanwhile, is aligned with the registered
edge. It increases from the binding edge to the edge opposite the binding edge, which is the product front edge.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: Inserting
Output of processes: —

Resource Structure

Figure 7.13: Parameters and Coordinate system used for Inserting

Name Data Type Description
FinishedPage ?
New in JDF 1.2

integer Finished page number of the mother Component on which the
child Component has to be placed, only if InsertLocation
= “FinishedPage”. Corresponds to Folio on
InsertingIntent.

InsertLocation
Modified in JDF 1.2

enumeration Where to place the “child” sheet. Possible values are:
Back
FinishedPage – Place the child exactly onto the page speci-
fied in FinishedPage. New in JDF 1.2
Front
Overfold – Place onto the overfold. Replaces
OverfoldLeft and OverfoldRight. New in JDF 1.2
OverfoldLeft – Deprecated in JDF 1.2
OverfoldRight – Deprecated in JDF 1.2
Note: This was renamed from Location in JDF 1.2 due to a
name clash with the Location partition key.
394 Process Resources

JDF Specification Release 1.2
Location of Inserts
New in JDF 1.2

The following graphics depict the various values of InsertingParams/@InsertLocation.

Front. Child on Front of mother component — is used for fixed inserts (e.g., glueing of inserts and so forth on sig-
natures).

.

Back. Child on Back of mother component — is used for fixed inserts (e.g., glueing of inserts on signatures)..

Method = “BlowIn” enumeration Inserting method. Possible values are:
BindIn – Apply glue to fasten the insert.
BlowIn – Loose insert.

SheetOffset ?
Deprecated in JDF 1.1

XYPair Offset between the sheet to be inserted and the “mother” sheet.
SheetOffset is implied by the Transformation matrix in
ResourceLink/@Transformation of the child’s
ComponentLink.

GlueLine * refelement Array of all GlueLine elements. The coordinate system is
defined by the mother Component.

Name Data Type Description
Process Resources 395

Chapter 7 Resources
Overfold. The mother component is opened at the overfold and the child is placed in the center of the of the mother.
Overfold is used for loose inserts (e.g., inserts into newspapers).

FinishedPage. Child on FinishedPage X of mother component — can be used for loose and fixed inserts.

7.2.90 InsertSheet
InsertSheet resources define device generated images and sheets which may be produced along with the job.
InsertSheets include separators sheets, error sheets, accounting sheets, and job sheets. The information provided
on the sheet depends on the type of sheet. In some cases, an Imposition process may encounter RunList elements
that do not provide enough finished pages to complete a Layout resource or its children. InsertSheet resources
are used to provide a standard way of completing such Layout resources. InsertSheet resources may also be used
to start new Sheet resources, (e.g., to ensure that a new chapter starts on a right-hand page). In addition,
InsertSheet may specify whether new media should be inserted once the current Sheet, Signature, instance
document, or job is completed.

InsertSheets may be used at the beginning or end of RunLists with a SheetUsage attribute of Header or
Trailer. When an InsertSheet appears both in a RunList and in a Layout and/or Sheet, the following prece-
dence applies:

1 The InsertSheet with Usage FillSurface from the RunList is applied first.

2 The InsertSheet with Usage FillSheet from the RunList is applied.

3 The InsertSheet with Usage FillSignature from the RunList is applied.

4 After completely processing the RunList InsertSheets once, apply the Surface, Sheet, and
Signature InsertSheets.

If the RunList of the InsertSheet does not supply enough content to fill a Sheet, Signature, or Surface, the
RunList will be reapplied until no PlacedObject slots remain to be filled. When an InsertSheet is used in a
RunList of a process that does not use a Layout or LayoutPreparationParams resource (i.e., that pro-
cess has not been combined with Imposition or LayoutPreparation), only Usage Header or Trailer are
valid.

Resource Properties
Resource class: Parameter
Resource referenced by: Disjointing, Layout, LayoutPreparationParams, RunList,

Sheet
Example Partition: —
Input of processes: —
Output of processes: —
396 Process Resources

JDF Specification Release 1.2
Resource Structure
Name Data Type Description

IncludeInBundl
eItem ?
New in JDF 1.2

enumera-
tion

Defines bundle items when this InsertSheet is not a subelement of
RunList. If this InsertSheet is a subelement of a RunList, then
IncludeInBundleItem must be ignored, and RunList/
@EndOfBundleItem must be used instead. As an example,
IncludeInBundleItem controls whether the InsertSheet is to be included
in a bundle item for purposes of finishing the InsertSheet with other sheets.
Possible values are:
After – This InsertSheet is to be included in the BundleItem that occurs
after this InsertSheet. “After” is equivalent to “None” if no
BundleItem is defined after this InsertSheet

Before – This InsertSheet is to be included in the BundleItem that
occurs before this InsertSheet. “Before” is equivalent to “None” if no
BundleItem is defined before this InsertSheet

None – This InsertSheet is not included in a BundleItem.
New – A new BundleItem is created. This InsertSheet will be in the new
BundleItem by itself unless another InsertSheet with
IncludeInBundleItem = “Before” occurs immediately after this
InsertSheet.

IsWaste ? boolean Specifies whether the InsertSheet is waste that should be removed from the
document before further processing. If “true”, the InsertSheet is to be dis-
carded when finishing the document.

MarkList ?
New in JDF 1.1

NMTO-
KENS

List of marks that should be marked on this InsertSheet. Ignored if a Sheet is
specified in this InsertSheet. Values include:
CIELABMeasuringField
ColorControlStrip
ColorRegisterMark
CutMark
DensityMeasuringField
IdentificationField
JobField
PaperPathRegisterMark
RegisterMark
ScavengerArea

SheetFormat ?
New in JDF 1.1
Modified in JDF
1.2

NMTO-
KEN

Identifies that device-dependent information is to be included on the
InsertSheet. Possible values include:
Blank
Brief
Duplicate – Valid for SheetUsage = “Interleaved” or
“InterleavedBefore”. Specifies that the interleaved sheet is to contain the
same (duplicate) content as the previous (Interleaved) or following
(InterleavedBefore) sheet. If there is content on both sides of the previ-
ous or following sheet (duplex), then the InsertSheet has both sides dupli-
cated. New in JDF 1.2
Full
Standard
Process Resources 397

Chapter 7 Resources
SheetType
New in JDF 1.1

enumera-
tion

Identifies the type of sheet. Possible values are:
AccountingSheet – A sheet that reports accounting information for the job.
ErrorSheet – A sheet that reports errors for the job.
FillSheet – A sheet that fills ContentObjects with no matching entry in
the content RunList.
InsertSheet – A sheet that is inserted to the job, (e.g., a preprinted cover).
JobSheet – A sheet that delimits the job.
SeparatorSheet – A sheet that delimits pages, sections, copies, or instance
documents of the job.

SheetUsage
New in JDF 1.1
Modified in JDF
1.2

enumera-
tion

Indicates where this InsertSheet is to be produced and inserted into the set of
output pages. Possible values are:
FillForceBack – Valid for SheetType = “FillSheet”. Contents of the
RunList of the InsertSheet are used to fill the front surface of the current
sheet before forcing the next page of the content Runlist to the back surface of
the current sheet if not already on a back surface.
FillForceFront – Valid for SheetType = “FillSheet”. Contents of
the RunList of the InsertSheet are used to fill the back surface of the current
sheet before forcing the next page of the content Runlist to the front surface of
the next sheet if not already on a front surface.
FillSheet – Valid for SheetType = “FillSheet”. Contents from the
RunList of the InsertSheet are used to fill the current sheet.
FillSignature – Valid for SheetType = “FillSheet”. Contents from
the RunList of the InsertSheet are used to fill the current signature.
FillSurface – Valid for SheetType = “FillSheet”. Contents from the
RunList of the InsertSheet are used to fill the current surface.
Header – Valid for SheetType = “InsertSheet”, “JobSheet”, or
“SeparatorSheet”. The sheet is produced at the beginning of the job (for
JobSheet), or at the beginning of each copy of each instance document (for
SeparatorSheet), or is prepended before the current sheet, signature, layout,
or RunList as defined by its context. Contents for the Sheet are drawn from
the RunList included in this InsertSheet resource, if one is included. If a
RunList is not included, the inserted sheet is filled with system-specified con-
tent defined by SheetType.
Interleaved – Valid for SheetType = “SeparatorSheet”. The sheet
is produced after each page, (e.g., used to insert sheets under transparencies).
Contents for the Sheet are drawn from the RunList included in this
InsertSheet resource, if one is included. If a RunList is not included, the
inserted sheet is filled with system-specified content defined by SheetType =
“SeparatorSheet”.
InterleavedBefore – Valid for SheetType = “SeparatorSheet”.
The sheet is produced before each page, (e.g., used to insert sheets before trans-
parencies). Contents for the Sheet are drawn from the RunList included in this
InsertSheet resource, if one is included. If a RunList is not included, the
inserted sheet is filled with system-specified content defined by SheetType =
“SeparatorSheet”. New in JDF 1.2

Name Data Type Description
398 Process Resources

JDF Specification Release 1.2
7.2.91 InterpretedPDLData
Represents the results of the PDL Interpretation process. The details of this resource are not specified, as it is assumed
to be implementation dependent.

Resource Properties
Resource class: Parameter
Resource referenced by: RunList
Example Partition: —
Input of processes: —
Output of processes: —

SheetUsage
(Continued)

OnError – Valid for SheetType = “ErrorSheet”. The sheet is produced
at the end of the job only when an error or warning occurs.
Slip – Valid for SheetType = “SeparatorSheet”. The sheet is produced
between each copy of each instance document. Contents for the Sheet are
drawn from the RunList included in this InsertSheet resource, if one is
included. If a RunList is not included, the inserted sheet is filled with system-
specified content defined by SheetType = “SeparatorSheet”.
SlipCopy – Valid for SheetType = “SeparatorSheet”. The sheet is
produced between each copy of the job, which is defined to be when the com-
plete RunList has been consumed. Contents for the Sheet are drawn from the
RunList included in this InsertSheet resource, if one is included. If a
RunList is not included, the inserted sheet is filled with system-specified con-
tent defined by SheetType = “SeparatorSheet”.
Trailer – Valid for SheetType = “AccountingSheet”,
“ErrorSheet”, “InsertSheet”, “JobSheet”, and
“SeparatorSheet”. The sheet is produced at the end of the job (for
AccountingSheet, ErrorSheet, and JobSheet), or at the end of each
copy of each instance document (for SeparatorSheet), or is appended after
the current sheet, signature, layout, or RunList as defined by its context. Con-
tents for the Sheet are drawn from the RunList included in this InsertSheet
resource, if one is included. If a RunList is not included, the inserted sheet is
filled with system specified content defined by SheetType.a

Usage ?
Deprecated in JDF
1.1

enumera-
tion

Replaced by SheetUsage.

RunList ? refelement A RunList that provides the content for the InsertSheet. Any InsertSheet
resources referenced by this RunList are ignored.

Sheet ? refelement Details of the Sheet that will be inserted. Contents for this Sheet are drawn
from the RunList included in this InsertSheet, if any. If not specified, the
system specified insert sheets are used. Any InsertSheet resources referenced
by this Sheet are ignored.

a. Note: Use SheetType = “ErrorSheet” and SheetUsage = “Trailer” to always produce a
sheet that contains error or success information even if no errors or warnings occurred.

Name Data Type Description
Process Resources 399

Chapter 7 Resources
7.2.92 InterpretingParams
The InterpretingParams resource contains the parameters needed to interpret PDL pages. The resource itself is a
generic resource that contains attributes that are relevant to all PDLs. PDL-specific instances of
InterpretingParams resources may be included as subelements of this generic resource. This specification
defines one additional PDL-specific resource instance: PDFInterpretingParams.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: DocIndex, RunIndex, RunTags, SheetName, Side, SignatureName
Input of processes: Interpreting
Output of processes: —

Structure of the InterpretingParams Resource
Name Data Type Description

Center = “false” boolean Indicates whether or not the finished page image should be centered
within the imageable area of the media. Center is ignored if FitPolicy/
@SizePolicy = “ClipToMaxPage” and clipping is required.

FitToPage ?
Deprecated in JDF 1.1

boolean Specifies whether the finished page contents should be scaled to fit the
media. In JDF 1.1 and beyond, use FitPolicy.

MirrorAround =
“None”

enumeration This attribute specifies the axis around which a RIP may mirror an image.
Note that this is mirroring in the RIP and not in the hardware of the output
device. Possible values are:
None – The default.
FeedDirection – Image is mirrored around the feed-direction axis.
MediaWidth – Image is mirrored around the media-width axis.
Both – Image is mirrored around both possible axes.

Polarity =
“Positive”

enumeration The image must be RIPed in the polarity specified. Note that this is a
polarity change in the RIP and not a polarity change in the hardware of the
output device. Possible values are:
Positive
Negative

Poster ? XYPair Specifies whether the page contents should be expanded such that each
page covers X by Y pieces of media.

PosterOverlap ? XYPair This pair of real numbers identifies the amounts of overlap in points, that
must be calculated for the poster tiles across the horizontal and vertical
axes, respectively.

PrintQuality =
“Normal”
New in JDF 1.1

enumeration Generic switch for setting the quality of an otherwise inaccessible device.
Possible values are:
High – Highest quality available on the printer.
Normal – The default quality provided by the printer.
Draft – Lowest quality available on the printer.

Scaling ? XYPair A pair of positive real values that indicates the scaling factor for the page
contents. Values between 0 and 1 specify that the contents are to be
reduced, while values greater than 1 specify that the contents are to be
expanded. This attribute is ignored if FitToPage = “true” or if Poster
is present and has a value other than “1 1”. Any scaling defined in
FitPolicy must be applied after the scaling defined by this attribute.
400 Process Resources

JDF Specification Release 1.2
Structure of PDFInterpretingParams Subelement
New in JDF 1.1

ScalingOrigin ? XYPair A pair of real values that identify the point in the unscaled page that is to
become the origin of the new, scaled page image. This point is defined in
the coordinate system of the unscaled page. If not specified, and scaling is
requested, the ScalingOrigin defaults to “0 0”

FitPolicy ?
New in JDF 1.1

refelement Allows printing even if the size of the imageable area of the media does
not match the requirements of the data. This replaces the deprecated
FitToPage attribute. This FitPolicy element must be ignored in a com-
bined process with LayoutPreparation.

Media *
New in JDF 1.1
Modified in JDF 1.2

refelement This resource provides a description of the physical media which will be
marked. The physical characteristics of the media may affect decisions
made during Interpreting. The cardinality was changed to “*” in JDF
1.2 in order support description of multiple media types, (e.g Film, Plate,
and Paper.) If multiple Media are specified, Media/@MediaType
defines the type of Media. If multiple Media with Media/
@MediaType = “Paper” are specified in a proofing environment, the
first Media is the proofer paper and the second Media is the final
device paper.

ObjectResolution * refelement Indicates the resolution at which the PDL contents will be interpreted in
DPI. These elements may be different from the ObjectResolution ele-
ments provided in the resource.

PDFInterpretingPar
ams ?
New in JDF 1.1

element Details of interpreting for PDF. Note that this is a subelement in JDF 1.1
and beyond, and not an instance as in JDF 1.0.

Name Data Type Description
EmitPDFBG = “true” boolean Indicates whether BlackGeneration functions should be emitted.
EmitPDFHalftones =
“true”

boolean Indicates whether Halftones should be emitted.

EmitPDFTransfers =
“true”

boolean Indicates whether Transfer functions should be emitted

EmitPDFUCR = “true” boolean Indicates whether UnderColorRemoval functions should be emitted.
HonorPDFOverprint =
“true”

boolean Indicates whether or not overprint settings in the file will be honored.
If “true”, the setting for overprint will be honored. If “false”, it
is expected that the device does not directly support overprint and
that the PDF is preprocessed to simulate the effect of the overprint
settings

ICCColorAsDeviceColor =
“false”

boolean Indicates whether colors specified by ICC color spaces should be
treated as device colorants.

PrintPDFAnnotations =
“false”

boolean Indicates whether the contents of annotations on PDF pages should
be included in the output. This only refers to annotations that are set
to print in the PDF file.

TransparencyRendering
Quality ?

double Possible values are 0 to 1. 0 represents the lowest allowable quality. 1
represents the highest desired quality.

Name Data Type Description
Process Resources 401

Chapter 7 Resources
7.2.93 JacketingParams
New in JDF 1.1
Description of the setup of the jacketing
machinery. Jacket height and width (1
and 3 in the figure below) are specified
within the Component that describes
the jacket.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: Jacketing

Resource Structure

Figure 7.14: Parameters and Coordinate System for Jacketing

Name Data Type Description
FoldingWidth double Definition of the dimension of the folding width of the front cover fold (see

“FoldingWidth”in the picture above). All other measurements are implied by the
dimensions of the book.

1

2

3 FB

1: Jacket width
2: Folding width
3: Jacket height
402 Process Resources

JDF Specification Release 1.2
7.2.94 JobField
New in JDF 1.1
A JobField is a Mark object that specifies the details of a job. JobFields are also referred to as slug lines.

Resource Properties
Resource class: Parameter
Resource referenced by: Surface
Example Partition: —
Input of processes: —
Output of processes: —

Resource Structure
Name Data Type Description

ShowList
Modified in JDF
1.2

NMTOKENS List of elements to display in the JobField. Values include:
DeviceID – ID of the device. This is a unique name within the workflow.
EndTime – Actual end time of the job.
Error – Errors that happened during the job.
ErrorStats – Statistics on errors that happened during execution.
ExposedMediaName – DescriptiveName of the eposed media, e.g. plate
or proof that is being imaged.
FriendlyName – FriendlyName of the device.
JobID – JobID of the node that is executing.
JobName – DescriptiveName of the node that is executing.
JobRecipientName – Name of the recipient of the job.
JobSubmitterName – Name of the submitter of the job.
StartTime – Actual StartTime of the job.
MediaBrand – Brand of the media that is being printed.
MediaType – DescriptiveName of the media that is being printed.
MoonPhase – Phase of the moon at the StartTime of the job.
Operator – Name of the operator.
OperatorText – Text from the operator as defined in OperatorText.
PrintQuality – The quality of the printout. (High, Normal, Draft, or
device specific name)
ProoferProfileName – Name of the ICC profile for the proofing device.
PressProfileName – Name of the ICC profile for the final printing (used
as intermediate space during proofing).
Resolution – Output resolution.
ResolutionX – Output resolution in X direction.
ResolutionY – Output resolution in Y direction.
ScreeningFamily – Name of the screening family of the output.
UserText – User-defined text as defined in UserText.
Warning – Warnings that happened during the job. Warnings don't lose infor-
mation in the resulting job, while errors do.
In addition, the partition key names defined in Table 3-27, “Contents of the
Partitionable Resource Element,” on page 78 are also supported.

OperatorText
?Modified in JDF
1.2

string Text from the operator. Note that this was erroneously described as text to the
operator in JDF 1.1 and below.

UserText ? string User-defined text to output with JobField.
DeviceMark ? refelement DeviceMark defines the formatting parameters for the mark. If not specified,

the DeviceMark settings defined in LayoutPreparationParams or in
the Layout tree are assumed.
Process Resources 403

Chapter 7 Resources
7.2.95 LabelingParams
New in JDF 1.1
LabelingParams defines the details of the Labeling process.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: Labeling
Output of processes: —

Resource Structure

7.2.96 LaminatingParams
New in JDF 1.1
This resource specifies the parameters needed for laminating.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: SheetName, Side
Input of processes: Laminating
Output of processes: —

Resource Structure

Name Data Type Description
Application ? NMTOKEN Application method of the label. Values include:

Glue – Glued onto the component.
Loose – Loosely laid onto the component.
SelfAdhesive – Self adhesive label.
Staple – Stapled onto the component.

CTM ? matrix Position and orientation of the label lower-left-corner relative to
the lower left corner of the component surface as defined by
Position.

Position ? enumeration Position of the label on the bundle. One of:
Top
Bottom
Left
Right
Front
Back

Name Data Type Description
AdhesiveType ? string Type of adhesive used. Valid only when LaminatingMethod =

DispersionGlue.
GapList ? DoubleList List of non-laminated gap positions in the X direction of the laminating

tool in the coordinate system of the Component. The zero-based even
entries define the absolute position of the start of a gap, and the odd
entries define the end of a gap. If not specified, the complete area defined
by LaminatingBox is laminated.
404 Process Resources

JDF Specification Release 1.2
7.2.97 Layout
Represents the root of the layout structure. Layout is used both for fixed-layout and for automated printing.

Resource Properties
Resource class: Parameter
Resource referenced by: Component
Example Partition: It is strongly discouraged to partition the Layout tree, including Sheet and

Surface.
Input of processes: ConventionalPrinting, DigitalPrinting, Imposition,

InkZoneCalculation, Proofing, SoftProofing
Output of processes: LayoutPreparation, Stripping

Resource Structure

HardenerType ? string Type of hardener used. Valid only when LaminatingMethod =
DispersionGlue.

LaminatingBox rectangle Area on the Component to be laminated.
LaminatingMethod ? enumeration Laminating technology that is applied. One of:

CompoundFoil
DispersionGlue
Unknown Deprecated in JDF1.2

Temperature ? double Temperature used in the lamination process, in ° Centigrade.

Name Data Type Description
Automated = “false” boolean If “true”, the Imposition process is expected to perform automated

page consumption. Automated page consumption is equivalent to the
PrintLayout functionality provided in PJTF.

MaxDocOrd = “1”
New in JDF 1.1

integer Zero-based maximum number of instance documents that are consumed
from a RunList each time the Layout is executed, assuming the
Imposition process is automated.

MaxOrd ? integer Zero-based maximum number of placed objects that are consumed from a
RunList each time the Layout is executed, assuming the Imposition
process is automated. If not specified, it must be calculated from the Ord
values of the ContentObjects in the Layout.

MaxSetOrd = “1”
New in JDF 1.1

integer Zero-based maximum number of document sets that are consumed from a
RunList each time the Layout is executed, assuming the Imposition
process is automated.

Name ?
New in JDF 1.1

string Unique name of the Layout. Name is used for external reference to a
Layout.

InsertSheet * refelement Additional sheets that should be inserted before and/or after a document.
LayerList ?
New in JDF 1.1

element List of LayerDetails elements.

Media ?
New in JDF 1.1

refelement Describes the media to be used. Media must be specified within one of
Layout, Signature, or Sheet within a Layout structure.

MediaSource ?
Deprecated in JDF 1.1

refelement Describes the media to be used. Replaced by Media in JDF 1.1.

Signature * element The signatures that are defined by the layout.
TransferCurvePool ?
New in JDF 1.1

refelement Describes the relationship of transfer curves and coordinate systems
within the various processes.

Name Data Type Description
Process Resources 405

Chapter 7 Resources
Structure of LayerList Subelement
New in JDF 1.1
This element provides a container for an ordered list of LayerDetails elements. The individual elements are refer-
enced by their zero-based index in the LayerList using the LayerIDs partition key.

Structure of LayerDetails Subelement
New in JDF 1.1
This element provides information about individual layers

Structure of Signature Subelement
This element groups individual Sheet resources into one Signature subelement.

7.2.98 LayoutElement
This resource is needed for LayoutElementProduction. It describes some text, an image, one or more pages,
or anything else that is used in the production of the layout of a product.

Resource Properties
Resource class: Parameter
Resource referenced by: RunList, Surface/PlacedObject
Example Partition: PageNumber
Input of processes: DBDocTemplateLayout, DBTemplateMerging,

LayoutElementProduction
Output of processes: DBDocTemplateLayout, LayoutElementProduction

Resource Structure

Name Data Type Description
LayerDetails * element Details of the individual layers.

Name Data Type Description
Name ? string Unique name of the layer.

Name Data Type Description
Name ? string Unique name of the signature. Name is used for external reference to a sig-

nature, as in a Part element.
InsertSheet * refelement Specifies how to complete a signature in an automated printing environment.
Media ?
New in JDF 1.1

refelement Describes the media to be used. Defaults to Layout/Media.

MediaSource ?
Deprecated in JDF 1.1

refelement Describes the media to be used. Replaced by Media in JDF 1.1.

Sheet * refelement Resources that comprise the signature.

Name Data Type Description
ClipPath ?
Modified in JDF 1.2

PDFPath Path that describes the outline of the LayoutElement in the coordi-
nate space of the LayoutElement of ElementType = “Page” that
results from the LayoutElementProduction process. The default
case is that there is no clip path. ClipPath, SourceClipBox,
PlacedObject/@SourceClipPath, and PlacedObject/
@ClipBox, if available, must be concatenated.
406 Process Resources

JDF Specification Release 1.2
ElementType ?
Modified in JDF 1.2

enumeration Describes the content type for this LayoutElement. Possible values
are:
Auxilliary – Any type of file that is needed to complete a layout but
not explicitly displayed, (e.g., ICC profiles or fonts).
Composed – Combination of elements that define an element that is not
bound to a document page.
Document – An ordered set of one or more pages.
Graphic – Line art.
Image – Bitmap image.
MultiDocument – An ordered set of one or more Documents includ-
ing document breaks, (e.g., PPML, PPML/VDX, MIME multipart/
related).
MultiSet – An ordered set of one or more Document sets including
document set breaks, (e.g., PPML, PPML/VDX).
Page – Representation of one document page.
Reservation – Empty element. Content for this area of the page may
be provided by a subsequent process.
Surface – Representation of an imposed surface.
Text – Formatted or unformatted text.
Tile – Representation of the contents of one tile.
Unknown – Deprecated in JDF 1.2

HasBleeds ?
Modified in JDF 1.2

boolean If “true”, the file has bleeds. If not specified, the value of PageList/
PageData/@HasBleeds is applied.

IgnorePDLCopies=
“false” New in JDF 1.1

boolean If “true”, any PDL defined copy count must be ignored.

IgnorePDLImposition
= “true”
New in JDF 1.1

boolean If “true”, any PDL defined imposition definition must be ignored.
Examples are PDF with embedded PJTF or PPML with a
PRINT_LAYOUT. If IgnorePDLImposition = “false” and JDF
also defines imposition, the imposed sheets of the PDL are treated as
pages in the context of JDF imposition. The front and back surfaces of
the PDL and JDF imposition should be matched. Note that it is strongly
discouraged to specify imposition both in the PDL and JDF, and that this
may result in undesired behavior.

IsBlank ?
New in JDF 1.2

boolean If “false”, the LayoutElement has no content marks and is blank.
If not specified, the value of PageList/PageData/@IsBlank is
applied.

IsPrintable ?
Modified in JDF 1.2

boolean If “true”, the file is a PDL file and can be printed. Possible files types
include PCL, PDF, or PostScript files. Application files such as MS
Word have IsPrintable = “false”. If not specified, the value of
PageList/PageData/@IsPrintable is applied.

IsTrapped ?
Modified in JDF 1.2

boolean If “true”, the file has been trapped. If not specified, the value of
PageList/PageData/@IsTrapped is applied.

PageListIndex ?
New in JDF 1.2

Integer-
RangeList

List of the indices of the PageData elements of the PageList speci-
fied in this LayoutElement. Note that this list may be overwritten by
a RunList that contains this LayoutElement and refers to a subset of
this LayoutElement. PageList must be specified if
PageListIndex is defined.

Name Data Type Description
Process Resources 407

Chapter 7 Resources
Structure of Dependencies Subelement
New in JDF 1.2
This element provides a container for dependent references of the LayoutElement.

7.2.99 LayoutPreparationParams
New in JDF 1.1
This resource provides the parameters of the LayoutPreparation process, which provides the details of how fin-
ished page contents will be imaged onto media. This resource has a provision for specifying either a multi-up grid of
content page cells or an imposition layout of finished pages.

SourceBleedBox ?
Modified in JDF 1.2

rectangle A rectangle that describes the bleed area of the element to be included.
This rectangle is expressed in the default user space. If not specified, the
value of PageList/PageData/@SourceBleedBox is applied.

SourceClipBox ?
Modified in JDF 1.2

rectangle A rectangle that defines the region of the element to be included. This
rectangle is expressed in the default user space of the source document
page. If not specified, the value of PageList/PageData/
@SourceClipBox is applied.

SourceTrimBox ?
Modified in JDF 1.2

rectangle A rectangle that describes the intended trimmed size of the element to be
included. This rectangle is expressed in the default user space.
If not specified, the value of PageList/PageData/
@SourceTrimBox is applied.

Template ?
Modified in JDF 1.2

boolean Template is “false” when this layout element is self-contained.
This attribute is “true” if the LayoutElement represents a template
that must be completed with information from a database. If not speci-
fied, the value of PageList/PageData/@Template is applied.

ColorPool ?
New in JDF 1.2

refelement Definition of the color details.

Dependencies ?
New in JDF 1.2

element List of dependent references, (e.g., fonts, external images, etc.).

ElementColorPara
ms ?
New in JDF 1.2

refelement Color details of the LayoutElement. If not specified, the value of
PageList/PageData/ElementColorParams is applied.

FileSpec ?
Modified in JDF 1.2

refelement URL plus metadata about the physical characteristics of a file represent-
ing the LayoutElement. If not present, then only metadata is known
but not the content file.

ImageCompressio
nParams ?
New in JDF 1.2

refelement Specification of the image compression properties. If not specified, the
value of PageList/PageData/ImageCompressionParams is
applied.

PageList ?
New in JDF 1.2

refelement Specification of page metadata for pages described by this
LayoutElement.

ScreeningParams ?
New in JDF 1.2

refelement Specification of the screening properties. If not specified, the value of
PageList/PageData/ScreeningParams is applied.

SeparationSpec *
Modified in JDF 1.2

refelement List of used separation names. If not specified, the value of PageList/
PageData/@SeparationSpec is applied.

Name Data Type Description
LayoutElement * refelement Description of dependent elements, (e.g., fonts, images, etc.).

Name Data Type Description
408 Process Resources

JDF Specification Release 1.2
A multi-up grid of pages can be step and repeated across, down, or through a stack of sheets in any axis order. Note
that for all resources, the coordinate system for all parameters is defined with respect to the process coordinate system
as defined in Section 2.5.3, Coordinate Systems of Resources and Processes. The process coordinate system for
LayoutPreparation is defined by the Layout resource coordinate system.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: DocIndex, DocRunIndex, RunIndex, SetIndex, SheetName
Input of processes: LayoutPreparation
Output of processes: —

Resource Structure
Name Data Type Description

BackMarkList ? NMTOKENS List of marks that should be marked on each back surface. The appearance
of the marks are defined by the process implementation. For a list of pre-
defined values, see FrontMarkList.

CreepValue ? XYPair This parameter determines horizontal and vertical creep compensation.
The numbers specify the distance in points by which the respective gutter
that creeps either increments or decrements in width from one sheet to the
next for a given sequence of sheets related to the same bound component.
If the value of a component of this attribute is positive, it specifies the
amount in points by which the width of creeping gutters are incremented.
If the value of a component of this attribute is negative then it specifies the
amount in points by which the width of creeping gutters are decremented.
If not specified, it may be calculated based on the information taken from
Media.

FinishingOrder =
“GatherFold”

enumeration Specifies the order of operations for finishing a bound booklet created
from multiple imposed sheets.
The LayoutPreparation process needs this information in order to
completely determine content page distribution onto the sequence of
sheets comprising the pages of a single booklet under consideration of the
values of the PageDistributionScheme and FoldCatalog attributes.
Possible values are:
FoldGather – The sheets of a document are first folded according to the
value of the FoldCatalog attribute and then gathered on a pile. Usually
applies to finishing of perfect-bound documents.
FoldCollect – The sheets of a document are first folded, according to
the value of the FoldCatalog attribute, and then collected on a saddle.
Usually applies to finishing of both perfect-bound and saddle-stitched
booklets.
Gather – The sheets of a document are gathered on a pile. No folding is
assumed.
GatherFold – The sheets of a document are first gathered on a pile
then folded according to the value of the FoldCatalog attribute. Usually
applies to finishing of both perfect-bound and saddle-stitched booklets.
Process Resources 409

Chapter 7 Resources
FoldCatalog ? string Description of the type of fold that will be applied to all printed sheets
according to the folding catalog in the format “Fx-y” as shown in
Figure 7.9 and Figure 7.10.
The LayoutPreparation process uses the fold description specified by this
attribute in the determination of the proper distribution of pages onto the
surfaces of the sheets in the context of the values of both the
PageDistributionScheme and FinishingOrder attributes.
If not present, no folding other than the folding that is implied by
PageDistributionScheme = “Saddle” is assumed.

FrontMarkList ? NMTOKENS List of marks that should be marked on each front surface. The appearance
of the marks are defined by the process implementation. Values include:
CIELABMeasuringField
ColorControlStrip
ColorRegisterMark
CutMark
DensityMeasuringField
IdentificationField
JobField
PaperPathRegisterMark
RegisterMark
ScavengerArea

Gutter ?
Modified in JDF 1.2

XYPair Width in points of the horizontal and vertical gutters formed between rows
and columns of pages of a multi-up sheet layout. The first value specifies
the width of all horizontal gutters, and the second value specifies the width
of all vertical gutters. If no gutters are defined because either the
NumberUp attribute is not present or its explicit values are equal to one,
this attribute must be ignored.
In the case where a gutter is identified as creeping by either the
VerticalCreep or HorizontalCreep attributes, then the value of
Gutter specifies the initial gutter width where the gutter width may incre-
ment or decrement depending upon the explicit or implied value of the
CreepValue attribute. The Gutter is applied in addition to any Border
specified in the PageCell.

HorizontalCreep ?
Modified in JDF 1.2

IntegerList Specifies which horizontal gutters creep. The allowed values are zero-
based indexes that reference horizontal gutters formed by multiple rows of
pages in a multi-up page layout specified by the second value of the
NumberUp attribute. The value for an entry in this list must be between
zero and two (2) less then the second value of the NumberUp attribute.
If not specified, then no horizontal gutters will creep.

Name Data Type Description
410 Process Resources

JDF Specification Release 1.2
NumberUp ?
Clarified in JDF 1.2

XYPair Specifies a regular, multi-up grid of PageCells into which content fin-
ished pages are mapped. The first value specifies the number of columns
of page cells and the second value specifies the number of rows of page
cells in the multi-up grid (both numbers are in tegers).

The relative positioning of the page cells within the multi-up grid are
defined by the explicit or implied values of the Gutter,
HorizontalCreep, VerticalCreep, and CreepValue attributes.
The distribution of content pages from the content RunList into the page
cells is defined by the explicit or implied values of the
PageDistributionScheme, PresentationDirection, Sides,
FinishingOrder, and FoldCatalog attributes and the implicit number
of sheets comprising the bound component.

PageDistributionSc
heme =
“Sequential”

NMTOKEN Specifies how finished pages are to be distributed onto a multi-up grid of
finished PageCells defined by the values of the NumberUp attribute.
Possible values include:
Saddle – Distribute finished pages onto a sequence of one or more impo-
sition layouts in proper order for saddle stitch binding. For this page dis-
tribution scheme, creep should only be applied to odd-numbered vertical
gutters where any even-numbered gutters will automatically creep in the
opposite direction.
Perfect – Distribute finished pages onto a sequence of one or more sig-
natures in proper order for perfect binding. For this page distribution
scheme, creep is usually not used.
Sequential – The finished pages are distributed onto the multi-up lay-
out according to the value of the PresentationDirection attribute. Note
that page distribution ordering for both Saddle and Perfect also
depends upon the implied number of sheets per finished Component
and how the imposed sheets are to be folded during finishing as well as the
order of gathering and folding. Refer to the FoldCatalog and
FinishingOrder attributes.
Note: The NumberUp attribute must always specify a multi-up layout
appropriate for a given finished page distribution ordering and
FoldCatalog. Setting this attribute does not imply the multi-up grid
dimensions are appropriate for the selected page distribution scheme.
Note: In all cases, the order of finished pages as represented by the content
RunList must be either in reader order or in an order appropriate for
multi-up saddle stitching. Refer to the PageOrder attribute.

PageOrder =
“Reader”

NMTOKEN The assumed ordering of the finished pages in the RunList.
Booklet – The finished pages are preordered in the RunList and must
be processed exactly in the order as specified by
PresentationDirection. NumberUp must still be set to the appropri-
ate value and is not implied by specifying PageOrder = “Booklet”.
PageOrder = “Booklet” must not be used in conjunction with
FoldCatalog.
Reader – The finished pages are in reader order in the RunList.

Name Data Type Description

Compatibility Warning. In JDF 1.1 rows and columns were erro-
neously switched in the description.
Process Resources 411

Chapter 7 Resources
PresentationDirect
ion ?

enumeration Indicates the order in which finished pages will be distributed into the
page cells of the NumberUp layout. If PageDistributionScheme =
“Saddle”, PresentationDirection applies to sets of two adjacent
pages. This allows positioning of multiple page pairs for SaddleStitching
onto one sheet. Possible values are:
FoldCatalog – Finished pages are imaged so that the result is compati-
ble with a finished product produced from the folding catalog as specified
in FoldCatalog.
XYZ: Permutations of the letters XYZ and xyz so that exactly one of upper
or lower case of x, y, and z define the order in which finished pages are
flowed along each axis with respect to the coordinate system of the front
side of the sheet.
X – Specifies flowing left to right across a sheet surface.
x – Specifies flowing right to left across a sheet surface.
Y – Specifies flowing bottom to top vertically across a sheet surface.
y – Specifies flowing top to bottom vertically across a sheet surface.
Z – Specifies flowing bottom of stack to top of stack through the stack.
z – Specifies flowing top of stack to bottom of stack through the stack.
The following table specifies how cells are ordered on simplex 4-up
depending on XYZ.
XyZ
1 2 5 6
3 4 7 8

Zxy
4 2 3 1
8 6 7 5

xyz
2 1 6 5
4 3 8 7

XYZ
3 4 7 8
1 2 5 6

Rotate =
“Rotate0”

enumeration Orthogonal rotation including the implied translation to be applied to the
grid of PageCells on the entire surface relative to the process coordinate
system. One of:
Rotate0
Rotate90 – 90° counterclockwise rotation.
Rotate180 – 180° rotation.
Rotate270 – 90°clockwise rotation.
For details of orthogonal rotations, refer to Table 2-3, “Matrices and
Orientation values used to describe the orientation of a Component,” on
page 24. If a RotatePolicy value other than “NoRotate” is specified
in, the value specified in Rotate may be modified accordingly.
Note: A rotation of the grid also rotates the gutters, (i.e., it is applied after
all other parameters have been evaluated and applied).

Name Data Type Description
412 Process Resources

JDF Specification Release 1.2
Sides =
“OneSidedFront”

enumeration Indicates whether the content layout should be imaged on one or both
sides of the media. When a different value for the Sides attribute is
encountered, it must force a new sheet. However, when the same value for
the Sides attribute is restated for consecutive pages, it is the same as if
that re-statement was not present. Possible values are:
OneSidedBackFlipX – Page content is imaged on the back side of
media so that the corresponding page cells back up to a blank front cell
when flipping around the X axis. Equivalent to “WorkAndTumble” with a
blank front side.
OneSidedBackFlipY – Page content is imaged on the back side of
media so that the corresponding page cells back up to a blank front cell
when flipping around the Y axis. Equivalent to “WorkAndTurn” with a
blank front side.
OneSidedFront – Page content is imaged on the front side of media.
TwoSidedFlipX – Page content is imaged on both the front and back
sides of media sheets so that the corresponding page cells back up to each
other when flipping around the X axis. Equivalent to “WorkAndTumble”.
TwoSidedFlipY – Page content is imaged on both the front and back
sides of media sheets so that the corresponding page cells back up to each
other when flipping around the Y axis. Equivalent to “WorkAndTurn”.

StackDepth ? integer The number of sheets in a stack that are processed when imposing down
the Z axis. If not specified, the entire job defines one stack.

StepDocs ?
Modified in JDF1.2

XYPair A list of two integers that species how to impose multiple instance docu-
ments on one sheet. The first value specifies the document repeats along
the X axis, the second value specifies the repeats along the Y axis. Each
entry of NumberUp must be an integer multiple of StepRepeat *
StepDocs. Positive values define grouped step and repeat whereas nega-
tive values define alternating step and repeat. The following examples,
where documents are denoted A and B while pages are denoted 1 and 2,
have NumberUp = “4 4” and StepRepeat = “2 2” and StepDocs
=:
“2 1” (Two documents in X, one in
Y)
A1 A1 B1 B1
A1 A1 B1 B1
A2 A2 B2 B2
A2 A2 B2 B2

“1 2” (One document in X, two
in Y)
A1 A1 A2 A2
A1 A1 A2 A2
B1 B1 B2 B2
B1 B1 B2 B2

Name Data Type Description
Process Resources 413

Chapter 7 Resources
StepRepeat ? IntegerList A list of three integers that specifies the number of identical pages to
impose. The first value specifies the repeats along the X axis, the second
value specifies the repeats along the Y axis, and the third value specifies
the repeats down the stack — the Z axis. Each entry of NumberUp must
be an integer multiple of StepRepeat * StepDocs. Positive values
define grouped step and repeat, whereas negative values define alternating
step and repeat. Note that negative values are illegal for the third compo-
nent, since the total depth of the stack may be unknown. The following
examples have NumberUp = “4 4” and StepRepeat =:
“2 2 1”
1 1 2 2
1 1 2 2
3 3 4 4
3 3 4 4

“-2 2 1”
1 2 1 2
1 2 1 2
3 4 3 4
3 4 3 4

“-2 –2 1”
1 2 1 2
3 4 3 4
1 2 1 2
3 4 3 4

“2 –2 1”
1 1 2 2
3 3 4 4
1 1 2 2
3 3 4 4

“1 4 1”
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4

SurfaceContentsB
ox ?
Modified in JDF 1.1A

rectangle This box, specified in surface-coordinate space, defines the area into which
PageCells are distributed. The lower left corner of the rectangle specified
by the value of this attribute establishes the coordinate system into which
the content is mapped onto the surface. Note that
SurfaceContentsBox does not imply clipping. Clipping is defined by
PageCell/@ClipBox.
If SurfaceContentsBox is not specified, a device may supply a
SurfaceContentsBox that corresponds to the imageable area for the
Media used by the device. Otherwise a rectangle with the origin at “0
0” and the dimensions of the Media defined in this resource is assumed.
If no Media/@Dimension can be determined, the
SurfaceContentsBox is assumed to have its origin at the lower left
corner of the Media and to be unbounded in X and Y.

VerticalCreep ? IntegerList Specifies which vertical gutters creep. The allowed values are zero-based
indexes that reference vertical gutters formed by multiple columns of
pages in a multi-up page layout specified by the first value of the Num-
berUp attribute.
The value for an entry in this list must be between zero and two (2) less
then the first value of the NumberUp attribute. An index value outside of
this range is ignored. If not specified then no vertical gutters will creep.

ImageShift ? element Details how to place the grid of PageCells onto the media. The coordi-
nate system is defined so that the X dimension is the first number of the
Media Dimension attribute; Y is the second number. ImageShift
must be applied before any transformations of the grid of PageCells as
specified by Rotate or FitPolicy.

InsertSheet * refelement Additional sheets to be inserted before, after, or within a job.
DeviceMark ? refelement Details how device-dependent marks should be generated. If not specified,

the marks are device-dependent.
FitPolicy ? refelement Details how to fit the grid of PageCells onto the media.
JobField * refelement Specific information about this kind of mark object.
Media ? refelement Specific information about the media.
PageCell ?
Modified in JDF 1.1A

element PageCell elements describe how page contents will be imaged onto indi-
vidual page cells. Only one page cell size may be specified and is applied
to all cells on both Surfaces of a Sheet.

Name Data Type Description
414 Process Resources

JDF Specification Release 1.2
Structure of the PageCell Subelement
PageCell elements describe how page contents will be imaged onto individual page cells. Only one page cell size
may be specified and is applied to all cells on both Surfaces of a Sheet.

Name Data Type Description
Border ?
Modified in JDF 1.1A

double A number indicating the width in points of a drawn border line, that appears
around the trim region specified by the explicit or implied value of
TrimSize. A value of “0” specifies no border.
If the value of this attribute is non-zero and positive, then a border of that
specified width will be drawn to the outside of the page cell whose inside
dimension is the same as the explicit or implied value of the TrimSize
attribute. The border marks must not overwrite the page contents of the
trimmed page. Note that when the page cells are distributed evenly over the
area of the SurfaceContentsBox, the page cells position and/or size
may be adjusted to accommodate the border.
If the value of this attribute is non-zero and negative, then a border of a
width specified by the absolute value of this attribute will be drawn to the
inside of the page cell whose outside dimension is the same as the explicit or
implied value of the TrimSize attribute. The border marks may overwrite
the page contents of the trimmed page.
The rectangle defined by the inside edge of the border defines a ClipBox
beyond which no content will be imaged.

ClipBox ? rectangle Defines a rectangle with an origin relative to the lower left corner of the
page cell rectangle defined by the explicit or implied value of the
TrimSize attribute. Page content data imaged outside of the region defined
by this rectangle will be clipped. If ClipBox is larger than TrimSize, it is
used to specify a bleed region. If not specified, its default value is “0 0 X
Y” where X and Y are the explicit or implied values of TrimSize.

MarkList ? NMTOKENS List of marks that should be marked on each PageCell. The appearance of
the marks are defined by the process implementation. Values include:
CIELABMeasuringField
ColorControlStrip
ColorRegisterMark
CutMark
DensityMeasuringField
IdentificationField
JobField
PaperPathRegisterMark
RegisterMark
ScavengerArea

Rotate =
“Rotate0”

enumeration Orthogonal rotation to be applied to the contents in the PageCells. One
of:
Rotate0
Rotate90 – 90° counterclockwise rotation.
Rotate180 – 180° rotation.
Rotate270 – 90°clockwise rotation.
For details of orthogonal rotation, refer to Table 2-3, “Matrices and
Orientation values used to describe the orientation of a Component,” on
page 24. If a RotatePolicy value other than “NoRotate” is specified,
the value specified in Rotate may be modified accordingly.
Process Resources 415

Chapter 7 Resources
Structure of the ImageShift Subelement
ImageShift elements describe how the grid of page cells will be imaged onto media, when ImageShift is speci-
fied in the context of LayoutPreparationParams. When ImageShift is specified in the context of a
PageCell, it specifies how content is imaged into the respective page cells.

TrimSize ?
Modified in JDF 1.1A

XYPair Defines the dimensions of the PageCell. The lower left corner of the rect-
angle specified by the value of this attribute establishes the coordinate sys-
tem into which the page content is mapped.
FitPolicy defines the default TrimSize in the absence of an explicit
TrimSize.
If not specified, TrimSize is calculated by subtracting the gutters from the
LayoutPreparationParams/@SurfaceContentsBox and dividing
by the appropriate NumberUp value.

Color ? refelement Color of the border.
DeviceMark ? refelement Details how device dependent marks should be generated. Defaults to the

value of DeviceMark in the parent LayoutPreparationParams.
FitPolicy ? refelement Details how page content is fit into the PageCells. If the dimensions of the

page contents vary, FitPolicy is applied to the contents of each cell individ-
ually.

ImageShift ? element Element which describes how content should be placed into the
PageCells. X and Y are specified in the coordinate system of the
PageCell.

Name Data Type Description
PositionX ?
Modified in JDF 1.2

enumeration Indicates how images should be positioned horizontally. ShiftBack and
ShiftFront are applied after PositionX and PositionY. Values are:
Center – Center the images horizontally without regard to limitations of
the printable area.
Left – Position the left edge of the images so they are coincident with the
left edge of the printable area.
Right – Position the right edge of the images so they are coincident with
the right edge of the printable area.
Spine – Position the images so they are coincident with the vertical bind-
ing edge of the printable area.New in JDF 1.2
None – Place the images wherever the print data specify.

PositionY ?
Modified in JDF 1.2

enumeration Indicates how images should be positioned vertically. ShiftBack and
ShiftFront are applied after PositionX and PositionY. Values are:
Bottom – Position the bottom edge of the images so they are coincident
with the bottom edge of the printable area.
Center – Center the images horizontally without regard to limitations of
the printable area.
Top – Position the top edge of the images so they are coincident with the
top edge of the printable area.
Spine – Position the images so they are coincident with the horizontal
binding edge of the printable area. New in JDF 1.2
None – Place the images wherever the print data specify.

ShiftBack ? XYPair The amount in X and Y direction by which the image is to be shifted on the
back side. If not specified, ShiftBack is calculated from ShiftFront.

ShiftFront =”0 0” XYPair The amount in X and Y direction by which the image is to be shifted on the
front side.

Name Data Type Description
416 Process Resources

JDF Specification Release 1.2
7.2.100 LongitudinalRibbonOperationParams
Deprecated in JDF 1.1. See "LongitudinalRibbonOperationParams" on page 765 for details of this deprecated
resource.

7.2.101 ManualLaborParams
New in JDF 1.1
This resource describes the parameters to qualify generic manual work within graphic arts production. Additional
Comment elements will generally be needed to describe the work in human readable form.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: ManualLabor
Output of processes: —

Resource Structure

7.2.102 Media
This resource describes a physical element that represents a raw, unexposed printable surface such as sheet, film, or plate.
Gloss, MediaColorName, and Opacity attributes provide media characteristics pertinent to color management.

Resource Properties
Resource class: Consumable
Resource referenced by: ExposedMedia, DigitalPrintingParams,

InsertSheet,InterpretingParams, LayoutPreparationParams,
RenderingParams, Sheet, StrippingParams, Tile

Example Partition: Location,SheetName, Side, SignatureName, TileID, WebName
Input of processes: ConventionalPrinting, ContactCopying, Cutting,

DigitalPrinting, ImageSetting, Proofing
Output of processes: —

Resource Structure

Name Data Type Description
LaborType NMTOKENS List of types of manual labor that are performed.

Name Data
Type Description

BackCoatings ? enumer-
ation

Enumeration options are identical to FrontCoatings (see below), but
applied to the back surface of the media. When not specified, defaults
to the value of FrontCoatings.

BackGlossValue ?
New in JDF 1.2

double Gloss of the back surface of the media in gloss units as defined by ISO
8254-1:1995 Paper and board—Measurement of specular gloss—Part
1: 75º gloss with a converging beam, TAPPI method. When not known,
BackGlossValue defaults to the value of FrontGlossValue.

Brightness ?
Clarified in JDF 1.2

double Reflectance percentage of diffuse blue reflectance as defined by
ISO2470 - ISO 2470:1977 Paper and board—Measurement of diffuse
blue reflectance factor (ISO brightness). The reflectance is reported per
ISO 2470 as the diffuse blue reflectance factor of the paper or board in
percent to the nearest 0.5% reflectance factor. If one value is specified,
Brightness applies to the front and back. If two values are specified the
first value applies to the front and the second applies to the back. See
also CIEWhiteness.
Process Resources 417

Chapter 7 Resources
CIETint ?
New in JDF 1.2

double Average CIE tint value. Average CIE tint is calculated according to
equations given in TAPPI T 560 — “CIE Whiteness and Tint of Paper
and Paper Board (using d/0 , diffuse illumation and normal viewing)”.

CIEWhiteness ?
New in JDF 1.2

double Average CIE whiteness value. Average CIE whiteness is calculated
according to equations given in TAPPI T 560 — “CIE Whiteness and
Tint of Paper and Paper Board (using d/0 , diffuse illumation and
normal viewing)”.

ColorName ?
New in JDF 1.1
Deprecated in JDF 1.2

string Link to a definition of the color specifics. The value of ColorName
color should match the Name attribute of a Color defined in a
ColorPool resource that is linked to the process using this Media
resource.
In JDF 1.2 and beyond, use MediaColorName and
MediaColorNameDetails.

Dimension ?
Modified in JDF 1.1

XYPair The X and Y dimensions of the chosen medium, measured in points.
The X,Y values of Dimension establishes the user coordinate system
into which content is mapped, (i.e., the origin is in the lower left corner
of the rectangle defined by 0 0 X Y.) In case of Roll media, the X
coordinate specifies the reel width and the Y coordinate specifies the
length of the web in points. If a Dimension coordinate is unknown,
the value must be “0”. If not specified, the dimension is unknown. If
either or both X or Y = “0” (i.e., unknown), the default orientation is
assumed to be portrait, (i.e., Y>X).

FrontCoatings ?
Modified in JDF 1.2

enumer-
ation

What preprocess coating has been applied to the front surface of the
media. Possible values are:
None – No coating.
Coated – A coating of a system-specified type. New in JDF 1.2
Glossy
HighGloss
InkJet – A coating intended for use with inkjet technology. New in
JDF 1.2
Matte
Satin
Semigloss

FrontGlossValue ?
New in JDF 1.2

double Gloss of the front side of the of the media in gloss units as defined by
ISO 8254-1:1995 Paper and board—Measurement of specular gloss—
Part 1: 75º gloss with a converging beam, TAPPI method. Refer also to
TAPPI T 480 om-92 — “Specular gloss of paper and paper board at 75
degrees” for examples of gloss calculation.

Grade ?
Clarified in JDF1.1A

integer The intended Grade of the media on a scale of 1 through 5. Grade is
ignored if MediaType is not “Paper”.
Grade of paper material is defined in accordance with the paper
“types” set forth in [iso12647-2]. Offset printing paper types are
defined with the following integer values:
1 – Gloss-coated paper.
2 – Matt-coated paper.
3 – Gloss-coated, web paper.
4 – Uncoated, white paper.
5 – Uncoated, yellowish paper.
Note: ISO 12647-2 paper type attribute values do NOT align with
U.S. GRACOL paper grade attribute values, (e.g., ISO 12647-2 type
1 does not equal U.S. GRACOL grade 1).

Name Data
Type Description
418 Process Resources

JDF Specification Release 1.2
GrainDirection ?
New in JDF 1.1

enumer-
ation

Direction of the grain in the coordinate system defined by
Dimension. Possible values are:
ShortEdge – Along the shorter axis as defined by Dimension.
LongEdge – Along the longer axis as defined by Dimension.

HoleCount ?
Deprecated in JDF 1.1

 integer The number of holes that should be punched in the media (either pre- or
post-punched). In JDF/1.1, use HoleType, Hole or HoleLine, which
includes the number of holes.

HoleType = ”None”
New in JDF 1.1

enumer-
ations

Predefined hole pattern. Multiple hole patterns are allowed, (e.g, 3-hole
ring binding and 4-hole ring binding holes on one piece of media). For
details of the hole types, refer to "JDF/CIP4 Hole Pattern Catalog" on
page 663. Allowed values are:
None – No holes.
Explicit – Holes are defined in an array of Hole or HoleLine.
other values defined in "JDF/CIP4 Hole Pattern Catalog" on page 663.

ImagableSide ? enumer-
ation

Side of the chosen medium that may be marked. Possible values are:
Front
Back
Both
Neither

LabColorValue ?
New in JDF 1.2

Lab-
Color

LabColorValue is the CIELAB color value of the media, computed
as specified in TAPPI T527 — “Color of Paper and Paperboard (d/0
geometry)”

MediaColorName ?
Modified in JDF 1.1

Named-
Color

A name for the color. Allowed values are defined in Section A.3.3.2,
NamedColor. If more specific, specialized, or site-defined media color
names are needed, use MediaColorNameDetails.

MediaColorNameDetails ?
New in JDF 1.2

string A more specific, specialized, or site-defined name for the media color.
If MediaColorNameDetails is supplied, MediaColorName must
also be supplied.

MediaSetCount ? integer When the input media is grouped in sets, identifies the number of
pieces of media in each set. For example, if the MediaTypeDetails
is “PreCutTabs”, a MediaSetCount of “5” would indicate that
each set includes five tab sheets.

MediaType ?
Modified in JDF 1.2

enumer-
ation

Describes the medium being employed. Possible values are:
Disc – CD or DVD disc to be printed on.
EndBoard – End board used in the Bundling process.
EmbossingFoil
Film
Foil
LaminatingFoil
Other – Not one of the defined values.
Paper
Plate
ShrinkFoil
Transparency
Unknown – Deprecated in JDF 1.2

Name Data
Type Description
Process Resources 419

Chapter 7 Resources
MediaTypeDetails ?
Modified in JDF 1.2

NMTO-
KEN

Additional details of the chosen medium. If MediaTypeDetails is
specified, MediaType must be specified. Possible values include:
Aluminum – Conventional press plate.
Cardboard
ContinuousLong – Continuously connected sheets of an opaque
material connected along the long edge.
ContinuousShort – Continuously connected sheets of an opaque
material connected along the short edge.
CtPVisiblePhotoPolymer – Visible light CtP plate with photo
polymer process.
CtPVisibleSilver – Visible light CtP plate with silver halide pro-
cess.
CtPThermal – Thermal CtP plate.
DryFilm
Envelope – Envelopes that can be used for conventional mailing pur-
poses.
EnvelopePlain – Envelopes that are not preprinted and have no
windows.
EnvelopeWindow – Envelopes that have windows for addressing
purposes.
FullCutTabs – Media with a tab that runs the full length of the
medium so that only one tab is visible extending out beyond the edge
of non-tabbed media.
ImageSetterPaper – Contact paper as replacement for film.
Labels – Label stock, (e.g., a sheet of peel-off labels).
Letterhead – Separately cut sheets of an opaque material including
a letterhead.
MultiLayer – Form medium composed of multiple layers which are
preattached to one another, (e.g., for use with impact printers).
MultiPartForm – Form medium composed of multiple layers not
preattached to one another; each sheet may be drawn separately from
an input source.
Photographic – Separately cut sheets of an opaque material to pro-
duce photographic quality images.
PlateUV – Press plate for the UV process.
Polyester – CtP press plate.
PreCutTabs – Media with tabs that are cut so that more than one tab
is visible extending out beyond the edge of non-tabbed media.
Stationery – Separately cut sheets of an opaque material, includes
generic paper.
TabStock – Media with tabs, either precut or full-cut.
Tractor – Tractor feed with holes.
WetFilm – Conventional photographic film.

MediaUnit = “Sheet”
Modified in JDF 1.2

enumer-
ation

Describes the format of the media as it is delivered to the device. Possi-
ble values are:
Continuous – Continuously connected sheets which may be fan
folded. New in JDF 1.2
Roll
Sheet – Individual cut sheets.

Name Data
Type Description
420 Process Resources

JDF Specification Release 1.2
Opacity ?
Modified in JDF 1.2

enumer-
ation

The opacity of the media. See OpacityLevel to specify the degree of
opacity for any of these values. Possible values are:
Opaque – The media is opaque. With two-sided printing the printing
on the other side does not show through under normal incident light.
Translucent – The media is translucent to a system specified
amount. For example, translucent media can be used for back lit view-
ing. New in JDF 1.2
Transparent – The media is transparent.

OpacityLevel ?
New in JDF 1.2

double Normalized TAPPI opacity, (Cn), as defined and computed in ISO
2471:1998 “Paper and board—Determination of opacity (paper
backing)—Diffuse reflectance method”. Refer also to TAPPI T 519 —
“Diffuse opacity of paper (d/0 paper backing)” for calculation exam-
ples.

Polarity ? enumer-
ation

Polarity of the chosen medium. Possible values are:
Positive
Negative

PrePrinted = “false” boolean Indicates whether the media is preprinted.

Recycled ?
Deprecated in JDF 1.2

boolean If “true”, recycled media is requested. If not specified, the Media
may or may not have recycled content. In JDF 1.2 and beyond, use
RecycledPercentage.

RecycledPercentage ?
New in JDF 1.2

double The percentage, between 0 and 100, of recycled material that the media
must contain.

RollDiameter ? double Specifies diameter of a roll, in points.
ShrinkIndex ?
New in JDF 1.1

XYPair Specifies the ratio of the media linear dimension after shrinking to prior
shrinking. The X-Value specifies index in the major shrink axis,
whereas the Y-Value specifies the index in the minor shrink axis. Used
to describe shrink wrap media.

StockType ?
New in JDF 1.1

NMTO-
KEN

Strings describing the available stock. Examples include:
Bristol
Cover
Bond
Newsprint
Index
Offset – This includes book stock.
Tag
Text

Texture ?
New in JDF 1.1
Modified in JDF 1.2

NMTO-
KEN

The intended texture of the media. Examples include:
Antique – Rougher than vellum surface.
Calendared – Extra smooth or polished, uncoated paper.
Linen – Texture of coarse woven cloth.
Smooth
Stipple – Fine pebble finish.
Uncalendared – Rough, unpolished, and uncoated papers.New in
JDF 1.2
Vellum – Slightly rough surface.

Name Data
Type Description
Process Resources 421

Chapter 7 Resources
7.2.103 MediaSource
Deprecated in JDF 1.1 See "MediaSource" on page 766 for details of this deprecated resource.

7.2.104 MISDetails
New in JDF 1.2
MISDetails is a container for MIS related information. It is referenced by Audit elements and JMF messages.

Resource Properties
Resource class: ResourceElement
Resource referenced by: —
Example Partition: —
Input of processes: —
Output of processes:

Resource Structure

Thickness ? double The thickness of the chosen medium, measured in microns [µm].
UserMediaType ?
Deprecated in JDF 1.1

NMTO-
KEN

A human-readable description of the type of media. The value can be
used by an operator to select the correct media to load. The semantics
of the values will be site-specific. UserMediaType has been merged
into MediaTypeDetails in JDF 1.1.

Weight ? double Weight of the chosen medium, measured in grams per square meter [g/
m2]. See "North American Media Weight Explained" on page 627 for
details on converting North American paper weights to g/m2.

Color ?
Deprecated in JDF 1.1

refele-
ment

A Color resource that provides the color of the chosen medium.

ColorMeasurementCon
ditions ?New in JDF 1.2

refele-
ment

Detailed description of the measurement conditions for color measure-
ments used to measure LacColorValue.

Name Data Type Description
CostType ? enumeration Whether or not this MISDetails is chargeable to the customer or not.

One of:
Chargable
NonChargeable

DeviceOperationM
ode ?

enumeration DeviceOperationMode shows the operation mode that the device
is in. It is used to show if the production of a device is aimed at produc-
ing good products or not. The latter case applies when a device is used
to produce a job for testing, calibration, etc. without the intention to
produce good output.
Productive – The device is used to produce good product. Any
times recorded in this mode should be allocated against the job.
NonProductive – The device is used without the intention to pro-
duce good product. Any times recorded in this mode should not be
allocated against the job.
Maintenance –The device is used without the intention to produce
good product, e.g. to perform (preventative) maintenance.

Name Data
Type Description
422 Process Resources

JDF Specification Release 1.2
7.2.105 NumberingParams
This resource describes the parameters of stamping or applying variable marks in order to produce unique compo-
nents, (e.g., lottery notes, currency). One NumberingParams element must be defined per numbering machine.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: Numbering
Output of processes: —

Resource Structure

Structure of NumberingParam Subelement

WorkType ? enumeration Definition of the work type for this MISDetails, (i.e., whether or not
this MISDetails relates to originally planned work, an alteration, or
rework). One of:
Original – Standard work that was originally planned for the job.
Alteration – Work done to accommodate change made to the job at
the request of the customer.
Rework – Work done due to unforeseen problem with original work
(bad plate, resource damaged, etc.)

WorkTypeDetails ? string Definition of the details of the work type for this MISDetails, (i.e.,
why the work was done). Values include:
CustomerRequest – The customer requested change(s) requiring
the work.
InternalChange – Change was made for production efficiency or
other internal reason.
ResourceDamaged – A resource needs to be created again to
account for a damaged resource (damaged plate, etc.).
EquipmentMalfunction – Equipment used to produce the
resource malfunctioned, resource must be created again.
UserError – Incorrect operation of equipment or incorrect creation
of resource requires creating the resource again.

Name Data Type Description
NumberingParam * element Set of parameters for one numbering machine

Name Data Type Description
Orientation double Rotation of the numbering machine in degrees. If Orientation = “0”, the top

of the numbers is along the leading edge.
StartValue ? string First value of the numbering machine.
Step = “1” integer Number that specifies the difference between two subsequent numbers of the

numbering machine.
XPosition double Position of the numbering machine along the printer axis.
YPosition DoubleList List of stamp positions, in points, starting from the leading edge.
Process Resources 423

Chapter 7 Resources
7.2.106 ObjectResolution
ObjectResolution defines a resolution depending on SourceObjects data types.

Resource Properties
Resource class: Parameter
Resource referenced by: InterpretingParams, RenderingParams, TrappingDetails
Example Partition: —
Input of processes: —
Output of processes: —

Resource Structure

7.2.107 OrderingParams
Attributes of the Ordering process, which results in an acquisition.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: Ordering
Output of processes: —

Resource Structure

Name Data Type Description
AntiAliasing ?
New in JDF 1.2

NMTOKEN Indicates the anti-aliasing algorithm that the Device must apply to the rendered
output images. An anti-aliasing algorithm causes lines and curves to appear
smooth which would otherwise have a jagged appearance, especially at lower
resolutions such as 300 dpi and lower. Values may include:
AntiAlias – Anti-aliasing must be applied. The algorithm is system speci-
fied.
None – Anti-aliasing must not be applied.

Resolution XYPair Horizontal and vertical output resolution in DPI.
SourceObjects =
“All”

enumerations Identifies the class(es) of incoming graphical objects to render at the specified
resolution. Possible values are:
All
ImagePhotographic – Contone images.
ImageScreenShot – Images largely comprised of rasterized vector art.
LineArt – Vector objects other than text.
SmoothShades – Gradients and blends.
Text

Name Data Type Description
Amount double Amount of the ordered resource.
Unit string Unit of measurement for Amount.
Comment telem OrderingParams require a Comment element that contains a human-

readable description of what to order.
Company ?
Deprecated in JDF 1.1

refelement Address and further information of the Company responsible for this order.
Replaced with Contact/Company in JDF 1.1.

Contact *
New in JDF 1.1

refelement Address and further information of the Contact responsible for this order.
424 Process Resources

JDF Specification Release 1.2
7.2.108 PackingParams
Deprecated in JDF 1.1
The PackingParams resource has been deprecated in JDF 1.1 and beyond. It is replaced by the individual resources
used by the processes defined in Section 6.6.48.4, Numbering and Section 6.6.48.5, Packaging Processes. See
"PackingParams" on page 767 for details of this deprecated resource.

7.2.109 PageList
New in JDF 1.2
PageList defines the additional metadata of individual finished pages such as pagination details. PageList refer-
ences the finished page regardless of the page’s position in a PDL file or RunList.

Resource Properties
Resource class: Parameter
Resource referenced by: LayoutElement, RunList
Example Partition: PartVersion
Input of processes: —
Output of processes: —

Resource Structure

Name Data Type Description
AssemblyID ? string ID of the Assembly or AssemblySection that this finished page belongs

to.
HasBleeds ? boolean If “true”, the file has bleeds.
IsBlank ? boolean If “false”, the PageData has no content marks and is blank.
IsPrintable ? boolean If “true”, the file is a PDL file and can be printed. Possible files types

include PCL, PDF, or PostScript files. Application files such as MS Word have
IsPrintable = “false”.

IsTrapped ? boolean If “true”, the file has been trapped.
JobID ? string ID of the job that this finished page belongs to.
PageLabelPrefix ? string Prefix of the identification of the reader page as it is displayed on the finished

page. For instance “C - ”, if the reader pages are labeled “C - 1”, “C -
2”, etc.

PageLabelSuffix ? string Suffix of the identification of the reader page as it is displayed on the finished
page. For instance “ - a”, if the pages are labeled “C - 1 - a”, “C - 2
- a”, etc.

SourceBleedBox
?

rectangle A rectangle that describes the bleed area of the page to be included. This rect-
angle is expressed in the default user space. If not specified, use defined bleed
box of element (or no bleed box if element does not supply a bleed box).

SourceClipBox ? rectangle A rectangle that defines the region of the finished page to be included. This
rectangle is expressed in the default user space of the source document page. If
not specified, use defined clip box of element (or no clip box if element does
not supply a clip box.)

SourceTrimBox ? rectangle A rectangle that describes the intended trimmed size of the finished page to be
included. This rectangle is expressed in the default user space. If not specified,
use defined trim box of element (or no trim box if element does not supply a
trim box.)

Template =
“false”

boolean Template is “false” when this page is self-contained. This attribute is
“true” if the PageList represents a template that must be completed with
information from a database.
Process Resources 425

Chapter 7 Resources
Properties of the PageData Subelement
PageData defines the additional metadata of individual finished pages such as pagination details. PageData ele-
ments are refered to by index of the PageData in the PageList.

If the PageList is partitioned, the index refers to PageData elements in the respective leaves of the parti-
tioned PageList. The index restarts at 0 with each partitioned leaf.

ColorPool ? refelement Definition of the color details.
ImageCompres
sionParams ?

refelement Specification of the image compression properties.

PageData * element Details of the individual finished page. PageData elements are referred to by
their index in the PageList. PageData elements should, therefore, not be
removed or inserted in a position other than the end of the list.

ScreeningPara
ms ?

refelement Specification of the screening properties.

SeparationSpec
*

element List of separation names defined in the element.

ElementColorP
arams ?

refelement Color details of the page list.

Name Data Type Description
AssemblyID ? string ID of the Assembly or AssemblySection that this finished page belongs

to. If not specified, defaults to the value of PageList/@AssemblyID.
CatalogID ? string Identification of the resource, (e.g., in a catalog environment). If not specified,

defaults to the value of PageList/@CatalogID.
CatalogDetails ? string Additional details of a resource in a catalog environment.If not specified,

defaults to the value of PageList/@CatalogDetails.
FoldOutPages ? IntegerList Page indices in the PageList of the file pages forming a content page that

flows over multiple finished pages, (e.g., foldout, centerfold). The list does not
include the index of this PageData. If not specified, the PageData does not
describe a part of a foldout.

HasBleeds ? boolean If “true”, the file has bleeds. If not specified, defaults to the value of
PageList/@HasBleeds.

IsBlank ? boolean If “false”, the PageData has no content marks and is blank. If not speci-
fied, defaults to the value of PageList/@IsBlank.

IsPrintable ? boolean If “true”, the file is a PDL file and can be printed. Possible files types
include PCL, PDF, or PostScript files. Application files such as MS Word have
IsPrintable = “false”. If not specified, defaults to the value of
PageList/@IsPrintable.

IsTrapped ? boolean If “true”, the file has been trapped. If not specified, defaults to the value of
PageList/@IsTrapped.

JobID ? string ID of the job that this finished page belongs to. If not specified, defaults to the
value of PageList/@JobID.

PageLabel ? string Complete identification of the finished page including PageLabelPrefix and
PageLabelSuffix as it is displayed on the finished page, For instance “1”,
“iv” or “C - 1”. Note that this may be different than the position of the
page in the finished document.

Name Data Type Description
426 Process Resources

JDF Specification Release 1.2
7.2.110 PalletizingParams
New in JDF 1.1
PalletizingParams defines the details of Palletizing. Details of the actual pallet used for Palletizing can
be found in the Pallet resource that is also an input of the Palletizing process.
Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: Palletizing
Output of processes: —

Resource Structure

PageLabelPrefix ? string Prefix of the identification of the reader page as it is displayed on the finished
page. For instance “C - ”, if the reader pages are labeled “C - 1”, “C -
2”, etc. If not specified, defaults to the value of PageList/
@PageLabelPrefix.

PageLabelSuffix ? string Suffix of the identification of the reader page as it is displayed on the finished
page. For instance “ - a”, if the pages are labeled “C - 1 - a”, “C - 2
- a”, etc. If not specified, defaults to the value of PageList/
@PageLabelSuffix.

ProductID ? string An ID of the page as defined in the MIS system.If not specified, defaults to the
value of PageList/@ProductID.

SourceBleedBox
?

rectangle A rectangle that describes the bleed area of the page to be included. This rect-
angle is expressed in the default user space. If not specified, defaults to the
value of PageList/@SourceBleedBox.

SourceClipBox ? rectangle A rectangle that defines the region of the finished page to be included. This
rectangle is expressed in the default user space of the source document page. If
not specified, defaults to the value of PageList/@SourceClipBox.

SourceTrimBox ? rectangle A rectangle that describes the intended trimmed size of the finished page to be
included. This rectangle is expressed in the default user space. If not specified,
defaults to the value of PageList/@SourceTrimBox.

Template ? boolean Template is “false” when this page is self-contained. This attribute is
“true” if the PageList represents a template that must be completed with
information from a database. If not specified, defaults to the value of
PageList/@Template.

ImageCompres
sionParams ?

refelement Specification of the image compression properties. If not specified, defaults to
the value of PageList/ImageCompressionParams.

ScreeningPara
ms ?

refelement Specification of the screening properties. If not specified, defaults to the value
of PageList/ScreeningParams.

SeparationSpec
*

element List of separation names defined in the element. If none is specified, defaults
to the values of PageList/SeparationSpec.

ElementColorP
arams ?

refelement Color details of the PageData element. If not specified, defaults to the value
of PageList/ElementColorParams.

Name Data Type Description
Pattern ? string Name of the palletizing pattern. Used to store a predefined pattern that defines the

layers and positioning of individual component on the pallet.
MaxHeight ? double Maximum height of a loaded pallet in points.
MaxWeight ? double Maximum weight of a loaded pallet in grams.

Name Data Type Description
Process Resources 427

Chapter 7 Resources
7.2.111 Pallet
New in JDF 1.1
A Pallet represents the pallet used in packing goods.

Resource Properties
Resource class: Consumable
Resource referenced by: —
Example Partition: —
Input of processes: Palletizing
Output of processes: —

Resource Structure

7.2.112 PDFToPSConversionParams
This resource specifies a set of configurable options that may be used by processes that generate PostScript files from
PDF files. Font controls are applied in the following order:

1 IncludeBaseFonts
2 IncludeEmbeddedFonts
3 IncludeType1Fonts
4 IncludeType3Fonts
5 IncludeTrueTypeFonts
6 IncludeCIDFonts

For example, an embedded Type-1 font follows the rule for embedded fonts, not the rule for Type-1 fonts. In other
words, if IncludeEmbeddedFonts is “true”, and IncludeType1Fonts is “false”, embedded Type-1
fonts would be included in the PostScript stream.

Resource Properties
Resource class: Parameter
Resources referenced: —
Example Partition: DocIndex, RunIndex, RunTags, SheetName, Side, SignatureName
Input of processes: PDFToPSConversion

Output of processes: —

Resource Structure

Name Data Type Description
PalletType NMTOKEN Type of pallet used. Examples include:

2Way – Two-way entry.
4Way – Four-way entry.
Euro – Standard 1*1 m Euro pallet.

Size ? XYPair Describes the length and width of the pallet, in points, (e.g., 3500 3500).
If not specified, the size is defined by PalletType.

Name Data Type Description
BinaryOK = “true” boolean If “true”, binary data are to be included in the PostScript stream.
BoundingBox ? rectangle It is used for BoundingBox DSC comment, in CenterCropBox

calculations, and for SetPageDevice.
CenterCropBox = “true” boolean If “true”, CropBox output is centered on the page when the Crop-

Box < MediaBox.
428 Process Resources

JDF Specification Release 1.2
GeneratePageStreams =
“false”

boolean If “true”, the process emits individual streams of data for each
page in the RunList.

IgnoreAnnotForms =
“false”

boolean If “true”, ignores annotations that contain an XObject form.

IgnoreBG ? = “true”
New in JDF 1.1

boolean Ignores the BG, BG2 parameters in the PDF ExtGState dictionary.

IgnoreColorSeps =
“false”

boolean If “true”, ignores images for Level-1 separations.

IgnoreDeviceExtGState ?
Deprecated in JDF 1.1

boolean If “true”, ignores all device-dependent extended graphic state
parameters. This overrides IgnoreHalftones. The following
parameters should be ignored:
OP – Overprint parameter.
OPM – Overprint mode.
BG, BG2 – Black generation.
UCR, UCR2 – Undercolor removal.
TR, TR2 – Transfer functions.
HT – Halftone dictionary.
FL – Flatness tolerance.
SA – Automatic stroke adjustment.

IgnoreDSC = “true” boolean If “true”, ignores DSC (Document Structuring Conventions).
IgnoreExternSreamRef =
“false”

boolean If an image resource uses an external stream and
IgnoreExternStreamRef = “true”, ignores code that points
to the external file.

IgnoreHalftones =
“false”

boolean If “true”, ignores any halftone screening in the PDF file.

IgnoreOverprint =
“true”
New in JDF 1.1

boolean Ignores the OP parameters in the PDF ExtGState dictionary.

IgnorePageRotation =
“false”

boolean If “true”, ignores a “concat” provided at the beginning of each
page that orients the page so that it is properly rotated. Used when
emitting EPS.

IgnoreRawData =
“false”

boolean If “true”, no unnecessary filters should be added when emitting
image data.

IgnoreSeparableImages
Only = “false”

boolean If “true”, and if emitting EPS, ignores only CMYK and gray
images.

IgnoreShowPage =
“false”

boolean If “true”, ignores save-and-restore ShowPage in PostScript
files

IgnoreTransfers =
“true”
New in JDF 1.1

boolean Ignores the TR,TR2 parameters in the PDF ExtGState dictionary.

IgnoreTTFontsFirst =
“false”

boolean If “true”, ignores TrueType fonts before any other fonts.

IgnoreUCR = “true”
New in JDF 1.1

boolean Ignores the UCR, UCR2 parameters in the PDF ExtGState dictio-
nary.

Name Data Type Description
Process Resources 429

Chapter 7 Resources
IncludeBaseFonts =
“IncludeNever”

enumeration Determines when to embed the base fonts. Possible values are:
IncludeNever
IncludeOncePerDoc
IncludeOncePerPage

IncludeCIDFonts =
“IncludeOncePerDoc”

enumeration Determines when to embed CID fonts. Possible values are:
IncludeNever
IncludeOncePerDoc
IncludeOncePerPage

IncludeEmbeddedFonts
= “IncludeOncePerDoc”

enumeration Determines when to embed fonts in the document that are embedded
in the PDF file. This attribute overrides the IncludeType1Fonts,
IncludeTrueTypeFonts, and IncludeCIDFonts attributes.
Possible values are:
IncludeNever
IncludeOncePerDoc
IncludeOncePerPage

IncludeOtherResources =
“IncludeOncePerDoc”

enumeration Determines when to include all other types of resources in the file.
Possible values are:
IncludeNever
IncludeOncePerDoc
IncludeOncePerPage

IncludeProcSets =
“IncludeOncePerDoc”

enumeration Determines when to include ProcSets in the file. Possible values are:
IncludeNever
IncludeOncePerDoc
IncludeOncePerPage

IncludeTrueTypeFonts =
“IncludeOncePerDoce”

enumeration Determines when to embed TrueType fonts. Possible values are:
IncludeNever
IncludeOncePerDoc
IncludeOncePerPage

IncludeType1Fonts =
“IncludeOncePerDoc”

enumeration Determines when to embed Type-1 fonts. Possible values are:
IncludeNever
IncludeOncePerDoc
IncludeOncePerPage

IncludeType3Fonts =
“IncludeOncePerPage”

enumeration Determines when to embed Type-3 fonts. Must always be set to
IncludeOncePerPage. It is included here to complete the pre-
cedence hierarchy.

OutputType =
“PostScript”

enumeration Describes the kind of output to be generated. Possible values are:
PostScript
EPS

PSLevel = “2” integer Number that indicates the PostScript level.
Scale = “100” double Number that indicates the wide-scale factor of documents. Full size

= “100”.
SetPageSize = “false” boolean (PostScript Level 2 only) If “true”, sets page size on each page

automatically. Use media box for outputting PostScript files and
crop box for EPS.

Name Data Type Description
430 Process Resources

JDF Specification Release 1.2
7.2.113 PDLResourceAlias
This resource provides a mechanism for referencing resources that occur in files, or that are expected to be provided
by devices. Prepress and printing processes have traditionally used the word “resource” to refer to reusable data struc-
tures that are needed to perform processes. Examples of such resources include fonts, halftones, and functions. The
formats of these resources are defined within PDLs, and instances of these resources may occur within PDL files or
may be provided by devices.

JDF does not provide a syntax for defining such resources directly within a job. Instead, resources continue to
occur within PDL files and continue to be provided by devices. However, since it is necessary to be able to refer to
these resources from JDF jobs, the PDLResourceAlias resource is provided to fulfill this need.

Resource Properties
Resource class: Parameter
Resource referenced by: ColorantControl
Example Partition: —
Input of processes: Interpreting
Output of processes: —

Resource Structure

SetupProcsets = “true” boolean If “true”, indicates that if procsets are included, the init/term code
is also included.

ShrinkToFit = “false” boolean If “true”, the page is scaled to fit the printer page size. This field
overrides scale

SuppressCenter =
“false”

boolean If “true”, suppresses automatic centering of page contents whose
crop box is smaller than the page size.

SuppressRotate =
“false”

boolean If “true”, suppresses automatic rotation of pages when their
dimensions are better suited to landscape orientation. More specifi-
cally, the application that generates the PostScript compares the
dimensions of the page. If the width is greater than the height, then
pages are not rotated if SupressRotate = “true”. On the other
hand, if SupressRotate = “false”, the value of the PDF Rotate
key for each page is honored, regardless of the dimensions of the
pages (as defined by the MediaBox attribute).

TTasT42 = “false” boolean If including TrueType fonts, converts to Type-42 instead of Type-1
fonts when TTasT42 = “true”.

UseFontAliasNames =
“false”

boolean If “true”, font alias names are used when printing with system
fonts.

Name Data Type Description
ResourceType string The type of PDL resource that is referenced. The semantic of this attribute is

defined by the PDL.
SourceName ? string The name of the resource in the file referenced by the FileSpec element or by the

device.
FileSpec ? refelement Location of the file containing the PDL resource. If FileSpec is absent, the

device is expected to provide the resource defined by this PDLResourceAlias
resource.

Name Data Type Description
Process Resources 431

Chapter 7 Resources
7.2.114 PerforatingParams
New in JDF 1.1
PerforatingParams define the parameters for perforating a sheet.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: Perforating
Output of processes: —

Resource Structure

Structure of the Perforate element
Perforate describes one perforated line.

Name Data Type Description
Perforate * element Defines one or more Perforate lines.

Name Data Type Description
Depth ?
New in JDF 1.2

double Depth of the perforation, in microns [µm].

RelativeStartPosition
?
New in JDF 1.2

XYPair Relative starting position of the tool. RelativeStartPosition is always
based on the complete size of the input Component and not on the size
of an intermediate state of the folded sheet. The allowed value range is
from 0.0 to 1.0 for each component of the XYPair, which specifies the
full size of the input Component.

RelativeWorkingPath
?
New in JDF 1.2

XYPair Relative working path of the tool beginning at
RelativeStartPosition. Since the tools can only work parallel to the
edges, one coordinate must be zero. RelativeWorkingPath is always
based on the complete size of the input Component and not on the size
of an intermediate state of the folded sheet. The allowed value range is
from 0.0 to 1.0 for each component of the XYPair, which specifies the
full size of the input Component.

StartPosition ?
Modified in JDF 1.2

XYPair Starting position of the tool. If both StartPosition and
RelativeStartPosition are specified, RelativeStartPosition is
ignored. At least one of StartPosition or RelativeStartPosition
must be specified.

TeethPerDimension ? double Number of teeth in a given perforation extent in teeth/point. MicroPerfo-
ration is defined by specifying a large number of teeth
(TeethPerDimension>1000).

WorkingDirection enumeration Direction from which the tool is working. Possible values are:
Top – From above.
Bottom – From below.

WorkingPath ?
Modified in JDF 1.2

XYPair Working path of the tool beginning at StartPosition. Since the tools
can only work parallel to the edges, one coordinate must be zero. If both
WorkingPath and RelativeWorkingPath are specified,
RelativeWorkingPath is ignored. At least one of WorkingPath or
RelativeWorkingPath must be specified.
432 Process Resources

JDF Specification Release 1.2
7.2.115 Person
This resource provides detailed information about a person. It also has the ability to specify different communication
channels to this person. The structure of the resource is derived from the vCard format. It contains all of the same
name subtypes (N:) of the identification and the title of the organizational properties. The corresponding XML types
of the vCard are quoted in the description field of the table below.

Resource Properties
Resource class: Parameter
Resource referenced by: Contact, Employee
Example Partition: —
Input of processes: —
Output of processes: —

Resource Structure

7.2.116 PlaceHolderResource
This resource is used to link ProcessGroup nodes when the exact nature of interchange resources is still unknown.
In this way, a skeleton of process networks can be constructed, with the PlaceHolderResource resources serving
as place holders in lieu of the appropriate resources. This resource needs no structure besides that provided in an
abstract Resource element as it has no inherent value except as a stand-in for other resources.

Resource Properties
Resource class: PlaceHolder
Resource referenced by: —
Example Partition: —
Input of processes: any ProcessGroup nodes
Output of processes: any ProcessGroup nodes

Resource Structure
The resource has no additional structure.

7.2.117 PlasticCombBindingParams
This resource describes the details of the PlasticCombBinding process.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: PlasticCombBinding
Output of processes: —

Name Data Type Description
AdditionalNames ? string Additional names of the contact person (vCard: N:other).
FamilyName ? string The family name of the contact person (vCard: N:family).
FirstName ? string The first name of the contact person (vCard: N:given).
JobTitle ? string Job function of the person in the company or organization (vCard: title).
NamePrefix ? string Prefix of the name, may include title (vCard: N:prefix).
NameSuffix ? string Suffix of the name (vCard: N:suffix).
Address ?
New in JDF 1.2

refelement Address of the person.

ComChannel * refelement Communication channels to the person.
Process Resources 433

Chapter 7 Resources
Resource Structure

7.2.118 PlateCopyParams
Deprecated in JDF 1.1 See "PlateCopyParams" on page 768 for details of this deprecated resource.

7.2.119 PreflightAnalysis
Deprecated in JDF 1.2
This resource was deprecated as a result of a major revision to the Preflight process and its associated resources.
For details of this deprecated resource see "PreflightAnalysis" on page 744.

7.2.120 PreflightInventory
Deprecated in JDF 1.2
This resource was deprecated as a result of a major revision to the Preflight process and its associated resources.
For details of this deprecated resource see "PreflightInventory" on page 746.

7.2.121 PreflightParams
New in JDF 1.2
The PreflightParams resource specifies the tests for the Preflight process to run. These tests are defined using
"Structure of the ActionPool Subelement" on page 504, which defines a list of reporting actions to have for given
document object tests defined into a Test. (See "Structure of the TestPool Subelement" on page 524.) This section
makes use of elements and attributes defined in "Device Capability Definitions" on page 502. It is suggested that
readers familiarize themselves with that section and "Concept of the Preflight Process" on page 538.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: Preflight
Output of processes:

Name Data Type Description
Brand ? string The name of the comb manufacturer and the name of the specific item.
Color ? NamedColor Determines the color of the plastic comb.
Diameter ? double The comb diameter is determined by the height of the block of sheets to be

bound.
Thickness ? double The material thickness of the comb.
Type ?
Modified in JDF 1.1
Deprecated in JDF
1.2

enumeration The distance between the “teeth” and the distance between the holes of the
prepunched sheets must be the same. The following values from the hole type
catalog in "JDF/CIP4 Hole Pattern Catalog" on page 663 exist:
P12m-rect-02 — Distance = 12 mm; Holes = 7 mm x 3 mm
P16_9i-rect-0t — Distance = 14.28 mm; Holes = 8 mm x 3 mm
The following values are deprecated in JDF 1.1.
Euro (Distance = 12 mm; Holes = 7 mm x 3 mm)
USA1 (Distance = 14.28 mm; Holes = 8 mm x 3 mm)
In JDF 1.2 and beyond, use the value implied by HoleMakingParams/
@HoleType.

HoleMakingPa
rams ?

refelement Details of the holes to be made. Note that HoleMakingParams/
@Shape is always rectangular by design of the plastic combs.
434 Process Resources

JDF Specification Release 1.2
Resource Structure

The ActionPool, as defined in "Structure of the ActionPool Subelement" on page 504, has Action subelements,
which can reference a Test with a given action type. The Action element includes a PreflightAction subelement,
defined below, which can be used to define how tests are to be applied in preflight processes.

Structure of the PreflightAction Subelement.

Test elements make use of Evaluation subelements that define various basic preflight testing functions that can be
combined together in order to build preflight test. In order to specify basic preflight tests using Evaluation, the sub-
element BasicPreflightTest is used. Note: The BasicPreflightTest includes a PreflightArgument subele-
ment that is defined below.

Structure of the BasicPreflightTest Subelement
The BasicPreflightTest element defines a named preflight test that can be evaluated by a preflight application. The
result of the test can be compared with the values defined in the explicit Evaluation elements in order to filter the
objects within the file to be tested. The following table describes the BasicPreflightTest element.

Name Data Type Description
ActionPool + refelement References an ActionPool with its ID.

Name Data Type Description
SetRef ? IDREF A reference to a preflight Test ID used to filter a set of objects before applying the

tests referenced by preflight Action. When SetRef is not defined, the Test is
applied to all the objects.

SetSplitBy =
“RunList”

enumeration This is used to group objects in different ways. Possible values include:
Page – Tests are applied on objects page per page.
Document – Tests are applied on objects document per document.
RunList – All objects of all pages included in all documents are processed
together.
SetSplitBy is only used when SetRef is defined in order to create sets on a
page-per-page or document-per-document basis. For instance, if you want to get
the list of separations per page, SetSplitBy should be set to “Page”. In such a
case, the report’s content (as long as the PRItem is defined properly for the
Action) will be grouped by page.

Name Data Type Description
DevNS="http://
www.CIP4.org/
JDFSchema_1_1" ?

URI Namespace of the test that is described by Name in this
BasicPreflightTest element.

ListType ? enumeration Specifies what type of list or object the basic preflight test describes. The
allowed values are identical to those defined in the ListType attribute of
"Structure of the Abstract State Subelement" on page 508.

MaxOccurs = “1” integer Maximum number of elements in the list described by this
BasicPreflightTest, (e.g., the maximum number of integers in an inte-
ger list). If MaxOccurs is not “1”, the BasicPreflightTest element
refers to a list or RangeList of values, (e.g. a NameEvaluation will
allow a list of NMTOKENS).
Process Resources 435

Chapter 7 Resources
Structure of the PreflightArgument Subelement
This subelement is used by BasicPreflightTest when additional data are needed to determine object property.

Structure of the BoxArgument Subelement

Structure of BoxToBoxDifference Subelement.

7.2.122 PreflightProfile
Deprecated in JDF 1.2

This resource was deprecated as a result of a major revision to the Preflight process and its associated
resources. For details of this deprecated resource see "PreflightProfile" on page 746.

MinOccurs = “1” integer Minimum number of elements in the list described by this
BasicPreflightTest. Default = “1”, (i.e., it is an individual value). If
MinOccurs is not “1”, the BasicPreflightTest element refers to a list
or RangeList of values, (e.g., a NameEvaluation will allow a list of
NMTOKENS).

Name ? NMTOKEN Local name of the preflight constraint that is evaluated by this
BasicPreflightTest. Valid Name values for the JDF NameSpace
are defined in "PreflightParams" on page 434; preflight tests are defined
through the use of constraints.

Preflightargument ? element Additional arguments for the preflight test. For details see
"PreflightParams" on page 434 for the definition of
PreflightArgument and constraints upon which preflight tests are
defined.

Name Data Type Description
BoxArgument ? element Used by the InsideBox and OutsideBox tests.
BoxToBoxDifference ? element Used by the BoxToBoxDifference test.

Name Data Type Description
Box enumeration The box type used to verify inclusion or exclusion. Refer to "Box

Properties" on page 542 for a description of the valid types of boxes
MirrorMargins ? enumeration The MirrorMargins attribute allows the flip of the Offset value

depending on the RunList index. When the index is even, the original
Offset value is preserved. When the index is odd, the Offset value is
flipped.
With a value of “Vertical”, you turn [l b r t] into [r b l t].
With a value of “Horizontal”, you turn [l b r t] into [l t r b].
If not specified, the value of Offset is not changed.

Offset ? Rectangle The offset to build real rectangle to which test is made.
Overlap = “false” boolean Explains if overlap is allowed to check inclusion or exclusion.

Name Data Type Description
FromBox ? enumeration The “From” box used for BoxToBoxDifference calculation. Refer to "Box

Properties" on page 542 for a description of the valid types of boxes
ToBox ? enumeration The “To” box used for BoxToBoxDifference calculation. Refer to "Box

Properties" on page 542 for a description of the valid types of boxes

Name Data Type Description
436 Process Resources

JDF Specification Release 1.2
7.2.123 PreflightReport
New in JDF 1.2
The PreflightReport resource describes the results of the preflight tests specified in PreflightParams. This
section makes use of elements and attributes defined in "Device Capability Definitions" on page 502. It is suggested
that reader’s familiarize themselves with that section and "Concept of the Preflight Process" on page 538.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: all processes
Output of processes: Preflight

Resource Structure

Structure of PRItem Subelement
The PRItem structure is used to describe the errors that occurred during the execution of one Action. When a Test
could not be evaluated during the preflight process, this is reported as a PRError.

Objects that fail the preflight test are grouped together as described by a PRRule. During the Preflight pro-
cess, the number of objects and groups that are reported are limited to the maximum numbers defined in the PRRule.

When a PreflightReport is copied from one JDF document to another (e.g., a JDF writer may reduce the size
of the PreflightReport by removing PRGroup and PROccurence items within a PRGroup), this will not invali-
date the PreflightReport.

Name Data Type Description
PreflightParams refelement References the PreflightParams that was used to create this

report.
PreflightReportRulePool refelement References the PreflightReportRulePool that was used to

create this report.
RunList refelement References the RunList that was used to create this report.
PRItem * element Describes the Actions that produced an error or a warning.
ErrorState ? enumera-

tions
Describes the type of errors that occurred during preflighting when
the Preflight process does not understand certain preflight tests
or cannot apply them to the given objects. Possible values include:
TestNotSupported
TestWrongPDL
If not specified, no errors occurred.

ErrorCount integer The count of errors that were encountered while preflighting the
job.

WarningCount integer The count of warnings that were encountered while preflighting
the job.

Name Data Type Description
ActionRef IDREF References the PreflightParams/ActionPool/Action that triggered this

PRItem.
Occurences integer The number of occurrences of objects that failed the Action. When the Action

describes a set-test, this is the number of set-objects that failed the test.
PageSet ? IntgerRange-

List
All run indices where there is an object that gives an error on that page.
Process Resources 437

Chapter 7 Resources
Structure of the PRError Subelement
The PRError structure is used to describe generic errors that occurred while evaluating an object property while exe-
cuting a Test.

Structure of the PRGroup Subelement

The PRGroup structure is used to describe a group of document objects that share common properties and that failed
the Action.

PRError * element Describes the errors that were found while running this preflight test.
PRGroup * element Describes the Actions that produced an error or a warning.

Name Data Type Description
ErrorType enumeration Value is one of “TestWrongPDL” or “TestNotSupported”.
Value NMTOKEN The name of the object property that was being tested when the process error occurred.

Figure 7.15: PRGroup Structure

Name Data Type Description
Occurences integer The number of occurrences of objects of this group that failed the Action. When

the Actions describes a set-test, this is the number of set-objects.
PageSet ? IntgerRange-

List
All run indices where there is an object of this group that gives an error on that
page.

PRGroupOccur
ence ?

element The properties that are shared by all elements of the group as defined by
PreflightReportRulePool/PRRule/@GroupBy.

PROccurence * element An object that failed the Action.

Name Data Type Description
438 Process Resources

JDF Specification Release 1.2
Depending on the test in the Action, the PRGroup is used in two different ways:

• When the test is not a set-test, there will be one level of PRGroup and PROccurences. These are used to
describe all the document objects that failed the preflight test. PROccurence describes the actual object while
PRGroup is used to group those objects that share common properties.

• When the test is a set-test, there will be two levels of PRGroup and PROccurences whereby the second level
occurs as a child element of PROccurence.
– The top level describes the set objects that failed the preflight test. Just as in the non-set-test case,

PROccurence describes the actual set-objects while PRGroup is used to group those sets that share
common properties. In the example below there are four page sets that failed the test, (e.g., pages 1, 4, 8, and
12).

– The second level, which is a child element of the top level PROccurence, describes the document objects
that are part of the set. These document objects are grouped as well. In the example below page one consists
of 20 objects: five text objects and 15 image objects.

Example:
 <PRItem Occurences="4">
 <PRGroup Occurences="1">
 <PRGroupOccurence PageNumber="1"/>
 <PROccurence Occurences="20">
 <PRGroup Occurences="5">
 <PRGroupOccurence/>
 <PROccurence TextSize="12"/>
 </PRGroup>
 <PRGroup Occurences="15">
 <PRGroupOccurence/>
 <PROccurence EffectiveResolution="300 300"/>
 </PRGroup>
 </PROccurence>
 </PRGroup>
 <PRGroup Occurences="1">
 <PRGroupOccurence PageNumber="4"/>
 <PROccurence Occurences="20">
 <PRGroup Occurences="7">
 <PRGroupOccurence/>
 <PROccurence NumberOfPathPoints="4"/>
 </PRGroup>
 <PRGroup Occurences="13">
 <PRGroupOccurence/>
 <PROccurence EffectiveResolution="300 300"/>
 </PRGroup>
 </PROccurence>
 </PRGroup>
 <PRGroup Occurences="1">
 <PRGroupOccurence PageNumber="8"/>
 </PRGroup>
 <PRGroup Occurences="1">
 <PRGroupOccurence PageNumber="12"/>
 </PRGroup>
 </PRItem>

Structure of the abstract PRGroupOccurenceBase element
PRGroupOccurenceBase is an abstract class that serves as container for properties that were evaluated during
the preflight process.

Name Data Type Description
All possible object
properties as optional
attributes.

As defined by the object
property.

An example is given below. See also section "Properties"
on page 541 ff.

PageNumber ? integer Example of an integer attribute. The same format applies
to boolean, Number, Name, NameList, enumeration, enu-
merations, and string data types.
Process Resources 439

Chapter 7 Resources
When the object does not support a certain property, the corresponding attribute in PROccurence and
PRGroupOccurence must not be specified.

PRGroupOccurence Structure
PRGroupOccurence speci f ies the shared proper t ies of a l l PROccurreces in a PRGroup.
PRGroupOccurence inherits from PRGroupOccurenceBase and adds the following elements:

Structure of StringListValue Subelement
StringListValue specifies a type that returns a set of strings.

Structure of ArgumentValue Subelement
ArgumentValue specifies a value that is specified with additional arguments. This inherits from
PRGroupOccurenceBase and adds the following values:

Structure of the PROccurence Subelement
PROccurence describes an individual occurence of a preflight action failure. This inherits from
PRGroupOccurence and adds the following values:

7.2.124 PreflightReportRulePool
New in JDF 1.2
The PreflightReportRulePool resource specifies how the PreflightReport should log the errors that were
found during the Preflight process. This section makes use of elements and attributes defined in "Device
Capability Definitions" on page 502. It is suggested that reader’s familiarize themselves with that section and
"Concept of the Preflight Process" on page 538.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: Preflight
Output of processes:

Name Data Type Description
StringListValue * element Describes the values of a StringList property.
ArgumentValue * element Describes the value of a property that is enhanced with addi-

tional arguments.

Name Data Type Description
Name NMTOKEN The name of the subject property.
Value * element Element of type StringEvaluation/Value. (See “Structure

of the StringEvaluation Subelement” on page 531.)

Name Data Type Description
Name NMTOKEN The name of the subject property.
PreflightArgument element The argument that was used to evaluate this property. This is

a PreflightArgument element. (See “Structure of the
PreflightArgument Subelement” on page 436.)

Name Data Type Description
Occurences ? integer Only used when the subject occurrence is a set-object. It

describes the number of objects in the set.
PRGroup * element When this occurrence describes a set-object, the PRGroup

elements describe the objects that are part of the set.
440 Process Resources

JDF Specification Release 1.2
Resource Structure

Structure of PRRule Subelement
The PRRule structure is used to define how the PreflightReport should log the events that were found during
the execution of one Action.

The format of the PreflightReport is defined by specifying PRRules for specific Actions. Because
ActionRefs may refer to multiple Actions, a single rule applies to all referenced Actions, (e.g., all color-related
Actions will use similar reporting).

Structure of PRRuleAttr Subelement

The NMTOKENS for GroupBy and ReportAttr are one of:
• An object-specific attribute, (e.g., ColorSpace, FontName, etc.). At the time that we define the Test, we will

almost automatically define these attributes.
• Tested, which refers to all the attributes that are referred to in the Test(s) used by the Action(s) listed in the

ActionRefs .
• TestRelated, which refers to all the attributes refered in the Test(s) used by the Action(s) listed in

ActionRefs and the ones that belong to the group of properties in which the tested property was found. For
instance, if the Creator basic test was made, then all other document properties will be reported as well.

Name Data Type Description
MaxOccurences ? integer An upper bound to the maximum number of PROccurences that

may be logged in the PreflightReport.
ActionPools IDREFS References the ActionPool whose reporting are defined by this rule.
PRRule * element A list of available PRRules.
PRRuleAttr ? element Defines the default behavior of all PRRule when not defined inside of

a PRRule subelement.

Name Data Type Description
ActionRefs + IDREFS References the action for which the report behavior is defined in

PRRuleAttr.
PRRuleAttr element Defines the way to report this specific rule(s).

Name Data Type Description
GroupBy = “Tested” NMTO-

KENS
Group objects having the same N-pair of attributes listed here. For a
complete description, see explanations below this table.

ReportAttr = “Tested
Filename
PageNumber”

NMTO-
KENS

When individual items are reported, these attributes are also reported.
Attributes which are also being referred by GroupBy are ignored. See
possible values and explanations below this table.

LogErrors ? integer When the Preflight process does not understand or cannot apply cer-
tain tests, that error must be logged when the associated type is logged
here. The value is the sum of “TestWrongPDL” and
“TestNotSupported” (these two returned values are explained in
"Concept of the Preflight Process" on page 538.)

MaxGroups ? integer The maximum number of groups allowed in the report for this prob-
lem. When an object is encountered that fails the preflight test and it
belongs to none of the existing groups and there are already
MaxGroups, that occurrence is no longer reported individually and
no new group is created, although it is added to the Occurences
count and the PageSet.

MaxPerGroup ? integer The maximum number of individual occurrences reported per group
for this problem. When an object is encountered that fails the preflight
test and it belongs to a group that already contains MaxPerGroup
elements, that occurrence is no longer reported individually, although
it is added to the Occurences count and the PageSet.
Process Resources 441

Chapter 7 Resources
• VerboseAppSpecific, which refers to a large list of attributes that the preflight agent (with preflight agent-
specific logic) finds interesting for the Test(s) used by the Action(s) listed in ActionRefs .

• BriefAppSpecific, which refers to a small list of attributes that the preflight agent (with preflight agent-
specific logic) finds interesting for the Test(s) used by the Action(s) listed in ActionRefs .

When the report must be generated, the “Tested”, “VerboseAppSpecific”, and “BriefAppSpecific”
terms are expanded depending on the context (i.e., the specific test and the specific preflight agent) so that the list of
attributes only contain object specific attributes.

Note: The “VerboseAppSpecific” and “BriefAppSpecific” tokens can be dependent on the con-
text of a specific test. It is expected that a preflight agent will have a default list of tokens that will always be added
(e.g., “PageNumber”). In addition it is expected that a preflight agent will define separate lists for specific
domains, (e.g., color, font). When a specific test covers some of these specific domains, the attributes of these lists are
also added. When ReportAttr = “Tested BriefAppSpecific PageNumber”, the attributes that are
reported are dependent on the Test(s) used by the Action(s) and on the preflight agent as demonstrated in the table
below.

When such an attribute is evaluated against an object and when the attribute is a property of the object, value will be
recorded as an attribute of the PROccurence and PRGroupOccurence elements. When the attribute is not a
property of the object, no attribute will be added to the PROccurence and PRGroupOccurence elements. For
example: TextSize on a text object would give <PROccurence TextSize=“12”/> (assuming TextSize is
defined as returning the size in points), but TextSize on an image would correspond to <PROccurence />.

7.2.125 Preview
The preview of the content of a surface. It can be used for the calculation of the ink coverage (PreviewUsage =
“Separation”) or as a preview of what is currently processed in a device (PreviewUsage = “Viewable” or
PreviewUsage = “ThumbNail”). When the preview is of PreviewUsage = “Separation” or
PreviewUsage = “SeparationRaw”, a gray value of “0” represents full ink, while a value of “255” repre-
sents no ink (for more information, see DeviceGray color model chapter 4.8.2. of the PostScript Language Reference
Manual).

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: PreviewType, Separation, SheetName, Side, TileID, WebName,

RibbonName
Input of processes: InkZoneCalculation, PreviewGeneration, all other processes as

thumbnails for UI purposes
Output of processes: PreviewGeneration

Table 7.4: Contingent Report Behavior

Preflight
Agent For ColorSpace Test

For
FontEmbedded

Test
Behavior

Preflight agent 1 ColorSpace
PageNumber

FontEmbedded
PageNumber
FontName

PageNumber is always added.
For color-related tests, ColorSpace is added.
For font-related tests, FontName is added

Preflight agent 2 ColorSpace
PageNumber
BoundingBox

FontEmbedded
PageNumber
BoundingBox
FontSubset

PageNumber and BoundingBox are always
added.
For color-related tests, ColorSpace is added.
For font-related tests, FontName,
FontEmbedded, and FontSubsetted are
added.
442 Process Resources

JDF Specification Release 1.2
Resource Structure
Name Data Type Description

Compensation ?
Modified in JDF 1.2

enumeration Compensation of the image to reflect the application of transfer curves to
the image. Possible values are:
Unknown – Deprecated in JDF 1.2
None – No compensation.
Film – Compensated until film exposure.
Plate – Compensated until plate exposure.
Press – Compensated until press.

CTM ?
New in JDF 1.1

matrix Orientation of the Preview w.r.t. the coordinate system of the device that is
defined in Compensation. CTM is applied after any transformation
defined within the referenced image file, (for example: the transformation
defined in the CIP3PreviewImageMatrix of a PPF file).

Directory ?
New in JDF 1.1

URL Defines a base URL for the files that represent this Preview should be
copied to or from. If Directory is specified, it must be an Absolute URI
[RFC2396] that specifies a Base URI to resolve the URL attribute in the
Preview. See "Resolving RunList/@Directory and FileSpec/@URL URI
references" on page 649 and [FileURL] for examples.

PreviewFileType =
“PNG”
New in JDF 1.2

enumeration The file type of the preview. Possible values are:
PNG – The Portable Network Graphics format.
CIP3Multiple – The format as defined in the CIP3 PPF specification.
One or more previews per CIP3 file are supported.
CIP3Single – The format as defined in the CIP3 PPF specification. Only
one preview per CIP3 file is supported.
The CIP3 formats were added in JDF 1.2 only for backwards compatibility
since many systems only support CIP3 format. The CIP3 formats must not
be used except in Preview resources that are used as input resources to
InkZoneCalculation.

PreviewType ?
Deprecated in JDF 1.2

enumeration Type of the preview. Possible values are:
Separation – Separated preview in medium resolution.
SeparationRaw – Separated preview in medium resolution.
SeparatedThumbNail – Very low resolution separated preview.
ThumbNail – Very low resolution RGB preview.
Viewable – RGB preview in medium resolution.
PreviewType is a partition key and should be used only as such — in
JDF 1.2 and beyond, use PreviewUsage below.

PreviewUsage =
“Separation”
New in JDF 1.2

enumeration The kind of the preview. Possible values are:
Separation – Separated preview in medium resolution. Separation is
generally used in InkZoneCalculation.
SeparationRaw – Separated preview in medium resolution. This is iden-
tical to Separation except that no compensation has been applied.
SeparationRaw is generally used for closed loop color control.
SeparatedThumbNail – Very low resolution separated preview.
ThumbNail – Very low resolution RGB preview.
Viewable – RGB preview in medium resolution.
PreviewUsage defines the semantics of the preview. If both
PreviewType and PreviewUsage are specified, they must match.
Process Resources 443

Chapter 7 Resources
7.2.126 PreviewGenerationParams
Parameters specifying the size and the type of the preview.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: PreviewType, Separation, SheetName, Side, TileID, WebName,

RibbonName
Input of processes: PreviewGeneration
Output of processes: —

Resource Structure

URL
Modified in JDF 1.2

URL URL identifying any preview file, (e.g., the PNG image or CIP3 PPF file
that represents this Preview).
See [RFC2396] and "Resolving RunList/@Directory and FileSpec/@URL
URI references" on page 649 and "FileSpec MimeType, URL, and
Compression attributes, and Container subelement" on page 641 for the syn-
tax and examples. For the “file:” URL scheme see also [RFC1738] and
[FileURL].
Note: A preview will generally be partitioned by separation, unless it repre-
sents an RGB viewable image or thumbnail. PPF files with multiple images
may contain multiple Separations. In this case, the separation names defined
in CIP3ADMSeparationNames define the separations and must match the
Separation partion keys used in the JDF.

Name Data Type Description
AspectRatio = “Ignore”
New in JDF 1.1

enumeration Policy that defines how to define the preview size if the aspect ratio
of the source and preview are different. Note that AspectRatio only
has an effect if Size is specified. One of:
CenterMax – Keep the aspect ratio and preview Size, and center
the image so that the preview has missing pixels at both sides of the
larger dimension.
CenterMin – Keep the aspect ratio and preview Size, and center
the image so that the preview has blank pixels at both sides of the
smaller dimension.
Crop – Keep the aspect ratio, and modify the preview size so that the
image fits into a bounding rectangle defined by Size.
Expand – Keep the aspect ratio, and modify the preview size so that
the smaller image dimension is defined by Size.
Ignore – Fill the preview completely, keeping Size, even if this
requires modifying the aspect ratio.

Compensation ?
Modified in JDF 1.2

enumeration Compensation of the image to reflect the application of transfer
curves to the image. Possible values are:
None – No compensation.
Film – Compensated until film exposure.
Plate – Compensated until plate exposure.
Press – Compensated until press.

Name Data Type Description
444 Process Resources

JDF Specification Release 1.2
7.2.127 PrintCondition
New in JDF 1.2
PrintCondition is a resource used to control the use of colorants when printing pages on a specific media. The
attributes and elements of the PrintCondition resource describe the aim values for a given printing process.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: SignatureName, SheetName, Side, Separation
Input of processes: ConventionalPrinting,DigitalPrinting
Output of processes: —

PreviewFileType = “PNG”
New in JDF 1.2

enumeration The file type of the preview to be generated. Possible values are:
PNG – The Portable Network Graphics format.
CIP3Multiple – The format as defined in the CIP3 PPF specifica-
tion. One or more previews per CIP3 file are supported.
CIP3Single – The format as defined in the CIP3 PPF specifica-
tion. Only one preview per CIP3 file is supported.
The CIP3 formats were added in JDF 1.2 only for backwards compat-
ibility since many systems only support CIP3 format. The CIP3 for-
mats must not be used except in Preview resources that are used as
input resources to InkZoneCalculation.

PreviewType ?
Deprecated in JDF 1.1

enumeration The kind of preview to be generated. Possible values are:
Separation
Viewable
PreviewType is a partition key and should be used only as such. In
JDF 1.2 and beyond, use PreviewUsage below.

PreviewUsage =
“Separation”
New in JDF 1.1
Modified in JDF 1.2

enumeration The kind of preview to be generated. Possible values are:
Separation – Separated preview in medium resolution.
SeparationRaw – Separated preview in medium resolution with
no compensation.
SeparatedThumbNail – Very low resolution separated preview.
ThumbNail – Very low resolution RGB preview.
Viewable – RGB preview in medium resolution.
PreviewUsage defines the semantics of the preview. If both
PreviewType and PreviewUsage are specified, they must
match.

Resolution ? XYPair Resolution of the preview, in dpi. If PreviewUsage =
“Separation”, the default is “50.8 50.8”.

Size ? XYPair Size of the preview, in pixels. If this attribute is present, the
Resolution attribute evaluated according to the policy defined in
AspectRatio. If Size is not specified, it must be calculated using
the Resolution attribute and the input image size.

ImageSetterParams ?
New in JDF 1.1

refelement Details of the ImageSetting process. Needed for accessing infor-
mation about coordinate transformations that are performed by the
imagesetter hardware.

Name Data Type Description
Process Resources 445

Chapter 7 Resources
Resource Structure

Example:
 <ResourcePool>
 <ColorMeasurementConditions Class="Parameter" ID="MyColorMeasCond"
Status="Available"/>
 <PrintCondition Class="Parameter" ID="PC" PartIDKeys="Side Separation"
Status="Available">
 <ColorMeasurementConditionsRef rRef="MyColorMeasCond"/>
 <PrintCondition Side="Front">
 <PrintCondition AimCurve="0.0 0.0 0.5 0.66 1.0 1.0" Density="1.8"
Separation="Black"/>
 <PrintCondition AimCurve="0.0 0.0 0.5 0.63 1.0 1.0" Density="1.4"
Separation="Cyan"/>
 </PrintCondition>
 </PrintCondition>
 </ResourcePool>

7.2.128 PrintRollingParams
New in JDF 1.2

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: PrintRolling
Output of processes: —

Resource Structure

Name Data Type Description
AimCurve ? Transfer-

Function
Describes the desired tone-value increase function. If not specified, it
defaults to the media and printing machine-specific values

Density ? double Density value of colorant (100% tint). Whereas Color/
@NeutralDensity describes measurements of inks on substrate
with wide-band filter functions, Density is derived from measure-
ments of inks on substrate with special small band filter functions
according to ANSI and DIN. If not specified, it defaults to the value
of Color/PrintConditionColor/@Density.

Name string Name of the PrintCondition. Used to reference a
PrintCondition from a Color/PrintConditionColor element.

ColorMeasurementCo
nditions ?

refelement Describes measurement conditions for color measurement and den-
sity measurement. If not specified, it defaults to the value of Color/
PrintConditionColor/ColorMeasurementConditions

Device ? refelement Specifies the Device or Device group that this PrintCondition
applies to.

FileSpec ?
(TargetProfile)

refelement A FileSpec resource pointing to an ICC profile that defines the tar-
get output device in case the object that uses the Color has been color
space converted to a device color space. If not specified, it defaults to
the value of Color/PrintConditionColor/FileSpec
(TargetProfile).

Name Data Type Description
Copies ? integer Number of copies on the roll. Only one of Copies and

MaxDiameter must be specified.
MaxDiameter ? double Maximal allowed diameter of roll. Only one of Copies and

MaxDiameter must be specified.
446 Process Resources

JDF Specification Release 1.2
7.2.129 ProofingParams
Deprecated in JDF 1.2
In JDF 1.2 and beyond, proofing is handled as a combined process. For detail of this deprecated resource, see
"ProofingParams" on page 768.

7.2.130 PSToPDFConversionParams
This resource contains the parameters that control the conversion of PostScript streams to PDF pages.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: DocIndex, RunIndex, RunTags, SheetName, Side, SignatureName
Input of processes: PSToPDFConversion
Output of processes: —

Resource Structure
Name Data Type Description

ASCII85EncodePages =
“false”

boolean If “true”, binary streams (e.g., page contents streams, sampled
images, and embedded fonts) are ASCII85-encoded, resulting in a
PDF file that is almost pure ASCII. If “false”, they are not,
resulting in a PDF file that may contain substantial amounts of
binary data.

AutoRotatePages ? enumeration Allows the device to try to orient pages based on the predominant
text orientation. Only used if the file does not contain “%%Viewin-
gOrientation”, “%%PageOrientation”, or “%%Orientation” DSC
comments. If the file does contain such DSC comments, it honors
them. “%%ViewingOrientation” takes precedence over others, then
“%%PageOrientation”, then “%%Orientation”. Possible values are:
None – Turns AutoRotatePages off.
All – Takes the predominant text orientation across all pages and
rotates all pages the same way.
PageByPage – Does the rotation on a page-by-page basis, rotating
each page individually. Useful for documents that use both portrait
and landscape orientations.

Binding = “Left” enumeration Determines how the printed pages would be bound. Specify
“Left” for left binding or “Right” for right binding.

CompressPages ? boolean Enables compression of pages and other content streams like forms,
patterns, and Type 3 fonts. If “true”, use Flate compression.

DefaultRenderingIntent ?
Modified in JDF 1.2

enumeration Selects the rendering intent for the current job. Possible values are:
Default Deprecated in JDF 1.2
Perceptual
Saturation
RelativeColorimetric
AbsoluteColorimetric
See the Portable Document Format Reference Manual for more
information on rendering intent.

DetectBlend = “true” boolean Enables or disables blend detection. If “true” and if
PDFVersion is 1.3 or higher, then blends will be converted to
smooth shadings.
Process Resources 447

Chapter 7 Resources
DoThumbnails = “true” boolean If “true”, thumbnails are created.
EndPage ? integer Number that indicates the last page that is displayed when the PDF

file is viewed. EndPage must be equal to anything less than
StartPage or be greater than or equal to 1. If not, then it must be
greater than or equal to StartPage. When combined with
StartPage, EndPage selects a range of pages to be displayed.
The entire file may or may not be distilled, but only StartPage to
EndPage pages, inclusive, are opened and viewed in a PDF view-
ing application.

ImageMemory ?
Deprecated in JDF 1.2

integer Number of bytes in the buffer used in sample processing for color,
grayscale, and monochrome images. Its contents are written to disk
when the buffer fills up.
This attribute was deprecated because it is an internal application
setting and not a parameter setting.

InitialPageSize ?
New in JDF 1.1

XYPair Defines the initial page dimensions assumed by the PS-to-PDF con-
verter, in points. This will be overridden by any PageSize page
device parameter found in the PostScript stream. The use of this
attribute is strongly encouraged if the PS-to-PDF converter may be
used to process EPS files.

InitialResolution ?
New in JDF 1.1

XYPair Defines the initial horizontal and vertical resolution of the PS-to-
PDF converter, in dpi. This will be overridden by any HWResolu-
tion page device parameter found in the PostScript stream. The use
of this attribute is strongly encouraged if the PS-to-PDF converter
may be used to process EPS files.

OverPrintMode ? integer Controls the overprint mode strategy of the job. Set to “0” for full
overprint or “1” for non-zero overprint. For more information, see
http://partners.adobe.com/asn/developer/PDFS/TN/
5044.ColorSep_Conv.pdf

Optimize = “true” boolean If “true”, the PS-to-PDF converter optimizes the PDF file. See
the Portable Document Format Reference Manual for more infor-
mation on optimization.

PDFVersion ? double Specifies the version number of the PDF file produced. Possible val-
ues include all legal version designators, (e.g., 1.2, 1.5).

StartPage ? integer Sets the first page that is be displayed when the PDF file is opened
with a PDF viewing application. StartPage must be greater than
or equal to 1. If EndPage is not “-1”, then it must be greater than
or equal to StartPage.

AdvancedParams ? element Advanced parameters which control how certain features of Post-
Script are handled.

PDFXParams ?
New in JDF 1.2

element PDF/X parameters.

ThinPDFParams ? element Parameters that control the optional content or form of PDF files
that will be created.

Name Data Type Description
448 Process Resources

http://partners.adobe.com/asn/developer/PDFS/TN/5044.ColorSep_Conv.pdf
http://partners.adobe.com/asn/developer/PDFS/TN/5044.ColorSep_Conv.pdf

JDF Specification Release 1.2
Structure of AdvancedParams Subelement
Name Data Type Description

AllowPSXObjects =
“true”
New in JDF 1.2

boolean If “true”, allows PostScript XObjects.

AllowTransparency =
“false”
New in JDF 1.2

boolean If “true”, allows transparency in the PDF.

AutoPositionEPSInfo =
“true”
Modified in JDF1.1A

boolean If “true”, the process automatically resizes and centers EPS infor-
mation on the page.

EmbedJobOptions =
“false”
New in JDF 1.2

boolean If “true”, the PDF settings used to create the PDF are embedded
in the PDF.

EmitDSCWarnings =
“false”

boolean If “true”, warning messages about questionable or incorrect DSC
comments appear during the distilling of the PS file.

LockDistillerParams =
“true”
Clarified in JDF 1.2

boolean If “true”, any PSToPDFConversionParams settings config-
ured by the PS content are ignored. If “false”, the incoming PS
content that specifies any of the PSToPDFConversionParams
settings override those defined in
PSToPDFConversionParams.

ParseDSCComments =
“true”

boolean If “true”, the process parses the DSC comments for any informa-
tion that might be helpful for converting the file or for information
that must be stored in the PDF file. If “false”, the process treats
the DSC comments as pure PS comments and ignores them.

ParseDSCCommentForD
ocInfo = “true”

boolean If “true”, the process parses the DSC comments in the PS file and
extracts the document information. This information is recorded in
the Info dictionary of the PDF file.

PassThroughJPEGImage
s = “false”
New in JDF 1.2

boolean If “true”, JPEG images are passed through without recompressing
them.

PreserveCopyPage =
“true”

boolean If “true”, the CopyPage operator of PostScript Level 2 is main-
tained. If “false”, the PostScript Level 3 definition of copypage
operator is used.
In PostScript Levels 1 and 2, the copypage operator transmits the
page contents to the current output device (similar to ShowPage).
However, CopyPage does not perform many of the re-initializa-
tions that ShowPage does.
Many PostScript Level 1 and 2 programs used the CopyPage oper-
ator to perform such operations as printing multiple copies and
implementing forms. These programs produce incorrect results
when interpreted using the Level 3 CopyPage semantics. This
attribute provides a mechanism to retain Level 2 compatibility for
this operator.

Compatibility warning: In JDF 1.1A and previous versions, the
definition of LockDistillerParams was accidentally inverted.
It is now consistent with the PostScript SetDistillerParams
operator.
Process Resources 449

Chapter 7 Resources
Structure of PDFXParams Subelement
New in JDF 1.2

PreserveEPSInfo =
“true”

boolean If “true”, preserves the EPS information in the PS file and stores
it in the resulting PDF file.

PreserveHalftoneInfo =
“false”
New in JDF 1.1

boolean If “true”, passes halftone screen information (frequency, angle,
and spot function) into the PDF file. If “false”, halftone informa-
tion is not passed in.

PreserveOverprintSettin
gs = “true”
New in JDF 1.1

boolean If “true”, Distiller passes the value of the SetOverPrint opera-
tor through to the PDF file. Otherwise, overprint is ignored.

PreserveOPIComments
= “true”

boolean If “true”, encapsulates Open Prepress Interface (OPI) low resolu-
tion images as a form and preserves information for locating the
high resolution images.

TransferFunctionInfo =
“Preserve”
New in JDF 1.1

enumeration Determines how transfer functions are handled. Possible values are:
Preserve – Transfer functions are passed into the PDF file.
Remove – Transfer functions are ignored. They are neither applied
to the color values nor passed into the PDF file.
Apply – Transfer functions are used to modify the data that are
written to the PDF file, instead of writing the transfer function itself
to the file.

UCRandBGInfo =
“Preserve”
New in JDF 1.1

enumeration Determines whether the arguments to the PostScript commands
“SetUndercolorRemoval” and “SetBlackGeneration”
are passed into the PDF file. Possible values are:
Preserve – The arguments are passed into the PDF file.
Remove – The arguments are ignored.

UsePrologue = “false” boolean If “true”, the process must prepend a PostScript prologue file to
the job and append a PostScript epilog file to the job. Such files are
used to control the PostScript environment for the conversion pro-
cess. The expected location and allowable contents for these files is
defined by the process implementation.

Name Data Type Description
PDFX1aCheck = “false” boolean If “true”, checks compliance with the PDF/X-1a standard (ISO

15930-1:2001).
PDFX3Check = “false” boolean If “true”, checks compliance with the PDF/X-3 standard (ISO

15930-3:2002).
PDFXBleedBoxtoTrimBo
xOffset ?

rectangle If the “BleedBox” entry is not specified in the page object of the
PostScript document, BleedBox is set to “TrimBox” with offsets.
All numbers must be greater than or equal to 0.0. BleedBox will be
completely outside TrimBox.

PDFXCompliantPDFOnly
= “false”

boolean If “true”, produces a PDF document only if PDF/X compliance
tests are passed.

PDFXOutputCondition ? string The string is an optional comment which is added to the PDF file. It
describes the intended printing condition in a form that should be
meaningful to a human operator at the site receiving the PDF docu-
ment.

Name Data Type Description
450 Process Resources

JDF Specification Release 1.2
Structure of ThinPDFParams Subelement

PDFXOutputIntentProfile
?

string If the PostScript document does not specify an output intent name,
then this value is used. Possible values are:
None – Used when it is required that the PostScript document speci-
fies an intent, allows compliance checking to fail.
Euroscale Coated v2
Euroscale Uncoated v2
Japan Color 2001 Coated
Japan Color 2001 Uncoated
Japan Standard v2
Japan Web Coated (Ad)
U.S. Sheetfed Coated v2
U.S. Sheetfed Uncoated v2
U.S. Web Coated (SWOP) v2
U.S. Web Uncoated v2
Photoshop 4 Default CMYK
Photoshop 5 Default CMYK

PDFXNoTrimBoxError =
“true”

boolean If “true” and both “TrimBox” and “ArtBox” entries are not
specified in the page object of the PostScript document, the condition
is reported as an error.

PDFXRegistryName URL Indicates a location at which more information regarding the registry
that defines the “OutputConditionIdentifier” may be
obtained.

PDFXSetBleedBoxToMed
iaBox = “true”

boolean If “true” and the “BleedBox” entry is not specified in the page
object of the PostScript document, BleedBox is set to
“MediaBox.”

PDFXTrapped ? enumera-
tion

If a PostScript document does not specify a “Trapped” state, then
the value provided here is used. “Unknown” should be used for
workflows that require that the document specify a Trapped state and
for which compliance checking should fail if it is not present in the
document. Can be one of the following values:
Unknown
false
true

PDFXTrimBoxToMediaBo
xOffset?

rectangle If both the “TrimBox” and “ArtBox” entries are not specified in
the page object of the PostScript document, TrimBox is set to
“MediaBox” with offsets. All numbers must be greater than or
equal to 0.0. TrimBox will be completely inside MediaBox.

Name Data Type Description
FilePerPage =
“false”

boolean If “true”, the process generates 1 PDF file per page.

SidelineEPS =
“false”
New in JDF 1.2

boolean If “true”, embedded EPS files are not converted but are stored in external
files in the same location as the PDF itself.

SidelineFonts =
“false”

boolean If “true”, font data are stored in external files during PDF generation.

SidelineImages =
“false”

boolean If “true”, image data are stored in an external stream during the PDF Gener-
ation phase. This prevents large amounts of image data from having to be
passed through all phases of the code generation process.

Name Data Type Description
Process Resources 451

Chapter 7 Resources
7.2.131 QualityControlParams
New in JDF 1.2
This set of parameters identifies how the QualityControl process should operate. QualityControlParams
defines the generic set of parameters for the quality control process. The specific measurement conditions are defined
in specialized subelements such as BindingQualityParams.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: QualityControl
Output of processes: —

Resource Structure

Structure of the BindingQualityParams element

7.2.132 QualityControlResult
New in JDF 1.2
This set of parameters returns results of a QualityControl process. QualityControlResult defines the generic
set of results from the quality control process. The specific measurements are returned in specialized subelements
such as BindingQualityParams. Additional detailed quality control result types are anticipated in future versions
of the JDF specification.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: —
Output of processes: QualityControl

Resource Structure

Name Data Type Description
TimeInterval ? duration Time interval between individual tests.
SampleInterval ? integer Interval in number of samples between tests.
BindingQualityParams
?

element Specification of the definition parameters of one individual resource.

Name Data Type Description
FlexValue ? double Flex quality parameter measured in [N/cm].
PullOutValue ? double Pull out quality parameter measured in [N/cm].

Name Data Type Description
Failed ? integer Total number of failed measurements.
Passed ? integer Total number of passed measurements.
BindingQualityParams
?

element Reference to the measurement setup definition.

FileSpec ? refelement Location of an external file that contains details of the quality control
measurement.

QualityMeasurement * element One individual measurement result.
452 Process Resources

JDF Specification Release 1.2
Structure of the QualityMeasurement Element
QualityMeasurement elements describe an individual measurement.

Structure of the BindingQualityMeasurement Element

7.2.133 RegisterMark
Defines a register mark, which can be used for setting up and monitoring color registration in a printing process. It
can also be used to synchronize the sheet position in a paper path. The position and rotation of each register mark can
be specified with the help of the following attributes. It is important that the register marks are defined in such a way
that their centers are on the point of origin of the coordinate system, as otherwise they are not positioned properly.

Resource Properties
Resource class: Parameter
Resource referenced by: Surface
Example Partition: —
Input of processes: Any printing process
Output of processes: —

Resource Structure

Name Data Type Description
End ? dateTime Date and time of the end of the measurement. If not specified, the

value of Start is applied.
Failed ? integer Total number of failed measurements.
Passed ? integer Total number of passed measurements.
Condition ? NMTOKEN Condition of the tested component. If the Component passed the test

but the test itself destroyed the Component, the value should be set to
“destroyed”.

Start ? dateTime Date and time of the start of the measurement. If not specified, the
measurement time is not known.

BindingQualityMeasur
ement ?

element Details of the BindingQualityMeasurement.

Name Data Type Description
FlexValue ? double Flex quality parameter given in [N/cm].
PullOutValue ? double Pull out quality parameter given in [N/cm].

Name Data Type Description
Center XYPair Position of the center of the register mark in the coordinates of the

MarkObject that contains this mark.
MarkType ? NMTOKEN Type of RegisterMark. Possible values include:

Arc
Circle
Cross

MarkUsage ?
New in JDF 1.1

enumerations Specifies the usage of the RegisterMark. Allowed values are:
Color – The mark is used for separation color registration.
PaperPath – The mark is used for paper path synchronization.

Rotation ? double Rotation in degrees. Positive graduation figures indicate counter-
clockwise rotation; negative figures indicate clockwise rotation.

SeparationSpec *
Modified in JDF 1.2

refelement Set of separations to which the register mark is bound.
Process Resources 453

Chapter 7 Resources
7.2.134 RegisterRibbon
New in JDF 1.1
Description of register ribbons. For the register ribbon the length should be given. There are two parameters:

Resource Properties
Resource class: Consumable
Resource referenced by: BlockPreparationParams
Example Partition: —
Input of processes: —

Resource Structure

Figure 7.16: Parameters and Coordinate System for BlockPreparation

Name Data Type Description
LengthOverall double Overall length of the register ribbon, (i.e., 1+2 in the picture above).
Material ? string Material of the register ribbon.
RibbonColor ? NamedColor Color of the ribbon.
RibbonEnd ? NMTOKEN End of the Ribbon. Values include:

Cut
CutSealed
Knot
SealedOffset – The ribbon is sealed a distance from the cut.

VisibleLength double Length of the register ribbon which will be seen when opening the book, (See
picture above).
454 Process Resources

JDF Specification Release 1.2
7.2.135 RenderingParams
This set of parameters identifies how the Rendering process should operate. Specifically, these parameters define
the expected output of the ByteMap resource that the Rendering process creates.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: DocIndex, RunIndex, RunTags, SheetName, Side, SignatureName
Input of processes: Rendering
Output of processes: —

Resource Structure

7.2.136 ResourceDefinitionParams
This set of parameters identifies how the ResourceDefinition process should operate. Specifically, these parame-
ters define how default parameters of applications and the input resource should be combined.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: ResourceDefinition
Output of processes: —

Name Data Type Description
BandHeight ? integer Height of output bands expressed in lines. For a frame device, the band

height is simply the full height of the frame.
BandOrdering ? enumeration Indicates whether output buffers are generated in BandMajor or

ColorMajor order. Possible values are:
BandMajor – The position of the bands on the page is prioritized over
the color.
ColorMajor – All bands of a single color are played in order before
progressing to the next plane. This is only possible with non-interleaved
data.

BandWidth ? integer Width of output bands, in pixels.
ColorantDepth ?
Clarified in JDF 1.2

integer Number of bits per colorant. Determines whether the output is bitmaps or
bytemaps.

Interleaved ? boolean If “true”, the resulting colorant values are interleaved and
BandOrdering is ignored.

AutomatedOverPri
ntParams ?

refelement Optional controls for overprint substitutions. Defaults to no automated
overprint generation.

ObjectResolution *
Modified in JDF 1.2

refelement Elements which define the resolutions to render the contents at. More than
one element may be used to specify different resolutions for different
SourceObjects types. If no ObjectResolution is specified, the
value is implied from the input data.

Media ?
New in JDF 1.1
Deprecated in JDF 1.2

refelement This resource provides a description of the physical media which will be
marked. The physical characteristics of the media may affect decisions
made during Rendering. In JDF 1.2 and beyond, a RIP should obtain
Media information from InterpretingParams/Media.
Process Resources 455

Chapter 7 Resources
Resource Structure

Structure of the ResourceParam Subelement
New in JDF 1.1

7.2.137 RingBindingParams
This resource describes the details of the RingBinding process.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: RingBinding
Output of processes: —

Resource Structure

Name Data Type Description
DefaultID ?
Deprecated in JDF 1.1

NMTOKEN JDF ID of the default resource. If missing, it is assumed that the file specified
by DefaultJDF contains only a JDF resource element, not a complete JDF.

DefaultJDF ? URL Link to a JDF resource that defines preset values.
DefaultPriority =
“DefaultJDF”

enumeration Defines whether preset values of the application or of the resource specified
in DefaultJDF have priority. Possible values are:
Application – The application default settings are used to fill the
resource.
DefaultJDF – The settings specified in DefaultJDF are applied.

ResourceParam +
New in JDF 1.1

element Specification of the definition parameters of one individual resource.

Name Data Type Description
DefaultID ? NMTOKEN JDF ID of the default resource. If missing, it is assumed that the file specified

by DefaultJDF contains only a JDF resource element, not a complete JDF.
DefaultJDF ? URL Link to a JDF resource that defines preset values. Defaults to the DefaultJDF

specified in ResourceDefinitionParams.
DefaultPriority ? enumeration Defines whether preset values of the application or of the Resource specified in

DefaultJDF have priority. Possible values are:
Application
DefaultJDF
Defaults to the DefaultPriority specified in the parent
ResourceDefinitionParams.

Name Data Type Description
BinderColor ? NamedColor Color of the ring binder.
BinderMaterial ? NMTOKEN The following describe RingBinding binder materials used. Values

include:
Cardboard – Cardboard with no covering.
ClothCovered – Cardboard with cloth covering.
PVC – Solid PVC.
PVCCovered – Cardboard with PVC covering.

BinderName ? string The name of the binder manufacturer and the name of the specific item.
456 Process Resources

JDF Specification Release 1.2
7.2.138 RollStand
New in JDF 1.2

Resource Properties
Resource class: Handling
Resource referenced by: —
Example Partition: —
Input of processes: PrintRolling
Output of processes: —

Resource Structure

RingDiameter ? double Diameter of the rings, in points.
RingMechanic ? boolean If “true”, a hand lever is available for opening.
RingShape ? NMTOKEN The possible values include the following RingBinding:

Round
Oval
D-shape
SlantD

RingSystem ?
Deprecated in JDF 1.1

enumeration The following ring binding systems are used:
2HoleEuro – In Europe
3HoleUS – In North America
4HoleEuro – In Europe
In JDF 1.2 and beyond, use the value implied by HoleMakingParams/
@HoleType.

RivetsExposed ? boolean The following RingBinding choice describes mounting of ring mechanism
in binder case. If “true”, the heads of the rivets are visible on the exterior
of the binder. If “false”, the binder covering material covers the rivet
heads.

SpineColor ? NamedColor Color of the binders spine.
SpineWidth ? double The spine width is determined by the final height of the block of sheets to be

bound.
ViewBinder ? NMTOKEN The possible values include the following RingBinding clear vinyl outer-

wrap types on top of a colored base wrap:
Embedded – Printed material is embedded by sealing between the colored
and clear vinyl layers during the binder manufacturing.
Pocket – Binder is designed so that printed material may be inserted
between the color and clear vinyl layers after the binder is manufactured.

HoleMakingPar
ams ?
New in JDF 1.2

refelement Details of the holes in RingBinding.

Name Data Type Description
MaxDiameter ? double Maximal allowed diameter of the input component print roll.
MaxWidth ? double Maximal allowed width of the rolled input components.
Device ? refelement Further details of the RollStand.

Name Data Type Description
Process Resources 457

Chapter 7 Resources
7.2.139 RunList
RunList resources describe an ordered set of LayoutElement or ByteMap elements. Ordering and structure are
defined using the generic partitioning mechanisms as described in Section 3.8.2, Description of Partitionable
Resources.

RunList resources are used whenever an ordered set of page descriptions elements are required. Depending on
the process usage of a RunList, only certain Types of LayoutElement may be valid. For example, a pre-RIP
imposition process requires LayoutElement elements of Type “page” or “document”, whereas a post-RIP
imposition process requires ByteMap elements. The usage is detailed in the descriptions of the processes that use
the RunList resource. RunList resources allow structuring of multiple Pages into Documents. Multiple Documents
that have a joint context may be grouped into Sets.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: PartVersion, Run, RunPage, Separation
Input of processes: RunLists are used as input resources by most processes that act on content data
Output of processes: RunLists are used as output resources by most processes that act on content data

Resource Structure
Name Data Type Description

ComponentGranul
arity = “Document”
New in JDF 1.2

enumeration Specifies which grouping of input LayoutElement PDL pages
define the equivalent of an individual output Component instance
for processing in a multi-document print job, e.g. in a variable data job.
For instance, all pages defined between end-of-set markers would be
stitched in a combined DigitalPrinting and Stitching node if
ComponentGranularity = “Set”. One of:
All – The complete RunList, regardless of document or set breaks
defines a new Component.
BundleItem – Each Component must be defined by an implicit
PDL-defined document break, or an explicit EndofBundleItem.
Document – Each document as defined by an implicit PDL-defined
document break, or an explicit EndofDocument, defines a new
Component.
Page – Each page in the RunList defines a new Component.
Set – Each set as defined by an implicit PDL-defined set break, or an
explicit EndofSet, defines a new Component.

Directory ?
Clarified in JDF 1.2

URL Defines a directory where the files that are associated with this
RunList should be copied to or from. If Directory is specified, it must
be an Absolute URI [RFC2396] that specifies a Base URI to resolve
the FileSpec/URL attribute in the RunList. See "Resolving
RunList/@Directory and FileSpec/@URL URI references" on
page 649 and [FileURL] for examples.

DocCopies = “1”
New in JDF 1.1

integer Number of instance document copies that this RunList represents.
Specifying DocCopies is equivalent to repeating the sequence of
RunList leaves between EndOfDocument = “true” for a total of
DocCopies times.
Note: It is illegal to specify DocCopies with different values of vari-
ous leaves of a RunList representing the same instance document.
458 Process Resources

JDF Specification Release 1.2
DocNames ? NameRangeList A list of named documents in a multi-document file that supports
named access to individual documents. DocNames defaults to all
documents. If DocNames occurs in the RunList, Docs is ignored if
it is also present.

Docs ? IntegerRangeList Zero-based list of document indices in a multi-document file specified
by the LayoutElement element.

EndOfBundleItem ?
New in JDF 1.2

boolean If “true”, the last page in the RunList is the last page of a
BundleItem. The implied default value of EndOfBundleItem =
“false”, except for the last RunList partition, which always has
an implied default value of EndOfBundleItem = “true”.
EndOfBundleItem must only be specified if
ComponentGranularity = “BundleItem”.

EndOfDocument ?
Clarified in JDF 1.2

boolean If “true”, the last finished page in the RunList is the last page of an
instance document. The precise handling of instance document
changes is defined in the InsertSheet resource. If the RunList ref-
erences a PDL that supports internal instance documents,
EndOfDocument may be implied from the PDL. The implied
default value of EndOfDocument = “false”, except for the last
RunList partition leaf, which always has an implied default value of
EndOfDocument = “true”.

EndOfSet ?
New in JDF 1.1
Clarified in JDF 1.2

boolean If “true”, the last finished page in the RunList is the last page of a
set of instance documents. The precise handling of instance document
boundaries is defined in the InsertSheet resource. If the RunList
references a PDL that supports internal sets, EndOfSet may be
implied from the PDL. The implied default value of EndOfSet =
“false”, except for the last RunList partition leaf, which always
has an implied default value of EndOfSet = “true”.

FirstPage ? integer First finished page in the document that is described by this RunList.
This attribute is generally used to describe preseparated files.

IsPage = “true” boolean If “true”, the individual RunList element defines one or more page
slots, (e.g., for filling PlacedObjects). If “false”, the first parent
partitioned RunList element with IsPage = “true” defines the
page level. In general, IsPage = “false” for separations of a pre-
separated RunList.

LogicalPage ?
Modified in JDF 1.1

integer The logical page number of the first finished page in a RunList. This
attribute may be used to retain logical page indices when a partitioned
RunList is spawned. It defaults to “1” plus the last finished page of
the previous sibling RunList partition. If the RunList element is the
first partition, LogicalPage defaults to “0”. Note that is an error to
specify LogicalPage to be less than the number of previously defined
logical pages, since this defines overlapping finished pages within the
RunList.

NDoc ?
New in JDF 1.1
Deprecated in JDF 1.2

integer Total number of instance documents that are defined by the RunList.
If NDoc is not specified, it defaults to all instance documents in the
partitioned RunList elements that make up the RunList.
In JDF 1.2 and beyond, only Docs is supported.

Name Data Type Description
Process Resources 459

Chapter 7 Resources
NPage ? integer Total number of pages (placed object slots or RunList elements with
IsPage = “true”) that are defined by the RunList. If NPage is
not specified, it defaults to all finished pages in the partitioned
RunList elements that make up the RunList. If the RunList
describes multiple instance documents or document sets, NPage
refers to the total number of finished pages in all instance documents
and sets. A RunList with NPage specified always refers to NPage
pages, regardless of the number of pages of the referenced PDL.

NSet ?
New in JDF 1.1
Deprecated in JDF 1.2

integer Total number of instance document sets that are defined by the
RunList. If NSet is not specified, it defaults to all instance docu-
ment sets in the partitioned RunList elements that make up the
RunList.
In JDF 1.2 and beyond, only Sets is supported.

PageCopies = “1”
New in JDF 1.1

integer Number of finished page copies that this RunList represents. Specify-
ing PageCopies is equivalent to repeating the RunList leaves rep-
resenting each page for a total of PageCopies times (e.g., a multiple
represented by the value of PageCopies.) Note that pages specified
by PageCopies are always assumed uncollated when calculating the
index in the logical RunList, (e.g., PageCopies = “2” would result
in a logical page sequence of 0 0 1 1 2 2, etc.).

PageListIndex ?
New in JDF 1.2

IntegerRangeList List of the indices of the PageData elements of the PageList spec-
ified in the LayoutElement referenced by this RunList. If not
specified, the complete PageListIndex specified in the
LayoutElement referenced by this RunList is applied.

PageNames ? NameRangeList A list of named pages in a multi-page file that supports named access
to individual finished pages. PageNames defaults to all pages. If
PageNames occurs in the RunList, FirstPage, Npage,
SkipPage, and Pages must be ignored if any of them is also present.

Pages ?
Modified in JDF 1.1A
Clarified in JDF 1.2

IntegerRangeList Zero-based list of indices in the documents specified by the
LayoutElement element and the Docs, DocNames, Sets, and
SetNames attributes. Pages need not be in document order. If
Pages is present, FirstPage and SkipPage must be ignored. If nei-
ther Pages, FirstPage, Npage, PageNames, or SkipPage are
present, all pages in the LayoutElement are selected.

RunTag ?
New in JDF 1.1
Clarified in JDF 1.2

NMTOKEN Tag of a partition of a resource other than the RunList which is parti-
tioned by RunTags. The partition matches if any of the entries in the
RunTags list matches RunTag. Multiple entries in a RunList may
have the same RunTag. If the RunList references a PDL that sup-
ports internal labels, RunTag may be implied from the PDL.

SetCopies = “1”
New in JDF 1.1

integer Number of instance document set copies that this RunList represents.
Specifying SetCopies is equivalent to repeating the sequence of
RunList leaves between EndOfSet = “true” for a total of
SetCopies times. Note that it is illegal to specify SetCopies with
different values of various leaves of a RunList representing the same
instance document.

Name Data Type Description
460 Process Resources

JDF Specification Release 1.2
SetNames ?
New in JDF 1.1

NameRangeList A list of named document sets in a multi-document set file that sup-
ports named access to individual documents. SetNames defaults to
all document sets specified by Sets. If SetNames occurs in the
RunList, Sets is ignored if it is also present.
SetNames is only valid if LayoutElement/@ElementType =
“MultiSet”.

Sets ?
New in JDF 1.1

IntegerRangeList Zero-based list of document set indices in a multi-document sets file
specified by the LayoutElement element. If not present, all docu-
ment sets are selected.
Sets is only valid if LayoutElement/@ElementType =
“MultiSet”.

SkipPage ? integer Used when the RunList comprises every Nth page of the file.
SkipPage indicates the number of finished pages to be skipped
between each of the pages that comprise the RunList element. This is
generally used to describe preseparated files, or to select only even or
odd pages. Note that SkipPage is, therefore, 3 (4 Separations -> skip
3) in a CMYK separated file.

Sorted ? boolean Specifies whether the elements in the RunList are sorted in the docu-
ment reader order.

ByteMap ?
Modified in JDF 1.2

refelement Describes the page or stream of pages. Only one of ByteMap,
InterpretedPDLData, or LayoutElement must be specified in
one RunList element. If ByteMap, InterpretedPDLData, nor
LayoutElement are specified, the RunList entry specifies empty
content.

Disposition ? refelement Indicates what the device should do with the file when the process that
uses this resource completes. If not specified, the file specified by this
FileSpec is retained indefinitely. FileSpec/Disposition takes
precedence over RunList/Disposition.

DynamicInput * element Replacement text for a DynamicField element. This information
defines the contents of a dynamic mark on the automated page layout.
The mark must be filled using information from the document runlist,
(e.g., the bar code of the recipient). This information varies with the
document content. DynamicInput elements have one optional
Name attribute that, when linked to the ReplaceField attribute of
the DynamicField element, defines the string that should be
replaced.

InsertSheet * refelement Describes how Sheets and Surfaces may be completed and
optional media which may be inserted at the beginning or end of this
RunList element.

InterpretedPDLD
ata ?
New in JDF 1.2

refelement Represents the results of the PDL interpretation process. Only one of
ByteMap, InterpretedPDLData, or LayoutElement must be
specified in one RunList element. If ByteMap,
InterpretedPDLData, nor LayoutElement are specified, the
RunList entry specifies empty content.

LayoutElement ?
Modified in JDF 1.2

refelement Describes the document, finished page or image. Only one of
ByteMap, InterpretedPDLData, or LayoutElement must be
specified in one RunList element. If ByteMap,
InterpretedPDLData, nor LayoutElement are specified, the
RunList entry specifies empty content.

PageList ? refelement Specification of page metadata for pages described by this RunList.

Name Data Type Description
Process Resources 461

Chapter 7 Resources
Structure of a DynamicInput Subelement
DynamicInput defines the contents of a dynamic mark on a Surface resource for automated page layout. The
mark must be filled using information from the document RunList, (e.g., the bar code of the recipient). This infor-
mation varies with the document content. For details on dynamic marks, see the DynamicField element description
in Section 7.2.158, Surface.

Examples of Partitioning of a RunList
The following examples illustrate how a RunList can be structured using partitioning Mechanisms. Note that the
partitioning of a RunList often generates the values necessary to evaluate the partitioning of other resources, (e.g.,
the RunIndex into the RunList). Thus, the order in which the RunLists appear in the XML document is signifi-
cant. It is interesting to note that the “Run” partitioning key has a string value, and is not required to be numeric.

Simple unstructured Single-File Runlist
This example specifies all pages contained in “/in/colortest.pdf”.
 <RunList Class="Parameter" ID="Link0003" Pages="0~-1" Status="Available">
 <LayoutElement>
 <FileSpec URL="File:///in/colortest.pdf"/>
 </LayoutElement>
 </RunList>

Simple Multi-File unseparated RunList using RunList/@Directory
This example specifies all pages contained in File1.pdf and File2.pdf, which are located in the directory “/Dir” that is
specified in RunList/@Directory.
 <RunList Class="Parameter" Directory="File:///Dir/" ID="Link0003" PartIDKeys="Run" Status="Available">
 <RunList Pages="0~-1" Run="1">
 <LayoutElement>
 <FileSpec URL="File1.pdf"/>
 </LayoutElement>
 </RunList>
 <RunList Pages="0~-1" Run="2">
 <LayoutElement>
 <FileSpec URL="File2.pdf"/>
 </LayoutElement>
 </RunList>
 </RunList>
Simple Multi-File unseparated RunList with independent spawning
This example specifies the first five pages contained in File1.pdf and File2.PDF. File2.pdf has been spawned and is
being processed individually.
 <RunList Class="Parameter" ID="Link0003" PartIDKeys="Run" Status="Available">
 <RunList Pages="0~4" Run="1">
 <LayoutElement>
 <FileSpec URL="File:///File1.pdf"/>
 </LayoutElement>
 </RunList>
 <RunList Pages="0~-1" Run="2" SpawnStatus="SpawnedRW">
 <LayoutElement>
 <FileSpec URL="File:///File2.pdf"/>
 </LayoutElement>
 </RunList>

Name Data Type Description
Name ? string Label that must match the ReplaceField attribute of the appropriate DynamicField ele-

ment
— text Defines the text string that should be inserted as a replacement for the text defined in

ReplaceField of a DynamicField element.
462 Process Resources

JDF Specification Release 1.2
 </RunList>
This is the corresponding spawned RunList. Note the LogicalPage attribute, which specifies the number of skipped
pages.
 <RunList Class="Parameter" ID="Link0003" LogicalPage="5" Pages="0~-1"
 PartIDKeys="Run" Status="Available">
 <RunList Run="2">
 <LayoutElement>
 <FileSpec URL="File:///File2.pdf"/>
 </LayoutElement>
 </RunList>
 </RunList>
Simple Multi-File separated RunList
This example specifies all pages contained in Presep.pdf and following that, pages 1, 3, and 5 of each preseparated file.
 <RunList Class="Parameter" ID="Link0003" PartIDKeys="Run Separation"
 Status="Available">
 <RunList Run="1" SkipPage="3">
 <LayoutElement>
 <FileSpec URL="File:///Presep.pdf"/>
 </LayoutElement>
 <RunList FirstPage="0" IsPage="false" Separation="Cyan"/>
 <RunList FirstPage="1" IsPage="false" Separation="Magenta"/>
 <RunList FirstPage="2" IsPage="false" Separation="Yellow"/>
 <RunList FirstPage="3" IsPage="false" Separation="Black"/>
 </RunList>
 <RunList IsPage="true" Pages="1 3 5" Run="2">
 <RunList IsPage="false" Separation="Cyan">
 <LayoutElement>
 <FileSpec URL="File:///Cyan2.pdf"/>
 </LayoutElement>
 </RunList>
 <RunList IsPage="false" Separation="Magenta">
 <LayoutElement>
 <FileSpec URL="File:///Magenta2.pdf"/>
 </LayoutElement>
 </RunList>
 <RunList IsPage="false" Separation="Yellow">
 <LayoutElement>
 <FileSpec URL="File:///Yellow2.pdf"/>
 </LayoutElement>
 </RunList>
 <RunList IsPage="false" Separation="Black">
 <LayoutElement>
 <FileSpec URL="File:///Black2.pdf"/>
 </LayoutElement>
 </RunList>
 </RunList>
 </RunList>

7.2.140 SaddleStitchingParams
Deprecated in JDF 1.1 See "SaddleStitchingParams" on page 770 for details of this deprecated resource.

7.2.141 ScanParams
This resource provides the parameters for the Scanning process.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: RunIndex
Input of processes: Scanning
Output of processes: —
Process Resources 463

Chapter 7 Resources
Resource Structure
Name Data Type Description

BitDepth integer Bit depth of a one-color separation.
CompressionFilter ? enumeration Specifies the compression filter to be used. Possible values include:

CCITTFaxEncode – Used to select CCITT Group 3 or 4 facsimile
encoding.
DCTEncode – Used to select JPEG compression.
FlateEncode – Used to select Zip compression.
WaveletEncode – Used to select Wavelet compression.
JBIG2Encode – Used to select JBIG2 monochrome compression.

DCTQuality ? double A value between 0 and 1 that indicates “how much” the process should
compress images. 0.0 means “do as loss-less compression as possi-
ble.” 1.0 means “do the maximum compression possible.”

InputBox ? rectangle Rectangle that describes the image section to be scanned, in points.
The origin of the coordinate system is the lower left corner of the
physical item to be scanned.

Magnification =
“1 1”

XYPair Size of the output/size of the input for each dimension.

MountID ? string ID of the drum or other mounting device upon which the media should
be mounted.

Mounting ? enumeration Specifies how to mount originals. Possible values are:
Unfixed – Original lies unfixed on the scanner tray/drum.
Fixed – Original is fixed on the scanner tray/drum with transparent
tape.
Wet – Original is put in gel or oil and fixed on the scanner tray/drum.
Registered – Original is fixed with registration holes. This value is
used for copix.

OutputColorSpace enumeration Color space of the output images. Possible values are:
LAB
RGB
CMYK
GrayScale

OutputResolution XYPair X and Y resolution of the output bitmap, in dpi.
OutputSize ? XYPair X and Y dimension of the intended output image, in points.
SplitDocuments ? integer A number representing how many images are scanned before a new

file is created.
FileSpec ?
(CorrectionProfile)

refelement A FileSpec resource pointing to an ICC profile that describes color
corrections.

FileSpec ?
 (TargetProfile)

refelement A FileSpec resource pointing to an ICC profile that defines the target
output device for a device specific scan, (e.g., the profile of a CMYK
press).

FileSpec ?
(ScanProfile)

refelement A FileSpec resource pointing to an ICC profile that describes the
scanner.
464 Process Resources

JDF Specification Release 1.2
7.2.142 ScavengerArea
New in JDF 1.1
This resource describes a scavenger area for removing excess ink from printed sheets. It is defined within a
MarkObject of a Surface.

Resource Properties
Resource class: Parameter
Resource referenced by: Surface
Example Partition: —
Input of processes: Any printing process
Output of processes: —

Resource Structure

7.2.143 ScreeningParams
This resource specifies the parameter of the screening process. Since screening is, in most cases, very OEM specific,
the following parameters are generic enough that they can be mapped onto a number of OEM controls.

Resource Properties
Resource class: Parameter
Resource referenced by: ExposedMedia
Example Partition: Separation, SheetName, Side, SignatureName
Input of processes: Screening, ColorCorrection, ContoneCalibration
Output of processes: —

Resource Structure

Name Data Type Description
Center XYPair Position of the center of the scavenger area in the coordinates of the

MarkObject that contains this mark.
Rotation ? double Rotation in degrees. Positive graduation figures indicate counter-clockwise

rotation; negative figures indicate clockwise rotation.
Size XYPair Size of the scavenger area.
SeparationSpec *
Modified in JDF 1.2

refelement Set of separations to which the scavenger area is bound.

Name Data Type Description
IgnoreSourceFile =
“true”

boolean Specifies whether to ignore the screen settings (e.g., setscreen, setcolor-
screen, and sethalftone) specified in the source files. Note that in some
cases, halftones are used to create patterns. In these cases, the halftone in the
source PDL file will not be overridden.

AbortJobWhenScre
enMatchingFails ?
Deprecated in JDF 1.2

boolean Specifies what happens when the device can not fulfill the screening
requests. If “true”, it flushes the job. If “false”, it ignores matching
errors using the default screening. Use SettingsPolicy in JDF 1.2 and
beyond.

ScreenSelector *
Modified in JDF 1.1

element List of screen selectors. A screen selector is included for each separation,
including a default specification.
Process Resources 465

Chapter 7 Resources
Structure of ScreenSelector Subelement
Description of screening for a selection of source object types and separations.

Name Data Type Description
Angle ?
Clarified in JDF 1.2

double Specifies the first angle of the screen when AM screening is used, otherwise
Angle is ignored. Either Angle or AngleMap may be specified but not
both. If neither Angle nor AngleMap are specified, the angle is deter-
mined by the default of the selected ScreeningFamily.

AngleMap ?
New in JDF 1.1
Clarified in JDF 1.2

string Specifies the mapping of the angle of the screen to the angle of a different
separation when AM screening is used. For example, a spot color that has
the same screening angle as the cyan separation is specified by AngleMap
= Cyan. In FM screening, AngleMap specifies the mapping of the separa-
tion specific screen functions, (e.g., threshold arrays). Only one of Angle or
AngleMap may be specified. This mapping is not transitive, so, when
Separation already specifies a color with a known defaulta, it specifies
the angle of the separation defined by AngleMap prior to that separation
being mapped. The following example specifies that Black should be
mapped to the Cyan default separation and Cyan to the Black default
separation. The third line maps Spot1 to Magenta.
<ScreenSelector AngleMap=“Black” Separation=“Cyan”/>
<ScreenSelector AngleMap=“Cyan” Separation=“Black”/>
<ScreenSelector AngleMap=“Magenta” Separation=“Spot1”/>

DotSize ?
New in JDF 1.1
Clarified in JDF 1.2

double Specifies the dot size of the screen, in microns [µm], when FM screening
(ScreeningType = “FM” or “Adaptive”) is used, otherwise
DotSize is ignored.

Frequency ?
Modified in JDF 1.2

double Specifies the halftone screen frequency in lines per inch (lpi) of the screen
when AM screening is used, otherwise Frequency is ignored. With some
screens, frequency may change as a function of gray level. In this case, the
Frequency value is interpreted for a midtone (50%) gray level.
If Frequency is not specified, the frequency is determined by the default
of the selected ScreeningFamily.

ScreeningFamily ? string Vendor specific screening family name. Sample values removed in JDF 1.2
ScreeningType ?
Modified in JDF 1.2

enumeration General type of screening. Possible values are:
Adaptive
AM – May be line or dot. (See SpotFunction.)
ErrorDiffusion
FM – Includes all stochastic screening types.
HybridAM-FM
HybridAMline-dot

Separation =
“All”

string The name of the separation. If Separation = “All”, the
ScreenSelector should be applied to all separations that are not specified
explicitly.

SourceFrequency ?
Modified in JDF 1.2

Double-
Range

Specifies the line frequency of screens which should be matched from the
source file when screen matching is to be done. Note that this is a filter that
selects on which objects to apply this ScreenSelector.

SourceObjects =
“All”

enumerations Identifies the class(es) of incoming graphical objects on which to use the
selected screen. Possible values are:
All
ImagePhotographic – Contone images.
ImageScreenShot – Images largely comprised of rasterized vector art.
Text
LineArt – Vector objects other than text.
SmoothShades – Gradients and blends.
466 Process Resources

JDF Specification Release 1.2
7.2.144 SeparationControlParams
This resource provides the controls needed to separate composite color files.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: Separation
Output of processes: —

Resource Structure

SpotFunction ?
Clarified in JDF 1.2

NMTOKEN Specifies the spot function of the screen when AM screening is used. In
general, it is common for a spot function to change its shape as a function of
gray level. Response to these spot function names may be implementation-
dependent. These example names are the same as the spot function names
defined in PDF. Example values include:
Round
Diamond
Ellipse
EllipseA
InvertedEllipseA
EllipseB
EllipseC
InvertedEllipseC
Line
LineX
LineY
Square
Cross
Rhomboid
DoubleDot
InvertedDoubleDot
SimpleDot
InvertedSimpleDot
CosineDot
Double
InvertedDouble

a. In general this will be a CMYK process color, but it can also be another process color, (e.g., HexaCh-
rome™).

Name Data Type Description
AutomatedOverPrintParams ? refelement Optional controls for overprint substitutions.

The default case is that no automated overprint genera-
tion is used.

TransferFunctionControl ? refelement Controls whether the device performs transfer functions
and what values are used when doing so.

Name Data Type Description
Process Resources 467

Chapter 7 Resources
7.2.145 SeparationSpec
This resource specifies a specific separation, and is usually used to define a list or sequence of separations.

Resource Properties
Resource class: ResourceElement
Resource referenced by: ColorantControl, LayoutElement, RegisterMark,

TransferFunctionControl
Example Partition: —
Input of processes: —
Output of processes: —

Resource Structure

7.2.146 ShapeCuttingParams
New in JDF 1.1
ShapeCuttingParams defines the details of the ShapeCutting process.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: ShapeCutting
Output of processes: —

Resource Structure

Structure of Shape Subelement

Name Data Type Description
Name string Name of one specific separation.

Name Data Type Description
Shape * element Details of each individual cut shape

Name Data Type Description
CutBox ? rectangle Specification of a rectangular window.
CutOut = “false” boolean If “true”, the inside of a specified shape will be removed. If “false”,

the outside of a specified shape will be removed. An example of an inside
shape is a window, while an example of an outside shape is a shaped
greeting card.

CutPath ? PDFPath Specification of a complex path. This may be an open path in the case of a
single line.

Material ? string Transparent material that fills a shape (e.g., an envelope window) that was
cut out when CutOut = “true”.

CutType = “Cut” enumeration Type of cut or perforation used. Possible values are:
Cut – Full cut.
Perforate – Interrupted perforation that does not span the entire sheet

ShapeDepth ? double Depth of the shape cut, measured in microns [µm]. If not specified, the
shape is completely cut.
468 Process Resources

JDF Specification Release 1.2
7.2.147 Sheet
This resource provides a description of a sheet, as well as the marks on that sheet.

Resource Properties
Resource class: Parameter
Resource referenced by: InsertSheet, Layout
Example Partition: SheetName.
Input of processes: —
Output of processes: —

Resource Structure

ShapeType enumeration Describes any precision cutting other than hole making. Possible values
are:
Rectangular
Round
Path

TeethPerDimension ? double Number of teeth in a given perforation extent, in teeth/point. MicroPerfo-
ration is defined by specifying a large number of teeth (n>1000).

Name Data Type Description
LockOrigins = “false” boolean Determines the relationship of the coordinate systems for front and back

surfaces. When “false”, all contents for all surfaces are transformed
into the first quadrant, in which the origin is at the lower left corner of
the surface.
When “true”, contents for the front surface are imaged into the first
quadrant (as above), but contents for the back surface are imaged into
the second quadrant, in which the origin is at the lower right. This
allows the front and back origins to be aligned even if the exact media
size is unknown.

Name ?
Clarified in JDF 1.2

string Name of the sheet. Name must be unique within a given Layout.
Name is used for external reference to a sheet in, for example, a Part
element.

SurfaceContentsBox ? rectangle This box, specified in surface coordinate space, defines the area into
which contents and marks will occur for all Surfaces in the Sheet.
CTMs for MarkObjects or ContentObjects transform page con-
tents or marks into this rectangle.

InsertSheet * refelement Specifies how to complete a sheet in an automated printing environ-
ment.

Media ?
New in JDF 1.1

refelement Describes the media to be used. Defaults to Layout/Signature/
Media.

MediaSource ?
Deprecated in JDF 1.1

refelement Describes the media to be used. Replaced by Media in JDF 1.1.

Surface (Front) ? refelement Describes the front surface to be used. Two surfaces may be attached:
one front surface and one back surface. The surface is defined by the
Side attribute of the Surface resource. Surface/@Side must be
Front.

Surface (Back) ? refelement Describes the back surface to be used. Surface/@Side must be
Back.

Name Data Type Description
Process Resources 469

Chapter 7 Resources
7.2.148 ShrinkingParams
New in JDF 1.1
This resource provides the parameters for the Shrinking process in shrink wrapping.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: Shrinking
Output of processes: —

Resource Structure

7.2.149 SideSewingParams
Deprecated in JDF 1.1 See "SideSewingParams" on page 771 for details of this deprecated resource.

7.2.150 SpinePreparationParams
New in JDF 1.1
SpinePreparationParams describes the preparation of the spine of book blocks for hard and soft cover book
production, (e.g., milling and notching).

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: SpinePreparation
Output of processes: —

Resource Structure

Name Data Type Description
Duration ? duration Shrinking time.
ShrinkingMethod =
“ShrinkHot”

enumeration Specifics of the shrinking method for shrink wrapping.
ShrinkCool
ShrinkHot

Temperature ? double Oven temperature in ° Centigrade.

Name Data Type Description
FlexValue ?
Deprecated in JDF 1.2

double Flex quality parameter, in [N/cm]. In JDF 1.2 and beyond, FlexValue is
defined in QualityControlParams/@BindingQuality. See
"QualityControlParams" on page 452 for details.

MillingDepth ?
Modified in JDF 1.2

double Milling depth, in points. This describes the total cut-off of the spine, regard-
less of the technology used to achieve this goal.

NotchingDistance ? double Notching distance, in points.
NotchingDepth ? double Notching depth relative to the leveled spine, in points. If not specified, there

is no notching.
470 Process Resources

JDF Specification Release 1.2
Operations ? NMTOKENS List of operations to be applied to the spine. Duplicate entries are allowed to
specify a sequence of identical operations. The order of operations is signif-
icant. Possible values include:
Brushing – Brushes away dust from the spine to improve the binding
quality.
FiberRoughing – The fibers of the paper on the spine are exposed with-
out the risk of glazing the paper coating. This optimizes the spine prepara-
tion considering paper and adhesive types.
Leveling – After milling the spine, any uneven areas are leveled to
achieve an even surface.
Milling – Cuts off part of the spine so the spine is not too even. A rough
texture of the fibers is assured. This creates ideal conditions for stable
anchoring of the sheets in the glue.
Notching – This gives a clamping effect on the spine which is desirable
for some products.
Sanding – Is used for voluminous book papers.
Shredding – Produces a relatively smooth surface. Further operations
like Notching, Leveling, FiberRoughing, Sanding, or
Brushing are necessary.

PullOutValue ?
Deprecated in JDF 1.2

double Pull out quality parameter, in [N/cm]. In JDF 1.2 and beyond,
PulloutValue is defined in QualityControlParams/@BindingQuality.
See "QualityControlParams" on page 452 for details.

StartPosition = “0” double Starting position of milling tool along the Y-axis of the operation coordinate
system.

WorkingLength ? double Working length of milling operation. If specified larger than the spine
length, the complete spine is prepared. If not specified, the complete spine is
prepared.

Figure 7.17: Parameters and coordinate systems for the SpinePreparation process

Name Data Type Description
Process Resources 471

Chapter 7 Resources
7.2.151 SpineTapingParams
New in JDF 1.1
SpineTapingParams define the parameters for taping a strip tape or kraft paper to the spine of a book block.
Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: SpineTaping
Output of processes: —
Resource Structure

Name Data Type Description
HorizontalExcess ? double Taping spine excess on each side. The tape is assumed to be centered

between left and right.
StripBrand ? string Strip brand.
StripColor ? NamedColor Color of the strip.
StripLength ? double Length of strip material along binding edge. If not defined, the default case

is that the StripLength be equivalent to the length of the spine.
StripMaterial ? enumeration Strip material. Possible values are:

Calico
Cardboard
CrepePaper
Gauze
Paper
PaperlinedMules
Tape

TopExcess = “0.0” double Top spine taping excess. This value may be negative.
GlueApplication * refelement Describes where and how to apply glue to the book block.

Figure 7.18: Parameters and coordinate system for the SpineTaping process
472 Process Resources

JDF Specification Release 1.2
7.2.152 StackingParams
New in JDF 1.1
Settings for the Stacking process. A stack of components may be uneven and unstable, due to variations in thick-
ness across each component. The thickness variations may be caused by folding, binding, or inserted components. A
stack may be split into layers, with successive layers rotated by 180o to compensate for the unevenness.

If the thickest part is on an edge (e.g., a book binding), the components may be offset to separate the thick parts.
Layer compensation and offsetting may be combined as in the following examples.

If the number of components is not evenly divisible by standard stack size (StandardAmount) or the number of
components in a bundle is not evenly divisible by layer size (LayerAmount), there will be a remainder, yielding
one or more odd-count stacks or layers. By default, the odd-count stack or layer size may contain as few as one com-
ponent. This may exceed equipment cycle times, and flimsy components (newspapers) may cause problems with
downstream equipment such as strappers. MinAmount and MaxAmount control the minimum and maximum size
of odd-count stacks and layers. The following figures show the odd count handling for bundles and layers.

Table 7-5: Parameters in Stacking

Pile Pattern StandardAmount LayerAmount
(Default = StandardAmount)

Compensate
(Default = true)

Disjointing/
@Offset

1 6 6 true 0 0

2 6 1 true 0 0

3 6 1 false x 0

4 6 1 true x 0

5 6 3 true 0 0

6 6 3 false x 0

7 6 3 true x 0

Layer of n components

Stack / Pile / Bundle of
n components
Process Resources 473

Chapter 7 Resources
Resource Properties
Resource class: Parameter
Resource referenced by:
Example Partition: —
Input of processes: Stacking
Output of processes: —
Resource Structure

Figure 7.19: Odd Count Handling for Bundling

Name Data Type Description
LayerAmount ?
Modified in JDF 1.2

IntegerList Ordered number of products in a layer. The first number is the first
LayerAmount, etc. If there are more layers than entries in the list, counting
restarts at the first entry. The sum of all entries is typically an even divisor of
StandardAmount. When not known, the default case is that the value of
LayerAmount be equivalent to the value of StandardAmount.
474 Process Resources

JDF Specification Release 1.2
7.2.153 StitchingParams
Clarified in JDF 1.2
This resource provides the parameters for the Stitching process. The process coordinate system is defined as fol-
lows:

• The Y-axis increases from the (first) registered edge to the edge opposite to the registered edge.

• The X-axis is aligned with the (second) registered edge, and it increases from the binding edge (or first registered
edge) to the edge opposite to the binding edge (or first registered edge).

Note that the stitches are applied from the front in the figures describing the stitching coordinate system.

StandardAmount ?
Modified in JDF 1.2

integer Number of products in a standard stack.

MaxAmount ? integer Maximum number of products in a stack, MaxAmount >/=
StandardAmount. When not known, the default case is that the value of
MaxAmount be equivalent to the value of StandardAmount.

MinAmount ? integer Minimum number of products in a stack or layer, (MaxAmount –
StandardAmount) </= MinAmount < StandardAmount and
MinAmount < LayerAmount. Where not known, the default case is to
use a value equivalent to MaxAmount – StandardAmount.

MaxWeight ? double Maximum weight of a stack in grams.
Compensate =
“true”

boolean 180 degree rotation applied to successive layers to compensate for uneven
stacking. If LayerAmount = StandardAmount, there is one layer, and
effectively no compensation.

Offset ?
Deprecated in JDF 1.2

boolean Offset or shift applied to successive layers to separate the thicker portions of
components, for example, offsetting the spines of hardcover books. Replaced
with Disjointing in JDF 1.2 and beyond.

Disjointing ?
New in JDF 1.2

refelement Details of the offset or shift applied to successive layers to separate the
thicker portions of components, for example, offsetting the spines of hard-
cover books.

Figure 7.20: Staple shapes

Name Data Type Description
Process Resources 475

Chapter 7 Resources
Figure 7.21: Parameters and coordinate system used for saddle stitching

Figure 7.22: Parameters and coordinate system used for stitching

Stitch position

Y

X
Offset

Stitch width

Reference edge 1

Stitch position

Y

X
Offset

Stitch width

Binding edge

Reference edge 2

Set of folded sheets
collected on a saddle

Set of sheets or partial
products gathered on a
pile that will be folded
later
476 Process Resources

JDF Specification Release 1.2
Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: Stitching
Output of processes: —

Resource Structure
Name Data Type Description

Angle ? double Angle of stitch in degree. The angle increases in a counterclockwise direc-
tion. Horizontal = “0”, which means that it is parallel to the X-axis of the
operation coordinate system.Defaults to the system-specified value which
may vary depending on other attributes set in this resource. If StitchType
= “Saddle”, Angle must be ignored

NumberOfStitches ?
Modified in JDF 1.2

integer Number of stitches. If not specified, use the system-specified number of
stitches which may vary depending on other attributes set in this resource.
Use a “0” value to use the stitcher without inserting any stitches. Use
“NoOp” to bypass the stitcher altogether.

ReferenceEdge ?
New in JDF 1.1
Deprecated in JDF 1.2

enumeration The edge or corner of the component to be stitched for the process coordi-
nate system (see description above). This attribute is intended for use when
the Stitching process is combined with other processes (e.g.,
DigitalPrinting) where, when combined, there is no input
Component to be stitched. Possible values are:
Top
Left
Right
Bottom
ReferenceEdge has been replaced in JDF 1.2 and beyond with an
explicit Transformation or Orientation of the input Component. If
both Transformation/Orientation and ReferenceEdge are speci-
fied, the result is the matrix product of both transformations.
Transformation/Orientation must be applied first.

Offset ? double Distance between stitch and binding edge. If StitchType = “Saddle”,
Offset must be ignored. Note that it is possible to describe saddle stitch-
ing with an offset by defining StitchType = “Side” with a large
Offset value.

StapleShape ? enumeration Specifies the shape of the staples to be used. Possible values are:
Crown
Overlap
Butted
ClinchOut
Eyelet
Representations of these values are displayed in Figure 7.20.

StitchFromFront ?
Deprecated in JDF 1.2

boolean If “true”, Stitching is done from front to back. Otherwise it is done
from back to front. StitchFromFront has been replaced with an explicit
Transformation or Orientation of the input Component.

StitchPositions ? DoubleList Array containing the stitch positions. The center of the stitch must be spec-
ified, and the number of entries must match the number given in
NumberOfStitches.
Process Resources 477

Chapter 7 Resources
7.2.154 Strap
New in JDF 1.1

Resource Properties
Resource class: Consumable
Resource referenced by:
Example Partition: —
Input of processes: Strapping
Output of processes: —

Resource Structure

7.2.155 StrappingParams
New in JDF 1.1
StrappingParams defines the details of Strapping.
Resource Properties
Resource class: Parameter
Resource referenced by:
Example Partition: —
Input of processes: Strapping
Output of processes: —
Resource Structure

StitchType ?
Modified in JDF 1.2

enumeration Specifies the type of the Stitching operation. One of:
Corner – Stitch in the corner that is at the clockwise end of the reference
edge. For example, to stitch in the top right corner set ComponentLink/
@Orientation = “Rotate90”.
Saddle – Stitch on the middle fold which is on the saddle.
Side – Stitch along the reference edge.

StitchWidth ? double Width of the stitch to be used. If not present or “0”, means use the system-
specified width of stitches which may vary depending on other attributes
set in this resource.

WireGauge ? double Gauge of the wire to be used. If not present or “0”, means use the system-
specified wire gauge which may vary depending on other attributes set in
this resource.

WireBrand ? string Brand of the wire to be used.

Name Data Type Description
StrapColor ? NamedColor Color of the string or strap.
Material enumeration Strap material. Possible values are:

AdhesiveTape
Strap
String

Name Data Type Description
StrappingType enumeration Strapping pattern. Allowed values are:

Single – One strap.
Double – Two parallel single straps.
Cross – Two crossed straps.
DoubleCross – Two cross straps that strap each side of a box.

Name Data Type Description
478 Process Resources

JDF Specification Release 1.2
7.2.156 StripBindingParams
New in JDF 1.1
This resource describes the details of the StripBinding process.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: StripBinding
Output of processes: —

Resource Structure

7.2.157 StrippingParams
New in JDF 1.2
The StrippingParams resource is a high-level description of how a Component is to be produced. It is typi-
cally produced by the MIS production planning module and consumed by a prepress workflow system, although its
usage is not restricted to this example. There are enough optional attributes to use the same resource for the interface
between estimation systems and production planning systems.

StrippingParams specifies how the surfaces of the BinderySignatures of a job are placed onto press
sheets and also gives concrete values for the various StripCellParams defined by the BinderySignature.

The partitioning of StrippingParams defines the structure of the finished product and the structure of the
Layout resource that is produced by the Stripping process. It is therefore strongly recommended to partition the
StrippingParams resource by SheetName. Note that not all attributes and elements may be specified in the
lower level partitions. For instance, Device and WorkStyle are only useful up to the SheetName partition level.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: SignatureName, SheetName, BinderySignatureName,

PartVersion, SectionIndex, CellIndex
Input of processes: Stripping
Output of processes: —

Name Data Type Description
Brand ? string The name of the comb manufacturer and the name of the specific item.
Distance ?
Deprecated in JDF 1.2

double The distance between the pins and the distance between the holes of the
prepunched sheets must be the same.
In JDF 1.2 and beyond, use the value implied by
HoleMakingParams/@HoleType.

Length ? double The length of the pin is determined by the height of the pile of sheets to be
bound.

StripColor ? NamedColor Determines the color of the strip.
HoleMakingPara
ms ?
New in JDF 1.2

refelement Details of the holes in StripBinding.
Process Resources 479

Chapter 7 Resources
Resource Structure

Structure of the Position Subelement
The Position element allows the aligned placement of different objects onto a layout, without requiring that the
objects be of the same size. The objects are placed onto a display area. The display area includes absolute margins,
specified by MarginTop, MarginLeft, MarginRight, and MarginBottom. Adjacent margins, defined by non-
joining RelativeBoxes, are added to calculate the final margin between objects.

Name Data Type Description
AssemblyID ? string Identification of the Assembly or AssemblySection to which the

StrippingParams or partition belongs.
JobID ? string Identification of the original job to which the StrippingParams or parti-

tion belongs. If not specified, it defaults to the value specified or implied in
the JDF node.

SectionList ? IntegerList List of numbered sections (of the AssemblySections with matching
JobID and AssemblyID) that should be flowed into the
BinderySignature. If not specified, a linear sequence of sections is
assumed. The section that matches the first entry is flowed into
SignatureCells with SectionIndex = “0"; the section that matches
the second entry is flowed into SignatureCells with SectionIndex =
“1" and so forth. SectionList must not be specified at the CellIndex
partition level.

WorkStyle ? enumeration The direction in which to turn the press sheet. Possible values are defined in
ConventionalPrintingParams/@WorkStyle:
WorkStyle must not be specified at partition levels lower than
SheetName.

BinderySignature refelement Describes BinderySignature which are placed onto the sheets defined
by StrippingParams. If multiple BinderySignature elements are
placed on the same sheet, StrippingParams must be partitioned by
BinderySignatureName. BinderySignature must not be specified
at partition levels lower than PartVersion.

Device * refelement Devices that the MIS has planned to execute this StrippingParams.
This may include prepress devices, presses, or finishing devices. Press
devices must not be specified at partition levels lower than SheetName.

Media * refelement Media to be used for this StrippingParams. This may include paper,
plate, or film media. Paper media must not be specified at partition levels
lower than SheetName.

Position * element The Position element specifies how the BinderySignature is placed
onto a sheet. Multiple Position objects in one StrippingParams spec-
ify multiple identical BinderySignatures with the same content. In case
the BinderySignature is defined by SignatureCells, then, by default, the
front pages are placed on the front side of the sheet and the back pages are
placed on the back side of the sheet. Using the Orientation attribute one
can influence this default behavior.
When the BinderySignature is defined by FoldCatalog or Folds,
then, by default, the lay is placed on the left front side of the sheet. Using
the Orientation attribute one can influence this default behavior.
Position must not be specified at partition levels lower than
PartVersion.

StripCellParams ? element Specification of the parameters of the cells in the layout.
480 Process Resources

JDF Specification Release 1.2
Structure of StripCellParams Subelement
The StripCellParams allow the specification of various distances implicitly defined by the use of a
BinderySignature. The picture below shows a cell and the different distances inside it leading to the final trim
box of the cell in which content will be placed.
Note: In practice, StripCellParams values will usually be greater than or equal to zero and generally default to
“0”. Nonetheless the parameters have no schema default.

Name Data Type Description
MarginBottom ? Double Bottom margin, in points, to be left outside of the BinderySignature that

this Position applies to. The coordinate system is defined by the front side
of the StrippingParams.

MarginTop ? Double Top margin, in points, to be left outside of the BinderySignature that
this Position applies to. The coordinate system is defined by the front side
of the StrippingParams.

MarginLeft ? Double Left margin, in points, to be left outside of the BinderySignature that
this Position applies to. The coordinate system is defined by the front side
of the StrippingParams.

MarginRight ? Double Right margin, in points, to be left outside of the BinderySignature that
this Position applies to. The coordinate system is defined by the front side
of the StrippingParams.

Orientation ? Orientation Named orientation describing the transformation of the orientation of the
BinderySignature on the StrippingParams. For details, see Table 2-
3, “Matrices and Orientation values used to describe the orientation of a
Component,” on page 24.

RelativeBox ? Rectangle Relative position of this BinderySignature on the front side of the
StrippingParams. If not specified, the full media box “0 0 1.0 1.0"
is applied.

Name Data Type Description
BleedFace ? double (F1) Value for the bleed at the face side.
BleedSpine ? double (S1) Value for the bleed at the spine side.
BleedHead ? double (H1) Value for the bleed at the head side.
BleedFoot ? double (T1) Value for the bleed at the foot side.
TrimFace ? double (F2) Value for the trim distance at the face side.
Spine ? double (S2) Amount of paper which is not cut-off from the spine.
TrimHead ? double (H2) Value for the trim distance at the head side.
TrimFoot ? double (T2) Value for the trim distance at the foot side.
FrontOverfold ? double (F3) Value for the overfold at the front side.
BackOverfold ? double (F3) Value for the overfold at the back side.
MillingDepth ? double (S3) Amount of paper cut-off from the spine.
CutWidthHead ? double (H3) Amount of paper lost by cutting at the head side.
CutWidthFoot ? double (T3) Amount of paper lost by cutting at the foot side.
TrimSize ? XYPair Defines the dimensions of the trim box.
Process Resources 481

Chapter 7 Resources
Creep ? XYPair Compensation for creep. When the creep value is positive, the thickness of
the paper is compensated by moving the content pages to the open side of
the folded signature (outer creep). When the creep value is negative, the
thickness of the paper is compensated by moving the content pages to the
closed side of the folded signature (inner creep). When the creep value =
“0”, then no creep compensation is applied.

Sides ? enumeration Indicates whether contents should be printed on one or both sides of the
media. Possible values are:
OneSided – Page contents will only be imaged on one side of the media.
TwoSidedHeadToHead – Impose pages upon the front and back sides of
media sheets so that the head (top) of page contents back up to each other.
TwoSidedHeadToFoot – Impose pages upon the front and back sides of
media sheets so that the head (top) of the front backs up to the foot (bottom)
of the back.

Figure 7.23: Definition of margins in StripCellParams

Name Data Type Description
482 Process Resources

JDF Specification Release 1.2
7.2.158 Surface
This resource describes the marks on a sheet surface. Up to two Surface resources may be defined for a Sheet.

Resource Properties
Resource class: Parameter
Resource referenced by: Sheet
Example Partition: Side. Otherwise it is strongly discouraged to partition the Layout tree, including

Surface.
Input of processes: —
Output of processes: —

Resource Structure

Structure of the Abstract PlacedObject Subelement
The marks that may be placed on the designated Surface come in two varieties: ContentObject or MarkObject
elements. Both inherit characteristics from the abstract PlacedObject element type, and both are described below.

Name Data Type Description
Side enumeration The side of the Sheet that the Surface describes. Possible values are:

Front
Back

SurfaceContentsBox ? rectangle? This rectangle provides the region of the surface into which the contents
of ContentObjects and MarkObjects are to be imaged.
Note: The SurfaceContentBox also provides a translation for an
object's CTM. (See Section 7.1.1.1, Structure of Abstract Span
Subelement.)

PlacedObject * element Provides a list of the ContentObject and MarkObject elements to be
placed on to the surface. Contains the marks on the surface in rendering
order. See the description that follows.
Note: PlacedObject is not a container but an abstract type.

Name Data Type Description
ClipBox ? rectangle Clipping rectangle in the coordinates of the SurfaceContentsBox.
CTM matrix The coordinate transformation matrix (CTM — a Postscript term) of

the object in the SurfaceContentsBox. CTM is applied to the
native coordinate system of the object.
Note: CTM must be recalculated if the object is replaced afterwards
with a new object with different dimensions.

HalfTonePhaseOrigin =
“0 0”

XYPair Location of the origin for screening of this ContentObject. Speci-
fied in the coordinate systems of SurfaceContentBox.

LayerID ?
New in JDF 1.1

integer If a layout supports layering (e.g., for versioning), LayerID may be
used to identify the layer that a ContentObject belongs to, (e.g., the
language layer version). The details of the layers are optionally speci-
fied in the Layout/LayerList/@LayerDetails key.

OrdID ?
New in JDF 1.1

integer If a layout supports layering (e.g., for versioning), OrdID may be used
to identify ContentObjects that belong to the same final page. These
will have a matching OrdID.

SourceClipPath ? PDFPath Clip path for the PlacedObject in the coordinates of the source page.
SourceClipPath is applied to the referenced source object in addi-
tion to any clipping that is internal to the object.
Process Resources 483

Chapter 7 Resources
CTM Definitions
New in JDF 1.2
The following are explanations of the terms used in this section and beyond:

• Dimensions of object – The width and height of either the box defined to include all drawings for this file
format, or the artificial box that includes these drawings for file formats that have no clearly defined box for this.

• Trim box of the signature page – A rectangle that indicates where the trim box of object should be positioned.
This is the equivalent to the area the user is intended to see in the final product. Positioning the trim box of the
object inside the trim box of the signature page is implementation-specific (usually it is centered).

• Trim box of the object – A rectangle that is PDL-specific that indicates the area of the object that indicates the
intended trimming area.

Finding the trim box of an object
The LayoutElement/@SourceTrimBox always takes precedence over boxes defined inside the file. Make
sure that LayoutElement/@SourceTrimBox is updated after replacing elements. The following is a list of
names used for the real trim box in various file formats:

• PostScript (PS) – PageSize

• Encapsulated PostScript (EPS) – CropBox

• Portable Document Format (PDF) – TrimBox

TrimCTM ?
New in JDF 1.1

matrix The transformation matrix of the object’s trim box in the
SurfaceContentsBox. TrimCTM and CTM are identical if the
trim box and dimension of the object in the PlacedObject are identi-
cal. Note that imposition programs that execute the Layout must
recalculate the CTM in case the object is replaced with a new object
with different dimensions, otherwise the position of the content inside
the trim box will shift. This recalculation is based on TrimCTM,
TrimSize and trim box.

TrimSize ?
New in JDF 1.2

XYPair The size of the object's trim box as viewed in the
SurfaceContentBox (TrimCTM scaling and rotation applied).
Needed when replacing the object by a new object with a different
dimension.
Note: Recalculation of PlacedObject/@CTM is only necessary
when the Imposition process needs to replace some pages from the
provided RunList (using the Layout as a kind of imposition "tem-
plate"). To ensure correct placement of a new page in the Layout,
PlacedObject/@CTM recalculations should always be done accord-
ing to PlacedObject/@TrimCTM and PlacedObject/
@TrimSize. Together, these two attributes represent the trimming
information of the imposition software page, which is not always the
same as the original RunList page trimming information (=
LayoutElement/@SourceTrimBox when real trim box of the
object is known).
Usage of both PlacedObject's TrimCTM and TrimSize attributes
will allow page replacements on any type of imposition Layout.

Type ?
Deprecated in JDF 1.1

enumeration Describes the kind of PlacedObject. Possible values are:
Content
Mark

Name Data Type Description
484 Process Resources

JDF Specification Release 1.2
• Raster files – entire area
If this information is not available, alternative sources for trim box information may include (but these boxes may not
be correct in all cases):

• EPS – HiResBoundingBox then BoundingBox

• PDF – CropBox then MediaBox

Structure of ContentObject Subelement
ContentObject elements describe containers for page content on a surface. They are filled from the content
RunList of the Imposition process. For print applications where page count varies from instance document to
instance document, imposition templates can automatically assign pages to the correct Surface and PlacedObject
position.

Using Ord to reference elements in RunLists
New in JDF 1.1A
The Ord attribute in ContentObject or MarkObject elements represents a reference to a logical element in a
RunList. The reference is not changed by repartitioning the RunList. The content and marks RunList are refer-
enced independently. The following examples illustrate the usage of Ord.

Simple Multi-File unseparated RunList
This example specifies all pages contained in File1.pdf and File2.pdf. File 1 has 6 pages, file 2 has an unknown num-
ber of pages.
 <RunList Class="Parameter" ID="L3" PartIDKeys="Run" Status="Available">
 <RunList NPage="6" Pages="0~5" Run="1">
 <LayoutElement>
 <FileSpec URL=" File:///File1.pdf"/>
 </LayoutElement>
 </RunList>
 <RunList Pages="0~-1" Run="2">
 <LayoutElement>
 <FileSpec URL="File:///File2.pdf"/>
 </LayoutElement>
 </RunList>
 </RunList>

Name Data Type Description
DocOrd ?
New in JDF 1.1

integer Reference to an index of an instance document in the content RunList.
This references an instance document with an index module. Layout/
@MaxDocOrd equals DocOrd in an automated layout scenario. The
index may either be known explicitly from a variable Runlist or implic-
itly from the index within an indexable content definition language, (e.g.,
PPML).

Ord ?
Modified in JDF 1.1

integer A non-negative, zero-based reference to an index in the content
RunList. The index is incremented for every page of the RunList with
IsPage = “true”. The Ord value of the first page of a RunList has
the value “0”.

OrdExpression ? string Function to calculate an Ord value dynamically, using a value of s for
signature number and n for total number of pages in the instance docu-
ment. Ord or DocOrd and OrdExpression are mutually exclusive in
one PlacedObject.

SetOrd ?
New in JDF 1.1

integer A non-negative, zero-based reference to an index of a document set in
the content RunList. This references an instance document with an
index module. Layout/@MaxSetOrd = SetOrd in an automated
layout scenario. The index may either be known explicitly from a vari-
able Runlist or implicitly from the index within an indexable content
definition language, (e.g., PPML).
Process Resources 485

Chapter 7 Resources
Simple Multi-File separated RunList
This example specifies two pages contained in Presep.pdf and following that, pages 1, 3, and 5 of each preseparated
file.
 <RunList Class="Parameter" ID="Link0003" PartIDKeys="Run Separation"
 Status="Available">
 <RunList NPage="2" Run="1" SkipPage="3">
 <LayoutElement>
 <FileSpec URL="File:///Presep.pdf"/>
 </LayoutElement>
 <RunList FirstPage="0" IsPage="false" Separation="Cyan"/>
 <RunList FirstPage="1" IsPage="false" Separation="Magenta"/>
 <RunList FirstPage="2" IsPage="false" Separation="Yellow"/>
 <RunList FirstPage="3" IsPage="false" Separation="Black"/>
 </RunList>
 <RunList IsPage="true" Pages="1 3 5" Run="2">
 <RunList IsPage="false" Separation="Cyan">
 <LayoutElement>
 <FileSpec URL="File:///Cyan2.pdf"/>
 </LayoutElement>
 </RunList>
 <RunList IsPage="false" Separation="Magenta">
 <LayoutElement>
 <FileSpec URL="File:///Magenta2.pdf"/>
 </LayoutElement>
 </RunList>
 <RunList IsPage="false" Separation="Yellow">
 <LayoutElement>
 <FileSpec URL="File:///Yellow2.pdf"/>
 </LayoutElement>
 </RunList>
 <RunList IsPage="false" Separation="Black">
 <LayoutElement>
 <FileSpec URL="File:///Black2.pdf"/>
 </LayoutElement>
 </RunList>
 </RunList>
 </RunList>

Table 7-6: Example 1 of Ord in PlacedObjects

Ord File Page Ord File Page
0 File1 0 1 File1 1
2 File1 2 3 File1 3
4 File1 4 5 File1 5
6 File2 0 7 File2 1
8 File2 2 (n) File2 (n-6)

Table 7-7: Example 2 of Ord in PlacedObjects

Ord File Page Separation Ord File Page Separation
0 PreSep 0 Cyan 0 Presep 1 Magenta
0 PreSep 2 Yellow 0 Presep 3 Black
1 PreSep 4 Cyan 1 Presep 5 Magenta
1 PreSep 6 Yellow 1 Presep 7 Black
486 Process Resources

JDF Specification Release 1.2
Using Expressions in the OrdExpression Attribute
Expressions can use the operators +, –, *, /,% and parentheses, operating on integers and two variables: s for signature
number (starting at 0) and n for number of pages to be imposed in one document. Signature number denotes the num-
ber of times that a complete set of placed objects has been filled with content from the run list. The operators have the
same meaning as in the C programming language. Expressions are evaluated with normal “C” operator precedence.
Multiplication must be expressed by explicitly including the * operator, (i.e., use “2*s”, not “2 s”). Remainders are
discarded.

OrdExpression Examples (Saddlestitched booklet for variable page length documents)
The following describes the OrdExpressions for a booklet with varying page lengths. The example page assignments
are for a book of 13-16 pages.

Front:
OrdExpression = “2*s” 0 2 4 6
OrdExpression = “4*((n+3)/4) –(s*2)-1” 15 13 11 9
Back:
OrdExpression = “2*s+1” 1 3 5 7
OrdExpression = “4*((n+3)/4) –(s*2)-2” 14 12 10 8

DocOrd Usage Examples (Two-sided business cards 4/sheet)
The following describes the Ord + DocOrd usage for a 4-up step + repeat business card
MaxDocOrd=4

Front:
Ord=0 DocOrd=0
Ord=0 DocOrd=1
Ord=0 DocOrd=2
Ord=0 DocOrd=3
Back:
Front:
Ord=1 DocOrd=0
Ord=1 DocOrd=1
Ord=1 DocOrd=2
Ord=1 DocOrd=3

Structure of MarkObject Elements
MarkObject elements describe containers for page marks on a surface. They are filled from the Marks RunList of
the Imposition process. An individual MarkObject represents the content data of the Marks. The content data in
individual MarkObjects may contain multiple logical marks: CIELABMeasuringField, ColorControlStrip,
CutMark, DensityMeasuringField, IdentificationField, RegisterMark, and ScavengerArea.

2 Cyan2 1 Cyan 2 Magenta2 1 Magenta
2 Yellow2 1 Yellow 2 Black2 1 Black
3 Cyan2 3 Cyan 3 Magenta2 3 Magenta
3 Yellow2 3 Yellow 3 Black2 3 Black
4 Cyan2 5 Cyan 4 Magenta2 5 Magenta
4 Yellow2 5 Yellow 4 Black2 5 Black

Name Data Type Description
LayoutElementPageNum =
“0”
New in JDF 1.1

integer Page number to use from the PDL file described by the
LayoutElement attribute.

Ord ?
Modified in JDF 1.1A

integer A non-negative reference to an index in the marks RunList. The
index is incremented for every page of the RunList with IsPage
= “true”. The first page of a RunList has the value 0.

Table 7-7: Example 2 of Ord in PlacedObjects

Ord File Page Separation Ord File Page Separation
Process Resources 487

Chapter 7 Resources
Structure of DynamicField Subelement

CIELABMeasuringField * refelement Specific information about this kind of mark object.
ColorControlStrip *
Modified in JDF 1.1

refelement Specific information about this kind of mark object.

CutMark *
Modified in JDF 1.1

refelement Specific information about this kind of mark object.

DensityMeasuringField *
Modified in JDF 1.1

refelement Specific information about this kind of mark object.

DeviceMark ?
New in JDF 1.1

refelement If neither Ord nor LayoutElement are specified, it is assumed
that the device can independently generate the mark.
DeviceMark defines a set of formatting parameters for the mark.

DynamicField * refelement Definition of text replacement for a MarkObject.
IdentificationField * refelement Specific information about this kind of mark object.
JobField *
New in JDF 1.1

refelement Specific information about this kind of mark object.

LayoutElement ? refelement PDL description of the mark. LayoutElement and Ord are
mutually exclusive within one MarkObject.

RegisterMark *
Modified in JDF 1.1

refelement Specific information about this kind of mark object.

ScavengerArea *
New in JDF 1.1

refelement Specific information about this kind of mark object

Name Data Type Description
Format string Format string in C printf format that defines the replacement.
InputField ?
Deprecated in JDF 1.1

string String that must be replaced by the DynamicInput element in the Contents
RunList referenced by Ord or OrdExpression.

Ord ? integer Reference to an index in the Contents RunList that contains
DynamicInput elements. Only one of Ord or OrdExpression may be
specified.

OrdExpression ? string Expression to calculate the reference to an index in the Contents RunList
that contains DynamicInput fields. For details, see the definition of
OrdExpression in the description of the PlacedObject element. Only
one of Ord or OrdExpression may be specified.

ReplaceField ? string String that must be replaced by the instantiated text expression as defined by
the Format and Template attributes in the file referenced by Ord,
OrdExpression. If ReplaceField is not specified, the Device that pro-
cesses the DynamicField must format the DynamicField.

Template string Template to define a sequence of variables consumed by Format. A list of
predefined values is found in the description of the resource. In addition, the
Name attribute of DynamicInput elements of a RunList define further
variables.

DeviceMark ?
New in JDF 1.1

refelement DeviceMark defines the formatting parameters for the mark. If not speci-
fied, the DeviceMark settings defined in LayoutPreparationParams
or in the Layout tree are assumed.

Name Data Type Description
488 Process Resources

JDF Specification Release 1.2
DynamicField Subelement Properties
DynamicField provides a description of dynamic text replacements for MarkObjects. This element should be
used for production purposes such as defining bar codes for variable data printing. DynamicField elements are not
intended as a placeholders for actual content such as addresses. Rather, they are marks with dynamic data such as
time stamps and database information. Dynamic objects are MarkObjects with optional additional
DynamicField elements that define text replacement.

Example usage of a DynamicField Element:
 <RunList Class="Parameter" ID="L3" PartIDKeys="Run" Status="Available">
 <DynamicInput Name="i1">Joe</DynamicInput>
 <DynamicInput Name="i2">John</DynamicInput>
 <LayoutElement ElementType="Graphic">
 <FileSpec URL="File:///Variable.pdf"/>
 </LayoutElement>
 </RunList>
 <Surface Class="Parameter" ID="Link0003" Side="Front" Status="Available">
 <!--The MarkObject in the Layout hierarchy: -->
 <MarkObject CTM="1 0 0 1 0 0">
 <LayoutElement ElementType="Graphic">
 <FileSpec URL="File:///MyReplace.pdf"/>
 </LayoutElement>
 <DynamicField Format="Replacement Text for %s and %s go in here at %s on %s"
Ord="0" ReplaceField="___xxx___" Template="i1,i2,Time,Date"/>
 </MarkObject>
 </Surface>
In the example above, the text “___xxx___” in the file MyReplace.pdf would be replaced by the sentence “Replace-
ment Text for Joe and John go in here at 14:00 on Mar-31-2000”.

MyReplace.pdf is placed at the position defined by the CTM of the MarkedObject and Variable.pdf is placed
at the position defined by the CTM of the PlacedObject.

7.2.159 ThreadSealingParams
New in JDF 1.1
This resource provides the parameters for the ThreadSealing process.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: ThreadSealing
Output of processes: —

Resource Structure
Name Data Type Description

BlindStitch ? boolean If “true”, a blind stitch after last stitch is required.
ThreadMaterial ? enumeration Thread material. Possible values are:

Cotton
Nylon
Polyester

ThreadPositions ?
Modified in JDF 1.2

DoubleList Array containing the Y-coordinate of the center positions of the thread.

ThreadLength ?
Modified in JDF 1.2

double Length of one thread.

ThreadStitchWidth ?
Modified in JDF 1.2

double Width of one stitch.

SealingTemperature ? integer Temperature needed for sealing thread and sheets together, in degrees centigrade.
Process Resources 489

Chapter 7 Resources
7.2.160 ThreadSewingParams
This resource provides the parameters for the ThreadSewing process. It may also specify a gluing application,
which would be used principally between the first and the second or the last and the last sheet but one. A gluing appli-
cation might also be necessary if different types of paper are used.

The process coordinate system is defined as follows: The Y-axis is aligned with the binding edge. It increases
from the registered edge to the edge opposite to the registered edge. The X-axis is aligned with the registered edge. It
increases from the binding edge to the edge opposite to the binding edge, (i.e., the product front edge).

Figure 7.24: Parameters and coordinate system used for thread sewing

Figure 7.25: Parameters and coordinate system used for side sewing
490 Process Resources

JDF Specification Release 1.2
Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: ThreadSewing
Output of processes: —

Resource Structure

7.2.161 Tile
Each Tile resource defines how content from a Surface resource will be imaged onto a piece of media that is
smaller than the designated surface. Tiling occurs in some production environments when pages are imaged on to an
intermediate medium, and the resulting image of the surface is larger than the media. In this case, instructions are
needed to determine how the intermediate media (tiles) will be assembled to achieve the desired output, (e.g., a single
plate for the surface). For example, a device might require that four pieces of film be assembled to create the image for
the plate.

Name Data Type Description
BlindStitch = “false” boolean If “true”, a blind stitch after last stitch is required.
CastingMaterial ? enumeration Casting material of the thread being used. Possible values are:

Cotton
Nylon
Polyester

CoreMaterial ? enumeration Core material of the thread being used. This attribute must be used to
define the thread material if there is no casting. Possible values are:
Cotton
Nylon
Polyester

GlueLineRefSheets ?
Modified in JDF 1.2

IntegerList This entry is only required if GlueLine is defined. It contains the indices
of the loose parts of the input component after which gluing should be
applied. The index starts with 0.

Offset ?
New in JDF 1.1

double Specifies the distance between the stitch and the binding edge. Used only
for side stitching.

NumberOfNeedles ?
Modified in JDF 1.2

integer Specifies the number of needles to be used.

NeedlePositions ? DoubleList Array containing the Y-coordinate of the needle positions. The number of
entries must match the number given in NumberOfNeedles.

Sealing ? boolean If “true”, thermo-sealing is required.
SewingPattern ? enumeration Sewing pattern. Possible values are:

Normal
Staggered
CombinedStaggered
Side – Side sewing.

ThreadThickness ? double Thread thickness.
ThreadBrand ? string Thread brand.
GlueLine * element Gluing parameters.
Process Resources 491

Chapter 7 Resources
In general, a Tile resource will be partitioned (see Section 3.8.2, Description of Partitionable Resources) by
TileID. Individual tiles are selected and matched by specifying the appropriate TileID attribute, which is described
in Table 3-28, “Contents of the Part element,” on page 79.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: TileID
Input of processes: Tiling
Output of processes: —

Resource Structure

7.2.162 Tool
New in JDF 1.1
A Tool resource defines a generic tool that is customized for needed for a given job, (e.g., an embossing stamp). The
manufacturing process for the tool is not described within JDF.

Resource Properties
Resource class: Handling
Resource referenced by: —
Example Partition: —
Input of processes: Embossing, ShapeCutting
Output of processes: —

Resource Structure

Name Data Type Description
ClipBox rectangle A rectangle that defines the bounding box of the Surface contents which will

be imaged on this Tile. The ClipBox is defined in the coordinate system of the
Surface.

CTM matrix A coordinate transformation matrix mapping the ClipBox for this Tile to the
rectangle 0 0 X Y, where X and Y are the extents of the media that the Tile will
be imaged onto.

Media ?
New in JDF 1.2

refelement Describes the media to be used.

MediaSource ?
Deprecated in JDF
1.2

refelement Describes the media to be used.
Replaced with Media in JDF 1.2

Name Data Type Description
ToolAmount ? integer Number of identical instances of the tool that the tool contains, (e.g., the number

of cut forms in a die cutting die).

ToolID string ID of the tool. This is a unique name within the workflow.
ToolType ? NMTOKEN Type of the tool. Possible values include:

EmbossingCalendar
EmbossingStamp
CutDie
492 Process Resources

JDF Specification Release 1.2
7.2.163 TransferCurve
TransferCurve elements specify the characteristic curve of transfer of densities between systems. For more details
on transfer curves and their usage, refer to the CIP3 PPF specification at: http://www.cip4.org/documents/
technical_info/cip3v3_0.pdf.

Resource Properties
Resource class: Parameter
Resource referenced by: Color, TransferCurvePool
Example Partition: RibbonName, SheetName, Side, WebName
Input of processes:
Output of processes: —

Resource Structure

7.2.164 TransferCurvePool
A transfer curve pool is a collection of TransferCurveSet elements that each contains information about a
TransferCurve. Multiple TransferCurvesSets may exist at one time. For example, one may exist for the laser
calibration of the imagesetter, one for the ContactCopying process and one for the printing process. Each
TransferCurveSet consists of one or more TransferCurve elements. A TransferCurve element should be
applied to the appropriate correlative Separation, or to all Separations when Separation = “All”. The
TransferCurveSets should be concatenated in the following order:

Film -> Plate -> Press -> Paper.
 and
Proof.

In addition to the TransferCurve element, the TransferCurveSet elements contain device dependent geomet-
rical information, (e.g., CTM definitions).

Resource Properties
Resource class: Parameter
Resource referenced by: TransferFunctionControl
Example Partition: —
Input of processes: ContoneCalibration, DigitalPrinting, ImageSetting,

InkZoneCalculation, PreviewGeneration, Stripping
Output of processes: LayoutPreparation

Resource Structure

Structure of TransferCurveSet Subelement
TransferCurveSet elements describe both the characteristic curve of transfer and the relation between the various
process coordinate systems.

Name Data Type Description
Curve TransferFunction The density mapping curve for the separation defined by Separation.
Separation ? string The name of the separation. If Separation = “All”, this curve should be

applied to all separations that are not explicitly defined.

Name Data Type Description
TransferCurveSet * element The set of transfer curves.
Process Resources 493

http://www.cip4.org/documents/technical_info/cip3v3_0.pdf
http://www.cip4.org/documents/technical_info/cip3v3_0.pdf

Chapter 7 Resources
TransferCurveSet

7.2.165 TransferFunctionControl
Resource Properties
Resource class: Parameter
Resource referenced by: SeparationControlParams
Example Partition: —
Input of processes: ContoneCalibration
Output of processes: —

Resource Structure

7.2.166 TrappingDetails
This resource identifies the root of the hierarchy of resources. This hierarchy controls the Trapping process,
whether used for PDL or in-RIP trapping.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: DocIndex, RunIndex, RunTags, SheetName, Side, SignatureName
Input of processes: RIPing, Trapping
Output of processes: —

Name Data Type Description
CTM ?
New in JDF 1.1

matrix Defines the transformation of the coordinate system in the device as defined
by Name.

Name
Modified in JDF 1.2

NMTOKEN The name of the TransferCurveSet. Possible values include:
Film – The transformation from the Layout system to the Film. In a CTP
or DigitalPrinting environment, this defaults to the identity matrix and the
identity TransferCurve.
Plate – The transformation from the Film system to the Plate. In a
DigitalPrinting environment, this defaults to the identity matrix and the
identity TransferCurve.
Paper – The transformation from the Press system to the Paper.
Press – The transformation from the Plate system to the Press.
Proof – The transformation from the Layout system to the Proof. New in
JDF 1.2

TransferCurve *
Modified in JDF 1.1

refelement List of TransferCurve entries.

Name Data Type Description
TransferFunctionSource enumeration Identifies the source of transfer curves which should be applied dur-

ing separation.
Document – Use the transfer curves provided in the document.
Device – Use transfer functions provided by the output device.
When Separation is being performed pre-RIP, this may mean that
no transfer curves will be applied.
Custom – Use the transfer curves provided in the
TransferCurvePool element of this element.

TransferCurvePool ? refelement Provides a set of transfer curves to be used by the process.
494 Process Resources

JDF Specification Release 1.2
Resource Structure

Structure of the TrappingOrder Subelement

7.2.167 TrappingParams
This resource provides a set of controls that are used to generate traps. The values of the parameters are chosen based
on the customer’s trapping strategy, and depend largely on the content of the pages to be trapped and the characteris-
tics of the output device (or press). The attributes of this resource that are optional in the sense that each implementa-
tion decides a default value for them.

Resource Properties
Resource class: Parameter
Resource referenced by: TrapRegion, TrappingDetails
Example Partition: DocIndex, RunIndex, RunTags, SheetName, Side, SignatureName
Input of processes: —
Output of processes: —

Name Data Type Description
DefaultTrapping =
“false”

boolean If “true”, pages that have no defined TrapRegions are trapped
using the set of TrappingParams. The BleedBox is used for
the TrapZone. If “false”, only pages that have TrapRegions
are trapped.

IgnoreFileParams =
“true”
Clarified in JDF 1.2

boolean If “true”, any detectable trapping controls (or traps) provided
within any source files used by this process are ignored. If
“false”, trapping controls embedded in the source files are hon-
ored. Note that if TrappingDetails (and the Trapping process)
is not present, then the trapping defined in PostScript may still be
applied.

Trapping ?
Deprecated in JDF 1.2

boolean If “true”, trapping is enabled. If “false”, trapping is disabled.
Use NoOp in JDF 1.2 and above.

TrappingOrder ? element Trapping processes will trap colorants as if they are laid down on
the media in the order specified in TrappingOrder. The colorant
order may affect which colors to spread, especially when opaque
inks are used.

TrappingType ?
Deprecated in JDF 1.2

integer Identifies the trapping method to be used by the trapping process.
The number identifies the minor (last three digits) and major (any
digits prior to the last three) version of the trapping type requested.

TrappingParams ? refelement A TrappingParams resource that is used to define the default
trapping parameters when DefaultTrapping = “true”.

ObjectResolution *
New in JDF 1.1

refelement Elements which define the resolutions to trap the contents at. More
than one element may be used to specify different resolutions for
different SourceObjects types.

TrapRegion * refelement A set of TrapRegion resources that identify the pages to be
trapped, the geometry of the areas to trap on each page, and the
trapping settings to use for each area.

Name Data Type Description
SeparationSpec *
Modified in JDF 1.2

refelement An array of colorant names.
Process Resources 495

Chapter 7 Resources
Resource Structure
Name Data Type Description

BlackColorLimit ? double A number between 0 and 1 that specifies the lowest color value
required for trapping a colorant according to the black trapping rule.
This entry uses the subtractive notion of color, where 0 is white, or
no colorant, and 1 is full colorant.

BlackDensityLimit ? double A positive number that specifies the lowest neutral density of a col-
orant for trapping according to the black trapping rule.

BlackWidth ? double A positive number that specifies the trap width for trapping accord-
ing to the black trapping rule. BlackWidth is specified in
TrapWidth units; a value of “1” means that the black trap width
is one TrapWidth wide. The resulting black trap width is subject
to the same device limits as TrapWidth.

Enabled ?
Deprecated in JDF 1.2

boolean If “true”, trapping is enabled for zones that are defined with this
parameter set.
Use NoOp in JDF 1.2 and above.

HalftoneName ? string A name that identifies a halftone object to be used when marking
traps. The name is the value of the ResourceName attribute of
some PDLResourceAlias resource. If absent, the halftone in
effect just before traps are marked will be used, which may cause
unexpected results.

ImageInternalTrapping ? boolean If “true”, the planes of color images are trapped against each
other. If “false”, the planes of color images are not trapped
against each other.

ImageResolution ? integer A positive integer indicating the minimum resolution, in dpi, for
downsampled images. Images can be downsampled by a power of 2
before traps are calculated. The downsampled image is used only
for calculating traps, while the original image is used when printing
the image.

ImageMaskTrapping ? boolean Controls trapping when the TrapZone contains a stencil mask.
A stencil mask is a monochrome image in which each sample is
represented by a single bit. The stencil mask is used to paint in the
current color: image samples with a value of “1” are marked, sam-
ples with a value of “0” are not marked.
When “false”, none of the objects covered by the clipped
bounding box of the stencil mask are trapped. No traps are gener-
ated between the stencil mask and objects that the stencil mask
overlays. No traps are generated between objects that overlay the
stencil mask and the stencil mask. For all other objects, normal
trapping rules are followed. Two objects on top of the stencil mask
that overlap each other may generate a trap, regardless of the value
of this parameter. When “true”, objects are trapped to the stencil
mask, and to each other.

ImageToImageTrapping ? boolean If “true”, traps are generated along a boundary between images.
If “false”, this kind of trapping is not implemented.

ImageToObjectTrapping ? boolean If “true”, images are trapped to other objects. If “false”, this
kind of trapping is not implemented.
496 Process Resources

JDF Specification Release 1.2
ImageTrapPlacement ? enumeration Controls the placement of traps for images. Possible values are:
Center – Trap is centered on the edge between the image and the
adjacent object.
Choke – Trap is placed in the image.
Normal – Trap is based on the colors of the areas.
Spread – Trap is placed in the adjacent object.

ImageTrapWidth ?
New in JDF 1.2

double Specifies in points the width of image-to-image, image-to-object
and/or image internal non-black traps in X direction (horizontal) of
the PDF or ByteMap defined in the input RunList when
ImageToImageTrapping, ImageToObjectTrapping and/
or ImageInternalTrapping are set to true. The parameter
applies only to non-black traps, if an image color on either side
qualifies as black, the effective black trap width is used to compute
the size of the trap, this is based on TrapWidth, BlackWidth,
and MinimumBlackWidth.
Values must be greater than or equal to zero. A value of 0.0 disables
non-black image trapping. Defaults to TrapWidth.

ImageTrapWidthY ?
New in JDF 1.2

double Specifies in points the width of image-to-image, image-to-object
and/or image internal non-black traps in Y direction (vertical) of the
PDF or ByteMap defined in the input RunList when
ImageToImageTrapping, ImageToObjectTrapping and/
or ImageInternalTrapping are set to true. The parameter
applies only to non-black traps, if an image color on either side
qualifies as black, the effective black trap width is used to compute
the size of the trap, this is based on TrapWidth, BlackWidth,
and MinimumBlackWidth.
Values must be greater than or equal to zero. A value of 0.0 disables
non-black image trapping. Defaults to ImageTrapWidth.

MinimumBlackWidth =
“0”

double Specifies the minimum width, in points, of a trap that uses black
ink. Allowable values are those greater than or equal to zero.

SlidingTrapLimit ? double A number between 0 and 1. Specifies when to slide traps towards a
center position. If the neutral density of the lighter area is greater
than the neutral density of the darker area multiplied by the
SlidingTrapLimit, then the trap slides. This applies to vignettes
and non-vignettes. No slide occurs at “1”.

StepLimit ?
Modified in JDF 1.2

double A non-negative number. Specifies the smallest step required in the
color value of a colorant to trigger trapping at a given boundary.
If the higher color value at the boundary exceeds the lower value by
an amount that is equal or greater than the larger of 0.05 or
StepLimit times the lower value (low + max (StepLimit * low,
0.05)), then the edge is a candidate for trapping. The value 0.05 is
set to avoid trapping light areas in vignettes. This entry is used
when not specified explicitly by a ColorantZoneDetails subele-
ment for a colorant.
The restriction that StepLimit be less than or equal to one (<=1)
was removed in JDF 1.2.

Name Data Type Description
Process Resources 497

Chapter 7 Resources
Structure of ColorantZoneDetails Subelement

TrapColorScaling ? double A number between 0 and 1. Specifies a scaling of the amount of
color applied in traps towards the neutral density of the dark area. A
value of “1” means the trap has the combined color values of the
darker and the lighter area. A value of “0” means the trap colors
are reduced so that the trap has the neutral density of the darker
area. This entry is used when not specified explicitly by a
ColorantZoneDetails subelement for a colorant.

TrapEndStyle = “Miter” NMTOKEN Instructs the trap engine how to form the end of a trap that touches
another object. Possible values include:
Miter
Overlap
Other values may be added later as a result of customer requests.

TrapJoinStyle = “Miter” NMTOKEN Specifies the style of the connection between the ends of two traps
created by consecutive segments along a path. Possible values
include:
Bevel
Miter
Round

TrapWidth ?
Modified in JDF 1.2

double Specifies the trap width, in points in X direction (horizontal) of the
PDF or ByteMap defined in the input RunList. Also defines the
unit used in trap width specifications for certain types of objects
such as BlackWidth.

TrapWidthY ?
New in JDF 1.2

double Specifies the trap width, in points in Y direction (vertical). Also
defines the unit used in trap width specifications for certain types of
objects such as BlackWidth. If not specified, defaults to the value
of TrapWidth.

ColorantZoneDetails * element ColorantZoneDetails subelements. Entries in this dictionary
reflect the results of any named colorant aliasing specified. Each
entry defines parameters specific for one named colorant. If the
colorant named is neither listed in the ColorantParams array nor
implied by the ProcessColorModel for the ColorantControl
object in effect when these TrappingParams are applied, the
entry is not used for trapping.

Name Data Type Description
Colorant string The colorant name that occurs in the SeparationSpec/@Name of the

ColorantParams array of the ColorantControl object used by the process.
StepLimit ? double A number between 0 and 1. Specifies the smallest step required in the color

value of a colorant to trigger trapping at a given boundary. If the higher color
value at the boundary exceeds the lower value by an amount that is equal or
greater than the larger of 0.05 or StepLimit times the lower value (low +
max (StepLimit * low, 0.05)), then the edge is a candidate for trapping. The
value 0.05 is set to avoid trapping light areas in vignettes. If omitted, the
StepLimit attribute in the TrappingParams resource is used.

TrapColorScaling ? double A number between 0 and 1. Specifies a scaling of the amount of color applied
in traps towards the neutral density of the dark area. A value of “1” means
the trap has the combined color values of the darker and the lighter area. A
value of “0” means the trap colors are reduced so that the trap has the neutral
density of the darker area. If omitted, the TrapColorScaling attribute in
the TrappingParams resource is used.

Name Data Type Description
498 Process Resources

JDF Specification Release 1.2
7.2.168 TrapRegion
This resource identifies a set of pages to be trapped, an area of the pages to trap, and the parameters to use.

Resource Properties
Resource class: Parameter
Resource referenced by: TrappingDetails
Example Partition: —
Input of processes: —
Output of processes: —

Resource Structure

7.2.169 TrimmingParams
This resource provides the parameters for the Trimming process.

The process coordinate system is defined as follows: The Y-axis is aligned with the binding edge. It increases
from the registered edge to the edge opposite to the registered edge. The X-axis is aligned with the registered edge. It
increases from the binding edge to the edge opposite to the binding edge, (i.e. the product front edge).

Name Data Type Description
TrapZone ? PDFPath Each element within TrapZone is one subpath of a complex path. The

TrapZone is the area that results when the paths are filled using the
non-zero winding rule.
When absent, the MediaBox array for the RunList defines the
TrapZone.

Pages IntegerRangeList Identifies a set of pages from the RunList to trap using the specified
geometry and trapping style.

TrappingParams ? refelement The set of trapping parameters which will be used when trapping in this
region.

Figure 7.26: Parameters and coordinate system used for trimming
Process Resources 499

Chapter 7 Resources
Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: Trimming
Output of processes: —

Resource Structure

7.2.170 VerificationParams
This resource provides the parameters of a Verification process.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: Verification
Output of processes: —

Resource Structure

Usage of FieldRange and Format Strings.
A database field name can be calculated from the characters of the IdentificationField using standard C printf
notation and the FieldRange attribute. Each range that is defined in FieldRange is passed to printf as one string
that is applied to the format. The order is maintained. Note that SQL was chosen for illustrative purposes only. The
mechanism is defined for any database interface.

Name Data Type Description
Height ? double Height of the trimmed product.
TrimmingOffset ? double Amount to be cut at bottom side.
TrimmingType ?
New in JDF 1.1
Deprecated in JDF 1.2

enumeration Trimming operation to perform. Possible values are:
Detailed – Cut the amount specified by Height, Width and
TrimmingOffset.
SystemSpecified – Cut the amount specified by the system.

Width ? double Width of the trimmed product.

Name Data Type Description
FieldRange ? IntegerRangeList Zero-based range list of integers that determines which characters of the data

in IdentificationField should be applied to the field formatting strings.
If not specified all characters are applied.

InsertError ? string Database insertion statement in C printf format defining how information read
from the resource of the Verification process should be stored in case of ver-
ification errors. The database is defined by the DBSelection resource of the
Verification process. This field must be specified if a database is selected.

InsertOK ? string Database insertion statement in C printf format defining how information
extracted from the IdentificationField should be stored in case of verifi-
cation success. The database is defined by the DBSelection resource of the
verification node. This field must be specified if a database is selected.

Tolerance ? double Ratio of tolerated verification failures to the total number of tests.
“0.0” = no failures allowed, “1.0” = all may fail.
500 Process Resources

JDF Specification Release 1.2
Example
IdentificationField string: 1234:John Doe
FieldRange: 5~-1 0~3
InsertOK: Insert “true” into Va where Name = “%s” and ID = %s
Resulting string: Insert “true” into Va where Name = “John Doe” and ID = 1234

7.2.171 WireCombBindingParams
This resource describes the details of the WireCombBinding process.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: WireCombBinding
Output of processes: —

Resource Structure
Name Data Type Description

Brand ? string The name of the comb manufacturer (e.g., Wire-O®) and the name of the spe-
cific item.

Color ? Named-
Color

Determines the color of the comb.

Diameter ? double The comb diameter is determined by the height of the block of sheets to be
bound.

Distance ?
Deprecated in JDF
1.2

double The distance between the “teeth” and the distance between the holes of the
prepunched sheets must be the same.
In JDF 1.2 and beyond, use the value implied by HoleMakingParams/
@HoleType.

FlipBackCover =
“false”
New in JDF 1.1

boolean The spine is typically hidden between the last page of the Component and the
back cover. Flip the back cover after the wire was "closed" or keep it open. The
latter makes sense, if further processing is required (e.g., inserting a CD) before
closing the book.

Material ? enumeration The material used for forming the wire comb binding. Possible values are:
LaqueredSteel
TinnedSteel
ZincsSteel

Shape =
“Single”

enumeration The shape of the wire comb binding. Possible values are:
Single – Each “tooth” is made with one wire.
Twin – The shape of each “tooth” is made with a double wire.

Thickness ? double The thickness of the comb material.
HoleMakingPa
rams ?
New in JDF 1.2

refelement Details of the holes in WireCombBinding.
Process Resources 501

Chapter 7 Resources
7.2.172 WrappingParams
New in JDF 1.1
WrappingParams defines the details of Wrapping. Details of the material used for Wrapping can be found
in the Media resource that is also an input of the Wrapping process.
Resource Properties
Resource class: Parameter
Resource referenced by:
Example Partition: —
Input of processes: Wrapping
Output of processes: —

Resource Structure

7.3 Device Capability Definitions
New in JDF 1.1
Modified in JDF 1.2
The elements in this section are used to specify capabili-
ties of JDF devices and provide infrastructure for defin-
ing preflight rules, including conducting a “JDF test run”
and establishing a handshake between JDF-enabled
products. When describing capabilities, note that only
attributes and elements that are explicitly described
within the capabilities structure are supported by the
device. For more details on using capabilities, See
“FileSpec” on page 359. For more details on preflight,
See “Preflight” on page 204.

Capabilities descriptions that are saved in files must
be represented as a signal with a JMF response to the
KnownDevices query.

7.3.1 Structure of the DeviceCap Subelement
New in JDF 1.1
The DeviceCap element describes the JDF Nodes and Resources that a device is capable of processing. Elements
that are derived from the abstract State elements are used to describe ranges and lists of ranges of allowed parameters.

Name Data Type Description
WrappingKind enumeration LooseWrap – The wrap is loose around the component.

ShrinkWrap – The wrap is shrinked around the component.

Name Data Type Description
CombinedMethod =
“None”

enumeration Specifies how the processes specified in Types may be specified.
One of:
Combined – The list of processes in Types must be specified as
a Combined process.
ProcessGroup – The list of processes in Types must be speci-
fied as a ProcessGroup of individual processes.
CombinedProcessGroup – The list of processes in Types
may be specified either as a Combined process or as a
ProcessGroup of individual processes.
None – No support for Combined or ProcessGroup. Only
one individual process type defined in Types is supported.

Preflighting in Device
Capabilities

While the actions and tests described in this
section as pertaining to “preflighting” may be used by
processes and resources that pertain to preflighting in
the conventional sense, they can also be used to con-
duct “JDF test runs.” A JDF test run may or may not be
part of your normal preflighting workflow, but the idea of
a “JDF test run” is to compare the requirements of a JDF
document or instance against the capabilities and JDF
support of a device or an integrated JDF environment.
502 Device Capability Definitions

JDF Specification Release 1.2
ExecutionPolicy =
"AllFound"
New in JDF 1.2

enumeration Describes the policy for finding and executing JDF nodes as
described in "Determining Executable Nodes" on page 110.
RootNode – The device will execute the root JDF node only. It
will not search the JDF tree for executable nodes. This will com-
monly be used for sub JDF nodes that have been spawned and tar-
geted explicitly for the device.
FirstFound – The device will execute the first node found in
the JDF tree that is executable by this device. The search order is
defined by the order in the XML.
AllFound – The device will execute all executable nodes found
in multiple passes of the JDF tree that are executable by this
device. The results of executing a node are applied to the tree
between passes.

GenericAttributes ? NMTOKENS List of generic attributes that are supported and unrestricted by the
device implementation. Note that descriptions of attributes that
appear in State elements (see the following Section 7.3.1.2.2.1,
Structure of the Abstract State Subelement) overwrite the descrip-
tion in GenericAttributes.

Lang ?
New in JDF 1.2

languages Specifies the localization(s) provided with the capabilities. If not
specified, no localizations are provided.

OptionalCombinedTypes?
Deprecated in JDF 1.2

NMTOKENS List of optional JDF Node types. The entries of the list must be a
subset of Types.
For example, a RIP with optional in-RIP trapping would specify
OptionalCombinedTypes = “Trapping” if Types =
“Trapping Interpreting Rendering”. Replaced by
TypeExpression in JDF 1.2 and beyond

Type ?
Deprecated in JDF 1.2

NMTOKEN JDF Type attribute of the supported process. Extension types may
be specified by stating the NameSpace prefix in the value.
In JDF 1.2 and beyond, a single value of type is also defined in the
Types attribute.

TypeExpression ?
New in JDF 1.2

regExp Regular expression that defines the allowed values of the node's
Types attribute. If not specified, defaults to the literal string
defined in Types, (i.e. the ordered list of processes defined in
Types must match exactly).

TypeOrder ?
Deprecated in JDF 1.2

enumeration Ordering restriction for Combined or ProcessGroup nodes.
Fixed – The order of process types specified in the Types
attribute is ordered, and each type can be specified only once, (e.g.,
Cutting, Folding). Order does matter.
Unordered – The order of process types specified in the Types
attribute is unordered, and each type can be specified only once,
(e.g., DigitalPrinting, Screening, Trapping). Order does not
matter.
Unrestricted – The order of process types specified in the
Types attribute is unordered, and each type can be specified in
multiples, (e.g., Cutting, Folding). The device can do both pro-
cesses, in any order multiple times.
Replaced by TypeExpression in JDF 1.2 and beyond.

Types ?
Modified in JDF 1.2

NMTOKENS This attribute represents the list of supported JDF node Type val-
ues. If any of the node types are in a NameSpace other than JDF,
the NameSpace prefix should be included in this list. The order-
ing is significant.

Name Data Type Description
Device Capability Definitions 503

Chapter 7 Resources
7.3.1.1 Structure of the ActionPool Subelement
New in JDF 1.2
The ActionPool subelement is used to contain Boolean expressions that are used for two purposes:
• As capability constraints to describe unsupported combinations of State process and attribute values.
• As preflight constraints to describe unsupported combinations of BasicPreflightReport values. (See Structure

of the Abstract Evaluation Subelement in "Structure of the abstract Term Subelement" on page 524. Note that the
definition of the Term element also describes how Boolean operators are employed by Action elements via the
TestRef attribute.)

ActionPool, and the Action elements it may contain, is interdependent on TestPool and the Test and Term ele-
ments it may contain. For more information on TestPool, see "Structure of the TestPool Subelement" on page 524.

7.3.1.1.1 Structure of the Action Subelement
The Action subelement is used to contain Boolean expressions that are used to describe a constraint that describes an
unsupported combination of State process and attribute values. If the Test referenced by TestRef evaluates to
“true”, the combination of processes and attribute values described is not allowed, and the action indicated by
“Error”, “Warning”, or “Information” in the Severity attribute must be taken.

ActionPool ?
New in JDF 1.2

element Container for zero of more Action elements for use as constraints.

DevCaps * element List of definitions of the accepted resources. The DevCaps ele-
ments are combined with a logical AND, (i.e., a JDF must fulfill all
restrictions defined by the set of DevCaps). Only resources that
are specified within this list are honored by the device.

DisplayGroupPool ?
New in JDF 1.2

element List of DisplayGroup subelements, which define the user inter-
face presentation of sets of related DevCap attribute values. This
is metadata to provide assistance in user interface display layout.

FeaturePool ?
New in JDF 1.2

element List of definitions of the accepted parameter space for resources
and messages that are for user interface definition only — they do
not map to actual JDF resources or messages. Definitions in
FeaturePool typically reference macros that manipulate a set of
related resource values. These macros will set the appropriate JDF
attribute values.

MacroPool ?
New in JDF 1.2

element Container for zero or more macro elements, each of which contains
an expression that may cause State attribute values (e.g.,
CurrentValue or UserDisplay) to be changed.

Performance * element Specification of a devices performance capabilities.
TestPool ?
New in JDF 1.2

element Container for zero or more Test elements that are referenced from
Actions.

Name Data Type Description
Action * element A list of independent Actions.

Name Data Type Description
Severity = “Error” enumeration Indicates how the severity of the failure should be treated when the

expression defined by TestRef is violated. One of:
Error – The client should display an error message and not allow the
conflicting settings to persist.
Warning – The client should notify the user of the condition but allow
the settings to persist if the user requests.
Information – The client should allow the settings to persist but
inform the user of the issue.

Name Data Type Description
504 Device Capability Definitions

JDF Specification Release 1.2
7.3.1.2 Structure of the DevCaps Subelement
New in JDF 1.1
The DevCaps element describes the valid parameter space of a JDF Resource, message, or resource link that is con-
sumed, honored, or produced by a device. Note that DevCaps not only describes the structure of the individual
resources and resource links but also of the NodeInfo element within a JDF node. The DevCaps element may be
used to model product intent resources as well as process definition resources.

ID ID Unique identifier of the Action element. This ID is used to refer to the
Action element, (e.g., from a preflight report).

TestRef IDREF Reference to a Test element that is executed to evaluate this Action.
Loc * element Text to describe an error if the Test fails. (See “Structure of the Loc

Subelement” on page 507.)
PreflightAction ? element Provides additional constraints that are specific to the Preflight pro-

cess. See "PreflightParams" on page 434.

Name Data Type Description
Availability =
“Installed”
New in JDF 1.2

enumeration Specifies whether the feature described by this DevCaps element is
available on the device. Possible values are:
Installed – The feature is installed on the device and is available for
use.
NotInstalled – The feature has not been installed on the device.
NotLicensed – The feature has been installed on the device but may
not be used until licensed.
Disabled – The feature is installed and licensed on the device but has
been disabled.

Context =
“Resource"
New in JDF 1.2

enumeration Describes whether the DevCaps context is within a resource or a link to
a resource (not applicable to DevCaps elements within messages). One
of:
Resource – The DevCaps context is describing a resource or generic
element.
Link – The DevCaps context is describing a link to a resource.
JMF – The DevCaps context describes a JMF message.

DevNS = “http://
www.CIP4.org/
JDFSchema_1_1”

URI NameSpace of the resource or message that is described.

ID ?
New in JDF 1.2

ID ID of this DevCaps element. Used for reference from Performance
elements.

LinkUsage ?
New in JDF 1.2

enumeration Used when the Context of this DevCaps = “Resource” or
“Link”. This field qualifies whether the DevCaps describes a resource
used as an input to a process or as the output of a process. One of:
Input – The DevCaps describes an input resource.
Output – The DevCaps describes an output resource.
If not specified, this DevCaps applies to both usages.

Name Data Type Description
Device Capability Definitions 505

http://www.CIP4.org/JDFSchema_1_1
http://www.CIP4.org/JDFSchema_1_1

Chapter 7 Resources
Name
Modified in JDF 1.2

NMTOKEN Fully qualified name of the element that is described. If Name =
“NodeInfo”, it describes the structure of the NodeInfo information
that is accepted by the device. When describing elements of a
ResourceLink, Name must be the name of the referenced resource and
Context = “Link”.
In order to distinguish between multiple resources that have varying
ResourceUsage attributes or ProcessUsage attributes, the respective
DevCap elements must specify a name state with a Name =
“ResourceUsage” and an AllowedValueRange = <value of
ResourceUsage> or Name = <Value of ProcessUsage>, Context
= “Link” and AllowedValueRange = <value of ProcessUsage>.

Required =
“false”
New in JDF 1.2

boolean If “true”, the element described by this DevCaps element is required
to be present in a JDF or JMF (as appropriate) submitted to the device.
Note that this does not override the cardinality defined by the JDF specifi-
cation when the specification requires the resource to be specified. If the
JDF specification requires an attribute, Required must be “true”.

ResourceUpdate =
“None”

NMTOKENS Specifies the capability to handle partial updates defined in
ResourceUpdate elements. Possible values include:
None – ResourceUpdate is not supported. Must not be combined with
any other value.
JMFID – JMF Resource messages that reference ResourceUpdates
that have been previously loaded to the device are accepted.
PDLID – References from PDL data, (e.g., PPML TicketRef elements that
reference ResourceUpdates that have been previously loaded to the
device are accepted).

TypeOccurrenceN
um ?
New in JDF 1.2

IntegerRange-
List

Specifies which occurrence(s) of the name of this DevCaps element that
is specified either within the DeviceCap Types attribute or by the
TypeExpression attribute that this DevCaps element applies to. If not
specified, elements belonging to all JDF nodes with a matching type that
are not defined by other DevCaps entries.
Note: this is an index into the list of matching Type valus and not an
index into the complete list specified by Types or TypeExpression.
The first occurrence is “0”, and the last occurrence is “-1”, etc.

Types ?
Deprecated in JDF 1.2

NMTOKENS List of JDF Node types that a DevCaps applies to. The value of Types
must be a subset of Types in DeviceCap.
Replaced by TypeOccurrenceNum in JDF 1.2 and beyond.

DevCap +
Clarified in JDF 1.2

element List of definitions of the accepted parameter space for resources and mes-
sages. The parameter spaces of multiple DevCap elements are combined
as a superset of the individual DevCap elements. Only elements that are
explicitly specified as DevCap elements within a DevCaps are sup-
ported.
When a capabilities description is constructed using constraints, each
DevCaps should only contain a single DevCap element (although
DevCap elements may still contain multiple DevCap sub-elements).

Loc *
New in JDF 1.2

element The localization(s) of the resource, message, or resource link name as
described by this DevCaps element. (See “Structure of the Loc
Subelement” on page 507.)

Name Data Type Description
506 Device Capability Definitions

JDF Specification Release 1.2
7.3.1.2.1 Structure of the Loc Subelement
New in JDF 1.2
Each Loc element describes a localization for some value. Note that this subelement is used in many of the elements
subordinate to DeviceCap elements.

7.3.1.2.2 Structure of the DevCap Subelement
New in JDF 1.1
The DevCap element describes the valid parameter space of a JDF resource, message or element that is consumed
or produced by a Device. The structure of the DevCap is identical to that of the JDF resource, message, or element
that it models. Individual attributes are replaced by the appropriate State elements. For more details on State ele-
ments, see Section 7.3.1.2.2.1, Structure of the Abstract State Subelement. The Name attribute of the State element
must match the attribute key that is described. If no State element exists for a given attribute, it is assumed to be
unsupported. The restrictions of multiple attributes and elements are combined with a logical AND.

Subelements of resources are modeled by including nested DevCap with a ResourceUsage attribute equal to
the subelements tag name or ResourceUsage if the subelement is a FileSpec. Attributes of the resource link
belonging to the resource, (e.g., Transformation or the various pipe control parameters may also be restricted).

Name Data Type Description
HelpText ? string Localized text used for supplemental help for the value being localized. Note that

this is the text often used for a pop-up window when help is requested.
Lang ? language The language code for this localization. If not specified, then it defaults to the

value of the first language specified in the Lang attribute of the DeviceCap ele-
ment. Note that each language in a list of localizations (i.e., Loc *) must be
unique.

ShortValue ? string The short form of the localization. Defaults to the value of Value. This value
would be used when a small fixed field is required for the name of the field (a
PDA for example).

Value ? string The localization of the value being localized. If not specified, then the value being
localized is used as the Value, (e.g., the resource, resource link, element, mes-
sage, attribute name, or attribute value).

Name Data Type Description
Availability ?
New in JDF 1.2

enumeration Specifies whether the feature described by this DevCap element is available on
the device. Possible values are:
Installed – The feature is installed on the device and is available for use.
NotInstalled – The feature has not been installed on the device.
NotLicensed – The feature has been installed on the device but may not be
used until licensed.
Disabled – The feature is installed and licensed on the device but has been dis-
abled.
If not specified, the value specified in the parent DevCaps or DevCap element
is applied.

DevNS =
“http://
www.CIP4.o
rg/
JDFSchema_
1_1”

URI NameSpace of the element that is described by this DevCap.
Device Capability Definitions 507

http://www.CIP4.org/JDFSchema_1_1

Chapter 7 Resources
7.3.1.2.2.1 Structure of the Abstract State Subelement
New in JDF 1.1
The following table describes the common, data type-independent parameters of all State objects.

MaxOccurs =
“1”
Modified in
JDF 1.2

integer Maximum number of occurrences of the element described by this DevCap.
In JDF 1.1 the INF value was defined as “unbounded”.

MinOccurs =
“1”

integer Minimum number of occurrences of the element described by this DevCap.

Name NMTOKEN Fully qualified name of the resource that is described. ResourceUsage
attribute or ProcessUsage of the respective resource within a JDF node.
Default = the value of Name of the parent DevCaps element.

DevCap * element Definition of the accepted parameter space for the messages or resources subele-
ments.

Loc *
New in JDF 1.2

element The localization(s) of the element name. (See “Structure of the Loc Subelement”
on page 507.)

State * element Abstract State elements that define the parameter space that is covered by device.
One State element must be defined for each supported attribute or Intent Span
element of the resource that is not specified DeviceCaps/
@GenericAttributes. If a resource attribute has no matching State element
in DevCap, it is not supported.

Name Data Type Description
Availability ?
New in JDF 1.2

enumeration Specifies whether the feature described by this State element is available
on the device. Possible values are:
Installed – The feature is installed on the device and is available for use.
NotInstalled – The feature has not been installed on the device.
NotLicensed – The feature has been installed on the device but may not
be used until licensed.
Disabled – The feature is installed and licensed on the devic, but has been
disabled.
If not specified, the value specified or implied by the parent element is
applied.

ActionRefs ?
New in JDF 1.2

IDREFS Zero or more references to Actions that operate on the parameter. All
Actions referenced must evaluate to “false” for the value of the State
element to be valid. Any Actions referenced in ActionRefs should be
evaluated whenever the attribute described by this State element is manipu-
lated or changed in order to catch any attributes that become invalid due to
the manipulation.

DependentMacro
Ref ?
New in JDF 1.2

IDREF A reference to a macro that conditionally modifies the UserDisplay
attribute of this State element. If present, this referenced macro should be
executed when the State/@UserDisplay“Dependent” and the user
interface is being initialized. It is recommended that the macro referenced
by DependentMacroRef only change the value of UserDisplay or
Editable attributes. For more information on macro definitions, see
"Structure of the MacroPool Subelement" on page 522.

Name Data Type Description
508 Device Capability Definitions

JDF Specification Release 1.2
DevNS = “http:/
/www.CIP4.org/
JDFSchema_1_1”

URI NameSpace of the attribute that is described by this State element.

Editable = “true”
New in JDF 1.2

boolean When “true”, the feature and its current value may be edited by the user. If
“false”, the user interface must not allow user modification of the
State’s current value.

HasDefault =
“true”

boolean A flag that describes whether the parameter has a default supplied by the
device. If set, DefaultValue must be set.

ID ?
New in JDF 1.2

ID An identification value to allow external reference.

ListType =
“SingleValue”
New in JDF 1.2

enumeration Specifies what type of list or object the State variable describes. One of:
CompleteList – The State describes a list of individual values. Each
value must occur exactly once.
CompleteOrderedList – The State describes an ordered list of indi-
vidual values. Each value must occur only once and in the specified order.
ContainedList – The State describes a list of individual values. The
State = “true” if at least one of the values occurs. This value is only
expected to be used in BasicPreflightTest elements.
List – The State describes a list of individual values.
OrderedList – The State describes an ordered list of individual values.
OrderedRangeList – The State describes an ordered RangeList of
individual values.
RangeList – The State describes a RangeList of values.
SingleValue – The State describes an individual value.
Span – The State describes a Span element in a product intent resource.
UniqueList – The State describes a list of individual values. Each value
may occur only once.
UniqueRangeList – The State describes a RangeList of values. Each
explicit or implied value may occur only once.
UniqueOrderedList – The State describes an ordered list of individ-
ual values. Each value may occur only once.
UniqueOrderedRangeList – The State describes an ordered Range-
List of individual values. Each explicit or implied value may occur only
once.

MacroRefs ?
New in JDF 1.2

IDREFS Zero or more references to macros that operate on the parameter. These
macros set other State attribute values as appropriate. Any macros refer-
enced in MacroRefs should be evaluated whenever the attribute described
by this State element is manipulated or changed to affect any necessary
changes to other attributes. Macros may change attributes such as the
CurrentValue attribute of a State or its UserDisplay attribute. For
more information on macro definitions, see "Structure of the MacroPool
Subelement" on page 522.

MaxOccurs = “1”
New in JDF 1.2

integer Maximum number of elements in the list described by this State, (e.g., the
maximum number of integers in an integer list). If MaxOccurs is not “1”,
the State element refers to a list or a range of list values, (e.g., a
NameState will allow a list of NMTOKENS).

Name Data Type Description
Device Capability Definitions 509

http://www.CIP4.org/JDFSchema_1_1
http://www.CIP4.org/JDFSchema_1_1

Chapter 7 Resources
The following types of State elements are defined:

MinOccurs = “1”
New in JDF 1.2

integer Minimum number of elements in the list described by this State. If
MinOccurs is not “1”, the State element refers to a list or a range of list
values, (e.g., a NameState will allow a list of NMTOKENS).

Name ? NMTOKEN Name of the attribute that is described by this State. If Name is omitted
this State describes the element’s text, (i.e., the text between the XML start
and end tag).

Required ?
New in JDF 1.2

boolean If “true”, then the element described by this DevCap element is required
to be present in a JDF or JMF (as appropriate) submitted to the device. Note
that this does not override the cardinality specified by the JDF specification
where the specification requires the element to be specified.

Span ?
New in JDF 1.1a
Deprecated in JDF
1.2

boolean A flag that describes whether the parameter is an intent span data type. For
example a State element describing an XYPairSpan would have DataType
= “XYPairState” and Span = “true”.
Replaced with ListType = “Span” in JDF 1.2 and beyond.

UserDisplay =
“Display”
New in JDF 1.2

enumeration Indicates whether the feature should be displayed in user interfaces. Possible
values are:
Display – The feature should be displayed.
Hide – The feature should not be displayed.
Dependent – The feature should be conditionally displayed depending on
the action specified by the macro referenced by DependentMacroRef.
Note that this action is only taken when the user interface is first initialized.

Loc *
New in JDF 1.2

element The localization(s) of the Name of the attribute that is described by this
State element. (See “Structure of the Loc Subelement” on page 507.)

Name Data Type Description
BooleanState element Describes a set of boolean values.
DateTimeState
New in JDF 1.2

element Describes a set of dateTime values.

DurationState
New in JDF 1.2

element Describes a set of duration values.

EnumerationState element Describes a set of enumeration values.
IntegerState element Describes a numerical range of integer values.
MatrixState element Describes a range of matrices. Generally used to define valid orienta-

tions of Components.
NameState element Describes a set of NMTOKEN values.
NumberState element Describes a numerical range of values.
PDFPathState
New in JDF 1.2

element Describes a set of PDFPaths.

RectangleState
New in JDF 1.2

element Describes a set of 4 value rectangle values.

ShapeState element Describes a set of 3 value shape values.
StringState element Describes a set of string values.
XYPairState element Describes a set of XYPair values.

Name Data Type Description
510 Device Capability Definitions

JDF Specification Release 1.2
7.3.1.2.2.1.1 Structure of the BooleanState Subelement
New in JDF 1.1
This State subelement is used to describe ranges of Boolean values. It inherits from the abstract State elementdescribed above.

Structure of the ValueLoc Subelement
New in JDF 1.2
Each ValueLoc element describes one or more localizations for an attribute value. Note that the ValueLoc element
occurs in the definition of all State elements except MatrixState, PDFPathState and StringState.

7.3.1.2.2.1.2 Structure of the DateTimeState Subelement
New in JDF 1.2
This State subelement is used to describe ranges of dateTime values. It inherits from the abstract State element
described above.

Name Data Type Description
AllowedValueList ?
Added in JDF 1.1A

enumerations A list of all legal values. Allowed list values are the boolean “true” and
“false”.

CurrentValue ? boolean Current value for the current running job set in the device.
DefaultValue ? boolean Default value if not specified in a submitted JDF. Must be set if

HasDefault = “true”.
PresentValueList ?
Added in JDF 1.1A

enumerations A list of all supported values that can be chosen without operator interven-
tion. Allowed list values are the boolean “true” and “false”. If not
specified, the value of AllowedValueList is applied.

ValueLoc *
New in JDF 1.2

element Localization(s) of “true” and/or “false” values. (See Structure of the
ValueLoc Subelement under "Structure of the BooleanState Subelement" on
page 511.)

Name Data Type Description
Value string The attribute value to be localized. If the data type of the allowed value

is not string (e.g., if ValueLoc is used in the context of a
MatrixState), Value must be an instance of the appropriate data
type.

Loc * element The localization(s) of the attribute value. (See “Structure of the Loc
Subelement” on page 507.)

Name Data Type Description
AllowedValueDurationList ? DurationRangeList List of inclusive minimum and maximum allowed val-

ues relative to the current system time.
AllowedValueList ? DateTimeRangeList A list of all supported values.
CurrentValue ? dateTime Current value for the current running job set in the

device.
DefaultValue ? dateTime Default value if not specified in a submitted JDF. Must

be set if HasDefault = “true”.
PresentValueDurationList ? DurationRangeList List of inclusive minimum and maximum allowed val-

ues that can be chosen without operator intervention rel-
ative to the current system time. If not specified, the
value of AllowedValueDurationList is applied.

PresentValueList ? DateTimeRangeList Inclusive minimum and maximum allowed value that
can be chosen without operator intervention. If not
specified, the value of AllowedValueList is applied.

ValueLoc * element Localization(s) of specific dates. (See Structure of the
ValueLoc Subelement under "Structure of the
BooleanState Subelement" on page 511.)
Device Capability Definitions 511

Chapter 7 Resources
7.3.1.2.2.1.3 Structure of the DurationState Subelement
New in JDF 1.2
This State subelement is used to describe ranges of duration values. It inherits from the abstract State element
described above.

7.3.1.2.2.1.4 Structure of the EnumerationState Subelement
New in JDF 1.1
This State subelement is used to describe ranges of enumerative values. It inherits from the abstract State element
described above. It is identical to the NameState element except that it describes a closed list of enumeration val-
ues.

Name Data Type Description
AllowedValueList ? DurationRangeList A list of all supported values.
CurrentValue ? duration Current value for the current running job set in the

device.
DefaultValue ? duration Default value if not specified in a submitted JDF. Must

be set if HasDefault = “true”.
PresentValueList ? DurationRangeList Inclusive minimum and maximum allowed value that

can be chosen without operator intervention. If not
specified, the value of AllowedValueList is applied.

ValueLoc * element Localization(s) of specific durations. (See Structure of
the ValueLoc Subelement under "Structure of the
BooleanState Subelement" on page 511.)

Name Data Type Description
AllowedValueList ? enumerations A list of all supported values. Must match the enumera-

tion defined in the resource. If not specified, all enumer-
ations defined by the XML schema are valid. In order to
enable capabilities to be specified without access to the
JDF XML schema, it is strongly recommended to spec-
ify AllowedValueList, even when the entire range of
schema-valid values is supported.

CurrentValue ? enumeration Current value for the current running job set in the
device. Must match the enumeration defined in the
resource.

DefaultValue ? enumeration Default value if not specified in a submitted JDF. Must
match the enumeration defined in the resource. Must be
set if HasDefault = “true”.

PresentValueList ? enumerations A list of values that can be chosen without operator
intervention. Must match the enumeration defined in the
resource. If not specified, the value of
AllowedValueList is applied.

ValueLoc *
New in JDF 1.2

element Localizations of the enumerations listed in
AllowedValueList and PresentValueList. (See
Structure of the ValueLoc Subelement under "Structure
of the BooleanState Subelement" on page 511.)
512 Device Capability Definitions

JDF Specification Release 1.2
7.3.1.2.2.1.5 Structure of the IntegerState Subelement
New in JDF 1.1
This State subelement is used to describe ranges of integer values. It inherits from the abstract State element
described above.

Name Data Type Description

AllowedValueList ?
Modified in JDF 1.2

Integer-
RangeList

A list of all supported values.

AllowedValueMax ?
Deprecated in JDF 1.2

integer Inclusive maximum allowed value. Replaced by AllowedValueList in
JDF 1.2 and beyond.

AllowedValueMin ?
Deprecated in JDF 1.2

integer Inclusive minimum allowed value. Replaced by AllowedValueList in
JDF 1.2 and beyond.

AllowedValueMod ?
New in JDF 1.2

XYPair X defines the Modulo and Y the offset of the allowed value. In other
words, if AllowedValueMod = “10 2”, only the values … -
8,2,12,22 … are allowed. If not specified, all values in the range are
valid.
If ((N%X)–Y==0) then N is a valid value.
Note: “Modulo” is the remainder of an integer division. For example: 4
mod 3 = 4 -3 = 1; 17 mod 3 = 17-5*3 = 2; and 3 mod 3 = 3-3 = 0.

CurrentValue ? integer Current value for the current running job set in the device.
DefaultValue ? integer Default value if not specified in a submitted JDF. Must be set if

HasDefault = “true”.
PresentValueList ?
Modified in JDF 1.2

Integer-
RangeList

A list of values that can be chosen without operator intervention. If not
specified, the value of AllowedValueList is applied.

PresentValueMax ?
Deprecated in JDF 1.2

integer Inclusive maximum allowed value that can be chosen without operator
intervention. If not specified, the value of AllowedValueMax is
applied. Replaced by PresentValueList in JDF 1.2 and beyond.

PresentValueMin ?
Deprecated in JDF 1.2

integer Inclusive minimum allowed value that can be chosen without operator
intervention. If not specified, the value of AllowedValueMin is
applied. Replaced by PresentValueList in JDF 1.2 and beyond.

PresentValueMod ?
New in JDF 1.2

XYPair X defines the Modulo and Y the offset of the present value. In other
words, if AllowedValueMod = “10 2”, only the values … -
8,2,12,22 … are allowed. If not specified, the value of
AllowedValueMod is applied. If ((N%X)–Y==0) then N is a valid
value.
Device Capability Definitions 513

Chapter 7 Resources
7.3.1.2.2.1.6 Structure of the MatrixState Subelement
New in JDF 1.1
This State subelement is used to describe ranges of matrix values. It inherits from the abstract State element
described above. It is primarily intended to specify orientations and manipulation capabilities of physical resources,
(e.g., in finishing devices).

UnitType ?
New in JDF 1.2

NMTO-
KEN

Specifies the unit type that this State element represents. Used to enable
an application to localize the representation of the units. UnitType
should be specified if the IntegerState represents a value that has
units. User interfaces may not display correctly if UnitType is not
specified for attributes with units. Possible values include:
Angle – The attribute is defined in degrees.
AngularVelocity – Rotations / minute.
Area – Area in square meters (m2).
Currency – The local currency.
Length – In points (1/72 inch).
LengthMu – Length in microns (used for paper thickness).
LineScreen – The lines per inch (lpi) for conventionally screened
halftone, screened grayscale, and screened monotone bitmap images.
PaperWeight – In grams per square meter (g/m2).
Percentage – A percentage value.
Pressure – In Pascals.
Resolution – The dots per inch (dpi) for print output and bitmap
image (TIFF, BMP, etc.) file resolution.
ScreenResolution – The pixels per inch (ppi) for screen display
(e.g., softproof display and user interface display), scanner capture set-
tings, and digital camera settings.
SpotResolution – For imaging devices such as filmsetters, plate-
setters, and proofers, the fundamental imaging unit, (e.g., one “on” laser
or imaginghead imaged unit). Note that many imaging devices construct
dots from multiple imaging spots, so dpi and spots per inch (spi) are not
equivalent.
Temperature – Temperature in degrees Centigrade.
Velocity – Defined as meters/hour.
Weight – Weight in grams.

ValueLoc *
New in JDF 1.2

element Localization(s) of specific values. (See Structure of the ValueLoc Sub-
element under "Structure of the BooleanState Subelement" on
page 511.)

Name Data Type Description
AllowedRotateM
od ?
New in JDF 1.2

double Allowed Modulo of the allowed rotations and offset in degrees. Examples:
360 – No rotation
90 – Any orthogonal rotation.
0 – Any rotation is allowed.

AllowedShift ?
New in JDF 1.2

DoubleList Minimum and maximum allowed shift of the matrix. If not specified, any shift is
valid. If AllowedTransforms is specified, the implied shift defined in
Table 2-3 on page 24 is subtracted from AllowedShift, thus all in-place rota-
tions have an implied AllowedShift value of “0 0 0 0”. (No shift = “0 0
0 0”.) The first pair of numbers is the XY pair that defines the minimum shift,
and the second pair is the XY pair that defines the maximum shift.

Name Data Type Description
514 Device Capability Definitions

JDF Specification Release 1.2
Structure of the Value Element

7.3.1.2.2.1.7 Structure of the NameState Subelement
New in JDF 1.1
This State subelement is used to describe ranges of NMTOKEN values. It inherits from the abstract State element
described above.

AllowedTransfor
ms ?
New in JDF 1.2

Orienta-
tions

List of valid orthogonal trnsformations of the matrix. Any of the eight pre-
defined transforms for physical resources as defined in Table 2-3 on page 24.

CurrentValue ? matrix Current value for the current running job set in the device.
DefaultValue ? matrix Default value if not specified in a submitted JDF. Must be set if HasDefault =

“true”.
PresentRotateM
od ?
New in JDF 1.2

double Present Modulo of the allowed rotations and offset in degrees that can be chosen
without operator intervention. Examples:
360 – No rotation is allowed.
90 – Any orthogonal rotation.
0 – Any rotation is allowed.
If not specified, the value of AllowedRotateMod is applied.

PresentShift ?
New in JDF 1.2

DoubleList If PresentTransforms is specified, the implied shift defined in Table 2-3 on
page 24 is subtracted from PresentShift, thus all in-place rotations have an
implied PresentShift value of “0 0 0 0”. If not specified, the value of
AllowedShift is applied.

PresentTransfor
ms ?
New in JDF 1.2

Orienta-
tions

Any of the eight predefined transforms for physical resources as defined in
Table 2-3 on page 24. If not specified, the value of AllowedTransforms is
applied.

Value * element A list legal values.

Name Data Type Description
AllowedValue matrix A legal value for a matrix variable.
PresentValue ?
Deprecated in JDF
1.2

matrix A legal value for a matrix variable that can be chosen without operator inter-
vention. If not specified, the value of AllowedValue is applied. In JDF 1.2
and beyond, use ValueUsage.

ValueUsage ?
New in JDF 1.2

enumeration Defines whether the value defined in AllowedValue may be used as a
Present, Allowed, or both values. One of:
Present – Present configuration is supported.
Allowed – Allowed configuration is supported.
If not specified, Value is valid for both Present and Allowed.

Loc *
New in JDF 1.2

element The localization(s) of the string defined in AllowedValue. (See “Structure
of the Loc Subelement” on page 507.)

Name Data Type Description
AllowedRegExp ?
New in JDF 1.2

regExp Regular expression that limits the allowed values.

AllowedValueList ? NMTOKENS A list legal values.
CurrentValue ? NMTOKEN Current value for the current running job set in the device.

Name Data Type Description
Device Capability Definitions 515

Chapter 7 Resources
7.3.1.2.2.1.8 Structure of the NumberState Subelement
New in JDF 1.1
This State subelement is used to describe ranges of integer values. It inherits from the abstract State element
described above.

DefaultValue ? NMTOKEN Default value if not specified in a submitted JDF. Must be set if
HasDefault = “true”.

PresentRegExp ?
New in JDF 1.2

regExp Regular expression that limits the values that may be chosen without
operator intervention. If not specified, the value of AllowedRegExp is
applied.

PresentValueList ? NMTOKENS A list of values that can be chosen without operator intervention. If not
specified, the value of AllowedValueList is applied.

ValueLoc *
New in JDF 1.2

element Localization(s) of the NMTOKENS listed in AllowedValueList or
PresentValueList or implied by AllowedRegExp or
PresentRegExp. (See Structure of the ValueLoc Subelement under
"Structure of the BooleanState Subelement" on page 511.)

Name Data Type Description
AllowedValueList ?
Modified in JDF 1.2

Dou-
bleRange-
List

A list of supported values.

AllowedValueMax ?
Deprecated in JDF 1.2

double Inclusive maximum allowed value. Replaced by AllowedValueList in
JDF 1.2 and beyond.

AllowedValueMin ?
Deprecated in JDF 1.2

double Inclusive minimum allowed value. Replaced by AllowedValueList in
JDF 1.2 and beyond.

AllowedValueMod ?
New in JDF 1.2

XYPair X defines the Modulo and Y the offset of the allowed value. In other words,
if AllowedValueMod = “10 2”, only the values … -8,2,12,22 … are
allowed. If not specified, all values in the range are valid.
If ((N%X)–Y==0) then N is a valid value.
Note: “Modulo” is the remainder of an integer division. For example: 4
mod 3 = 4 -3 = 1; 17 mod 3 = 17-5*3 = 2; and 3 mod 3 = 3-3 = 0.

CurrentValue ? double Current value for the current running job set in the device.
DefaultValue ? double Default value if not specified in a submitted JDF. Must be set if

HasDefault = “true”.
PresentValueList ?
Modified in JDF 1.2

Dou-
bleRange-
List

A list of values that can be chosen without operator intervention. If not
specified, the value of AllowedValueList is applied.

PresentValueMax ?
Deprecated in JDF 1.2

double Inclusive maximum allowed value that can be chosen without operator
intervention. If not specified, the value of AllowedValueMax is applied.
Replaced by PresentValueList in JDF 1.2 and beyond.

PresentValueMin ?
Deprecated in JDF 1.2

double Inclusive minimum allowed value that can be chosen without operator inter-
vention. If not specified, the value of AllowedValueMin is applied.
Replaced by PresentValueList in JDF 1.2 and beyond.

PresentValueMod ?
New in JDF 1.2

XYPair X defines the Modulo and Y the offset of the allowed value. In other words,
if AllowedValueMod = “10 2”, only the values … -8,2,12,22 … are
allowed. If not specified, the value of AllowedValueMod is applied.
If ((N%X)–Y==0) then N is a valid value.

Name Data Type Description
516 Device Capability Definitions

JDF Specification Release 1.2
7.3.1.2.2.1.9 Structure of the PDFPathState Subelement
New in JDF 1.2
This State subelement is used to describe ranges of PDF paths. It inherits from the abstract State element
described above.

Structure of the Value Element

7.3.1.2.2.1.10 Structure of the RectangleState Subelement
New in JDF 1.2
This State subelement is used to describe ranges of rectangle values. It inherits from the abstract State element
described above.

UnitType ?
New in JDF 1.2

NMTO-
KEN

Specifies the unit type that this State element represents. Used to enable an
application to localize the representation of the units. UnitType must be
specified if the NumberState represents a value that has units. Possible
values are defined in "Structure of the IntegerState Subelement" on
page 513 in the UnitType attribute definition. Some additional possible
values that are typically used only with Number attributes are:
CMYKColor – Four values representing a CMYK color.
LabColor – Three values representing a Lab color.
sRGBColor – Three values representing a sRGB color.

ValueLoc *
New in JDF 1.2

element Localization(s) of specific values. (See Structure of the ValueLoc Subele-
ment under "Structure of the BooleanState Subelement" on page 511.)

Name Data Type Description
AllowedLength ? Integer-

Range
Inclusive minimum and maximum length of valid PDF path in multi-byte
characters. Note that this is the length in characters and not in bytes of the
internal encoding of an application.

CurrentValue ? PDFPath Current value for the current running job set in the device.
DefaultValue ? PDFPath Default value if not specified in a submitted JDF. Must be set if

HasDefault = “true”.
PresentLength ? Integer-

Range
Inclusive minimum and maximum length of valid PDF path in characters
that can be chosen without operator intervention. If not specified, the value
of AllowedLength is applied.

Value * element The localization(s) of the PDF path defined in AllowedValue.

Name Data Type Description
AllowedValue PDFPath A legal value for a matrix variable.
ValueUsage ? enumeration Defines whether the value defined in AllowedValue may be used as a

Present, Allowed, or any value. One of:
Present – Present configuration is supported.
Allowed – Allowed configuration is supported.
If not specified, Value is valid for both Present and Allowed.

Loc * element The localization(s) of the string defined in AllowedValue. (See “Structure
of the Loc Subelement” on page 507.)

Name Data Type Description
AllowedHWRelation ? XYRelation Allowed relative value of width (X) vs. Height (Y).
AllowedValueList ? RectangleRangeList A list of ranges of allowed values that can be chosen.

Name Data Type Description
Device Capability Definitions 517

Chapter 7 Resources
7.3.1.2.2.1.11 Structure of the ShapeState Subelement
New in JDF 1.1
This State subelement is used to describe ranges of Shape values. It inherits from the abstract State element
described above.

CurrentValue ? rectangle Current value for the current running job set in the device.
DefaultValue ? rectangle Default value if not specified in a submitted JDF. Must be set

if HasDefault = “true”.
PresentHWRelation ? XYRelation Allowed relative value of width (X) vs. Height (Y). If not

specified, the value of AllowedHWRelation is applied.
PresentValueList ? RectangleRangeList A list of ranges of values that can be chosen without operator

intervention. If not specified, the value of
AllowedValueList is applied.

ValueLoc * element A list of supported values. The ValueLoc/@Value attribute
must be a representation of a rectangle. This may also be used
to localize (or provide names for) specific rectangles. (See
Structure of the ValueLoc Subelement under "Structure of the
BooleanState Subelement" on page 511.)

Name Data Type Description
AllowedValueList ?
Modified in JDF 1.2

ShapeR-
angeList

A list of values that can be chosen.

AllowedValueMax ?
Deprecated in JDF 1.2

shape Inclusive maximum allowed value. Replaced by AllowedValueList in
JDF 1.2 and beyond.

AllowedValueMin ?
Deprecated in JDF 1.2

shape Inclusive minimum allowed value. Replaced by AllowedValueList in
JDF 1.2 and beyond.

AllowedX ?
New in JDF 1.2

Dou-
bleRange-
List

Allowed X-Axis of the Shape.

AllowedY ?
New in JDF 1.2

Dou-
bleRange-
List

Allowed Y-Axis of the Shape.

AllowedZ ?
New in JDF 1.2

Dou-
bleRange-
List

Allowed Z-Axis of the Shape.

CurrentValue ? shape Current value for the current running job set in the device.
DefaultValue ? shape Default value if not specified in a submitted JDF. Must be set if

HasDefault = “true”.
PresentValueList ?
Modified in JDF 1.2

ShapeR-
angeList

A list of values that can be chosen without operator intervention. If not
specified, the value of AllowedValueList is applied.

PresentValueMax ?
Deprecated in JDF 1.2

shape Inclusive maximum allowed value that can be chosen without operator
intervention. If not specified, the value of AllowedValueMax is
applied. Replaced by AllowedValueList in JDF 1.2 and beyond.

PresentValueMin ?
Deprecated in JDF 1.2

shape Inclusive minimum allowed value that can be chosen without operator
intervention. If not specified, the value of AllowedValueMin is
applied. Replaced by AllowedValueList in JDF 1.2 and beyond.

Name Data Type Description
518 Device Capability Definitions

JDF Specification Release 1.2
7.3.1.2.2.1.12 Structure of the StringState Subelement
New in JDF 1.1
This State subelement is used to describe ranges of string values. It inherits from the abstract State element
described above.

Structure of the Value element
New in JDF 1.1

PresentX ?
New in JDF 1.2

Dou-
bleRange-
List

Present X-Axis of the Shape that can be chosen without operator inter-
vention. If not specified, the value of AllowedX is applied.

PresentY ?
New in JDF 1.2

Dou-
bleRange-
List

Present Y-Axis of the Shape that can be chosen without operator inter-
vention. If not specified, the value of AllowedY is applied.

PresentZ ?
New in JDF 1.2

Dou-
bleRange-
List

Present Z-Axis of the Shape that can be chosen without operator inter-
vention. If not specified, the value of AllowedZ is applied.

ValueLoc *
New in JDF 1.2

element A list of supported shapes. (See Structure of the ValueLoc Subelement
under "Structure of the BooleanState Subelement" on page 511.)

Name Data Type Description
AllowedLength ?
New in JDF 1.2

Integer-
Range

Inclusive minimum and maximum length of valid string in multi-byte charac-
ters. Note that this is the length in characters, and not in bytes of the internal
encoding of an application. For instance, the length of the string “Grün” is 4
and not 6 (UTF-8 with a terminating 0 and a double byte “ü”).

AllowedRegExp ?
New in JDF 1.2

regExp Regular expression that limits the allowed values.

CurrentValue ? string Current value for the current running job set in the device.
DefaultValue ? string Default value if not specified in a submitted JDF. Must be set if HasDefault

= “true”.
PresentLength ?
New in JDF 1.2

Integer-
Range

Inclusive minimum and maximum length of valid string in characters that can
be chosen without operator intervention. If not specified, the value of
AllowedLength is applied.

PresentRegExp ?
New in JDF 1.2

regExp Regular expression that limits the present values that can be chosen without
operator intervention. If not specified, the value of AllowedRegExp is
applied.

Value + element A list legal values.

Name Data Type Description
AllowedValue string A legal value for a string variable.
PresentValue ?
Deprecated in JDF 1.2

string A legal value for a string variable that can be chosen without operator
intervention. If not specified, the value of AllowedValue is applied. In
JDF 1.2 and beyond, use ValueUsage.

ValueUsage ?
New in JDF 1.2

enumera-
tion

Defines whether the value defined in AllowedValue may be used as a
Present, Allowed, or any value. One of:
Present – Present configuration is supported.
Allowed – Allowed configuration is supported.
If not specified, Value is valid for both Present and Allowed.

Loc *
New in JDF 1.2

element The localization(s) of the string defined in AllowedValue. (See
“Structure of the Loc Subelement” on page 507.)

Name Data Type Description
Device Capability Definitions 519

Chapter 7 Resources
7.3.1.2.2.1.13 Structure of the XYPairState Subelement
New in JDF 1.1
This State subelement is used to describe ranges of XYPair values. It inherits from the abstract State element
described above.

7.3.1.3 Structure of the DisplayGroupPool Subelement
New in JDF 1.2
The DisplayGroupPool element declares set(s) of related features that are intended to be displayed as a group in
user interfaces. These declarations are references to individual features declared in State elements.
Example
 <DeviceCap>
 <DisplayGroupPool>
 <DisplayGroup rRefs="btd cmp mag colorspace outputres">
 <Loc HelpText="Parameters for scanning configuration" Lang="en"
 Value="ScanningParameters"/>
 </DisplayGroup>
 </DisplayGroupPool>
 </DeviceCap>

Name Data Type Description
AllowedValueList ?
Modified in JDF 1.2

XYPairRangeList A list of values that can be chosen.

AllowedValueMax ?
Deprecated in JDF 1.2

XYPair Inclusive maximum allowed value. Replaced with
AllowedValueList in JDF 1.2 and beyond.

AllowedValueMin ?
Deprecated in JDF 1.2

XYPair Inclusive minimum allowed value. Replaced with
AllowedValueList in JDF 1.2 and beyond.

AllowedXYRelation ?
New in JDF 1.2

XYRelation Relative value of X vs. Y.

CurrentValue ? XYPair Current value for the current running job set in the device.
DefaultValue ? XYPair Default value if not specified in a submitted JDF. Must be set if

HasDefault = “true”.
PresentValueList ?
Modified in JDF 1.2

XYPairRangeList A list of values that can be chosen without operator intervention. If
not specified, the value of AllowedValueList is applied.

PresentValueMax ?
Deprecated in JDF 1.2

XYPair Inclusive maximum allowed value that can be chosen without opera-
tor intervention. If not specified, the value of AllowedValueMax
is applied. Replaced with PresentValueList in JDF 1.2 and
beyond.

PresentValueMin ?
Deprecated in JDF 1.2

XYPair Inclusive minimum allowed value that can be chosen without opera-
tor intervention. If not specified, the value of AllowedValueMin
is applied. Replaced with PresentValueList in JDF 1.2 and
beyond.

PresentXYRelation ?
New in JDF 1.2

XYRelation Relative value of X vs. Y that can be chosen without operator inter-
vention. If not specified, the value of AllowedXYRelation is
applied.

UnitType ?
New in JDF 1.2

NMTOKEN Specifies the unit type that this State element represents. Used to
enable an application to localize the representation of the units.
UnitType must be specified if the IntegerState represents a
value that has units. Possible values are defined in "Structure of the
IntegerState Subelement" on page 513 in the UnitType attribute
definition.

ValueLoc *
New in JDF 1.2

element A list of supported shapes. (See Structure of the ValueLoc Subele-
ment under "Structure of the BooleanState Subelement" on
page 511.)
520 Device Capability Definitions

JDF Specification Release 1.2
In this example, a single DisplayGroup is specified. This DisplayGroup declares that the State attributes with
ID’s “btd”, “cmp”, “mag”, “colorspace”, and “outputres” should all be grouped together in any user
interface. The English string “ScanningParameters” is associated with this DisplayGroup, though no
explicit assumptions are made about how this group of attributes should be displayed. The DisplayGroup element
merely states that there is a user-significant relationship between the attributes.

7.3.1.3.1 Structure of the DisplayGroup Subelement
Each DisplayGroup element declares a group of features that are intended to be displayed together in user inter-
faces.

7.3.1.4 Structure of the FeaturePool Subelement
New in JDF 1.2
The FeaturePool element describes message or resource subelements that represent composite features for user
manipulation when describing capabilities. These features typically do not directly represent any JDF resources or
parameters., but rather trigger macros that manipulate related sets of parameters. For more information on macro def-
initions, See “Structure of the MacroPool Subelement” on page 522.

These features may be mapped to JDF/@NamedFeatures. Afeauture from JDF/@NamedFeatures is selected
by specifying an NMTOKEN pair that matches entries from FeaturePool/EnumerationSpan/@Name and
FeaturePool/EnumerationSpan/@AllowedValueList

Example:
 <DeviceCap>
 <FeaturePool>
 <EnumerationState AllowedValueList="Mono ColorTransparency Photo" ID="sm"
 MacroRefs="ScanModeMacro" Name="ScanMode" UserDisplay="Display"/>
 </FeaturePool>
 </DeviceCap>
In this example, ScanMode is a feature that doesn't map directly to any JDF resource or attribute, but provides a
“shell” feature that allows users to control a set of JDF resources and/or attributes to indicate a common or preferred
grouping based on the user’s desired task. The actual corresponding JDF resource attribute values are determined and
set by the ScanModeMacro macro that is called when the ScanMode feature is manipulated.

Name Data Type Description
DisplayGroup * element Declares a set of references to State elements that are intended to be

displayed as a group in user interfaces.

Name Data Type Description
rRefs IDREFS References to State elements. (See "Structure of the Abstract State

Subelement" on page 508 for details of the State element.)
Loc * element Localized strings describing the DisplayGroup.

Name Data Type Description
State * element Abstract State elements that define the accepted parameter space for

the messages or resources subelements. These abstract subelements are
identical in form to other State elements, but typically are only “macro”
features that control other features through macros. For more informa-
tion on macro definitions, see "Structure of the MacroPool
Subelement" on page 522. For details of the State element, see "Structure
of the Abstract State Subelement" on page 508.
Device Capability Definitions 521

Chapter 7 Resources
7.3.1.5 Structure of the MacroPool Subelement
New in JDF 1.2
The MacroPool element is used to contain descriptions of macro expressions. Each macro declares a set of condi-
tional operations that are used to change State element attribute values.

7.3.1.5.1 Structure of the macro Subelement
New in JDF 1.2
The macro subelement is used to contain a set of conditional operations that are used to change State element
attribute values. Each macro contains one or more of the following elements:

• choice — Declares one or more when statements, each of which contains a Boolean expression (as defined in
"Structure of the abstract Term Subelement" on page 524) and a set element. When the expression evaluates to
“true”, the action specified in the set element should be performed. If no evaluation in any when element in
a choice evaluates to “true”, the action(s) specified in the otherwise element should be performed.

• set — sets the condition of one or more State element attributes.

• call — calls another macro to be executed.
When executing a macro, consumers should execute choice, set, and call elements in the order in which they are
specified in the actual XML document. Note that this spec does not specify a required ordering, but the ordering pro-
vided in the actual capabilities description should be honored. The following shows the logical layout of the macro
subelement:

7.3.1.5.1.1 Structure of the choice Subelement
The choice subelement is used to contain expressions that declare conditional operations that can cause State ele-
ment attribute values to be changed. Choice includes one or more when statements that are evaluated in order, each
of which contains a Boolean expression (as defined in "Structure of the abstract Term Subelement" on page 524) and
a set element. When the expression evaluates to “true”, the action specified in the set element should be per-
formed and no further when statements are evaluated. If no evaluation in any when element in a choice evaluates
to “true”, the action(s) specified in the otherwise element should be performed.

Name Data Type Description
macro * element A list of independent macros.

Name Data Type Description
ID ID Unique identifier of a macro element. This ID is used to refer to the macro

element.
choice * element A set of conditional operations that set (or not) feature values. At least one of

choice, set, or call must be specified in macro.
set * element An element that sets one or more State attribute values. At least one of

choice, set, or call must be specified in macro.
call * element An element that calls another macro, allowing for macro reuse and chain-

ing. At least one of choice, set, or call must be specified in macro.

Name Data Type Description
when + element A set of conditional operations that set (or not) feature values.
otherwise ? element An element that sets one or more State element attribute values if none of the

when expressions evaluate to “true”.
522 Device Capability Definitions

JDF Specification Release 1.2
7.3.1.5.1.1.1 Structure of the otherwise Subelement
The otherwise subelement sets one or more feature values if none of the when expressions in a choice element
evaluate to “true”.

7.3.1.5.1.1.2 Structure of the when Subelement
The when subelement is used to contain expressions that declare conditional operations to enforce sets of feature
behaviors. When includes a Boolean expression (as defined in "Structure of the abstract Term Subelement" on
page 524) and a set element. When the Term evaluates to “true”, the action specified in the set element should be
performed.

7.3.1.5.1.2 Structure of the set Subelement
The set subelement sets one or more State element attribute values

7.3.1.5.1.2.1 Structure of the FeatureAttribute Subelement
FeatureAttribute specifies one or more attributes of a State element that should have their value changed. The
following attributes may be changed:

7.3.1.5.1.3 Structure of the call Subelement
The call subelement is used to call other macro elements, effectively using them as macro “templates.”

Name Data Type Description
set + element An element that sets one or more feature values.

Name Data Type Description
Term element A Boolean expression that evaluates a set of feature values.
set + element An element that sets one or more feature values.

Name Data Type Description
rRef IDREF Reference to a State element referring to the feature value to set
FeatureAttribute
?

element Specifies one or more attributes within the State element that should have
their value changed (along with the value they change to).

Name Data Type Description
CurrentValue ? string The value to change the CurrentValue attribute of the State element to.

Note that the mapping of the string to the actual data type of the State ele-
ment must be performed by the application processing the capabilities.

Editable ? boolean When “true”, the feature and its current value may be edited by the user. If
“false”, the user interface must not allow user modification of the current
value of the State element.

UserDisplay ? enumeration Indicates under which conditions and whether the feature should be displayed
in user interfaces. Possible values are the same as the UserDisplay attribute
of the State element.

Name Data Type Description
rRef IDREF Reference to a macro.
Device Capability Definitions 523

Chapter 7 Resources
7.3.1.6 Structure of the Performance Subelement
New in JDF 1.1
The Performance element describes speed as the capability to consume or produce a JDF Resource.

7.3.1.7 Structure of the TestPool Subelement
New in JDF 1.2
The TestPool subelement is used to contain Boolean expressions that are used to describe “templates” for use in
Action elements.

7.3.1.7.1 Structure of the Test Subelement
The Test subelement is used to contain Boolean expressions that are for use only when referenced by another Test
or Action and should not be evaluated independently. Its purpose is to simplify the description of other Tests and
macros by representing a commonly used Boolean expression.

7.3.1.7.1.1 Structure of the abstract Term Subelement
The abstract Term element serves as the basis for all constraint expressions and conditional macro expressions. It
describes a (potentially) nested Boolean expression that evaluates as a whole to either “true” or “false”. This

Name Data Type Description
AverageAmount ? double Average amount produced/consumed per hour assuming an average job.
AverageCleanup ? duration Average time needed to clean the device after a job.
AverageSetup ? duration Average time needed to setup the device before a job.
DevCapsRef ?
New in JDF 1.2

IDREF Reference to the DevCaps element that describes the resource whose per-
formance is specified by this Performance element.

MaxAmount ? double Maximum amount produced/consumed per hour, assuming an ideal job. The
default value of “0” translates to the value of AverageAmount.

MaxCleanup ? duration Maximum time needed to clean the device after a job, assuming a worst case
job. Defaults to AverageCleanup.

MaxSetup ? duration Maximum time needed to setup the device before a job, assuming a worst
case job.Defaults to AverageSetup.

MinAmount ? double Minimum amount produced/consumed per hour, assuming a worst case job.
Defaults to AverageAmount.

MinCleanup ? duration Minimum time needed to clean the device after a job, assuming an ideal job.
Defaults to AverageCleanup.

MinSetup ? duration Minimum time needed to setup the device before a job, assuming an ideal
job. Defaults to AverageSetup.

Name ?
Deprecated in JDF 1.2

NMTOKEN Name of the input resource type that is processed by the device, (e.g.,
Media, Ink, RunList).
Replaced with DevCapsRef in JDF 1.2 and beyond

Unit ? NMTOKEN Unit of measure of resource consumption per hour. Defaults to the resource’s
generic units as defined in Table 1-4, “Units used in JDF,” on page 12.

Name Data Type Description
Test * element A list of independent Tests.

Name Data Type Description
ID ID Unique identifier of a Test element. This ID is used to refer to the Test element.
Term element Any element derived from an abstract Term, (e.g., “not”, “and” or one of the explicit

Evaluation elements).
524 Device Capability Definitions

JDF Specification Release 1.2
expression is then used inside constraint or macro elements to determine proper action given the evaluation of the
Term. Terms are composed of Boolean combinations of three types of elements:

• Boolean expressions (i.e., nesting) comprising of “and”, “or”, “not” and “xor”. (See “Boolean Operators” on
page 526.)

• Evaluation elements, which evaluate a JDF State attribute value to create a simple true or false Boolean
expression, (e.g., “Is the value of BitDepth equal to 8?”). (See “Evaluation Subelements” on page 527.)

• TestRef — A reference to a constraint Test element. This referenced constraint is then used as a nested
Boolean expression. (See “Structure of the TestRef Subelement” on page 532.)

Table 7.2: Term Elements

Name Defined in Section Description
and See “Boolean Operators” on page 526. Boolean AND operator.
not See “Boolean Operators” on page 526. Boolean negation.
or See “Boolean Operators” on page 526. Boolean OR operator.
xor See “Boolean Operators” on page 526. Boolean exclusive or (XOR) operator.
BooleanEvaluation See “Evaluation Subelements” on

page 527.
Describes operations on a set of Boolean
values.

DateTimeEvaluation See “Evaluation Subelements” on
page 527.

Describes operations on a set of dateTime
values.

DurationEvaluation See “Evaluation Subelements” on
page 527.

Describes operations on a set of duration
values.

EnumerationEvaluation See “Evaluation Subelements” on
page 527.

Describes operations on a set of enumera-
tion values.

IntegerEvaluation See “Evaluation Subelements” on
page 527.

Describes operations on a numerical range
of integer values.

IsPresentEvaluation See “Evaluation Subelements” on
page 527.

Checks for the existence of a tag or feature.

MatrixEvaluation See “Evaluation Subelements” on
page 527.

Describes operations on a range of matri-
ces. Generally used to define valid orienta-
tions of Components.

NameEvaluation See “Evaluation Subelements” on
page 527.

Describes operations on a set of NMTO-
KEN values

NumberEvaluation See “Evaluation Subelements” on
page 527.

Describes operations on a numerical range
of values.

PDFPathEvaluation See “Evaluation Subelements” on
page 527.

Describes operations on PDFPath.

RectangleEvaluation See “Evaluation Subelements” on
page 527.

Describes operations on a set of four-value
rectangle values.

ShapeEvaluation See “Evaluation Subelements” on
page 527.

Describes operations on a set of three-value
shape values.

StringEvaluation See “Evaluation Subelements” on
page 527.

Describes operations on a set of string val-
ues.

XYPairEvaluation See “Evaluation Subelements” on
page 527.

Describes operations on a set of XYPair
values.

TestRef See “Structure of the TestRef
Subelement” on page 532.

Reference to a constraint Test to be evalu-
ated as a nested Boolean expression inside a
larger expression.
Device Capability Definitions 525

Chapter 7 Resources
Example:
 <DeviceCap>
 <TestPool>
 <Test ID="ctcmp">
 <!-- Can't CCITT compress anything but 1 bit grayscale -->
 <and>
 <not>
 <TestRef rRef="is1bit"/>
 </not>
 <EnumerationEvaluation ValueList="CCITTFaxEncode">
 <TestRef rRef="cmp"/>
 </EnumerationEvaluation>
 </and>
 <Loc HelpText="Only select CCITTFaxEncoding for 1 bit documents" Lang="en"
ShortValue="Ouch!" Value="CCITTFaxEncoding not supported on grayscale images"/>
 </Test>
 <Test ID="is1bit">
 <IntegerEvaluation ValueList="1">
 <TestRef rRef="btd"/>
 </IntegerEvaluation>
 </Test>
 </TestPool>
 </DeviceCap>
Note: Term is an abstract element, so it will never appear in a JDF document. In the “ctcmp” constraint example,
the Term is represented by the <and> element. Since the Term element itself is abstract, what will actually appear
in constraints will be Boolean expressions. In this example, the logic is, “We can not use CCITT compression if the
bit depth is not 1 bit.” The check for compression type uses an EnumerationEvaluation element, which evaluates
an EnumerationState value against “CCITTFaxEncode”. If the value of the EnumerationState element
referred to by “cmp” = CCITTFaxEncode, the EnumerationEvaluation evaluates as “true”. The check for
“btd” is accomplished through a TestRef to the “is1bit” constraint. The <and> and <not> elements behave
according to the standard semantics for Boolean combinatorial logic.

Note: In the actual JDF schema, several abstract element definitions are used to create an appropriate inheritance
structure. Rather than reproduce this here, only the actual non-abstract elements that will appear in JDF files will be
described.

7.3.1.7.1.2.1 Boolean Operators
The Boolean operators that are defined in this section are instances of Terms, and, thus, they may be nested. They
are used both in device capabilities and preflighting context.

Structure of the “and” Subelement
The and element evaluates two or more Term elements to determine if, as a set, they evaluate to “true” when
combined in a Boolean “and” function.

Structure of the “or” Subelement
The or element evaluates two or more Term elements to determine if, as a set, they evaluate to “true” when com-
bined in a Boolean “or” function.

Name Data Type Description
Term element Any element derived from an abstract Term.
Term + element Any element derived from an abstract Term.

Name Data Type Description
Term element Any element derived from an abstract Term.
Term + element Any element derived from an abstract Term.
526 Device Capability Definitions

JDF Specification Release 1.2
Structure of the “xor” Subelement
The xor element evaluates two or more Term elements to determine if, as a set, they evaluate to “true” when
combined in a Boolean “xor” function. For more than two arguments, exactly one Term must evaluate to “true”
for the xor to evaluate to “true”. Note that this is different from the mathematical behavior of “xor.”

Structure of the “not” Subelement
The not subelement inverts the Boolean state of a Term.

7.3.1.7.1.2.2 Evaluation Subelements
Evaluation elements map generalized tests against a condition to form a true or false Boolean state that can be eval-
uated using the Boolean logic defined below.

When used in a device capabilities context, the Evaluation elements map to the State elements (i.e.,
BooleanState, IntegerState, etc.) which each declare individual JDF attributes for a device capabilities descrip-
tion. Evaluation elements are instances of Term elements that compare the value of a given State attribute
against a condition to form a true or false Boolean statement. The form of the condition depends on the type of the
Evaluation–State element pairing — different types of pairings need different condition declarations, depending
on the structure of the logic and the data type of the Evaluation and State elements.

When used in a preflighting context, Evaluation elements map named preflight tests against a condition to
form a true or false Boolean statement.

Structure of the Abstract Evaluation Element

Name Data Type Description
Term element Any element derived from an abstract Term.
Term + element Any element derived from an abstract Term.

Name Data Type Description
Term element Any element derived from an abstract Term.

Name Corresponding State Element Description
BooleanEvaluation BooleanState Describes operations on a set of Boolean values.
DateTimeEvaluation DateTimeState Describes operations on a set of dateTime values.
DurationEvaluation DurationState Describes operations on a set of duration values.
EnumerationEvaluation EnumerationState Describes operations on a set of enumeration values.
IntegerEvaluation IntegerState Describes operations on a numerical range of

integer values.
IsPresentEvaluation all Checks for the existence of a tag or feature.
MatrixEvaluation MatrixState Describes operations on a range of matrices.

Generally used to define valid orientations of
Components.

NameEvaluation NameState Describes operations on a set of NMTOKEN values
NumberEvaluation NumberState Describes operations on a numerical range of values.
PDFPathEvaluation PDFPathState Describes operations on PDFPath.
RectangleEvaluation RectangleState Describes operations on a set of four-value rect-

angle values.
ShapeEvaluation ShapeState Describes operations on a set of three-value

shape values.
StringEvaluation StringState Describes operations on a set of string values.
XYPairEvaluation XYPairState Describes operations on a set of XYPair values.
Device Capability Definitions 527

Chapter 7 Resources
The following table describes the common, data type-independent parameters of all Evaluation elements.

Structure of the BooleanEvaluation Subelement
The BooleanEvaluation element declares a Boolean value for comparison in an expression to a BooleanState
element in constraints. It inherits from the abstract Evaluation element described above.

Structure of the DateTimeEvaluation Subelement
The DateTimeEvaluation element declares a Boolean value for comparison in an expression to a
DateTimeState element in constraints.

Structure of the DurationEvaluation Subelement
The DurationEvaluation element declares a Boolean value for comparison in an expression to a
DateTimeState element in constraints. It inherits from the abstract Evaluation element described above.

Structure of the EnumerationEvaluation Subelement
The EnumerationEvaluation element declares an enumeration value for comparison in an expression to an
EnumerationState element in constraints.

Name Data Type Description
rRef ? IDREF A reference to State elements when used in the context of device capability

descriptions. Only one of BasicPreflightTest or rRef must be specified.
BasicPreflightTest ? element Definition of the preflight basic test to which the Evaluation refers.

BasicPreflightTest is only valid when Evaluation elements are used
in the context of preflighting. Evaluations in capability descriptions
must reference the appropriate State element using rRef. For details of
the BasicPreflightTest, see "PreflightParams" on page 434.

Name Data Type Description
ValueList ? enumerations A list of all supported values. Allowed list values are the Boolean values

“true” and “false”.

Name Data Type Description
ValueDurationList ? Duration-

RangeList
List of inclusive minimum and maximum allowed values relative to the
current system time.

ValueList ? DateTime-
RangeList

A list of all supported values.

Name Data Type Description
ValueList ? Duration-

RangeList
A list of all supported values.

Name Data Type Description
ValueList ? enumerations A list of all potential supported values. If not specified all enumerations

defined by the XML schema are valid. In order to enable capabilities to be
specified without access to the JDF XML schema, it is strongly recom-
mended to specify ValueList, even when the entire range of schema-valid
values is supported.
528 Device Capability Definitions

JDF Specification Release 1.2
Structure of the IntegerEvaluation Subelement
The IntegerEvaluation element declares an Integer value for comparison in an expression to a IntegerState
element in constraints.

Structure of the IsPresentEvaluation Subelement
The IsPresentEvaluation element checks for the existence of a tag or feature. It inherits from the abstract
Evaluation element described above and has no additional parameters.

Structure of the MatrixEvaluation Subelement
The MatrixEvaluation element declares a matrix value for comparison in an expression to a MatrixState ele-
ment in constraints.

Structure of the Value element

Name Data Type Description
ValueList ? Integer-

RangeList
A list of all supported values.

ValueMod ? XYPair X defines the Modulo and Y the offset of the allowed value. In other
words, if AllowedValueMod = “10 2”, only the values … -8,2,12,22
… are allowed. If not specified all values in the range are valid.
If ((N%X)–Y==0) then N is a valid value.
Note: “Modulo” is the remainder of an integer division. For example: 4
mod 3 = 4 -3 = 1; 17 mod 3 = 17-5*3 = 2; and 3 mod 3 = 3-3 = 0.

Name Data Type Description
RotateMod ? double Allowed Modulo of the allowed rotations and offset in degrees. Examples:

360 – No rotation is allowed.
90 – Any orthogonal rotation.
0 – Interpreted to mean that any rotation is allowed.
Note: Although this seems counter-intuitive and contrary to the convention
set in JDF coordinate systems, the application of RotateMod in practice
will involve subtracting values by the value of the RotateMod. Hence,
any number is reduced by “0” and is unaffected by the subtraction.

Shift ? DoubleList If Transforms is specified, the implied shift defined in Table 2-3,
“Matrices and Orientation values used to describe the orientation of a
Component,” on page 24 is subtracted from Shift, thus all in-place rota-
tions have an implied Shift value of “0 0 0 0”.

Tolerance = “0 0” XYPair The tolerance between the real and actual values that are defined as equal.
Used to account for rounding errors and such. The first value is a positive
value representing the negative tolerance, and the second value represents
the positive tolerance. The tolerance applies to all of the matrix values.

Transforms ? Orientations Any of the eight predefined transforms for physical resources as defined in
Table 2-3, “Matrices and Orientation values used to describe the
orientation of a Component,” on page 24.

Value * element A list supported values. The Value/@Value attribute must be a represen-
tation of a matrix.

Name Data Type Description
Value matrix A supported value for a matrix variable.
Device Capability Definitions 529

Chapter 7 Resources
Structure of the NameEvaluation Subelement
The NameEvaluation element declares a NMTOKEN value for comparison in an expression to a NameState
element in constraints.

Structure of the NumberEvaluation Subelement
The NumberEvaluation element declares a number value for comparison in an expression to a NumberState
element in constraints.

Structure of the PDFPathEvaluation Subelement
The PDFPathEvaluation element declares a PDF path value for comparison in an expression to a PDFPathState
element in constraints.

Structure of the Value element

Structure of the RectangleEvaluation Subelement
The RectangleEvaluation element declares a Boolean value for comparison in an expression to a
RectangleState element in constraints.

Name Data Type Description
RegExp refExp Regular expression that limits the allowed values.
ValueList ? NMTOKENS A list of supported values.

Name Data Type Description
Tolerance = “0 0” XYPair The tolerance between the real and actual values that are defined as equal.

Used to account for rounding errors and such. The first value is a positive
value representing the negative tolerance, and the second represents the
positive tolerance.

ValueList ? Double-
RangeList

A list of supported values.

ValueMod ? XYPair X defines the Modulo and Y the offset of the allowed value. In other
words, if AllowedValueMod = “10 2”, only the values … -8,2,12,22
… are allowed. If not specified all values in the range are valid.
If ((N%X)–Y==0) then N is a valid value.
Note: “Modulo” is the remainder of an integer division. For example: 4
mod 3 = 4 -3 = 1; 17 mod 3 = 17-5*3 = 2; and 3 mod 3 = 3-3 = 0.

Name Data Type Description
Length ? IntegerRange Inclusive minimum and maximum length of valid PDF path in characters.
Value * element PDF path values for comparison in an expression to a PDFPathState element.

Name Data Type Description
Value PDFPath A supported value for a PDF path attribute.

Name Data Type Description
HWRelation ? XYRelation Allowed relative value of width (X) vs. height (Y).
Tolerance = “0 0” XYPair The tolerance between the real and actual values that are defined as equal.

Used to account for rounding errors and such. The first value is a positive
value representing the negative tolerance, and the second represents the
positive tolerance. The tolerance applies to both sides of the rectangle.

ValueList ? Rectan-
gleRangeList

A list of ranges of allowed values that can be chosen.
530 Device Capability Definitions

JDF Specification Release 1.2
Structure of the ShapeEvaluation Subelement
The ShapeEvaluation element declares a shape value for comparison in an expression to a FeatureState ele-
ment in constraints.

Structure of the StringEvaluation Subelement
The StringEvaluation element declares a string value for comparison in an expression to a StringState element
in constraints.

Structure of the Value element

Structure of the XYPairEvaluation Subelement
The XYPairEvaluation element declares a XYPair value for comparison in an expression to a XYPairState ele-
ment in constraints.

•

Name Data Type Description
Tolerance = “0 0” XYPair The tolerance between the real and actual values that are defined as equal.

Used to account for rounding errors and such. The first value is a positive
value representing the negative tolerance, and the second represents the
positive tolerance. The tolerance applies to all values tested.

ValueList ? ShapeRange-
List

A list of ranges of values that can be chosen.

X ? Dou-
bleRangeList

Allowed X-Axis of the Shape.

Y ? Dou-
bleRangeList

Allowed Y-Axis of the Shape.

Z ? Dou-
bleRangeList

Allowed Z-Axis of the Shape.

Name Data Type Description
Length ? IntegerRange Inclusive minimum and maximum length of valid string in characters.

Note that this is the length in characters, and not in bytes of the internal
encoding of an application. For instance, the length of the string “Grün” is
4 and not 6 (UTF-8 with a terminating 0 and a double byte “ü”).

RegExp ? regExp Regular expression that limits the allowed values.
Value * element A string value for comparison in an expression to a StringEvaluation

element.

Name Data Type Description
Value string A supported value for a string attribute.

Name Data Type Description
Tolerance = “0 0” XYPair The tolerance between the real and actual values that are defined as equal.

Used to account for rounding errors and such. The first value is a positive
value representing the negative tolerance, and the second represents the
positive tolerance. These tolerance values apply to both the X and Y values
of the evaluation being performed.

ValueList ? XYPair-
RangeList

A list of values that can be chosen.

XYRelation ? XYRelation Relative value of X vs. Y.
Device Capability Definitions 531

Chapter 7 Resources
Structure of the TestRef Subelement
The TestRef element refers to another constraint that should be evaluated as part of the parent constraint.

7.3.2 Examples of Device Capabilities
New in JDF 1.1
Modified in JDF 1.2
All of the examples in this section are based on a simple definition of a scanner. The JMF based hand shaking is also
illustrated. NodeInfo, ExposedMedia, and ScanParams are restricted.

Device Description of a Scanner
This first example shows the general structure and provides an example of user interface localization (the query
requests localization for the French language, and localizations are returned for the ScanParams resource).

Device Query:
<JMF xmlns="http://www.CIP4.org/JDFSchema_1_2" Version="1.2" TimeStamp="2004-04-
05T16:45:43+02:00" SenderID="Controller">
 <Query ID="DeviceQuery" Type="KnownDevices">
 <DeviceFilter DeviceDetails="Capability" Localization="fre"/>
 </Query>
</JMF>

Device Response:
<JMF xmlns="http://www.CIP4.org/JDFSchema_1_2" SenderID="Scanner" TimeStamp="2004-06-
05T16:45:43+02:00" Version="1.2">
 <Response ID="xyz" Type="KnownDevices" refID="DeviceQuery">
 <DeviceList>
 <DeviceInfo>
 <Device Class="Implementation" DeviceID="Joe the Drum" ID="IDXYZ"
 KnownLocalizations="En Fre" ModelName="Bongo" Status="Available">
 <DeviceCap GenericAttributes="ID Class SettingsPolicy
BestEffortExceptionsOperatorInterventionExceptions MustHonorExceptions PartIDKeys
DocIndex" Lang="Fre" Type="Scanning">
 <!-- the scanner takes a minute to set up and scans an average of 2 sheets
a min. -->
 <Performance AverageAmount="120" AverageSetup="P1T0H1M" Name="ExposedMedia"/>
 <DevCaps Name="NodeInfo">
 <DevCap>
 <!-- NodeInfo only supports JobPriority and TargetRoute attributes -->
 <StringState Name="TargetRoute"/>
 <IntegerState Name="JobPriority"/>
 </DevCap>
 </DevCaps>
 <DevCaps Name="ExposedMedia">
 <DevCap>
 <!-- ExposedMedia restrictions -->
 <DevCap Name="Media">
 <NameState DefaultValue="Sheet" Name="MediaUnit"/>
 <XYPairState AllowedValueMax="600 1200" AllowedValueMin="0 0"
 Name="Dimension"/>
 </DevCap>
 </DevCap>
 </DevCaps>
 <DevCaps Name="ScanParams">
 <Loc HelpText="Les parametres pour commander le procede de balayage."
Value="Les parametres de module de balayage"/>

Name Data Type Description
rRef IDREF Reference to a Test to be evaluated as a nested Boolean expression inside a larger

expression.
532 Device Capability Definitions

JDF Specification Release 1.2
 <DevCap>
 <!-- Black and white 1 bit mode -->
 <IntegerState AllowedValueMax="1" AllowedValueMin="1" DefaultValue="8"
 Name="BitDepth"/>
 <EnumerationState AllowedValueList="CCITTFaxEncode None"
 Name="CompressionFilter">
 <Loc HelpText="Choisissez la compression pour reduire la taille de
donnees." Value="La compression de donnees"/>
 <ValueLoc Value="CCITTFaxEncode">
 <Loc Value="Compression de CCITT Fax"/>
 </ValueLoc>
 <ValueLoc Value="None">
 <Loc Value="Aucun compression"/>
 </ValueLoc>
 </EnumerationState>
 <NumberState AllowedValueMax="10" AllowedValueMin="1.e-002"
 Name="Magnification">
 <Loc ShortValue="Rapport optique" Value="Rapport de rapport optique
d'image"/>
 </NumberState>
 <EnumerationState AllowedValueList="GrayScale" Name="OutputColorSpace">
 <Loc ShortValue="Format de couleur" Value="Configurez le format de
couleur de module de balayage"/>
 <ValueLoc Value="GrayScale">
 <Loc Value="echelle de gris"/>
 </ValueLoc>
 </EnumerationState>
 <XYPairState DefaultValue="2400 2400" Name="OutputResolution">
 <Loc ShortValue="resolution" Value="Resolution de module de balayage"/>
 </XYPairState>
 </DevCap>
 <DevCap>
 <!-- Grayscale 12 bit mode -->
 <IntegerState AllowedValueMax="12" AllowedValueMin="12" DefaultValue="8"
 Name="BitDepth">
 <Loc Value="Le profondeur de bit"/>
 </IntegerState>
 <EnumerationState AllowedValueList="FlateEncode DCTEncode None"
 Name="CompressionFilter">
 <Loc HelpText="Choisissez la compression pour reduire la taille de
donnees." Value="La compression de donnees"/>
 <ValueLoc Value="FlateEncode">
 <Loc Value="Compression de Flate"/>
 </ValueLoc>
 <ValueLoc Value="DCTEEncode">
 <Loc Value="Compression de DCTE"/>
 </ValueLoc>
 <ValueLoc Value="None">
 <Loc Value="Aucun compression"/>
 </ValueLoc>
 </EnumerationState>
 <NumberState AllowedValueMax="10" AllowedValueMin="0.001"
 Name="Magnification">
 <Loc ShortValue="Rapport optique" Value="Rapport de rapport optique
d'image"/>
 </NumberState>
 <EnumerationState AllowedValueList="GrayScale" Name="OutputColorSpace">
 <Loc ShortValue="Format de couleur" Value="Configurez le format de
couleur de module de balayage"/>
 <ValueLoc Value="GrayScale">
 <Loc Value="Echelle de gris"/>
 </ValueLoc>
 </EnumerationState>
 <XYPairState AllowedValueMax="2400 2400" AllowedValueMin="100 100"
Device Capability Definitions 533

Chapter 7 Resources
 DefaultValue="600 600" Name="OutputResolution">
 <Loc ShortValue="resolution" Value="Resolution de module de balayage"/>
 </XYPairState>
 </DevCap>
 <DevCap>
 <!-- Color 10 bit mode -->
 <IntegerState AllowedValueMax="10" AllowedValueMin="10" DefaultValue="8"
 Name="BitDepth">
 <Loc Value="Le profondeur de bit"/>
 </IntegerState>
 <EnumerationState AllowedValueList="FlateEncode DCTEncode None"
 Name="CompressionFilter">
 <Loc HelpText="Choisissez la compression pour reduire la taille de
donnees." Value="La compression de donnees"/>
 <ValueLoc Value="FlateEncode">
 <Loc Value="Compression de Flate"/>
 </ValueLoc>
 <ValueLoc Value="DCTEEncode">
 <Loc Value="Compression de DCTE"/>
 </ValueLoc>
 <ValueLoc Value="None">
 <Loc Value="Aucun compression"/>
 </ValueLoc>
 </EnumerationState>
 <NumberState AllowedValueMax="10" AllowedValueMin="1.e-002"
 Name="Magnification">
 <Loc ShortValue="Rapport optique"
 Value="Rapport de rapport optique d'image"/>
 </NumberState>
 <EnumerationState AllowedValueList="CMYK RGB LAB"
 Name="OutputColorSpace">
 <Loc ShortValue="Format de couleur" Value="Configurez le format de
couleur de module de balayage"/>
 <ValueLoc Value="CMYK">
 <Loc Value="Couleur de CMYK"/>
 </ValueLoc>
 <ValueLoc Value="RGB">
 <Loc Locvalue="Couleur de RGB"/>
 </ValueLoc>
 <ValueLoc Value="LAB">
 <Loc Value="Couleur de LAB"/>
 </ValueLoc>
 </EnumerationState>
 <XYPairState AllowedValueMax="2400 2400" AllowedValueMin="100 100"
 DefaultValue="600 600" Name="OutputResolution">
 <Loc ShortValue="resolution" Value="Resolution de module de balayage"/>
 </XYPairState>
 </DevCap>
 </DevCaps>
 </DeviceCap>
 </Device>
 </DeviceInfo>
 </DeviceList>
 </Response>

Device Description of a Scanner #2
This second example illustrates the use of constraints, macros, and DisplayGroups in a capability response. For the
sake of simplicity, the only localizations returned are for the constraints.
Device Query:
<JMF xmlns="http://www.CIP4.org/JDFSchema_1_1" SenderID="Controller"
 TimeStamp="2004-04-05T16:45:43+02:00" Version="1.2">
 <Query ID="DeviceQuery" Type="KnownDevices">
 <DeviceFilter DeviceDetails="Capability" Localization="en"/>
 </Query>
</JMF>
534 Device Capability Definitions

JDF Specification Release 1.2
Device Response:
<JMF xmlns="http://www.CIP4.org/JDFSchema_1_1" SenderID="Scanner" TimeStamp="2004-10-
17T09:30:47-05:00" Version="1.2">
 <Response ID="xyz" Type="KnownDevices" refID="DeviceQuery">
 <DeviceList>
 <DeviceInfo DeviceStatus="Idle">
 <Device Class="Implementation" DeviceID="Joe the Drum" ID="IDXYZ"
ModelName="Bongo" Status="Available">
 <DeviceCap GenericAttributes="ID Class SettingsPolicy BestEffortExceptions
OperatorInterventionExceptions MustHonorExceptions PartIDKeys DocIndex"
Type="Scanning">
 <!-- the scanner takes a minute to set up and scans
an average of 2 sheets a min. -->
 <Performance AverageAmount="120" Name="ExposedMedia"/>
 <FeaturePool>
 <EnumerationState AllowedValueList="Mono ColorTransparency Photo" ID="sm"
MacroRefs="ScanModeMacro" Name="ScanMode"/>
 </FeaturePool>
 <DisplayGroupPool>
 <DisplayGroup rRefs="btd cmp mag colorspace outputres">
 <Loc HelpText="Parameters for scanning configuration" Lang="en"
ShortValue="ScanningParameters"/>
 </DisplayGroup>
 </DisplayGroupPool>
 <ActionPool>
 <Action Severity="Error" TestRef="BD-bw" id="BD-bw-action">
 <Loc HelpText="For 1 bit grayscale, please select CCITTFaxEncoding"
Lang="en" ShortValue="Ouch!" Value="Flate and DCT Encoding not allowed on 1 bit
images"/>
 </Action>
 <Action Severity="Error" TestRef="ctcmp" id="ctcmp-action">
 <Loc HelpText="Ony select CCITTFaxEncoding for 1 bit documents" Lang="en"
ShortValue="Ouch!" Value="CCITTFaxEncodeing not supported on grayscale images"/>
 </Action>
 <Action Severity="Error" TestRef="cd" id="cd-action">
 <Loc HelpText="Choose a bit depth of 10 or less for color images"
Lang="en" ShortValue="Ouch!" Value="Bit depths higher than 10 are not supported for
color"/>
 </Action>
 </ActionPool>
 <TestPool>
 <Test ID="iscolor">
 <EnumerationEvaluation ValueList="RGB LAB CMYK" rRef="colorspace"/>
 </Test>
 <Test ID="is1bit">
 <IntegerEvaluation ValueList="1" rRef="btd"/>
 </Test>
 <Test ID="BD-bw">
 <!-- Can't flate or DCT compress 1
bit grayscale -->
 <and>
 <ConstraintRef rRef="is1bit"/>
 <EnumerationEvaluation ValueList="FlateEncode DCTEncode" rRef="cmp"/>
 </and>
 </Test>
 <Test ID="ctcmp">
 <!-- Can't CCITT compress anything
but 1 bit grayscale -->
 <and>
 <not>
 <ConstraintRef rRef="is1bit"/>
 </not>
 <EnumerationEvaluation ValueList="CCITTFaxEncode" rRef="cmp"/>
 </and>
Device Capability Definitions 535

Chapter 7 Resources
 </Test>
 <Test ID="cd">
 <!-- Can't have a color depth greater
than 10 bits -->
 <and>
 <ConstraintRef rRef="iscolor"/>
 <IntegerEvaluation ValueList="1 10" rRef="btd"/>
 </and>
 </Test>
 </TestPool>
 <MacroPool>
 <macro id="ScanModeMacro">
 <choice>
 <when>
 <EnumerationEvaluation ValueList="Mono" rRef="sm"/>
 <set rRef="btd">
 <FeatureAttribute CurrentValue="1"/>
 </set>
 <set rRef="colorspace">
 <FeatureAttribute CurrentValue="GrayScale"/>
 </set>
 <set rRef="outputres">
 <FeatureAttribute CurrentValue="1200 1200"/>
 </set>
 </when>
 <when>
 <EnumerationEvaluation ValueList="ColorTransparency" rRef="sm"/>
 <set rRef="btd">
 <FeatureAttribute CurrentValue="8"/>
 </set>
 <set rRef="colorspace">
 <FeatureAttribute CurrentValue="RGB"/>
 </set>
 <set rRef="outputres">
 <FeatureAttribute CurrentValue="600 600"/>
 </set>
 </when>
 <when>
 <EnumerationEvaluation ValueList="Photo" rRef="sm"/>
 <set rRef="btd">
 <FeatureAttribute CurrentValue="10"/>
 </set>
 <set rRef="colorspace">
 <FeatureAttribute CurrentValue="LAB"/>
 </set>
 <set rRef="outputres">
 <FeatureAttribute CurrentValue="200 200"/>
 </set>
 </when>
 </choice>
 </macro>
 </MacroPool>
 <DevCaps Name="NodeInfo">
 <DevCap>
 <!-- NodeInfo only supports the
JobPriority and TargetRoute attributes -->
 <StringState Name="TargetRoute"/>
 <IntegerState Name="JobPriority"/>
 </DevCap>
 </DevCaps>
 <DevCaps Name="ExposedMedia">
 <DevCap>
 <!-- ExposedMedia restrictions -->
 <DevCap Name="Media">
536 Device Capability Definitions

JDF Specification Release 1.2
 <NameState DefaultValue="Sheet" Name="MediaUnit"/>
 <XYPairState AllowedValueMax="600 1200" AllowedValueMin="0 0"
Name="Dimension"/>
 </DevCap>
 </DevCap>
 </DevCaps>
 <DevCaps Name="ScanParams">
 <DevCap>
 <!-- all modes -->
 <IntegerState ActionRefs="BD-bw ctcmp cd" AllowedValueList="1 4 8 10 12"
DefaultValue="1" ID="btd" Name="BitDepth" UserDisplay="Hide"/>
 <EnumerationState ActionRefs="BD-bw ctcmp"
AllowedValueList="CCITTFaxEncode FlateEncode DCTEncode None" ID="cmp"
Name="CompressionFilter" UserDisplay="Hide"/>
 <NumberState AllowedValueMax="100" AllowedValueMin="1.e-002" ID="mag"
Name="Magnification"/>
 <EnumerationState ActionRefs="cd" AllowedValueList="GrayScale CMYK RGB
LAB" ID="colorspace" Name="OutputColorSpace"/>
 <XYPairState AllowedValueList="100 100 300 300 600 600 1200 1200 2400
2400" DefaultValue="600 600" ID="outputres" Name="OutputResolution"/>
 </DevCap>
 </DevCaps>
 </DeviceCap>
 </Device>
 </DeviceInfo>
 </DeviceList>
 </Response>
</JMF>

JDF Node that is accepted by the scanner of the previous example
All parameters of the following Scanning node are compliant with the capabilities.
<JDF xmlns="http://www.CIP4.org/JDFSchema_1_1" ID="GoodScan" Status="Waiting"
Type="Scanning" Version="1.2">
 <ResourcePool>
 <ScanParams BitDepth="8" Class="Parameter" ID="Link0007" OutputColorSpace="RGB"
OutputResolution="600. 600." Status="Available"/>
 <ExposedMedia Class="Handling" ID="Link0008" Status="Available">
 <Media Dimension="425.196850394 566.929133858"/>
 </ExposedMedia>
 </ResourcePool>
 <ResourceLinkPool>
 <ScanParamsLink Usage="Input" rRef="Link0007"/>
 <ExposedMediaLink Usage="Input" rRef="Link0008"/>
 </ResourceLinkPool>
</JDF>

JDF node that is rejected by the scanner of the previous example
All parameters of the following Scanning node except Magnification are compliant with the device capabilities.
Therefore, the device can not execute the job.
<JDF xmlns="http://www.CIP4.org/JDFSchema_1_1" ID="BadScan" Status="Waiting"
Type="Scanning" Version="1.2">
 <ResourcePool>
 <ScanParams BitDepth="8" Class="Parameter" ID="Link0012" Magnification="1000.
1000." OutputColorSpace="RGB" OutputResolution="600. 600." Status="Available"/>
 <ExposedMedia Class="Handling" ID="Link0013" Status="Available">
 <Media Dimension="425.196850394 566.929133858"/>
 </ExposedMedia>
 </ResourcePool>
 <ResourceLinkPool>
 <ScanParamsLink Usage="Input" rRef="Link0012"/>
 <ExposedMediaLink Usage="Input" rRef="Link0013"/>
 </ResourceLinkPool>
</JDF>
Device Capability Definitions 537

Chapter 7 Resources
7.4 Concept of the Preflight Process
New in JDF 1.2
Note: This section establishes elements, attributes, and attribute values that are used by the resources referenced by
the Preflight process, including PreflightParams , PreflightReportRulePool , and
PreflightReport, as well as extensions of testing methodology established Action and Test functions defined
in "Structure of the DeviceCap Subelement" on page 502.

In order to define one Test, you can combine one or more basic tests using the Boolean logic as defined in
"Device Capability Definitions" on page 502. Each basic test is applied to one defined property with a given data
type. Note that document properties defined in this section include one or more attributes that are extracted from doc-
uments (e.g., a client’s PDF file) and used by one or more evaluations as part of a preflight test. Each data type can be
tested on an object using its matching Evaluation. A document that is preflighted is made of objects. Some of them,
like virtual boxes (“TrimBox” or “MediaBox”) are not visible. In order to combine basic tests together, they have
been classified by groups of properties. These groups do not necessarily match a class of an object. However, each
class of object will implement one ore more groups of properties.

The rules to combine basic tests into a Test can be built on both object classes and groups of properties. Each
basic test takes an object as an input and has four different states in output: “false” , “true” ,
“TestWrongPDL”, or “TestNotSupported”. The two last values occur when a basic test has no meaning for
the given object or when the application that is executing the test does not support that test. These four different states
lead to a more open way of dealing with Boolean logic:

For instance, TestWrongPDL would occur when a test about font size is made on a page. TestNotSupported
would happen when a JDF preflight agent does not support the concept of font size.

false AND TestWrongPDL = false

true OR TestWrongPDL = true

false AND TestNotSupported = false

true OR TestNotSupported = true

true AND TestWrongPDL = TestWrongPDL

false OR TestWrongPDL = TestWrongPDL

true AND TestNotSupported = TestNotSupported

false OR TestNotSupported = TestNotSupported

TestWrongPDL OR TestNotSupported = TestNotSupported

TestWrongPDL AND TestNotSupported = TestNotSupported

if (true) Report according to action.

if (false) Do not report.

if (TestWrongPDL) Report problem if specified in PRRule.

if (TestNotSupported) Report problem if specified in PRRule.
538 Concept of the Preflight Process

JDF Specification Release 1.2
7.4.1 Object Classes
The following is the list of the real objects that can be preflighted in a document:

In the following table, you can see the list of object classes with the properties set that they implement.

Table 7-8: Document Object Classes

Name Description
Annotation An annotation is a complex object that adds information to the page of a document. The char-

acteristic of such object is that it is optional to print it. When an annotation is set to be printed,
the graphical objects making the annotation are considered separated objects.

Document The document, which is preflighted.
Font A font is a set of characters that can be used to draw text. A font can be in a document without

being used by any text of the document.
Image An image is a graphic object drawn with colored pixels.
MaskUsingImage This object is an object that masks another object using an image.
MaskUsingVector This object is an object that masks another object using a vector path.
MaskUsingText This object is an object that masks another object using text components.
Mask A mask is an object used to mask or clip a graphic object.
Page A document can be made of finished pages (but could be empty as well).
PageBox In each finished page, some virtual boxes can be defined (page size and margins). Some tests

can be done with these boxes.
PDL A PDL object is a generic kind of object that can be specific to some types of documents. It is

just a way to detect presence or not of such objects.
Shading A shading is a graphic object drawn using a smooth color change from one point to another.
Text A text is a set of characters that have exactly the same style, (i.e., same size, same font, same

fill and stroke, etc.).
Vector A vector is a graphic object drawn with vector curves. It is made of a fill and a stroke.

Table 7-9: Properties Implemented by Class

Properties

Classes

D
oc

um
en

t

Pa
ge

Im
ag

e

Ve
ct

or

Te
xt

Sh
ad

in
g

Im
ag

eM
as

k

A
nn

ot
at

io
n

Pa
ge

B
ox

Fo
nt

M
as

kU
si

ng
Im

ag
e

M
as

kU
si

ng
Ve

ct
or

M
as

kU
si

ng
Te

xt

PD
L

Logical X X X X X X X X X X X X X X
Class X X X X X X X X X X X X X X
Document X X X X X X X X X X X X X X
Page X X X X X X X X X X X X X
Reference X X
Colorant X X X X X X
Box X X X X X X X X X X X X
Graphic X X X X X
Fill X X X
Stroke X X
Concept of the Preflight Process 539

Chapter 7 Resources
7.4.1.1 Checking for the Presence of a Property
In most of the preflight process, only the “values” of properties are needed. (Please note that a property may incorpo-
rate one or more attributes, and it is the values (string, enumeration, etc.) of these attributes that are collectively
referred to here as the “value” of the property.) In some cases, it is also useful to be able to check if a property has
been defined. This happens in some types of documents where the property definition is optional. Before checking its
value, you just want to check that this property was defined.

For all the basic tests described in this document where it makes sense to check if they are defined, they are
checked “Yes” in the Tag column of properties definition tables below. Use the IsPresentEvaluation to check for
the presence of a property.
This example checks if the TrappedKey is defined in a PDF document.
 <Test ID="PT01">
 <IsPresentEvaluation>
 <BasicPreflightTest Name="TrappedKey"/>
 </IsPresentEvaluation>
 </Test>

This example checks if the value of the TrappedKey = “Unknown” in a PDF document.
 <Test ID="PT02">
 <EnumerationEvaluation ValueList="Unknown">
 <BasicPreflightTest Name="TrappedKey"/>
 </EnumerationEvaluation>
 </Test>

Image X X X
Vector X X
Text X X
Shading X
Font X X
Annotation X
Page Box X
PDL Object X

Table 7-10: Mapping between property types (in the preflight spec) and Evaluations

Property Type Evaluation Expected usage for BasicPreflightTest ListType
presence IsPresentEvaluation -
boolean BooleanEvaluation SingleValue.
BooleanList BooleanEvaluation Any of ListType’s value that refers to a list.
DateTime DateTimeEvaluation SingleValue.
DateTimeList DateTimeEvaluation Any of ListType’s value that refers to a list.
enumeration NameEvaluation SingleValue.

Table 7-9: Properties Implemented by Class

Properties

Classes

D
oc

um
en

t

Pa
ge

Im
ag

e

Ve
ct

or

Te
xt

Sh
ad

in
g

Im
ag

eM
as

k

A
nn

ot
at

io
n

Pa
ge

B
ox

Fo
nt

M
as

kU
si

ng
Im

ag
e

M
as

kU
si

ng
Ve

ct
or

M
as

kU
si

ng
Te

xt

PD
L

540 Concept of the Preflight Process

JDF Specification Release 1.2
7.4.1.2 Basic tests on set of objects
Some properties can be applied to more than one object and have a value when applied to a list of objects which dif-
fers from their value when applied to a single object. For instance, this allows you to make tests on the number of sep-
arations of objects included in a given area. These properties have the column Set checked with “Yes.” In order to
define a Test using such properties, a list of objects is filtered first, before applying the test. This is achieved using
the PreflightArgument element.

7.4.2 Properties
In the following pages, a full list of properties (and attribute definitions) is defined, that can be found, extracted, and evalu-
ated from a document. The properties are grouped by classes (see Table 7-8, “Document Object Classes,” on page 539.)

enumerations NameEvaluation Any of ListType’s value that refers to a list.
integer IntegerEvaluation SingleValue.
integerList IntegerEvaluation Any of ListType’s value that refers to a list.
Name NameEvaluation SingleValue.
NameList NameEvaluation Any of ListType’s value that refers to a list.
Double NumberEvaluation SingleValue.
DoubleList NumberEvaluation Any of ListType’s value that refers to a list.
Rectangle RectangleEvaluation SingleValue.
RectangleList RectangleEvaluation Any of ListType’s value that refers to a list.
string StringEvaluation SingleValue.
stringList StringEvaluation Any of ListType’s value that refers to a list.
XYPair XYPairEvaluation SingleValue.
XYPairList XYPairEvaluation Any of ListType’s value that refers to a list.

Table 7-10: Mapping between property types (in the preflight spec) and Evaluations

Property Type Evaluation Expected usage for BasicPreflightTest ListType
Concept of the Preflight Process 541

Chapter 7 Resources
7.4.2.1 Annotation Properties
Annotation objects are specific objects that can be optionally displayed or printed according to the user’s choice.
When they are displayed or printed, they add graphical objects to the document that can be preflighted.

7.4.2.2 Box Properties
All visible objects can be described at least by a box in which they can be contained. In a page, some kind of boxes
can define some basic box properties that are extracted as attributes for use in a test. The allowed types of boxes are
listed in the following table. Note that Box is an attribute of the BoxArgument and the following box types are
possible values of the Box attribute.

Name Type Description Set Tag Documents
AnnotationPrintFlag boolean Is “true” when it will be printed on the

final document.
— — PDF

AnnotationType NMTOKEN The type of annotations. Values include:
Circle
FileAttachment
FreeText
Highlight
Ink
Link
Line
Movie
Popup
PrinterMark
Sound
Square
Squiggly
Stamp
StrikeOut
Text
TrapNet
Underline
Widget

— — PDF

TrapnetAnnotationP
DFX

NMTO-
KENS

The PDF/X versions to which the
TrapNet annotation complies, (e.g.,
“PDF/X-1a:2003”).

— — PDF

Table 7-11: Allowed Box Types

Box Type Description
ArtBox Defines the extent of the page’s meaningful content (including potential white space) as intended

by the page's creator.
BleedBox Defines the region to which the contents of the page should be clipped when output in a produc-

tion environment. This may include any extra “bleed area” needed to accommodate the physical
limitations of cutting, folding, and trimming equipment. The actual printed page may include
printing marks that fall outside the bleed box.

CropBox Defines the region to which the contents of the page are to be clipped (cropped) when displayed
or printed. Unlike the other boxes, the crop box has no defined meaning in terms of physical page
geometry or intended use — it merely imposes clipping on the page contents. However, in the
absence of additional information, the crop box will determine how the page’s contents are to be
positioned on the output medium.

MarginsBox Defines the trim box minus the margins.
542 Concept of the Preflight Process

JDF Specification Release 1.2
The following are other property attributes related to boxes:

Example:
The following is an example of Test using InsideBox and a BoxArgument subelement:
 <Test ID="PT01">
 <BooleanEvaluation ValueList="true">
 <BasicPreflightTest Name="InsideBox">
 <PreflightArgument>
 <BoxArgument Box="TrimBox" Overlap="true"/>
 </PreflightArgument>
 </BasicPreflightTest>
 </BooleanEvaluation>
 </Test>

MediaBox Defines the boundaries of the physical medium on which the page is to be printed. It may include
any extended area surrounding the finished page for bleed, printing marks, or other such pur-
poses. It may also include areas close to the edges of the medium that cannot be marked because
of physical limitations of the output device. Content falling outside this boundary can safely be
discarded without affecting the meaning of the file.

SlugBox Defines an area where document related information and objects that will not be on the final doc-
ument could be printed.

TrimBox Defines the intended dimensions of the finished page after trimming. It may be smaller than the
media box, to allow for production-related content such as printing instructions, cut marks, or
color bars. In another type of document than PDF, this box represents the page size.

Name Type Description Set Tag Documents
BoundingBox Rectangle The bounding box of the object is the

smallest rectangle containing the object.
When used with group of objects, this is
the smallest box containing boxes of all
objects.

Yes — —

DifferentBoxSize enumera-
tions

This is the list of boxes, which are differ-
ent on one page from the same boxes on
another page. Refer to Table 7-11 on
page 542 for a list of valid types of boxes.

Only — —

InsideBox boolean Is “true” when an object is inside a
given box. InsideBox must be qualified
by BoxArgument subelement.

— — —

OutsideBox boolean Is “true” when an object is outside a
given box. OutsideBox must be quali-
fied by BoxArgument subelement.

— — —

Table 7-11: Allowed Box Types

Box Type Description
Concept of the Preflight Process 543

Chapter 7 Resources
7.4.2.3 Class Properties
Each object can define the name of the class of objects it belongs to:

Name Type Description Set Tag Documents
ClassName NMTOKEN The name of the class to which the object

belongs. Values include:
Annotation
Document
Font
Image
ImageMask
MaskUsingImage
MaskUsingText
MaskUsingVector
Page
PageBox
PDL
Shading
Text
Vector

— — —

PropertyList enumera-
tions

The list of properties the object has. Values
are:
Annotation
Box
Class
Colorant
Document
Fill
Font
Graphic
Image
Logical
Page
PageBox
PDLObject
Reference
Shading
Stroke
Text
Vector

— — —
544 Concept of the Preflight Process

JDF Specification Release 1.2
7.4.2.4 Colorant Properties
Every visible object or group of objects will imply a given number of separations.

7.4.2.5 Document Properties
This is the list of properties (attributes) that define parts of a document.

Name Type Description Set Tag Documents
AliasSeparations boolean Is “true” when some of the separations

have different names but the same color
values.

Yes — —

AmbiguousSeparatio
ns

boolean Is “true” when some of the separations
have the same name but different color
values.

Yes — —

InkCoverage double This is the maximum percentage of ink
coverage for one object. In case of a group
of objects, this is the maximum amount of
ink coverage for the list of objects. The
method of calculation can be application-
dependant and may differ from one appli-
cation to another. Some applications may
check the coverage object by object with-
out taking into account overprint or trans-
parencies between objects; some others
may use a rasterization process to get the
coverage of the combined objects.

Yes — —

SeparationList string List of all separations necessary to print
one object or a group of objects.

Yes — —

Name Type Description Set Tag Documents
Author string A string describing the author of the docu-

ment.
— Yes —

Binding enumeration The binding of the document, whose value
can be either:
Left
Right

— Yes PDF

CreationDate dateTime The date when the document was created
according to the file system.

— — —

CreationDateInDocu
ment

dateTime The date when the document was created
according to data inside the document.

— Yes —

CreationID NMTOKEN An NMTOKEN which can uniquely iden-
tify a document when created. In case of a
PDF, it matches exactly the first element
of ID array.

— Yes —

Creator string A string describing the creator of the docu-
ment. This is usually the name and version
of the authoring application used. In case
of PS and PDF files, it matches exactly the
Creator key.

— Yes —
Concept of the Preflight Process 545

Chapter 7 Resources
DocumentCompressi
on

enumera-
tions

A list of all compression types used in the
document (including image compression
referenced by CompressionTypes in
Image properties). See
CompressionTypes for possible val-
ues.

— — —

DocumentCorruption NMTO-
KENS

The list of recoverable errors against the
document format that were found in this
document.
An empty list means the document is not
corrupted. Possible values include:
InvalidOffsets – Some offsets are
invalid, but the preflight agent was able to
load the document nonetheless. Note that
the absence of this value does not mean
that all document structures are valid, only
that the offsets are correct)

— — —

DocumentEncoding enumeration The document encoding which can be
either:
ASCII
Binary

— — PS, PDF

DocumentIsGoodCo
mpression

boolean Is “true” when a strong compression
algorithm is used (not just an ASCII filter)
for all objects in the document where it
makes sense to have compression.

— — —

EncryptedDocument boolean Is “true” if document is encrypted. — — —
EncryptionFilter NMTOKEN The Filter name of encryption for a PDF

file.
— Yes PDF

EncryptionLength integer The length of the encryption key of a PDF
file in bits.

— Yes PDF

EncryptionRestrictio
ns

NMTO-
KENS

The actions that are forbidden by the
encryption.
Possible values are:
Assembly – Inserting or removing
pages.
Copying – Extracting part of the con-
tent.
DisabledAccess – Allowing copying
specifically for providing access to the dis-
abled.
EditingAnnotations
EditingContent
FillingIn – Filling in forms.
HighResPrinting
Printing

— — PDF

EncryptionSubFilter NMTOKEN The SubFilter name of encryption for a
PDF file.

— Yes PDF

Name Type Description Set Tag Documents
546 Concept of the Preflight Process

JDF Specification Release 1.2
EncryptionV integer The V integer of encryption for a PDF file. — Yes PDF
FileName string The file name, including file extension, in

the file system. This is not the full path.
— — —

FileSize integer The file size expressed in bytes. — — —
Keywords string A string made of keywords describing the

document.
— Yes —

Linearized boolean Is “true” if the document is linearized,
(i.e., prepared for web download).

— — PDF

ModificationDate dateTime The date when the document was last
modified according to the file system.

— — —

ModificationDateInD
ocument

dateTime The date when the document was last
modified according to data inside the doc-
ument.

— Yes —

ModificationID NMTOKEN A name that which can uniquely identify
the current document instance. In case of a
PDF, it matches exactly the second ele-
ment of ID array.

— Yes —

NumberOfPages integer The number of finished pages contained in
the document.

— — —

OutputIntentColorSp
ace = “None”

NMTOKEN The color space belonging to the output
intent of the document. Possible values
include:
None – The default value to be used if this
property is not present.
CMYK
Gray
RGB

— Yes PDF

OutputIntentStanda
rd

string The standards the output intent is compli-
ant with, (e.g., PDF/X-1a:2001). The ver-
sion of the standard is assumed to be in the
string accordingly to the standard’s nota-
tion.

— — —

PagesHaveSameOrie
ntation

boolean Is “true” when all pages have the same
orientation.

— — —

PDFXVersion NMTOKEN The PDF/X version key present in the doc-
ument.

— Yes PDF

PDLType NMTOKEN The type of document using MIME-type.
PDFType is “application/pdf” for
instance. See Table P-1 on page 635and
Table P-2 on page 638 for examples.

— — —

PDLVersion string The version of document according to the
PDLType. See Table P-1 on page 635and
Table P-2 on page 638 for examples.

— — —

Producer string A string describing the producer of the
document. This is usually the name of the
software used to create file. In case of PDF
files, it matches exactly the Producer key.

— Yes —

Name Type Description Set Tag Documents
Concept of the Preflight Process 547

Chapter 7 Resources
7.4.2.6 Fill Properties
Fill property values are derived from graphic objects with vector primitives. They can have a fill color and a stroke
color, with given colors. This is a list of properties that specifically apply to this kind of object:

SeparationFlag boolean Is “true” if the document is made of
separations or is not composite.

— — PS, PDF

Subject string A string describing the subject of the doc-
ument.

— Yes —

Title string A string describing the title of the docu-
ment.

— Yes —

TrappedKey enumeration A value explaining the use of trapping on
the document. The values can be “true”,
“false”, or “Unknown”. It matches
exactly the TrappedKey information of
PDF.

— Yes —

Name Type Description Set Tag Documents
FillColorName string The name of the color of the fill of the vec-

tor object.
— — —

FillColorType enumeration This is an enumeration of known colors to
draw fill. Possible values are:
CMYGray – Will print with the same per-
centage 0-100% exclusive on Cyan,
Magenta, and Yellow separations.
CMYBlack – Will print with 100% on
Cyan, Magenta, and Yellow separations
and less than 100% on the Black separa-
tion.
Other – Any other combinations of sepa-
rations.
PureBlack – Will print as 100% on the
black separation with 0% on the other sep-
aration(s).
PureGray – Will print as 1-99% on the
black separation with 0% on the other sep-
aration(s).
RegistrationBlack – Will print as
100% on all the separations.
RegistrationGray – Will print as 0-
100% exclusive on all the separations
(assuming all the separations use the same
value).
RichBlack – Will print as 100% on the
black separation with more than 0% on
one or more of the other separations.
White – Will print as 0% on all the sepa-
rations.

— — —

HasFillColor boolean Is “true” if the vector object is drawn
with a fill color.

— — —

Name Type Description Set Tag Documents
548 Concept of the Preflight Process

JDF Specification Release 1.2
7.4.2.7 Font Properties
The following is the list of property attributes that can be applied to a font contained in, or referenced into, a docu-
ment:

Name Type Description Set Tag Documents
EmbeddingRestrictio
nFlag

boolean Is “true” if a font cannot be embedded. — — —

FontCorrupted boolean Is “true” if a font is corrupted or
invalid. The implementation of this check
may vary from one application to another.

— — —

FontCreator string The font creator. — — —
FontEmbedded boolean Is “true” if a font is embedded into the

document.
— — —

FontIsStandardLatin boolean Is “true” when all characters belong to
the standard Latin character set.

— — —

FontName string The font name. — — —
FontNotUsed boolean Is “true” if a font is not used to draw

characters from the document.
— — —

FontSubset boolean Is “true” if a font is only a subset of a
main font.

— — PS, PDF

FontType = “Other” enumeration This is the type of the font. Possible values
referencing standardized types of fonts
include:
CIDFontType0
CIDFontType1
CIDFontType2
CIDFontType3
CIDFontType4
OpenType
TrueType
Type0 – PostScript Type0 without the
CID
Type1
Type1CMultipleMaster
Type2C
Type3
PDFType3
Type42 – Embedded TrueType into a
PostScript font.
Unknown – Type of font that can not be
resolved for any reason, (i.e., missing font,
etc.).
Other – To be used when the property is
not any of the values listed above.

— — —

FontVendor string The font vendor. — — —
IsFontScreenOnly boolean Is “true” if a font referenced in the doc-

ument contains only screen description.
— — Authoring

PSFontName NMTOKEN The PostScript font name. — — PS, PDF
Concept of the Preflight Process 549

Chapter 7 Resources
7.4.2.8 Graphic Properties
This is a list of property attributes that specifically apply to objects that can be displayed or printed.

Name Type Description Set Tag Documents
AlphaIsShape boolean The AlphaIsShape of a PS or PDF

object.
— — PS, PDF

AlternateColorSpace enumeration The alternate color space of the object is
one of the given. Values are identical to
those defined in ColorSpace, below.

— Yes PS, PDF

BelongsToAnnotatio
n

boolean Is “true” when this object belongs to an
annotation.

— — —

BlackGeneration enumeration The BlackGeneration function of a PS
or PDF object. Values may include either:
Identity – Defines identity function.
Custom – Used when the function is
described.

— Yes PS, PDF

BlendMode NMTOKEN The BlendMode of a PS or PDF object. — — PS, PDF
ColorSpace enumeration The color space of the object is one of the

following values:
CalGray
CalRGB
CIEBasedA
CIEBasedABC
CIEBasedDEFG
DeviceCMYK
DeviceGray
DeviceN
DeviceRGB
ICCBased
Lab
Separation

— — PS, PDF

EmbeddedPS boolean Is “true” if a PDF object uses PostScript
to be drawn.

— — PDF

Flatness double A number giving the value of PS or PDF
Flatness.

— Yes PS, PDF

HasSoftMask boolean Is “true” when the object is using a soft-
mask using pixel values.

— — —

Halftone NMTOKEN The value of the Halftone used in a docu-
ment: “Named”, “1”, “5”, “6”, “10”,
“16”.

— Yes PS, PDF

HalftonePhase XYPair The value of the HalftonePhase associ-
ated with the object.

— Yes PS, PDF

HasColorLUT boolean Is “true” when an object is using
indexed colors in a table to describe color.

— — —

NumberOfColorsInL
UT

integer The number of colors in the color table
used to display an indexed image.

— — —
550 Concept of the Preflight Process

JDF Specification Release 1.2
7.4.2.9 Image Properties
This group of property attributes is very specific to images displayed using pixels:

OverprintFlag boolean Is “true” when one object has been set
to overprint.

— — —

OverprintMode integer An integer giving the PostScript or PDF
value for overprint mode.

— — PS, PDF

RenderingIntent NMTOKEN The rendering intent of a PS or PDF
object.

— Yes PS, PDF

Smoothness double A number giving the value of PS or PDF
Smoothness.

— Yes PS, PDF

TransferFunction enumeration The transfer function of a PS or PDF
object. Values may include either:
Custom – Used when the function is
described.
Identity – Defines identity function.

— Yes PS, PDF

TransparencyFlag boolean Is “true” when the object has transpar-
ency. A transparency that is null should
have the “false” value.

— — —

UnderColorRemoval enumeration The UnderColorRemoval function of a
PS or PDF object. Values may include
either:
Custom – Used when the function is
described.
Identity – Defines identity function.

Yes Yes PS, PDF

Name Type Description Set Tag Documents
AlternateImages NMTO-

KENS
When to draw some of the alternate
images that correspond with the given
image. The PDF specification defines
"Print" as a possible value, but any other
application-specific value could be used.

— Yes PDF

BitsPerSample integer The number of bits used to represent color
on every separation.

— — —

CompressionRatio double For all compression types to which it
makes sense, the tests apply to the quality
expressed as percentage of compression.

— — —

Name Type Description Set Tag Documents
Concept of the Preflight Process 551

Chapter 7 Resources
CompressionTypes enumera-
tions

The type of method used to compress or
encode the image. Values may include:
ASCII85
ASCIIHex
CCITT
JBIG2
JPEG
JPEG2000
LZW
None
RunLength
ZIP
Where JPEG, JPEG2000, and/or JBIG2
are used, they may be concatenated and
only JPEG need be used.

— — —

EffectiveResolution XYPair The horizontal and vertical resolutions of
the scaled image, in dots per inch.

— — —

EstimatedJPEGQualit
y

integer For JPEG compression type, use algo-
rithm provided below to obtain the esti-
mated JPEG quality by doing a “reverse
statistic” on the IJG library’s quality-to-
matrix routine. This value will be
expressed as an integer, where “0” is the
worse quality and “100” is the best qual-
ity.

— — —

ImageFlipped enumeration The way the image is flipped. Possible val-
ues include:
None
Horizontal
Vertical

— — —

ImageMaskType enumeration The type of masks used by image. The
allowed values include:
NoMask – Used when the image does not
use specific mask.
BitmapMask – Used when the image is
masked using a bitmap image
ColorKeyMask – Used when some col-
ors are masked out to display the image
(such like video chroma-key).

— — —

ImageRotation integer The number of degrees an image is
rotated. A positive number represents a
counterclockwise rotation. A negative
number represents a clockwise rotation.

Note: A 540o rotation is valid, (e.g., one
full rotation + 180o rotation).

— — —

ImageScalingRatio double The ratio between X and Y scaling of an
image.

— — —

Name Type Description Set Tag Documents
552 Concept of the Preflight Process

JDF Specification Release 1.2
The JPEG quality algorithm is based on a technique used by the IJG library (http://www.ijg.org/) — which uses a
quality value in the range 0–100 and translates image data into a 8x8 matrix. The following algorithm performs a
“reverse statistic” on the IJG library’s quality-to-matrix routine, which gives a matrix-to-quality routine. The for-
mula’s used are as follows:
(DCTSIZE2 is the size of the matrix, 64)

derived = 0.0;
for (i = 0; i < DCTSIZE2; i++)
{
derived += (*qtblptr0)->quantval[i];
}
derived = derived / DCTSIZE2;
xq = (100.0 * derived - 50.0) / 57.625;
if (xq < 100.0)
quality = (long) ((200.0 - xq) / 2.0);
else
quality = (long) (5000.0 / xq);

The algorithm calculates the average value in the quantization matrix and then derives a quality value in the range of
0–100 from that average.

7.4.2.10 Logical Properties
The logical properties are mainly used with Set to count the number of objects.

7.4.2.11 PageBox Properties
The page box represents virtual boxes for each page. The following is a list of attributes that specifically apply to this
kind of objects.

ImageSkew double The skew angle of the image (“0” is not
skewed). A positive number represents a
clockwise skewing. A negative number
represents a counterclockwise skewing.

— — —

OriginalResolution XYPair The horizontal and vertical resolutions of
the image before scaling.

— — —

PixelHeight integer Image height in pixels. — — —
PixelWidth integer Image width in pixels. — — —

Name Type Description Set Tag Documents
Count Integer The number of objects contained in the

referenced set of objects.
Yes — —

Name Type Description Set Tag Documents
PageBoxType enumeration Refer to "Box Properties" on page 542 for

a list of the valid types of boxes. When not
known, the default is to leave
PageBoxType empty.

— — —

Name Type Description Set Tag Documents
Concept of the Preflight Process 553

http://www.ijg.org/
http://www.ijg.org/

Chapter 7 Resources
7.4.2.12 Pages Properties
This is the list of elements and attributes related to the page object in a document.

Structure of the BoxToBoxDifference Subelement

Note that BoxToBoxDifference element is always a subelement of a PreflightArgument.
Example:
 <Test ID="PT01">
 <RectangleEvaluation ValueList="0 0 10 10">
 <BasicPreflightTest Name="BoxToBoxDifference">
 <PreflightArgument>
 <BoxToBoxDifference FromBox="TrimBox" ToBox="BleedBox"/>
 </PreflightArgument>
 </BasicPreflightTest>
 </RectangleEvaluation>
 </Test>

Name Type Description Set Tag Documents
BlankPage boolean Is “true” when the trim box and the

bleed box area, when defined, do not out-
put any marks.

— — —

BlendColorSpace enumeration The page blend color space. For the list of
possible values, see ColorSpace in
Graphics Properties above.

— Yes PDF

PageHasUnknownOb
jects

boolean Page contains unknown objects but the
PDL was set to ignore these errors. Exam-
ples are the use of BX/EX in PDF.

— — —

PageNumber integer The page index in the RunList. — — —
ReversePageNumber integer A special page numbering which starts

from the last page. The last page is “-1”.
This has been added to allow filtering of
last page or the before last page, which is
“-2”. It is used to apply specific test on a
document cover.

— — —

BoxToBoxDifference element The rectangle from calculating the differ-
ences between two rectangles: From (top
left bottom right) and To (top left bottom
right). The calculation is made using the
following formula:
To (top)–From (top), From (left)–To
(left), From (bottom)–To (bottom), To
(right)–From (right).
To define the two boxes used, options are
given in BoxToBoxDifference argu-
ment.

— — —

Name Type Description
From enumeration The “from” box used in calculating the BoxToBoxDifference argument. See table

"Allowed Box Types" on page 542 for a list of valid box types.
To enumeration The “to” box used in calculating the BoxToBoxDifference argument. See table

"Allowed Box Types" on page 542 for a list of valid box types.
554 Concept of the Preflight Process

JDF Specification Release 1.2
7.4.2.13 PDLObject Properties
The PDL object is used to check whether select objects are defined or not defined in the document, but does not check
anything else as these objects are specific to one given PDL

7.4.2.14 Reference Properties
Reference property attributes describe objects that have links to external references on other objects. It only deals
with OPI links and references in page to other graphical contents. This is not describing the font properties (see "Font
Properties" on page 549).

7.4.2.15 Shading Properties
Shading property attributes are derived from graphic objects with applied shading, which is usually defined as of
either smooth or vector type.

Name Type Description Set Tag Documents
PDLObjectType NMTOKEN The type of specific PDL object. Possible

values include:
AcroForm – The PDF AcroForm.
Actions – The PDF Actions.
Bookmarks – The PDF Bookmarks.
JavaScript – The PDF JavaScript.
Thread – The PDF Thread.
Thumbnails – The PDF Thumbnails.

— — PDF

Name Type Description Set Tag Documents
ExternalReferenceMi
ssing

boolean Is “true” when the target of an external
reference is missing.

— — —

HasExternalReferenc
e

boolean Is “true” when some of the page graphi-
cal contents have a link on files.

— — —

HasOPI boolean Is “true” if there is OPI information
associated with the object.

— — PS, PDF

OPIMissing boolean Is “true” when the target of OPI com-
ments associated with the object is miss-
ing.

— — PS, PDF

OPIType NMTOKEN The OPI type of OPI comments associated
with the object. Sometimes in PS, the
comments are not OPI comments. Other
values include:
OPIComments
OtherComments

— — PS, PDF

OPIVersion NMTO-
KENS

The OPI versions of OPI comments asso-
ciated with the object.

— — PS, PDF

Name Type Description Set Tag Documents
ShadingType enumeration The type of shading. Value may be one of:

Smooth
Vector

— — —
Concept of the Preflight Process 555

Chapter 7 Resources
7.4.2.16 Stroke Properties
Stroke property attributes are linked with graphic objects with vector primitives. They can have a fill color and a
stroke color with given colors. This is a list of properties that specifically apply to this kind of object:

7.4.2.17 Text Properties
“Text” refers to a consecutive set of one or more characters that share the same style (i.e., font, size, fill, stroke, etc.).
The following are the attributes that can be applied to text:

Name Type Description Set Tag Documents
HasStrokeColor boolean Is “true” if the vector object is drawn

with a stroke color.
— — —

StrokeAlternateColo
rSpace

enumeration The alternate color space of the stroke of
one object. For the list of possible values,
see ColorSpace in Graphics Properties
above.

— Yes PS, PDF

StrokeColorName string The name of the color of the stroke of the
vector object.

— — —

StrokeColorSpace enumeration The color space of the stroke of one object.
For the list of possible values, see
ColorSpace in Graphics Properties
above.

— — PS, PDF

StrokeColorType enumeration This is an enumeration of known colors
used to draw stroke. Refer to
FillColorType for the list of possible val-
ues.

— — —

StrokeOverprintFlag boolean Is “true” when the stroke of one object
has been set to overprint.

— — —

StrokeShadingType enumeration The type of shading used in the stroke.
Values may be either:
Smooth
Vector

— — —

StrokeThickness double The thickness of the stroke of the vector
object.

— — —

Name Type Description Set Tag Documents
CharacterProblem enumeration Problem encountered to render character.

The possible values are:
Corrupted – Used when a character
was found but could not be rendered.
IncorrectEncoding – Used when
encoding information is missing, incom-
plete, or otherwise incorrect.
Missing – Use when the character could
not be found in font.
Others – Used in all other cases.

— — —

MissingPrinterFont boolean Is “true” if a referenced font has no
printer information.

Yes — —

MissingScreenFont boolean Is “true” if a referenced font has no
screen information.

— — —
556 Concept of the Preflight Process

JDF Specification Release 1.2
7.4.2.18 Vector Properties
Vector property attributes are derived from graphic objects with vector primitives. They can have a fill color and a
stroke color, with given colors. This is a list of attributes that specifically apply to this kind of object:

TextSize double The size in points of the character. — — —
UseArtificialTextEffe
ct

enumera-
tions

The artificial text effects list used to draw
a character. Values may include:
Bold
Italic
Outline
Shadow
Underline
The authoring applications may apply the
text effect directly, whereas in PS or PDF,
the effect will be calculated.

— — —

Name Type Description Set Tag Documents
NumberOfPathPoints integer The number of points used to create a vec-

tor path.
— — —

Name Type Description Set Tag Documents
Concept of the Preflight Process 557

Chapter 7 Resources
558 Concept of the Preflight Process

Chapter 8 Building a System Around JDF

8.1 Implementation Considerations and Guidelines
JDF parsing. JDF devices must implement JDF parsing. At a minimum, a device must be able to search the JDF to
find a node whose process type it is able to execute. The details of the search algorithm are implementation dependent
and may be as simple as searching only in the JDF root node. In addition, a device must be able to consume the inputs
and produce the outputs for each process type it is able to execute. See “Determining Executable Nodes” on page 110.

Test run. To reduce failures during processing, it is recommended that either individual devices or their controller
support the testrun functionality. This prevents the case where a device begins processing a node that is incomplete or
malformed.

8.2 JDF and JMF Interchange Protocol
A system of vendor-independent elements should define a protocol that allows them to interchange information based
on JDF and JMF. In version JDF 1.2 and above, the restrictions on transport layer have been loosened.

8.2.1 File-Based Protocol (JDF + JMF)
The file-based protocol is a solution for JDF job tickets and JMF messages. A file-based protocol may be based on
hot folders. A Device that implements hot holders must define an input hot folder and an output folder for JDF. In
addition, the “SubmitQueueEntry” message contains a URL attribute that allows specification of arbitrary JDF loca-
tors.

Implementation of JDF file-based protocol is simple, but it is important to note that the protocol does not support
acknowledgement receipts for protocol error handling. It requires that the receiver polls the output folder of the pro-
cessor. Finally, granting read/write access to your hot folder negates the security functions.

8.2.1.1 JMF Transport Using The File Protocol
New in JDF 1.2
In order to allow JMF messaging based on a file protocol a set of additional conventions must be defined. There are
some important differences between http and file-based protocols that must be taken into account:

• HTTP provides a URL to which the sender sends the file, while with the file protocol, the sender must provide
the URL to the receiver that specifies a location that is accessible to the receiver.

• HTTP is a synchronous protocol that ensures an immediate response, whereas the file protocol is asynchronous.
Therefore, an application must either poll for responses or react to operating system events that signal the
existence of the response file.

• HTTP provides a method for detecting that an incoming request is complete. Access to the file from the reading
and writing application must be synchronized, so the reader does not read an incomplete file that is still being
written.

• When the receiving end of an HTTP connection is unavailable, the sender is immediately aware that it is unable
to connect. In case of a file, the file will simply be orphaned and the sender must check whether the file has been
retrieved by the receiver.

• With HTTP the sender pushes the request. With the file protocol if the sender writes the file, the sender must
ensure that the path to the file does not clash with some other sender’s file, including any directories that the
sender may have to create.

• HTTP connections are transient. Files must be removed by the receiver after reading them, depending on the
supplied FileSpec/Disposition.
Implementation Considerations and Guidelines 559

Chapter 8 Building a System Around JDF
• The response to an HTTP command is received on the same connection, whereas the response to a file query
must be placed into a new file. Therefore the expected location of the response file must be specified by the
application that generates the query.

• An HTTP socket can accept multiple Acknowledge messages on the same socket in sequence. Multiple
Acknowledges as files must follow a unique naming scheme in order to avoid overwriting existing Acknowledge
files.

8.2.2 HTTP-Based Protocol (JDF + JMF)
HTTP [RFC2616] is a stable, vendor-independent protocol, and it supports a variety of advantageous features. For
example, it offers a wide availability of tools, it is already a common technology among vendors who use HTTP, and
it has a well defined query-response mechanism (HTTP post message). It also offers widespread firewall support and
secure connections via SSL when using HTTPS.

8.2.2.1 Protocol Implementation Details
JDF Messaging will not specify a standard port.

Implementation of Messages
Only HTTP servers may be targeted by Query or Command messages. This is done with a standard HTTP Post
request. The JMF is the body of the HTTP post message. The Response is the body of the initiated HTTP post
response. Signal and Acknowledge messages are also implemented as HTTP post messages. The body of the
HTTP response to these messages is empty.

HTTP Push Mechanisms
Since HTTP is a stateless protocol, push mechanisms, such as regular status bar updates, are non-trivial when com-
municating with a client. Workarounds can, however, be implemented. For example, a Java applet that polls the
server in regular intervals can be used.

8.3 JDF Packaging
New in JDF 1.2
JDF messaging supports combining into a single package the JMF message, the JDF job ticket(s) to which it refers,
and the digital assets to which the JDF job tickets refer. The following external data file types are identified, although
any valid MIME file type may be referenced:

• Preview images (They are encoded using the PNG format.)

• ICC Profiles

• Preflight Profiles

• PDL (Page Description Language)
Currently MIME/Multipart/Related packaging is supported.[RFC2387]

All packaging methods use a consistent design pattern. The package contains one or more parts and there must be
at least one JDF or JMF part. If a JMF part is included there must be only one. If the packaging has ordered parts
(multi-part/related) the JMF part must be first. The JDF parts must follow the JMF part (if present) and any other
parts follow the JDF parts.

When the content parts of a JDF Package are extracted, the QueueSubmissionParams (at a provided URL)
or ResubmissionParams (at a provided URL) within the JMF message and FileSpec (at a provided URL)
within the JDF ticket(s) must be updated with the URL at which the referenced items are stored.

8.3.1 MIME Basics
MIME (Multipurpose Internet Mail Extensions) [RFC2045] is an Internet standard that defines mechanisms for spec-
ifying and describing the format of Internet message bodies. MIME is comprised of headers and bodies. In case of
Multipart messages, the body consists of multiple messages, each identified by the individual MIME header and sep-
arated by an unique boundary string.
560 JDF Packaging

JDF Specification Release 1.2
8.3.2 MIME Types and File Extensions
The MIME type for JDF is not yet registered with IANA http://www.iana.org/. The registration process is ongoing and
the MIME types will be registered as:

JDF — application/vnd.cip4-jdf+xml

JMF — application/vnd.cip4-jmf+xml
It is recommended that the controller use a file extension of .jdf when using file-based JDF in an environment that supports file
name extensions. Agents that serialize JMF to a file should use a file extension of .jmf.

When a MIME package containing JDF or JMF is serialized to a file, it is suggested to use .mjd for packages
where a JDF is the first entity. Use .mjm when a JMF message is the first package. CIP4 will also register a mime
type for CIP3 ppf: application/vnd.cip3-ppf. It is recommended that the controller use a file extension of .ppf when
writing CIP3 ppf files.

8.3.2.1 MIME Fields
New in JDF 1.2
This section defines the normative extensions when using MIME to package JMF or JDF.

8.3.2.1.1 Content Type
This field is required for an individual JDF or JMF, the root, and the individual bodyparts of a MIME multipart/
related package. Content-Type identifies the MIME type of the message (part). The Multipart header uses this to
identify itself as a multipart message and the subparts also have MIME types to identify their content. The following
content types are defined for JDF:

8.3.2.1.2 Content ID
This field is required for every part that is referenced by other parts in a multipart/related message. Content-ID
identifies each different part within a multipart MIME message. Its value can be anything as long as it is defined
using US-ASCII. Thus Content-ID may be a random sequence and need not be related to the original filename. It
is good practice to limit yourself to using only alphanumeric characters or only the first 127 characters of the US-
ASCII character set in order to avoid confusing less intelligent MIME agents.

8.3.2.1.3 Content Length
JDF allows a Content Length mechanism that may be used to enable fast scanning of MIME files of the bodyparts.
Although this field is optional, it is recommended that it be included. Content Length is used to optimize the perfor-
mance of scanning multipart messages. Each multipart bodypart may have an optional Content Length header field.
Its syntax is identical to the syntax defined by [RFC2616].

When present, the Content Length identifies the number of octets of the encoded bodypart. With no encoding, as
is the case with 7bit, 8bit, and binary, it represents the size of the bodypart. Otherwise it depends on what encoding
method is used (e.g., base64, quoted-printable) and what the relationship is between the encoded size and the bodypart
size. If an agent composing a MIME message can not derive a Content Length for its encoded body parts, it must omit
the Content Length field.

An agent parsing such a message can use the Content Length field to seek the end of the body. This position is
calculated by using the position of the first byte of the bodypart and adding the Content Length. At that position (one
byte after the bodypart contents), the agent must check if the following characters are one of either “\r\n--boundary”
or “--boundary.” If not, the agent must ignore the Content Length field and resume the normal MIME Multipart
behavior, restarting scanning for the boundary from the beginning of the bodypart.

Table 8.1: MIME Content-Types

MIME Type Description
application/vnd.cip4-jdf+xml A JDF File. The root XML element must be JDF.
application/vnd.cip4-jmf+xml A JMF File. The root XML element must be JMF.
multipart/related A package of a JDF or JMF file + optional additional referenced

data[RFC2387]. The root XML element of the first bodypart must be JDF or
JMF.
JDF Packaging 561

http://www.iana.org/

Chapter 8 Building a System Around JDF
8.3.2.1.4 Content Transfer Encoding
This field is optional. [RFC2045] defines the following different encodings:

• “7bit”

• “quoted-printable”

• “base64”

• “8bit” : This specifies that no additional encoding is applied to the data.

• “binary” : This specifies that no additional encoding is applied to the data.
Private encodings may be defined and begin with the prefix “X-”. When no encoding is used, the data are only
encapsulated by MIME headers. “base64” and “quoted-printable” encodings are commonly used algo-
rithms for converting eight-bit and binary data into seven-bit data and vice versa. Consumers that support MIME
must be able to accept “base64”. The other encodings are optional.

8.3.2.1.5 Content Disposition
This field is optional. See [RFC2183] It allows to define a filename. The Disposition-Type must be set to
“attachment”.
The Disposition filename parameter contains a suggested file name to store the attachment. This file name may be the
original file name when creating the mime file and may be visible to the operator. Note that the standard mime escape
rules must be used if the file name contains non US-ASCII characters.
Example:
Content-Disposition: attachment; filename=Coverpage.pdf;

8.3.2.2 Example Packaging of Individual JDF/JMF files in MIME
New in JDF 1.2
The following example displays MIME packaging of a JDF file as an individual MIME object:

MIME-Version: 1.0
Content-Type: multipart/related; boundary=abcdefg0123456789

--abcdefg0123456789
Content-Type: application/vnd.cip4-jdf+xml
Content-Length: 1234
<JDF … >
<PreviewImage Separation = "PANTONE 128" URL="cid:123456.png" />
</JDF>
--abcdefg0123456789--

8.3.2.3 CID URL Scheme
New in JDF 1.2
One of the benefits of the MIME multipart/related MediaType is the ability to refer from one bodypart to another
bodypart. This is done by using the cid: URL addressing scheme, specified in [RFC2392]. Please look at the example
to see how it is used.

Example:
MIME-Version: 1.0
Content-Type: multipart/related; boundary=abcdefg0123456789

--abcdefg0123456789
Content-Type: application/vnd.cip4-jdf+xml
Content-Length: 1234

<JDF … >
<PreviewImage Separation = "PANTONE 128" URL="cid:123456.png@cip4.org" />
</JDF>
562 JDF Packaging

JDF Specification Release 1.2
--abcdefg0123456789
Content-Type: image/png
Content-Transfer-Encoding: base64
Content-ID: <123456.png@cip4.org>
Content-Length: 12345

BASE64DATA
BASE64DATA

--abcdefg0123456789--

Note: [RFC2392] requires that the value of the Content-ID be enclosed in angle brackets (<>). Also the characters
that [RFC2392] allows in Content-ID include characters that [RFC2396] does not permit in URLs; any such character
(such as "+" or "&") must be hex-encoded using the %hh escape mechanism in the URL (see [RFC2396]). Therefore,
matching the URL with the CID, must take account of the escaped equivalencies. Case-insensitive matching must be
used.

8.3.2.4 Ordering of JDF/JMF in MIME Multipart/Related
New in JDF 1.2
The first section of the multipart MIME package must be the JMF submission command. Internal links are defined
using the Content-ID (CID) label in MIME. Subsequent sections are the JDF jobs followed by the linked entities,
such as the preview images shown in the following example:

Example: A multipart/related message is received that contains:

• Message.jmf

• Ticket01.jdf

• Pages.pdf

MIME-Version: 1.0
Content-Type: multipart/Related; boundary=unique-boundary
--unique-boundary
Content-type: application/vnd.cip4-jmf+xml
Content-Length: 1234
…
<JMF xmlns="http://www.CIP4.org/JDFSchema_1_1" SenderID="JMFClient"
TimeStamp="2000-11-07T13:15:56+01:00" Version="1.2">
 <Command ID="C0001" Type="SubmitQueueEntry">
 <QueueSubmissionParams Hold="true" URL="cid:JDF1@hostname.com"/>
 </Command>
</JMF>

--unique-boundary
Content-type: application/vnd.cip4-jdf+xml
Content-Length: 2345
Content-ID: <JDF1@hostname.com>
Content-Disposition: attachment; filename=Ticket01.jdf;

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<JDF xmlns="http://www.CIP4.org/JDFSchema_1_1" Activation="Active" ID="JDF_c"
JobID="Geef62b72-0f6e-4195-a412-aaa3123d200b" Status="Waiting" Type="Product"
Version="1.2">
 <ResourcePool>
 <RunList Class="Parameter" DocCopies="1" FirstPage="0" ID="RunList4" IsPage="true"
NDoc="1" PageCopies="1" Status="Available">
JDF Packaging 563

Chapter 8 Building a System Around JDF
 <LayoutElement ElementType="Document" HasBleeds="false" ID="LayoutElement_1"
IgnorePDLCopies="true" IgnorePDLImposition="true" IsPrintable="true">
 <FileSpec AppOS="Windows" Compression="None" Disposition="Retain"
ID="FileSpec_9" URL="cid:Asset01@hostname.com" UserFileName="Christmas Cards"/>
 </LayoutElement>
 </RunList>
 </ResourcePool>
</JDF>

--unique-boundary
Content-type: application/pdf
Content-Length: 12345
Content-ID: <Asset01@hostname.com>
Content-Disposition: attachment; filename=Pages.pdf;
The pdf goes in here.
--unique-boundary--

When such a stream arrives at the server it must be decoded and the parts stored locally either in memory or persistent
storage. The contents of the stream are extracted. The designer of the controller chose to save package contents into a
uniquely named directory.

• Assets must be saved first — Pages.pdf is placed in /root/temp/a39e9503-a96b-4e86-9c1d-f4188d19810e/
Assets/

• The controller then internally maps cid:Asset01@hostname.com in the ticket into file:///root/temp/a39e9503-
a96b-4e86-9c1d-f4188d19810e/Assets/Pages.pdf.

• Then Ticket01.jdf is placed in a directory /root/temp/a39e9503-a96b-4e86-9c1d-f4188d19810e/

• The controller then internally maps cid:JDF1@hostname.com in the message into file:///root/temp/a39e9503-
a96b-4e86-9c1d-f4188d19810e/Ticket01.jdf and either executes or stores the message.

8.4 MIS Requirements
MIS systems may:

• Ignore Audit elements when they receive complete information about a process execution via JMF.

• Decompose JDF into an internal format such as database tables.

8.5 Interoperability Conformance Specifications
Interoperability Conformance Specifications (i.e., ICS documents) are developed by CIP4 working committees. They
establish the minimum JDF support requirements for devices of a common class, including expected behavior. An
ICS document may subset JDF but may not expand upon JDF. For instance, an ICS that covers desktop printers may
either omit or prohibit omit all of the postpress processes related to case binding. ICS documents may also establish
minimum JMF support requirements for a class of devices.

Once published, ICS documents will form the basis for testing and certification by CIP4-sanctioned facilities.
JDF-enabled products that pass these tests will be deemed “JDF Certified” to conform to an identified level of one or
more ICS documents and will be permitted upon certification to use a “JDF Certified” logo in connection with certi-
fied JDF-enabled products.

The development of ICS documents are done in parallel, but not in synchronization, with the development of edi-
tions of the JDF specification, (e.g., an ICS may be related to a specific edition of the JDF Specification, but may be
released at a later date). Once approved, all published ICS documents will be available at http://www.cip4.org/
document_archive/ics.php.
564 MIS Requirements

http://www.cip4.org/document_archive/ics.php
http://www.cip4.org/document_archive/ics.php

Appendix A Encoding
Modified in JDF 1.2
Note: This section has been completely rewritten in JDF 1.2. The work done on this section includes both new data
types as well as many clarifications (and a better presentation of the information) that should make this section easier
for the reader.

This appendix lists a number of commonly used JDF data types and structures and their XML encoding. Data
types are simple data entities such as strings, numbers (as doubles), and dates. They have a very straightforward
string representation and are used as XML attribute values. Data structures, on the other hand, describe more complex
structures that are built from the defined data types, such as colors.

A.1 Notes About Encoding
All of the JDF types are derived from XML Schema types, either by extension, use of lists or by restriction. Each type
will refer back, either directly or indirectly, to such a type and reference should be made to “XML Schema Part 2 -
Datatypes” [XMLSchema].

A.1.1 Ranges and RangeLists
Many of the following types can be considered to be a base type, a range for that type and a list of ranges or single
values. A type will express a single value; a range for that type expresses a continuous inclusive range of values. The
list type is a list of both single and range values.
Ranges are expressed as a pair of values separated by a ‘~’ character.

A.1.2 Whitespace
The addition of whitespace characters for single types is not recommended. Items in a list of values are separated by
whitespace. A range consists of two items separated by a '~'; although not mandatory (to maintain compatibility with
JDF 1.1), it is strongly recommended that whitespace is used between the items and the '~'.
Note: The JDF1.2 schema will only correctly validate ranges if whitespace is used arround the '~'.

A.1.3 Infinity Limits
Several types require the ability to set an unbounded range, or to select a single terminating value. e.g. Integer or date
ranges. These types have been extended with the tokens -INF or INF to indicate the maximum negative and positive
limits of the values in question, details are shown where appropriate for each value.

A.2 Simple Types — Attribute Values
A.2.1 boolean
Has the value space required to support the mathematical concept of binary-valued logic:

Encoding
boolean attributes are encoded as either of the string values “true” or “false”. The XML Schema data type bool-
ean values of “1” or “0” are not permitted.

Example
<Example Enable="true"/>

A.2.2 CMYKColor
 XML attributes of type CMYKColor are used to specify CMYK colors.

Encoding
CMYKColor attributes are primitive data types and are encoded as a string of four numbers (as doubles) in the range
of [0…1.0] separated by whitespace. A value of 0.0 specifies no ink and a value of 1.0 specifies full ink.

Example:
<Color cmyk = "0.3 0.6 0.8 0.1"> (brick red)
Notes About Encoding 565

Appendix A Encoding
A.2.3 date
A calendar date, it represents a time period that starts at midnight on a specified day and lasts for 24 hours. Based on
ISO 8601.

Encoding
It is represented identically to the XML Schema type: date

Example
<Example StartDate="1999-05-31"/>

A.2.4 dateTime
Represents a specific instant of time. It must be a Coordinated Universal Time (UTC) or the time zone must be indi-
cated by the offset to UTC. In other words, the time must be unique in all time zones around the world. It also allows
infinity limits to allow for explicit ‘don't care’ values, i.e. it must be finished before ‘anytime’.

Encoding
It is represented as a union of the XML Schema type: dateTime, and the infinity value tokens INF and -INF

Example
<Example Start="1999-05-31T18:20:00Z"/>
<Example Start="1999-05-31T13:20:00-05:00"/>

A.2.5 DataTimeRange
New in JDF 1.2
XML attributes of type DateTimeRange are used to describe a range of points in time. More specifically, it describes
a time span that has an absolute start and end. Unbounded ranges can use the infinity value tokens INF and -INF

Encoding
A DateTimeRange is represented by two dateTime or infinity tokens separated by the whitespace “~” whitespace
sequence.

Example
<XXX range="1999-05-31T18:20:00Z ~ 1999-05-31T18:20:00Z"/>
<XXX range="1999-05-31T18:20:00Z ~ INF"/>
<XXX range="-INF ~ 1999-05-31T18:20:00Z"/>

A.2.6 DateTimeRangeList
New in JDF 1.2
XML attributes of type DateTimeRangeList are used to describe a list of ranges of time of points in time. More spe-
cifically, it describes a list of time spans, which each have a relative start and end.

Encoding
A DateTimeRangeList is represented by sequence of either DateTimeRange values (See 1.5), separated by
whitespace, or dateTime values.

Example:
<XXX RangeList="1999-05-31T18:20:00Z ~ 1999-05-31T18:20:00Z 1999-05-31T13:20:00-05:00 ~
INF"/>

A.2.7 double
double Corresponds to IEEE double-precision 64-bit floating point type. It includes the infinity limit tokens INF and
-INF, but does not allow the not a number token NaN.

Encoding
It is represented similarly to the XML Schema type: double. However string value NaN, is not permitted.

Example
<Example NegativePi="-3.14"/>
566 Simple Types — Attribute Values

JDF Specification Release 1.2
A.2.8 DoubleList
New in JDF 1.2
XML attributes of type DoubleList are used to describe a variable length list of numbers (as doubles.) This type is
used as the base for other JDF types that use a fixed length list of number, (e.g., CMYKColor which is restricted to
four number in the list.)

Encoding
A DoubleList is encoded as a string of whitespace-separated double values as defined in Section A.2.7, double.

Example
<XXX list="3.14 1 .6"/>

A.2.9 DoubleRange
New in JDF 1.2
XML attributes of type DoubleRange are used to describe a range of numbers (as doubles.) Mathematically spoken,
the two numbers define a closed interval.

Encoding
A DoubleRange is represented by two double values separated by a “~” (tilde) character and optional additional
whitespace. Note: It is now recommended that the ‘~’ is surrounded by whitespace to aid validation and parsing.

Example:
<XXX range="-3.14 ~ 5.13"/>
<XXX range="0 ~ INF"/>

A.2.10 DoubleRangeList
New in JDF 1.2
XML attributes of type DoubleRangeList are used to describe a list of DoubleRanges and/or enumerated numbers as
doubles).

Encoding
A DoubleRangeList is a sequence of DoubleRanges and single double values separated by whitespace.

Example:
<XXX list="-1 ~ -6 3.14 ~ 5.13 7 9 ~ 128 131 255 ~ INF"/>

A.2.11 duration
Represents a duration of time. Based on ISO 8601. The single infinity limit token INF is permitted.

Encoding
It is represented as a union of the XML Schema type: duration, and the string value INF

Example
<Example Duration= "P1Y2M3DT10H30M"/>

A.2.12 DurationRange
XML attributes of type DurationRange are used to describe a range of time durations. More specifically, it describes
a time span that has a relative start and end.

Encoding
A DurationRange is represented by two duration values, separated by the “~” (tilde) character and optional additional
whitespace. Note: It is now recommended that the ‘~’ is surrounded by whitespace to aid validation and parsing.

Examples:
<XXX range="P1Y2M3DT10H30M ~ P1Y2M3DT10H35M"/>
<XXX range="P1Y2M3DT10H30M ~ INF"/>
Simple Types — Attribute Values 567

Appendix A Encoding
A.2.13 DurationRangeList
New in JDF 1.2
XML attributes of type DurationRangeList are used to describe a list of ranges of time durations. More specifically, it
describes a list of time spans that have a relative start and end.

Encoding:
A DurationRangeList is represented by sequence of DurationRanges and durations, separated by whitespace.

Example:
<XXX RangeList="P1Y2M3DT10H30M ~ P1Y2M3DT10H35M P1Y3M2DT10H30M"/>

A.2.14 gYearMonth
Represents a specific Gregorian month in a specific Gregorian year. Based on ISO 8601.

Encoding
It is represented identically to the XML Schema type: gYearMonth

Example
<Example Month="2002-11"/>

A.2.15 hexBinary
Represents arbitrary hex encoded binary data.

Encoding
It is represented identically to the XML Schema type: hexBinary

Example
<Example Hex="0A1C"/>

A.2.16 ID
Represents the ID attribute from [XML]. It represents a name or string that contains no space characters and starts
with a letter, ‘:’ or ‘_’. Each ID value must be unique within a JDF document and thus uniquely identify the elements
that bear them.

Encoding
It is represented identically to the XML Schema type: ID

Example
<Example ID="R-16"/>

A.2.17 IDREF
IDREF Represents the IDREF attribute from [XML]. For a valid XML-document, an element with the ID value spec-
ified in IDREF must be present in the scope of the document.

Encoding
It is represented identically to the XML Schema type: IDREF

Example
<Example IDREF="R-16"/>

A.2.18 IDREFS
IDREFS Represents the IDREFS attribute from [XML]. More specifically, this is a whitespace-separated list of
IDREFs.

Encoding
It is represented identically to the XML Schema type: IDREFS

Example
<Example IDREFS="R-12 R-16"/>
568 Simple Types — Attribute Values

JDF Specification Release 1.2
A.2.19 integer
Represents numerical integer values with tokens for representing infinity limits.
Implementation note: Except where explicitly noted otherwise, integers are not expected to exceed a value that can be
represented as signed 32 bits.

Encoding
It is represented as a union of the XML Schema type: integer, and the infinity value tokens INF and -INF

Example
<Example Copies="36"/>

A.2.20 IntegerList
XML attributes of type IntegerList are used to describe a variable length list of integer values.

Encoding
An IntegerList is encoded as a string of integers separated by whitespace.

Example
<XXX list="-INF 0 1 2 3 4 INF 1 3 0"/>

A.2.21 IntegerRange
XML attributes of type IntegerRange are used to describe a range of integers. In some cases, ranges are defined for an
unknown number of objects. In these cases, a negative value denotes a number counted from the end. For example, -
1 is the last object, -2 the second to last, and so on. IntegerRanges that follow this convention are marked in the
respective attribute descriptions.

If the first element of an IntegerRange specifies an element that is behind the second element, the Range specifies a
list of integers in reverse order, counting backwards. For example “6 ~ 4” = “6 5 4” and “-1 ~ 0” = “last… 2 1 0”.

Encoding
An IntegerRange is represented by two integers, separated by a “~” (tilde) character and optional additional
whitespace. Note: It is now recommended that the ‘~’ is surrounded by whitespace to aid validation and parsing.

Examples:
<XXX range="-3 ~ -5"/>
<XXX range="INF ~ -5"/>

A.2.22 IntegerRangeList
XML attributes of type IntegerRangeList are used to describe a list of IntegerRanges and/or enumerated integers.

Encoding
A IntegerRangeList is represented by a sequence of IntegerRanges and integers, separated by whitespace.

Example:
<XXX list="-1 ~ -6 3 ~ 5 7 9 ~ 128 131"/>

A.2.23 LabColor
XML attributes of type LabColor are used to specify absolute Lab colors. The Lab values are normalized to a Light of
D50 and an angle of 2 degrees as specified in CIE Publication 15.2 — 1986 “Colorimetry, Second Edition” and ISO
13655:1996 “Graphic technology — Spectral measurement and colorimetric computation for graphic arts images.”

This corresponds to a white point of X = 0.9642, Y = 1.0000, and Z = 0.8249 in CIEXYZ color space. L is
restricted to a range of [0..100]; a and b are unbounded.

Encoding
LabColors are primitive data types and are encoded as a list of three numbers (as doubles) separated by whitespace:
“L a b”

Example:
<Color … Lab="51.9 12.6 -18.9">
Simple Types — Attribute Values 569

Appendix A Encoding
A.2.24 language
Represents a natural language defined in IETF Request for Comment 1766. See http://www.ietf.org/rfc/rfc1766.txt.

Encoding
It is represented identically to the XML Schema type: language

Example
<Example Language="de"/> - German
<Example Language="de-CH"/> - Swiss German
<Example Language="en"/> - English
<Example Language="en-GB"/> - British English

A.2.25 matrix
Coordinate transformation matrices are widely used throughout the whole printing process, especially in layout
resources. They represent two dimensional transformations as defined by the PostScript and PDF reference manuals.
For more information, refer to the respective reference manuals, and look for “Coordinate Systems and Transforma-
tions.” The “identity matrix”, which is “1 0 0 1 0 0”, is often used as a default throughout this specification. When
another matrix is factored against a matrix with the identity matrix value, the result is that the original matrix remains
unchanged.

Encoding
Coordinate transformation matrices are primitive data types and are encoded as a list of six numbers (as doubles),
separated by whitespace: “a b c d Tx Ty”. Tx and Ty describe distances and are defined in points.

Example
<ContentObject CTM="1 0 0 1 3.14 21631.3" />

A.2.26 NameRange
XML attributes of type NameRange are used to describe a range of NMTOKEN data that are acquired from a list of
named elements, such as named pages in a PDL file. It depends on the ordering of the targeted list, which names are
assumed to be included in the NameRange. The following two possibilities exist:

1 There is no explicit ordering. In this case, alphabetical ordering is implied.

2 There is explicit ordering, such as in a list of named pages in a RunList. In this case, the ordering of the
RunList defines the order and all pages between the end pages are included in the NameRange.

Encoding
A NameRange typed attribute is represented by two NMTOKENs separated by a “~” (tilde) character and optional
additional whitespace. Note: It is now recommended that the ‘~’ is surrounded by whitespace to aid validation and
parsing.

Example
<XXX NameRange="Jack ~ Jill"/>

A.2.27 NameRangeList
XML attributes of type NameRangeList are used to describe a list of NameRanges.

Encoding
A NameRangeList is represented by a sequence of NameRanges and NMTOKEN, separated by whitespace.

Example:
<XXX list="A brian ~ fred x z"/>
570 Simple Types — Attribute Values

http://www.ietf.org/rfc/rfc1766.txt

JDF Specification Release 1.2
A.2.28 NMTOKEN
Represents the NMTOKEN attribute type from [XML]. It represents a name or string that contains no space charac-
ters.

Encoding
It is represented identically to the XML Schema type: NMTOKEN

Example
<Example Alias="ABC_6"/>

A.2.29 NMTOKENS
NMTOKENS Represents the NMTOKENS attribute type from [XML]. More specifically, this is a whitespace-sepa-
rated list of NMTOKENs.

Encoding
It is represented identically to the XML Schema type: NMTOKENS

Example
<Example AliasList="ABC_6 ABCD_3 DEGF"/>

A.2.30 PDFPath
Modified in JDF 1.2
XML attributes of type PDFPath are used in JDF for describing parameters such as trap zones and clip paths. In PJTF,
PDFPaths are encoded as a series of moveto-lineto operations. JDF has a different encoding, which is able to describe
more complex paths, such as Beziers.

Encoding
PDFPaths are encoded by restricting an XML string attribute formatted with PDF path operators. This allows for easy
adoption in PS and PDF workflows. PDF operators are limited to those described in Section 8.6.1 “Path Construction
Operators” in [PDF1.3] and [PDF1.4].

Example:
<ElementWithPath path="0 0 m 10 10 l 20 20 l"/>

A.2.31 rectangle
XML attributes of type rectangle are used to describe rectangular locations on the page, sheet, or other printable sur-
face. A rectangle is represented as an array of four numbers — llx lly urx ury — specifying the lower-left x, lower-
left y, upper-right x, and upper-right y coordinates of the rectangle, in that order. This is equivalent to the ordering:
Left Bottom Right Top. All numbers are defined in points.

Encoding
To maintain compatibility with PJTF, rectangles are primitive data types and are encoded as a string of four numbers,
separated by whitespace: “llx lly urx ury” or “l b r t".

Example:
<ContentObject ClipBox="0 0 3.14 21631.3" … >

Implementation Remark
Since all numbers are real numbers, any comparison of boxes should take into account certain rounding errors. For
example, different XYPairs may be considered equal when all numbers are the same within a range of 1 point.
Simple Types — Attribute Values 571

Appendix A Encoding
A.2.32 RectangleRange
New in JDF 1.2
XML attributes of type RectangleRange are used to describe a range rectangles.

Encoding
A RectangleRange is represented by one or two Rectangles, separated by a “~” (tilde) character and optional additional
whitespace. Note: It is now recommended that the ‘~’ is surrounded by whitespace to aid validation and parsing.

Example:
<XXX range="1 2 3 4 ~ 5 6 7 8"/>
<XXX range="-INF -INF 3 4 ~ 0 1 INF INF"/>

A.2.33 RectangleRange List
New in JDF 1.2
XML attributes of type RectangleRangeList are used to describe a list of rectangle ranges.

Encoding
A RectangleRangeList is represented by sequence of RectangleRanges and Rectangles, separated by whitespace.

Example:
<XXX RectangleRangeList="1 2 3 4 ~ 5 6 7 8 9 10 11 12 13 14 15 16"/>

A.2.34 regExp
Represents a regular expression as defined in [XMLSchema].

Encoding
It is represented identically to the XML Schema type: normalizeString

Example
<Example expression="Foo({1|2}*)"/>

A.2.35 shape
XML attributes of type shape are used to describe a three dimensional box.

Encoding
A shape is represented as an array of three (positive or zero) numbers — x y z — specifying the Width x, height y and
depth z coordinates of the shape, in that order.

Example:
<XXX Dimensions=”10 20 40"/>

A.2.36 ShapeRange
XML attributes of type ShapeRange are used to describe a range of shapes (three dimensional boxes). The range “x1
y1 z1 ~ x2 y2 z2” describes the area x1<=x<=x2 and y1<=y<=y2 and z1<=z<=z2. Thus the shape “2 3 4” is
within “1 2 1 ~ 3 4 4”.

Note that this implies that all three values of the second entry must be >= the corresponding values of the first
entry. The following example is therefore invalid: “1 2 1 ~ 0 4 4”.

Encoding
A ShapeRange is represented by two shapes, separated by a “~” (tilde) character and optional additional whitespace.
Note: It is now recommended that the ‘~’ is surrounded by whitespace to aid validation and parsing.

Example:
<XXX Shaperange=”1 2 3 ~ 4 5 6"/>
<XXX Shaperange="1 2 3 ~ 4 INF 6"/>
572 Simple Types — Attribute Values

JDF Specification Release 1.2
A.2.37 ShapeRangeList
XML attributes of type ShapeRangeList are used to describe a list of ShapeRange and/or shapes.

Encoding
A ShapeRangeList is a sequence of ShapeRange and shapes separated by whitespace.

Example:
The brackets below the example illustrate the grouping of shapes and ShapeRanges.
<XXX Shapelist="100 200 300 ~ 110 220 330 150 300 150 2 3 0 ~ 3 4 5"/>
 ()()()

A.2.38 sRGBColor
XML attributes of type sRGBColors are used to specify sRGB colors.

Encoding
sRGBColors are primitive data types and are encoded as a string of three numbers in the range of [0…1.0] separated
by whitespace A value of 0 specifies no intensity (black) and a value of 1 specifies full intensity:
“r g b”

Example:
<Color sRGB="0.3 0.6 0.8" … >

A.2.39 string
Represents character strings in XML.

Encoding
It is represented identically to the XML Schema type: normalisedString NB. This means that tabs, linefeeds, and so
on are not valid characters.

Example:
<Example Name="Test With Space"/>

A.2.40 TimeRange
Deprecated in JDF 1.2

A.2.41 TransferFunction
XML attributes of type TransferFunction are functions that have a one-dimensional input and output. In JDF, they are
encoded as a simple kind of sampled functions and used to describe transfer curves of image transfer processes from
one medium to the next, (e.g. film to plate, or plate to press).

A transfer curve consists of a series of XY pairs where each pair consist of the stimuli (X) and the resulting value
(Y). To calculate the result of a certain stimuli, the following algorithms must be applied:

1 If x < = first stimuli, then the result is the y value of the first xy pair.

2 If x > = the last stimuli, then the result is the y value of the last xy pair.

3 Search the interval in which x is located.

4 Return the linear interpolated value of x within that interval.

Encoding
A TransferCurve is encoded as a string of space-separated numbers (as doubles). The numbers are the XY pairs that
build up the transfer curve.

Example:
<someElementWithTransferCurve someCurve="0 0 .1 .2 .5 .6 .8 .9 1 1"/>
Simple Types — Attribute Values 573

Appendix A Encoding
A.2.42 URI
Short for URI-reference. Represents a Uniform Resource Identifier (URI) Reference as defined in Section 4 of
[RFC2396].

Encoding
It is represented identically to the XML Schema type: anyURI

Example
<Example URI="http://www.w3.org/1999/XMLSchema"/>

A.2.43 URL
Short for URL-reference. Represents a Uniform Resource Locator (URL) Reference as defined in Section 4 of
[RFC2396].

Encoding
It is represented identically to the XML Schema type: anyURI

Example
<Example URL=" file://hubble/test.txt"/>

A.2.44 XYPair
XML attributes of type XYPair are used to describe sizes like Dimensions and PageSize. They can also be used
to describe positions on a page. All numbers that describe lengths are defined in points.

Encoding
XYPair attributes are primitive data types and are encoded as a string of two numbers, separated by whitespace: “x y”

Example:
<CutBlock BlockSize="612 792">

Implementation Remark
Since all numbers are real numbers, comparison of XYPairs should take into account certain rounding errors. For
example, different XYPairs may be considered equal when all numbers are the same within a range of 1 point.

A.2.45 XYPairRange
XML attributes of type XYPairRange are used to describe a range of XYPairs. The range “x1 y1 ~ x2 y2”
describes the area x1<=x<=x2 and y1<=y<=y2. Thus the XYPair “2 3” is within “1 2 ~ 3 4”. Note that this
implies that both values of the second entry must be >= the corresponding values of the first entry. The following
example is therefore invalid: “1 2 ~ 0 4”.

Encoding
An XYPairRange is represented by two XYPairs, separated by a “~” (tilde) character and optional additional
whitespace. Note: It is now recommended that the ‘~’ is surrounded by whitespace to aid validation and parsing.

Example:
<XXX XYrange=”1 2 ~ 3 4"/>
<XXX XYrange="-INF 2 ~ 3 INF"/>

A.2.46 XYPairRangeList
XML attributes of type XYPairRangeList are used to describe a list of XYPairRange and/or XYPairs.

Encoding
A XYPairRangeList is a sequence of XYPairRange and XYPairs separated by whitespace.

Example:
The brackets below the example illustrate the grouping of XYPairs and XYPairRanges.
<XXX XYlist="100 200 ~ 110 220 150 300 150 350 200 300 ~ INF INF"/>
 ()()()()
574 Simple Types — Attribute Values

JDF Specification Release 1.2
A.2.47 XPath
New in JDF 1.2
Represents an XPath expression. [XPath]

Encoding
It is represented identically to the XML Schema type: token

Example
<Example xpath= "JDF/AuditPool/Created/@TimeStamp" />

A.3 Enumerations and Lists

A.3.1 enumeration
Represents a closed set of values.

Encoding
It is represented by an enumerated list of values derived from the XML Schema type: NMTOKEN

Example
<Example Orientation="Flip90"/>

A.3.2 enumerations
Represents a list of values taken from a closed set. Values may be repeated within the list. If there are any implica-
tions to the order of the values this will be detailed in the appropriate items description, otherwise none is implied.

Encoding
It is represented by a whitespace-separated list of enumeration values derived from the XML Schema type:
NMTOKEN

Example
<Example Orientations="Rotate90 Flip90"/

A.3.3 Defined JDF enumeration Data Types
This section is a list of defined enumeration data types. These types are to be used wherever possible for enumerated
values and lists of values.

A.3.3.1 JDFJMFVersion
Describes the schema version of a JDF or JMF instance.

Table A-1: JDFJMFVersion enumeration Values

Enumeration Value Comment
1.1 JDF 1.1
1.2 JDF 1.2
Enumerations and Lists 575

Appendix A Encoding
A.3.3.2 NamedColor
Colors of preprocessed products such as Wire-O binders and cover leaflets. The entries in the following table may be
prefixed by either “Dark” or “Light”. The result may additionally be prefixed by “Clear” to indicate translucent mate-
rial. For example, “ClearDarkBlue” indicates a translucent dark blue, “ClearBlue” a translucent blue and
“Blue” indicates an opaque blue.

A.3.3.3 Orientation
Orientation of a physical resource. For details see Table 2-3, “Matrices and Orientation values used to describe the
orientation of a Component,” on page 24.

Table A-2: Named Colors

Color name/
Enumeration Value Comment

Black —
Blue —
Brown —
Buff —
Cyan New in JDF 1.2

Gold —
Goldenrod —
Gray —
Green —
Ivory —

Magenta New in JDF 1.2
MultiColor New in JDF 1.1
Mustard New in JDF 1.1

NoColor —
Orange —
Pink —

Red —
Silver —
Turquoise —
Violet —
White —
Yellow —

Table A-3: Page Orientation

Enumeration Value Comment
Rotate0

Rotate90

Rotate180

Rotate270

Flip0

Flip90
Flip180

Flip270
576 Enumerations and Lists

JDF Specification Release 1.2
A.3.3.4 Side
Describes one side of imageable material.

A.3.3.5 WorkStyle

A.3.4 XYRelation
New in JDF 1.2
XML attributes of type XYRelation define the relationship between two ordered numbers.

Table A-4: Side enumeration Values

Enumeration Value Comment
Front
Back

Table A-5: WorkStyle enumeration Values

Enumeration Value Comment
Simplex No turning.
Perfecting Many sheetfed printing presses have perfecting cylinder(s) built in. The leading edge of the

print sheet changes as the sheet is turned by the perfecting cylinder, but the side lays remain
unaltered. In this regard, this WorkStyle is similar to WorkAndTumble, but
Perfecting is an in-line operation during the press run. Therefore, an additional plate
(set) is required during this press run.

WorkAndBack This WorkStyle describes the printing on both sides of the substrate with a different plate
(set) in the second run. After the first run the side lays are altered but the front lays stay as
they were. Lays can be turned by hand or using a pile reverser. Two-plate sets are necessary
for WorkAndBack.

WorkAndTurn WorkAndTurn refers to the turning of the first-run sheet for subsequent perfecting. The
front lays remain unchanged but the side lays must be altered. The alteration can be made
by hand or using a pile turner. Turning happens after the first press run and the plate (set) is
used again in the second press run, imaging the other sheet surface.

WorkAndTumble The WorkAndTumble method is also used for perfecting. The leading edge of the print
sheet changes as the sheet is turned, but the side lays remain unaltered. Tumbling happens
after the first press run and the plate (set) is used again in the second press run, imaging the
other sheet surface.

WorkAndTwist Done between two press runs. The palette is twisted 180 degree before the second run is
performed so that the front lay and the side lay both change. The surface to be imaged is the
same at both runs. Each run prints only part of the surface. The plate (set) stay in the
machine. This WorkStyle is used for saving plate or film material. It is no longer a com-
mon WorkStyle.

Table A-6: XYRelation enumeration Values.

Enumeration Value Comment
gt X>Y
ge X>=Y
eq X==Y
le X<=Y
lt X<Y
ne X!=Y
Enumerations and Lists 577

Appendix A Encoding
A.4 JDF File Formats
This section describes the specific file formats used by JDF. JDF uses TIFF and JPEG file formats, as well as the
PNG image file format. The following sections explain in what ways PNG is used in JDF.

A.4.1 PNG Image Format
JDF uses the PNG images for representing preview images. CIP3 defined two formats: composite CMYK and sepa-
rated. With PNG, only the separated format is supported for color spaces other than RGB. The composite CMYK or
spot color representations must be represented as separated CMYK or spot colors. Thus, preview images are stored as
separate PNG images and JDF links them together. Viewable images and thumbnails can be represented as composite
RGB PNG images.
References: http://www.w3.org/Graphics/png.
578 JDF File Formats

http://www.w3.org/Graphics/png

Appendix B Schema
XML Schema for JDF (and JMF) will be published on: http://
www.CIP4.org.

The XML Schema is not sufficient to completely validate
a JDF job. For example, partitioned resources or process node
types as defined in JDF cannot be validated by XML Schema
processors. In other words, the structure of some elements
depends on the context of usage which cannot be completely
described by XML Schema. Thus, the XML Schema for JDF
will be structured in a way that it enables a prevalidation of
valid JDF-candidates but does not preclude all syntactically
invalid files to be validated.

B.1 Using xsi:type
New in JDF 1.2
XML Schema permits that multiple type definitions be derived from a base type. Wherever the schema has define an
element of that base type, it is possible for the document to indicate to a validator the particular derived type that it
has used. This it does by using the xsi:type attribute with a value of the name of the type, where the xsi tag is associ-
ated with the Schema Instance namespace that has to be declared in the document.
Note: Use of xsi as the tag is normal practice.
Note: The selected type is namespace qualified (which permits extensions)

B.1.1 Using xsi:type with JDF Nodes
New in JDF 1.2
When used with JDF nodes then all processes defined in Section 6 are supported. Furthermore the value to be used is
identical to the process type, thus a JDF node that has a Type of “DigitalPrinting”' can inform validators to
use the schema definition for DigitalPrinting nodes by also setting xsi:type to “DigitalPrinting”.

Some JDF nodes are general in their nature and do not have a restricted definition, (i.e., Product, Combined, and
so on.) General definitions with the appropriate name are provided to enable consistent use of xsi:type.

Example
<JDF xmlns="http://www.CIP4.org/JDFSchema_1_1" ID="BackCover" Status="InProgress"
Type="DigitalPrinting" Version="1.2" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation="http:// www.CIP4.org/JDFSchema_1_1 JDF.xsd"
xsi:type="DigitalPrinting">
 <ResourceLinkPool>
 <DeviceLink Usage="Input" rRef="Entire_Book"/>
 <RunListLink Usage="Input" rRef="Entire_Book"/>
 </ResourceLinkPool>
</JDF>

If the JDF is not in the default namespace then the type name needs to be altered accordingly:
<jdf:JDF xmlns:jdf="http://www.CIP4.org/JDFSchema_1_1" ID="BackCover"
Status="InProgress" Type="DigitalPrinting" Version="1.2" xmlns:xsi="http://www.w3.org/
2001/XMLSchema-instance" xsi:type="jdf:DigitalPrinting">
 <jdf:ResourcePool>
 <jdf:Device Class="Implementation" DeviceID="Unknown Device" ID="Device_001"
Status="Available"/>
 <jdf:RunList Class="Parameter" ID="RunList_001" Status="Unavailable"/>
 </jdf:ResourcePool>
 <jdf:ResourceLinkPool>
 <jdf:DeviceLink Usage="Input" rRef="Device_001"/>
 <jdf:RunListLink Usage="Input" rRef="RunList_001"/>
 </jdf:ResourceLinkPool>
</jdf:JDF>
The JDF Schema defines types for JDF Process nodes and JMF Messages. It is recommended that these types are
used with xsi:type.

Using JDF Schema

Any JDF processor should be
capable of validating whether or not a

JDF Job meets JDF requirements. This can be
accomplished by using a schema when parsing or
by using an application derived from a schema.
The schema itself may be sub-setted into multiple
schemas that are used for validation purposes at
different points in the workflow. For instance, a
JMF schema subset may be used to test JDF-
compliant devices on your shop floor. A product
intent subset may be used to check customer
submitted job specifications.
Using xsi:type 579

http://www.CIP4.org
http://www.CIP4.org

Appendix B Schema
B.1.2 Using xsi:type with JMF Messages
New in JDF 1.2
JMF Messages are organized into families — Command, Acknowledge, etc. (See “Message Families” on
page 131.)— and each of these families has messages for each message Type — Events, KnownControllers,
etc. Because it is the convolution of these two that are the unique derived types, the name used in xsi:type has to be
the convolution of the message family and Type.

To query an event a Query message with an Events/QueryTypeObj would be used. The type definition
name employed by the JDF Schema would therefore be QueryEvents.

<JMF xmlns="http://www.CIP4.org/JDFSchema_1_1" SenderID="TestSender" TimeStamp="2003-
11-07T12:15:56Z" Version="1.2" xmlns:xsi="http://www.w3.org/2001/XMLSchemainstance">
 <Query ID="Message_001Q" Type="Events" xsi:type="QueryEvents">
 <NotificationFilter/>
 </Query>
 <Response ID="Message_001R" Type="Events" refID="Q001" xsi:type="ResponseEvents">
 <NotificationDef Classes="Error" Type="Barcode"/>
 </Response>
</JMF>

Note JMF messages also do not have to be in the default namespace as in the JDF Node example above.
580 Using xsi:type

Appendix C Converting PJTF to JDF
This appendix is provided as a non-normative guide to developers writing applications that will consume PJTF ver-
sion 1.2 jobs and produce JDF.

C.1 PJTF Object Conversion
Many PJTF objects are directly translatable to JDF processes or resources. Others, especially those containing multi-
ple keys, correspond to multiple processes and resources. For example, the JobTicketContents object corresponds to
four JDF processes and three JDF resources. And still others, such as AuditObject, cannot be translated to JDF at all.

Listed below are the prominent PJTF objects and the JDF components to which they correspond. Each section
heading contains the title of the object in question, and each section contains a descriptive table. The first column in
the tables, entitled JDFKey or Object, contains a list of the keys or objects contained within the object being
described. For example, the Accounting object contains an Address object, while the Address object contains an
Address key. If no subobject or key is contained within the object, then the first column is left blank and the process
or resource listed is assumed to correspond directly to that object.

C.1.1 Accounting

C.1.2 Address

C.1.3 Analysis

C.1.4 AuditObject
Audit objects must not be translated. PJTF Audit objects describe the results of operations on files, while JDF Audit
elements describe the results of processes, so there is a basic incompatibility between the two. In addition, PJTF
Audit objects will not be needed to direct further processing of the job after it is converted to JDF.

PJTF Key or Object JDF Process JDF Resource Description
Address — Address —

PJTF Key or Object JDF Process JDF Resource Description
Address — Address Used whenever people or organizations need to

be identified.

PJTF Key or Object JDF Process JDF Resource Description
All keys — Analysis —
PJTF Object Conversion 581

Appendix C Converting PJTF to JDF
C.1.5 ColorantAlias

C.1.6 ColorantControl

C.1.7 ColorantDetails

C.1.8 ColorantZoneDetails

C.1.9 ColorSpaceSubstitute

C.1.10 Delivery

C.1.11 DeviceColorant

C.1.12 Document
JobTicketContents, Document and PageRange objects are decomposed into a number of different JDF objects.

PJTF Key or Object JDF Process JDF Resource Description
All keys — — Maps to a subelement of the ColorantControl

resource.

PJTF Key or Object JDF Process JDF Resource Description
All keys — ColorantControl —

PJTF Key or Object JDF Process JDF Resource Description
All keys — — Keys in the PJTF ColorantDetails dictionary

are a set of colorant names. The values are
DeviceColorant objects.

PJTF Key or Object JDF Process JDF Resource Description
All keys — TrappingParams DeviceColorant map to the ColorantZoneDe-

tails subelement of the TrappingParams.
resource.

PJTF Key or Object JDF Process JDF Resource Description
All keys — — Maps to a subelement of the ColorantControl

resource.

PJTF Key or Object JDF Process JDF Resource Description
All keys Delivery Address Specifies a quantity of a product to be delivered

to an address.

PJTF Key or Object JDF Process JDF Resource Description
All keys — — Maps to a Color subelement of the ColorPool

resource. The name is entered in the Separa-
tionSpec of a TrappingDetails resource.
582 PJTF Object Conversion

JDF Specification Release 1.2
Most of the key/value pairs translate into various resources.
PJTF Key
or Object JDF Process JDF Resource Description

bleed media trim — RunList Maps to attributes of the RunList
resource or to processes in which
they are used.

ColorantControl — ColorantControl —
Files — RunList

FileSpec
Maps to FileSpec resources con-
tained within RunList elements.

Finishing AdhesiveBinding
EndSheetGluing
SaddleStitching
SideSewing
Stitching
ThreadSewing

AdhesiveBindingParams
EndSheetGluingParams
SaddleStitchingParams
SideSewingParams
StitchingParams
ThreadSewingParams

—

FontPolicy — FontPolicy The resource is attached to the
applicable processes.

IgnoreHalftone — — Maps to the IgnoreHalftone
attribute of the
PDFToPSConversionParams
resource.

InsertPage Imposition RunList
Sheet

Occurs as an attribute either of
RunList resources or of Sheet
resources referenced by
Imposition processes.

NewSheet Imposition InsertSheet NewSheets become instances of
InsertSheet resources on
RunLists with a SheetUsage
attribute of “Header”.

Media — Media Maps to a subelement of the
ExposedMedia resource.

MediaSource — — Maps to a Media resource refele-
ment of a
DigitalPrintingParams
resource.

MediaUsage Dividing DividingParams Specifies controls for roll-fed
media.

Rendering Rendering — —
Trailer Imposition InsertSheet Trailers become instances of

InsertSheet resources on
RunLists with a Usage attribute
of “trailer”

Trapping Trapping — —
PJTF Object Conversion 583

Appendix C Converting PJTF to JDF
C.1.13 Finishing
Finishing operations are derived from CIP3 PPF. Conversion of PJTF Finishing objects is vendor-dependent, since
the PJTF specification does not describe any detail for Finishing objects.

C.1.14 FontPolicy

C.1.15 InsertPage

C.1.16 InsertSheet

C.1.17 Inventory

C.1.18 Ticket

C.1.19 JobTicketContents
JobTicketContents, Document and PageRange objects are decomposed into a number of different JDF objects.
Most of the key/value pairs translate into various resources.

PJTF Key or Object JDF Process JDF Resource Description
All keys AdhesiveBinding

EndSheetGluing
SaddleStitching
SideSewing
Stitching
ThreadSewing

AdhesiveBindingParams
EndSheetGluingParams
SaddleStitchingParams
SideSewingParams
StitchingParams
ThreadSewingParams

—

PJTF Key or Object JDF Process JDF Resource Description
All keys Interpreting FontPolicy —

PJTF Key or Object JDF Process JDF Resource Description
All keys — RunList InsertPage objects may generate a

InsertSheet resource within a RunList.

PJTF Key or Object JDF Process JDF Resource Description
All keys — InsertSheet —

PJTF Key or Object JDF Process JDF Resource Description
— — — —

PJTF Key or Object JDF Process JDF Resource Description
All keys except Audit,
Scheduling, PreflightRe-
sults

Any process Any resource Keys may be represented at various levels of the
JDF tree. Contents are represented as processes,
resources, and versions.

PJTF Key or
Object JDF Process JDF Resource Description

Accounting — — Maps to the CustomerInfo
element.

Administrator — — Maps to the CustomerInfo
element.

ColorantControl — ColorantControl —
Delivery Delivery DeliveryParams —
584 PJTF Object Conversion

JDF Specification Release 1.2
Documents — RunList May require more than one
RunList resource.

EndMessage — — Maps to the End attribute of the
NodeInfo element.

Finishing AdhesiveBinding
EndSheetGluing
SaddleStitching
SideSewing
Stitching
ThreadSewing

AdhesiveBindingParams
EndSheetGluingParams
SaddleStitchingParams
SideSewingParams
StitchingParams
ThreadSewingParams

—

FontPolicy Interpreting
PDFToPSConversion

FontPolicy The FontPolicy resource is
attached to any process that uses
it.

IgnoreHalftone — — Maps to the IgnoreHalftone
attribute of the
PDFToPSConversionParam
s resource.

InsertPage Imposition RunList
Sheet

Occurs as an attribute either of
RunList resources or of Sheet
resources referenced by
Imposition processes.

JobName — — CustomerJobName in the
CustomerInfo element of the
JobInfo node.

Layout Imposition Layout —
MarkDocu-
ments

Imposition RunList Requires one of two RunList
resources, each of which is a
resource of the Imposition
process.

MediaSource — — Maps to a MediaSource
resource refelement of a
DigitalPrintingParams
resource.

MediaUsage Dividing DividingParams Specifies controls for roll-fed
media.

NewSheet Imposition InsertSheet NewSheets become instances of
InsertSheet resources on
RunLists with a Usage
attribute of “header”

PrintLayout Imposition — Maps to a subelement of the
Layout resource.

Rendering Rendering — Maps to the attribute of the
Rendering process.

Scheduling — — The Scheduling object is not
translated.

StartMessage — — Maps to the Start attribute of
the NodeInfo element.

PJTF Key or
Object JDF Process JDF Resource Description
PJTF Object Conversion 585

Appendix C Converting PJTF to JDF
Submitter — — Maps to the CustomerInfo
element.

Trailer Imposition InsertSheet Trailers become instances of
InsertSheet resources on
RunLists with a Usage
attribute of “trailer”

Trapping Trapping — —

PJTF Key or
Object JDF Process JDF Resource Description
586 PJTF Object Conversion

JDF Specification Release 1.2
C.1.20 JTFile

C.1.21 Layout

C.1.22 Media

C.1.23 MediaSource

C.1.24 MediaUsage

C.1.25 PageRange
JobTicketContents, Document and PageRange objects are decomposed into a number of different JDF objects.

PJTF Key or Object JDF Process JDF Resource Description
All keys — — In most cases, JTFile objects will become

FileSpec resources.
If a FilesDictionary is present, the resource
may need to be partitioned by Separation.
If a PlaneOrder is present, RunLists which
reference the file will need to be partitioned by
Separation and structured to reference the page
in the file appropriately.

PJTF Key or Object JDF Process JDF Resource Description
All keys Imposition Layout —

PJTF Key or Object JDF Process JDF Resource Description
All keys — Media Maps to a subelement of the ExposedMedia

resource.

PJTF Key
or Object JDF Process JDF Resource Description

ManualFeed — — Maps to the ManualFeed attribute of a
MediaSource resource pointed to by a refelement
of a DigitalPrintingParams or
IDPrintingParams resource.

LeadingEdge — — Maps to the LeadingEdge attribute of a
MediaSource resource refelement of a
DigitalPrintingParams or IDPrintingParams
resource.

Media — — Maps to a Media refelement of a MediaSource
resource.

MediaClass — — Maps to the MediaTypeDetails attribute of a Media
resource of a DigitalPrintingParams or
IDPrintingParams resource.

Position — — Maps to the MediaLocation attribute of a
MediaSource resource.

PJTF Key or Object JDF Process JDF Resource Description
All keys Dividing DividingParams Specifies controls for roll-fed media.
PJTF Object Conversion 587

Appendix C Converting PJTF to JDF
Most of the key/value pairs translate into various resources.
PJTF Key or

Object JDF Process JDF Resource Description

bleed media trim — RunList Maps to attributes of the
RunList resource or to pro-
cesses in which they are used.

ColorantControl — ColorantControl —
Delivery Delivery DeliveryParams —
Files — RunList

FileSpec
Maps to FileSpec resources
contained within RunList ele-
ments.

Finishing AdhesiveBinding
EndSheetGluing
SaddleStitching
SideSewing
Stitching
ThreadSewing

AdhesiveBindingParams
EndSheetGluingParams
SaddleStitchingParams
SideSewingParams
StitchingParams
ThreadSewingParams

—

FontPolicy Interpreting
PDFToPSConversion

FontPolicy The FontPolicy resource is
attached to any process that
uses it.

IgnoreHalftone — — Maps to the IgnoreHalftone
attribute of the
PDFToPSConversionPara
ms resource.

InsertPage Imposition RunList
Sheet

Occurs as an attribute either of
RunList resources or of
Sheet resources referenced by
Imposition processes.

Media — Media Maps to a subelement of the
ExposedMedia resource.

MediaSource — — Maps to a Media resource
refelement of a
DigitalPrintingParams
resource.

MediaUsage Dividing DividingParams Specifies controls for roll-fed
media.

NewSheet Imposition InsertSheet NewSheets become instances
of InsertSheet resources on
RunLists with a Usage
attribute of “header”

Rendering Rendering — —
Trailer Imposition InsertSheet Trailers become instances of

InsertSheet resources on
RunLists with a Usage
attribute of “trailer”
588 PJTF Object Conversion

JDF Specification Release 1.2
C.1.26 PlacedObject

C.1.27 PlaneOrder

C.1.28 Preflight
Note that the definition of Preflight has been completely redefined in JDF 1.2. A one to one translation of PJTF

preflight to JDF preflight is no longer possible.

C.1.29 PreflightConstraint
Note that the definition of Preflight has been completely redefined in JDF 1.2. A one to one translation of PJTF

preflight to JDF preflight is no longer possible.

C.1.30 PreflightDetail
Note that the definition of Preflight has been completely redefined in JDF 1.2. A one to one translation of PJTF

preflight to JDF preflight is no longer possible.

Trapping Trapping — —
Which — RunList The Pages attribute or combi-

nation of FirstPage and
SkipPage in RunLists
reflect the values of Which.
Note: More than one
PageRange may generate
Pages entries for a single Run.

PJTF Key or Object JDF Process JDF Resource Description
All keys — — Maps to a subelement of the Surface resource.

PJTF Key or Object JDF Process JDF Resource Description
All keys — RunList See Section C.4, Translating the Contents

Hierarchy.

PJTF Key or Object JDF Process JDF Resource Description
All keys Preflight — —

PJTF Key or Object JDF Process JDF Resource Description
All keys — — Maps to a subelement of the PreflightProfile

resource.

PJTF Key or Object JDF Process JDF Resource Description
All keys — — Maps to a subelement of the

PreflightAnalysis resource.

PJTF Key or
Object JDF Process JDF Resource Description
PJTF Object Conversion 589

Appendix C Converting PJTF to JDF
C.1.31 PreflightInstance
Note that the definition of Preflight has been completely redefined in JDF 1.2. A one to one translation of PJTF

preflight to JDF preflight is no longer possible.

C.1.32 PreflightInstanceDetail
Note that the definition of Preflight has been completely redefined in JDF 1.2. A one to one translation of PJTF

preflight to JDF preflight is no longer possible.

C.1.33 PreflightResults
Note that the definition of Preflight has been completely redefined in JDF 1.2. A one to one translation of PJTF

preflight to JDF preflight is no longer possible.

C.1.34 PrintLayout

C.1.35 Profile
Note that the definition of v has been completely redefined in JDF 1.2. A one to one translation of PJTF preflight

to JDF preflight is no longer possible.

PJTF Key or Object JDF Process JDF Resource Description
All keys — — Subelement of the PreflightAnalysis

resource

PJTF Key or Object JDF Process JDF Resource Description
All keys — — Subelement of the PreflightAnalysis

resource

PJTF Key or Object JDF Process JDF Resource Description
All keys — — This object is not translated.

PJTF Key or Object JDF Process JDF Resource Description
All keys Imposition — Maps to a subelement of the Layout resource.

PJTF Key or Object JDF Process JDF Resource Description
All keys Preflighting PreflightProfile
590 PJTF Object Conversion

JDF Specification Release 1.2
C.1.36 Rendering

C.1.37 ResourceAlias

PJTF ResourceAlias objects provide a unified namespace that allows each PJTF object to refer to the resources it
needs to execute the job of which it is a part. More specifically, PJTF version 1.1 supports the use of ResourceAlias
objects to allow references to halftones and colorspaces.

For the ResourceAlias::Location key, the File and This keys are supported by a SourceFile attribute whose
value is a fileref. The translator must provide a reference to the original PJTF file (for this) or a copy that contains the
referenced resources.

C.1.38 Scheduling
Scheduling objects are not translated. It is presumed that translation of PJTF jobs into JDF is performed to allow the
reuse of PJTF jobs that have been archived. Thus, the original scheduling information embedded in the PJTF is irrel-
evant.

PJTF Key or Object JDF Process JDF Resource Description
All keys Rendering RenderingParams —

PJTF Key
or Object JDF Process JDF Resource Description

Location PDLResourceAlias Location is Device
File PDLResourceAlias File is supported via the SourceFile fileref.
This PDLResourceAlias This is supported via the SourceFile fileref.
ResourceName PDLResourceAlias This key is not used. References to the aliased

resource run via the ResourceLink element.
SourceFile PDLResourceAlias Source file maps to an attribute of this resource.
PJTF Object Conversion 591

Appendix C Converting PJTF to JDF
C.1.39 Signature

C.2 Sheet

C.2.1 SlipSheet

C.2.2 Surface

C.2.3 Tile

C.2.4 Trapping

C.2.5 TrappingDetails

C.2.6 TrappingParameters

C.2.7 TrapRegion

C.3 Translating Values
The PJTF version 1.1 specification lists twelve data types that may occur for the values of keys in PJTF objects. The

PJTF Key or Object JDF Process JDF Resource Description
All keys — — Maps to a subelement of the Layout resource.

PJTF Key or Object JDF Process JDF Resource Description
All keys — Sheet —

PJTF Key or Object JDF Process JDF Resource Description
All keys — InsertSheet SlipSheets become an InsertSheet resource

which may define new media, and which has a
Usage attribute of “trailer”.

PJTF Key or Object JDF Process JDF Resource Description
All keys — Surface —

PJTF Key or Object JDF Process JDF Resource Description
All keys Tiling Tile —

PJTF Key or Object JDF Process JDF Resource Description
All keys Trapping TrappingParams —

PJTF Key or Object JDF Process JDF Resource Description
All keys — TrappingDetails See the PJTF DeviceColorant object entry for

details on how it is translated.

PJTF Key or Object JDF Process JDF Resource Description
All keys — TrappingParams —

PJTF Key or Object JDF Process JDF Resource Description
All keys — TrapRegion —
592 Sheet

JDF Specification Release 1.2
following table describes how each of these datatypes must be represented in JDF.

C.4 Translating the Contents Hierarchy
The contents of a PJTF job are represented in the “contents hierarchy”. The hierarchy is headed by the JobTicketCon-
tents object, with Document, PageRange and JTFile objects occurring below. The hierarchy implicitly specifies the
sequence of source pages for the job.

The contents sequence comprises all the pages specified by the first, then second, then last PageRange for the
first Document, followed by the pages specified by the first, then last PageRange for the second Document, fol-
lowed by the pages for the first, then last PageRange for the last Document. This sequence of source pages is con-
sumed when the job is printed via PrintLayout (discussed below).

The contents hierarchy must be translated into a JDF RunList resource. Each LayoutElement entry in a
RunList can reference a file via the FileSpec/@URL attribute and a set of pages in the file via the Pages element.
There are several additional issues related to this translation which are discussed below.

C.5 Representing Pages
In PJTF, source pages are represented as a hierarchy of Document and PageRange objects. Pages are referenced by
page number out of files; files are represented in JTFile objects. PageRange objects can reference a single page, or
a set of contiguous pages.

In JDF, source pages are represented as a set of partitions of the RunList, which reference files via URL, and
pages from the files via an IntegerRangeList (such as ‘1 3~5 7~ -1‘).

As a consequence of this difference, pages from more than one PJTF PageRange object can be represented in
a single RunList resource, assuming that all the other keys for the multiple PageRanges have the same values.

PJTF Data Type JDF Representation Comment
boolean boolean —
Number double —
Name name —
Dictionary element All PJTF objects are dictionaries. These dictionaries generally

become resources or processes as specified above.
In addition, some PJTF objects contain embedded dictionaries
whose keys are not specified (examples include TrappingParame-
ters and ColorantDetails). These dictionaries are converted to
arrays of elements, with the key name from the PJFT dictionary
becoming an attribute of the subelement.

Stream URL PJTF supports PDF streams by reference to an object in a PDF
file. The same mechanism is supported in JDF, with the JDF URL
data type being used to identify the PDF file.

Rectangle rectangle —
Filespec URL —
Text string —
String string —
Date date —
Phone number Phone number The standard for the representation of phone numbers in PJTF is

used here as well.
Translating the Contents Hierarchy 593

Appendix C Converting PJTF to JDF
C.6 Representing Preseparated Documents
In preseparated workflows, all planes of each page may occur in the same file, or there may be a separate file for each
plane. When all the planes occur in a single file, PJTF JTFile objects use a PlaneOrder object to specify which
pages in the file represent each colorant plane for each source page. When each plane occurs in a separate file, the
JTFile objects use a FilesDictionary to associate files with each colorant.

In JDF, both of these cases are handled through the RunList resource. In the case where the planes occur in sep-
arate files, the RunList is partitioned; and each partition contains the name of the colorant and the URL for the file
for that colorant. In the case where the colorant planes are intermingled via PlaneOrder objects, the RunLists are
partitioned, but only a single URL is used for each RunList partition. Each PlaneOrder object will become one
RunList partition.

C.7 Representing Inherited Characteristics
In PJTF, many of the characteristics of source pages—including MediaBox, ColorantControl, and InsertPage
— may occur at all levels of the contents hierarchy. This inheritance scheme is not provided in JDF. Therefore, the
correct values for each of the attributes must be translated to the appropriate element for each RunList element.

C.8 Translating Layout
PJTF provides two mechanisms to image a set of source pages onto a larger surface for printing: Layout and Print-
Layout. Layout is a mechanism for explicitly associating specific source pages with specific locations on the surface.
PrintLayout is a method for automatically positioning a sequence of source pages onto a series of surfaces.

Layout is represented as a hierarchy of PJTF objects: Signatures, Sheets, Surfaces and PlaceObjects. The Layout
hierarchy may have one or more Signature objects. Each Signature must have one or more Sheets. Each Sheet must
have 1 or 2 Surfaces. Each Surface may have 0 or more PlacedObjects.

PlacedObjects directly reference source pages by referring to a Document object via its Doc key, and a specific
page within the sequence of pages specified by all the PageRanges in Pages arrays for that Document.

JDF defines resources which are direct translations of Signature, Sheet and Surface. PlacedObjects and MarkOb-
jects are subelements of the Surface resource. Note: PlacedObjects identify specific source pages via a combination
of Ord and either Doc or MarkDoc. Ord identifies one page out of the sequence of pages specified by all the Pag-
eRange objects for the document identified by either Doc or MarkDoc.

In the JDF PlacedObject subelement, the Ord attribute is an index into the entire sequence of pages specified by
all the partitions with IsPage = true in the RunList. So there is a translation required between the PJTF Ord value
and the JDF Ord attribute.

Similarly, in the JDF MarkObject subelement, the Ord attribute is an index into the entire sequence of pages
specified by all the partitions in the RunList for marks. So there is a translation required between the PJTF Ord
value and the JDF Ord attribute.

C.9 Translating PrintLayout
PrintLayout uses the same hierarchy of objects as Layout, but with the restriction that there can be only a single Sig-
nature. The Signature is used as a template that is repeated to consume all the source pages specified by the contents
hierarchy for the job.

In addition, the PlacedObjects that occur in a PrintLayout hierarchy are not references to specific source pages.
Instead, they represent the intent that a page from the sequence of source pages specified by the contents hierarchy be
consumed and placed onto the Surface each time the Signature is executed.

In JDF, PrintLayout is represented via the same set of resources as Layout, except that the top of the hierarchy is
an AutomatedLayout resource instead of Layout. This resource is constrained to have only one Signature resource.
Note that when translating PJTF PlacedObjects to PlacedObject subelements of a Surface resource in the Automated-
Layout hierarchy, the Ord values from the PJTF PlacedObjects need not be modified. However, as in the creation of
594 Representing Preseparated Documents

JDF Specification Release 1.2
Layout, the Ord attribute for JDF MarkObject subelements are indices into the entire sequence of pages specified by
all the partitions in the RunList for marks. So there is a translation required between the PJTF Ord value and the
JDF Ord attribute.

C.10 Translating Trapping
Trapping controls are represented in PJTF as several objects: Trapping, TrappingDetails, ColorantDetails and Device-
Colorants; TrappingParameters and ColorantZoneDetails; and TrapRegions. These objects can occur in multiple
places in the PJTF job, and they work together to determine, for each page in the job, whether it will be trapped and
how. There is also a key in the JobTicketContents object, TrappingSourceSelector, which determines which set of
trapping controls will be honored.

The trapping controls in PJTF are the same, whether the trapping will be done pre-RIP or in-RIP. In translating
PJTF trapping controls to JDF, there are several tasks to perform:

• Create the required Trapping node

• Add the resources to represent the TrappingParameters which will be used

• Create the resources which represent the TrapRegions which will be used

• Determine the pages to be trapped

• Determine which controls to use for each page

• Add references to the pages in the RunList in the TrapRegion resource
Note: The contents hierarchy for the PJFT job must be translated into RunLists before trapping objects can be trans-
lated. Paths in JDF are specified as a set of path operators. PJTF TrapZone paths are a sequence of coordinates with
an implied moveto at the beginning, and an implied closepath the end.
Translating Trapping 595

Appendix C Converting PJTF to JDF
596 Translating Trapping

Appendix D Converting PPF to JDF
This appendix gives non-normative advice on how to convert CIP3 PPF 3.0 files to JDF encoded files. Since JDF was
designed with the intention of providing the highest possible level of compatibility with PPF, many of these conver-
sions are relatively straightforward. From the point of view of JDF, CIP3’s PPF is mainly resource-based. Most of
the PPF structures were, therefore, translated to JDF resources of a corresponding process. Meanwhile, the PPF prod-
uct defini t ion operations are easi ly translated to JDF processes of the same name, as quoted in
CIP3ProductOperation. This kind of conversion is possible because the component structure of PPF is adopted by
JDF, with some enhancements. Parameters of PPF product definition operations (CIP3ProductParams) are given
the abbreviated name “Params,” and this name is appended to the CIP3ProductOperation name. Thus SideSewing
becomes SideSewingParams.

In many cases, PPF key names became JDF attribute or element names with the “CIP3” prefix removed. An
example of this kind of translation is provided below, and the CIP3 product structure shown in the example is
expressed as a JDF process in Figure D.1, following the example.

Example: A CIP3 PPF product definition operation

/CIP3Products [
<<
/CIP3ProductName (sewed book block)
/CIP3ProductOperation /ThreadSewing
/CIP3ProductParams <<
/NumberOfNeedles 4
/GlueLineRefSheets [0]
/GlueLine <<
...
>>
/BlindStitch false
/Sealing false
>>
/CIP3ProductComponents
[
<<
/SourceType /PartialProduct
/SourceProduct (book block)
...
>>
]
>>

<<
 /CIP3ProductName (book block)
 % ... the definition of the book block operation would go here ...
>>
] def

Figure D.1: JDF node of a CIP3 product structure
597

Appendix D Converting PPF to JDF
In Figure D.1, the input Component represents the “book block,” the output Component represents the “sewed
book block,” and ThreadSewingParams covers all information of the CIP3ProductParams structure. When-
ever possible, the formal conversion and translation conventions described above were followed, but because exten-
sions and operations new to PPF are included in JDF, some exceptions were made. These exceptions are explained in
detail for each PPF structure in the sections that follow. Before they are explained, however, a translation of PPF data
types is provided.

D.1 Converting PPF Data Types
The following table shows all PPF data types, and how they are transformed. All measuring units of CIP3 must be
converted to the JDF native unit point (1/72 inch). Comments are only provided when there is something unusual or
noteworthy about the translation; thus, not all translations require comment.

D.2 PPF Product Definitions
The information stored in CIP3Products and CIP3FinalProducts is implicitly expressed by the structure of the JDF
tree. Each product definition step is converted to a JDF node, and a product node is created for every final product of
a PPF file. This is also the case for each partial product that is used in two or more final products. The following table
provides information that explains how to accomplish these transformations and make these conversions. The content
of the en t i t i e s CIP3ProductJobName , CIP3ProductJobCode , CIP3ProductCopyr ight and
CIP3ProductCustomer must also be copied to the parent product node. The sections that follow contain information
about the conversion requirements of prominent postpress processes.

Table D-1: Conversion of PPF Data Types

PPF Data Type JDF Data Type Comments
boolean boolean —
Integer integer —
Real double The exponent symbol must be a capital “E” in XML.
Number double The exponent symbol must be a capital “E” in XML.
Name enumeration or

NMTOKEN
When PPF Names are used as a closed set of predefined values, they are
converted to an enumeration. Otherwise, they are converted to an
NMTOKEN.

String string Some PostScript string characters cannot be used in XML.
Array Sequence of ele-

ments or Integer-
List or DoubleList

If the array consists of homogeneous integers or doubles, it is converted
to an IntegerList or DoubleList, otherwise to a sequence of correspond-
ing elements.

Dictionary element In most cases, the structure of a Dictionary is directly converted to a
XML element. Exceptions to this rule are described in the following sec-
tions.

Table D-2: JDF Representation of a product definition step

PPF Key JDF Representation Comments
CIP3ProductName This is expressed by an output

resource link.
—

CIP3ProductOperation JDF node See Section 3.1, JDF Nodes.
CIP3ProductParams Resource identified by the name

of the JDF node + “Params”
For example, during a CIP3ProductOperation of
the type “SaddleStitching”, the JDF representation
of the CIP3ProductParams is
SaddleStitchingParams

CIP3ProductComponent Component See Section D.2.1, Comparison of the PPF
Component to the JDF Component, below
598 Converting PPF Data Types

JDF Specification Release 1.2
D.2.1 Comparison of the PPF Component to the JDF Component
The structure of the PPF Component is very similar to the structure of the JDF Component, so it is easy to convert
one to the other. The following table gives advice on how to do this. Some information stored in the PPF
Component must be used for linking the correct resources to a process. Other implicit information, such as the
bounding box of the component or an overfold, must be calculated and explicitly specified in the subelements of the
Component. Furthermore, the appropriate algorithms can be very complex for some operations, such as folding.
For further information about the Component resource, see Section 7.2.33, Component.

D.2.2 Collecting
To convert a Collection operation, follow the previous descriptions. This process contains no special considerations
to take into account.

D.2.3 Gathering
To convert a Gathering operation, follow the previous descriptions. This process contains no special considerations
to take into account.

CIP3ProductJobName Comment element of the JDF
node

—

CIP3ProductJobCode JobID or JobPartID attribute
of the JDF node

If the output of this step is a final product and it is
only final product, it should be converted into
JobID of the root node. Otherwise, it is converted
into a JobPartID of the corresponding process
node.

CIP3ProductCopyright Comment element of the JDF
node

—

CIP3ProductCustomer CustomerInfo element of the
JDF node

Note that the CustomerInfo element is struc-
tured, while the CIP3ProductCustomer is not.

CIP3ProductVolume Amount attribute of the output
Component resource link

—

Table D-3: Converting a PPF Component

PPF Key JDF Representation Comments
SourceType ComponentType attribute of

Component
—

SourceSheet SourceSheet attribute of Component —
— SheetPart attribute of Component Calculable out of the cut block structure.
SourceBlock Expressed by an input resource link to an

output Component of a previous
Cutting process.

see Section D.3.6, Cutting Data

SourceProduct Expressed by an input resource link to a
Component.

—

Params Transformation attribute of
Component

In most CIP3 operations, there is only one compo-
nent parameter called Orientation. This matrix is
renamed to Transformation. The only excep-
tion is the EndSheetGluing process. See
EndSheetGluing for more information.

Table D-2: JDF Representation of a product definition step
PPF Product Definitions 599

Appendix D Converting PPF to JDF
D.2.4 ThreadSewing
Convert the entries of CIP3ProductParams structure directly to the ThreadSewingParams resource Add this
resource as an input resource link to the originated ThreadSewing process. See Section 7.2.160,
ThreadSewingParams for more information.

D.2.5 SaddleStitching
Convert the entries of CIP3ProductParams structure directly to the StitchingParams resource. Set StitchType
= “Saddle”. Add this resource as an input resource link to the originated Stitching process. See Stitching for
more information.

D.2.6 Stitching
Convert the entries of CIP3ProductParams structure directly to the StitchingParams resource. Set StitchType
= “Side”. Add this resource as an input resource link to the originated Stitching process. See Stitching for
more information.

D.2.7 SideSewing
Convert the entries of CIP3ProductParams structure directly to the ThreadSewingParams resource. Add this
resource as an input resource link to the originated ThreadSewing process. See ThreadSewing for more
information.

D.2.8 EndSheetGluing
The EndSheetGluing CIP3 operation is the only operation that requires more information than Orientation in the
PPF Component Params. This additional information of the front and the back end sheet components is transferred
to the EndSheetGluingParams resource, as described in the following table. See Section 7.2.62,
EndSheetGluingParams for more information.

D.2.9 AdhesiveBinding
The PPF main adhesive binding operation dictionary is translated to the AdhesiveBindingParams resource. All
single suboperations that were resident in the PPF Processes array are converted to special elements inside the
AdhesiveBindingParams (see Section 7.2.3, AdhesiveBindingParams). For each type of adhesive binding sub-
operation there exists one extra element. The suboperations SpinePreparation and GlueApplication can simply be
translated by removing the ProcessType entry and converting all other entries directly to the appropriate element.

The following tables show how to convert the main operation and its other suboperations. Because new features
were added, the CIP3 Lining operation was renamed to SpineTaping.

Table D-4: Converting the PPF EndSheetGluing operation to JDF

PPF Key JDF Representation Comments
Offset Offset attribute of the EndSheet element

of EndSheetGluingParams
—

GlueLine GlueLine element of the EndSheet ele-
ment of EndSheetGluingParams

See Section 7.2.62, EndSheetGluingParams for informa-
tion on how to convert the GlueLine structure.

Table D-5: Converting the PPF AdhesiveBinding operation to JDF

PPF Key JDF Representation Comments
Processes

• BackPreparation

• GlueApplication

• Lining

• CoverApplication

Several single process:
SpinePreparation
Gluing
SpineTaping
CoverApplication

See description above.
600 PPF Product Definitions

JDF Specification Release 1.2
The following tables show how to convert the main operation and its other sub-operations. Because new features
were added, the CIP3 Lining operation was renamed to SpineTaping. Convert the PPF AdhesiveBinding sub-oper-
ation Lining to a SpineTaping process. Copy the parameters of the sub-operation to the equivalent attributes of the
SpineTapingParams resource and link them with the process.

D.2.10 Trimming
Convert the entries of CIP3ProductParams structure directly to the TrimmingParams resource. Add this
resource as an input resource link to the originated Trimming process. See Section 6.6.48.9, Trimming for more
information.

D.2.11 GluingIn
Because extended features have been added, the PPF GluingIn operation was renamed to the Inserting process.
Consequently, the parameters of this CIP3 operation are transformed into the InsertingParams resource. For
more information see Section 7.2.89, InsertingParams.

PullOutValue PullOutValue attribute of all SpinePreparationParams
resources, which are part of the AdhesiveBinding process
chain.

—

PullOutMake — Not needed.
FlexValue FlexValue attribute of AdhesiveBindingParams —

FlexMake — Not needed.

Table D-6: Converting the PPF AdhesiveBinding suboperation Lining

PPF Key JDF Representation Comments
ProcessType Name of the JDF process.
TopLiningExcess TopExcess attribute of SpineTapingParams —
LiningExcess HorizontalExcess attribute of SpineTapingParams —
LiningLength StripLength attribute of SpineTapingParams —
LiningMaterial StripMaterial attribute of SpineTapingParams —
LiningBrand StripBrand attribute of SpineTapingParams —

Table D-7: Converting the PPF AdhesiveBinding suboperation CoverApplication

PPF Key JDF Representation Comments
ProcessType — There is an extra element for each type of Adhe-

siveBinding suboperation.
CoverOffset CoverOffset attribute of

CoverApplication
—

ScoringOffsets and
ScoringSide

Several Score elements inside of
CoverApplication

The Score element is much more structured than
these two single entries.

Table D-8: Converting the PPF GluingIn operation to JDF

PPF Key JDF Representation Comments
SheetOffset SheetOffset attribute of

InsertingParams
—

— Location attribute of InsertingParams Must be Front

Table D-5: Converting the PPF AdhesiveBinding operation to JDF
PPF Product Definitions 601

Appendix D Converting PPF to JDF
Most of the entries of the PPF GlueLine structure can be directly mapped to the GlueLine element. Note that the
GluingPattern attribute cannot have an empty array to describe a solid glue line. For this purpose, use an array of
“1 0”.

D.2.12 Folding
Like all formats, JDF follows a structured approach in the description of the folding process. That is why every sub-
operation has its own element type and has no need of the function entry. Normally, the names of the CIP3 fold func-
tions was taken for the name of the respective corresponding process names. One of the specialized processes ...

• Folding,

• Creasing,

• Cutting,

• Perforating, and

• Gluing ...
is created for each folding sub-operation.

Because of inherent naming obscurities, the CIP3 functions Groove and Lime were renamed to Crease and
Gluing in JDF. The following tables give advice on how to convert the PPF structures to JDF elements.

The PPF Folding suboperation is translated to a Folding process. The parameters of the PPF command are copied
into a Fold element inside the FoldingParams resource. The table below shows how to assign the parameters of
the PPF Fold command to the equivalent attributes inside the Fold element.

GlueLines Several GlueLine elements in
InsertingParams

See Section 7.2.89, InsertingParams for information
on how to convert the GlueLine structure.

Sample Comment of the corresponding
Component

Converted to an input Component of Type
PartialProduct

Table D-9: Converting the PPF Folding operation to JDF

PPF Key JDF Representation Comments
CIP3FoldDescription — If required, it can be expressed by the FoldCatalog attribute

or by the fold operations.
CIP3FoldSheetIn — In CIP3 the parameters of the folding procedure will be

scaled, if the value of the CIP3FoldSheetIn array is different
from the dimension of the input component. In JDF a scaling
mechanism is not supported.

CIP3FoldProc

• Fold

• Lime

• Cut

• Groove

• Perforate

Several processes:
Folding

Gluing

Cutting

Creasing

Perforating

See previous description

Table D-10: Converting the PPF Folding suboperation of type Fold

PPF Key JDF Representation Comments
travel Travel attribute of Fold —
from From attribute of Fold —

Table D-8: Converting the PPF GluingIn operation to JDF
602 PPF Product Definitions

JDF Specification Release 1.2
For every lime operation, a Gluing process is generated. Create a GluingParams resource and add a Glue ele-
ment. Insert the value of the working-direction attribute into the WorkingDirection attribute. Attach a
GlueApplication element. To this element add a GlueLine element. The attributes start-position and working-path
can put into the equivalent attributes StartPosition and WorkingPath inside the GlueLine.

The remaining operation types can converted to one of the following processes:

• Cutting. Create a CuttingParams resource and link it to the process. Transfer the parameters of the PPF Cut
command into equivalent attributes of a Cut element and insert this into the CuttingParams resource.

• Creasing. The same as above except that there is a CreasingParams resource with a Crease element
inside which will fill with the converted parameters of the PPF Groove command.

• Perforate. The same as above except that there is a PerforatingParams resource with a Perforate
element inside which will fill with the converted parameters of the PPF Perforate command.

D.3 PPF Sheet Structure
The conversion of the PPF sheet structures is much more complex than the conversion of the product operations. A
JDF layout structure, which is not directly specified in PPF, must be built up in order to place the mark objects such as
register mark or density measuring field. All other sheet information is stored in specialized resources. These
resources are often partitionable to specify the sheet, surface and separation to which they belong (see Section 3.8.2,
Description of Partitionable Resources). The result is an inheritance of attributes comparable to the inheritance pro-
cess in CIP3.

to To attribute of Fold —
function — —

Table D-11: Converting the PPF Folding suboperation of type Lime

PPF Key JDF Representation Comments
start-position StartPosition attribute of the

GlueLine element of the Gluing ele-
ment

JDF uses the GlueLine element because of the
advantage of more optional attributes of this type of
element.

working-path WorkingPath attribute of the
GlueLine element of the Gluing ele-
ment

JDF uses the GlueLine element because of the
advantage of more optional attributes of this type of
element.

working-direction WorkingDirection attribute of the
Gluing element

—

function — —

Table D-12: Converting the PPF Folding suboperation of all other types

PPF Key JDF Representation Comments
start-position StartPosition attribute of the respective

Cut / Crease / Perforate element
—

working-path WorkingPath attribute of the respective
Cut / Crease / Perforate element

—

working-direction WorkingDirection attribute of the
respective Cut / Crease / Perforate ele-
ment

—

function — There is an extra element for each type of a
Folding suboperation. The extra elements are:
Cut, Crease, and Perforate

Table D-10: Converting the PPF Folding suboperation of type Fold
PPF Sheet Structure 603

Appendix D Converting PPF to JDF
To build the layout structure, create a Layout resource that includes one Signature element with a unique
Name. For each PPF Sheet, add one Sheet resource to the Signature. Set the Name of the corresponding
Sheet to the value of CIP3AdmSheetName. For each surface (front or back) initiate a Surface resource with one
PlacedObjects element. In order to define a mark object, (i.e., CutMark, CIELABMeasuringField,
DensityMeasuringField, ColorControlStrip, or RegisterMark), build a MarkObject element inside
PlacedObjects. In that element, define CTM and an appropriate LayoutElement. The CIP3 information is
added to the MarkObject by including the mark-specific element, (e.g., RegisterMark for a register mark). Note:
The coordinate system of the JDF Sheet is specified by the SurfaceContentsBox, which defaults to the page
coordinates and the coordinate system of the CIP3 Sheet is the PSExtent coordinates.

If there are no product definitions in the PPF file, create JDF product nodes which are the results of all cutting and
folding information in the sheet structure.

Figure D.2: JDF representation of sheets
604 PPF Sheet Structure

JDF Specification Release 1.2
D.3.1 Administration Data
The following table defines how to convert the administration data of CIP3. In some situations, it may not be clear
whether or not conversion is necessary. Processes such as CIP3AdmFilmType, for example, contain limited infor-
mation, making it difficult to tell.

Table D-13: Converting administration data

PPF Key JDF Representation Comments
CIP3AdmSheetName Name attribute of the correspond-

ing Sheet
If there is no CIP3AdmSheetName, define a
unique new one.

CIP3AdmJobName Comment of the corresponding
product node

—

CIP3AdmJobCode JobPart of the corresponding prod-
uct node

May conflict with CIP3ProductJobCode.

CIP3AdmMake — Not supported.
CIP3AdmModel — Not supported.
CIP3AdmSoftware — Not supported.
CIP3AdmCreationTime — Not supported.
CIP3AdmArtist Comment of the corresponding

product node
—-

CIP3AdmCopyright Comment of the corresponding
product node

—

CIP3AdmCustomer CustomerInfo element of the cor-
responding product node

May conflict with CIP3ProductCustomer.
Note: The CustomerInfo element is struc-
tured while the CIP3AdmCustomer is not.

CIP3AdmPSExtent indirect —
CIP3AdmTypeOfScreen see description Not possible to convert appropriately.
CIP3AdmFilmType Brand attribute of the correspond-

ing resource
MediaType of the Media is Film.

CIP3AdmFilmExtent Dimension attribute of the corre-
sponding resource

—

CIP3AdmFilmTrf TransferCurveSet/@CTM TransferCurveSet/@Name = “Film”
CIP3AdmPlateType Brand attribute of the correspond-

ing resource
MediaType of the Media is Plate.

CIP3AdmPlateExtent Dimension attribute of the corre-
sponding resource

—

CIP3AdmPlateTrf TransferCurveSet/@CTM TransferCurveSet/@Name = “Plate”
CIP3AdmPaperGrade Grade attribute of the correspond-

ing resource
MediaType of the Media is Paper

CIP3AdmPaperGrammage Weight attribute of the correspond-
ing resource

See CIP3AdmPaperGrade.

CIP3AdmPaperThickness Thickness attribute of the corre-
sponding resource

See CIP3AdmPaperGrade.

CIP3AdmPaperColor Lab attribute of the Color element
of the corresponding resource

See CIP3AdmPaperGrade.

CIP3AdmPaperExtent Dimension attribute of the corre-
sponding resource

—

CIP3AdmPaperTrf TransferCurveSet/@CTM TransferCurveSet/@Name = “Paper”
PPF Sheet Structure 605

Appendix D Converting PPF to JDF
D.3.2 Preview Images
In PPF, preview images are coded as an in-line image. This is not possible in version 1.0 of XML, so JDF uses the
URL attribute within the Preview resource (see Section 7.2.125, Preview), which points to an external PNG file.
The following table shows how to translate the PPF preview structure to the PNG header. Use the partition feature to
assign a preview image to a specific separation and surface.

CIP3AdmSeparationNames see description Create a ConventionalPrinting process
(see Section 6.5.1, ConventionalPrinting) and
a corresponding ColorantControl
resource. Fill the ColorantOrder parame-
ter.

CIP3AdmSheetLay SheetLay attribute of the corre-
sponding
ConventionalPrintingParams
or FoldingParams resource

—

CIP3AdmPrintVolume Amount attribute of the output
Component resource link of the
printing process

—

CIP3AdmPressTrf TransferCurveSet/@CTM TransferCurveSet/@Name = “Press”
CIP3AdmPressExtent indirect —
CIP3AdmInkInfo Name attribute of the Color ele-

ment of the corresponding resource.
The value of Ink/@ColorName
color should match the Name
attribute of a Color defined in a
ColorPool resource that is linked
to the process that is using this Ink
resource. This does not refer to the
A.2.8 NamedColor attribute.

Create a partitioned Ink matching the side
and separation. Add the Ink to the
ConventionalPrinting process of
CIP3AdmSeparationNames

CIP3AdmInkColors LabColor attribute of the Color
element defined by the
ColorName of the Ink resource.
The value of Ink/@ColorName
color should match the Name
attribute of a Color defined in a
ColorPool resource that is linked
to the process that is using this Ink
resource. LabColor defines values
for that Color/@Name.

see CIP3AdmInkInfo

Table D-14: PPF preview representation as PNG

PPF Key JDF Representation Comments
CIP3PreviewImageWidth “Width” of the “IHDR” chunk

of the PNG file
—

CIP3PreviewImageHeight “Height” of the “IHDR” chunk
of the PNG file

—

CIP3PreviewImageBitsPerComp “Bit depth” of the “IHDR”
chunk of the PNG file

—

Table D-13: Converting administration data
606 PPF Sheet Structure

JDF Specification Release 1.2
To calculate ink zones, JDF uses a process chain of PreviewGeneration and InkZoneCalculation pro-
cesses. Add the converted CIP3 previews as an input resource to InkZoneCalculation. The ProfileOffset
attribute of InkZoneCalculationParams can be calculated out of the different CIP3 coordinate systems.

D.3.3 Transfer Curves
Simply convert all CIP3 transfer curves to elements of a partitioned TransferCurvePool (see Section 7.2.161,
Tile). Add this TransferCurvePool as an input resource to a corresponding InkZoneCalculation process.

D.3.4 Register Marks
The table provides information about how to create a JDF RegisterMark and place this element inside the respec-
tive MarkObject.

D.3.5 Color and Ink Control
In CIP3, the two types of measuring fields are specified by an entry of the data dictionary in the
CIP3PlaceMeasuringField command. In JDF, this approach is replaced by two different types of JDF elements:
CIELABMeasuringField and DensityMeasuringField. All parameters of the CIP3PlaceMeasuringField
command are merged into these e lements . See the fol lowing tables as wel l as Sect ion 7.2 .19,
CIELABMeasuringField and Section 7.2.48, DensityMeasuringField for further information. All PPF entries that are

CIP3PreviewImageComponents — Because of a lack of CMYK composite
support by PNG, PPF previews of this type
must be separated.

CIP3PreviewImageImageMatrix — Not needed. Convert image data to the
PNG native sequence.

CIP3PreviewImageResolution “pHYs” chunk of the PNG file Use the meter unit and convert DPI to
DPM.

CIP3PreviewImageEncoding — Not needed.
CIP3PreviewImageCompression — Not needed. Use PNG’s own compression.
CIP3PreviewImageFilterDict — Not needed.
CIP3PreviewImageByteAlign — Not needed.
CIP3PreviewImageDataSize — Not needed.

Table D-15: Converting the parameter of the CIP3PlaceRegisterMark command

PPF Key JDF Representation Comments
translate-x and translate-y Center attribute of

RegisterMark
Apply all transformations of the CIP3
coordinate systems to get from the PS
system to the Layout system.

rotation Rotation attribute of
RegisterMark

—

type MarkType attribute of
RegisterMark

—

Current CIP3SetRegisterMarkSeparations
context

Several SeparationSpec
elements inside the
RegisterMark

—

Table D-14: PPF preview representation as PNG
PPF Sheet Structure 607

Appendix D Converting PPF to JDF
not explicitly listed in the following tables can be directly converted. Place the originated element inside the appropri-
ate MarkObject.

Like the measuring fields, the CIP3PlaceColorControlStrip command is translated to a structured element. All
parameters of this command can be converted to the ColorControlStrip element (see Section 7.2.25,
ColorControlStrip) by following the instructions in table D.18, below.

D.3.6 Cutting Data
CIP3’s cut block structure is translated to JDF by defining Cutting processes. Since CIP3 has the ability to create
nested cut blocks, one separate Cutting process is needed for each nested block set. Simply follow the instructions

Table D-16: Converting PPF color-measuring data

PPF Key JDF Representation Comments
position-x and position-y of the respec-
tive CIP3PlaceMeasuringField com-
mand

Center attribute of
CIELABMeasuringField

Apply all transformations of the CIP3
coordinate systems to get from the PS
system to the Layout system.

Type — There is an extra resource for each type
of CIP3 measuring field.

CIE-L*, CIE-a* and CIE-b* CIELab attribute of
CIELABMeasuringField

—

Table D-17: Converting PPF density-measuring data

PPF Key JDF Representation Comments
position-x and position-y of the respec-
tive CIP3PlaceMeasuringField com-
mand

Center attribute of
DensityMeasuringField

Apply all transformations of the CIP3
coordinate systems to get from the PS
system to the Layout system.

Type — There is an extra resource for each type
of CIP3 measuring field.

DensityCyan, DensityMagenta,
DensityYellow and DensityBlack

Density attribute of
DensityMeasuringField

—

Table D-18: Converting the parameter of the CIP3PlaceColorControlStrip command

PPF Key JDF Representation Comments
position-x and position-y Center attribute of

ColorControlStrip
Apply all transformations of the CIP3 coordinate
systems to get from the PS system to the Layout
system.

rotation Rotation attribute of
ColorControlStrip

—

width and height Size attribute of
ColorControlStrip

—

data Sequence of
DensityMeasuringField ele-
ments within the
ColorControlStrip

The entries of the data parameter have to be con-
verted to DensityMeasuringField elements.

name StripType attribute of
ColorControlStrip

—

608 PPF Sheet Structure

JDF Specification Release 1.2
in the following table, and add all originated CutBlock resources as input the corresponding Cutting process. The
CIP3CutModel entry is not used in JDF.

For cut marks, follow the instructions in the table below. Place the originated element inside the appropriate
MarkObject.

D.3.7 Folding Data
When a CIP3 cut block has a folding operation defined (CIP3BlockFoldingProcedure), append a JDF Folding pro-
cess which uses the respective output Component of the respective Cutting process as an input Component.
See Section 6.6.17, Folding for more information on how to translate the CIP3 folding procedure, which is used to
fold the cut block.

D.3.8 Comments and Annotations
PPF comments can either be converted to an XML comment or to a human-readable form by transforming them into
a Comment telem of the next element. In most cases, PPF comments can simply be ignored. Annotations are not
supported by JDF.

D.3.9 Private Data and Content
For your private data, you should first examine if one of the new JDF elements or attributes fits your requirements. If
not, please use the extension capabilities of JDF to express your needs. They are described in Section 3.10, JDF
Extensibility.

Table D-19: Converting the Cutting Data structure

PPF Key JDF Representation Comments
CIP3BlockTrf BlockTrf attribute of

CutBlock
If the CutBlock is at the uppermost level, apply
all transformations of the CIP3 coordinate systems
to get from the PS system to the Layout system.

CIP3BlockSize BlockSize attribute of
CutBlock

—

CIP3BlockElementSize BlockElementSize
attribute of CutBlock

—

CIP3BlockSubdivision BlockSubdivision attribute
of CutBlock

Determines how many Components are pro-
duced.

CIP3BlockType BlockType attribute of
CutBlock

—

CIP3BlockElementType BlockElementType
attribute of CutBlock

—

CIP3BlockName This is expressed by resource
links

Not needed in JDF.

CIP3BlockFoldingProcedure A Folding process See Section 6.6.17, Folding

Table D-20: Converting the parameter of the CIP3PlaceCutMark command

PPF Key JDF Representation Comments
position-x and position-y Center attribute of CutMark Apply all transformations of the CIP3 coordinate

systems to get from the PS system to the Layout
system.

mark-type MarkType attribute of
CutMark

—

PPF Sheet Structure 609

Appendix D Converting PPF to JDF
610 PPF Sheet Structure

Appendix E Modeling IfraTrack in JDF
Introduction
Job tracking and production control are integral parts of a workflow system. IFRA, described in this section, has
defined a job tracking system called IfraTrack that fulfills a large number of the job tracking requirements of a pro-
duction scenario and is especially effective in newspaper production. The JDF messaging system generalizes the
IfraTrack approach, expanding its focus from a newspaper workflow to one that encompasses the entire graphic arts
industry. This appendix provides further detail about the way in which JDF expands upon the existing IfraTrack tech-
nology.

E.1 IFRA Objects and JDF Nodes
IfraTrack traces the status of objects, and these objects are modified by processes that are only generic. JDF, on the
other hand, precisely defines process nodes that create output resources. These JDF output resources are equivalent to
IfraTrack objects, so tracking the state of a JDF node conveys a superset of the information communicated by track-
ing the state of an IfraTrack. The sections that follow define the mapping of IFRA concepts to JDF concepts in greater
detail.

E.1.1 Object Identification
IfraTrack defines objects with an object path. The object path, in turn, may be a unique identifier, or UID. JDF also
supports UIDs for internal linking of objects, although these UIDs should not be exported beyond the scope of a JDF
document. External references to JDF nodes should be made the JobID/JobPartID pair. These values may be defined
by an external system, such as MIS, and can be used to uniquely track JDF nodes.

E.1.2 IFRA Object Hierarchy
IfraTrack defines an explicit hierarchy to define a newspaper, from Issue through Edition, EditionVersion, and so on.
JDF, on the other hand, defines a generic hierarchy of products containing a description attribute that allows the prod-
ucts to be named. An IfraTrack-conforming JDF job consequently includes a product hierarchy with product nodes
that contain the appropriate description fields. Furthermore, the abstract IFRA Element type is mapped to the JDF
LayoutElement type.

E.1.3 Object States
IFRA defines object states that define the status of a resource, although they also define the status of the process that
defines a resource. JDF defines explicit states for both processes and resources. In addition, JDF defines a descriptive
string to denote the details of each status. The mapping is defined in the following table.

Table E-1: IFRA object states

IFRA Object
Status

JDF Node
Status

JDF Resource
Status Description

Not Started Waiting Unavailable Status prior to InProgress.
Ready Unavailable JDF defines a test-run mode that allows generalized preflight-

ing. Ready is the status after TestRun.
In Progress Setup Unavailable A process is InProgress but not yet producing any output.

InProgress Unavailable A process is InProgress.
Cleanup Available A process is running after all output has been produced.

On Hold Stopped Unavailable A process is active but not currently producing, as when
maintenance is run during a job.

Completed Completed Available Completed
Aborted Aborted Unavailable

a
Fatal Error
IFRA Objects and JDF Nodes 611

Appendix E Modeling IfraTrack in JDF
E.1.4 Deadlines and Scheduling
In IfraTrack, activities may be linked to deadlines. JDF defines deadlines in the NodeInfo element of every node.
The definition of deadline values is identical.

IFRA defines an integer value for deadline level. JDF defines four explicit enumerations for DueLevel in order
to assure that devices in a heterogeneous system have the same concept of deadline level.

E.2 JMF Messages that Translate IfraTrack Messages
The messages explained in Section 5.5.2, Device/Operator Status and Job Progress Messages can be used to emulate
IfraTrack functionality. Specifically the messages:

• Section 5.5.2.8, Status

• Section 5.5.2.9, Track

a. Unless aborted during cleanup
612 JMF Messages that Translate IfraTrack Messages

Appendix F Mapping between JDF and IPP
The mapping between JDF and IPP is specified in Appendix F in JDF/1.0 using the IDPrinting process. However, for
JDF 1.1, the IDPrinting process is deprecated. Thus for JDF 1.1 and beyond, mapping between JDF and IPP should
be done with the DigitalPrinting process and other JDF processes as a combined process node.

F.1 IPP References
The documents below give detailed information about IPP attributes.

• IPP Model and Semantics, RFC 2911, September 2000

• Internet Printing Protocol (IPP): The “collection” attribute syntax, RFC 3382, September 2002.

• Production Printing Attributes - Set1, IEEE-ISTO 5100.3-2001, ftp://ftp.pwg.org/pub/pwg/standards/
pwg5100.3.pdf, .doc, .rtf, February 17, 2001

• Override Attributes for Documents and Pages, IEEE-ISTO 5100.4-2001, ftp://ftp.pwg.org/pub/pwg/standards/
pwg5100.4.pdf, .doc, .rtf, February 7, 2001

• IPP/1.0 & 1.1: “Output-bin” attribute extension, IEEE-ISTO 5100.2-2001, ftp://ftp.pwg.org/pub/pwg/standards/
pwg5100.2.pdf, .doc, .rtf, February 7, 2001

• IPP/1.1: finishings attribute values extension, IEEE-ISTO 5100.1-2001, ftp://ftp.pwg.org/pub/pwg/standards/
pwg5100.1.pdf, .doc, .rtf, February 5, 2001

• Internet Printing Protocol (IPP): Job Progress Attributes, RFC 3381, September 2001.
IPP References 613

Appendix F Mapping between JDF and IPP
614 IPP References

Appendix G StatusDetails Supported Strings
The StatusDetails attribute refines the concept of a job status to be job specific or a device status to be device spe-
cific. The following tables define individual StatusDetails values and map them to the appropriate job specific
state JDF/@Status or device specific state DeviceInfo/@DeviceStatus. StatusDetails values are never
localized and not intended for direct GUI display. Note that JDF/@Status = “SetUp”, “CleanUp” and
“Stopped” may include the description of a device with no job assigned to it.

Table G-1: StatusDetails and Status mapping for generic devices

StatusDetails JDF/
@Status

DeviceS
tatus Description

BreakDown Stopped Down Breakdown of the device, repair required.
Calibrating Setup Setup The Device is calibrating, either manually or automatically.
ControlDeferred —a

a. “—” means that the JDF/@Status is unknown if the device is not accessible.

Stopped The device is controlled by a master device and cannot be
accessed.

Failure Stopped Stopped Failure of the device. Requires some maintenance in order
to restart the device.

Good InProgress Running Production of products in progress, good copy counter is on,
waste copy counter is off

Idling Stopped Running Device is running, but no products are produced or con-
sumed. Good and waste copy counter are off.

Maintenance Stopped Stopped Maintenance of the device:
MissResources Stopped Stopped Production has been stopped because resources are missing

or unavailable. Waits for new resources, subterm of Pause.
PaperJam Stopped Stopped Media jam in the device, subterm of Failure.
Pause Stopped Stopped Machine paused, restart is possible:
Repair Stopped Down The device is being repaired after a break down.
ShutDown Stopped Down Machine stopped (may be switched off), restart requires a

run up.
SizeChange Setup Setup Changing setup for media size.
WaitForApproval Stopped Stopped Production has been stopped because a required approval is

still missing, subterm of Pause.
WarmingUp Setup Setup Device is warming up after power up or power saver mode

wakeup.
Waste InProgress Running Production of products in progress, good copy counter is

off, waste copy counter is on.
WasteFull Stopped Stopped The Device waste receptacle is full.

Table G-2: Printing Device specific StatusDetails

StatusDetails JDF/
@Status DeviceStatus Description

BlanketChange Stopped Stopped Changing of blankets, subterm (e.g., a ‘specialization’)
for Maintenance.

BlanketWash Cleanup Cleanup Washing of the blanket, subterm of WashUp.
CleaningInkFountain Cleanup Cleanup Cleaning of the ink fountain, subterm of WashUp.
CylinderWash Cleanup Cleanup Washing of impression cylinders, subterm of WashUp.
615

Appendix G StatusDetails Supported Strings
DampeningRollerWash Cleanup Cleanup Washing of the dampening roller, subterm of WashUp.
FormChange Setup Setup In conventional printing, changing of plates; in direct

imaging printing, imaging or reimaging of plates.
InkRollerWash Cleanup Cleanup Washing of the inking roller, subterm of WashUp.
PlateWash Cleanup Cleanup Washing of the plate, subterm of WashUp.
SleeveChange Stopped Stopped Changing of sleeves, subterm for Maintenance.
WashUp Cleanup Cleanup Machine is washed before, during or after production.

WashUp is a super-term (e.g., a “generalization”) for
BlanketWash, CylinderWash, CleaningInkingUnit, or
CleaningInkFountain. WashUp is the default which is
assumed if StatusDetails is not specified.

Table G-3: PostPress Device specific StatusDetails

StatusDetails JDF/
@Status DeviceStatus Description

DoubleFeed
New in JDF 1.2

Stopped Stopped Double feeds on a feeder, subterm of Failure.

BadFeed
New in JDF 1.2

Stopped Stopped Bad feed on a feeder, subterm of Failure.

BadTrim
New in JDF 1.2

Stopped Stopped Bad trimmed components, subterm of Failure.

ObliqueSheet
New in JDF 1.2

Stopped Stopped Oblique sheets on components, subterm of
Failure. Oblique sheets are sheets or signatures
which are not properly aligned within a pile (e.g. on
a gathering or collecting chain).

IncorrectComponent
New in JDF 1.2

Stopped Stopped Incorrect components on a feeder, subterm of
Failure.

IncorrectThickness
New in JDF 1.2

Stopped Stopped Incorrect thickness of components, subterm of
Failure.

Table G-2: Printing Device specific StatusDetails

StatusDetails JDF/
@Status DeviceStatus Description
616

Appendix H ModuleType Supported Strings
Both the ModuleStatus element (see Table 5-61, “Contents of the ModuleStatus element,” on page 167) and the
ModulePhase element (see Table 3-35, “Contents of the ModulePhase element,” on page 94) contain a
ModuleType attribute that defines individual modules within a machine. The following table defines individual
ModuleType values.

Table H-1: ModuleType definition for conventional printing devices

ModuleType Description
Feeder Feeder module, feeds the device with paper.
PrintModule Unit for printing a color.
CoatingModule Unit for coatings, for example, full coating of varnish.
Drier Module for drying the previously printed color or varnish.
PerfectingModule Unit for perfecting, reversing device.
ExtensionModule Unit for extending the distance between modules, for example to increase the distance

between the last printing module and the delivery module.
Delivery Delivery module, unit for gathering the printed sheets.
Imaging Imaging Module in a direct to plate machine.
Numbering Numbering unit.

Table H-2: ModuleType definition Gathering / Collecting

ModuleType Description
Feeder
New in JDF 1.2

Feeder module, feeds the device with paper.

Chain
New in JDF 1.2

Transport chain or conveyer to transport gathered / collected product.

PaperPath
New in JDF 1.2

Paper path module, path that paper follows through the machine.

Table H-3: ModuleType definition for DigitalPrinting

ModuleType Description
Fuser
New in JDF 1.2

Fuser module — fuses the toner onto the media.
617

Appendix H ModuleType Supported Strings
618

Appendix I Supported Error Codes in JMF and
Notification elements

The following list defines the standard ReturnCode for messaging. The ID numbers are decimal. Error messages
below 100 are reserved for protocol errors. Error messages above 100 are used for device and controller errors and
error messages above 200 for job and pipe specific errors.

Table I-1: Return codes for JMF

ReturnCode Description
0 Success
1 – 99 Protocol errors
1 General error
2 Internal error
3 XML parser error, (e.g., if a MIME file is sent to an XML controller).
4 XML validation error
5 Query/command not implemented
6 Invalid parameters
7 Insufficient parameters
8 Device not available (controller exists but not the device or queue)
9 Message incomplete. Message Service is busy
100 – 199 Device and controller errors
100 Device not running
101 Device incapable of fulfilling request, (e.g., a RIP that has been asked to cut a sheet).
102 No executable node exists in the JDF
103 Job ID not known by controller
104 JobPartID not known by controller
105 Queue entry not in queue
106 Queue request failed because the queue entry is already executing
107 The queue entry is already executing. Late change is not accepted
108 Selection or applied filter results in an empty list
109 Selection or applied filter results in an incomplete list. A buffer cannot provide the complete list

queried for.
110 Queue request of a job submission failed because the requested completion time of the job cannot

be fulfilled.
111 Subscription request denied.
112 Queue request failed because the Queue is closed and does not accept new entries.

New in JDF 1.1
113 Queue entry is already in the resulting status. New in JDF 1.2
114 Queue entry is already completed or aborted and therefore does not accept changes.

New in JDF 1.2
115 Queue entry is not running. New in JDF 1.2
200 – … Job and pipe specific errors
200 Invalid resource parameters
201 Insufficient resource parameters
202 PipeID unknown
203 Unlinked resource link
619

Appendix I Supported Error Codes in JMF and Notification elements
620

Appendix J NotificationDetails
The Notification element is used for messaging and logging of events. It is defined in Section 3.9.1.2, Notification.
Notifications are grouped into five classes: event, information, warning, error, and fatal. For notifica-
tion classes see Section 4.6.1, Classification of Notifications. In addition to the classes, the Type attribute and
abstract NotificationDetails element provide a container for detailed information about the notification.

Elements derived from the abstract NotificationDetails element represent a structured and extensible data
type. It is defined in Section 3.9.1.2.1, NotificationDetails. The structure of various predefined
NotificationDetails-types and their descriptions are listed in the following sections.

J.1 Predefined NotificationDetails
This section defines elements that are derived from the abstract element.

J.1.1 Barcode
A bar code has been scanned.

J.1.2 FCNKey
A function key has been activated at a console.

J.1.3 SystemTimeSet
The system time of a device/controller/agent has been set, (e.g., readjusted, changed to daylight saving time, etc.).

J.1.4 CounterReset
The production counter of a device has been reset.

Table J-1: Contents of the Barcode element

Name Data Type Description
Code string Contains the scanned bar code.

Table J-2: Contents of the FCNKey element

Name Data Type Description
Key integer Contains the number of that function key.

Table J-3: Contents of the SystemTimeSet element

Name Data Type Description
NewTime dateTime Contains the new time.
OldTime ? dateTime Contains the old time.

Table J-4: Contents of the CounterReset element

Name Data Type Description
CounterID ? string Identification of the counter that has been set.
LastCount ? integer Last counter value before reset.
Predefined NotificationDetails 621

Appendix J NotificationDetails
J.1.5 Error
This element provides additional information for common errors.

J.1.6 Event
New in JDF 1.2
This element provides additional information for common events.

Table J-5: Contents of the Error element, derived from NotificationDetails

Name Data Type Description
ErrorID string Internal Error ID of the application that declares the error.
ReturnCode ?
New in JDF 1.2

integer JDF defined return code for an error. See “Supported Error Codes in
JMF and Notification elements” on page 619.

Table J-6: Contents of the Event element, derived from NotificationDetails

Name Data Type Description
EventID string Internal Event ID of the application that emits the event.
EventValue ? string Additional user defined value related to this event.
622 Predefined NotificationDetails

Appendix K MessageEvents Values

Example:
 <CustomerInfo CustomerJobName="Job title ...">
 <CustomerMessage Language="FR" MessageEvents="JobCompletedSuccessfully
JobCompletedWithErrors" ShowList="StartTime EndTime Error" UserText="This is the Mighty
Mouse brochure job that should be approved by Walt Disney">
 <ComChannel ChannelType="Email" Locator="admin@mycompany.com"/>
 </CustomerMessage>
 </CustomerInfo>

Table K.1:

MessageEvents Values JDF Process JDF Intent Resource Description
Accepted DigitalDelivery ArtDeliveryIntent The receiver acknowledged that

the files are accessible for their
destination.

Delivered DigitalDelivery ArtDeliveryIntent The files were delivered to the
destination.

DeviceStopped All — The device that executes the
node has been stopped.

JobCompletedSuccess
fully

All All Job completed successfully.

JobCompletedWithErr
ors

All All Job completed with errors.

JobCompletedWithWar
nings

All All Job completed with warnings.

JobInProgress All All Job is in progress status.
PostPressCompleted — All All Postpress nodes of the job

have been completed. Postpress
nodes are defined according to
Section 6.6, Postpress Processes.

PostPressInProgress — All At least one of the Postpress
nodes of the job is in progress
status.

PrepressCompleted — All All Prepress nodes of the job
have been completed. Prepress
nodes are defined according to
Section 6.4, Prepress Processes.

PrepressInProgress — All At least one of the Prepress
nodes of the job is in progress
status.

PressCompleted — All All Press nodes of the job have
been completed. Press nodes are
defined according to Section 6.5,
Press Processes.

PressInProgress — All At least one of the Press nodes of
the job is in progress status.

ShippingCompleted Delivery DeliveryIntent Final product was delivered to
the customer or distributors.

ShippingInProgress Delivery DeliveryIntent Final product was shipped.
623

Appendix K MessageEvents Values
This is an instruction to generate an e-mail message in French to admin@mycompany.com when the job defined in
the JDF node that includes CustomerInfo/CustomerMessage, is completed. Two e-mail messages are
requested — when job is completed either successfully or with errors. The e-mail message should include start and
end time of the job processing and error information if it exists. It should also include the text “This is the Mighty
Mouse brochure job that should be approved by Walt Disney”.
624

Appendix L Color Adjustment Attribute Description
and Usage

New in JDF 1.2
This appendix describes several alternative usages of some attributes in the ColorCorrectionOp element (see
ColorCorrectionParams/ColorCorrectionOp in “ColorCorrectionParams” on page 307.) that are intended
to allow simple, late-in-the-workflow, minor adjustments to the overall color appearance of a job or portions of a job.

Note: These color adjustments are not available in any product intent resource, such as ColorIntent. In order
to request such adjustment in a product intent job ticket supplied to a print provider, attach to a product intent node an
incomplete ColorCorrection process with a ColorCorrectionParams resource specifying the requested
ColorCorrectionOp element attributes.

L.1 Adjustment Using Direct Attributes
This section describes the following attributes that provide direct adjustments to various aspect of the color space:

These attributes can be applied at a point where an abstract profile would be applied (following any abstract profiles
used) in the order: AdjustLightness, AdjustContrast, AdjustSaturation, AdjustHue, {AdjustCyanRed/
AdjustMagentaGreen/AdjustYellowBlue}. The operation of each adjustment attribute is described in relation
to colors expressed in the L*a*b* connection color space (with L* expressed on a scale of 0 to 100).

• AdjustLightness offsets the L channel. [L* += AdjustLightness]

• AdjustContrast scales the L* channel about mid-scale (L* = 50). [L*' = 50 + (L*- 50) * (AdjustContrast /
100 + 1)]

• AdjustSaturation scales the a* and b* channels about zero. [a* *= (AdjustSaturation / 100 + 1) and
b* *= (AdjustSaturation / 100 + 1)

AdjustCyanRed, AdjustMagentaGreen, and AdjustYellowBlue offset the colors in the a*,b* plane along
the respective color vector. Lightness (L*) is not changed. Positive values offset towards red, green, or blue and neg-
ative values offset towards cyan, magenta, or yellow. The adjustment vectors are aligned with the standard SWOP
inks. When adjusting device colors, these adjustments may be approximated by offsets along the vectors of the actual
ink colors being used. The angles and unit vectors for SWOP inks (from the CGATS TR 001 print characterization)
are:

Attribute Name Allowed Value Range
AdjustCyanRed -100 to +100
AdjustMagentaGreen -100 to +100
AdjustYellowBlue -100 to +100
AdjustContrast -100 to +100
AdjustHue -100 to +100
AdjustLightness -100 to +100
AdjustSaturation -100 to +100

Red-cyan Green-Magenta Blue-yellow

Angle -129.9 -5.3 94.5

a* 0.641 -0.996 0.078

b* 0.767 0.092 -0.997

So ...
a* += 0.641 * AdjustCyanRed
Adjustment Using Direct Attributes 625

Appendix L Color Adjustment Attribute Description and Usage
AdjustHue offsets the hue angle value when the colors have been transformed to the CIE- L* C* H* (luminance,
chroma, and hue) color space from the L*a*b* connection color space. The AdjustHue angle is expressed in
degrees.

• a*' = a* * cos(AdjustHue) - b* * sin(AdjustHue)

• b*' = a* * sin(AdjustHue) + b* * cos(AdjustHue)

L.2 Adjustment using ICC Profile Attributes
This section describes two alternatives to the direct color adjustment attributes providing adjustments of the same
nature using ICC profiles. The ICC profile approach provides a standard mechanism for applying a set of multi-
dimensional adjustments with a single operation. The ICC profile approach also has an advantage in that it minimizes
algorithm and interpretation dependency on the receiving end.

L.3 Adjustment using an ICC Abstract Profile Attribute
A color adjust can be encapsulated in an ICC abstract profile that is applied in ICC Profile Connection Space (PCS).
The FileSpec element of the ColorCorrectionOp element with the ResourceUsage attribute set to
"AbstractProfile" references an ICC profile to be used in this manner.

L.4 Adjustment using an ICC DeviceLink Profile Attribute
A color adjust can be encapsulated in an ICC DeviceLink profile that is applied in device space. The FileSpec ele-
ment of the ColorCorrectionOp element with the ResourceUsage attribute set to "DeviceLinkProfile"
references an ICC profile to be used in this manner.

- 0.996 * AdjustMagentaGreen
+ 0.078 * AdjustYellowBlue

b* += 0.767 * AdjustCyanRed
+ 0.092 * AdjustMagentaGreen
- 0.997 * AdjustYellowBlue
626 Adjustment using ICC Profile Attributes

Appendix M North American Media Weight
Explained

New in JDF 1.2
In North America, each grade of paper has one basic size used to compute its basis weight. For example, bond basic
size is 17" x 22", text basic size is 25" x 38", offset basic size is 25" x 38", coated basic size is 25" x 38", and cover
basic size is 20" x 26".

A paper's basis weight is the weight of five hundred sheets of its basic size. For example, if five hundred 25" x
38" sheets of offset paper weigh 60 pounds, it is called 60# offset. Paper mills outside of North America use the met-
ric system to designate paper weight. The basis weight of foreign papers is grams per square meter (g/m2) known as
the sheet's grammage. Papers made to metric standards don't convert to basis weights familiar to North Americans.
For example, 100 gm2 equals a basis weight of 67.5. Following is the English/grammage conversion formula:

Basis Weight (lb) x (1406.5 / Square inches in basic size) = grams per square meter
For example. the grammage of 65 lb. cover stock when the cover is 20 x 26 can be calculated as follows:

65 x (1406.5 / (20 x 26)) = 65 x 2.70 = 176 g/m2
The following table defines the basic sizes and the factor that USWeight must be mutiplied with to calculate
Weight for various stock types.

In the following table, the right columns list common basis weights for North American papers while the left columns
list their corresponding grammages. Basis weights for bond, book, cover, and other grades of papers are computed
using different basic sizes, so the progression of weights down the right columns is untidy.

Stock Type Basis size in Inches Weight / USWeight
Bond 17" x 22" 3.76
Text 25" x 38" 1.48
Offset 25" x 38" 1.48
Coated 25" x 38" 1.48
Cover 20" x 26" 2.70
Bristol 22½" x 28½" 2.19
Index 25½" x 30½" 1.81

Table M.1: Example Grammage and equivalent North American Paper Weigth

Grammage (g/m2) Basis Weight Grammage (g/m2) Basis Weight
30 20# Book 150 40# ledger
34 9# manifold 152 60# cover
36 24# book 163 90 # index
44 30# book 163 100 # tag
45 12# manifold 175 80# bristol
49 13# bond 176 65# cover
49 33# book 178 120# book
52 35# book 197 90# bristol
59 40# book 199 110# index
60 16# bond 216 80# cover
67 45# bond 218 125# tag
74 50# book 219 100# bristol
75 20# bond 244 150# tag
627

Appendix M North American Media Weight Explained
81 55# book 253 140# index
89 60# book 263 120# bristol
90 24# bond 270 100# cover
104 70# book/text 285 175# tag
105 28# ledger 307 140# bristol
108 40# cover 307 170# index
118 80# book/text 325 200# tag
120 32# ledger 350 160# bristol
133 90# book 352 130# cover
135 36# ledger 394 180# bristol
135 50# cover 398 220# index
147 67# bristol 407 250# tag
148 100# book/text 438 200# bristol

488 300# tag

Table M.1: Example Grammage and equivalent North American Paper Weigth

Grammage (g/m2) Basis Weight Grammage (g/m2) Basis Weight
628

Appendix N Media Sizes
The following table defines a set of named media sizes as defined by http://partners.adobe.com/asn/developer/pdfs/
tn/5003.PPD_Spec_v4.3.pdf.

Key for Notes
• I — Size is defined by ISO standards.

• J — Size is defined by JIS standards.

• E — This is an envelope size.

Media Size Size in Points Size in Milimeters Size in Inches Notes
A0 2384 x 3370 841 x 1189 33.11 x 46.81 I, J
A1 1684 x 2384 594 x 841 23.39 x 33.11 I, J
A2 1191 x 1684 420 x 594 16.54 x 23.39 I, J
A3 842 x 1191 297 x 420 11.69 x 16.54 I, J
A3Extra 913 x 1262 322 x 445 12.67 x 17.52
A4 595 x 842 210 x 297 8.27 x 11.69 I, J
A4Extra 667 x 914 235.5 x 322.3 9.27 x 12.69
A4Plus 595 x 936 210 x 330 8.27 x 13
A5 420 x 595 148 x 210 5.83 x 8.27 I, J
A5Extra 492 x 668 174 x 235 6.85 x 9.25
A6 297 x 420 105 x 148 4.13 x 5.83 I, J
A7 210 x 297 74 x 105 2.91 x 4.13 I, J
A8 148 x 210 52 x 74 2.05 x 2.91 I, J
A9 105 x 148 37 x 52 1.46 x 2.05 I, J
A10 73 x 105 26 x 37 1.02 x 1.46 I, J
AnsiC 1224 x 1584 431.8 x 558.8 17 x 22
AnsiD 1584 x 2448 558.8 x 863.6 22 x 34
AnsiE 2448 x 3168 863.6 x 1118 34 x 44
ARCHA 648 x 864 228.6 x 304.8 9 x 12
ARCHB 864 x 1296 304.8 x 457.2 12 x 18
ARCHC 1296 x 1728 457.2 x 609.6 18 x 24
ARCHD 1728 x 2592 609.6 x 914.4 24 x 36
ARCHE 2592 x 3456 914.4 x 1219 36 x 48
B0 2920 x 4127 1030 x 1456 40.55 x 57.32 J
B1 2064 x 2920 728 x 1030 28.66 x 40.55 J
B2 1460 x 2064 515 x 728 20.28 x 28.66 J
B3 1032 x 1460 364 x 515 14.33 x 20.28 J
B4 729 x 1032 257 x 364 10.12 x 14.33 J
B5 516 x 729 182 x 257 7.17 x 10.12 J
B6 363 x 516 128 x 182 5.04 x 7.17 J
B7 258 x 363 91 x 128 3.58 x 5.04 J
B8 181 x 258 64 x 91 2.52 x 3.58 J
B9 127 x 181 45 x 64 1.77 x 2.52 J
629

http://partners.adobe.com/asn/developer/pdfs/tn/5003.PPD_Spec_v4.3.pdf
http://partners.adobe.com/asn/developer/pdfs/tn/5003.PPD_Spec_v4.3.pdf

Appendix N Media Sizes
B10 91 x 127 32 x 45 1.26 x 1.77 J
C4 649 x 918 229 x 324 9.02 x 12.75 I, E
C5 459 x 649 162 x 229 6.38 x 9.02 I, E
C6 323 x 459 113 x 162 4.49 x 6.38 I, E
Comm10 297 x 684 104.8 x 241.3 4.125 x 9.5 E
DL 312 x 624 110 x 220 4.33 x 8.66 I, E
DoublePostcard 567 x 419 200 x 148 7.87 x 5.83
Env9 279 x 639 98.4 x 225.4 3.875 x 8.875 E
Env10 297 x 684 104.8 x 241.3 4.125 x 9.5 E
Env11 324 x 747 113.3 x 263.5 4.5 x 10.375 E
Env12 342 x 792 120.7 x 279.4 4.75 x 11 E
Env14 360 x 828 127 x 292.1 5 x 11.5 E
EnvC0 2599 x 3676 917 x 1297 36.10 x 51.06 I, E
EnvC1 1837 x 2599 648 x 917 25.51 x 36.10 I, E
EnvC2 1298 x 1837 458 x 648 18.03 x 25.51 I, E
EnvC3 918 x 1296 324 x 458 12.75 x 18.03 I, E
EnvC4 649 x 918 229 x 324 9.02 x 12.75 I, E
EnvC5 459 x 649 162 x 229 6.38 x 9.02 I, E
EnvC6 323 x 459 113 x 162 4.49 x 6.38 I, E
EnvC65 324 x 648 113 x 229 4.5 x 9 E
EnvC7 230 x 323 81 x 113 3.19 x 4.49 I, E
EnvChou3 340 x 666 120 x 235 4.72 x 9.25 E
EnvChou4 255 x 581 90 x 205 3.54 x 8 E
EnvDL 312 x 624 110 x 220 4.33 x 8.66 I, E
EnvInvite 624 x 624 220 x 220 8.66 x 8.66 E
EnvISOB4 708 x 1001 250 x 353 9.84 x 13.9 E
EnvISOB5 499 x 709 176 x 250 6.9 x 9.8 E
EnvISOB6 499 x 354 176 x 125 6.9 x 4.9 E
EnvItalian 312 x 652 110 x 230 4.33 x 9 E
EnvKaku2 680 x 941 240 x 332 9.45 x 13 E
EnvKaku3 612 x 785 216 x 277 8.5 x 10.9 E
EnvMonarch 279 x 540 98.43 x 190.5 3.875 x 7.5 E
EnvPersonal 261 x 468 92.08 x 165.1 3.625 x 6.5 E
EnvPRC1 289 x 468 102 x 165 4 x 6.5 E
EnvPRC2 289 x 499 102 x 176 4 x 6.9 E
EnvPRC3 354 x 499 125 x 176 4.9 x 6.9 E
EnvPRC4 312 x 590 110 x 208 4.33 x 8.2 E
EnvPRC5 312 x 624 110 x 220 4.33 x 8.66 E
EnvPRC6 340 x 652 120 x 230 4.7 x 9 E
EnvPRC7 454 x 652 160 x 230 6.3 x 9 E
EnvPRC8 340 x 876 120 x 309 4.7 x 12.2 E

Media Size Size in Points Size in Milimeters Size in Inches Notes
630

JDF Specification Release 1.2
EnvPRC9 649 x 918 229 x 324 9 x 12.75 E
EnvPRC10 918 x 1298 324 x 458 12.75 x 18 E
EnvYou4 298 x 666 105 x 235 4.13 x 9.25 E
Executive 522 x 756 184.2 x 266.7 7.25 x 10.5
FanFoldGerman 612 x 864 215.9 x 304.8 8.5 x 12
FanFoldGermanLegal 612 x 936 215.9 x 330 8.5 x 13
FanFoldUS 1071 x 792 377.8 x 279.4 14.875 x 11
Folio 595 x 935 210 x 330 8.27 x 13
ISOB0 2835 x 4008 1000 x 1414 39.37 x 55.67 I
ISOB01 2004 x 2835 707 x 1000 27.83 x 39.37 I
ISOB2 1417 x 2004 500 x 707 19.68 x 27.83 I
ISOB3 1001 x 1417 353 x 500 13.90 x 19.68 I
ISOB4 709 x 1001 250 x 353 9.84 x 13.90 I
ISOB5 499 x 709 176 x 250 6.9 x 9.8 I
ISOB5Extra 569 x 782 201 x 276 7.9 x 10.8
ISOB6 354 x 499 125 x 176 4.92 x 6.93 I
ISOB7 249 x 354 88 x 125 3.46 x 4.92 I
ISOB8 176 x 249 62 x 88 2.44 x 3.46 I
ISOB9 125 x 176 44 x 62 1.73 x 2.44 I
ISOB10 88 x 125 31 x 44 1.22 x 1.73 I
Ledger 1224 x 792 431.8 x 279.4 17 x 11
Legal 612 x 1008 215.9 x 355.6 8.5 x 14
LegalExtra 684 x 1080 241.3 x 381 9.5 x 15
Letter 612 x 792 215.9 x 279.4 8.5 x 11
LetterExtra 684 x 864 241.3 x 304.8 9.5 x 12
LetterPlus 612 x 913 215.9 x 322.3 8.5 x 12.69
Monarch 279 x 540 98.43 x 190.5 3.875 x 7.5 E
Postcard 284 x 419 100 x 148 3.94 x 5.83
PRC16K 414 x 610 146 x 215 5.75 x 8.5

Media Size Size in Points Size in Milimeters Size in Inches Notes
631

Appendix N Media Sizes
632

Appendix O Input Tray and Output Bin Names
New in JDF 1.2
Location/@LocationName may also be used to specify a Location within a device, (e.g., a paper tray.) When
specifying paper trays, the following locations are predefined. When specifying input paper trays (indicated with “I”)
and/or output bins (indicated with “O”), the following values for Location/@LocationName locations are pre-
defined. When specifying input tray names, the following values for Location/@LocationName are suggested.
The input tray names that specify a position (e.g., Top) are identified by an asterisk (*). These positional input tray
names should not be used if devices are clustered because the position of the input tray may not be the same for all of
the devices in the cluster. (See“Locations of Physical Resources” on page 84 for more details on the use of
location.)

Table O-1: Locations within Printers

Name I/O Description
AnyLargeFormat IO The location that holds larger format media with one dimension larger than 11

inches. The media dimensions must be specified. AnyLargeFormat is defined
for a PPD.

AnySmallFormat IO The location that holds smaller format media. The media dimensions must be
specified. AnySmallFormat is defined for a PPD.

AutoSelect IO The location that the device selects based on the Media specification.
Bottom IO* The bin that, when facing the device, can best be identified as ‘bottom’.
Booklet O The bin where the Device places booklets.
BypassTray I The input tray used to handle odd or special papers. May be used to specify the

input tray that is used for inserts sheets that are not to be imaged.
BypassTray-N I The input tray used to handle odd or special papers. May be used to specify the

input tray that is used for inserts sheets that are not to be imaged. N = ‘1’, ‘2’, …
Center — The bin that, when facing the device, can best be identified as ‘center.’ Depricated

in JDF 1.2 — use Middle instead.
Continous IO The location to handle continuous media, (i.e., continuously connected sheets.)
Disc IO The location to handle CD or DVD discs to be printed on.
Disc-N IO The location to handle CD or DVD discs to be printed on. N = ‘1’, ‘2’, …
Envelope IO The location that is to contain envelopes.
Envelope-N IO The location that is to contain envelopes. N = ‘1’, ‘2’, …
FaceDown O The bin that can best be identified as ‘face down’ with respect to the device.
FaceUp O The bin that can best be identified as ‘face up’ with respect to the device.
FitMedia O Requests the device to select a bin based on the size of the media.
Front IO* The location that, when facing the device, can best be identified as ‘front.’
InsertTray I The input tray that can best be identified as ‘insert tray.’ Used to specify the input

tray that is used for inserts sheets (insert sheets are never imaged.)
InsertTray-N I The input tray that can best be identified as ‘insert tray-1’, ‘insert tray-2’, … etc.

Used to specify the input tray that is used for inserts sheets (insert sheets are never
imaged.)

LargeCapacity IO The bin that can best be identified as the ‘large capacity’ bin (in terms of the num-
ber of sheets) with respect to the device.

LargeCapacity-N IO The location that can best be identified as the ‘large capacity-1’, ‘large-capacity-
2’, … etc., input tray (in terms of the number of sheets) with respect to the device.

Left IO* The bin that, when facing the device, can best be identified as ‘left.’
MyMailbox O The job will be output to the bin that is best identified as ‘MyMailbox’
633

Appendix O Input Tray and Output Bin Names
Following is a table that lists some common location names that are analogous to a location name in the above table.
The location names listed in the table above should be used when possible.

Mailbox-N O The job will be output to the bin that is best identified as ‘Mailbox-1’, ‘Mailbox-
2’…etc.

Middle IO* The bin that, when facing the device, can best be identified as ‘middle’.
Rear IO* The bin that, when facing the device, can best be identified as ‘rear’.
Right IO* The bin that, when facing the device, can best be identified as ‘right.
Roll IO The location to handle roll fed media.
Roll-N IO The Nth location to handle the Nth roll fed media.
Side IO* The bin that, when facing the device, can best be identified as ‘side’.
Stacker-N O The job will be output to the bin that is best identified as ‘Stacker-1’, ‘Stacker-2’

…etc.
Top IO* The bin that, when facing the device, can best be identified as ‘top’.
Tray IO The location for a single tray device.
Tray-N IO The job will be output to the tray that is best identified as ‘Tray-1’, ‘Tray-2’ …

etc.

Name Location Name to use instead
Back Rear
Cassette Tray-N
Lower Bottom
Main LargeCapacity
Upper Top

Table O-1: Locations within Printers
634

Appendix P FileSpec Attribute Examples for
MimeType and MimeTypeVersion
Attributes

New in JDF 1.2
This appendix lists examples values for the following attributes of the FileSpec resource: MimeType and
MimeTypeVersion. The preferred file name extension is also indicated for use in the FileSpec/@URL attribute.
The tables below apply to the values of PDLType and PDLVersion defined in “Document Properties” on page 545
respectively.

The listing is intended to be exhaustive for the most likely document formats that are routinely used in JDF appli-
cations. However, other document formats and other combinations of the listed document formats may be used as
well. When these format standards are revised with new version numbers, they may be used and should follow the
patterns established in the following tables.

Many MimeTypeVersion values are taken from the Printer MIB [RFC1759] by using the langTC (e.g., PS,
PCL, PDF, etc.) as a prefix followed by the level or version defined for prtInterpreterLangLevel separated by a “/”
character (ex. “PS/3” for PostScript Level 3.) For file formats not in the Printer MIB, the prefix is the common acro-
nym for the format with “/” changed to “-” so that the prefix always ends with the first “/” (ex. “DCS/2.0” for DCS
version 2.0 and “TIFF-IT/BL/P1:1998” for TIFF/IT — Binary Line art image data — profile 1.)

Table P-1 lists the MimeType values that are MIME Media Types registered with IANA (as opposed to file
types which are not registered with IANA) in alphabetical order, as well as possible MimeTypeVersion values. A
blank MimeTypeVersion table entry indicates that there is no recognized version number for the MimeType.
Table P-1 also lists the associated recommended file name extensions commonly used by JDF applications. Note:
According to [RFC2046] the initial set of MIME media types start with the substrings: “application/”, “audio/”,
“image/”, “message/”, “model/”, “multipart/”, “text/”, or “video/”. File Types will not start with these strings. The
Compression values that do have a corresponding IANA MIME type are also listed, so that a file that is so com-
pressed or encoded has an appropriate MimeType value for the file which must be supplied

Table P-1: MimeType (MIME Media Types Registered with IANA), MimeTypeVersion combinations

MimeType MimeTypeVersion File
Extension

Description [iana-mt] indicates IANA
registration

application/mac-
binhex40

HQX/4.0 .hqx Macintosh BinHex 4.0 7-bit encodinga [RFC1741]

application/msword MSWORD/5.0 .doc Microsoft Word
application/msword MSWORD/6.0 .doc Microsoft Word
application/msword MSWORD/2000 .doc Microsoft Word
application/msword MSWORD/XP .doc Microsoft Word
application/pdf PDF/1.0 .pdf Adobe Portable Document Format
application/pdf PDF/1.1 .pdf Adobe Portable Document Format
application/pdf PDF/1.2 .pdf Adobe Portable Document Format
application/pdf PDF/1.3 .pdf Adobe Portable Document Format [PDF1.3]
application/pdf PDF/1.4 .pdf Adobe Portable Document Format [PDF1.4]
application/pdf PDF/1.5 .pdf Adobe Portable Document Format [PDF1.5]
application/pdf PDF/X-1a:2001 .pdf Portable Document Format (PDF) PDF/X-1a

[iso15930-1:2001]
application/pdf PDF/X-2:2003 .pdf Portable Document Format (PDF) PDF/X-2

[iso15930-5:2003]
635

Appendix P FileSpec Attribute Examples for MimeType and MimeTypeVersion Attributes
application/pdf PDF/X-3:2002 .pdf Portable Document Format (PDF) PDF/X-3
[iso15930-3:2002]

application/pdf PDF/X-1a:2003 .pdf Portable Document Format (PDF) PDF/X-3
[iso15930-4:2003]

application/pdf PDF/X-3:2003 .pdf Portable Document Format (PDF) PDF/X-3
[iso15930-6:2003]

application/postscript PS/1 .ps Adobe PostScript™ See [RFC2045] and [RFC2046]
application/postscript PS/2 .ps Adobe PostScript™ See [RFC2045] and [RFC2046]
application/postscript PS/3 .ps Adobe PostScript™ See [RFC2045] and [RFC2046]
application/vnd.cip4-
jdf+xml

JDF 1.0 .jdf CIP4 Job Defintion Format (JDF) version 1.0, April
2001

application/vnd.cip4-
jdf+xml

JDF 1.1 .jdf CIP4 Job Defintion Format (JDF) version 1.1, May
2002 and 1.1a, August 2002.

application/vnd.cip4-
jdf+xml

JDF 1.2 .jdf CIP4 Job Defintion Format (JDF) version 1.2

application/vnd.cip4-
jdf+xml

JMF 1.0 .jmf CIP4 Job Defintion Format (JDF) version 1.0, April
2001 (See Job Messaging Format)

application/vnd.cip4-
jdf+xml

JMF 1.1 .jmf CIP4 Job Defintion Format (JDF) version 1.1 and 1.1a
(See Job Messaging Format)

application/vnd.cip4-
jdf+xml

JMF 1.2 .jmf CIP4 Job Defintion Format (JDF) version 1.2 (See Job
Messaging Format)

application/vnd.cip3-
ppf

PPF/1.0 .ppf CIP3 Print Production Format (PPF) version 1.0, 1995
[PPF]

application/vnd.cip3-
ppf

PPF/3.0 .ppf CIP3 Print Production Format (PPF) version 3.0, 1998
[PPF]

application/vnd.hp-
PCL

PCL/3 .pcl Hewlett Packard Printer Control Language (PCL™)

application/vnd.hp-
PCL

PCL/4 .pcl Hewlett Packard Printer Control Language (PCL™)

application/vnd.hp-
PCL

PCL/5 .pcl Hewlett Packard Printer Control Language (PCL™)

application/vnd.hp-
PCL

PCL/5e .pcl Hewlett Packard Printer Control Language (PCL™)

application/vnd.hp-
PCL

PCL/6 .pcl Hewlett Packard Printer Control Language (PCL™)

application/vnd.hp-
PCL

PCL/X .pcl Hewlett Packard Printer Control Language (PCL™)

application/vnd.podi-
ppml+xml

PPML/1.5 .ppml Personalized Print Markup Language [PPML]

application/vnd.podi-
ppml+xml

PPML/2.0 .ppml Personalized Print Markup Language [PPML]

application/vnd.podi-
ppml+xml

PPML/2.1 .ppml Personalized Print Markup Language [PPML]

Table P-1: MimeType (MIME Media Types Registered with IANA), MimeTypeVersion combinations

MimeType MimeTypeVersion File
Extension

Description [iana-mt] indicates IANA
registration
636

JDF Specification Release 1.2
Table P-2 lists the MimeType values that are file types assigned by CIP4 (as opposed to MIME Media Types which
are registered with IANA) and possible MimeTypeVersion values commonly used in JDF applications. A blank

application/
vnd.Quark.QuarkX-
Press

XPress/4.11 .qxd
.qxt
.qwd
.qwt
.qxl
.qxb

QuarkXPress [Quark]

application/
vnd.Quark.QuarkX-
Press

XPress/4.31 .qxd
.qxt
.qwd
.qwt
.qxl
.qxb

QuarkXPress [Quark]

application/
vnd.Quark.QuarkX-
Press

XPress/6.0 .qxd
.qxt
.qwd
.qwt
.qxl
.qxb

QuarkXPress [Quark]

application/zip .zip ZIP packaging — The actual compression used for
each file in a ZIP package is stored in the ZIP package
as metadata for each file. Therefore, the FileSpec/
@Compression attribute for the contained file may
use any Compression value, including “None”,
“Compress”, “Gzip”, and “ZLIB”.

image/jpeg .jpeg
.jpg

JPEG See [RFC2045] and [RFC2046]. Note: image/
jpeg is really an image format, not a file format. JFIF
and EXIF are file formats that contain image/jpeg
image format data, and some applications have their
own formats that are similar to JFIF and EXIF but
which are proprietary. None the less, the “image/jpeg”
MimeType value is used to indentify these file types.

image/tiffb tiff/6.0 .tiff
.tif

Tag Image File Format [RFC3302]

multipart/related .mjd multipart/related with JDF as the first part [RFC2387]
multipart/related .mjm multipart/related with JMF as the first part [RFC2387]

a. BinHex encoding converts an 8-bit file into a 7-bit format [RFC1741], similar to UUencoding. BinHex
format preserves file attributes, as well as Macintosh resource forks, and includes CRC (Cyclic Redun-
dancy Check) error-checking. This encoding method works on any type of file, including formatted word
processing and spreadsheet files, graphics files, and even executable files (i.e. programs or applications).
Note: BinHex is not to be confused with MacBinary encoding, which is an 8-bit format.

b. Note: The image/tiff MIME MediaType is assumed to be TIFF Revision 6.0 as defined in detail by
Adobe in [TIFF6]. TIFF/IT is a different MIME type.

Table P-1: MimeType (MIME Media Types Registered with IANA), MimeTypeVersion combinations

MimeType MimeTypeVersion File
Extension

Description [iana-mt] indicates IANA
registration
637

Appendix P FileSpec Attribute Examples for MimeType and MimeTypeVersion Attributes
MimeTypeVersion table entry indicates that there is no recognized version number for the MimeType. Table P-2
also lists associated recommended file name extensions values. A blank file extension column entry indicates that
there is no recognized file name extension for the MimeType. The Compression values that do not have a corre-
sponding IANA MIME type are also assigned a file type value, so that a file that is so compressed or encoded has an
appropriate MimeType value for the file which must be used.

Table P-2: MimeType (File Type) and MimeTypeVersion combinations

MimeType MimeTypeVersion File
Extension Description [iana-mt] indicates IANA registration

Base64 .mme Base64 — A format for encoding arbitrary binary informa-
tion for transmission by electronic mail. [RFC3548]

Compress Compress — UNIX compression [RFC1977].
DCS DCS/2.0 .eps Document Color Separation (DCS), version 2.0. [DCS2.0]
Deflate Deflate — The file is compressed using ZIP public domain

compression format [RFC1951].
GZip .gz Gzip — GNU zip compression technology [RFC1952].
ICC Profile ICC-Profile/2.1.0 .icc

.icm
International Color Consortium (ICC) File Format for
Color Profiles taken from the binary coded decimal Profile
Header Profile Version Number field (bytes 8 through 11)
[ICC.1]

ICC Profile ICC-Profile/2.2.0 .icc
.icm

International Color Consortium (ICC) File Format for
Color Profiles taken from the binary coded decimal Profile
Header Profile Version Number field (bytes 8 through 11)
[ICC.1]

ICC Profile ICC-Profile/2.4.0 .icc
.icm

International Color Consortium (ICC) File Format for
Color Profiles taken from the binary coded decimal Profile
Header Profile Version Number field (bytes 8 through 11)
[ICC.1]

ICC Profile ICC-Profile/4.0.0 .icc
.icm

International Color Consortium (ICC) File Format for
Color Profiles taken from the binary coded decimal Profile
Header Profile Version Number field (bytes 8 through 11)
[ICC.1]

MacBinary .bin MacBinary — An encoding format that combines the two
forks of a Mac file, together with the file information
(Name, Creator Application, File Type, etc.) into a single
binary data stream that is suitable for storage or transfer-
ring through non-Mac systems. [macbinary]

Tar .tar UNIX packaging format.
TIFF/IT TIFF-IT/FP:1998 .fp TIFF/ITa [iso12639:1998] — Full Page — baseline
TIFF/IT TIFF-IT/CT:1998 .ct TIFF/IT [iso12639:1998] — Continuous Tone picture data

— baseline
TIFF/IT TIFF-IT/LW:1998 .lw TIFF/IT [iso12639:1998] — Continuous Line art — base-

line
TIFF/IT TIFF-IT/HC:1998 .hc TIFF/IT [iso12639:1998] — High-resolution Continuous

tone image data — baseline
TIFF/IT TIFF-IT/MP:1998 .mp TIFF/IT [iso12639:1998] — monochrome picture image

data — baseline
TIFF/IT TIFF-IT/BP:1998 .bp TIFF/IT [iso12639:1998] — Binary Picture image data —

baseline
638

JDF Specification Release 1.2
TIFF/IT TIFF-IT/BL:1998 .bl TIFF/IT [iso12639:1998] — Binary Line art image data —
baseline

TIFF/IT TIFF-IT/FP/P1:1998 .fp TIFF/IT [iso12639:1998] — Full Page — profile 1
TIFF/IT TIFF-IT/CT/P1:1998 .ct TIFF/IT [iso12639:1998] — Continuous Tone picture data

— profile 1
TIFF/IT TIFF-IT/LW/

P1:1998
.lw TIFF/IT [iso12639:1998] — Color Line art data — profile

1
TIFF/IT TIFF-IT/HC/

P1:1998
.hc TIFF/IT [iso12639:1998] — High-resolution Continuous

tone image data — profile 1
TIFF/IT TIFF-IT/MP/

P1:1998
.mp TIFF/IT [iso12639:1998] — monochrome picture image

data — profile 1
TIFF/IT TIFF-IT/BP/P1:1998 .bp TIFF/IT [iso12639:1998] — Binary Picture image data —

profile 1
TIFF/IT TIFF-IT/BL/P1:1998 .bl TIFF/IT [iso12639:1998] — Binary Line art image data —

profile 1
TIFF/IT TIFF-IT/FP:2003b .fp TIFF/IT [iso12639-1:2003] — Full Page — baseline

TIFF/IT TIFF-IT/CT:2003 .ct TIFF/IT [iso12639-1:2003] — Continuous Tone picture
data — baseline

TIFF/IT TIFF-IT/LW:2003 .lw TIFF/IT [iso12639-1:2003] — Color Line art data — base-
line

TIFF/IT TIFF-IT/HC:2003 .hc TIFF/IT [iso12639-1:2003] — High-resolution Continu-
ous tone image data — baseline

TIFF/IT TIFF-IT/MP:2003 .mp TIFF/IT [iso12639-1:2003] — monochrome picture image
data — baseline

TIFF/IT TIFF-IT/BP:2003 .bp TIFF/IT [iso12639-1:2003] — Binary Picture image data
— baseline

TIFF/IT TIFF-IT/BL:2003 .bl TIFF/IT [iso12639-1:2003] — Binary Line art image data
— baseline

TIFF/IT TIFF-IT/SD:2003 .sd TIFF/IT [iso12639-1:2003]
TIFF/IT TIFF-IT/FP/P1:2003 .fp TIFF/IT [iso12639-1:2003] — Full Page — profile 1
TIFF/IT TIFF-IT/CT/P1:2003 .ct TIFF/IT [iso12639-1:2003] — Continuous Tone picture

data — profile 1
TIFF/IT TIFF-IT/LW/

P1:2003
.lw TIFF/IT [iso12639-1:2003] — Color Line art data — pro-

file 1
TIFF/IT TIFF-IT/HC/

P1:2003
.hc TIFF/IT [iso12639-1:2003] — High-resolution Continu-

ous tone image data — profile 1
TIFF/IT TIFF-IT/MP/

P1:2003
.mp TIFF/IT [iso12639-1:2003] — monochrome picture image

data — profile 1
TIFF/IT TIFF-IT/BP/P1:2003 .bp TIFF/IT [iso12639-1:2003] — Binary Picture image data

— profile 1
TIFF/IT TIFF-IT/BL/P1:2003 .bl TIFF/IT [iso12639-1:2003] — Binary Line art image data

— profile 1c

TIFF/IT TIFF-IT/FP/P2:2003 .fp TIFF/IT [iso12639-1:2003] — Full Page — profile 2

Table P-2: MimeType (File Type) and MimeTypeVersion combinations

MimeType MimeTypeVersion File
Extension Description [iana-mt] indicates IANA registration
639

Appendix P FileSpec Attribute Examples for MimeType and MimeTypeVersion Attributes
TIFF/IT TIFF-IT/CT/P2:2003 .ct TIFF/IT [iso12639-1:2003] — Continuous Tone picture
data — profile 2

TIFF/IT TIFF-IT/LW/
P2:2003

.lw TIFF/IT [iso12639-1:2003] — Color Line art data — pro-
file 2

TIFF/IT TIFF-IT/HC/
P2:2003

.hc TIFF/IT [iso12639-1:2003] — High-resolution Continu-
ous tone image data — profile 2

TIFF/IT TIFF-IT/MP/
P2:2003

.mp TIFF/IT [iso12639-1:2003] — monochrome picture image
data — profile 2

TIFF/IT TIFF-IT/BP/P2:2003 .bp TIFF/IT [iso12639-1:2003] — Binary Picture image data
— profile 2

TIFF/IT TIFF-IT/BL/P2:2003 .bl TIFF/IT [iso12639-1:2003] — Binary Line art image data
— profile 2

TIFF/IT TIFF-IT/SD/P2:2003 .sd TIFF/IT [iso12639-1:2003]
Type 1 Font .pfa

.pfb
Type 1 Font [type1font]

True Type Font .ttf True Type Font [truetypefont]
Open Type Font .otf Open Type Font [opentypefont]
UUEncoded .uue UUEncode — A set of encoding algorithms for converting

files into a series of 7-bit ASCII characters that can be
transmitted over the Internet. Originally, uuencode stood
for Unix-to-Unix encode, but it has since become a univer-
sal protocol used to transfer files between different plat-
forms such as Unix, Windows, and Macintosh. Uencoding
is especially popular for sending e-mail attachments.
[uuencode]

ZLIB ZLIB — ZLIB compression [RFC1950]

a. The file format TIFF/IT must not use the “application/tiff” MimeType. The “application/tiff”
MimeType conforms to baseline TIFF 6.0 [RFC3302] which obsoletes [RFC2302], whereas TIFF/IT
does not conform to TIFF 6.0. Consequently, the widely-deployed TIFF 6.0 readers are not able to read
TIFF/IT. [RFC3302] requires that an RFC be published in order to extend image/tiff with a parameter that
would be needed in order to distinguish TIFF/IT from TIFF. There is no plan by the ISO committee that
oversees TIFF/IT to register TIFF/IT with either a parameter to image/tiff or as new separate MIME type.
Therefore, TIFF/IT will use the FileType attribute instead of the MimeType attribute.

b. The revision of ISO 12639 TIFF/IT is being balloted as a Draft International Standard (DIS) and is
expected to be published in the latter half of 2003.

c. Note: There is no TIFF/IT P1 conformance level of SD in ISO 12639:2003.

Table P-2: MimeType (File Type) and MimeTypeVersion combinations

MimeType MimeTypeVersion File
Extension Description [iana-mt] indicates IANA registration
640

Appendix Q FileSpec MimeType, URL, and
Compression attributes, and Container
subelement

New in JDF 1.2
The purpose of this appendix is to give a series of use cases with examples for the use of the FileSpec attributes:
MimeType, URL, Compression, and the FileSpec Container subelement. These use cases include container
packaging files, such as tar, zip, and multipart/related files and container compression and encoding files, each of
which require one or more Container subelements to link one FileSpec with its container FileSpec.

Q.1 FileSpec attribute value examples
Table Q-1 shows a number of use cases and the corresponding values for the MimeType, URL, and Compression
attributes. Each Container element points to the FileSpec shown on the next row in the table. The use cases are
arranged in order of increasing complexity.

Note: All of the URL examples in this appendix for FileSpec resources that are not contained in other files are
Absolute URIs, so that the complication of resolving FileSpec/@URI with RunList/@Directory is not consid-
ered. Of course, the URL examples for FileSpec resources that are contained in other files must all be Relative URIs
(relative to the Base URI that is the Absolute URI of where the JDF Consumer extracted the container file) as the JDF
spec requires (see the URL description at “FileSpec” on page 359).

Table Q-1: Use Cases showing MimeType, URL, and Compression attribute values

Description of Use Case Mime Type URL Compression
1.) Single a.pdf PDF file, no compression application/pdf ftp://www.any.com/share/a.pdf
2.) Single a.pdf PDF file, with Gzip compres-
sion

application/pdf a.pdf Gzip

Container FileSpec Gzip ftp://www.any.com/a.gz
3.) Single a.pdf PDF file, no compression, but
Base64 encoded

application/pdf a.pdf Base64

Container FileSpec Base64 ftp://www.any.com/a.mme
4.) Single PDF file, no compression, but Bin-
Hex encoded into a BinHex file

application/pdf a.pdf BinHex

Container FileSpec application/
mac-binhex40

ftp://www.any.com/a.hqx

5.) Single a.pdf PDF file with ZLIB compres-
sion in b.zip ZIP file (containing one or more
files)

application/pdf a.pdf ZLIB

Container FileSpec application/zip ftp://www.any.com/b.zip
6.) Single a.pdf PDF file compressed by
Deflate in a b.zip with one or more files, and
the b.zip packaging file itself is Base64
encoded as b.mme. To read, un-encode, then
uncompress. To write, compress, then
encode.

application/pdf a.pdf Deflate

Container FileSpec application/zip b.zip Base64
Container FileSpec Base64 ftp://www.any.com/b.mme
FileSpec attribute value examples 641

Appendix Q FileSpec MimeType, URL, and Compression attributes, and Container subelement
Q.2 Corresponding XML examples
The above use case examples are represented in XML as follows:

1 Single a.pdf PDF file, no compression:
<FileSpec MimeType="application/pdf" URL="ftp://www.any.com/share/a.pdf"/>

2 Single a.pdf PDF file, with Gzip compression:
<FileSpec Compression="Gzip" MimeType="application/pdf" URL="a.pdf">
 <Container>
 <FileSpec MimeType="Gzip" URL="ftp://www.any.com/a.gz"/>
 </Container>
</FileSpec>

3 Single a.pdf PDF file, no compression, but Base64 encoded:
<FileSpec Compression="Base64" MimeType="application/pdf" URL="a.pdf">
 <Container>
 <FileSpec MimeType="Base64" URL="ftp://www.any.com/a.mme"/>
 </Container>
</FileSpec>

4 Single PDF file, no compression, but BinHex encoded:
<FileSpec Compression="BinHex" MimeType="application/pdf" URL="a.pdf">
 <Container>
 <FileSpec MimeType="application/mac-binhex40" URL="ftp://www.any.com/a.hqx"/>
 </Container>
</FileSpec>

5 Single a.pdf PDF file, in b.zip ZIP file containing one or more files:
<FileSpec Compression="ZLIB" MimeType="application/pdf" URL="a.pdf">
 <Container>
 <FileSpec MimeType="application/zip" URL="ftp://www.any.com/b.zip"/>
 </Container>
</FileSpec>

6 Single a.pdf PDF file, in a b.zip with one or more files, and the b.zip packaging file itself is Base64 encoded
as b.mme. To read, un-encode, then uncompress. To write, compress, then encode.

<FileSpec Compression="Deflate" MimeType="application/pdf" URL="a.pdf">

7.) Single myFiles/myPicture.jpg file in
myNestedZip.zip file with one or many files,
but the myNestedZip.zip is itself zipped into
c.zip.

image/jpeg myFiles/myPicture.jpg Deflate

Container FileSpec application/zip myNestedZip.zip Deflate
Container FileSpec application/zip ftp://www.any.com/c.zip

8.) Single a.pdf PDF file which is ZLIB com-
pressed, in a c.zip with one or many files
which is contained in a tar file and com-
pressed with ZLIB into a .tar.gz file.

application/pdf a.pdf ZLIB

Container FileSpec application/zip c.zip
Container FileSpec Tara d.tar ZLIB

Container FileSpec GZip ftp://www.any.com/d.tar.gz

a. The UNIX Tar file packaging format is not registered with IANA as a MIME media type, so CIP4 has
assigned the “Tar” file type to it for use in the FileSpec/@MimeType attribute.

Table Q-1: Use Cases showing MimeType, URL, and Compression attribute values

Description of Use Case Mime Type URL Compression
642 Corresponding XML examples

JDF Specification Release 1.2
 <Container>
 <FileSpec Compression="Base64" MimeType="application/zip" URL="b.zip">
 <Container>
 <FileSpec MimeType="Base64" URL="ftp://www.any.com/b.mme"/>
 </Container>
 </FileSpec>
 </Container>
</FileSpec>

7 Single myFiles/myPicture.jpg file in myNestedZip.zip file with one or many files, but the myNestedZip.zip
is itself zipped into c.zip

<FileSpec Compression="Deflate" MimeType="image/jpeg" URL="myFiles/myPicture.jpg">
 <Container>
 <FileSpec Compression="Deflate" MimeType="application/zip" URL="myNestedZip.zip">
 <Container>
 <FileSpec MimeType="application/zip" URL="ftp://www.any.com/c.zip"/>
 </Container>
 </FileSpec>
 </Container>
</FileSpec>

8 Single a.pdf PDF file, which is ZLIB compressed in a c.zip with one or many files which is contained in a
tar file and compressed with ZLIB into a .tar.gz file.:

<FileSpec Compression="ZLIB" MimeType="application/pdf" URL="a.pdf">
 <Container>
 <FileSpec MimeType="application/zip" URL="c.zip">
 <Container>
 <FileSpec Compression="ZLIB" MimeType="Tar" URL="d.tar">
 <Container>
 <FileSpec MimeType="GZip" URL="ftp://www.any.com/d.tar.gz"/>
 </Container>
 </FileSpec>
 </Container>
 </FileSpec>
 </Container>
</FileSpec>

Q.3 Additional examples showing partitioning of FileSpec
This section has additional examples of container files and various schemes of partitioning.

1 Package b.zip contains multiple pdf files a.pdf, b.pdf etc
<FileSpec ID="ID_002" MimeType="application/zip" URL="ftp://www.any.com/b.zip"/>

<FileSpec Compression="Deflate" ID="A_FILE" MimeType="application/pdf" URL="a.pdf">
 <Container>
 <FileSpecRef rRef="ID_002"/>
 </Container>
</FileSpec>
<FileSpec Compression="Deflate" ID="B_FILE" MimeType="application/pdf" URL="b.pdf">
 <Container>
 <FileSpecRef rRef="ID_002"/>
 </Container>
</FileSpec>

2 Package b.zip contains two pdf files a.pdf, b.pdf and a tiff, c.tiff used by a partitioned resource
<FileSpec ID="ID_003" MimeType="application/zip" URL="ftp://www.any.com/b.zip"/>

<FileSpec Compression="Deflate" ID="ALL_FILES" MimeType="application/pdf"
PartIDKeys="PartVersion">
Additional examples showing partitioning of FileSpec 643

Appendix Q FileSpec MimeType, URL, and Compression attributes, and Container subelement
 <Container>
 <FileSpecRef rRef="ID_003"/>
 </Container>
 <FileSpec PartVersion="English" URL="a.pdf"/>
 <FileSpec PartVersion="French" URL="b.pdf"/>
 <FileSpec MimeType="application/tif" PartVersion="German" URL="c.tif"/>
</FileSpec>

3 Single a.pdf PDF file, in b.zip which is contained in c.tar file:
<FileSpec ID="ID_004_TAR" MimeType="Tar" URL="ftp://www.any.com/c.tar"/>

<FileSpec ID="ID_004_ZIP" MimeType="application/zip" URL="b.zip">
 <Container>
 <FileSpecRef rRef="ID_004_TAR"/>
 </Container>
</FileSpec>

<FileSpec Compression="Deflate" ID="C_FILE" MimeType="application/pdf" URL="a.pdf">
 <Container>
 <FileSpecRef rRef="ID_004_ZIP"/>
 </Container>
</FileSpec>

4 Multiple files in several zip’s contained in a tar file, various examples with and without partitioning,
 So the file layout looks like:
 b.tar
 c.zip
 a.pdf
 b.pdf
 d.zip
 a.pdf
 b.pdf
Scheme 1 — No Partitioning
<FileSpec ID="ID_005_TAR" MimeType="Tar" URL="ftp://www.any.com/c.tar"/>

<FileSpec ID="ID_005_ZIP_C" MimeType="application/zip" URL="c.zip">
 <Container FileSpecRef="ID_005_TAR"/>
</FileSpec>
<FileSpec ID="ID_005_ZIP_D" MimeType="application/zip" URL="d.zip">
 <Container FileSpecRef="ID_005_TAR"/>
</FileSpec>

<FileSpec Compression="Deflate" ID="A_ENGLISH_FILE" MimeType="application/pdf"
URL="a.pdf">
 <Container FileSpecRef="ID_005_ZIP_C"/>
</FileSpec>
<FileSpec Compression="Deflate" ID="B_ENGLISH_FILE" MimeType="application/pdf"
URL="b.pdf">
 <Container FileSpecRef="ID_005_ZIP_C"/>
</FileSpec>
<FileSpec Compression="Deflate" ID="A_GERMAN_FILE" MimeType="application/pdf"
URL="a.pdf">
 <Container FileSpecRef="ID_005_ZIP_D"/>
</FileSpec>
<FileSpec Compression="Deflate" ID="B_GERMAN_FILE" MimeType="application/pdf"
URL="b.pdf">
 <Container FileSpecRef="ID_005_ZIP_D"/>
</FileSpec>
Scheme 2 — Intermediate container partitioned
644 Additional examples showing partitioning of FileSpec

JDF Specification Release 1.2
<FileSpec ID="ID_005_TAR" MimeType="Tar" URL="ftp://www.any.com/c.tar"/>

<FileSpec ID="ID_005_ZIPS" MimeType="application/zip" PartIDKeys="PartVersion">
 <Container FileSpecRef="ID_005_TAR"/>
 <FileSpec ID="EnglishFiles" PartVersion="English" URL="c.zip"/>
 <FileSpec ID="GermanFiles" PartVersion="German" URL="d.zip"/>
</FileSpec>

<FileSpec Compression="Deflate" ID="A_ENGLISH_FILE" MimeType="application/pdf"
URL="a.pdf">
 <Container FileSpecRef="EnglishFiles"/>
</FileSpec>
<FileSpec Compression="Deflate" ID="B_ENGLISH_FILE" MimeType="application/pdf"
URL="b.pdf">
 <Container FileSpecRef="EnglishFiles"/>
</FileSpec>
<FileSpec Compression="Deflate" ID="A_GERMAN_FILE" MimeType="application/pdf"
URL="a.pdf">
 <Container FileSpecRef="GermanFiles"/>
</FileSpec>
<FileSpec Compression="Deflate" ID="B_GERMAN_FILE" MimeType="application/pdf"
URL="b.pdf">
 <Container FileSpecRef="GermanFiles"/>
</FileSpec>

Scheme 3 — the pdf’s partitioned
<FileSpec ID="ID_005_TAR" MimeType="Tar" URL="ftp://www.any.com/c.tar"/>

<FileSpec ID="ID_005_ZIP_C" MimeType="application/zip" URL="c.zip">
 <Container FileSpecRef="ID_005_TAR"/>
</FileSpec>
<FileSpec ID="ID_005_ZIP_D" MimeType="application/zip" URL="d.zip">
 <Container FileSpecRef="ID_005_TAR"/>
</FileSpec>

<FileSpec Compression="Deflate" ID="ALL_FILES" PartIDKeys="PartVersion DocIndex">
 <FileSpec ID="ENGLISH_FILES" PartVersion="English">
 <Container FileSpecRef="ID_005_ZIP_C"/>
 <FileSpec DocIndex="1" ID="A_ENGLISH_FILE" MimeType="application/pdf" URL="a.pdf"/>
 <FileSpec DocIndex="2" ID="B_ENGLISH_FILE" MimeType="application/pdf" URL="b.pdf"/>
 </FileSpec>
 <FileSpec ID="GERMAN_FILES" PartVersion="German">
 <Container FileSpecRef="ID_005_ZIP_D"/>
 <FileSpec DocIndex="1" ID="A_GERMAN_FILE" MimeType="application/pdf" URL="a.pdf"/>
 <FileSpec DocIndex="2" ID="B_GERMAN_FILE" MimeType="application/pdf" URL="b.pdf"/>
 </FileSpec>
</FileSpec>

Scheme 3a — As above but the file layout is not reflected in the container structure, the files are intermingled
<FileSpec ID="ID_005_TAR" MimeType="Tar" URL="ftp://www.any.com/c.tar"/>

<FileSpec ID="ID_005_ZIP_C" MimeType="application/zip" URL=" c.zip">
 <Container FileSpecRef="ID_005_TAR"/>
</FileSpec>
<FileSpec ID="ID_005_ZIP_D" MimeType="application/zip" URL=" d.zip">
 <Container FileSpecRef="ID_005_TAR"/>
</FileSpec>
Additional examples showing partitioning of FileSpec 645

Appendix Q FileSpec MimeType, URL, and Compression attributes, and Container subelement
<FileSpec Compression="Deflate" ID="ALL_FILES" MimeType="application/pdf"
PartIDKeys="PartVersion DocIndex">
 <FileSpec ID="ENGLISH_FILES" PartVersion="English">
 <FileSpec DocIndex="1" ID="A_ENGLISH_FILE" URL="a.pdf">
 <Container FileSpecRef="ID_005_ZIP_C"/>
 </FileSpec>
 <FileSpec DocIndex="2" ID="B_ENGLISH_FILE" URL="a.pdf">
 <Container FileSpecRef="ID_005_ZIP_D"/>
 </FileSpec>
 </FileSpec>
 <FileSpec ID="GERMAN_FILES" PartVersion="German">
 <FileSpec DocIndex="1" ID="A_GERMAN_FILE" URL="b.pdf">
 <Container FileSpecRef="ID_005_ZIP_C"/>
 </FileSpec>
 <FileSpec DocIndex="2" ID="B_GERMAN_FILE" URL="b.pdf">
 <Container FileSpecRef="ID_005_ZIP_D"/>
 </FileSpec>
 </FileSpec>
</FileSpec>

Scheme 4 — Both partitioned
<FileSpec ID="ID_005_TAR" MimeType="Tar" URL="ftp://www.any.com/c.tar"/>

<FileSpec ID="ID_005_ZIPS" MimeType="application/zip" PartIDKeys="PartVersion">
 <Container FileSpecRef="ID_005_TAR"/>
 <FileSpec ID="EnglishFiles" PartVersion="English" URL="c.zip"/>
 <FileSpec ID="GermanFiles" PartVersion="German" URL="d.zip"/>
</FileSpec>

<FileSpec Compression="Deflate" ID="ALL_FILES" PartIDKeys="PartVersion DocIndex">
 <FileSpec ID="ENGLISH_FILES" PartVersion="English">
 <Container FileSpecRef="EnglishFiles"/>
 <FileSpec DocIndex="1" ID="A_ENGLISH_FILE" MimeType="application/pdf" URL="a.pdf"/>
 <FileSpec DocIndex="2" ID="B_ENGLISH_FILE" MimeType="application/pdf" URL="b.pdf"/>
 </FileSpec>
 <FileSpec ID="GERMAN_FILES" PartVersion="German">
 <Container FileSpecRef="GermanFiles"/>
 <FileSpec DocIndex="1" ID="A_GERMAN_FILE" MimeType="application/pdf" URL="a.pdf"/>
 <FileSpec DocIndex="2" ID="B_GERMAN_FILE" MimeType="application/pdf" URL="b.pdf"/>
 </FileSpec>
</FileSpec>

5 Multiple PDF and TIFF files in several zip's contained in a tar file. Use all PDF files in c.zip, using the
FileSpec/@FileFormat mechanism and just Pictures/TIFS/a.pdf in d.zip. File layout looks like:

b.tar
c.zip

a.pdf
a.tif
b.pdf
b.tif

d.zip
PDFS/a.pdf
PDFS/b.pdf
Pictures/TIFS/a.pdf
Pictures/TIFS/b.pdf

<FileSpec ID="ID_005_TAR" MimeType="Tar" URL="ftp://www.any.com/c.tar"/>
646 Additional examples showing partitioning of FileSpec

JDF Specification Release 1.2
<FileSpec ID="ID_005_ZIP_C" MimeType="application/zip" URL="c.zip">
 <Container FileSpecRef="ID_005_TAR"/>
</FileSpec>
<FileSpec ID="ID_005_ZIP_D" MimeType="application/zip" URL="d.zip">
 <Container FileSpecRef="ID_005_TAR"/>
</FileSpec>

<FileSpec Compression="Deflate" FileFormat="%s.pdf" FileTemplate="all" ID="PDF_FILES"
MimeType="application/pdf">
 <Container FileSpecRef="ID_005_ZIP_C"/>
</FileSpec>
<FileSpec Compression="Deflate" ID="Pictures" URL="Pictures/TIFS/a.pdf">
 <Container FileSpecRef="ID_005_ZIP_D"/>
</FileSpec>

Q.4 Example of an Intent Job Ticket with a doubly nested ZIP
packaging file

Here is a complete example of an intent job ticket using ArtDeliveryIntent with a doubly nested packaging file.
The example shows a myPictures.jpg file that is contained in myNestedZip.zip file which is contained in myZip.zip
file:
<JDF xmlns="http://www.CIP4.org/JDFSchema_1_1" ID="FileSpecProposal01" JobID="bookJob"
Status="Waiting" Type="Product" Version="1.2">
 <ResourcePool>
 <ArtDeliveryIntent ID="FileSpecProposal02" Status="Draft">
 <ArtDelivery ArtDeliveryType="DigitalMedia">
 <RunList ID="FileSpecProposal05">
 <LayoutElement>
 <FileSpec Compression="Deflate" MimeType="image/jpeg" URL="myFiles/
myPicture.jpg">
 <Container FileSpecRef="ID_002"/>
 </FileSpec>
 </LayoutElement>
 </RunList>
 </ArtDelivery>
 </ArtDeliveryIntent>
 <Component Amount="100" Class="Quantity" ComponentType="FinalProduct"
DescriptiveName="FileSpec Test" ID="FileSpecProposal03" Status="Unavailable"/>
 <FileSpec ID="ID_001" MimeType="application/zip" URL="http://www.CIP4.org/
myZip.zip"/>
 <FileSpec Compression="Deflate" ID="ID_002" MimeType="application/zip"
URL="myNestedZip.zip">
 <Container FileSpecRef="ID_001"/>
 </FileSpec>
 </ResourcePool>
 <ResourceLinkPool>
 <ComponentLink Amount="100" Usage="Output" rRef="FileSpecProposal03"/>
 <ArtDeliveryIntentLink Usage="Input" rRef="FileSpecProposal02"/>
 </ResourceLinkPool>
 <JDF ID="FileSpecProposal04" Status="Waiting" Type="DigitalPrinting">
 <ResourceLinkPool>
 <RunListLink Usage="Input" rRef="FileSpecProposal05"/>
 </ResourceLinkPool>
 </JDF>
</JDF>
Example of an Intent Job Ticket with a doubly nested ZIP packaging file 647

Appendix Q FileSpec MimeType, URL, and Compression attributes, and Container subelement
648 Example of an Intent Job Ticket with a doubly nested ZIP

Appendix R Resolving RunList/@Directory and
FileSpec/@URL URI references

New in JDF 1.2
This appendix describes the detailed semantics of resolving RunList/@Directory and any associated FileSpec/
@URL URI references in any of the RunList refelements.

R.1 Semantics of the RunList/@Directory attribute
The Directory attribute defines a directory where the files that are associated with this RunList should be copied to
or from. If Directory is specified, it must be an Absolute URI [RFC2396] that specifies a Base URI to resolve each
URI attribute in the refelements of RunList. As such, Directory must start with a URL scheme, such as “file:”
or “ftp:”, may contain an authority, such as “//any.com”, and should contain an absolute path that ends with a
“/” to indicate a directory.1 For example: “file://any.com/pub/doc-archives/” or “file:///pub/
doc-archives/”.

If Directory is not specified, the Absolute URI that specifies the directory in which the JDF file resides is used
as the Base URI to resolve each URI attribute in the RunList.

If the FileSpec/Container/FileSpec element is supplied indicating that the FileSpec is contained in
another file, the Base URI is the Absolute URI of where the JDF Consumer extracted the container file (whether or
not Directory is specified). (See “FileSpec” on page 359.)

After determining the Base URI depending on the presence or absence of RunList/@Directory and
FileSpec/Container/FileSpec element as described above, each URL attribute in a RunList refelement (e.g.,
LayoutElement/FileSpec/@URL or InsertSheet/Sheet/Media/QualityControlResult/FileSpec/
@URL) is used in combination with the Base URI to form the Resolved URI as follows according to one of the fol-
lowing mutually exclusive patterns.2

1 RunList URL starts with a scheme (token ending with “:”, (e.g., “file:” or “cid:”):3

Resolved URI = the entire RunList URL (and the Base URI is ignored).

2 RunList URL starts with an authority/host (starts with “//”, (e.g., “//www.cip4.org”):

Resolved URI = the Base URI scheme, followed by the RunList URL authority/host followed by its absolute
path (which may be empty).

1. According to [RFC2396] section 5.2 “Resolve Relative References to Absolute Form”, the characters fol-
lowing the right-most “/”, if any, are removed from the Base URI, in order to resolve a Relative URI with
the Base URI. So be sure to end the Directory value with a “/” to make it cleat that Directory is a ref-
erence to a directory and not a file, and to ensure that the last path segment won’t get removed in resolv-
ing the URI reference.

2. The Resolved URI is formed assuming that URI query and fragments are not used in JDF.
3. In order to improve interoperability and to simplify implementation, JDF follows the strict-parsing rules

of [RFC2396] so that even if the FileSpec/@URL attribute starts with the same scheme as the Base
URI, the entire URL values is always interpreted as an Absolute URI and always replaces the Base URI
to form the Resolved URI. This strict rule is especially important for interoperability. Consider the case
where the JDF Producer drops the JDF into a hot folder but does NOT specify RunList/@Directory so
that the JDF Consumer has to generate the Base URI for the hot folder in order to resolve the FileSpec/
@RunList, but the Producer is supplying a FileSpec/@URL that is relative to the hot folder. If the JDF
Producer supplies the scheme in the FileSpec/@URL, then the JDF Producer would have to supply the
same scheme as the JDF Consumer generates for the Base URI for hot folder, in order for the Relative
URI semantics to apply. However, under non-strict parsing, if the JDF Producer guesses wrong (say one
is “file:” and the other is “ftp:”), the JDF Consumer would interpret FileSpec/@URI as an
Absolute URI.
Semantics of the RunList/@Directory attribute 649

Appendix R Resolving RunList/@Directory and FileSpec/@URL URI references
3 RunList URL starts with an absolute path (starts with “/”, (e.g., “/pub/document-archives”):

Resolved URI = Base URI scheme and its authority (if any) followed by the RunList URL absolute path.

4 RunList URL starts with a relative path (starts with something other than “/”, (e.g., “foo.pdf”, “./
folder/foo.pdf”, “../foo.pdf”, etc.):

Resolved URI = Base URI scheme, its authority (if any), and its absolute path (if any) up to and including the
right-most “/”, followed by the RunList URL relative path with “.”, “..”, and “./” segments removed.
The above algorithm is only a summary. See [RFC2396] and [RFC2396bis] for the detailed algorithm. See
[FileURL] for examples.
650 Semantics of the RunList/@Directory attribute

Appendix S AppOS and OSVersion Attributes
New in JDF 1.2
This appendix lists examples values for the following attributes of the FileSpec resource: AppOS and
OSVersion. The listing is intended to be exhaustive for the most likely operating systems that are routinely used in
JDF applications. However, other operating systems and combinations may be used as well. When operating systems
have new versions, they may be used and should follow the patterns established in this the following table.

Table S-1: AppOS and OSVersion Examples

AppOS OSVersion Description
Linux 2.2 Linux operation system
Mac 10.2.4 Macintosh operation system
Solaris 4.0 Sun Solaris operation system
UNIX BSD Berkley UNIX
UNIX V System V UNIX
UNIX V.1 System V UNIX
UNIX V.2 System V UNIX
UNIX V.3 System V UNIX
UNIX PC UNIX for the PC
Windows 95 Windows 95
Windows 98 Windows 98
Windows NT Windows NT
Windows NT-5 Windows 2000
Windows NT-5.1 XP [not yet registered by Microsoft with IANA]
651

Appendix S AppOS and OSVersion Attributes
652

Appendix T References
Throughout this specification references to other documents are indicated by short symbolic names inside square
brackets, (e.g., [ICC.1]). Implementers must read and conform to such referenced documents when implementing a
part of this specification with such a reference. The reader is directed to this Document References section to find the
full title, date, source, and availability of all such references.1

Table T-1: Complete References

Term Definition
[CCIR601-2] CCIR Recommendation 601-2

Encoding Parameters of Digital Television for Studios, 1990, Volume XI — Part 1,
Broadcasting Service (Television), pp. 95-104.

Date: 1990
Produced by: International Telecommunication Union
Available at: International Telecommunication Union, General Secretariat — Sales
Section, Place des Nations, CH-1211 Geneva 20 (Switzerland)

[CGATS.12/1] CGATS.12/1
Graphic technology — Prepress digital data exchange — Use of PDF for composite data —
Part 1: Complete exchange (PDF/X-1).

Date: 14 October 1999
Produced by: Committee for Graphic Arts Technologies Standards (NPES serves as
the American National Standards Institute (ANSI) secretariat to CGATS.)
Available at: The publication is available in hardcopy only and may be ordered via a
form at http://www.npes.org/standards/Standards-Technical-OrderForm.pdf.

[CGATS.20-2002] CGATS.20-2002
Graphic technology - Variable data printing exchange using PPML and PDF (PPML/VDX).

Date: 2002
Produced by: Committee for Graphic Arts Technologies Standards (NPES serves as
the American National Standards Institute (ANSI) secretariat to CGATS.)
Available at: The publication is available in hardcopy only and may be ordered via a
form at http://www.npes.org/standards/Standards-Technical-OrderForm.pdf.

[ColorPS] Color Separation Conventions for PostScript Language Programs
Technical Note #5044

Date: 24 May 1996
Produced by: Adobe Systems Inc.
Available at: http://partners.adobe.com/asn/developer/pdfs/tn/
5044.ColorSep_Conv.pdf

[DCS2.0] Document Color Separation (DCS), version 2.0
Date: Revised May 1995
Produced by: Adobe Software Inc.
Available at: http://www.npes.org/standards/Tools/DCS20Spec.pdf.

[distparm] Tech note 5151
Acrobat Distiller Parameters

Date: August 2002
Produced by: Adobe Systems, Inc.
Available at: http://partners.adobe.com/misc/search.html

[FileURL] CIP4 Application Note — Use of the File URL in JDF
Date: August 2003
Produced by: CIP4 Organization
Available at: http://www.cip4.org
653

http://www.npes.org/standards/Standards-Technical-OrderForm.pdf
http://www.npes.org/standards/Standards-Technical-OrderForm.pdf
http://partners.adobe.com/asn/developer/pdfs/tn/5044.ColorSep_Conv.pdf
http://partners.adobe.com/asn/developer/pdfs/tn/5044.ColorSep_Conv.pdf
http://www.npes.org/standards/Tools/DCS20Spec.pdf
http://partners.adobe.com/misc/search.html
http://www.cip4.org

Appendix T References
1. The references appendix is “Appendix T” in honor of Tom Hastings of Xerox whose diligent work in
identifying and flushing out these reference has resulted in the very complete list that you see here. To
many of the members of CIP4, this is really “Appendix Tom”!

[FIRST] Flexographic Image Reproduction Specifications & Tolerances (FIRST)
Second Edition

Date: November 1999
Produced by: Flexography Technical Association
Available at: http://www.fta-ffta.org.

[GRACoL] General Requirements for Applications in Commercial offset Lithography (GRACoL)
Version 6.0

Date: June 2002
Produced by: IDEAlliance (formerly Graphic Communications Association)
Available at: http://www.gracol.com.

[iana-mt] IANA Registry of MIME Media Types
Available at: http://www.iana.org/assignments/media-types

[iana-os] IANA Registry of Operating System Names
Available at: http://www.iana.org/assignments/operating-system-names

[ICC.1] Specification ICC.1:2001-12
File Format for Color Profiles, Version 4.0.0

Date: 2001
Produced by: International Color Consortium (ICC)
Available at: http://www.color.org/ICC_Minor_Revision_for_Web.pdf

[IEEE754] IEEE 754-1985
Standard for Binary Floating-Point Arithmetic

Date: 1985
Produced by: IEEE
Available at: http://grouper.ieee.org/groups/754/

[IEEE1284] IEEE 1284-2000
IEEE Standard Signaling Method for a Bi-directional Parallel Peripheral Interface for
Personal Computers

Date: 2000
Produced by: IEEE
Available at: http://standards.ieee.org/catalog/olis/busarch.html

[ifra] IfraTrack Specification
Ifra Special Report 6.21.2, Version 2.0

Date: June 1998
Produced by: Ifra
Available at: http://www.ifra.com/

[iso12639:1998] ISO 12639:1998
Graphic technology — Prepress digital data exchange — Tag image file format for image
technology (TIFF/IT).

Date: 1998
Produced by: ISO
Available at: http://www.iso.ch/iso/en/prods-services/ISOstore/store.html

Table T-1: Complete References

Term Definition
654

http://www.fta-ffta.org
http://www.gracol.com
http://www.iana.org/assignments/media-types
http://www.iana.org/assignments/operating-system-names
http://www.color.org/ICC_Minor_Revision_for_Web.pdf
http://grouper.ieee.org/groups/754/
http://standards.ieee.org/catalog/olis/busarch.html
http://www.ifra.com/
http://www.iso.ch/iso/en/prods-services/ISOstore/store.html

JDF Specification Release 1.2
[iso12639-1:2003] ISO 12639-1:2003
Graphic technology — Prepress digital data exchange — Tag image file format for image
technology (TIFF/IT).

Date: 2003
Produced by: ISO
Available at: http://www.iso.ch/iso/en/prods-services/ISOstore/store.html

[iso14977:1996] ISO 14977:1996(E)
Information technology -- Syntactic metalanguage -- Extended BNF

Date: 1996
Produced by: ISO
Available at: http://www.iso.ch/iso/en/prods-services/ISOstore/store.html

[iso15930-1:2001] ISO 15930-1:2001
Graphic technology — Prepress digital data exchange — Use of PDF — Part 1: Complete
exchange using CMYK data (PDF/X-1 and PDF/X-1a).

Date: 2001
Produced by: ISO
Available at: http://www.iso.ch/iso/en/prods-services/ISOstore/store.html

[iso15930-4:2003] ISO 15930-4:2003
Graphic technology — Prepress digital data exchange — Use of PDF — Part 1: Complete
exchange using CMYK data (PDF/X-1 and PDF/X-1a).

Date: 2003
Produced by: ISO
Available at: http://www.iso.ch/iso/en/prods-services/ISOstore/store.html

[iso15930-5:2003] ISO 15930-2:2003
Graphic technology — Prepress digital data exchange — Use of PDF — Part 2: Partial
exchange of printing data (PDF/X-2).

Date: 2003
Produced by: ISO
Available at: http://www.iso.ch/iso/en/prods-services/ISOstore/store.html

[iso15930-3:2002] ISO 15930-3:2002
Graphic technology — Prepress digital data exchange — Use of PDF — Part 3: Complete
exchange suitable for colour-managed workflows (PDF/X-3).

Date: 2002
Produced by: ISO
Available at: http://www.iso.ch/iso/en/prods-services/ISOstore/store.html

[iso15930-6:2003] ISO 15930-6:2003
Graphic technology — Prepress digital data exchange — Use of PDF — Part 3: Complete
exchange suitable for colour-managed workflows (PDF/X-3).

Date: 2003
Produced by: ISO
Available at: http://www.iso.ch/iso/en/prods-services/ISOstore/store.html

Table T-1: Complete References

Term Definition
655

http://www.iso.ch/iso/en/prods-services/ISOstore/store.html
http://www.iso.ch/iso/en/prods-services/ISOstore/store.html
http://www.iso.ch/iso/en/prods-services/ISOstore/store.html
http://www.iso.ch/iso/en/prods-services/ISOstore/store.html
http://www.iso.ch/iso/en/prods-services/ISOstore/store.html
http://www.iso.ch/iso/en/prods-services/ISOstore/store.html
http://www.iso.ch/iso/en/prods-services/ISOstore/store.html

Appendix T References
[iso12647-2] ISO 12647-2:1996
Graphic technology — Process control for the manufacture of
half-tone colour separations, proof and production prints — Part 2: Offset lithographic
processes

Date: 1996
Produced by: ISO
Available at: http://www.iso.ch/iso/en/prods-services/ISOstore/store.html

[japancolor] Japan Color 2001
Date: 2001
Produced by: Japan Printing Machinery Manufacturers Association, Office of JNC for
TC130
Available at: Call (81) 03-3434-4661

[JDF11a] Job Definition Format 1.1a *
Date: 2002
Produced by: International Cooperation for Integration of Processes in Prepress, Press
and Postpress (CIP4)
Available at: http://www.cip4.org

[JDFMIME] The MIME application/vnd.cip4-jdf+xml Content-Type
Work in progress

Date: 25 January 2003
Produced by: Hastings, T., and McDonald, I.
Available at: draft-mcdonald-cip4-jdf-mime-00.txt

[K&R] C Programming Language , by Brian W. Kernighan and Dennis M. Ritchie
Second Edition

Date: March 22, 1988
Produced by: Prentice Hall
Available at: (Book only. Look for ISBN 0131103628.)

[macbinary] Macintosh Binary Transfer Format (“MacBinary III”) Standard Proposal.
Date: December 1996
Produced by: Macintosh Internet Developer Association
Available at: http://www.lazerware.com/formats/

[opentypefont] OpenType specification
v.1.4

Date: 11 October 2002
Produced by: Microsoft Corporation
Available at: http://www.microsoft.com/typography/specs/

[PDF1.3] PDF reference : Adobe portable document format version 1.3 / Adobe Systems Incorporated.
2nd Edition

Date: 3 July 2000
Produced by: Addison-Wesley
Available at: http://partners.adobe.com/asn/developer/technotes/acrobatpdf.html

[PDF1.4] PDF reference : Adobe portable document format version 1.4 / Adobe Systems Incorporated.
3rd Edition

Date: November 2001
Produced by: Addison-Wesley
Available at: http://partners.adobe.com/asn/developer/technotes/acrobatpdf.html

Table T-1: Complete References

Term Definition
656

http://www.iso.ch/iso/en/prods-services/ISOstore/store.html
http://www.cip4.org
draft-mcdonald-cip4-jdf-mime-00.txt
http://www.lazerware.com/formats/
http://www.microsoft.com/typography/specs/
http://partners.adobe.com/asn/developer/technotes/acrobatpdf.html
http://partners.adobe.com/asn/developer/technotes/acrobatpdf.html

JDF Specification Release 1.2
[PDF1.5] PDF reference : Adobe portable document format version 1.5 / Adobe Systems Incorporated.
Version 1.5

Date: 20 June 2003
Produced by: Addison-Wesley
Available at: http://partners.adobe.com/misc/search.html

[PJTF] The Portable Job Ticket Format
Version 1.1

Date: 2 April 1999
Produced by: Adobe Systems Inc.
Available at: http://partners.adobe.com/asn/developer/pdfs/tn/5620.pjtf.pdf.

[PPF] Print Production Format
Version 3.0

Date: 2 June 1998
Produced by: The International Cooperation for Integration of Prepress, Press, and
Postpress
Available at: http://www.cip4.org/documents/technical_info/cip3v3_0.pdf.

[PPML] PPML]
Personal Print Markup Language (PPML)
Version 2.1

Produced by: Print On Demand Initiative (PODi)
Available at: http://www.podi.org

[PrintTalk] PrintTalk Implementation
Version 1.1

Produced by: PrintTalk Consortium
Available at: http://www.printtalk.org/.

[PS] PostScript Language Reference (Redbook)
Third Edition

Date: —
Produced by: Adobe Systems, Inc.
Available at: http://partners.adobe.com/asn/developer/pdfs/tn/PLRM.pdf

[PWG] The Printer Working Group
Date: —
Produced by: IEEE-ISTO
Available at: http://www.pwg.org

[PWGFINMIB] Printer Finishing MIB
(draft-ietf-printmib-finishing-16.txt — work in progress.)

Date: February 2003
Produced by: Internet Engineering Task Force (IETF), Network Working Group
Available at: IETF Internet-Drafts have a six month life-time. They are available at:

https://datatracker.ietf.org/public/pidtracker.cgi
[Quark] See http://www.quark.com.
[RFC1738] RFC 1738

Uniform Resource Locators (URL)
Date: 1994
Produced by: Internet Engineering Task Force (IETF), Network Working Group
Available at: All IETF (Internet Engineering Task Force) RFCs (Request for Com-
ments) are available at RFC Database search: http://www.rfc-editor.org/rfcsearch.html.

Table T-1: Complete References

Term Definition
657

http://partners.adobe.com/misc/search.html
http://partners.adobe.com/asn/developer/pdfs/tn/5620.pjtf.pdf
http://www.cip4.org/documents/technical_info/cip3v3_0.pdf
http://www.printtalk.org/
http://partners.adobe.com/asn/developer/pdfs/tn/PLRM.pdf
http://www.pwg.org
http://www.quark.com
http://www.rfc-editor.org/rfcsearch.html

Appendix T References
[RFC1741] RFC 1741
MIME Content Type for BinHex Encoded Files, by Faltstrom, P., Crocker, D., and Fair, E.

Date: December 1994
Produced by: Internet Engineering Task Force (IETF), Network Working Group
Available at: All IETF (Internet Engineering Task Force) RFCs (Request for Com-
ments) are available at RFC Database search: http://www.rfc-editor.org/rfcsearch.html.

[RFC1759] RFC 1759
Printer MIB, Version 2.0 by Smith, R., Wright, F., Hastings, T., Zilles, S., and Gyllenskog, J.

Date: June 2003
Produced by: Internet Engineering Task Force (IETF), Network Working Group
Available at: IETF Internet-Drafts have a six month life-time. They are available at:
https://datatracker.ietf.org/public/pidtracker.cgi.

[RFC1808] RFC 1808
Relative Uniform Resource Locators

Date: June 1995
Produced by: Internet Engineering Task Force (IETF), Network Working Group
Available at: All IETF (Internet Engineering Task Force) RFCs (Request for Com-
ments) are available at RFC Database search: http://www.rfc-editor.org/rfcsearch.html.

[RFC1950] RFC 1950
ZLIB Compressed Data Format Specification version 3.3, by P. Deutsch.

Date: May 1996
Produced by: Internet Engineering Task Force (IETF), Network Working Group
Available at: All IETF (Internet Engineering Task Force) RFCs (Request for Com-
ments) are available at RFC Database search: http://www.rfc-editor.org/rfcsearch.html.

[RFC1951] RFC 1951
DEFLATE Compressed Data Format Specification version 1.3, by Deutsch, P.

Date: May 1996
Produced by: Internet Engineering Task Force (IETF), Network Working Group
Available at: All IETF (Internet Engineering Task Force) RFCs (Request for Com-
ments) are available at RFC Database search: http://www.rfc-editor.org/rfcsearch.html.

[RFC1952] RFC 1952
GZIP file format specification version 4.3, by Deutsch, P.

Date: May 1996
Produced by: Internet Engineering Task Force (IETF), Network Working Group
Available at: All IETF (Internet Engineering Task Force) RFCs (Request for Com-
ments) are available at RFC Database search: http://www.rfc-editor.org/rfcsearch.html.

[RFC1977] RFC 1977
PPP BSD Compression Protocol, by Schryver, V.

Date: August 1996
Produced by: Internet Engineering Task Force (IETF), Network Working Group
Available at: All IETF (Internet Engineering Task Force) RFCs (Request for Com-
ments) are available at RFC Database search: http://www.rfc-editor.org/rfcsearch.html.

Table T-1: Complete References

Term Definition
658

http://www.rfc-editor.org/rfcsearch.html
https://datatracker.ietf.org/public/pidtracker.cgi
http://www.rfc-editor.org/rfcsearch.html
http://www.rfc-editor.org/rfcsearch.html
http://www.rfc-editor.org/rfcsearch.html
http://www.rfc-editor.org/rfcsearch.html
http://www.rfc-editor.org/rfcsearch.html

JDF Specification Release 1.2
[RFC2045] RFC 2045
Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies,
by Freed, N., and Borenstein, N. (Updated by RFC2184, RFC2231)

Date: November 1996
Produced by: Internet Engineering Task Force (IETF), Network Working Group
Available at: All IETF (Internet Engineering Task Force) RFCs (Request for Com-
ments) are available at RFC Database search: http://www.rfc-editor.org/rfcsearch.html.

[RFC2046] RFC 2046
Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types, by Freed, N., and
Borenstein, N. (Updated by RFC2646)

Date: November 1996
Produced by: Internet Engineering Task Force (IETF), Network Working Group
Available at: All IETF (Internet Engineering Task Force) RFCs (Request for Com-
ments) are available at RFC Database search: http://www.rfc-editor.org/rfcsearch.html.

[RFC2183] RFC 2183
Communicating Presentation Information in Internet Messages: The Content-Disposition
Header Field

Date: August 1997
Produced by: Internet Engineering Task Force (IETF), Network Working Group
Available at: All IETF (Internet Engineering Task Force) RFCs (Request for Com-
ments) are available at RFC Database search: http://www.rfc-editor.org/rfcsearch.html.

[RFC2302] RFC 2302
Tag Image File Format (TIFF) — image/tiff MIME Sub-type Registration, by Parsons, G.,
Rafferty, J., and Zilles, S. (Obsoleted by RFC3302)

Date: March 1998
Produced by: Internet Engineering Task Force (IETF), Network Working Group
Available at: All IETF (Internet Engineering Task Force) RFCs (Request for Com-
ments) are available at RFC Database search: http://www.rfc-editor.org/rfcsearch.html.

[RFC2387] RFC 2387
The MIME Multipart/Related Content-type, by Levinson, E.

Date: August 1998
Produced by: Internet Engineering Task Force (IETF), Network Working Group
Available at: All IETF (Internet Engineering Task Force) RFCs (Request for Com-
ments) are available at RFC Database search: http://www.rfc-editor.org/rfcsearch.html.

[RFC2392] RFC 2392
Content-ID and Message-ID Uniform Resource Locators, by Levinson, E.

Date: August 1998
Produced by: Internet Engineering Task Force (IETF), Network Working Group
Available at: All IETF (Internet Engineering Task Force) RFCs (Request for Com-
ments) are available at RFC Database search: http://www.rfc-editor.org/rfcsearch.html.

[RFC2396] RFC 2396
Uniform Resource Identifiers (URI): Generic Syntax, by Berners-Lee, T., and Fielding, R.,
Masinter, L. (See also [RFC2396bis].)

Date: August 1998
Produced by: Internet Engineering Task Force (IETF), Network Working Group
Available at: All IETF (Internet Engineering Task Force) RFCs (Request for Com-
ments) are available at RFC Database search: http://www.rfc-editor.org/rfcsearch.html.

Table T-1: Complete References

Term Definition
659

http://www.rfc-editor.org/rfcsearch.html
http://www.rfc-editor.org/rfcsearch.html
http://www.rfc-editor.org/rfcsearch.html
http://www.rfc-editor.org/rfcsearch.html
http://www.rfc-editor.org/rfcsearch.html
http://www.rfc-editor.org/rfcsearch.html
http://www.rfc-editor.org/rfcsearch.html

Appendix T References
[RFC2396bis] RFC 2396bis
Uniform Resource Identifiers (URI): Generic Syntax, Internet-Draft, <work in progress>,
<draft-fielding-uri-rfc2396bis-03.txt>,by Berners-Lee, T., and Fielding, R., Masinter, L.

Date: June 6, 2003
Produced by: Internet Engineering Task Force (IETF), Network Working Group
Available at: IETF Internet-Drafts have a six month life-time. They are available at:
https://datatracker.ietf.org/public/pidtracker.cgi.

[RFC2616] RFC 2616
Hypertext Transfer Protocol — HTTP/1.1

Date: June 1999
Produced by: Internet Engineering Task Force (IETF), Network Working Group
Available at: All IETF (Internet Engineering Task Force) RFCs (Request for Com-
ments) are available at RFC Database search: http://www.rfc-editor.org/rfcsearch.html.

[RFC2806] RFC 2806
URLs for Telephone Calls, by A. Vaha-Sipila

Date: April 2000
Produced by: Internet Engineering Task Force (IETF), Network Working Group
Available at: All IETF (Internet Engineering Task Force) RFCs (Request for Com-
ments) are available at RFC Database search: http://www.rfc-editor.org/rfcsearch.html.

[RFC3302] RFC 3302
Tag Image File Format (TIFF) — image tiff MIME Sub-type Registration, by Parsons, G., and
Rafferty, J. (Obsoletes RFC2302)

Date: September 2002
Produced by: Internet Engineering Task Force (IETF), Network Working Group
Available at: All IETF (Internet Engineering Task Force) RFCs (Request for Com-
ments) are available at RFC Database search: http://www.rfc-editor.org/rfcsearch.html.

[RFC3548] RFC 3548
The Base16, Base32, and Base64 Data Encodings, by S. Josefsson

Date: July 2003
Produced by: Internet Engineering Task Force (IETF), Network Working Group
Available at: All IETF (Internet Engineering Task Force) RFCs (Request for Com-
ments) are available at RFC Database search: http://www.rfc-editor.org/rfcsearch.html.

[SNAP] Specifications for Newsprint Advertising Production (SNAP)
Date: 2000
Produced by: Printing Industries of America, Inc. (SNAP Committee)
Available at: http://www.gain.net/store/item.cfm?productid=488

[TIFF6] TIFF Revision 6.0
Date: June 1992
Produced by: Adobe Systems, Inc.
Available at: http://partners.adobe.com/asn/tech/tiff/specification.jsp

[TIFFPS] Adobe Photoshop TIFF Technical Notes
Date: March 2002
Produced by: Adobe Systems, Inc.
Available at: http://partners.adobe.com/asn/tech/tiff/specification.jsp

[truetypefont] TrueType font file and TrueType Open specification
Date: August 1995
Produced by: Microsoft Corporation
Available at: http://www.microsoft.com/typography/specs/

Table T-1: Complete References

Term Definition
660

http://www.rfc-editor.org/rfcsearch.html
http://www.rfc-editor.org/rfcsearch.html
http://www.rfc-editor.org/rfcsearch.html
http://www.rfc-editor.org/rfcsearch.html
http://www.gain.net/store/item.cfm?productid=488
http://partners.adobe.com/asn/tech/tiff/specification.jsp
http://partners.adobe.com/asn/tech/tiff/specification.jsp
http://www.microsoft.com/typography/specs/

JDF Specification Release 1.2
[type1font] Adobe Type 1 Font Format
Adobe Systems, Inc.

Date: 1990
Produced by: Addison-Wesley Publishing Company, Inc.
Available at: http://partners.adobe.com/asn/developer/pdfs/tn/T1_SPEC.PDF

[uuencode] Unix Uuencode, The Single UNIX ® Specification, Version 2
(Converts binary into the local character set that is suitable to pass through email systems.)

Date: 1997
Produced by: The Open Group
Available at: http://www.opengroup.org/onlinepubs/007908799/xcu/uuencode.html

[UPNP] Printer Device and Printer Basic Service
Version 1.0

Date: 2002
Produced by: Universal Plug N Play Forum
Available at: http://www.upnp.org/standardizeddcps/printer.asp

[WINZip] APPNOTE.TXT — .ZIP File Format Specification
Version 5.2

Date: 16 July 2003
Produced by: PKWARE Inc.
Available at: http://www.pkware.com/products/enterprise/white_papers/appnote.html.

[XML] XML Specification *
Version 1.0 (Second Edition)

Date: 6 October 2000
Produced by: World Wide Web Consortium (W3C)
Available at: http://www.w3.org/TR/REC-xml.

[XMLNS] Namespaces in XML
Version (W3C Recommendation of 14 January 1999)

Date: 14 January 1999
Produced by: World Wide Web Consortium (W3C)
Available at: http://www.w3.org/TR/REC-xml-names/

[XPath] XML Path Language (XPath) Version 1.0
Version W3C Recommendation 16 November 1999

Date: 16 November 1999
Produced by: World Wide Web Consortium (W3C)

Available at: http://www.w3.org/TR/xpath.html.
[XMLSchema] XML Schema Part 0+1+2: Primer, Structures and Datatypes *

Version (W3C Recommendation of 02 May 2001)
Date: 02 May 2001
Produced by: World Wide Web Consortium (W3C) XML Schema working group
Available at: http://www.w3.org/TR/xmlschema-0/, http://www.w3.org/TR/
xmlschema-1/ and http://www.w3.org/TR/xmlschema-2/.

Table T-1: Complete References

Term Definition
661

http://partners.adobe.com/asn/developer/pdfs/tn/T1_SPEC.PDF
http://www.opengroup.org/onlinepubs/007908799/xcu/uuencode.html
http://www.upnp.org/standardizeddcps/printer.asp
http://www.pkware.com/products/enterprise/white_papers/appnote.html.
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xpath.html
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/

Appendix T References
662

Appendix U JDF/CIP4 Hole Pattern Catalog
The following table defines the specifics of the predefined holes in HoleMakingParams and
HoleMakingParams.
Notes:

1 All patterns are centered on the sheet along the process edge.

2 Process Edge is always defined relative to a portrait orientation of the medium, regardless of the orientation
of the printed image or processing path.

3 Thumbcuts are available in various standard shapes (labeled "No. N" where N is minimally ranging from
2..7). "No. 3" seems to be the most widely used.

4 Single thumbcuts appear always in the center of the process edge.

5 Oval shape holes actually look sometimes more like rectangular holes with rounded corners.

Sources:
1 [PWGFINMIB]

Naming Scheme:
General <m|i>: m = metric (millimeter is used), i = imperial (inch, where 1 inch = 25.4 mm)

Ring Binding R<#holes><m|i>-<variant>
Example: R2m-DIN = RingBind, 2 hole, metric, DIN

Plastic Comb P<pitch><m|i>-<shape>-<#thumbcuts>t
Example: P16:9m-round-0t = Plastic Comb, 9/16" pitch (16:9), round, no thumbcut

Wire Comb W<pitch><m|i>-<shape>-<#thumbcuts>t
Example: W2:1i-square-1t = Wire Comb, 1/2" pitch (2:1), square, one thumbcut

Coil/Spiral C<pitch><m|i>-<shape>-<#thumbcuts>t
Example: C9.5m-round-0t = Coil, 9.5 mm, round, no thumbcut

Appendix U JDF/CIP4 Hole Pattern Catalog
JD
F

H
ol

e
Pa

tte
rn

C

at
al

og
 ID

D
es

cr
ip

tio
n

#H
ol

es
H

ol
e

Sh
ap

e
H

ol
e

Ex
te

nt
Pa

tte
rn

G

eo
m

et
ry

Pa
tte

rn
 A

xi
s

O
ffs

et

fr
om

 P
ro

ce
ss

 E
dg

e

JD
F

D
ef

au
lt

Pa
tte

rn

A
xi

s
O

ffs
et

 fr
om

Pr

oc
es

s
Ed

ge

in
 p

t (
!)

D
ef

au
lt

Pr
oc

es
s

Ed
ge

U
sa

ge

N
ot

es
So

ur
ce

St

an
da

rd

R
IN

G
 B

IN
D

IN
G

 (R
...

)

2
H

ol
es

 (R
2.

..)
R

2-
ge

ne
ric

G
en

er
ic

 re
qu

es
t o

f a
 2

-
ho

le
 p

at
te

rn
2

5
- 1

3
m

m
0.

2-
0.

51
”

N
/A

4.
5

–
13

 m
m

0.
18

 -
0.

51
"

34
.0

2
(≅

 1
2

m
m

)
Le

ft
Se

e
no

te
 (7

).
N

/A

R
2m

-D
IN

D
IN

 2
-h

ol
e

M
IB

: 6
 =

 tw
oH

ol
eD

IN

an
d

10
 =

 tw
oH

ol
eM

et
ric

2
5.

5
±

0.
1

m
m

80
 ±

 0
.1

 m
m

7
or

 1
1

±
0.

3
m

m
7

m
m

 fo
r b

lo
ck

s o
f <

=
15

 m
m

 th
ic

k

31
.1

8
(≅

 1
1

m
m

)
Le

ft
A

4
an

d
A

5
D

IN
 5

00
5:

19
91

D
IN

 8
21

:1
97

3

R
2m

-I
SO

IS
O

 2
-h

ol
e

M
IB

: 6
 =

 tw
oH

ol
eD

IN

an
d

10
 =

 tw
oH

ol
eM

et
ric

2
6

±
0.

5
m

m
80

 ±
 0

.5
 m

m
12

 ±
 1

 m
m

A
us

tra
lia

n
St

an
da

rd

A
S

P5
-1

96
9:

 1
0

±
1

m
m

34
.0

2
(≅

 1
2

m
m

)
Le

ft
A

ls
o

us
ed

 in

Ja
pa

n
IS

O
 8

38
:1

97
4

(E
)

R
2m

-M
IB

Pr
in

te
r F

in
is

hi
ng

 M
IB

tw

oH
ol

eD
IN

 a
nd

 tw
o-

H
ol

eM
et

ric

2
5-

8
m

m
80

 ±
 0

.5
 m

m

4.
5

–
13

 m
m

31
.1

8
(≅

 1
1

m
m

)
Le

ft
Pr

in
te

r F
in

is
hi

ng

M
IB

R
2i

-U
S-

a
U

S
2-

ho
le

, V
ar

ia
nt

 A

M
IB

: 4
 =

 tw
oH

ol
dU

S-
To

p
an

d
12

 =
 tw

oH
ol

eU
SS

id
e

2
0.

2
- 0

.3
2"

2.
75

"
0.

18
 -

0.
51

"
29

.2
5

(≅
 1

3/
32

"
)

Le
ft

fo
r l

et
te

r
To

p
fo

r l
ed

ge
r

Pr
in

te
r F

in
is

hi
ng

M

IB

R
2i

-U
S-

b
U

S
2-

ho
le

, V
ar

ia
nt

 B
2

0.
2-

0.
5"

de
fa

ul
t:

5/
16

"
ty

pi
ca

l:
1/

4"
, 9

/
32

",
 1

1/
32

",
 3

/
8"

, 1
3/

32
",

 1
/2

"

6"
0.

25
" +

 ½
 d

ia
m

et
er

ra
ng

e:
 6

/1
6"

 -
1/

2"

29
.2

5
(≅

 1
3/

32
"

)
Le

ft
664

JDF Specification Release 1.2
JD
F

H
ol

e
Pa

tte
rn

C

at
al

og
 ID

D
es

cr
ip

tio
n

#H
ol

es
H

ol
e

Sh
ap

e
H

ol
e

Ex
te

nt
Pa

tte
rn

G

eo
m

et
ry

Pa
tte

rn
 A

xi
s

O
ffs

et

fr
om

 P
ro

ce
ss

 E
dg

e

JD
F

D
ef

au
lt

Pa
tte

rn

A
xi

s
O

ffs
et

 fr
om

Pr

oc
es

s
Ed

ge

in
 p

t (
!)

D
ef

au
lt

Pr
oc

es
s

Ed
ge

U
sa

ge

N
ot

es
So

ur
ce

St

an
da

rd

R
IN

G
 B

IN
D

IN
G

 (R
...

)

3
H

ol
es

 (R
3.

..)
R

3-
ge

ne
ric

G
en

er
ic

 re
qu

es
t o

f a
 3

-
ho

le
 p

at
te

rn
.

3
5

- 1
3

m
m

0.
2-

0.
51

”
N

/A
4.

5
–

13
 m

m
0.

18
 -

0.
51

"
29

.2
5

(≅
 1

3/
32

"
)

Le
ft

Se
e

no
te

 (7
).

N
/A

R
3i

-U
S

U
S

3-
ho

le

M
IB

: 5
 =

 th
re

eH
ol

eU
S

3
st

d:
 5

/1
6"

rn
g:

 0
.2

-0
.5

"
ty

p:
 1

/4
",

 9
/3

2"
,

11
/3

2"
, 3

/8
",

 1
3/

32
",

 1
/2

"

4.
25

"
0.

25
" +

 ½
 d

ia
m

et
er

ra
ng

e:
 6

/1
6"

 -
1/

2"

29
.2

5
(≅

 1
3/

32
"

)
Le

ft
Pr

in
te

r F
in

is
hi

ng

M
IB

4
H

ol
es

 (R
4.

..)
R

4-
ge

ne
ric

G
en

er
ic

 re
qu

es
t o

f a
 4

-
ho

le
 p

at
te

rn
.

4
5

- 1
3

m
m

0.
2-

0.
51

”
N

/A
4.

5
–

13
 m

m
0.

18
 -

0.
51

"
31

.1
8

(≅
 1

1
m

m
)

Le
ft

Se
e

no
te

 (7
).

N
/A

R
4m

-D
IN

-A
4

D
IN

 4
-h

ol
e

fo
r A

4
4

5.
5

±
0.

1
m

m
80

 ±
 0

.1
 m

m
7

or
 1

1
±

0.
3

m
m

7
m

m
 fo

r b
lo

ck
s o

f 1
5

m
m

 o
r l

es
s

31
.1

8
(≅

 1
1

m
m

)
Le

ft
A

4
D

IN
 5

00
5:

19
91

D
IN

 8
21

:1
97

3

R
4m

-D
IN

-A
5

D
IN

 4
-H

ol
e

fo
r A

5
4

5.
5

±
0.

1
m

m
45

-6
5-

45
 m

m
7

or
 1

1
±

0.
3

m
m

7
m

m
 fo

r b
lo

ck
s o

f 1
5

m
m

 o
r l

es
s

31
.1

8
(≅

 1
1

m
m

)
Le

ft
A

5
D

IN
 5

00
5:

19
91

R
4m

-s
w

ed
is

h
Sw

ed
is

h
4-

ho
le

M
IB

: 1
1

=
sw

ed
is

h4
H

ol
e

4
5

- 8
 m

m
21

-7
0-

21
 m

m
4.

5
- 1

3
m

m
31

.1
8

(≅
 1

1
m

m
)

Le
ft

fo
r A

4
To

p
fo

r A
3

A
4,

 A
3

Pr
in

te
r F

in
is

hi
ng

M

IB

R
4i

-U
S

U
S

4-
H

ol
e

4
0.

2
- 0

.5
"

st
d:

 5
/1

6"
ty

p:
 1

/4
",

 9
/3

2"
,

11
/3

2"
, 3

/8
",

 1
3/

32
",

 1
/2

"

1.
37

5-
4.

25
-

1.
37

5"
0.

25
" +

 ½
 d

ia
m

et
er

ra
ng

e:
 6

/1
6"

 -
1/

2"

29
.2

5
(≅

 0
.2

5"
 +

 ½
 x

 5
/

16
" =

 1
3/

32
")

Le
ft
665

Appendix U JDF/CIP4 Hole Pattern Catalog
JD
F

H
ol

e
Pa

tte
rn

C

at
al

og
 ID

D
es

cr
ip

tio
n

#H
ol

es
H

ol
e

Sh
ap

e
H

ol
e

Ex
te

nt
Pa

tte
rn

G

eo
m

et
ry

Pa
tte

rn
 A

xi
s

O
ffs

et

fr
om

 P
ro

ce
ss

 E
dg

e

JD
F

D
ef

au
lt

Pa
tte

rn

A
xi

s
O

ffs
et

 fr
om

Pr

oc
es

s
Ed

ge

in
 p

t (
!)

D
ef

au
lt

Pr
oc

es
s

Ed
ge

U
sa

ge

N
ot

es
So

ur
ce

St

an
da

rd

R
IN

G
 B

IN
D

IN
G

 (R
...

)

5
H

ol
es

 (R
5.

..)
R

5-
ge

ne
ric

G
en

er
ic

 re
qu

es
t o

f a
 5

-
ho

le
 p

at
te

rn
.

5
5

- 1
3

m
m

0.
2-

0.
51

”
N

/A
4.

5
–

13
 m

m
0.

18
 -

0.
51

"
29

.2
5

(≅
 1

3/
32

")
Le

ft
Se

e
no

te
 (7

).
N

/A

R
5i

-U
S-

a
U

S
5-

ho
le

, V
ar

ia
nt

 A

M
IB

: 1
3

=
fiv

eH
ol

eU
S

5
0.

2
- 0

.3
2"

2-
2.

25
-2

.2
5-

2"
0.

18
 -

0.
51

"
29

.2
5

(≅
 1

3/
32

")
Le

ft
fo

r l
et

te
r

To
p

fo
r l

ed
ge

r
Pr

in
te

r F
in

is
hi

ng

M
IB

R
5i

-U
S-

b
U

S
5-

ho
le

, V
ar

ia
nt

 B
5

0.
2

- 0
.5

"
st

d:
 5

/1
6"

ty
p:

 1
/4

",
 9

/3
2"

,
11

/3
2"

, 3
/8

",
 1

3/
32

",
 1

/2
"

0.
75

-3
.5

-3
.5

-
0.

75
"

0.
25

" +
 ½

 d
ia

m
et

er
0.

37
5

- 0
.5

"
29

.2
5

(≅
 0

.2
5"

 +
 ½

 x
 5

/
16

" =
 1

3/
32

")
Le

ft

R
5i

-U
S-

c
C

om
bi

na
tio

n
of

R

2i
-U

S-
a

an
d

R
3i

-U
S

5
0.

2
- 0

.5
"

st
d:

 5
/1

6"
ty

p:
 1

/4
",

 9
/3

2"
,

11
/3

2"
, 3

/8
",

 1
3/

32
",

 1
/2

"

1.
25

-3
-3

-1
.2

5"
0.

25
" +

 ½
 d

ia
m

et
er

0.
37

5
- 0

.5
"

29
.2

5
(≅

 0
.2

5"
 +

 ½
 x

 5
/

16
" =

 1
3/

32
")

Le
ft

6
H

ol
es

 (R
6.

..)

R
6-

ge
ne

ric
G

en
er

ic
 re

qu
es

t o
f a

6-

ho
le

 p
at

te
rn

.
6

5
- 1

3
m

m
0.

2-
0.

51
”

N
/A

4.
5

–
13

 m
m

0.
18

 -
0.

51
"

31
.1

8
(≅

 1
1

m
m

)
Le

ft
fo

r A
4/

A
5

To
p

fo
r A

3

Se
e

no
te

(7

).
N

/A

R
6m

-4
h2

s
N

or
w

eg
ia

n
4-

ho
le

(r

ou
nd

) m
ix

ed
 w

ith
 2

sl

ot
s (

re
ct

an
gu

la
r)

M
IB

: 1
6

=
no

rw
eg

6H
ol

e

6
H

:

S:

H
ol

es
: 5

 -
8

m
m

Sl
ot

s:
 1

0
x

5.
5

m
m

4
ho

le
s/

2
sl

ot
s

Pa
tte

rn
: H

-H
-

S-
S-

H
-H

64
-1

8.
5-

75
-

18
.5

-6
4

m
m

4.
5

- 1
3

m
m

31
.1

8
(≅

 1
1

m
m

)
Le

ft
fo

r A
4

To
p

fo
r A

3
Pr

in
te

r F
in

is
hi

ng

M
IB

R
6m

-D
IN

-A
5

D
IN

 6
-H

ol
e

fo
r A

5
6

l
5.

5
±

0.
1

m
m

37
.5

-7
.5

-6
5-

7.
5-

37
.5

 m
m

7
or

 1
1

±
0.

3
m

m
7

m
m

 fo
r b

lo
ck

s o
f

<=
 1

5
m

m
 th

ic
k

31
.1

8
(≅

 1
1

m
m

)
Le

ft
O

nl
y

us
ed

w

ith
 A

5
D

IN
 5

00
5:

19
91
666

JDF Specification Release 1.2
JD
F

H
ol

e
Pa

tte
rn

C

at
al

og
 ID

D
es

cr
ip

tio
n

#H
ol

es
H

ol
e

Sh
ap

e
H

ol
e

Ex
te

nt
Pa

tte
rn

G

eo
m

et
ry

Pa
tte

rn
 A

xi
s

O
ffs

et

fr
om

 P
ro

ce
ss

 E
dg

e

JD
F

D
ef

au
lt

Pa
tte

rn

A
xi

s
O

ffs
et

 fr
om

Pr

oc
es

s
Ed

ge

in
 p

t (
!)

D
ef

au
lt

Pr
oc

es
s

Ed
ge

U
sa

ge

N
ot

es
So

ur
ce

St

an
da

rd

R
IN

G
 B

IN
D

IN
G

 (R
...

)

7
H

ol
es

 (R
7.

..)
R

7-
ge

ne
ric

G
en

er
ic

 re
qu

es
t o

f a
 7

-
ho

le
 p

at
te

rn
.

7
5

- 1
3

m
m

0.
2-

0.
51

”
N

/A
4.

5
–

13
 m

m
0.

18
 -

0.
51

"
29

.2
5

(≅
 1

3/
32

")

Le
ft

fo
r l

et
te

r
To

p
fo

r l
ed

ge
r

Se
e

no
te

 (7
).

N
/A

R
7i

-U
S-

a
U

S
7-

ho
le

, V
ar

ia
nt

 A

M
IB

: 1
4

=
se

ve
nH

o-
le

U
S

7
0.

2
- 0

.3
2"

1-
1-

2.
25

-2
.2

5-
1-

1"
0.

18
 -

0.
51

"
29

.2
5

(≅
 1

3/
32

")
Le

ft
fo

r l
et

te
r

To
p

fo
r l

ed
ge

r
Pr

in
te

r F
in

is
hi

ng

M
IB

R
7i

-U
S-

b
U

S
7-

ho
le

, B
el

l/A
T&

T
Sy

st
em

s.
C

om
bi

na
tio

n
of

 R
3i

-U
S,

 R
4i

-U
S,

R

5i
-U

S-
b

7
0.

2
- 0

.5
"

st
d:

 5
/1

6"
ty

p:
 1

/4
",

 9
/3

2"
,

11
/3

2"
, 3

/8
",

 1
3/

32
",

 1
/2

"

0.
75

-1
.3

75
-

2.
12

5-
2.

12
5-

1.
37

5-
0.

75
"

0.
25

" +
 ½

 d
ia

m
et

er
0.

37
5

- 0
.5

"
29

.2
5

(≅
 0

.2
5"

 +
 ½

 x
 5

/
16

" =
 1

3/
32

")
Le

ft
fo

r l
et

te
r

To
p

fo
r l

ed
ge

r

R
7i

-U
S-

c
U

S
7-

ho
le

, V
ar

ia
nt

 C
7

0.
2

- 0
.5

"
st

d:
 5

/1
6"

ty
p:

 1
/4

",
 9

/3
2"

,
11

/3
2"

, 3
/8

",
 1

3/
32

",
 1

/2
"

1.
25

-0
.8

75
-

2.
12

5-
2.

12
5-

0.
87

5-
1.

25
"

0.
25

" +
 ½

 d
ia

m
et

er
0.

37
5

- 0
.5

"
29

.2
5

(≅
 1

3/
32

")
Le

ft
fo

r l
et

te
r

To
p

fo
r l

ed
ge

r

11
 H

ol
es

 (R
11

...
)

R
11

m
-7

h4
s

7-
ho

le
 (r

ou
nd

) m
ix

ed

w
ith

 4
 sl

ot
s (

re
ct

an
gu

-
la

r)

M
IB

: 1
5

=
m

ix
ed

7H
4S

11
H

:

S:

H
ol

es
: 5

 -
8

m
m

Sl
ot

s:
 1

2
x

6
m

m

7
ho

le
s/

2s
lo

ts
Pa

tte
rn

: H
-S

-
H

-H
-S

-H
-S

-H
-

H
-S

-H
15

-2
5-

23
-2

0-
37

-3
7-

20
-2

3-
25

-1
5

m
m

4.
5

- 1
3

m
m

31
.1

8
(≅

 1
1

m
m

)
Le

ft
fo

r A
4

To
p

fo
r A

3
Pr

in
te

r F
in

is
hi

ng

M
IB
667

Appendix U JDF/CIP4 Hole Pattern Catalog
JD
F

H
ol

e
Pa

tte
rn

C

at
al

og
 ID

D
es

cr
ip

tio
n

#H
ol

es
H

ol
e

Sh
ap

e
H

ol
e

Ex
te

nt
Pa

tte
rn

G

eo
m

et
ry

Pa
tte

rn
 A

xi
s

O
ffs

et

fr
om

 P
ro

ce
ss

 E
dg

e

JD
F

D
ef

au
lt

Pa
tte

rn

A
xi

s
O

ffs
et

 fr
om

Pr

oc
es

s
Ed

ge

in
 p

t (
!)

D
ef

au
lt

Pr
oc

es
s

Ed
ge

U
sa

ge

N
ot

es
So

ur
ce

St

an
da

rd

PL
A

ST
IC

 C
O

M
B

 B
IN

D
IN

G
 (P

...
)

P1
6_

9i
-r

ec
t-0

t
U

S
sp

ac
in

g,
 n

o
th

um
b-

cu
t

M
IB

: 9
 =

 n
in

et
ee

nH
o-

le
U

S

A
4:

 2
1

Le
tte

r:
19

5/
16

"
x

1/
8"

(8
 x

 3
.2

 m
m

)
9/

16
"

3/
16

"
13

.5
4

(≅
 0

.1
88

")
Le

ft
Pr

in
te

r F
in

is
hi

ng

M
IB

P1
2m

-r
ec

t-0
t

Eu
ro

pe
an

 sp
ac

in
g,

 n
o

th
um

bc
ut

7
x

3
m

m
12

 m
m

4.
5

m
m

12
.7

6
(≅

 4
.5

 m
m

)
Le

ft

W
IR

E
C

O
M

B
 B

IN
D

IN
G

 (W
...

)

W
2_

1i
-r

ou
nd

-0
t

2:
1,

 ro
un

d,
 n

o
th

um
bc

ut

M
IB

: 8
 =

 tw
en

ty
Tw

o-
H

ol
eU

S

A
4:

 2
3

Le
tte

r:
21

0.
2

- 0
.3

2"
st

d:
 1

/4
"

Eu
ro

pe
 ty

p:
 6

 o
r

6.
4

m
m

1/
2"

3
m

m
 +

 ½
 d

ia
m

et
er

0.
31

8
- 0

.4
38

"
Eu

ro
pe

: 6
 -

6.
2

m
m

17
.5

0
(≅

 0
.2

43
")

Le
ft

Pr
in

te
r F

in
is

hi
ng

M

IB

W
2_

1i
-s

qu
ar

e-
0t

2:
1,

 sq
ua

re
, n

o
th

um
b-

cu
t

A
4:

 2
3

Le
tte

r:
21

0.
2

- 0
.3

2"
st

d:
 1

/4
"

Eu
ro

pe
 ty

p:
 6

 o
r

6.
4

m
m

1/
2"

3
m

m
 +

 ½
 d

ia
m

et
er

0.
31

8
- 0

.4
38

"
Eu

ro
pe

: 6
 -

6.
2

m
m

17
.5

0
(≅

 0
.2

43
")

Le
ft

W
3_

1i
-s

qu
ar

e-
0t

3:
1,

 sq
ua

re
, n

o
th

um
b-

cu
ts

A
4:

 3
4

A
5:

 2
4

Le
tte

r:
32

5/
32

 x
 5

/3
2"

(4
x4

 m
m

)
1/

3"
0.

2"
14

.4
0

(≅
 0

.2
")

Le
ft

C
O

IL
/S

PI
R

A
L

B
IN

D
IN

G
 (C

...
)

C
9.

5m
-r

ou
nd

-0
t

9.
5

m
m

, r
ou

nd
, n

o
th

um
bc

ut

M
IB

: 1
7

- m
et

ric
26

H
ol

e
an

d
18

 -
m

et
ric

30
H

ol
e

A
4/

A
3:

30 JI

S
B

5/
B

4:
 2

6

5
- 8

 m
m

9.
5

m
m

4.
5

- 1
3

m
m

31
.1

8
(≅

 1
1

m
m

)
Le

ft
fo

r A
4/

JI
S

B
5

To
p

fo
r A

3/
JI

S
B

4

Pr
in

te
r F

in
is

hi
ng

M

IB

SP
EC

IA
L

(S
...

)

R
es

er
ve

d
fo

r f
ut

ur
e

ex
te

ns
io

ns
668

Appendix V Examples
Note that these examples were generated using prototype tools and should be used for general overview only. The
emphasis is not on the individual bytes, (e.g., capitalization or exact keywords). Normative examples will be pro-
vided at http://www.CIP4.org when available.

V.1 Brief Example

V.1.1 Before Processing
This is a simple example of a JDF that describes color conversion for one file.

<JDF xmlns="http://www.CIP4.org/JDFSchema_1_1" ID="ColorTest" JobID="ColorJob"
Status="Waiting" Type="ColorSpaceConversion" Version="1.2">
 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.0.01
beta-->
 <ResourcePool>
 <RunList Class="Parameter" ID="Link0003" Pages="0~-1" Status="Available">
 <LayoutElement>
 <FileSpec URL="File:///in/colortest.pdf"/>
 </LayoutElement>
 </RunList>
 <ColorSpaceConversionParams Class="Parameter" ID="Link0004" Status="Available">
 <FileSpec ResourceUsage="FinalTargetDevice" URL="File:///SMProcessCMYK.icc"/>
 <ColorSpaceConversionOp Operation="Convert" RenderingIntent="Perceptual"
SourceCS="RGB" SourceObjects="ImagePhotographic ImageScreenShot SmoothShades"
SourceProfile="File:///image.icc"/>
 <ColorSpaceConversionOp Operation="Convert" RenderingIntent="Perceptual"
SourceCS="RGB" SourceObjects="Text LineArt" SourceProfile="File:///text.icc"/>
 </ColorSpaceConversionParams>
 <ColorPool Class="Parameter" ID="Link0005" Status="Available">
 <Color CMYK="1 0 0 0" Name="Cyan"/>
 <Color CMYK="0 1 0 0" Name="Magenta"/>
 <Color CMYK="0 0 1 0" Name="Yellow"/>
 <Color CMYK="0 0 0 1" Name="Black"/>
 <Color CMYK="0.8 0.8 0 0" Name="Blue"/>
 </ColorPool>
 <ColorantControl Class="Parameter" ID="Link0006" ProcessColorModel="DeviceCMYK"
Status="Available">
 <ColorPoolRef rRef="Link0005"/>
 </ColorantControl>
 <RunList Class="Parameter" ID="Link0007" Pages="0~-1" Status="Unavailable">
 <LayoutElement>
 <FileSpec URL="File:///out/colortest.pdf"/>
 </LayoutElement>
 </RunList>
 </ResourcePool>
 <ResourceLinkPool>
 <RunListLink Usage="Input" rRef="Link0003"/>
 <ColorSpaceConversionParamsLink Usage="Input" rRef="Link0004"/>
 <ColorPoolLink Usage="Input" rRef="Link0005"/>
 <ColorantControlLink Usage="Input" rRef="Link0006"/>
 <RunListLink Usage="Output" rRef="Link0007"/>
 </ResourceLinkPool>
 <AuditPool>
 <Created Author="Rainer's JDFWriter 0.2000" TimeStamp="2000-11-01T10:26:11+01:00"/>
 </AuditPool>
</JDF>
Brief Example 669

http://www.CIP4.org

Appendix V Examples
V.1.2 After Processing
This is a simple example of a JDF that describes color conversion for one file after the color conversion process has
been executed.
<JDF xmlns="http://www.CIP4.org/JDFSchema_1_1" ID="ColorTest " JobID="ColorJob"
Status="Completed" Type="ColorSpaceConversion" Version="1.2">
 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.0.01
beta-->
 <ResourcePool>
 <RunList Class="Parameter" ID="Link0003" Pages="0~-1" Status="Available">
 <LayoutElement>
 <FileSpec URL="File:///in/colortest.pdf"/>
 </LayoutElement>
 </RunList>
 <ColorSpaceConversionParams Class="Parameter" ID="Link0004" Status="Available">
 <FileSpec ResourceUsage="FinalTargetDevice" URL="File:///SMProcessCMYK.icc"/>
 <ColorSpaceConversionOp Operation="Convert" RenderingIntent="Perceptual"
SourceCS="RGB" SourceObjects="ImagePhotographic ImageScreenShot SmoothShades"
SourceProfile="File:/// image.icc"/>
 <ColorSpaceConversionOp Operation="Convert" RenderingIntent="Perceptual"
SourceCS="RGB" SourceObjects="Text LineArt" SourceProfile="File:///text.icc"/>
 </ColorSpaceConversionParams>
 <ColorPool Class="Parameter" ID="Link0005" Status="Available">
 <Color CMYK="1 0 0 0" Name="Cyan"/>
 <Color CMYK="0 1 0 0" Name="Magenta"/>
 <Color CMYK="0 0 1 0" Name="Yellow"/>
 <Color CMYK="0 0 0 1" Name="Black"/>
 <Color CMYK="0.8 0.8 0 0" Name="Blue"/>
 </ColorPool>
 <ColorantControl Class="Parameter" ID="Link0006" ProcessColorModel="DeviceCMYK"
Status="Available">
 <ColorPoolRef rRef="Link0005"/>
 </ColorantControl>
 <RunList Class="Parameter" ID="Link0007" Pages="0~-1" Status="Available">
 <LayoutElement>
 <FileSpec URL="File:///out/colortest.pdf"/>
 </LayoutElement>
 </RunList>
 </ResourcePool>
 <ResourceLinkPool>
 <RunListLink Usage="Input" rRef="Link0003"/>
 <ColorSpaceConversionParamsLink Usage="Input" rRef="Link0004"/>
 <ColorPoolLink Usage="Input" rRef="Link0005"/>
 <ColorantControlLink Usage="Input" rRef="Link0006"/>
 <RunListLink Usage="Output" rRef="Link0007"/>
 </ResourceLinkPool>
 <AuditPool>
 <Created Author="Rainer's JDFWriter 0.2000" TimeStamp="2000-11-01T10:26:11+01:00"/>
 <Modified Author="EatJDF Complete: task=*" TimeStamp="2000-11-01T10:26:57+01:00"/>
 <PhaseTime End="2000-11-01T10:26:57+01:00" Start="2000-11-01T10:26:57+01:00"
Status="Setup" TimeStamp="2000-11-01T10:26:57+01:00"/>
 <PhaseTime End="2000-11-01T10:26:57+01:00" Start="2000-11-01T10:26:57+01:00"
Status="InProgress" TimeStamp="2000-11-01T10:26:57+01:00"/>
 <PhaseTime End="2000-11-01T10:26:57+01:00" Start="2000-11-01T10:26:57+01:00"
Status="Cleanup" TimeStamp="2000-11-01T10:26:57+01:00"/>
 <ProcessRun End="2000-11-01T10:26:57+01:00" EndStatus="Completed" Start="2000-11-
01T10:26:57+01:00" TimeStamp="2000-11-01T10:26:57+01:00"/>
 </AuditPool>
</JDF>
670 Brief Example

JDF Specification Release 1.2
V.2 Product JDF
The following example describe a pair of college textbooks, one teachers edition and one
students edition as product intent. Most intent resources are intentionally left empty.
<JDF xmlns="http://www.CIP4.org/JDFSchema_1_1" ID="bookTest" JobID="bookJob"
Status="Waiting" Type="Product" Version="1.2">
 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.0.01
beta-->
 <ResourcePool>
 <Component Amount="100" Class="Quantity" DescriptiveName="Teacher's Book"
ID="Link0003" Status="Unavailable"/>
 <Component Amount="2000" Class="Quantity" DescriptiveName="Cover" ID="Link0005"
Status="Unavailable">
 <!--This cover is reused by both-->
 </Component>
 <LayoutIntent Class="Intent" ID="Link0006" Status="Available">
 <Dimensions DataType="XYPairSpan" Preferred="612 792" Range="576 756~648 828"/>
 </LayoutIntent>
 <LayoutIntent Class="Intent" ID="Link0008" Status="Available">
 <Dimensions DataType="XYPairSpan" Preferred="612 792" Range="576 756~648 828"/>
 <Pages DataType="IntegerSpan" Preferred="240"/>
 </LayoutIntent>
 <Component Amount="1000" Class="Quantity" DescriptiveName="Student's Book"
ID="Link0011" Status="Unavailable">
 <!--Students Book Intent-->
 </Component>
 <LayoutIntent Class="Intent" ID="Link0014" Status="Available">
 <Dimensions DataType="XYPairSpan" Preferred="612 792" Range="576 756~648 828"/>
 <Pages DataType="IntegerSpan" Preferred="198"/>
 </LayoutIntent>
 </ResourcePool>
 <AuditPool>
 <Created Author="Rainer's JDFWriter 0.2000" TimeStamp="2000-11-01T12:46:56+01:00"/>
 </AuditPool>
 <JDF DescriptiveName="Teacher's Edition" ID="Link0002" JobPartID="0" Status="Waiting"
Type="Product">
 <ResourcePool>
 <Component Amount="100" Class="Quantity" DescriptiveName="Insert" ID="Link0009"
Status="Unavailable"/>
 </ResourcePool>
 <ResourceLinkPool>
 <ComponentLink Amount="100" Usage="Output" rRef="Link0003"/>
 <ComponentLink Amount="100" Usage="Input" rRef="Link0009"/>
 <ComponentLink Amount="100" Usage="Input" rRef="Link0005"/>
 </ResourceLinkPool>
 <JDF DescriptiveName="Teacher's Insert" ID="Link0007" JobPartID="2"
Status="Waiting" Type="Product">
 <ResourceLinkPool>
 <LayoutIntentLink Usage="Input" rRef="Link0008"/>
 <ComponentLink Amount="100" Usage="Output" rRef="Link0009"/>
 </ResourceLinkPool>
 </JDF>
 </JDF>
 <JDF DescriptiveName="Cover" ID="Link0004" JobPartID="1" Status="Waiting"
Type="Product">
 <ResourceLinkPool>
 <ComponentLink Amount="2000" Usage="Output" rRef="Link0005"/>
 <LayoutIntentLink Usage="Input" rRef="Link0006"/>
 </ResourceLinkPool>
Product JDF 671

Appendix V Examples
 </JDF>
 <JDF DescriptiveName="Student's Edition" ID="Link0010" JobPartID="3" Status="Waiting"
Type="Product">
 <ResourcePool>
 <Component Amount="1000" Class="Quantity" DescriptiveName="Insert" ID="Link0013"
Status="Unavailable"/>
 </ResourcePool>
 <ResourceLinkPool>
 <ComponentLink Amount="1000" Usage="Output" rRef="Link0011"/>
 <ComponentLink Amount="1000" Usage="Input" rRef="Link0013"/>
 <ComponentLink Amount="1000" Usage="Input" rRef="Link0005"/>
 </ResourceLinkPool>
 <JDF DescriptiveName="Student's Insert" ID="Link0012" JobPartID="4"
Status="Waiting" Type="Product">
 <ResourceLinkPool>
 <ComponentLink Amount="1000" Usage="Output" rRef="Link0013"/>
 <LayoutIntentLink Usage="Input" rRef="Link0014"/>
 </ResourceLinkPool>
 </JDF>
 </JDF>
</JDF>

V.3 Spawning and Merging
The following set of examples show a JDF job in the relevant stages of spawning and merging. One example defines
a simple brochure with a cover and an insert. The node in green emphasis, which defines the cover, is spawned, mod-
ified, and subsequently merged. Elements in red emphasis represent metadata that apply to spawning and merging.

V.3.1 Example 2 Component JDF before Spawning
The following JDF file describes a two-component brochure. The resources are not fleshed out.
<JDF ID="SpawnTest" Type="Product" xmlns="http://www.CIP4.org/JDFSchema_1_1"
Status="Waiting" Version="1.2" JobPartID="Part1">
 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.0.01
beta-->
 <AuditPool>
 <Created Author="CIP4 JDFWriter 1.0.01 beta" TimeStamp="2002-04-05T15:27:58+02:00"/
>
 </AuditPool>
 <ResourcePool>
 <Component ID="r0043" Class="Quantity" Amount="10000" Status="Unavailable"/>
 <BindingIntent ID="r0044" Class="Intent" Status="Available"/>
 <ProductionIntent ID="r0045" Class="Intent" Status="Available">
 <PrintProcess Range="Gravure" DataType="EnumerationSpan"/>
 </ProductionIntent>
 <Component ID="r0047" Class="Quantity" Status="Unavailable"/>
 <Component ID="r0051" Class="Quantity" Status="Unavailable"/>
 </ResourcePool>
 <ResourceLinkPool>
 <ComponentLink rRef="r0043" Usage="Output"/>
 <BindingIntentLink rRef="r0044" Usage="Input"/>
 <ProductionIntentLink rRef="r0045" Usage="Input"/>
 <ComponentLink rRef="r0047" Usage="Input"/>
 <ComponentLink rRef="r0051" Usage="Input"/>
 </ResourceLinkPool>
 <JDF ID="n0046" Type="Product" Status="Waiting" JobPartID="Part2"
DescriptiveName="Cover">
 <ResourceLinkPool>
 <ComponentLink rRef="r0047" Usage="Output"/>
672 Spawning and Merging

JDF Specification Release 1.2
 <LayoutIntentLink rRef="r0048" Usage="Input"/>
 <ColorIntentLink rRef="r0049" Usage="Input"/>
 </ResourceLinkPool>
 <ResourcePool>
 <LayoutIntent ID="r0048" Class="Intent" Status="Available"/>
 <ColorIntent ID="r0049" Class="Intent" Status="Available"/>
 </ResourcePool>
 </JDF>
 <JDF ID="n0050" Type="Product" Status="Waiting" JobPartID="Part3"
DescriptiveName="Insert">
 <ResourceLinkPool>
 <ComponentLink rRef="r0051" Usage="Output"/>
 <LayoutIntentLink rRef="r0052" Usage="Input"/>
 <ColorIntentLink rRef="r0053" Usage="Input"/>
 </ResourceLinkPool>
 <ResourcePool>
 <LayoutIntent ID="r0052" Class="Intent" Status="Available"/>
 <ColorIntent ID="r0053" Class="Intent" Status="Available"/>
 </ResourcePool>
 </JDF>
</JDF>

V.3.2 Example 2 Component JDF Parent after spawning the cover node
The following JDF is the parent JDF after spawning. The Component that describes the cover is marked as
SpawnedRW, since it was copied into the spawned node and may be modified. A Spawned audit was inserted into
the Cover nodes parent’s AuditPool, and the Spawned node itself has a Status of Spawned.
<JDF ID="SpawnTest" Type="Product" xmlns="http://www.CIP4.org/JDFSchema_1_1"
Status="Waiting" Version="1.2" JobPartID="Part1">
 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.0.01
beta-->
 <AuditPool>
 <Created Author="CIP4 JDFWriter 1.0.01 beta" TimeStamp="2002-04-05T15:27:58+02:00"/
>
 <Spawned URL="File:///spawn.jdf" jRef="n0046" TimeStamp="2002-04-05T15:34:43+02:00"
NewSpawnID="Sp0057" rRefsRWCopied="r0047"/>
 </AuditPool>
 <ResourcePool>
 <Component ID="r0043" Class="Quantity" Amount="10000" Status="Unavailable"/>
 <BindingIntent ID="r0044" Class="Intent" Status="Available"/>
 <ProductionIntent ID="r0045" Class="Intent" Status="Available">
 <PrintProcess Range="Gravure" DataType="EnumerationSpan"/>
 </ProductionIntent>
 <Component ID="r0047" Class="Quantity" Status="Unavailable" SpawnIDs="Sp0057"
SpawnStatus="SpawnedRW"/>
 <Component ID="r0051" Class="Quantity" Status="Unavailable"/>
 </ResourcePool>
 <ResourceLinkPool>
 <ComponentLink rRef="r0043" Usage="Output"/>
 <BindingIntentLink rRef="r0044" Usage="Input"/>
 <ProductionIntentLink rRef="r0045" Usage="Input"/>
 <ComponentLink rRef="r0047" Usage="Input"/>
 <ComponentLink rRef="r0051" Usage="Input"/>
 </ResourceLinkPool>
 <JDF ID="n0046" Type="Product" Status="Spawned" JobPartID="Part2"
DescriptiveName="Cover">
 <ResourceLinkPool>
 <ComponentLink rRef="r0047" Usage="Output"/>
 <LayoutIntentLink rRef="r0048" Usage="Input"/>
Spawning and Merging 673

Appendix V Examples
 <ColorIntentLink rRef="r0049" Usage="Input"/>
 </ResourceLinkPool>
 <ResourcePool>
 <LayoutIntent ID="r0048" Class="Intent" Status="Available" SpawnIDs="Sp0057"
SpawnStatus="SpawnedRO"/>
 <ColorIntent ID="r0049" Class="Intent" Status="Available" SpawnIDs="Sp0057"
SpawnStatus="SpawnedRO"/>
 </ResourcePool>
 </JDF>
 <JDF ID="n0050" Type="Product" Status="Waiting" JobPartID="Part3"
DescriptiveName="Insert">
 <ResourceLinkPool>
 <ComponentLink rRef="r0051" Usage="Output"/>
 <LayoutIntentLink rRef="r0052" Usage="Input"/>
 <ColorIntentLink rRef="r0053" Usage="Input"/>
 </ResourceLinkPool>
 <ResourcePool>
 <LayoutIntent ID="r0052" Class="Intent" Status="Available"/>
 <ColorIntent ID="r0053" Class="Intent" Status="Available"/>
 </ResourcePool>
 </JDF>
</JDF>

V.3.3 Example 2 Component JDF spawned node
The Component that represents the cover was copied into the spawned node, since it is the output resource. It is not
locked, since it was spawned in RW mode. The existence of an AncestorPool denotes the node as spawned and
defines the parent node
<JDF ID="n0046" Type="Product" xmlns="http://www.CIP4.org/JDFSchema_1_1"
Status="Waiting" SpawnID="Sp0057" Version="1.2" JobPartID="Part2"
DescriptiveName="Cover">
 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.0.01
beta-->
 <AuditPool>
 <Created Author="CIP4 JDFWriter 1.0.01 beta" TimeStamp="2002-04-05T15:34:43+02:00"/
>
 </AuditPool>
 <ResourceLinkPool>
 <ComponentLink rRef="r0047" Usage="Output"/>
 <LayoutIntentLink rRef="r0048" Usage="Input"/>
 <ColorIntentLink rRef="r0049" Usage="Input"/>
 </ResourceLinkPool>
 <ResourcePool>
 <LayoutIntent ID="r0048" Class="Intent" Status="Available"/>
 <ColorIntent ID="r0049" Class="Intent" Status="Available"/>
 <Component ID="r0047" Class="Quantity" Status="Available" SpawnIDs="Sp0057"/>
 </ResourcePool>
 <AncestorPool>
 <Ancestor NodeID="SpawnTest" FileName="testjdf4.jdf"/>
 </AncestorPool>
</JDF>

V.3.4 Example 2 Component JDF after merging
In this example, it is assumed that the cover output component was created by some processor that processed the
spawned node. This resulted in the Component becoming available. The Component was also removed from the
copy of the spawned node, since it would otherwise exist twice.
<JDF ID="SpawnTest" Type="Product" xmlns="http://www.CIP4.org/JDFSchema_1_1"
Status="Waiting" Version="1.2" JobPartID="Part1">
674 Spawning and Merging

JDF Specification Release 1.2
 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.0.01
beta-->
 <AuditPool>
 <Created Author="CIP4 JDFWriter 1.0.01 beta" TimeStamp="2002-04-05T15:27:58+02:00"/
>
 <Spawned URL="File:///spawn.jdf" jRef="n0046" TimeStamp="2002-04-05T15:34:43+02:00"
NewSpawnID="Sp0057" rRefsRWCopied="r0047"/>
 <Merged URL="File:///spawn.jdf" jRef="n0046" MergeID="Sp0057" TimeStamp="2002-04-
05T15:40:20+02:00" rRefsOverwritten="r0047"/>
 </AuditPool>
 <ResourcePool>
 <Component ID="r0043" Class="Quantity" Amount="10000" Status="Unavailable"/>
 <BindingIntent ID="r0044" Class="Intent" Status="Available"/>
 <ProductionIntent ID="r0045" Class="Intent" Status="Available">
 <PrintProcess Range="Gravure" DataType="EnumerationSpan"/>
 </ProductionIntent>
 <Component ID="r0047" Class="Quantity" Status="Available"/>
 <Component ID="r0051" Class="Quantity" Status="Unavailable"/>
 </ResourcePool>
 <ResourceLinkPool>
 <ComponentLink rRef="r0043" Usage="Output"/>
 <BindingIntentLink rRef="r0044" Usage="Input"/>
 <ProductionIntentLink rRef="r0045" Usage="Input"/>
 <ComponentLink rRef="r0047" Usage="Input"/>
 <ComponentLink rRef="r0051" Usage="Input"/>
 </ResourceLinkPool>
 <JDF ID="n0046" Type="Product" xmlns="http://www.CIP4.org/JDFSchema_1_1"
Status="Waiting" Version="1.2" JobPartID="Part2" DescriptiveName="Cover">
 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.0.01
beta-->
 <AuditPool>
 <Created Author="CIP4 JDFWriter 1.0.01 beta" TimeStamp="2002-04-
05T15:34:43+02:00"/>
 </AuditPool>
 <ResourceLinkPool>
 <ComponentLink rRef="r0047" Usage="Output"/>
 <LayoutIntentLink rRef="r0048" Usage="Input"/>
 <ColorIntentLink rRef="r0049" Usage="Input"/>
 </ResourceLinkPool>
 <ResourcePool>
 <LayoutIntent ID="r0048" Class="Intent" Status="Available"/>
 <ColorIntent ID="r0049" Class="Intent" Status="Available"/>
 </ResourcePool>
 </JDF>
 <JDF ID="n0050" Type="Product" Status="Waiting" JobPartID="Part3"
DescriptiveName="Insert">
 <ResourceLinkPool>
 <ComponentLink rRef="r0051" Usage="Output"/>
 <LayoutIntentLink rRef="r0052" Usage="Input"/>
 <ColorIntentLink rRef="r0053" Usage="Input"/>
 </ResourceLinkPool>
 <ResourcePool>
 <LayoutIntent ID="r0052" Class="Intent" Status="Available"/>
 <ColorIntent ID="r0053" Class="Intent" Status="Available"/>
 </ResourcePool>
 </JDF>
</JDF>
Spawning and Merging 675

Appendix V Examples
V.3.5 Example of a Partitioned ImageSetting Node before Spawning
The following example shows a simple ImageSetting node that is partitioned by Separation. The resources are not
filled with data. The input resources are Available.
<JDF ID="n20020701190951" Type="ImageSetting" xmlns="http://www.CIP4.org/JDFSchema_1_1"
Status="Waiting" Version="1.2">
 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.1.01
beta-->
 <ResourcePool>
 <ImageSetterParams ID="r0052" Class="Parameter" Locked="false" Status="Available"/>
 <Media ID="r0053" Class="Consumable" Locked="false" Status="Available"
PartIDKeys="Separation">
 <Media Separation="Cyan"/>
 <Media Separation="Magenta"/>
 <Media Separation="Yellow"/>
 <Media Separation="Black"/>
 </Media>
 <ExposedMedia ID="r0054" Class="Handling" Locked="false" Status="Unavailable"
PartIDKeys="Separation">
 <MediaRef rRef="r0053"/>
 <ExposedMedia Separation="Cyan"/>
 <ExposedMedia Separation="Magenta"/>
 <ExposedMedia Separation="Yellow"/>
 <ExposedMedia Separation="Black"/>
 </ExposedMedia>
 <RunList ID="r0055" Class="Parameter" Locked="false" Status="Available"/>
 </ResourcePool>
 <ResourceLinkPool>
 <ImageSetterParamsLink rRef="r0052" Usage="Input"/>
 <MediaLink rRef="r0053" Usage="Input"/>
 <ExposedMediaLink rRef="r0054" Usage="Output"/>
 <RunListLink rRef="r0055" Usage="Input"/>
 </ResourceLinkPool>
</JDF>

V.3.6 The Spawned Cyan Partition of the ImageSetting Node
The following example shows the spawned Cyan partition of the ImageSetting node from the previous example.
<JDF ID="n20020701190951" Type="ImageSetting" xmlns="http://www.CIP4.org/JDFSchema_1_1"
Status="Waiting" SpawnID="Sp0059" Version="1.2">
 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.1.01
beta-->
 <AuditPool/>
 <ResourcePool>
 <ImageSetterParams ID="r0052" Class="Parameter" Locked="true" Status="Available"/>
 <Media ID="r0053" Class="Consumable" Locked="true" Status="Available"/>
 <ExposedMedia ID="r0054" Class="Handling" Locked="true" Status="Unavailable"
PartIDKeys="Separation">
 <ExposedMedia Separation="Cyan"/>
 </ExposedMedia>
 <RunList ID="r0055" Class="Parameter" Locked="true" Status="Available"/>
 </ResourcePool>
 <ResourceLinkPool>
 <ImageSetterParamsLink rRef="r0052" Usage="Input"/>
 <MediaLink rRef="r0053" Usage="Input">
 <Part Separation="Cyan"/>
 </MediaLink>
 <ExposedMediaLink rRef="r0054" Usage="Output">
 <Part Separation="Cyan"/>
 </ExposedMediaLink>
676 Spawning and Merging

JDF Specification Release 1.2
 <RunListLink rRef="r0055" Usage="Input"/>
 </ResourceLinkPool>
 <AncestorPool>
 <Part Separation="Cyan"/>
 <Ancestor Type="ImageSetting" xmlns="http://www.CIP4.org/JDFSchema_1_1"
NodeID="n20020701190951" Status="Waiting" Version="1.2" FileName="testjdf5.jdf"/>
 </AncestorPool>
</JDF>

V.3.7 The Root Partitioned ImageSetting Node after Spawning
<JDF ID="n20020701190951" Type="ImageSetting" xmlns="http://www.CIP4.org/JDFSchema_1_1"
Status="Pool" Version="1.2">
 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.1.01
beta-->
 <AuditPool>
 <Spawned URL="File:///spawnIS.jdf" jRef="n20020701190951" Status="Waiting"
TimeStamp="2002-07-01T19:18:03+02:00" NewSpawnID="Sp0059">
 <Part Separation="Cyan"/>
 </Spawned>
 </AuditPool>
 <ResourcePool>
 <ImageSetterParams ID="r0052" Class="Parameter" Locked="false" Status="Available"
SpawnIDs="Sp0059" SpawnStatus="SpawnedRO"/>
 <Media ID="r0053" Class="Consumable" Locked="false" Status="Available"
SpawnIDs="Sp0059" PartIDKeys="Separation">
 <Media Locked="true" Separation="Cyan" SpawnStatus="SpawnedRW"/>
 <Media Separation="Magenta"/>
 <Media Separation="Yellow"/>
 <Media Separation="Black"/>
 </Media>
 <ExposedMedia ID="r0054" Class="Handling" Locked="false" Status="Unavailable"
SpawnIDs="Sp0059" PartIDKeys="Separation">
 <MediaRef rRef="r0053"/>
 <ExposedMedia Locked="true" Separation="Cyan" SpawnStatus="SpawnedRW"/>
 <ExposedMedia Separation="Magenta"/>
 <ExposedMedia Separation="Yellow"/>
 <ExposedMedia Separation="Black"/>
 </ExposedMedia>
 <RunList ID="r0055" Class="Parameter" Locked="false" Status="Available"
SpawnIDs="Sp0059" SpawnStatus="SpawnedRO"/>
 </ResourcePool>
 <ResourceLinkPool>
 <ImageSetterParamsLink rRef="r0052" Usage="Input"/>
 <MediaLink rRef="r0053" Usage="Input"/>
 <ExposedMediaLink rRef="r0054" Usage="Output"/>
 <RunListLink rRef="r0055" Usage="Input"/>
 </ResourceLinkPool>
 <StatusPool Status="Waiting">
 <PartStatus Status="Spawned">
 <Part Separation="Cyan"/>
 </PartStatus>
 </StatusPool>
</JDF>

V.3.8 The Merged ImageSetting Node
The Node has now been executed and merged.

<?xml version='1.0' encoding='utf-8' ?>
Spawning and Merging 677

Appendix V Examples
<JDF ID="n20020701190951" Type="ImageSetting" xmlns="http://www.CIP4.org/JDFSchema_1_1"
Status="Pool" Version="1.2">
 <AuditPool>
 <Spawned URL="File:///spawnIS.jdf" jRef="n20020701190951" Status="Waiting"
TimeStamp="2002-07-01T20:25:03+02:00" NewSpawnID="Sp0059">
 <Part Separation="Cyan"/>
 </Spawned>
 <Merged URL="File:///spawnIS2.jdf" jRef="n20020701190951" MergeID="Sp0059"
TimeStamp="2002-07-01T20:27:51+02:00">
 <Part Separation="Cyan"/>
 </Merged>
 </AuditPool>
 <ResourcePool>
 <ImageSetterParams ID="r0052" Class="Parameter" Status="Available"/>
 <Media ID="r0053" Class="Consumable" Status="Available" PartIDKeys="Separation">
 <Media Separation="Cyan" Status="Unavailable"/>
 <Media Separation="Magenta"/>
 <Media Separation="Yellow"/>
 <Media Separation="Black"/>
 </Media>
 <ExposedMedia ID="r0054" Class="Handling" Status="Unavailable"
PartIDKeys="Separation">
 <MediaRef rRef="r0053"/>
 <ExposedMedia Status="Available" Separation="Cyan"/>
 <ExposedMedia Separation="Magenta"/>
 <ExposedMedia Separation="Yellow"/>
 <ExposedMedia Separation="Black"/>
 </ExposedMedia>
 <RunList ID="r0055" Class="Parameter" Status="Available"/>
 </ResourcePool>
 <ResourceLinkPool>
 <ImageSetterParamsLink rRef="r0052" Usage="Input"/>
 <MediaLink rRef="r0053" Usage="Input"/>
 <ExposedMediaLink rRef="r0054" Usage="Output"/>
 <RunListLink rRef="r0055" Usage="Input"/>
 </ResourceLinkPool>
 <StatusPool Status="Waiting">
 <PartStatus Status="Completed">
 <Part Separation="Cyan"/>
 </PartStatus>
 </StatusPool>
</JDF>

V.4 Conversion of PJTF to JDF

V.4.1 PJTF input
The following code defines 4-up duplex impositioning of a 17 page pdf document in Adobe PJTF format:

%JTF-1.2
1 0 obj
<<
/A [3 0 R]
/V 1.1
/Cn [2 0 R]
>>
endobj
2 0 obj
678 Conversion of PJTF to JDF

JDF Specification Release 1.2
<<
/Type /JobTicketContents
/D [6 0 R]
/PL 8 0 R
>>
endobj
3 0 obj
<<
/D (D:19991111173640)
/JTM (Default JT Creator)
/C (JT created)
>>
endobj
4 0 obj
<<
/Type /Catalog
/JT 1 0 R
>>
endobj
5 0 obj
<<
/Producer (HD PDFWrite vs. 0.1)
>>
endobj
6 0 obj
<<
/Fi [7 0 R]
>>
endobj
7 0 obj
<<
/Fi (panrt17a.pdf)
>>
endobj
8 0 obj
<<
/Si 9 0 R
>>
endobj
9 0 obj
<<
/S 10 0 R
>>
endobj
10 0 obj
[11 0 R]
endobj
11 0 obj
<<
/MS
<<
/Cl (sheet of paper)
/Me 12 0 R
>>
/Fr 13 0 R
/B 18 0 R
>>
endobj
12 0 obj
Conversion of PJTF to JDF 679

Appendix V Examples
<<
/Dm [842 1191 842 1191]
>>
endobj
13 0 obj
<<
/PO [14 0 R 15 0 R 16 0 R 17 0 R]
>>
endobj
14 0 obj
<<
/CTM [0.45 0 0 0.45 21 624]
/O 0
/Cl [21 624 399 1159]
>>
endobj
15 0 obj
<<
/CTM [0.45 0 0 0.45 442 624]
/O 1
/Cl [442 624 820 1159]
>>
endobj
16 0 obj
<<
/CTM [0.45 0 0 0.45 21 29]
/O 2
/Cl [21 29 399 564]
>>
endobj
17 0 obj
<<
/CTM [0.45 0 0 0.45 442 29]
/O 3
/Cl [442 29 820 564]
>>
endobj
18 0 obj
<<
/PO [19 0 R 20 0 R 21 0 R 22 0 R]
>>
endobj
19 0 obj
<<
/CTM [0.45 0 0 0.45 21 624]
/O 4
/Cl [21 624 399 1159]
>>
endobj
20 0 obj
<<
/CTM [0.45 0 0 0.45 442 624]
/O 5
/Cl [442 624 820 1159]
>>
endobj
21 0 obj
<<
/CTM [0.45 0 0 0.45 21 29]
680 Conversion of PJTF to JDF

JDF Specification Release 1.2
/O 6
/Cl [21 29 399 564]
>>
endobj
22 0 obj
<<
/CTM [0.45 0 0 0.45 442 29]
/O 7
/Cl [442 29 820 564]
>>
endobj
xref
0 23
0000000000 65535 f
0000000009 00000 n
0000000071 00000 n
0000000146 00000 n
0000000233 00000 n
0000000283 00000 n
0000000338 00000 n
0000000377 00000 n
0000000419 00000 n
0000000453 00000 n
0000000487 00000 n
0000000516 00000 n
0000000608 00000 n
0000000660 00000 n
0000000722 00000 n
0000000810 00000 n
0000000900 00000 n
0000000985 00000 n
0000001072 00000 n
0000001134 00000 n
0000001222 00000 n
0000001312 00000 n
0000001397 00000 n
trailer
<<
/Root 4 0 R
/Info 5 0 R
/Size 23
>>
startxref
1484
%%EOF

V.4.2 JDF output
This JDF file describes the Imposition process defined by the PJTF file.

<JDF xmlns="http://www.CIP4.org/JDFSchema_1_1" ID="PJTFJob" JobID="Job"
Status="Waiting" Type="Impositioning" Version="1.2">
 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.0.01
beta-->
 <ResourcePool>
 <Layout Class="Parameter" ID="Link0002" Status="Available">
 <Signature ID="Cos9">
 <SheetRef rRef="Cos11"/>
 </Signature>
Conversion of PJTF to JDF 681

Appendix V Examples
 </Layout>
 <Surface ID="Cos13" Side="Front">
 <ContentObject CTM="0.45 0 0 0.45 21 624" ClipBox="21 624 399 1159" ID="Cos14"
Ord="0"/>
 <ContentObject CTM="0.45 0 0 0.45 442 624" ClipBox="442 624 820 1159" ID="Cos15"
Ord="1"/>
 <ContentObject CTM="0.45 0 0 0.45 21 29" ClipBox="21 29 399 564" ID="Cos16"
Ord="2"/>
 <ContentObject CTM="0.45 0 0 0.45 442 29" ClipBox="442 29 820 564" ID="Cos17"
Ord="3"/>
 </Surface>
 <Surface ID="Cos18" Side="Back">
 <ContentObject CTM="0.45 0 0 0.45 21 624" ClipBox="21 624 399 1159" ID="Cos19"
Ord="4"/>
 <ContentObject CTM="0.45 0 0 0.45 442 624" ClipBox="442 624 820 1159" ID="Cos20"
Ord="5"/>
 <ContentObject CTM="0.45 0 0 0.45 21 29" ClipBox="21 29 399 564" ID="Cos21"
Ord="6"/>
 <ContentObject CTM="0.45 0 0 0.45 442 29" ClipBox="442 29 820 564" ID="Cos22"
Ord="7"/>
 </Surface>
 <Sheet ID="Cos11">
 <SurfaceRef rRef="Cos18"/>
 <SurfaceRef rRef="Cos13"/>
 </Sheet>
 <Media Dimensions="842 1191 842 1191" ID="Cos12"/>
 <RunList Class="Parameter" ID="Link0003" NPage="17" Pages="0~16"
Status="Available">
 <LayoutElement>
 <FileSpec URL="File:///panrt17a.pdf"/>
 </LayoutElement>
 </RunList>
 <RunList Class="Parameter" ID="Link0004" Status="Unavailable"/>
 </ResourcePool>
 <ResourceLinkPool>
 <RunListLink Usage="Input" rRef="Link0003"/>
 <LayoutLink Usage="Input" rRef="Link0002"/>
 <RunListLink Usage="Output" rRef="Link0004"/>
 </ResourceLinkPool>
 <AuditPool>
 <Created Author="PJTF2JDF" TimeStamp="2000-11-07T17:42:15+01:00"/>
 </AuditPool>
</JDF>

V.5 Conversion of PPF to JDF
Simple example of a PPF.

%!PS-Adobe-3.0
%%CIP3-File Version 2.0

CIP3BeginSheet
(This example was manually created by Stefan Daun) CIP3Comment
/CIP3AdmJobName (8 pages with workturn and 5 color separations) def
/CIP3AdmSoftware (Text editor) def
/CIP3AdmCreationTime (Wed Feb 19 12:00:00 1997) def
/CIP3AdmArtist (Joerg Zedler) def
/CIP3AdmCopyright (Copyright by Fraunhofer-IGD, 1997) def
682 Conversion of PPF to JDF

JDF Specification Release 1.2
/CIP3AdmSheetName (E08P5C) def
/CIP3AdmSheetLay /Left def
/CIP3AdmPSExtent [40 inch 27 inch] def
/CIP3TransferFilmCurveData [0.0 0.0 1.0 1.0] def
/CIP3TransferPlateCurveData [0.0 0.0 1.0 1.0] def
/CIP3AdmFilmTrf [0 1 -1 0 1944 0] def
/CIP3AdmPlateTrf [0 -1 1 0 0 2880] def
CIP3BeginFront
/CIP3AdmSeparationNames [(Cyan) (Magenta) (Yellow) (Black) (PANTONE Green CV)] def

CIP3BeginPreviewImage

CIP3BeginSeparation
(First separation of Front) CIP3Comment
/CIP3PreviewImageWidth 2030 def
/CIP3PreviewImageHeight 1370 def
/CIP3PreviewImageBitsPerComp 8 def
/CIP3PreviewImageComponents 1 def
/CIP3PreviewImageMatrix [0 1370 -2030 0 1370 0] def
/CIP3PreviewImageResolution [50.75 50.75] def
/CIP3PreviewImageEncoding /Binary def
/CIP3PreviewImageCompression /RunLengthDecode def
/CIP3PreviewImageByteAlign 4 def
CIP3PreviewImage
... <image data>
CIP3EndSeparation

CIP3BeginSeparation
(Second separation of Front) CIP3Comment
/CIP3PreviewImageWidth 2030 def
/CIP3PreviewImageHeight 1370 def
/CIP3PreviewImageBitsPerComp 8 def
/CIP3PreviewImageComponents 1 def
/CIP3PreviewImageMatrix [0 1370 -2030 0 1370 0] def
/CIP3PreviewImageResolution [50.75 50.75] def
/CIP3PreviewImageEncoding /Binary def
/CIP3PreviewImageCompression /RunLengthDecode def
/CIP3PreviewImageByteAlign 4 def
CIP3PreviewImage
... <image data>
CIP3EndSeparation

CIP3BeginSeparation
(Fourth separation of Front) CIP3Comment
/CIP3PreviewImageWidth 2030 def
/CIP3PreviewImageHeight 1370 def
/CIP3PreviewImageBitsPerComp 8 def
/CIP3PreviewImageComponents 1 def
/CIP3PreviewImageMatrix [0 1370 -2030 0 1370 0] def
/CIP3PreviewImageResolution [50.75 50.75] def
/CIP3PreviewImageEncoding /Binary def
/CIP3PreviewImageCompression /RunLengthDecode def
/CIP3PreviewImageByteAlign 4 def
CIP3PreviewImage
... <image data>
CIP3EndSeparation

CIP3BeginSeparation
(Fifth separation of Front) CIP3Comment
Conversion of PPF to JDF 683

Appendix V Examples
/CIP3PreviewImageWidth 2030 def
/CIP3PreviewImageHeight 1370 def
/CIP3PreviewImageBitsPerComp 8 def
/CIP3PreviewImageComponents 1 def
/CIP3PreviewImageMatrix [0 1370 -2030 0 1370 0] def
/CIP3PreviewImageResolution [50.75 50.75] def
/CIP3PreviewImageEncoding /Binary def
/CIP3PreviewImageCompression /RunLengthDecode def
/CIP3PreviewImageByteAlign 4 def
CIP3PreviewImage

CIP3BeginSeparation
(Second separation of Front) CIP3Comment
/CIP3PreviewImageWidth 2030 def
/CIP3PreviewImageHeight 1370 def
/CIP3PreviewImageBitsPerComp 8 def
/CIP3PreviewImageComponents 1 def
/CIP3PreviewImageMatrix [0 1370 -2030 0 1370 0] def
/CIP3PreviewImageResolution [50.75 50.75] def
/CIP3PreviewImageEncoding /Binary def
/CIP3PreviewImageCompression /RunLengthDecode def
/CIP3PreviewImageByteAlign 4 def
CIP3PreviewImage
... <image data>
CIP3EndSeparation
CIP3EndSeparation
CIP3EndPreviewImage

CIP3BeginRegisterMarks
20 inch 0 0 /cross&circle CIP3PlaceRegisterMark
CIP3EndRegisterMarks

CIP3BeginColorControl
/C100 << /CIE-L* 62 /CIE-a* -31 /CIE-b* -48 /Diameter 4.7 mm /Light /D65 /
Observer 2 /Tolerance 5 /Type /CIELAB >> def
/M100 << /CIE-L* 48 /CIE-a* 83 /CIE-b* -3 /Diameter 4.7 mm /Light /D65 /
Observer 2 /Tolerance 5 /Type /CIELAB >> def
/Y100 << /CIE-L* 94 /CIE-a* -14 /CIE-b* 100 /Diameter 4.7 mm /Light /D65 /
Observer 2 /Tolerance 5 /Type /CIELAB >> def
/K100 << /CIE-L* 0 /CIE-a* 0 /CIE-b* 0 /Diameter 4.7 mm /Light /D65 /Observer
2 /Tolerance 5 /Type /CIELAB >> def
0 0 0 360 18
[
 [14.77 0 C100]
 [41.85 0 Y100]
 [68.92 0 M100]
 [177.23 0 K100]

] /PrepsColorBar CIP3PlaceColorControlStrip
CIP3EndColorControl

CIP3BeginCutData
CIP3BeginCutBlock
/CIP3BlockTrf [1 0 0 1 44 mm 45.9 mm] def
/CIP3BlockSize [420 mm 594 mm] def
/CIP3BlockType /CutBlock def
/CIP3BlockName (Front Sides) def
/CIP3BlockFoldingProcedure /F08-07_li_2x2_1 def
CIP3EndCutBlock
684 Conversion of PPF to JDF

JDF Specification Release 1.2
CIP3BeginCutBlock
/CIP3BlockTrf [1 0 0 1 552 mm 45.9 mm] def
/CIP3BlockSize [420 mm 594 mm] def
/CIP3BlockType /CutBlock def
/CIP3BlockName (Back Sides) def
/CIP3BlockFoldingProcedure /F08-07_li_2x2_1 def
400 400 /RightHorizontalCutMark CIP3PlaceCutMark
CIP3EndCutBlock
100 200 /TopVerticalCutMark CIP3PlaceCutMark
CIP3EndCutData
CIP3BeginFoldProcedures
/F08-07_li_2x2_1 <<

/CIP3FoldDescription (F8-7)
/CIP3FoldSheetIn [210 mm 297 mm]
/CIP3FoldProc
[

297.638 /Front /Up Fold
420.945 /Left /Up Fold

]
>> def

CIP3EndFoldProcedures
CIP3EndFront
CIP3EndSheet
%%CIP3EndOfFile

The translated JDF:
<JDF xmlns="http://www.CIP4.org/JDFSchema_1_1" ID="PPFJDF" JobID="MyJob"
Status="Waiting" Type="Product" Version="1.2">
 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.0.01
beta-->
 <JDF ID="n1152" Status="Waiting" Type="InkZoneCalculation">
 <ResourceLinkPool>
 <LayoutLink Usage="Input" rRef="r1106"/>
 <PreviewLink Usage="Input" rRef="r1116"/>
 <TransferCurvePoolLink Usage="Input" rRef="r1111"/>
 <InkZoneCalculationParamsLink Usage="Input" rRef="r1118"/>
 <InkZoneProfileLink Usage="Output" rRef="r1119"/>
 </ResourceLinkPool>
 <ResourcePool>
 <Layout Class="Parameter" ID="r1106" Status="Available">
 <Signature Name="HDM">
 <SheetRef rRef="r1107"/>
 </Signature>
 </Layout>
 <Sheet Class="Parameter" ID="r1107" Name="E08P5C" Status="Unavailable"
SurfaceContentsBox="0 0 2880 1944">
 <SurfaceRef rRef="r1112"/>
 </Sheet>
 <Surface Class="Parameter" ID="r1112" Side="Front" Status="Unavailable">
 <MarkObject CTM="1 0 0 1 0 0" Type="Mark">
 <ColorControlStripRef rRef="r1114"/>
 </MarkObject>
 <MarkObject CTM="1 0 0 1 0 0">
 <RegisterMarkRef rRef="r1115"/>
 </MarkObject>
 <MarkObject CTM="1 0 0 1 0 0" Type="Mark">
 <CutMarkRef rRef="r1130"/>
 </MarkObject>
Conversion of PPF to JDF 685

Appendix V Examples
 <MarkObject CTM="1 0 0 1 0 0" Type="Mark">
 <CutMarkRef rRef="r1134"/>
 </MarkObject>
 </Surface>
 <ColorControlStrip Center="0 0" Class="Parameter" ID="r1114" Rotation="0"
Size="360 18" Status="Unavailable">
 <CIELABMeasuringField CIE_Lab="62 -31 -48" Center="14.77 0"
Diameter="13.3228346457" Observer="2" Tolerance="5">
 <ColorMeasurementConditionsRef rRef="RCMC"/>
 </CIELABMeasuringField>
 <CIELABMeasuringField CIE_Lab="94 -14 100" Center="41.85 0"
Diameter="13.3228346457" Tolerance="5">
 <ColorMeasurementConditionsRef rRef="RCMC"/>
 </CIELABMeasuringField>
 <CIELABMeasuringField CIE_Lab="48 83 -3" Center="68.92 0"
Diameter="13.3228346457" Tolerance="5">
 <ColorMeasurementConditionsRef rRef="RCMC"/>
 </CIELABMeasuringField>
 <CIELABMeasuringField CIE_Lab="0 0 0" Center="177.23 0" Diameter="13.3228346457"
Tolerance="5">
 <ColorMeasurementConditionsRef rRef="RCMC"/>
 </CIELABMeasuringField>
 </ColorControlStrip>
 <ColorMeasurementConditions ID="RCMC" Illumination="D65" Observer="2"/>
 <RegisterMark Center="1440 0" Class="Parameter" ID="r1115"
MarkType="cross&circle" Rotation="0" Status="Unavailable"/>
 <CutMark Class="Parameter" ID="r1130" MarkType="TopVerticalCutMark" Position="100
200" Status="Available"/>
 <CutMark Blocks="Back_Sides" Class="Parameter" ID="r1134"
MarkType="RightHorizontalCutMark" Position="400 400" Status="Available"/>
 <Preview Class="Parameter" ID="r1116" PartIDKeys="SheetName Side Separation"
PreviewType="Separation" Status="Available">
 <Preview SheetName="E08P5C">
 <Preview Side="Front">
 <Preview Separation="Cyan" URL="File:///Bild0000.png"/>
 <Preview Separation="Magenta" URL="File:///Bild0001.png"/>
 <Preview Separation="Yellow" URL="File:///Bild0002.png"/>
 <Preview Separation="Black" URL="File:///Bild0003.png"/>
 <Preview Separation="PANTONE Green CV" URL="File:///Bild0004.png"/>
 </Preview>
 </Preview>
 </Preview>
 <TransferCurvePool Class="Parameter" ID="r1111" Status="Available">
 <TransferCurveSet CTM="0 1 -1 0 1944 0" Name="Film">
 <TransferCurve Curve="0 0 1 1"/>
 </TransferCurveSet>
 <TransferCurveSet CTM="1 0 0 1 0 0" Name="Press">
 <TransferCurve Curve="0 0 1 1"/>
 </TransferCurveSet>
 <TransferCurveSet CTM="0 -1 1 0 0 2880" Name="Plate"/>
 <TransferCurveSet CTM="1 0 0 1 0 0" Name="Paper"/>
 </TransferCurvePool>
 <InkZoneCalculationParams Class="Parameter" ID="r1118" Status="Available"/>
 <InkZoneProfile Class="Parameter" ID="r1119" Status="Unavailable"/>
 </ResourcePool>
 </JDF>
 <JDF ID="n1153" Status="Waiting" Type="ConventionalPrinting">
 <ResourceLinkPool>
 <LayoutLink Usage="Input" rRef="r1106"/>
686 Conversion of PPF to JDF

JDF Specification Release 1.2
 <ColorantControlLink Usage="Input" rRef="r1113"/>
 <InkZoneProfileLink Usage="Input" rRef="r1119"/>
 <ComponentLink ProcessUsage="Good" Usage="Output" rRef="r1125"/>
 <MediaLink Usage="Input" rRef="r1108"/>
 <ConventionalPrintingParamsLink Usage="Input" rRef="r1126"/>
 <InkLink Usage="Input" rRef="r1127"/>
 <ExposedMediaLink Usage="Input" rRef="r1123"/>
 </ResourceLinkPool>
 <ResourcePool>
 <ColorantControl Class="Parameter" ID="r1113" PartIDKeys="SheetName Side"
ProcessColorModel="DeviceCMYK" Status="Available">
 <ColorantControl SheetName="E08P5C">
 <ColorantControl Side="Front">
 <ColorantParams>
 <SeparationSpec Name="PANTONE Green CV"/>
 </ColorantParams>
 <ColorantOrder>
 <SeparationSpec Name="Cyan"/>
 <SeparationSpec Name="Magenta"/>
 <SeparationSpec Name="Yellow"/>
 <SeparationSpec Name="Black"/>
 <SeparationSpec Name="PANTONE Green CV"/>
 </ColorantOrder>
 </ColorantControl>
 </ColorantControl>
 </ColorantControl>
 <Component Class="Quantity" ID="r1125" PartIDKeys="SheetName"
Status="Unavailable">
 <Component ComponentType="Sheet" SheetName="E08P5C">
 <SheetRef rRef="r1107"/>
 </Component>
 </Component>
 <Media Class="Consumable" ID="r1108" MediaType="Paper" PartIDKeys="SheetName
Side" Status="Available">
 <Media Dimension="2880 1944" SheetName="E08P5C">
 <Media Dimension="2880 1944" Side="Front"/>
 </Media>
 </Media>
 <ConventionalPrintingParams Class="Parameter" ID="r1126" PartIDKeys="SheetName
Side" Status="Available">
 <ConventionalPrintingParams SheetLay="Left" SheetName="E08P5C">
 <ConventionalPrintingParams Side="Front"/>
 </ConventionalPrintingParams>
 </ConventionalPrintingParams>
 <Ink Class="Consumable" ID="r1127" Status="Draft"/>
 <ExposedMedia Class="Handling" ID="r1123" Status="Unavailable">
 <MediaRef rRef="r1110"/>
 </ExposedMedia>
 <Media Class="Consumable" ID="r1110" MediaType="Plate" PartIDKeys="SheetName
Side" Status="Available">
 <Media Dimension="2880 1944" SheetName="E08P5C">
 <Media Dimension="2880 1944" Side="Front"/>
 </Media>
 </Media>
 </ResourcePool>
 </JDF>

 <JDF ID="n1154" Status="Waiting" Type="Cutting">
 <ResourceLinkPool>
Conversion of PPF to JDF 687

Appendix V Examples
 <ComponentLink Usage="Input" rRef="r1125">
 <Part SheetName="E08P5C"/>
 </ComponentLink>
 <CuttingParamsLink Usage="Input" rRef="r1129"/>
 <ComponentLink Usage="Output" rRef="r1131"/>
 </ResourceLinkPool>
 <ResourcePool>
 <CuttingParams Class="Parameter" ID="r1129" Status="Available">
 <CutMarkRef rRef="r1130"/>
 <CutBlockRef rRef="r1132"/>
 <CutBlockRef rRef="r1133"/>
 <CutMarkRef rRef="r1134"/>
 </CuttingParams>
 <CutBlock BlockName="Front_Sides" BlockSize="1190.55118111 1683.77952756"
BlockTrf="1 0 0 1 124.724409449 130.110236221" BlockType="CutBlock" Class="Parameter"
ID="r1132" Status="Available"/>
 <CutBlock BlockName="Back_Sides" BlockSize="1190.55118111 1683.77952756"
BlockTrf="1 0 0 1 1564.72440945 130.110236221" BlockType="CutBlock" Class="Parameter"
ID="r1133" Status="Available"/>
 <Component Class="Quantity" ID="r1131" PartIDKeys="BlockName"
Status="Unavailable">
 <Component BlockName="Front_Sides" ComponentType="Block" SourceSheet="E08P5C">
 <SheetRef rRef="r1107"/>
 </Component>
 <Component BlockName="Back_Sides" ComponentType="Block" SourceSheet="E08P5C">
 <SheetRef rRef="r1107"/>
 </Component>
 </Component>
 </ResourcePool>
 </JDF>
 <JDF ID="n1155" Status="Waiting" Type="ImageSetting">
 <ResourceLinkPool>
 <ImageSetterParamsLink Usage="Input" rRef="r1121"/>
 <MediaLink Usage="Input" rRef="r1110"/>
 <RunListLink Usage="Input" rRef="r1122"/>
 <ExposedMediaLink Usage="Output" rRef="r1123"/>
 </ResourceLinkPool>
 <ResourcePool>
 <ImageSetterParams Class="Parameter" ID="r1121" Status="Available"/>
 <RunList Class="Parameter" ID="r1122" Status="Available"/>
 </ResourcePool>
 </JDF>
 <JDF ID="n1158" Status="Waiting" Type="Folding">
 <ResourceLinkPool>
 <FoldingParamsLink Usage="Input" rRef="r1136"/>
 <ComponentLink Usage="Input" rRef="r1131">
 <Part BlockName="Front_Sides"/>
 </ComponentLink>
 <ComponentLink Usage="Output" rRef="r1138"/>
 </ResourceLinkPool>
 <ResourcePool>
 <FoldingParams Class="Parameter" DescriptionType="FoldProc" ID="r1136"
Status="Available">
 <Fold From="Front" To="Up" Travel="297.638"/>
 <Fold From="Left" To="Up" Travel="420.945"/>
 </FoldingParams>
 <Component Class="Quantity" ComponentType="Block" DescriptiveName="Front_Sides"
ID="r1138" Status="Unavailable"/>
 </ResourcePool>
688 Conversion of PPF to JDF

JDF Specification Release 1.2
 </JDF>
 <JDF ID="n1159" Status="Waiting" Type="Folding">
 <ResourceLinkPool>
 <FoldingParamsLink Usage="Input" rRef="r1140"/>
 <ComponentLink Usage="Input" rRef="r1131">
 <Part BlockName="Back_Sides"/>
 </ComponentLink>
 <ComponentLink Usage="Output" rRef="r1142"/>
 </ResourceLinkPool>
 <ResourcePool>
 <FoldingParams Class="Parameter" DescriptionType="FoldProc" ID="r1140"
Status="Available">
 <Fold From="Front" To="Up" Travel="297.638"/>
 <Fold From="Left" To="Up" Travel="420.945"/>
 </FoldingParams>
 <Component Class="Quantity" ComponentType="Block" DescriptiveName="Back_Sides"
ID="r1142" Status="Unavailable"/>
 </ResourcePool>
 </JDF>
</JDF>

V.6 RunList
The following example shows the various separation types, all mixed into one big RunList. Both in-line and
ResourceRef versions of LayoutElement are used.
 <ResourcePool>
 <Runlist Class="Parameter" ID="Link0003" NPage="10" PartIDKeys="Run Separation"
Status="Available">
 <Comment>Preseparated Runs in multiple files
 All LayoutElements are inline resources
 </Comment>
 <RunList FirstPage="0" NPage="1" Run="1">
 <RunList Separation="Cyan">
 <LayoutElement Status="Unavailable">
 <FileSpec URL="File:///Cyan.pdf"/>
 </LayoutElement>
 </RunList>
 <RunList Separation="Magenta">
 <LayoutElement Status="Unavailable">
 <FileSpec URL="File:///Magenta.pdf"/>
 </LayoutElement>
 </RunList>
 <RunList Separation="Yellow">
 <LayoutElement Status="Unavailable">
 <FileSpec URL="File:///Yellow.pdf"/>
 </LayoutElement>
 </RunList>
 <RunList Separation="Black">
 <LayoutElement Status="Unavailable">
 <FileSpec URL="File:///Black.pdf"/>
 </LayoutElement>
 </RunList>
 <RunList Separation="SpotGreen">
 <LayoutElement Status="Unavailable">
 <FileSpec URL="File:///Green.pdf"/>
 </LayoutElement>
 </RunList>
 </RunList>
 <RunList NPage="2" Run="2" SkipPage="4">
RunList 689

Appendix V Examples
 <Comment>
 Preseparated Runs in one file CMYKGCMYKG
 LayoutElements are inter-resource links
 </Comment>
 <RunList FirstPage="0" Separation="Cyan">
 <LayoutElementRef rRef="Link0004"/>
 </RunList>
 <RunList FirstPage="1" Separation="Magenta">
 <LayoutElementRef rRef="Link0004"/>
 </RunList>
 <RunList FirstPage="2" Separation="Yellow">
 <LayoutElementRef rRef="Link0004"/>
 </RunList>
 <RunList FirstPage="3" Separation="Black">
 <LayoutElementRef rRef="Link0004"/>
 </RunList>
 <RunList FirstPage="4" Separation="SpotGreen">
 <LayoutElementRef rRef="Link0004"/>
 </RunList>
 </RunList>
 <RunList NPage="1" Run="3" SkipPage="3">
 <Comment>
 No Magenta, the missing sep does not exist as a page
 </Comment>
 <RunList FirstPage="10" Separation="Cyan">
 <LayoutElementRef rRef="Link0004"/>
 </RunList>
 <RunList FirstPage="11" Separation="Yellow">
 <LayoutElementRef rRef="Link0004"/>
 </RunList>
 <RunList FirstPage="12" Separation="Black">
 <LayoutElementRef rRef="Link0004"/>
 </RunList>
 <RunList FirstPage="13" Separation="Green">
 <LayoutElementRef rRef="Link0004"/>
 </RunList>
 </RunList>
 <RunList NPage="2" Run="4" SkipPage="4">
 <Comment>
 Continuation of Preseparated Runs in one file CMYKGCMYKG -
 the missing sep of the previous page does not exist as a page
 </Comment>
 <RunList FirstPage="14" Separation="Cyan">
 <LayoutElementRef rRef="Link0004"/>
 </RunList>
 <RunList FirstPage="15" Separation="Magenta">
 <LayoutElementRef rRef="Link0004"/>
 </RunList>
 <RunList FirstPage="16" Separation="Yellow">
 <LayoutElementRef rRef="Link0004"/>
 </RunList>
 <RunList FirstPage="17" Separation="Black">
 <LayoutElementRef rRef="Link0004"/>
 </RunList>
 <RunList FirstPage="18" Separation="SpotGreen">
 <LayoutElementRef rRef="Link0004"/>
 </RunList>
 </RunList>
 <RunList NPage="2" Run="5">
690 RunList

JDF Specification Release 1.2
 <Comment>
 Preseparated Runs in one file CCMMYYKKGG
 </Comment>
 <RunList FirstPage="0" Separation="Cyan">
 <LayoutElementRef rRef="Link0005"/>
 </RunList>
 <RunList FirstPage="2" Separation="Magenta">
 <LayoutElementRef rRef="Link0005"/>
 </RunList>
 <RunList FirstPage="4" Separation="Yellow">
 <LayoutElementRef rRef="Link0005"/>
 </RunList>
 <RunList FirstPage="6" Separation="Black">
 <LayoutElementRef rRef="Link0005"/>
 </RunList>
 <RunList FirstPage="8" Separation="SpotGreen">
 <LayoutElementRef rRef="Link0005"/>
 </RunList>
 </RunList>
 <RunList NPage="2" Run="6">
 <Comment>
 Combined Runs in one file
 </Comment>
 <LayoutElement ElementType="document">
 <FileSpec URL="File:///Combined.pdf"/>
 </LayoutElement>
 </RunList>
 </Runlist>
 <LayoutElement Class="Parameter" ID="Link0004" Status="Available">
 <FileSpec URL="File:///PreSepCMYKG.pdf"/>
 </LayoutElement>
 <LayoutElement Class="Parameter" ID="Link0005" Status="Available">
 <FileSpec URL="File:///PreSepCCMMYYKKGG.pdf"/>
 </LayoutElement>
 </ResourcePool>

V.7 Messages

V.7.1 Simple KnownMessages
The following simple example shows a KnownMessages Query and the Response sent by a fairly dumb control-
ler:

Query:

<JMF xmlns="http://www.CIP4.org/ JDFSchema_1_1" SenderID="JMFClient" TimeStamp="2000-
11-07T13:15:56+01:00" Version="1.2">
 <Query ID="Q0001" Type="KnownMessages">
 <KnownMsgQuParams ListCommands="true" ListQueries="true" ListSignals="false"/>
 </Query>
</JMF>

Response:
<JMF xmlns="http:// www.CIP4.org/JDFSchema_1_1" SenderID="JMFClient #2"
TimeStamp="2000-11-07T13:15:56+01:00" Version="1.2">
 <Response ID="R0001" Type="KnownMessages" refID="Q0001">
 <KnownMessages>
 <MessageService Query="true" Type="KnownMessages"/>
Messages 691

Appendix V Examples
 <MessageService Persistent="true" Query="true" Type="Status"/>
 <MessageService Command="true" Type="StopPersistentChannel"/>
 </KnownMessages>
 </Response>
</JMF>

V.7.2 Simple persistent channel
The following query requests a persistent channel for Status messages. An update is requested whenever an attribute
changes.

<JMF xmlns="http:// www.CIP4.org/JDFSchema_1_1" SenderID="JMFClient" TimeStamp="2000-
11-07T16:02:09+01:00" Version="1.2">
 <Query ID="Q0011" Type="Status">
 <Subscription URL="http://123.123.123.123/message/recipient">
 <ObservationTarget Attributes="*"/>
 </Subscription>
 <StatusQuParams JobDetails="brief"/>
 </Query>
</JMF>

The following four examples are a set of typical, simple responses that are emitted whenever DeviceStatus
changes.

This is the Response that is sent immediately within the same HTTP connection as the Query.

<JMF xmlns="http://www.CIP4.org/JDFSchema_1_1" SenderID="JMFClient #2" TimeStamp="2000-
11-07T16:02:19+01:00" Version="1.2">
 <Response ID="R0013" Type="Status" refID="Q0011">
 <DeviceInfo DeviceStatus="Idle"/>
 </Response>
</JMF>

This is an intermediate Signal that was emitted when DeviceStatus changed.
<JMF xmlns="http://www.CIP4.org/JDFSchema_1_1" SenderID="JMFClient #2" TimeStamp="2000-
11-07T17:02:19+01:00" Version="1.2">
 <Signal ID="Q0015" Type="Status" refID="Q0011">
 <DeviceInfo DeviceStatus="Setup"/>
 </Signal>
</JMF>

This is an intermediate Signal that was emitted when DeviceStatus changed.
<JMF xmlns="http://www.CIP4.org/JDFSchema_1_1" SenderID="JMFClient #2" TimeStamp="2000-
11-07T17:08:19+01:00" Version="1.2">
 <Signal ID="Q0017" Type="Status" refID="Q0011">
 <DeviceInfo DeviceStatus="Running"/>
 </Signal>
</JMF>

This is the last Signal of the persistent channel.
<JMF xmlns="http://www.CIP4.org/JDFSchema_1_1" SenderID="JMFClient #2" TimeStamp="2000-
11-07T19:02:19+01:00" Version="1.2">
 <Signal ID="Q0017" Type="Status" refID="Q0011" LastRepeat="true">
 <DeviceInfo DeviceStatus="Idle"/>
 </Signal>
</JMF>
692 Messages

JDF Specification Release 1.2
V.8 Stripping

V.8.1 Using Position
The following example illustrates the more advanced use of the Position object. Note that the two B2x2 signa-

tures are filled independently.

 <BinderySignature Class="Parameter" ID="B4x2" NumberUp="4 2" Status="Available"/>
 <BinderySignature Class="Parameter" ID="B2x2" NumberUp="2 2" Status="Available"/>
 <StrippingParams Class="Parameter" ID="L1" PartIDKeys="SheetName
BinderySignatureName" Status="Available" WorkStyle="WorkAndBack">
 <StrippingParams SheetName="Sheet1">
 <StrippingParams BinderySignatureName="B4x2">
 <BinderySignatureRef rRef="B4x2"/>
 <Position RelativeBox="0 0 0.5 1" Rotate="Rotate270"/>
 </StrippingParams>
 <StrippingParams BinderySignatureName="B2x2-1">
 <BinderySignatureRef rRef="B2x2"/>
 <Position RelativeBox="0.5 0 1 0.5"/>
 </StrippingParams>
 <StrippingParams BinderySignatureName="B2x2-2">
 <BinderySignatureRef rRef="B2x2"/>
 <Position RelativeBox="0.5 0.5 1 1"/>
 </StrippingParams>
 </StrippingParams>
 </StrippingParams>

V.8.2 Multiple BinderySignatures
The following example illustrates how two identical BinderySignatures that represent the same sections are
placed onto a surface. It also shows how StripCellParams are overwritten for various sections.

 <BinderySignature Class="Parameter" ID="B4x2" NumberUp="4 2" Status="Available"/>
 <BinderySignature Class="Parameter" ID="B2x2" NumberUp="2 2" Status="Available"/>
 <StrippingParams Class="Parameter" ID="L1" PartUsage="Implicit" Status="Available"
PartIDKeys="SheetName BinderySignatureName CellIndex" WorkStyle="WorkAndBack">
 <StrippingParams JobID="Customer Job 1" SheetName="Sheet1">
 <StrippingParams BinderySignatureName="B4x2">

B0

A0A3

B3

Section A

Section BB0

A0A3

B3

Section A

Section BB0

A0A3

B3

Section A

Section B
Stripping 693

Appendix V Examples
 <BinderySignatureRef rRef="B4x2"/>
 <StripCellParams BleedFace="42" BleedSpine="0" MillingDepth="21"/>
 <Position RelativeBox="0 0 0.5 1" Rotate="Rotate270"/>
 </StrippingParams>
 <StrippingParams BinderySignatureName="B2x2">
 <BinderySignatureRef rRef="B2x2"/>
 <StripCellParams BleedFace="42" BleedSpine="20" MillingDepth="84"/>
 <Position RelativeBox="0.5 0 1 0.5"/>
 <Position RelativeBox="0.5 0.5 1 1"/>
 <StrippingParams CellIndex="3">
 <StripCellParams BleedFace="10" BleedSpine="10" MillingDepth="48"/>
 </StrippingParams>
 </StrippingParams>
 </StrippingParams>
 </StrippingParams>

V.8.3 Multisection BinderySignatures
The following example illustrates the imposition of a job containing 80 pages using ComeAndGo. Five sheets need to
be produced each containing two sections.

<BinderySignature Class="Parameter" ID="ComeAndGo" NumberUp="4 2" Status="Available">
 <SignatureCell BackPages="1 6 5 2" FrontPages="3 4 7 0" Orientation="Up"
SectionIndex="0"/>
 <SignatureCell BackPages="6 1 2 5" FrontPages="4 3 0 7" Orientation="Down"
SectionIndex="1"/>
</BinderySignature>
<StrippingParams Class="Parameter" ID="L1" PartIDKeys="SheetName" Status="Available"
WorkStyle="WorkAndBack">
 <BinderySignatureRef rRef="ComeAndGo"/>
 <StrippingParams SectionList="0 9" SheetName="Sheet1"/>
 <StrippingParams SectionList="1 8" SheetName="Sheet2"/>
 <StrippingParams SectionList="2 7" SheetName="Sheet3"/>
 <StrippingParams SectionList="3 6" SheetName="Sheet4"/>
 <StrippingParams SectionList="4 5" SheetName="Sheet5"/>
</StrippingParams>

V.8.4 Multiple job parts in one imposition
The following example illustrates partitioning by SectionIndex. We reuse the ComeAndGo
BinderySignature from the previous example, but map the BinderySignature to sections of
different job parts.
<StrippingParams Class="Parameter" ID="L1" JobID="MyJob" PartIDKeys="SheetName
SectionIndex" Status="Available" WorkStyle="WorkAndBack">
 <BinderySignatureRef rRef="ComeAndGo"/>
 <StrippingParams SheetName="Sheet1">
 <StrippingParams AssemblyID="Book1" SectionIndex="0" SectionList="0"/>
 <StrippingParams AssemblyID="Book2" SectionIndex="1" SectionList="9"/>
 </StrippingParams>
 <StrippingParams SheetName="Sheet2">
694 Stripping

JDF Specification Release 1.2
 <StrippingParams AssemblyID="Book1" SectionIndex="0" SectionList="1"/>
 <StrippingParams AssemblyID="Book2" SectionIndex="1" SectionList="8"/>
 </StrippingParams>
 <StrippingParams SheetName="Sheet3">
 <StrippingParams AssemblyID="Book1" SectionIndex="0" SectionList="2"/>
 <StrippingParams AssemblyID="Book2" SectionIndex="1" SectionList="7"/>
 </StrippingParams>
 <StrippingParams SheetName="Sheet4">
 <StrippingParams AssemblyID="Book1" SectionIndex="0" SectionList="3"/>
 <StrippingParams AssemblyID="Book2" SectionIndex="1" SectionList="6"/>
 </StrippingParams>
 <StrippingParams SheetName="Sheet5">
 <StrippingParams AssemblyID="Book1" SectionIndex="0" SectionList="4"/>
 <StrippingParams AssemblyID="Book2" SectionIndex="1" SectionList="5"/>
 </StrippingParams>
</StrippingParams>

V.8.5 FoldOuts
The following example illustrates the use of foldouts. The same foldout is placed twice on a press sheet.

<BinderySignature Class="Parameter" ID="foldout" NumberUp="2 1" Status="Available">
 <SignatureCell BackFacePages="3" BackPages="2" FrontFacePages="4" FrontPages="5"
Orientation="Up"/>
 <SignatureCell BackPages="1" FrontPages="0" Orientation="Up"/>
</BinderySignature>
<StrippingParams SheetName="Cover" WorkStyle="WorkAndBack">
 <BinderySignatureRef rRef="foldout"/>
 <Position RelativeBox="0 0 1 0.5"/>
 <Position RelativeBox="0 0.5 1 1"/>
</StrippingParams>

V.8.6 Multiple Web Layout

The following example illustrates a regular double-web layout. A double-web BinderySignature is used in two
signatures. This results in four sheets.

4 05

0
1

1 3
4

5

4 05

4 05

0
1

1 3
4

5

4 05

4 054 05

0
1

1 3
4

5

0
1

1 3
4

5

4 054 05
Stripping 695

Appendix V Examples
<BinderySignature Class="Parameter" ID="B001" NumberUp="4 2" PartIDKeys="WebName"
Status="Available">
 <BinderySignature WebName="Web1">
 <SignatureCell BackPages="22 9 14 17" FrontPages="31 0 7 24" Orientation="Up"/>
 <SignatureCell BackPages="25 6 1 30" FrontPages="16 15 8 23" Orientation="Down"/>
 </BinderySignature>
 <BinderySignature WebName="Web2">
 <SignatureCell BackPages="20 11 12 19" FrontPages="29 2 5 26" Orientation="Up"/>
 <SignatureCell BackPages="27 4 3 28" FrontPages="18 13 10 21" Orientation="Down"/>
 </BinderySignature>
</BinderySignature>
<StrippingParams Class="Parameter" ID="MultiWeb1" PartIDKeys="SignatureName SheetName"
Status="Available" WorkStyle="WorkAndBack">
 <StrippingParams SignatureName="Signature1">
 <StrippingParams SheetName="Sheet1">
 <BinderySignatureRef rRef="B001">
 <Part WebName="Web1"/>
 </BinderySignatureRef>
 </StrippingParams>
 <StrippingParams SheetName="Sheet2">
 <BinderySignatureRef rRef="B001">
 <Part WebName="Web2"/>
 </BinderySignatureRef>
 </StrippingParams>
 </StrippingParams>
 <StrippingParams SignatureName="Signature2">
 <StrippingParams SheetName="Sheet3">
 <BinderySignatureRef rRef="B001">
 <Part WebName="Web1"/>
 </BinderySignatureRef>
 </StrippingParams>
 <StrippingParams SheetName="Sheet4">
 <BinderySignatureRef rRef="B001">
 <Part WebName="Web2"/>
 </BinderySignatureRef>

0

1516

7 2431

238

SignatureTemplate:F8-72

1318

5 2629

2110

Web1

Web2

0

1516

7 2431

238

SignatureTemplate:F8-72

1318

5 2629

2110

Web1

Web2

0

1516

7 2431

238

SignatureTemplate:F8-72

1318

5 2629

2110

Web1

Web2
696 Stripping

JDF Specification Release 1.2
 </StrippingParams>
 </StrippingParams>
</StrippingParams>

V.8.7 Stripping Process
The next sample illustrates the Stripping process and its StrippingParams and Assembly resources.
Sheet1:

Sheet2:

<JDF ID="n001" Type="Stripping" Version="1.2">
 <ResourcePool>
 <BinderySignature Class="Parameter" FoldCatalog="F4-1" ID="F4-1"
Status="Available"/>

Assembly 1

Part 1 Section 0

Part 2 Section 0

Part 2 Section 1

Part 2 Section 2

Assembly 1

Part 1 Section 0

Part 2 Section 0

Part 2 Section 1

Part 2 Section 2

Part 1 Section 0

Part 2 Section 0

Part 2 Section 1

Part 2 Section 2
Stripping 697

Appendix V Examples
 <BinderySignature Class="Parameter" FoldCatalog="F16-6" ID="F16-6"
Status="Available"/>
 <BinderySignature Class="Parameter" FoldCatalog="F8-7" ID="F8-7"
Status="Available"/>
 <StrippingParams Class="Parameter" ID="L1" PartIDKeys="SheetName
BinderySignatureName" Status="Available">
 <StrippingParams SheetName="Sheet1">
 <StrippingParams AssemblyID="Part1" BinderySignatureName="F4-1" JobID="Book1"
SectionList="0">
 <BinderySignatureRef rRef="F4-1"/>
 <Position RelativeBox="0 0.5 0.5 0.75"/>
 <Position RelativeBox="0 0.75 0.5 1"/>
 </StrippingParams>
 <StrippingParams AssemblyID="Part2" BinderySignatureName="F8-7" JobID="Book1"
SectionList="0">
 <BinderySignatureRef rRef="F8-7"/>
 <Position RelativeBox="0.5 0.5 1 1"/>
 </StrippingParams>
 <StrippingParams BinderySignatureName="F16-6" JobID="Book2" SectionList="0">
 <BinderySignatureRef rRef="F16-6"/>
 <Position RelativeBox="0 0 1 0.5"/>
 </StrippingParams>
 </StrippingParams>
 <StrippingParams SheetName="Sheet2">
 <StrippingParams AssemblyID="Part2" BinderySignatureName="F8-7_1" JobID="Book1"
SectionList="1">
 <BinderySignatureRef rRef="F8-7"/>
 <Position RelativeBox="0 0.5 0.5 1"/>
 </StrippingParams>
 <StrippingParams AssemblyID="Part2" BinderySignatureName="F8-7_2" JobID="Book1"
SectionList="2">
 <BinderySignatureRef rRef="F8-7"/>
 <Position RelativeBox="0.5 0.5 1 1"/>
 </StrippingParams>
 <StrippingParams BinderySignatureName="F16-6" JobID="Book2" SectionList="1">
 <BinderySignatureRef rRef="F16-6"/>
 <Position RelativeBox="0 0 1 0.5"/>
 </StrippingParams>
 </StrippingParams>
 </StrippingParams>
 <Assembly Class="Parameter" ID="A1" JobID="Book1" Order="List" Status="Available">
 <AssemblySection AssemblyID="Part1" Order="Gathering">
 <AssemblySection AssemblyID="Part2"/>
 <AssemblySection AssemblyID="Part2"/>
 <AssemblySection AssemblyID="Part2"/>
 </AssemblySection>
 </Assembly>
 <Assembly Class="Parameter" ID="A2" JobID="Book2" Order="Collecting"
Status="Available"/>
 <Layout Class="Parameter" ID="L2" Status="Unavailable"/>
 </ResourcePool>
 <ResourceLinkPool>
 <StrippingParamsLink Usage="Input" rRef="L1"/>
 <AssemblyLink Usage="Input" rRef="A1"/>
 <AssemblyLink Usage="Input" rRef="A2"/>
 <LayoutLink Usage="Output" rRef="L2"/>
 </ResourceLinkPool>
</JDF>
698 Stripping

JDF Specification Release 1.2
V.9 DigitalDelivery Examples
Example 1: Instruct the digital delivery device to compress the files delivered in gzip compression.
Before the delivery:
<ResourcePool>
 <RunList ID="SourceFilesLink" Class="Parameter" Status="Available">
 <LayoutElement>
 <FileSpec URL="File:///e:/ToSend/xxx.pdf"/>
 </LayoutElement>
 </RunList>

 <RunList ID="TargetFilesLink" Class="Parameter" Status="Unavailable">
 <LayoutElement>
 <FileSpec Compression="Gzip"/>
 </LayoutElement>
 </RunList>
</ResourcePool>
…
<ResourceLinkPool>
 <RunListLink rRef="SourceFilesLink" Usage="Input"/>
 <RunListLink rRef="TargetFilesLink" Usage="Output"/>
</ResourceLinkPool>

Since the input RunList resource is without Compression and the output RunList resource is with
Compression — it will instruct the digital delivery device to compress the files delivered.

After the delivery:
<RunList ID="TargetFilesLink" Class="Parameter" Status="Available">
 <LayoutElement>
 <FileSpec Compression="Gzip" URL="File:///FileServer1/ComingJobs/job702555.gz"/>
 </LayoutElement>
</RunList>

Full example of ArtDeliveryIntent translated to Delivery and DigitalDelivery processes
Please note that elements and attributes which are candidate to be part of JDF 1.2 are used in this example. They are
prefixed by the “add12” namespace. It was validated with CheckJDF except the proposed changes that conflict with
current schema. The following example describes:

1 Intent with upload file through www form and instruction to return the intermediate files in digital media
together with the final product.

2 DigitalDelivery process sub-jdf describing the upload to ftp server + compression + storage + subscrip-
tion to get customerMessage notification on files when delivered.

3 Delivery process sub-jdf describing the return of final product and digital media via Fedex with values for
service level and tracking id.

<JDF xmlns="http://www.CIP4.org/JDFSchema_1_1" DescriptiveName="ArtDeliveryIntent
translated to Delivery and DigitalDelivery processes" ID="ID000" Status="InProgress"
Type="Product" Version="1.2" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <NodeInfo JobPriority="100"/>
 <CustomerInfo CustomerJobName="Job title ...">
 <Contact ContactTypes="Customer">
 <Address City="Alta" PostalCode="369300" Region="AV" Street="123 Gibrish Street"/
>
 <Person FamilyName="Spencer" FirstName="Ron"/>
 <ComChannel ChannelType="Phone" ChannelUsage="DayTime" Locator="+44 019-1234-
4567"/>
DigitalDelivery Examples 699

Appendix V Examples
 <ComChannel ChannelType="Fax" ChannelUsage="Business DayTime NightTime"
Locator="+44 019-1234-4567"/>
 </Contact>
 </CustomerInfo>
 <ResourcePool>
 <ArtDeliveryIntent Class="Intent" ID="Link002" ReturnList="DigitalMedia"
Status="Available">
 <ArtHandling DataType="EnumerationSpan" Range="Return ReturnWithProduct"/>
 <ReturnMethod DataType="NameSpan" Preferred="FedEx"/>
 <ArtDelivery ArtDeliveryType="DigitalNetwork">
 <Contact ContactTypes="Delivery">
 <ComChannel ChannelType="WWW" ChannelTypeDetails="Form" Locator="http://
www.server.com/uploader.aspx"/>
 </Contact>
 <RunList>
 <LayoutElement>
 <FileSpec URL="file:///D:/WINNT/Profiles/23423/Desktop/test.pdf"/>
 </LayoutElement>
 </RunList>
 </ArtDelivery>
 </ArtDeliveryIntent>
 <Contact Class="Parameter" ContactTypes="Delivery" ID="Shipping001"
Status="Available">
 <Address City="Alta" PostalCode="369300" Region="AV" Street="123 Gibrish Street"/
>
 <Person FamilyName="Jones" FirstName="Bill"/>
 <ComChannel ChannelType="Phone" ChannelTypeDetails="Mobile" Locator="+44 078-
1234-4567"/>
 </Contact>
 <Component Amount="500" Class="Quantity" ComponentType="FinalProduct"
ID="ItemFinal" Status="Unavailable"/>
 </ResourcePool>
 <ResourceLinkPool>
 <ArtDeliveryIntentLink Usage="Input" rRef="Link002"/>
 <ComponentLink Amount="500" Usage="Output" rRef="ItemFinal"/>
 </ResourceLinkPool>
 <JDF ID="J171373" Status="Completed" Type="DigitalDelivery">
 <CustomerInfo CustomerJobName="Job title ...">
 <CustomerMessage Language="FR" MessageEvents="Delivered" ShowList="StartTime
EndTime Error">
 <ComChannel ChannelType="Email" Locator="sender@Email.com"/>
 <ComChannel ChannelType="InstantMessaging" ChannelTypeDetails="Yahoo!"
Locator="bill_jones"/>
 </CustomerMessage>
 </CustomerInfo>
 <ResourcePool>
 <RunList Class="Parameter" ID="FileListLink1" Status="Available">
 <LayoutElement>
 <FileSpec URL="file:///D:/WINNT/Profiles/23423/Desktop/test.pdf"/>
 </LayoutElement>
 </RunList>
 <DigitalDeliveryParams Class="Parameter" DigitalDeliveryDirection="Push"
DigitalDeliveryProtocol="FTP" ID="DestinationLink" Method="WebServer"
Status="Available">
 <Contact ContactTypes="Delivery">
 <ComChannel ChannelType="WWW" ChannelTypeDetails="Form" Locator="http://
www.server.com/uploader.aspx"/>
 </Contact>
 <Contact ContactTypes="Sender">
700 DigitalDelivery Examples

JDF Specification Release 1.2
 <ComChannel ChannelType="Email" Locator="sender@Email.com"/>
 </Contact>
 </DigitalDeliveryParams>
 <RunList Class="Parameter" ID="FileListLink2" Status="Available">
 <Disposition MinDuration="P30D"/>
 <LayoutElement>
 <FileSpec Compression="Deflate" URL="test.pdf">
 <Container>
 <FileSpec MimeType="application/zip" URL="file://network_share/
uploaded%20files/test.zip"/>
 </Container>
 </FileSpec>
 </LayoutElement>
 </RunList>
 </ResourcePool>
 <ResourceLinkPool>
 <DigitalDeliveryParamsLink Usage="Input" rRef="DestinationLink"/>
 <RunListLink Usage="Input" rRef="FileListLink1"/>
 <RunListLink Usage="Output" rRef="FileListLink2"/>
 </ResourceLinkPool>
 <AuditPool>
 <PhaseTime DescriptiveName="Upload of Job 171373 to Server" End="2003-01-
08T12:27:56Z" Start="2003-01- 08T12:27:40Z" Status="InProgress" TimeStamp="2003-01-
08T12:27:56Z"/>
 <Created Author="Server uploader 1.51" TimeStamp="2003-01-08T12:27:40Z"/>
 <ProcessRun End="2003-01-08T12:27:56Z" EndStatus="Completed" Start="2003-01-
08T12:27:40Z" TimeStamp="2003-01-08T12:27:56Z"/>
 </AuditPool>
 </JDF>

 <JDF DescriptiveName="The Return of product and digital media with intermediate
materials" ID="X00000" Status="Waiting" Type="Delivery">
 <ResourceLinkPool>
 <ComponentLink Usage="Output" rRef="Item001"/>
 <DigitalMediaLink Usage="Output" rRef="Item002"/>
 <DeliveryParamsLink Usage="Input" rRef="Delivery001"/>
 </ResourceLinkPool>
 <ResourcePool>
 <RunList Class="Parameter" ID="FileListLink0" PartIDKeys="Run"
Status="Available">
 <RunList Run="1">
 <LayoutElement>
 <FileSpec URL="./ForReturn/Intermediate/test.pdf"/>
 </LayoutElement>
 </RunList>
 <RunList Run="2">
 <LayoutElement>
 <FileSpec URL="./ForReturn/Final/test.pdf"/>
 </LayoutElement>
 </RunList>
 </RunList>
 <Component Amount="500" Class="Quantity" ComponentType="FinalProduct"
ID="Item001" ProductID="AG5678" Status="Available" Unit="1"/>
 <DigitalMedia Amount="1" Capacity="700" Class="Handling" ID="Item002"
MediaLabel="TempResults" MediaType="CD" Status="Available">
 <RunListRef rRef="FileListLink0"/>
 </DigitalMedia>
 <DeliveryParams Class="Parameter" ID="Delivery001" Status="Available">
 <Drop Method="FedEx" ServiceLevel="Ground" TrackingID="1234567890Z">
DigitalDelivery Examples 701

Appendix V Examples
 <ContactRef rRef="Shipping001"/>
 <DropItem Amount="500" Unit="1">
 <ComponentRef rRef="Item001"/>
 </DropItem>
 <DropItem Amount="1">
 <DigitalMediaRef rRef="Item002"/>
 </DropItem>
 </Drop>
 </DeliveryParams>
 </ResourcePool>
 </JDF>
</JDF>

Full example of digital delivery through central server
Please note that elements and attributes which are candidate to be part of JDF 1.2 are used in this example. They are
prefixed by the “add12” namespace. It was validated with CheckJDF except the proposed changes that conflict with
current schema. The following example describes:

1 Upload of files to server by FTP protocol

2 Request for 10 days storage on server

3 Request to Mac Binary encode the files on server

4 Send to multiple destinations: 1 is email address and 1 is registered address in a private directory

5 Download of files by HTTP protocol

6 Decode from Mac Binary when downloading to target

7 Download by 1 destination out of the 2.
<JDF xmlns="http://www.CIP4.org/JDFSchema_1_1" DescriptiveName="Digital Delivery
through central server - example with process group" ID="ID000" Status="InProgress"
Type="ProcessGroup" Version="1.2" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <NodeInfo JobPriority="60"/>
 <ResourcePool>
 <Contact Class="Parameter" ContactTypes="Delivery" ID="DestLink"
PartIDKeys="Location" Status="Available">
 <Contact Location="Dest1">
 <ComChannel ChannelType="Email" Locator="Reciever1@hotmail.com"/>
 </Contact>
 <Contact Location="Dest2">
 <ComChannel ChannelType="PrivateDirectory" ChannelTypeDetails="VioAddress"
Locator="Best Workgroup@Best Company"/>
 </Contact>
 </Contact>
 <RunList Class="Parameter" ID="TempFileListLink" PartIDKeys="Run"
Status="Available">
 <Disposition MinDuration="P10D"/>
 <RunList Run="1">
 <LayoutElement>
 <FileSpec Compression="MacBinary" URL="./Atlas/Europe.bmp.bin"/>
 </LayoutElement>
 </RunList>
 <RunList Run="2">
 <LayoutElement>
 <FileSpec Compression="MacBinary" URL="./Atlas/America.jpg.bin"/>
 </LayoutElement>
 </RunList>
 </RunList>
702 DigitalDelivery Examples

JDF Specification Release 1.2
 </ResourcePool>

 <JDF DescriptiveName="Upload Job to Server" ID="ID001" JobID="J702555"
Status="Completed" Type="DigitalDelivery">
 <CustomerInfo CustomerJobName="World atlas maps #2">
 <CustomerMessage Language="FR" MessageEvents="Delivered Accepted">
 <ComChannel ChannelType="Email" Locator="sender@Email.com"/>
 </CustomerMessage>
 </CustomerInfo>
 <ResourcePool>
 <RunList Class="Parameter" Directory="file:///c:/MyDir/JobForSend"
ID="SourceFileListLink0" PartIDKeys="Run" Status="Available">
 <RunList Run="1">
 <LayoutElement>
 <FileSpec FileSize="240066" URL="./Atlas/Europe.bmp"/>
 </LayoutElement>
 </RunList>
 <RunList Run="2">
 <LayoutElement>
 <FileSpec FileSize="33947" URL="./Atlas/America.jpg"/>
 </LayoutElement>
 </RunList>
 </RunList>
 <Contact Class="Parameter" ContactTypes="Sender" ID="SendLink"
Status="Available">
 <ComChannel ChannelType="Email" Locator="sender@Email.com"/>
 </Contact>
 <DigitalDeliveryParams Class="Parameter" DigitalDeliveryDirection="Push"
DigitalDeliveryProtocol="FTP" ID="DestinationLink0" Method="Vio" PartIDKeys="Location"
Status="Available">
 <Comment Name="Instruction">Please take these maps and add them to the rest
...</Comment>
 <DigitalDeliveryParams Location="SenderToDest1">
 <ContactRef rRef="SendLink"/>
 <ContactRef rRef="DestLink">
 <Part Location="Dest1"/>
 </ContactRef>
 </DigitalDeliveryParams>
 <DigitalDeliveryParams Location="SenderToDest2">
 <ContactRef rRef="SendLink"/>
 <ContactRef rRef="DestLink">
 <Part Location="Dest2"/>
 </ContactRef>
 </DigitalDeliveryParams>
 </DigitalDeliveryParams>
 </ResourcePool>
 <ResourceLinkPool>
 <DigitalDeliveryParamsLink Usage="Input" rRef="DestinationLink0"/>
 <RunListLink Usage="Input" rRef="SourceFileListLink0"/>
 <RunListLink Usage="Output" rRef="TempFileListLink"/>
 </ResourceLinkPool>
 <AuditPool>
 <ProcessRun DescriptiveName="Upload of Job 702555 to Vio Server" End="2002-07-
21T10:47:11Z" EndStatus="Completed" Start="2002-07-21T10:45:52Z" TimeStamp="2002-07-
21T10:47:11Z"/>
 <Created Author="Vio Server 4.3" TimeStamp="2002-07-21T10:45:52Z"/>
 </AuditPool>
 </JDF>
DigitalDelivery Examples 703

Appendix V Examples
 <JDF DescriptiveName="Download Job from Server to destination" ID="ID002"
JobID="J702555" Status="Pool" Type="DigitalDelivery">
 <ResourcePool>
 <RunList Class="Parameter" Directory="File:///e:/My%20Download"
ID="TargetFileListLink1" PartIDKeys="Run" Status="Available">
 <RunList Run="1">
 <LayoutElement>
 <FileSpec FileSize="240066" URL="./Atlas/Europe.bmp"/>
 </LayoutElement>
 </RunList>
 <RunList Run="2">
 <LayoutElement>
 <FileSpec FileSize="33947" URL="./Atlas/America.jpg"/>
 </LayoutElement>
 </RunList>
 </RunList>
 <DigitalDeliveryParams Class="Parameter" DigitalDeliveryDirection="Pull"
DigitalDeliveryProtocol="HTTP" ID="DestinationLink1" Method="Vio" PartIDKeys="Location"
Status="Available">
 <DigitalDeliveryParams Location="ToDest1">
 <ContactRef rRef="DestLink">
 <Part Location="Dest1"/>
 </ContactRef>
 </DigitalDeliveryParams>
 <DigitalDeliveryParams Location="ToDest2">
 <ContactRef rRef="DestLink">
 <Part Location="Dest2"/>
 </ContactRef>
 </DigitalDeliveryParams>
 </DigitalDeliveryParams>
 </ResourcePool>
 <ResourceLinkPool>
 <DigitalDeliveryParamsLink Usage="Input" rRef="DestinationLink1"/>
 <RunListLink Usage="Input" rRef="TempFileListLink"/>
 <RunListLink Usage="Output" rRef="TargetFileListLink1"/>
 </ResourceLinkPool>
 <StatusPool Status="InProgress">
 <PartStatus Status="Completed">
 <Part Location="ToDest2"/>
 </PartStatus>
 </StatusPool>
 <AuditPool>
 <Created Author="Vio Server 4.3" TimeStamp="2002-07-21T10:48:57Z"/>
 <ProcessRun DescriptiveName="HTTP Download of Job 702555 by Best Workgroup@Best
Company" End="2002-07-21T10:50:11Z" EndStatus="Completed" Start="2002-07-21T10:48:57Z"
TimeStamp="2002-07-21T10:50:11Z">
 <Part Location="ToDest2"/>
 </ProcessRun>
 </AuditPool>
 </JDF>
</JDF>
704 DigitalDelivery Examples

Appendix W New, Deprecated, Modified, Illegal, &
Removed Items

A word of caution: The following tables are provided for your convenience, but are not a comprehensive list of all
changes made in the production of JDF 1.2. Some changes that are global or comprehensive to one or more sections
of this document are explained in the main section of the document. Changes in JDF 1.2 are extensive and even expe-
rienced JDF developers, who may even be active in one or more CIP4 Working Group, are strongly advised to read
JDF in its entirety, and are advised not to rely solely on this appendix to identify all changes to JDF in JDF 1.2.
Note that many editorial and adminstrative changes were made to version JDF 1.2 prior to the application of changes
that orginated in committe work. The bulk of changes consists of clarifications of ambiguities such as:

• Placing all “e.g.” and “i.e.” comments into parethesis

• Ensuring that the use of terms such as “finished page,” “reader page,” “folios,” “leaf,” “sheet,” and so forth are
consistent throughout the document.

• Eliminating all occurences of “system specified” enumerations and changing annotation of default attribute
values as defined in Section 1.3.4, Specification of Cardinality and “Intent Resources” on page 237.

• Clarification of examples and default values throughout Section 7, Resources to be consistent with Encoding.

• All processes and resources deprecated in their entirety were removed from the Resources and Processes
chapters and put into “Deprecated Processes, Resources, and JMF Messaging Elements” on page 743.

• All number, NumberList, NumberRange, and NumberRangeList data types were changed to double, DoubleList,
DoubleRange, and DoubleRangeList data types throughout the document.

The above changes and other editorial changes are not listed below and are too numerous to list.
705

Appendix W New, Deprecated, Modified, Illegal, & Removed Items
W.1 Compatibility Warnings

W.2 New Items

Location Section Title Comments
page 204 Section 6.4.19, Preflight Compatibility Warning. Preflight has been modified

substantially in JDF 1.2 and is no longer compatible with
previous versions of JDF.

page 123 Section 4.4.5, Case 5:
Spawning and Merging of
Independent Jobs

Compatibility Warning. Note that Spawning and Merg-
ing of Independent Jobs is under development and subject
to major changes in a future release of this specification.

page 267 Section 7.1.11,
LayoutIntent

In FinishedDimensions attribute: Compatibility
Warning. In JDF 1.1 height and width were erroneously
switched in the description.

page 267 Section 7.1.11,
LayoutIntent

In NumberUp attribute: Compatibility Warning. In JDF
1.0 and 1.1 rows and columns were erroneously switched
in the description.

page 267 Section 7.1.11,
LayoutIntent

In Pages attribute: Compatibility Warning. The meaning
of “pages” has been modified in JDF 1.2 to clarify an ambi-
guity in its definition. Prior to JDF 1.2, “pages” was ambig-
uously defined as the number of two-sided leaves. It is now
defined as the number of surfaces and not the number of
sheets which is different by a factor of two.

page 311 Section 7.2.29,
ColorSpaceConversionPara
ms

In RenderingIntent attribute: Compatibility Warning.
The default has changed in JDF 1.2. from Perceptual.

page 408 Section 7.2.99,
LayoutPreparationParams

In NumberUp attribute: Compatibility Warning. In JDF
1.1 rows and columns were erroneously switched in the
description.

page 447 Section 7.2.130,
PSToPDFConversionPara
ms

In LockDistillerParams: Compatibility warning. In
JDF 1.1A and previous versions, the definition of
LockDistillerParams was accidentally inverted. It is
now consistent with the PostScript SetDistillerParams
operator.

Location Section Title Comments
Table 1-3 on page 9 Introduction Addition of DateTimeRange, DateTimeRangeList, Dura-

tionRange, and DurationRangeList to JDF data types.
page 371 Section 7.2.71,

FormatConversionParams
Addition of TIFFFormatParams, ImageCompression-
Params, and ColorPool, including Structure of the TIFF-
FormatParams Element, Structure of the TIFFTag
Subelement, and Structure of the TIFFEmbeddedFile Sub-
element tables.

page 3 Section 1.3.3, Call-Outs Added section that details use of flags identifying new,
modified, and deprecated items.
706 Compatibility Warnings

JDF Specification Release 1.2
page 7 Section 1.4, Glossary of
Terminology

Added definitions for folio, form, leaf, sheet, signature, and
surface, along with a callout explaining the changes to
“page” types — please note that changes have been made
throughout JDF 1.2 that reflect these changes in terminol-
ogy.

page 323 Section 7.2.33, Component Example Use of Condition Attribute section added.
page 576 Section A.3.3.2,

NamedColor
Added Cyan and Magenta as named colors.

page 222 Section 6.6.16, Feeding New process with new input and output resources.
page 85 “Implicit and Explicit

PartUsage in Partitioned
Resources” on page 85

New sub-section with examples.

page 97 Section 3.9.1.6, Deleted New section and element with attributes.
page 196 Section 6.4.1,

AssetListCreation
New process (with new resources).

page 210 Section 6.4.29, Stripping New process (with new resources).
page 283 Section 7.2.6, Assembly New resource with new attributes and elements.
page 285 Section 7.2.9,

BinderySignature
New resource with new attributes and elements.

page 346 Section 7.2.54,
DigitalMedia

New resource with new attributes and elements.

page 311 Section 7.2.29,
ColorSpaceConversionPara
ms

Added Effect of color spoace conversion operations on
color spaces and Mapping of SourceCS enumeration values
to color spaces in the most common input file formats
tables.

page 356 Section 7.2.64,
FeedingParams

New Resource with new attributes and elements.

page 479 Section 7.2.157,
StrippingParams

New Resource with new attributes and elements.

page 452 Section 7.2.131,
QualityControlParams

New resource.

page 452 Section 7.2.132,
QualityControlResult

New resource.

page 344 Section 7.2.51,
DeviceMark

New resource — elevated from status as subelement of the
Surface resource with significant modifications and new
attributes.

page 575 Section A.3.3, Defined JDF
enumeration Data Types

Added regExp, DateTimeRange, DateTimeRangeList,
XYRelation and DurationRangeList data types.

page 635 Section P, FileSpec
Attribute Examples for
MimeType and
MimeTypeVersion
Attributes

New Appendix.

page 228 Section 6.6.31,
PrintRolling

New process with input and output resources.

page 446 Section 7.2.128,
PrintRollingParams

New resource with new attributes.

Location Section Title Comments
New Items 707

Appendix W New, Deprecated, Modified, Illegal, & Removed Items
page 457 Section 7.2.138, RollStand New resource with new attributes.
page 651 Section S, AppOS and

OSVersion Attributes
New Appendix.

page 615 Section G, StatusDetails
Supported Strings

Addition of multiple StatusDetails values, including addtion of
tables specifying PostPress Device specific StatusDetails and
Printing Device specific StatusDetails.

page 617 Section H, ModuleType
Supported Strings

Addition of multiple ModuleType values, including addtion of
tables specifying ModuleType definition Gathering / Collecting
and ModuleType definition for DigitalPrinting.

page 217 Section 6.6.4, Bundling New process with new input and output resources.
page 290 Section 7.2.14,

BundlingParams
New resource with new attributes and elements.

page 345 Section 7.2.53,
DigitalDeliveryParams

New resource with new attributes and elements.

page 199 Section 6.4.8,
DigitalDelivery

New process with new input and output resources.

page 560 Section 8.3, JDF Packaging New to JDF. 1.2
page 101 Section 3.11, JDF

Versioning
New to JDF 1.2

page 9 Section 1.5, Data Structures Added DateTimeRange, DateTimeRangeList, DurationRange-
List, regExp, XPath, and XYRelation data types.

page 35 Section 3.1.1, Generic
Contents of JDF Elements

Added SettingsPolicy attribute to generic contents of elements
table.

page 44 Section 3.1.4.1, Use of the
Types attribute in
ProcessGroup nodes

New section.

page 45 Section 3.1.4.3,
ResourceLink Structure in
ProcessGroup nodes

New section that includes an JDF 1.1 example.

page 3 Section 1.3.2, XPath
Notation Used in this
Specification

New in JDF 1.2

page 72 Section 3.8.1.2, Specifying
Amount for a partially
completed process

New in JDF 1.2

page 75 Section 3.8.2.2, Relating
PartIDKeys and Partitions

New in JDF 1.2

page 76 Section 3.8.2.2.1,
Incomplete Partitions

New in JDF 1.2

page 76 Section 3.8.2.2.2, Multiple
Keys per Partitioned Leaf
or Node

New in JDF 1.2

page 76 Section 3.8.2.2.3,
Degenerate Partitions

New in JDF 1.2

page 77 Section 3.8.2.3,
Partitioning of Resource
sub-Elements

New in JDF 1.2 — A new section created from slightly modi-
fied JDF 1.1 content.

Location Section Title Comments
708 New Items

JDF Specification Release 1.2
page 75 Section 3.8.2.1, Amount in
Partitionable Resources

New in JDF 1.2 — A new section created from slightly modi-
fied JDF 1.1 content.

page 78 Section 3.8.2.4, Additional
Attributes for use with
partitioned Resources

New in JDF 1.2 — A new section created from slightly modi-
fied JDF 1.1 content.

page 625 “Color Adjustment
Attribute Description and
Usage” on page 625

New Appendix.

page 633 “Input Tray and Output Bin
Names” on page 633

New Appendix.

page 629 “New, Deprecated,
Modified, Illegal, &
Removed Items” on
page 705.

New Appendix.

page 112 Section 4.3.2, Partial
Processing of Nodes with
Partitioned Resources

New section.

page 195 Section 6.3, Product Intent
Descriptions

New section that summarizes existing content.

page 347 Section 7.2.55.1,
Coordinate systems in
DigitalPrinting

New section.

page 559 Section 8.2.1.1, JMF
Transport Using The File
Protocol

New section.

page 561 Section 8.3.2.1, MIME
Fields

New section. with subsections.

page 562 Section 8.3.2.2, Example
Packaging of Individual
JDF/JMF files in MIME

New section..

page 562 Section 8.3.2.2, Example
Packaging of Individual
JDF/JMF files in MIME

New section..

page 562 Section 8.3.2.3, CID URL
Scheme

New section..

Location Section Title Comments
New Items 709

Appendix W New, Deprecated, Modified, Illegal, & Removed Items
page 563 Section , Note: [RFC2392]
requires that the value of
the Content-ID be enclosed
in angle brackets (<>).
Also the characters that
[RFC2392] allows in
Content-ID include
characters that [RFC2396]
does not permit in URLs;
any such character (such as
"+" or "&") must be hex-
encoded using the %hh
escape mechanism in the
URL (see [RFC2396]).
Therefore, matching the
URL with the CID, must
take account of the escaped
equivalencies. Case-
insensitive matching must
be used.

New section..

page 579 Section B.1, Using xsi:type New section with subsections.
page 622 Section J.1.6, Event New section..
page 177 “Contents of the

RemoveQueueEntry
message” on page 177

New section.

page 538 Section 7.4, Concept of the
Preflight Process

New section.

page 649 Resolving RunList/
@Directory and FileSpec/
@URL URI references

New Appendix..

page 641 FileSpec MimeType, URL,
and Compression
attributes, and Container
subelement

New Appendix..

Location Section Title Comments
710 New Items

JDF Specification Release 1.2
W.3 Deprecated Items
Location Table Info Comments

“Delivery” on page 193 Input Resources Deprecated Resource.
“Proofing” on page 207 All The Proofing process is deprecated in JDF/1.2.

Instead, use a combined process to produces the hard
proof, (e.g., one that includes the ImageSetting,
ConventionalPrinting, or DigitalPrinting
process.) Then input the hard proof to a separate
Approval process

“SoftProofing” on
page 210

All The SoftProofing process is deprecated in JDF/1.2.
Instead, use a combined process to produce the soft proof
in which the last process is the Approval process that
approves the soft proof.

Section 7.2.71,
FormatConversionParams

Resource Structure Both occurences of FileSpec were deprecated.

“ScreeningParams” on
page 465

Structure of ScreenSelector
Subelement

Sample string values for ScreeningFamily were dep-
recated.

“TrappingDetails” on
page 494

Resource Structure Deprecated TrappingType.

“TrimmingParams” on
page 499

Resource Structure Deprecated TrimmingType.

“Interpreting” on
page 203

Output Resources Deprecated InterpretedPDLData.

“Rendering” on page 208 Output Resources Deprecated InterpretedPDLData.
“ConventionalPrinting”
on page 213

Output Resources Deprecated Component ? (Waste) resource.

“Collecting” on page 219 Input Resources Deprecated IdentificationField resource.
“FileSpec” on page 359 Structure of FileAlias Sub-

element
 In JDF/1.2 and beyond, use Disposition in FileSpec
refelement.

“FileSpec” on page 359 Structure of FileAlias Sub-
element

In JDF/1.2 and beyond, use MimeType in FileSpec
refelement.

“FileSpec” on page 359 Structure of FileAlias Sub-
element

In JDF/1.2 and beyond, use URL in FileSpec refele-
ment.

“Gathering” on page 224 Input Resources Deprecated IdentificationField resource.
“Inserting” on page 225 Input Resources Deprecated IdentificationField resource.
“PSToPDFConversionPar
ams” on page 447

Resource Structure ImageMemory attribute was deprecated because it is
an internal application setting and not a parameter setting.

“SpinePreparationParams
” on page 470

Resource Structure Deprecated FlexValue and PullOutValue. (In JDF 1.2
and beyond, these are defined in
 “QualityControlParams” on page 452.)

“Defined JDF
enumeration Data Types”
on page 575

n/a Deprecated TimeRange data type.

“Structure of the
DeviceCap Subelement”
on page 502

Structure of the DeviceCap
Subelement

Deprecated OptionalCombinedType, Type, and
TypeOrder attributes.
Deprecated Items 711

Appendix W New, Deprecated, Modified, Illegal, & Removed Items
“Structure of the
Performance
Subelement” on page 524

Structure of the Performance
Subelement

Deprecated Name attribute.

“Structure of the
DevCaps Subelement” on
page 505

Structure of the DevCaps
Subelement

Deprecated Types ? attribute. Replaced by TypeIndex
in JDF 1.2 and beyond.

“Structure of the Abstract
State Subelement” on
page 508

Structure of the Abstract
State Subelement

Deprecated the Span ? attribute. Replaced with
ListType = "Span" in JDF 1.2 and beyond.

“Structure of the
IntegerState Subelement”
on page 513

Structure of the IntegerState
Subelement

Deprecated AllowedValueMax, AllowedValueMin,
PresentValueMax, and PresentValueMin
attributes.

See “Structure of the
MatrixState Subelement”
on page 514.

Structure of the Value ele-
ment

Deprecated PresentValue attribute.

See “Structure of the
NumberState
Subelement” on
page 516.

Structure of the Number-
State Subelement

Deprecated AllowedValueMax, PresentValueMax,
PresentValueMin, and AllowedValueMin
attributes.

See “Structure of the
ShapeState Subelement”
on page 518.

Structure of the ShapeState
Subelement

Deprecated AllowedValueMax, AllowedValueMin,
PresentValueMin, and PresentValueMax
attributes.

See “Structure of the
StringState Subelement”
on page 519.

Structure of Value element Deprecated PresentValue attribute. In JDF 1.2 and
beyond, use ValueUsage.

See “Structure of the
XYPairState Subelement”
on page 520.

Structure of the XYPairState
Subelement

Deprecated AllowedValueMax, AllowedValueMin,
PresentValueMin, and PresentValueMax
attributes.

See “Controller
Registration and
Communication
Messages” on page 142.

Table 5-16, “Process
registration and
communication messages,”
on page 142

Deprecated KnownJDFServices element.

See
“KnownJDFServices” on
page 146.

Multiple Deprecated element/section.

“Resource Links” on
page 61

Table 3-19, “Contents of the
abstract ResourceLink
element,” on page 64

Deprecated rSubRef attribute — In JDF 1.2 and
beyond, resource links should only reference resources
that are present in a ResourcePool.

“Inter-Resource Linking
Using ResourceRef” on
page 68

Table 3-24, “Contents of the
abstract ResourceRef
element,” on page 68

Deprecated ID — In JDF 1.2 and beyond,
ResourceRef and ResourceLink elements should
only reference resources that are present in a
ResourcePool. Therefore elements that are defined
locally within a resource should not be referenced and
should not contain an ID.

“Inter-Resource Linking
Using ResourceRef” on
page 68

Table 3-25, “Contents of the
abstract ResourceElement,”
on page 69

Deprecated rSubRef attribute — In JDF 1.2 and
beyond, resource links should only reference resources
that are present in a ResourcePool.

Location Table Info Comments
712 Deprecated Items

JDF Specification Release 1.2
“Rendering” on page 208 Input Resources Deprecated InterpretedPDLData resource. In JDF 1.2 and
beyond, a RunList with InterpretedPDLData sub-
elements describes the input content data for
Rendering.

“DigitalPrinting” on
page 214

Output Resources Deprecated the Component (Waste) resource from this
process. In JDF 1.2 and beyond, waste is tracked by parti-
tioning the output using the Condition PartIDKey.

“Structure of Abstract
Span Subelement” on
page 238

n/a Deprecated Priority attribute — replaced by
SettingsPolicy in JDF 1.2 and beyond.

“MediaIntent” on
page 270

Resource Structure Deprecated Dimensions attribute. In JDF 1.2 and beyond
the specifics of BuyerSupplied media should be speci-
fied using a Media resource. The dimensions of the fin-
ished product are specified with LayoutIntent/
@Dimensions or LayoutIntent/
@FinishedDimensions.

“MediaIntent” on
page 270

Resource Structure Deprecated MediaUnit attribute. Intent attributes per-
tain to finished product, not the raw media format. If
BuyerSupplied = “true” then the Media resource
can be used to provide this attribute.

“MediaIntent” on
page 270

Resource Structure Deprecated Recycled attribute. In JDF 1.2 and beyond,
use RecycledPercentage.

“MediaIntent” on
page 270

Resource Structure Deprecated USWeight attribute. In JDF 1.2 and beyond
use Weight.

“ApprovalParams” on
page 282

Structure of ApprovalPer-
son Subelement

Deprecated Obligated attribute. In JDF 1.2 and beyond,
use ApprovalRole.

“CoilBindingParams” on
page 296

Resource Structure Deprecated Shift attribute. In JDF 1.2 and beyond, use
the value implied by HoleMakingParams/
@HoleType.

“FileSpec” on page 359 Resource Structure Deprecated Disposition attribute — in JDF 1.2 and
beyond, retention of assets is specified in the
Disposition element

“FoldingParams” on
page 366

Resource Structure Deprecated DescriptionType attribute — In JDF 1.2
and beyond, the FoldCatalog defines the topology of
the folding scheme. The specifics of each individual
Fold may be described using Fold elements. If both
FoldCatalog and Fold are specified, Fold takes pre-
cedence

“HoleMakingParams” on
page 380

Resource Structure Deprecated HoleReferenceEdge attribute —
HoleReferenceEdge has been replaced with an
explicit Transformation or Orientation of the input
Component. If both Transformation or
Orientation and HoleReferenceEdge are specified,
the result is the matrix product of both transformations.
Transformation or Orientation must be applied
first.

“Media” on page 417 Resource Structure Deprecated ColorName attribute — in JDF 1.2 and
beyond, use MediaColorName and
MediaColorNameDetails.

Location Table Info Comments
Deprecated Items 713

Appendix W New, Deprecated, Modified, Illegal, & Removed Items
“PlasticCombBindingPar
ams” on page 433

Resource Structure Deprecated Type attribute — In JDF 1.2 and beyond,
use the value implied by HoleMakingParams/
@HoleType.

“Preview” on page 442 Resource Structure The PreviewType attribute was deprecated and
replaced with PreviewUsage —

“ProofingParams” on
page 447

n/a Deprecated resource — in JDF 1.2 and beyond, poofing
is handled as a combined process.

“RunList” on page 458 Resource Structure Deprecated NDoc attribute — in JDF 1.2 and beyond,
only Docs is supported.

“RunList” on page 458 Resource Structure Deprecated NSet attribute — in JDF 1.2 and beyond,
only Sets is supported.

“ScreeningParams” on
page 465

Resource Structure Deprecated AbortJobWhenScreenMatchingFails
attribute — Use SettingsPolicy in JDF 1.2 and beyond.

“StitchingParams” on
page 475

Resource Structure Deprecated ReferenceEdge attribute.
ReferenceEdge has been replaced in JDF 1.2 and
beyond with an explicit Transformation or
Orientation of the input Component. If both
Transformation/Orientation and ReferenceEdge
are specified, the result is the matrix product of both
transformations. Transformation/Orientation must
be applied first.

“StitchingParams” on
page 475

Resource Structure Deprecated the StitchFromFront attribute.
StitchFromFront has been replaced with an explicit
Transformation or Orientation of the input
Component.

“StripBindingParams” on
page 479

Resource Structure Deprecated the Distance attribute. In JDF 1.2 and
beyond, use the value implied by
HoleMakingParams/@HoleType.

“WireCombBindingPara
ms” on page 501

Resource Structure Deprecated the Distance attribute. In JDF 1.2 and
beyond, use the value implied by
HoleMakingParams/@HoleType.

“Color” on page 297 Resource Structure Deprecated UsePDLAlternateCS attribute — In JDF
1.2 and beyond, use MappingSelection.

See “QueueEntryStatus”
on page 185.

n/a Deprecated QueueEntryStatus message as well as
Structure of the QueueEntryDefList Element.

See “Contents of the
SubmissionMethods
element” on page 186.

— Deprecated File attribute — in JDF 1.2 and beyond,
include “file” in URLSchemes.

See “Contents of the
SubmissionMethods
element” on page 186.

— Deprecated HttpGet attribute — In JDF 1.2 and
beyond, include “http” in URLSchemes.

See “Contents of the
SubmissionMethods
element” on page 186.

— Deprecated MIME attribute.

“PreflightAnalysis” on
page 434

— This resource was deprecated as a result of a major revi-
sion to the Preflight process and its associated
resources.

Location Table Info Comments
714 Deprecated Items

JDF Specification Release 1.2
“PreflightInventory” on
page 434

— This resource was deprecated as a result of a major revi-
sion to the Preflight process and its associated
resources.

“PreflightProfile” on
page 436

— This resource was deprecated as a result of a major revi-
sion to the Preflight process and its associated
resources.

Location Table Info Comments
Deprecated Items 715

Appendix W New, Deprecated, Modified, Illegal, & Removed Items
W.4 Modified Items
Location Table Info Comments

page 2 Table 1-1 Addition of, and updating of, multiple references to sup-
porting standards, specifications, and other documents.
Organized references in a new table and added short-ref-
erence nominclature for use in cross-references within the
JDF document.

“JDF Preface and User
Overview” on page xxix

n/a Moved Preface to follow TOC and List of Figures

“Legal Notice” on page i n/a Updated dates of copyright. Corrected “Job Definition
Format”.

page 383 Resource Structure Addition of DCTParams, CCITTFaxParams,
JPEG2000Params, LZWParams, and FlateParams ele-
ments and element structure tables subordinated to
Section 7.2.83, ImageCompressionParams.

“ColorIntent” on page 255 Structure of the
ColorUsed Subele-
ment

Changed data type of SpearationSpec from element
to refelement.

“NumberingIntent” on page 275 Structure of the
NumberIntent
Subelement

Changed data type of SpearationSpec from element
to refelement.

“ColorantAlias” on page 303 n/a ColorantAlias was elevated from a subelement of
ColorantControl to a top level resource in JDF 1.2.

Section 3.9.1, Audit Elements Table 3-31 on
page 91 plus body
copy.

Changes include deletion of informaiton on prospective
extensions and movement of a extension examples into
Audit type table.

Section 7.2.91,
InterpretedPDLData on page 399

 n/a In JDF 1.2 and beyond this is not a resource, but rather a
subelement of a RunList.

“FileSpec” on page 359 n/a All JDF 1.2 users are advised to take a close look at the
FileSpec resource, as it contains numerous changes and is
referenced to new appendicies.

“Device Capability Definitions”
on page 502

n/a This section has been modified significantly throughout.

See “Examples of Device
Capabilities” on page 532.

n/a Updated device capabilities examples.

See “Events” on page 142. n/a Modified introduction to section/usage.
See “Data Structures” on page 9. JDF Data Types Changed path data type to PDFPath.
See “Data Structures” on page 9. JDF Data Types Change definition of string to omit tabs as well as line

feed characters.
See “Coordinate Systems of
Resources and Processes” on
page 23.

Matrices and names
used to describe the
orientation of a
Component

Modified several transformation action descriptions.

See “Coordinate Systems of
Resources and Processes” on
page 23.

n/a Deleted Section 2.5.3.1, Coordinate Systems in Com-
bined processes, as well as some language and a figure
dealing with cultural issues regarding left-to-right vs.
rignt-to-left reading and orientation.
716 Modified Items

JDF Specification Release 1.2
See “Generic Contents of JDF
Elements” on page 35.

Table 3-2 Changed data type of Path attribute to PDFPath and changed
description.

See “Inter-Resource Linking
Using ResourceRef” on page 68.

n/a New examples and several changes to section text.

Section 4.3.6, Approval, Quality
Control, and Verification

n/a Section was completely rewritten.

Section 4.8, Capability and
Constraint Definitions

n/a Section was completely rewritten.

Section 6.4.2, ColorCorrection n/a Section introduction was modified.
Section 7.2.24, ColorantControl n/a Section introduction was modified.
Section 7.2.26,
ColorCorrectionParams

n/a Section introduction was modified.

“ColorSpaceConversionOp” on
page 313

n/a Promoted to resource status from sub-element of
ColorSpaceConversionParams.

“Building a System Around JDF”
on page 559

n/a Multiple and significant changes thoughout chapter.

“Postpress Processes Structure”
on page 233

n/a Updated section to reflect added and deprecated postpress
processes.

“InsertingParams” on page 394 n/a Added illustrations and clarifications of Location.

Location Table Info Comments
Modified Items 717

Appendix W New, Deprecated, Modified, Illegal, & Removed Items
W.5 Clarified Items
Location Table Info Comments

“Combined Process
Nodes” on page 46

n/a Clarified the order of the Types attribute.

page 57 Table 3-14 Clarification of NoOp attribute.
page 58 Table 3-15 Clarification of Brand attribute.
“Extending NMTOKEN
Lists” on page 100

n/a Clarified the processing of unknown NMTOKEN extensions.

“Node and Resource
IDs” on page 125

n/a Clarified pureID.

“ConventionalPrinting”
on page 213

n/a Clarified that Proof Component may be from a DigitalPrinting process.

“ConventionalPrinting”
on page 213

Input
Resources

Clarified that Proof Component may be from a DigitalPrinting process.

“DigitalPrinting” on
page 214

n/a Added four more example processes that may be combined with
DigitalPrinting: Approval, ColorCorrection,
ColorSpaceConversion, and ImageReplacement, Clarified that
Proof Component may be from a ConventionalPrinting process.

“DigitalPrinting” on
page 214

Input
Resources

Clarified Component (Proof)

“Stitching” on page 231 n/a/ Clarified that components containing staples of different characteristics
like shape, width, and so on are defined by a combined process, and pro-
vided an example.

“BindingIntent” on
page 247

Removed duplicate StripBind value in BindingType, deprecated
BookCase element reference in BindingIntent/BindList/BindItem
element to agree with JDF/1.1 deprecation of BindingIntent/BindList/
BindItem/BookCase subelement

“HoleMakingIntent” on
page 265

n/a Clarified that the HoleMakingIntent applies equally to pre-drilled and
drilling/punching.

“LayoutIntent” on
page 267

Resource
Structure

Clarified Dimensions, PageVariance, and FinishedDimensions
attributes.

“LayoutIntent” on
page 267

Resource
Structure

Clarified Layout element usage.

“MediaIntent” on
page 270

General +
Resource
Structure

General clarifications in introductory text, plus clarification of
Dimensions and Weight attributes.

“Process Resource
Template” on page 280

n/a Add clarification, including introduction of
ColorSpaceConversionOp resource.

“Color” on page 297 Resource
Structure

Clarified Name attribute.

“ColorantControl” on
page 303

Resource
Structure

Clarified DeviceN NMTOKEN definition in ProcessColorModel.

“ColorCorrectionParam
s” on page 307

Resource
Structure

Clarified ColorManagementSystem definition.

“ColorSpaceConversion
Params” on page 311

n/a Clarified Structure of ColorSpaceConversionOp Subelement.

“FileSpec” on page 359 Resource
Structure

Clarified AppVersion by adding examples. Clarified URL with refer-
ences.
718 Clarified Items

JDF Specification Release 1.2
“Ink” on page 391 Resource
Structure

Clarified ColorName ? and Family ?.

“Media” on page 417 Resource
Structure

Clarified definition of Brightness.

“Media” on page 417 Resource
Structure

Clarified definition of Grade.

“Media” on page 417 Resource
Structure

Clarified Recycled.

“PSToPDFConversionP
arams” on page 447

Structure of
Advanced-
Params
Subelement

In JDF 1.1A and previous versions, the definition of
LockDistillerParams was accidentally inverted. It is now consistent
with the postscript setdistillerparams operator.

“RenderingParams” on
page 455

Resource
Structure

Clarified ColorantDepth.

“RunList” on page 458 Resource
Structure

Clarified EndOfDocument, NDoc, Pages, RunTag, SetNames,
Sets, and EndOfSet attributes.

“ScreeningParams” on
page 465

Structure of
ScreenSe-
lector Sub-
element

Clarified Angle, SpotFunction, and DotSize.

“Sheet” on page 469 Resource
Structure

Name must be unique within a given Layout.

Section 7.2.153,
StitchingParams

n/a Clarified section introduction.

“TrappingDetails” on
page 494

Resources
Structure +

Clarified section introduction, Resource Properties, and
IgnoreFileParams and Trapping.

“Notes About
Encoding” on page 565

XML
Schema
Data Types

Clarified definition of ID and language data types.

Section D.3.1,
Administration Data

Converting
administra-
tion data

Clarified CIP3AdmInkInfo and IP3AdmInkColors.

“ColorSpaceConversion
Params” on page 311

Structure of
ColorSpace-
Conver-
sionOp
Subelement
section.

Clarified FileSpec.

“Structure of the
DevCaps Subelement”
on page 505

Structure of
the Dev-
Caps Sub-
element

Clarified DevCap + element.

“Structure of the
Abstract State
Subelement” on
page 508

Structure of
the Abstract
State Sub-
element.

Clarified HasDefault = “true” attribute.

“MediaIntent” on
page 270

Resource
Structure

Clarified Grade attribute.

Location Table Info Comments
Clarified Items 719

Appendix W New, Deprecated, Modified, Illegal, & Removed Items
“AutomatedOverPrintPa
rams” on page 285

n/a Clarified application in section introduction.

“AutomatedOverPrintPa
rams” on page 285

Resource
Structure

Clarified OverPrintBlackLineArt and OverPrintBlackText
attributes.

“ColorantControl” on
page 303

Resource
Structure

Clarified ColorantOrder, ColorantParams,
DeviceColorantOrder, and ColorantAlias elements.

“Disjointing” on
page 349

Resource
Structure

Clarified description of OffsetDirection = “None”.

“FoldingParams” on
page 366

Resource
Structure

Clarified FoldCatalog attribute. Clarified the useage of Fold element.

“ScreeningParams” on
page 465

Resource
Structure

Clarified AngleMap attribute and extended example in Structure of
ScreenSelector Subelement.

“ColorIntent” on
page 255

Resource
Structure

Clarified ColorPool refelement.

“Color” on page 297 n/a Clarified introduction to section.
“Color” on page 297 Resource

Structure
Clarified FileSpec refelement and DeviceNColor attribute.

“Color” on page 297 Resource
Structure

Clarified ColorPool refelement.

“RunList” on page 458 Resource
Structure

Clarified Directory attribute.

“Device” on page 342 Resource
Structure

Clarified Directory attribute.

“FileSpec” on page 359 Resource
Structure

Clarified FileFormat attribute.

Location Table Info Comments
720 Clarified Items

JDF Specification Release 1.2
W.6 New/Modified Attributes and Elements

W.6.1 Structure of JDF Nodes and Jobs
Location Name Data Type Comment

Table 3-2 on page 36 Name = “Description” NMTOKEN Added JobDescription, Oper-
atorText, and Template
Description NMTOKEN val-
ues.

Table 3-27 on page 78 PartIDKeys ? enumerations Added
BundleItemIndex,
Condition,
SetDocIndex, and
SetRunIndex to list of
NMTOKEN values.

Table 3-28 on page 79 BundleItemIndex ? IntegerRangeList Added BundleItemIndex
attribute.

Table 3-4 on page 38 Types ? NMTOKENS Modified interpretation in
description.

Table 3-5 on page 48 Part * element Modified interpretation in
description.

Table 3-7 on page 49 CustomerMessage * element New element and subelement
table defining subordinate
attributes and elements.

Table 3-13 on page 53 PipeProtocol ? NMTOKEN Added PipeProtocol
attribute.

Table 3-15 on page 58 AmountProduced ? number Added AmountProduced,
PipePause, PipeResume,
RemotePipeEndPause,
and
RemotePipeEndResume
attributes.

Table 3-19 on page 64 PipePartIDKeys ? enumerations Modified interpretation of
default in description.

Table 3-27 on page 78 — — Added PipePartIDKeys,
SetDocIndex,
SetRunIndex, and
ItemNames attributes.
Modified definitions of
DocIndex,
DocRunIndex,
RunIndex, RunTags,
SetIndex, and
SheetIndex.

Table 3-34 on page 93 — — Addition of BillingType,
BillingTypeDetails, and
Duration attributes.

Table 3-35 on page 94 — — Addition of Duration
attribute. Modified
ModuleIndex attribute.
New/Modified Attributes and Elements 721

Appendix W New, Deprecated, Modified, Illegal, & Removed Items
Table 3-37 on page 96 — — Added TemplateID and
TemplateVersion
attributes.

Table 3-4 on page 38 Category ? NMTOKEN New attribute.
Table 3-4 on page 38 ICSVersions ? NMTOKEN New attribute.
Table 3-4 on page 38 MaxVersion ? string New attribute.
Table 3-4 on page 38 RelatedJobID ? string New attribute.
Table 3-4 on page 38 RelatedJobPartID ? string New attribute.
Table 3-4 on page 38 StatusDetails ? string New attribute.
Table 3-4 on page 38 TemplateID ? string New attribute.
Table 3-4 on page 38 TemplateVersion ? string New attribute.
Table 3-4 on page 38 xsi:type ? NMTOKEN New attribute.
Table 3-6 on page 48 MaxVersion ? string New attribute.
Table 3-6 on page 48 StatusDetails ? string New attribute.
Table 3-9 on page 51 CostType ? enumeration New attribute.
Table 3-9 on page 51 WorkType ? enumeration New attribute.
Table 3-9 on page 51 WorkTypeDetails ? string New attribute.
Table 3-10 on page 52 StatusDetails ? string New attribute.
Table 3-11 on page 53 StatusDetails ? string New attribute.
Table 3-11 on page 53 Part element Changed description.
Table 3-13 on page 53 AgentName ? string New attribute.
Table 3-13 on page 53 AgentVersion ? string New attribute.
Table 3-13 on page 53 Author ? string New attribute.
Table 3-19 on page 64 Usage enumeration Added enumeration.
Table 3-19 on page 64 AmountPool ? element Modified description.
Table 3-23 on page 67 ActualAmount ? double New attribute.
Table 3-28 on page 79 BinderySignatureName ? NMTOKEN New attribute.
Table 3-28 on page 79 CellIndex ? IntegerRangeList New attribute.
Table 3-28 on page 79 Condition ? NMTOKEN New attribute.
Table 3-28 on page 79 PreflightRule ? string New attribute.
Table 3-28 on page 79 PreviewType ? enumeration Added enumeration and

changed description.
Table 3-28 on page 79 SectionIndex ? IntegerRangeList New attribute.
Table 3-28 on page 79 Separation ? string Modified description.
Table 3-31 on page 91 Author ? string Modified description.
Table 3-31 on page 91 AgentName ? string New attribute.
Table 3-31 on page 91 AgentVersion ? string New attribute.
Table 3-34 on page 93 CostType ? enumeration New attribute.
Table 3-34 on page 93 WorkType ? enumeration New attribute.
Table 3-34 on page 93 WorkTypeDetails ? string New attribute.
Table 3-4 on page 38 NamedFeatures ? NMTOKEN New attribute.

Location Name Data Type Comment
722 New/Modified Attributes and Elements

JDF Specification Release 1.2
W.6.2 JDF Messaging with the Job Messaging Format
Location Name Data Type Comment

Table 5-1, “Contents of the JMF element,”
on page 130

ResponseURL ?
Unidirectional

URL New attribute.

Table 5-1, “Contents of the JMF element,”
on page 130

Version ? string New description

Table 5-11, “Contents of the Command
message element,” on page 136

AcknowledgeFormat ?
Unidirectional

string New attribute.

Table 5-11, “Contents of the Command
message element,” on page 136

AckknowledgeTemplat
e ?
Unidirectional

string New attribute.

Table 5-11, “Contents of the Command
message element,” on page 136

AcknowledgeURL ?
Bidirectional

URL Changed description.

Table 5-13, “Contents of the Subscription
element,” on page 139

Format ?
Unidirectional

string New attribute.

Table 5-13, “Contents of the Subscription
element,” on page 139

Template ?
Unidirectional

string New attribute.

Table 5-13, “Contents of the Subscription
element,” on page 139

URL ?
Unidirectional

URL Changed description.

Table 5-18, “Contents of the
NotificationFilter element,” on page 143

QueueEntryID ? string New attribute.

Table 5-18, “Contents of the
NotificationFilter element,” on page 143

SignalTypes =
“Notification”

NMTOKENS New attribute.

Table 5-18, “Contents of the
NotificationFilter element,” on page 143

Part * element New element.

Table 5-21, “Contents of the JDFController
element,” on page 144

ControllerID ? string New attribute.

Table 5-29, “Contents of the MsgFilter
element,” on page 147

JobID ? string New attribute.

Table 5-29, “Contents of the MsgFilter
element,” on page 147

JobPartID ? string New attribute.

Table 5-29, “Contents of the MsgFilter
element,” on page 147

QueueEntryID ? string New attribute.

Table 5-29, “Contents of the MsgFilter
element,” on page 147

Part * element New element.

Table 5-31, “Contents of the
StopPersChParams element,” on page 148

QueueEntryID ? string New attribute.

Table 5-31, “Contents of the
StopPersChParams element,” on page 148

Part * element New element.

Table 5-32, “Status and progress
messages,” on page 149

FlushResources,
ResourcePull,
ShutDown, and
WakeUp.

element(s) New types of status
and progress mes-
sages.

See “Contents of the FlushResourceParams
element” on page 150.

— Multiple — — Various — New element with
element and attribute
definitions.
New/Modified Attributes and Elements 723

Appendix W New, Deprecated, Modified, Illegal, & Removed Items
See “Contents of the Occupation message”
on page 154.

QueueEntryID ? string New attribute.

See “Contents of the Occupation message”
on page 154.

Part * element New element.

See “Contents of the ResourceQuParams
element” on page 155.

QueueEntryID ? string New attribute.

See “Contents of the ResourceQuParams
element” on page 155.

Part * element New element.

See “Contents of the ResourceCmdParams
element” on page 157.

QueueEntryID ? string New attribute.

See “Contents of the ResourceCmdParams
element” on page 157.

Status ? enumeration New attribute.

See “Contents of the ResourceCmdParams
element” on page 157.

Part * element New element.

See “NewJDF” on page 150. — Multiple — — Various — New element with
element and attribute
definitions.

See “NodeInfo” on page 152. — Multiple — — Various — New element with
element and attribute
definitions.

See “ResourcePull” on page 160. — Multiple — — Various — New element with
element and attribute
definitions.

See “Shutdown” on page 162. — Multiple — — Various — New element with
element and attribute
definitions.

See “WakeUp” on page 169. — Multiple — — Various — New element with
element and attribute
definitions.

See “Contents of the StatusQuParams
element” on page 163.

QueueEntryID ? string New attribute.

See “Contents of the StatusQuParams
element” on page 163.

Part * element New element.

See “Contents of the DeviceInfo element”
on page 164.

DeviceCondition ? enumeration New attribute.

See “Contents of the JobPhase element” on
page 165.

CostType ? enumeration New attribute.

See “Contents of the TrackFilter element”
on page 168.

QueueEntryID ? string New attribute.

See “Contents of the TrackFilter element”
on page 168.

Part * element New element.

See “Contents of the TrackResult element”
on page 169.

QueueEntryID ? string New attribute.

See “Contents of the TrackResult element”
on page 169.

Part * element New element.

See “Contents of the ResourceInfo
element” on page 158.

ActualAmount ? double New attribute.

Location Name Data Type Comment
724 New/Modified Attributes and Elements

JDF Specification Release 1.2
See “Contents of the JobPhase element” on
page 165.

WorkType ? enumeration New attribute.

See “Contents of the JobPhase element” on
page 165.

WorkTypeDetails ? string New attribute.

See “Contents of the Queue element” on
page 187.

QueueEntry * element Changed description.

See “Contents of the QueueEntry element”
on page 188.

DeviceID ? string New attribute.

See “Contents of the QueueEntry element”
on page 188.

EndTime ? dateTime New attribute.

See “Contents of the QueueEntry element”
on page 188.

Status enumeration Added several enu-
merations.

See “Contents of the QueueEntry element”
on page 188.

JobPhase ? element New element.

See “Contents of the QueueFilter Element”
on page 189.

— Several — — Various — New element with
multiple attributes and
elements described.

See “Contents of the AbortQueueEntry
message” on page 176.

QueueFilter ? element New element.

See “Contents of the HoldQueueEntry
message” on page 176.

QueueFilter ? element New element.

See “Contents of the RemoveQueueEntry
message” on page 177.

QueueFilter ? element New element.

See “Contents of the ResubmitQueueEntry
message” on page 178.

QueueFilter ? element New element.

See “Contents of the ResumeQueueEntry
message” on page 178.

QueueFilter ? element New element.

See “Contents of the SetQueueEntry
message” on page 179.

QueueFilter ? element New element.

See “Contents of the
SetQueueEntryPriority message” on
page 180.

QueueFilter ? element New element.

See “Contents of the SubmitQueueEntry
message” on page 180.

QueueFilter ? element New element.

See “Contents of the
QueueSubmissionParams element” on
page 181.

ReturnURL ? URL Changed description.

See “Contents of the
QueueSubmissionParams element” on
page 181.

URL URL Changed description.

See “Contents of the
QueueSubmissionParams element” on
page 181.

WatchURL ? URL Changed description.

See “Contents of the
QueueSubmissionParams element” on
page 181.

Disposition ? element New element.

Location Name Data Type Comment
New/Modified Attributes and Elements 725

Appendix W New, Deprecated, Modified, Illegal, & Removed Items
See “Contents of the CloseQueue message”
on page 183.

QueueFilter ? element New element.

See “Contents of the FlushQueue
Command message” on page 184.

QueueFilter ? element New element.

See “Contents of the FlushQueue
Command message” on page 184.

FlushQueueParams ? element New element.

See “Contents of the HoldQueue message”
on page 185.

QueueFilter ? element New element.

See “Contents of the OpenQueue message”
on page 185.

QueueFilter ? element New element.

See “Contents of the QueueStatus
message” on page 185.

QueueFilter ? element New element.

See “Contents of the ResumeQueue
message” on page 186.

QueueFilter ? element New element.

See “Contents of the SubmissionMethods
message” on page 186.

JDFInline = “false” boolean New attribute.

See “Contents of the SubmissionMethods
message” on page 186.

Packaging ? enumerations New attribute.

See “Contents of the SubmissionMethods
message” on page 186.

URLSchemes ? NMTOKENS New attribute.

See “Contents of the Queue element” on
page 187.

QueueSize ? integer New attribute.

See “Contents of the QueueEntry element”
on page 188.

Part * element New element.

Location Name Data Type Comment
726 New/Modified Attributes and Elements

JDF Specification Release 1.2
W.6.3 Processes

W.6.4 Resources

Location Name Comment
“Interpreting” on page 203 RunList ? Added resource.
“LayoutPreparation” on page 204 RunList ? (Document) Made optional.
“Rendering” on page 208 RunList ? Added resource.
“ConventionalPrinting” on page 213 Component Modified.
“Trimming” on page 232 Component Modified description.
“Delivery” on page 193 Resource Modified cardinality and

description.
“QualityControl” on page 194 — Various — New element with multiple

attributes and elements
described.

“Verification” on page 195 Resource New element.
“ImageSetting” on page 201 ColorantControl New input resource
“DigitalPrinting” on page 214 Component (Good) Changed description.
“Preflight” on page 204 — Various — Major modification of entire

preflight section.

Location Name Data Type Comment
“ArtDeliveryIntent” on
page 242

Method ? NameSpan Added multiple NameSpan
values.

“ArtDeliveryIntent” on
page 242

Method ? NameSpan Added multiple NameSpan
values in ArtDelivery Ele-
ments.

“ArtDeliveryIntent” on
page 242

— several — — various — Modified description by
including DigitaMedia.

“ArtDeliveryIntent” on
page 242

ServiceLevel ? stringSpan New to
ArtDeliveryIntent and
its subelements.

“BindingIntent” on page 247 BindingType Enumeration-
Span

Added CornerStitch
enumeration value.

“BindingIntent” on page 247 HoleMakingParams ? refelement Added to subelements
CoilBinding,
PlasticCombBinding,
RingBinding,
StripBinding, and
WireCombBinding.

“DeliveryIntent” on page 258 BuyerAccount ? string New attribute in Structure of
DeliveryIntent Elements,
DropIntent.

“DeliveryIntent” on page 258 SurplusHandling ? Enumeration-
Span

New to DeliveryIntent
and its subelements..

“HoleMakingIntent” on
page 265

HoleMakingParams ? refelement New.

“LayoutElement” on page 406 ElementType = “Unknown” enumeration Added MultiSet enumer-
ation.
New/Modified Attributes and Elements 727

Appendix W New, Deprecated, Modified, Illegal, & Removed Items
“LayoutElement” on page 406 ImageCompressionPara
ms ?

refelement New.

“LayoutElement” on page 406 ScreeningParams ? refelement New.
“LayoutElement” on page 406 QualityControlResult * refelement New.
“LayoutIntent” on page 267 FinishedGrainDirection ? enumeration-

Span
New attribute in Resource
Structure table.

“LayoutIntent” on page 267 NumberUp = “11” XYPair In JDF 1.0 and 1.1 rows and
columns were erroneously
switched in the description,
whihc was fixed in JDF 1.2.

 “LayoutPreparationParams” on
page 408

NumberUp ? XYPair In JDF 1.0 and 1.1 rows and
columns were erroneously
switched in the description,
whihc was fixed in JDF 1.2.

“Media” on page 417 QualityControlResult * refelement New.
“MediaIntent” on page 270 FrontCoatings = “None” Enumeration-

Span
Added Coated and
InkJet enumerations.

“ProofingIntent” on page 277 SeparationSpec * refelement Changed data type to refele-
ment.

“ScreeningIntent” on page 279 — Several — — Various — New Resource with new
attributes.

 “Bundle” on page 289 ItemName ? NMTOKEN New attribute.
“ByteMap” on page 291 ColorPool ? refelement New in Resource Structure.
“Color” on page 297 MappingSelection ? enumeration New attribute.
“Color” on page 297 RawName ? hexBinary New attribute.
“Color” on page 297 PrintConditionColor * element New sub-element.
“ColorantControl” on page 303 ColorantAlias * refelement Modified data type from ele-

ment to refelement.
“ColorantControl” on page 303 DeviceNSpace * refelement Modified data type from ele-

ment to refelement.
“ColorantControl” on page 303 SeparationSpec * refelement Modified data type from ele-

ment to refelement in Struc-
ture of ColorantOrder,
ColorantParams, and
DeviceColorantOrder Ele-
ments table.

“ColorantControl” on page 303 PDLResourceAlias and
SeparationSpec +

refelement Modified data type from ele-
ment to refelement in Struc-
ture of
ColorSpaceSubstitute Sub-
element table.

“ColorSpaceConversionParams
” on page 311

SourceCS enumeration Many new, modified, and
clarified enumerations.

“ColorSpaceConversionParams
” on page 311

DeviceNSpace ? refelement New in the Structure of Col-
orSpaceConversionOp Sub-
element section.

Location Name Data Type Comment
728 New/Modified Attributes and Elements

JDF Specification Release 1.2
“ColorSpaceConversionParams
” on page 311

FileSpec ? refelement New in the Structure of Col-
orSpaceConversionOp Sub-
element section.

“DeviceNSpace” on page 344 — Several — — Various — DeviceNSpace was ele-
vated to a resource in JDF
1.2. Includes changes to
subordinate attributes and
refelements.

“ComChannel” on page 321 ChannelType enumeration Added enumeration values.
“ComChannel” on page 321 ChannelTypeDetails ? NMTOKEN New.
“ComChannel” on page 321 ChannelUsage ? NMTOKEN New
“ComChannel” on page 321 Locator string
“Component” on page 323 ComponentType enumerations Added and clarified enumer-

ation values.
“Component” on page 323 Condition = “Good” NMTOKEN New.
“Component” on page 323 QualityControlResult * refelement New.
“Contact” on page 327 ContactTypes NMTOKENS Added Approver NMTo-

ken.
“ConventionalPrintingParams”
on page 328

PrintingType enumeration Added ContinuousFed
enumeration.

“CoverApplicationParams” on
page 331

CoverOffset ? XYPair Changed to optional.

“CreasingParams” on page 332 Depth ? number New.
“DeliveryParams” on page 338 ServiceLevel ? string New.
“DeliveryParams” on page 338 ServiceLevel ? string New in Structure of the

Drop Subelement.
“DeliveryParams” on page 338 Pickup ? string Deprecated in Drop and

replaced with Transfer
“DeliveryParams” on page 338 TrackingID ? string New in Structure of the

Drop Subelement.
“DeliveryParams” on page 338 — several — — various — All attributes and elements

in Structure of the DropItem
Subelement table are new or
modified.

“Employee” on page 353 Roles ? NMTOKEN New.
“ExposedMedia” on page 355 QualityControlResult * refelement New.
“FileSpec” on page 359 AppOS = “Unknown” string Changed data type and

added reference.
“FileSpec” on page 359 Compression = “None” NMTOKEN Changed data type and

added description.
“FileSpec” on page 359 Encoding = “None” NMTOKEN New.
“FileSpec” on page 359 FilePath ? string New.
“FileSpec” on page 359 FileTargetDeviceModel ? string New.
“FileSpec” on page 359 MimeType ? string Heavily modified descrip-

tion.

Location Name Data Type Comment
New/Modified Attributes and Elements 729

Appendix W New, Deprecated, Modified, Illegal, & Removed Items
“FileSpec” on page 359 OSVersion ? string Modified description includ-
ing addition of examples.

“FileSpec” on page 359 RawAlias ? hexBinary New.
“FileSpec” on page 359 FileSpec ? refelement Added (new) to Structure of

FileAlias Subelement.
“FormatConversionParams” on
page 371

— Several — — Various — New components of the
TIFFFormatParams ele-
ment. Note:
TTIFFFormatParams
includes many new elements
and attributes. Subelements
such as TIFFTag are further
detailed in subelement
tables that includes many
other new attributes.

“Fold” on page 366 Travel ? double Made optional; description
modified.

“Fold” on page 366 RelativeTravel ? double New.
“HoleMakingParams” on
page 380

HoleCount ? integerList New.

“ImageCompressionParams”
on page 383

ImageFilter ? NMTOKEN A component of imageCom-
pression Subelement —
addition of enumerations.

“ImageCompressionParams”
on page 383

— Several — element Addition of
CCITTFaxParams,
DCTParams,
FlateParams, and
LZWParams elements to
Structure of ImageCompres-
sion Subelement table plus
subelement tables for each
detailing their attributes.

“ImageReplacementParams”
on page 388

ImagePreScanStrategy ? NMTOKEN New attribute.

“ImageSetterParams” on
page 390

ManualFeed = “false” boolean New.

“ImageSetterParams” on
page 390

Sides = “OneSidedFront” enumeration New.

“ImageSetterParams” on
page 390

SourceWorkStyle =
“Simplex”

enumeration New.

“InsertSheet” on page 396 SheetFormat ? NMTOKEN Added Duplicate value.
“InsertSheet” on page 396 SheetUsage enumeration Added

InterleavedBefore
value.

“JobField” on page 403 ShowList NMTOKENS Added multiple NMTOKEN
values.

“LayoutElement” on page 406 SeparationSpec * refelement Changed data type to refele-
ment.

Location Name Data Type Comment
730 New/Modified Attributes and Elements

JDF Specification Release 1.2
“Media” on page 417 BackGlossValue ? number New attribute.
“Media” on page 417 CIETint ? double New attribute.
“Media” on page 417 CIEWhiteness ? double New attribute.
“Media” on page 417 FrontCoatings = “None” enumeration Added Coated and

Inkjet enumerations.
“Media” on page 417 FrontGlossValue ? number New attribute.
“Media” on page 417 LabColorValue ? LabColor New attribute.
“Media” on page 417 MediaColorNameDetails ? string New attribute.
“Media” on page 417 MediaType = “Unknown” enumeration Added Disc and Other

enumerabtions.
“Media” on page 417 MediaUnit = “Sheet” enumeration Added Continuous enu-

meration.
“Media” on page 417 Opacity = “Opaque” enumeration Added Translucent enu-

meration.
“Media” on page 417 RecycledPercentage ? double New attribute.
“Media” on page 417 Texture ? NMTOKEN Added Uncalendared

value.
“ObjectResolution” on
page 424

AntiAliasing ? NMTOKEN New attribute.

“PDFToPSConversionParams”
on page 428

OutputType =
“PostScript”

enumeration Changed to optional with
default value.

“PerforatingParams” on
page 432

Depth ? number New.

“Preview” on page 442 PreviewFileType = “PNG” enumeration New.
“Preview” on page 442 PreviewType enumeration Added SeparationRaw

enumeration.
“PreviewGenerationParams”
on page 444

PreviewUsage =
“Separation”

enumeration Made Separation the
defulat.

“PrintCondition” on page 445 new Resource
“RegisterMark” on page 453 SeparationSpec * refelement Changed data type to refele-

ment.
“RunList” on page 458 EndOfBundleItem ? boolean New attribute.
“RunList” on page 458 ByteMap ? refelement Redefined in descripton.
“RunList” on page 458 InterpretedPDLData ? refelement New.
“RunList” on page 458 LayoutElement ? refelement Redefined in descripton.
“ScavengerArea” on page 465 SeparationSpec * refelement Changed data type.
“ScreeningParams” on
page 465

ScreeningType = “AM” enumeration Added enumerations and
clarified old enumerations.

“SpinePreparationParams” on
page 470

MillingDepth ? double Attribute changed to
optional.

Section 7.2.153,
StitchingParams

NumberOfStitches ? integer Changed interpretation of
values.

Section 7.2.159,
ThreadSealingParams

ThreadPositions ? NumberList Attribute changed to
optional.

Location Name Data Type Comment
New/Modified Attributes and Elements 731

Appendix W New, Deprecated, Modified, Illegal, & Removed Items
Section 7.2.159,
ThreadSealingParams

ThreadLength ? double Attribute changed to
optional.

Section 7.2.159,
ThreadSealingParams

ThreadStitchWidth ? double Attribute changed to
optional.

Section 7.2.160,
ThreadSewingParams

GlueLineRefSheets ? IntegerList Attribute changed to
optional.

Section 7.2.160,
ThreadSewingParams

NumberOfNeedles ? integer Attribute changed to
optional.

“TrappingDetails” on page 494 SeparationSpec * refelement Changed data type.
“Structure of the DeviceCap
Subelement” on page 502

ExecutionPolicy =
"AllFound"

enumeration New attribute.

“Structure of the DeviceCap
Subelement” on page 502

Lang ? languages New attribute.

“Structure of the DeviceCap
Subelement” on page 502

TypeExpression ? regExp New attribute.

“Structure of the DeviceCap
Subelement” on page 502

Types ? NMTOKEN Modified description.

“Structure of the DeviceCap
Subelement” on page 502

DisplayGroupPool ? element New element.

“Structure of the DeviceCap
Subelement” on page 502

ActionPool ? element New element.

“Structure of the DeviceCap
Subelement” on page 502

FeaturePool ? element New element.

“Structure of the DeviceCap
Subelement” on page 502

MacroPool ? element New element.

“Structure of the DeviceCap
Subelement” on page 502

TestPool ? element New element.

“Structure of the Performance
Subelement” on page 524

DevCapsRef ? IDREF New attribute.

“Structure of the DevCaps
Subelement” on page 505

Availability = “Installed” enumeration New attribute.

“Structure of the DevCaps
Subelement” on page 505

Context = “Resource" enumeration New attribute.

“Structure of the DevCaps
Subelement” on page 505

ID ID New attribute.

“Structure of the DevCaps
Subelement” on page 505

LinkUsage = "Both" enumeration New attribute.

“Structure of the DevCaps
Subelement” on page 505

Name NMTOKEN Modified definition.

“Structure of the DevCaps
Subelement” on page 505

Required ? boolean New attribute.

“Structure of the DevCaps
Subelement” on page 505

TypeOccurrenceNum ? IntegerRange-
List

New attribute.

“Structure of the DevCaps
Subelement” on page 505

Loc * element New element.

Location Name Data Type Comment
732 New/Modified Attributes and Elements

JDF Specification Release 1.2
“Structure of the DevCap
Subelement” on page 507

Availability ? enumeration New attribute.

“Structure of the DevCap
Subelement” on page 507

Loc * element New element.

See “Structure of the
FeaturePool Subelement” on
page 521.

n/a various New subelement to
DeviceCap with elements
and attributes.

See “Structure of the
MacroPool Subelement” on
page 522.

n/a various New subelement to
DeviceCap with elements
and attributes.

See “Structure of the
DisplayGroupPool
Subelement” on page 520.

n/a various New subelement to
DeviceCap with elements
and attributes.

See “Structure of the
Performance Subelement” on
page 524.

n/a various New subelement to
DeviceCap with elements
and attributes.

“Structure of the Abstract State
Subelement” on page 508

Availability ? enumeration New attribute.

“Structure of the Abstract State
Subelement” on page 508

ID ID New attribute.

“Structure of the Abstract State
Subelement” on page 508

MaxOccurs = “1” integer New attribute.

“Structure of the Abstract State
Subelement” on page 508

MinOccurs = “1” integer New attribute.

“Structure of the Abstract State
Subelement” on page 508

Required ? boolean New attribute.

“Structure of the Abstract State
Subelement” on page 508

ListType = “SingleValue” enumeration New attribute.

“Structure of the Abstract State
Subelement” on page 508

ActionRefs ? IDREFS New attribute.

“Structure of the Abstract State
Subelement” on page 508

Editable ? boolean New attribute.

“Structure of the Abstract State
Subelement” on page 508

MacroRefs ? IDREFS New attribute.

“Structure of the Abstract State
Subelement” on page 508

DependentMacroRef ? IDREF New attribute.

“Structure of the Abstract State
Subelement” on page 508

UserDisplay = "Display" enumeration New attribute.

“Structure of the Abstract State
Subelement” on page 508

Loc * element New attribute.

“Structure of the Abstract State
Subelement” on page 508

DateTimeState,
DurationState,
PDFPathState, and
RectangleState

element New State element types.

“Structure of the BooleanState
Subelement” on page 511

ValueLoc * element New element.

Location Name Data Type Comment
New/Modified Attributes and Elements 733

Appendix W New, Deprecated, Modified, Illegal, & Removed Items
“Structure of the IntegerState
Subelement” on page 513

AllowedValueList ? IntegerRange-
List

Modified data type.

“Structure of the IntegerState
Subelement” on page 513

AllowedValueMod ? XYPair New attribute.

“Structure of the IntegerState
Subelement” on page 513

PresentValueList ? IntegerRange-
List

Modified data type.

“Structure of the IntegerState
Subelement” on page 513

UnitType ? NMTOKEN New attribute.

“Structure of the IntegerState
Subelement” on page 513

ValueLoc * element New element.

See “Structure of the Loc
Subelement” on page 507.

n/a – various – Loc element definition with
new attributes — used
throughout DeviceCaps
subordiante elements.

See “Structure of the
BooleanState Subelement” on
page 511.

ValueLoc – various – ValueLoc element defini-
tion with new attributes —
used throughout State ele-
ment definitions.

See “Structure of the
MatrixState Subelement” on
page 514.

AllowedRotateMod ? double New attribute.

See “Structure of the
MatrixState Subelement” on
page 514.

AllowedShift ? NumberList New attribute.

See “Structure of the
MatrixState Subelement” on
page 514.

AllowedTransforms ? enumerations New attribute.

See “Structure of the
MatrixState Subelement” on
page 514.

PresentRotateMod ? double New attribute.

See “Structure of the
MatrixState Subelement” on
page 514.

PresentShift ? NumberList New attribute.

See “Structure of the
MatrixState Subelement” on
page 514.

PresentTransforms ? enumerations New attribute.

See “Structure of the
MatrixState Subelement” on
page 514.

ValueUsage ? enumeration New attribute in Structure of
the Value Element table.

See “Structure of the
MatrixState Subelement” on
page 514.

Loc * element New element in Structure of
the Value Element table.

See “Structure of the
NameState Subelement” on
page 515.

AllowedRegExp ? regExp New attribute.

See “Structure of the
NameState Subelement” on
page 515.

PresentRegExp ? regExp New attribute.

Location Name Data Type Comment
734 New/Modified Attributes and Elements

JDF Specification Release 1.2
See “Structure of the
NameState Subelement” on
page 515.

ValueLoc * element New element.

See “Structure of the
NumberState Subelement” on
page 516.

AllowedValueList ? Number-
RangeList

Changed data type.

See “Structure of the
NumberState Subelement” on
page 516.

AllowedValueMod ? XYPair New attribute.

See “Structure of the
NumberState Subelement” on
page 516.

PresentValueList ? Number-
RangeList

Changed data type.

See “Structure of the
NumberState Subelement” on
page 516.

UnitType ? NMTOKEN New attribute.

See “Structure of the
NumberState Subelement” on
page 516.

ValueLoc * element New element.

See “Structure of the
PDFPathState Subelement” on
page 517.

– Several – – Various – Definitions of elements and
attraibutes of new element.

See “Structure of the
RectangleState Subelement” on
page 517.

– Several – – Various – Definitions of elements and
attraibutes of new element.

See “Structure of the
ShapeState Subelement” on
page 518.

AllowedValueList ? ShapeRange-
List

Changed data type.

See “Structure of the
ShapeState Subelement” on
page 518.

AllowedX ? Number-
RangeList

New attribute.

See “Structure of the
ShapeState Subelement” on
page 518.

AllowedY ? Number-
RangeList

New attribute.

See “Structure of the
ShapeState Subelement” on
page 518.

AllowedZ ? Number-
RangeList

New attribute.

See “Structure of the
ShapeState Subelement” on
page 518.

PresentValueList ? ShapeRange-
List

Changed data type.

See “Structure of the
ShapeState Subelement” on
page 518.

PresentX ? Number-
RangeList

New attribute.

See “Structure of the
ShapeState Subelement” on
page 518.

PresentY ? Number-
RangeList

New attribute.

See “Structure of the
ShapeState Subelement” on
page 518.

PresentZ ? Number-
RangeList

New attribute.

Location Name Data Type Comment
New/Modified Attributes and Elements 735

Appendix W New, Deprecated, Modified, Illegal, & Removed Items
See “Structure of the
ShapeState Subelement” on
page 518.

ValueLoc * element New element.

See “Structure of the
StringState Subelement” on
page 519.

AllowedLength ? IntegerRange New attribute.

See “Structure of the
StringState Subelement” on
page 519.

AllowedRegExp ? regExp New attribute.

See “Structure of the
StringState Subelement” on
page 519.

PresentLength ? IntegerRange New attribute.

See “Structure of the
StringState Subelement” on
page 519.

PresentRegExp ? regExp New attribute.

See “Structure of the
StringState Subelement” on
page 519.

ValueUsage ? enumeration New attribute in Strucute of
the Value element table.

See “Structure of the
StringState Subelement” on
page 519.

Loc * element New element in Strucute of
the Value element table.

See “Structure of the
XYPairState Subelement” on
page 520.

AllowedValueList ? XYPair-
RangeList

Changed data type.

See “Structure of the
XYPairState Subelement” on
page 520.

PresentValueList ? XYPair-
RangeList

Changed data type.

See “Structure of the
XYPairState Subelement” on
page 520.

AllowedXYRelation ? XYRelation New attribute.

See “Structure of the
XYPairState Subelement” on
page 520.

PresentXYRelation ? XYRelation New attribute.

See “Structure of the
XYPairState Subelement” on
page 520.

UnitType ? NMTOKEN New attribute.

See “Structure of the
XYPairState Subelement” on
page 520.

ValueLoc * element New element.

See “Structure of the
ActionPool Subelement” on
page 504.

– Several – – Various – Definitions of elements and
attraibutes of new element.

See “Structure of the TestPool
Subelement” on page 524.

– Several – – Various – Definitions of elements and
attraibutes of new element,
as well as many new defini-
tions of attributes and ele-
ments that are subordinate to
TestPool.

Location Name Data Type Comment
736 New/Modified Attributes and Elements

JDF Specification Release 1.2
“Structure of ArtDelivery
Elements” on page 244

ArtDeliveryType NMTOKEN Added DigitalFile
value

“Structure of ArtDelivery
Elements” on page 244

DigitalMedia ? refelement New.

“Structure of the SideStitching
Subelement.” on page 254

StitchNumber ? IntegerSpan New attribute.

“ColorIntent” on page 255 ColorStandard ? NameSpan Change description.
“ColorIntent” on page 255 SeparationSpec * refelement Added color values to

SperationsSpec element.
“DeliveryIntent” on page 258 DeliveryCharge = “Buyer” Enumeration-

Span
Added enumeration.

“HoleMakingIntent” on
page 265

Extent ? XYPair New attribute.

“LayoutIntent” on page 267 Pages = “1” IntegerSpan Modified description and
removed default value.

“LayoutIntent” on page 267 RotatePolicy = “NoRotate” enumeration New attribute.
“LayoutIntent” on page 267 Sides ? enumeration Added enumeration.
“LayoutIntent” on page 267 SizePolicy ? Enumeration-

Span
New attribute.

“MediaIntent” on page 270 Brightness ? NumberSpan New description.
“MediaIntent” on page 270 GrainDirection ? Enumeration-

Span
New attribute.

“MediaIntent” on page 270 MediaColorDetails ? StringSpan New attribute.
“MediaIntent” on page 270 MediaType = “Paper” Enumeration-

Span
Added new enumerations.

“MediaIntent” on page 270 Opacity = “Opaque” Enumeration-
Span

Added new enumeration and
changed description.

“MediaIntent” on page 270 OpacityLevel ? NumberSpan New attribute.
“MediaIntent” on page 270 RecycledPercentage ? NumberSpan New attribute.
“ProofingIntent” on page 277 ImageStrategy ? Enumeration-

Span
New attribute in Structure of
the ProofItem Element.

“ProofingIntent” on page 277 ApprovalParams ? refelement New refelement in Structure
of the ProofItem Element.

“ShapeCuttingIntent” on
page 279

CutPath ? PDFPath Changed data type in Struc-
ture of ShapeCut Subele-
ment.

“ApprovalParams” on page 282 MinApprovals = “1” integer New attribute.
“ApprovalParams” on page 282 ApprovalRole =

“Obligated”
enumeration New attribute.

“ApprovalSuccess” on
page 283

Contact * refelement New refelement.

“CoilBindingParams” on
page 296

HoleMakingParams ? refelement New refelement.

“Color” on page 297 ColorBookEntry ? string New description.
“Color” on page 297 ColorType ? enumeration Changed description.

Location Name Data Type Comment
New/Modified Attributes and Elements 737

Appendix W New, Deprecated, Modified, Illegal, & Removed Items
“Color” on page 297 MediaType ? string Added enumeration.
“ColorCorrectionParams” on
page 307

AdjustCyanRed ? double New attribute in Structure of
ColorCorrectionOp Subele-
ment.

“ColorCorrectionParams” on
page 307

AdjustMagentaGreen ? double New attribute in Structure of
ColorCorrectionOp Subele-
ment.

“ColorCorrectionParams” on
page 307

AdjustYellowBlue ? double New attribute in Structure of
ColorCorrectionOp Subele-
ment.

“ColorCorrectionParams” on
page 307

AdjustContrast ? double New attribute in Structure of
ColorCorrectionOp Subele-
ment.

“ColorCorrectionParams” on
page 307

AdjustHue ? double New attribute in Structure of
ColorCorrectionOp Subele-
ment.

“ColorCorrectionParams” on
page 307

AdjustLightness ? double New attribute in Structure of
ColorCorrectionOp Subele-
ment.

“ColorCorrectionParams” on
page 307

AdjustSaturation ? double New attribute in Structure of
ColorCorrectionOp Subele-
ment.

“ColorCorrectionParams” on
page 307

FileSpec ? refelement New refelement in Structure
of ColorCorrectionOp Sub-
element. (Two variants.)

“ColorSpaceConversionParams
” on page 311

ICCProfileUsage = “UsePDL” enumeration New attribute.

“ColorSpaceConversionOp” on
page 313

Operation ? enumeration Changed cardinality and
description.

“ColorSpaceConversionOp” on
page 313

RenderingIntent =
“ColorSpaceDependent”

enumeration Changed default and added
an enumeration.

“ColorSpaceConversionOp” on
page 313

RGBGray2Black = “false” boolean New description.

“ColorSpaceConversionOp” on
page 313

RGBGray2BlackThreshold =
“1”

double New attribute.

“ColorSpaceConversionOp” on
page 313

SourceRenderingIntent ? enumeration New attribute.

“ConventionalPrintingParams”
on page 328

ApprovalParams ? refelement New refelement.

“CreasingParams” on page 332 Travel ? double New attribute.
“CreasingParams” on page 332 RelativeTravel ? double New attribute.
“CreasingParams” on page 332 RelativeStartPosition ? XYPair New attribute.
“CreasingParams” on page 332 RelativeWorkingPath ? XYPair New attribute.
“CreasingParams” on page 332 StartPosition ? XYPair Changed cardinality and

description.
“CuttingParams” on page 335 RelativeStartPosition ? XYPair New attribute.

Location Name Data Type Comment
738 New/Modified Attributes and Elements

JDF Specification Release 1.2
“CuttingParams” on page 335 RelativeWorkingPath ? XYPair New attribute.
“CuttingParams” on page 335 StartPosition ? XYPair Changed cardinality and

description.
“CuttingParams” on page 335 WorkingPath XYPair Changed cardinality and

description.
“Device” on page 342 JDFErrorURL ? URL New attribute.
“Device” on page 342 JDFInputURL ? URL New attribute.
“Device” on page 342 JDFOutputURL ? URL New attribute.
“Device” on page 342 KnownLocalizations ? languages New attribute.
“DigitalPrintingParams” on
page 347

DirectProofAmount = “0” integer New attribute.

“DigitalPrintingParams” on
page 347

OutputBin ? NMTOKEN Suggested values modified
and moved and linked to
new appendix.

“DigitalPrintingParams” on
page 347

NonPrintableMarginBottom
?

double New attribute.

“DigitalPrintingParams” on
page 347

NonPrintableMarginLeft ? double New attribute.

“DigitalPrintingParams” on
page 347

NonPrintableMarginRight ? double New attribute.

“DigitalPrintingParams” on
page 347

NonPrintableMarginTop ? double New attribute.

“DigitalPrintingParams” on
page 347

ApprovalParams ? refelement New refelement.

“ElementColorParams” on
page 351

— Several — — Various — New resource with multiple
new attributes and elements.

“PageList” on page 425 — Several — — Various — New resource with multiple
new attributes and elements.

“ExposedMedia” on page 355 ProofName ? string New attribute.
“Disposition” on page 350 — Several — — Various — New resource with multiple

new attributes and elements.
“FileSpec” on page 359 Disposition ? refelement New refelement.
“GlueLine” on page 376 RelativeStartPosition ? XYPair New attribute.
“GlueLine” on page 376 RelativeWorkingPath ? XYPair New attribute.
“ImageCompressionParams”
on page 383

ImageAutoFilterStrategy =
“JPEG”

NMTOKEN New attribute.

“ImageCompressionParams”
on page 383

JPXQuality ? integer New attribute.

“ImageSetterParams” on
page 390

FitPolicy ? refelement

“InkZoneCalculationParams”
on page 392

ZoneWidth ? double Changed cardinality.

“InkZoneCalculationParams”
on page 392

Zones ? integer Changed cardinality.

“InsertSheet” on page 396 IncludeInBundleItem ? enumeration New attribute.

Location Name Data Type Comment
New/Modified Attributes and Elements 739

Appendix W New, Deprecated, Modified, Illegal, & Removed Items
“LayoutElement” on page 406 IsBlank ? boolean New attribute.
“LayoutElement” on page 406 HasBleeds = “false” boolean Changed description and

default.
“LayoutElement” on page 406 IsPrintable = “true” boolean Changed description and

default.
“LayoutElement” on page 406 IsTrapped = “false” boolean Changed description and

default.
“LayoutElement” on page 406 PageListIndex ? IntegerRange-

List
New attribute.

“LayoutElement” on page 406 SourceBleedBox ? rectangle Changed description and
default.

“LayoutElement” on page 406 SourceClipBox ? rectangle Changed description and
default.

“LayoutElement” on page 406 SourceTrimBox ? rectangle Changed description and
default.

“LayoutElement” on page 406 Template = “false” boolean Changed description and
default.

“LayoutElement” on page 406 ColorPool ? refelement New refelement.
“LayoutElement” on page 406 Dependencies ? element New element with subele-

ment table defining
attributes and elements also
added to section.

“LayoutElement” on page 406 FileSpec ? refelement Changed cardinality and
description.

“LayoutPreparationParams” on
page 408

HorizontalCreep ? IntegerList Changed description.

“LayoutPreparationParams” on
page 408

PositionX = “None” enumeration Added enumeration in
Structure of the ImageShift
Subelement.

“LayoutPreparationParams” on
page 408

PositionY = “None” enumeration Added enumeration in
Structure of the ImageShift
Subelement.

“PerforatingParams” on
page 432

WorkingPath XYPair Changed description.

“PlasticCombBindingParams”
on page 433

HoleMakingParams ? refelement New refelement.

“Preview” on page 442 PreviewUsage =
“Separation”

enumeration New attibute — replaceing
PreviewType.

“PSToPDFConversionParams”
on page 447

PDFXParams ? element New element ... with struc-
ture table added defining
multiple elements and
attributes.

“PSToPDFConversionParams”
on page 447

AllowPSXObjects = “true” boolean New attribute in Structure of
AdvancedParams Subele-
ment.

Location Name Data Type Comment
740 New/Modified Attributes and Elements

JDF Specification Release 1.2
“PSToPDFConversionParams”
on page 447

AllowTransparency =
“false”

boolean New attribute in Structure of
AdvancedParams Subele-
ment.

“PSToPDFConversionParams”
on page 447

EmbedJobOptions =
“false”

boolean New attribute in Structure of
AdvancedParams Subele-
ment.

“PSToPDFConversionParams”
on page 447

PassThroughJPEGImages =
“false”

boolean New attribute in Structure of
AdvancedParams Subele-
ment.

“PSToPDFConversionParams”
on page 447

SidelineEPS = “false” boolean New attribute in Structure of
ThinPDFParams Subele-
ment.

“RingBindingParams” on
page 456

HoleMakingParams ? refelement New refelement.

“RunList” on page 458 ComponentGranularity =
“Document”

enumeration New attribute.

“RunList” on page 458 PageListIndex ? IntegerRange-
List

New attribute.

“ScreeningParams” on
page 465

Frequency ? double Changed attribute descrip-
tion in Structure of
ScreenSelector Subelement.

“ScreeningParams” on
page 465

SourceFrequency ? DoubleRange Changed attribute descrip-
tion and data type in Struc-
ture of ScreenSelector
Subelement.

“StripBindingParams” on
page 479

HoleMakingParams ? refelement New refelement.

“TransferCurvePool” on
page 493

Name NMTOKEN Modified description of
attribute in Structure of
TransferCurveSet Subele-
ment.

“TrappingParams” on page 495 ImageTrapWidth ? double or
XYPair

New attribute.

“TrappingParams” on page 495 StepLimit ? double Modified description of
attribute.

“TrappingParams” on page 495 TrapWidth ? double Modified description of
attribute.

“TrappingParams” on page 495 TrapPlacement = “Normal” enumeration New attribute.
“WireCombBindingParams” on
page 501

HoleMakingParams ? refelement New refelement.

“Color” on page 297 CMYK ? CMYKColor Modified description of
attribute.

“PreflightParams” on page 434 — Several — — Various — New resource with multiple
new attributes and elements.

“PreflightReport” on page 437 — Several — — Various — New resource with multiple
new attributes and elements.

Location Name Data Type Comment
New/Modified Attributes and Elements 741

Appendix W New, Deprecated, Modified, Illegal, & Removed Items
“PreflightReportRulePool” on
page 440

— Several — — Various — New resource with multiple
new attributes and elements.

“FileSpec” on page 359 MimeTypeVersion ? string New attribute.
“FileSpec” on page 359 OverwritePolicy ? enumeration New attribute.
“FileSpec” on page 359 PageOrder ? enumeration Added enumeration.
“FileSpec” on page 359 Container ? element New element with element

structure table defining its
attributes.

“LayoutElement” on page 406 ClipPath ? PDFPath Changed description.
“LayoutElement” on page 406 ElementColorParams ? refelement New refelement.
“Media” on page 417 MediaTypeDetails ? NMTOKEN Deleted and added NMTO-

KEN values.
“Preview” on page 442 URL URL Changed description.
“StackingParams” on page 473 StandardAmount ? integer Made optional.
“StitchingParams” on page 475 StitchType ? enumeration Changed description.
 “PreviewGenerationParams”
on page 444

Device refelement New refelement.

“InsertingParams” on page 394 FinishedPage ? integer New attribute.

Location Name Data Type Comment
742 New/Modified Attributes and Elements

Appendix X Deprecated Processes, Resources, and
JMF Messaging Elements

Processes and resources that have been deprecated in their entirety have been moved to this appendix. The name of
the deprecated process or resource remains in those chapters along with directions from CIP4 working groups on the
preferred method of handling job data in the latest version of JDF. The original processes and resources are provided
here only for users and developers of JDF solutions who require this information to solve backwards compatibility
issues; however, we strongly encourage that the use of these deprecated resources and process be eliminated from
your JDF environment to reduce complexity.

Note: Deprecated attributes and elements withing process and resources which themselves have not been entirely
deprecated remain in the main body of this standard, and this appendix is not meant to be an exhaustive catalog of all
deprecated items within JDF.

X.1 Deprecated Processes

X.1.1 Packing
Deprecated in JDF 1.1
This process can be used to describe the Packing of a PhysicalResource element for transport purposes. The
Packing process has been deprecated in version 1.1 and beyond. It is replaced by the individual processes defined
in Section 6.6.48.5, Packaging Processes.

 Input Resources

Output Resources

X.1.2 FilmToPlateCopying
Deprecated in JDF 1.1
FilmToPlateCopying has been replaced by the more generic ContactCopying.
FilmToPlateCopying is the process of making an analog copy of a film onto a printing plate.

Input Resources

Output Resources

Name Description
PackingParams Necessary information about the packing process.
PhysicalResource All kinds of physical resources can be packed.

Name Description
PhysicalResource The packaged physical resources. Note that Amount attributes referring to this resource

still refer to individual products and not to boxes, cartons or pallets.

Name Description
DevelopingParams ? Controls the physical and chemical specifics of the media development process.
ExposedMedia The film or films to be copied onto the plate.
Media The unexposed plate.
PlateCopyParams The settings of the exposure task.

Name Description
ExposedMedia The resulting exposed plate.
Deprecated Processes 743

Appendix X Deprecated Processes, Resources, and JMF Messaging Elements
X.1.3 PreflightAnalysis
Deprecated in JDF 1.2
This resource was deprecated as a result of a major revision to the Preflight process and its associated resources.

PreflightAnalysis resources record the results of a Preflight process. The semantics for results are specific
to the FileType of the file. The elements in this resource, detailed in the table below, place the results in specific cat-
egories. The value for each of these elements is an array of PreflightResultsDetail and PreflightInstance sub-
e lements . Wi th in the Pref l ightInstance subelements , resul t s a re fu r the r b roken down in to
PreflightInstanceDetails.

Each PreflightResultsDetail and PreflightInstance subelement in the PreflightAnalysis hierarchy
describes the results of a comparison of the properties of the file against one PreflightConstraint in the
PreflightProfile.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: —
Output of processes: Preflight

Resource Structure

Structure of PreflightDetail Subelement
PreflightDetail subelements are used to describe one property within the PreflightAnalysis category in which
they occur. This subelement is also used by PreflightInventory resource.

Name Data Type Description
ColorsResultsPool ? element A pool of PreflightDetail and PreflightInstance subelements

that provides analysis about color.
DocumentResultsPool ? element A pool of PreflightDetail and PreflightInstance subelements

that provides analysis about documents.
FontsResultsPool ? element A pool of PreflightDetail and PreflightInstance subelements

that provides analysis about fonts.
FileTypeResultsPool ? element A pool of PreflightDetail and PreflightInstance subelements

that provides analysis about file types.
ImagesResultsPool ? element A pool of PreflightDetail and PreflightInstance subelements

that provides analysis about images.
PagesResultsPool ? element A pool of PreflightDetail and PreflightInstance subelements

that provides analysis about finished pages.

Name Data Type Description
PageRefs IntegerRangeList Identifies the set of pages in a RunList resource that exhibit the characteristic

identified by the combination of the Property attribute and the Value element.
Property ? string Identifies the property described by this element.
744 Deprecated Processes

JDF Specification Release 1.2
Structure of PreflightInstance Subelement
PreflightInstance subelements are used to collect PreflightInstanceDetail elements for one instance of some
object which occurs in the PDL files referenced by a run list. For example, there might be one PreflightInstance
element for each font that occurs in the pages of a run list. This subelement is also used by PreflightInventory
resources.

Structure of PreflightInstanceDetail Subelement
PreflightInstanceDetail subelements describe one property of one instance of some object type that occurs in a
PDL file. For example, several PreflightInstanceDetail elements might describe the properties of a single font.
This subelement is also used by PreflightInventory resources.

Status ? enumeration Possible values are:
Error – Value violates the ConstraintValue specified in the associated
PreflightConstraint element. The constraint was flagged as an Error in the pro-
file.
Warning – Value violates the ConstraintValue specified in the associated
PreflightConstraint element. The constraint was flagged as a Warning in the
profile.
Ignore – The constraint is ignored, and no PreflightDetail or
PreflightInstanceDetail elements are created for this constraint.
IgnoreValue – No comparison was made against a ConstraintValue. In
other words, either the Status for the PreflightConstraint was Ignore or
IgnoreValue, or this PreflightDetail is part of a PreflightInventory
hierarchy.

Value ? element Identifies the value of the property. The semantics are PDL-specific.

Name Data Type Description
Identifier ? string Identifies the instance this element collects

PreflightInstanceDetail elements.
PageRefs
Modified in JDF 1.1

IntegerRange-
List

Identifies the set of finished pages in a RunList on which the
instance occurs.

PreflightInstanceDetail *
Modified in JDF 1.1

element A pool of PreflightInstanceDetail elements that describe the
properties for this instance

Name Data Type Description
Status ? enumeration Specifies the results of the comparison between the value of the property for this

instance with the ConstraintValue for the associated PreflightConstraint ele-
ment. Possible values are:
Error – Value violates the ConstraintValue specified. The constraint was flagged
as an Error in the profile.
Warning – Value violates the ConstraintValue specified. The constraint was
flagged as a Warning in the profile.
IgnoreValue – No comparison was made against a ConstraintValue. In other
words, either the Status for the Constraint was Ignore or IgnoreValue, or this
PreflightInstanceDetail is part of a PreflightInventory hierarchy.

Property ? string Identifies the property described by this element.
Value ? element Identifies the value of the property. The semantics are PDL-specific.

Name Data Type Description
Deprecated Processes 745

Appendix X Deprecated Processes, Resources, and JMF Messaging Elements
X.1.4 PreflightInventory
Deprecated in JDF 1.2
This resource was deprecated as a result of a major revision to the Preflight process and its associated resources.

PreflightInventory resources, like PreflightAnalysis resources, record the results of a Preflight pro-
cess. The semantics for results are specific to the FileType of the for the file. The elements in this resource, detailed
in the table below, place the results in specific categories. The value of each of these elements is an array of
PreflightResultsDetail and PreflightInstance subelements. Within the PreflightInstance subelements,
results are further broken down into PreflightInstanceDetails.

Each PreflightResultsDetail or PreflightInstance subelement in the PreflightInventory hierarchy
describes the results of a comparison of the properties of the file against one PreflightConstraint in the
PreflightProfile.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: Preflight
Output of processes: Preflight

Resource Structure

X.1.5 PreflightProfile
Deprecated in JDF 1.2
This resource was deprecated as a result of a major revision to the Preflight process and its associated resources.

PreflightProfile resources specify a set of constraints against which a file may be tested. The semantics for
constraints are specific to the FileType of the for the file. The elements in this resource, detailed in the table below,
place the results in specific categories. The value for each of these elements is an array of PreflightConstraint
subelements. Within the PreflightConstraint resources, the ConstraintValue element indicates allowable val-
ues and the Status attribute indicates the error level (if any) to be flagged when exceptions to the constraints are
identified.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: Preflight

Name Data Type Description
ColorsResultsPool ? element A pool of PreflightDetail and PreflightInstance subelements

that provides a color inventory.
DocumentResultsPool ? element A pool of PreflightDetail and PreflightInstance subelements

that provides a document inventory.
FontsResultsPool ? element A pool of PreflightDetail and PreflightInstance subelements

that provides a font inventory.
FileTypeResultsPool ? element A PreflightDetail and PreflightInstance subelement that pro-

vides a file-type inventory.
ImagesResultsPool ? element A pool of PreflightDetail and PreflightInstance subelements

that provides an image inventory.
PagesResultsPool ? element A pool of PreflightDetail and PreflightInstance subelements

that provides a finished page inventory.
746 Deprecated Processes

JDF Specification Release 1.2
Output of processes: —

Resource Structure

Structure of PreflightConstraint Subelement

X.1.6 Proofing
Deprecated in JDF 1.2

Name Data Type Description
ColorsContraintsPool ? element A pool of PreflightConstraint subelements. Each element in

this pool identifies a specific constraint concerning colors against
which to test the file

DocumentConstraintsPool ? element A pool of PreflightConstraint subelements. Each element in
this pool identifies a specific constraint concerning documents
against which to test the file

FontsConstraintsPool ? element A pool of PreflightConstraint subelements. Each element in
this pool identifies a specific constraint concerning fonts against
which to test the file

FileTypeConstraintsPool ? element A Preflight constraint. The Type attribute must have a value
of array and must contain string objects that identify the allow-
able types of data in the file. The strings in the Value array must
be MIME-file types as recorded by the Internet Assigned Num-
bers Authority (IANA). IANA has procedures for registering
new file types if needed.

ImagesConstraintsPool ? element A pool of PreflightConstraint subelements. Each element in
this pool identifies a specific constraint concerning images
against which to test the file

PagesConstraintsPool ? element A pool of PreflightConstraint subelements. Each element in
this pool identifies a specific constraint concerning finished
pages against which to test the file

Name Data Type Description
AttemptFixupErr
ors = “false”

boolean If true, the device performing preflight should attempt to fix errors that are
identified during preflight. Errors that are corrected are not given a Status
attribute. Default = “false”

AttemptFixupWa
rnings = “false”

boolean If true, the device performing preflight should attempt to fix warnings that are
identified during preflight. Warnings that are corrected are not given a Status
attribute. Default = “false”

Constraint ? string Describes the specific file characteristic to be checked.
Status enumeration Possible values are:

Error – Values that violate the ConstraintValue specified are flagged as
Errors in PreflightDetail and PreflightInstanceDetail elements.
Warning – Values that violate the ConstraintValue specified are flagged as
Warnings in PreflightDetail and PreflightInstanceDetail elements.
Ignore – The constraint is ignored, and no PreflightDetail or
PreflightInstanceDetail elements are created for this constraint.
IgnoreValue – No comparison is made against the ConstraintValue.

ConstraintValue ? element Provides a value against which to test occurrences of the characteristic in the
file. Note: The semantics of the ConstraintValue element depend on the
PDL characteristic in question.
Deprecated Processes 747

Appendix X Deprecated Processes, Resources, and JMF Messaging Elements
The Proofing process is deprecated in JDF/1.2. Instead, use a combined process to produces the hard proof, (e.g.,
one that includes the ImageSetting, ConventionalPrinting, or DigitalPrinting process.) Then input
the hard proof to a separate Approval process.

The Proofing process results in the creation of a physical proof, represented by an ExposedMedia resource.
Proofs can be used to check an imposition or the expected colors for a job. The inputs of this process are a RunList,
which identifies the pages to proof; the ProofingParams resource, which describes the type of proof to be created;
and a Media resource to describe the physical media that will be used.

Input Resources

Output Resources

X.1.7 SoftProofing
Deprecated in JDF 1.2
The SoftProofing process is deprecated in JDF/1.2. Instead, use a combined process to produce the soft proof in
which the last process is the Approval process that approves the soft proof.

SoftProofing is the process of reviewing final-form output on a monitor rather than in paper form. The inputs
are a RunList, which identifies the pages to proof; the ProofingParams resource, which describes the type of
proof to be created.

Within the ProofingParams resource, the proof device parameter specifies the characterization the monitor
on which the proof will be viewed. This processor must create and perform a transformation from the final target device
to the proof device colors before displaying the document contents.

The soft proofing parameters allow sufficient control to determine whether any images are displayed in the
proof. If so, the ability to select low resolution proxies or full resolution images is provided. The mechanism for
approving proofs requires the generation of a PDF file containing the proofing parameters and a digital signature not-
ing the acceptance of them. The approval PDF file need not contain any graphical data.

Name Description
ColorantControl ?
Modified in JDF1.1A

Identifies the color model used by the job.

ColorSpaceConversionParams ? This resource provides information needed to convert colorspaces in
the pages for proofing. Generally present if a color proof is desired,
unless the pages in the RunList have already been operated on by a
previous colorspace conversion process.

Layout ? Required if an imposition proof is desired.
Media This resource characterizes the output media for the proof.
ProofingParams This resource provides the parameters needed to produce the desired

proof.
RunList (Document) Identifies the pages to be proofed. When the Layout resource is

present in the ProofingParams resource, Ord values from
ContentObject subelements refer to pages in this RunList.

RunList ? (Marks) Structured list of incoming marks. These are typically printers marks,
(e.g., fold, cut or punch marks, or color bars.)
When the Layout resource is present in the ProofingParams
resource, Ord values from MarkObject subelements refer to pages
in this RunList.

Name Description
ExposedMedia The resulting physical proof.
748 Deprecated Processes

JDF Specification Release 1.2
Like all other color manipulation supported in JDF, the color conversion controls are based on the use of ICC pro-
files. While the assumed characterization of input data can take many forms, each can internally be represented as an
ICC Profile. In order to perform the transformations, input profiles must be paired with the identified final target
device profile to create the transformation.

Input Resources

Output Resources
None.

X.1.8 IDPrinting
Deprecated in JDF 1.1
The IDPrinting process was deprecated in JDF/1.1. Instead, implementations should use the DigitalPrinting pro-
cess combined with other processes, thus improving interoperability by reducing one of the combinations of pro-
cesses. Also the IDPrinting process defined a number of resources and subelements which are deprecated since
they duplicate other resources.

IDPrinting, which stands for Integrated Digital Printing, is a specific form of digital printing. It combines func-
tionality that might be represented by the Interpreting, Rendering, Screening, and DigitalPrinting pro-
cesses in a single process. In addition, devices which support IDPrinting frequently provide some degree of finishing
capabilities, such as collating and stapling, as well as some automated layout capabilities, such as N-up and duplex print-
ing.

Controls for IDPrinting are provided in the IDPrintingParams resource. These controls are intended to be
somewhat limited in their scope. If greater control over various aspects of the printing process is required,
IDPrinting should not be used. Ultimately, the controls specified for IDPrinting can be used to generate an Inter-
net Printing Protocol (IPP) job. See JDF/1.0 Appendix F for a mapping between JDF IDPrinting and IPP.
IDPrinting may be combined with other processes, such as Trapping or ColorSpaceConversion.

Input Resources

Name Description
ColorantControl ?
Modified in JDF1.1A

Identifies the color model used by the job.

ColorSpaceConversionParams ? This resource provides information needed to convert colorspaces in
the pages for proofing. Generally present if a color proof is desired,
unless the pages in the RunList have already been operated on by a
previous colorspace conversion process.

Layout ? Required if an imposition proof is desired.
ProofingParams Provides the parameters needed to produce the desired proof.
RunList (Document) Identifies the pages to be proofed. When the Layout resource is

present in the ProofingParams resource, Ord values from
ContentObject subelements refer to pages in this RunList.

RunList ? (Marks) Structured list of incoming marks. These are typically printer’s
marks, e.g., fold marks, cut marks, punch marks, or color bars.
When the Layout resource is present in the ProofingParams
resource, Ord values from MarkObject subelements refer to pages
in this RunList.

Name Description
ColorantControl ? The ColorantControl resources that define the ordering and usage of inks in

print modules.
Component ? (Cover) A finished cover may be combined with the pages that will be output by this

process.
Deprecated Processes 749

Appendix X Deprecated Processes, Resources, and JMF Messaging Elements
Output Resources

X.1.9 AdhesiveBinding
Deprecated in JDF 1.1
The AdhesiveBinding has been split into the following individual processes:

• CoverApplication,

• Gluing,

• SpinePreparation,

• SpineTaping.

Note that the parameters of the GlueApplication ABOperations have been moved into
CoverApplicationParams and SpineTapingParams as GlueApplication refelements. The generic
GlueApplication ABOperation is now described by the Gluing process.

X.1.10 Dividing
Deprecated in JDF 1.1.
Dividing has been replaced by Cutting. In-line finishing of web presses often includes equipment for cutting the
ribbon(s) in cross direction. This operation can be described with the Dividing process. Dividing in cross direction

Component ? (Input) Various components can be used in IDPrinting instead of Media. Examples
include waste, precut Media, or a set of preprinted sheets or webs.

Component ? (Proof) A Proof component is used if a proof was produced during an earlier
ConventionalPrinting process.

ExposedMedia ? A Proof is useful for comparisons (completeness, color accuracy) with the
print out of the IDPrinting process.

FontPolicy ? Describes the behavior of the font machinery in absence of requested fonts.
Ink ? Ink or toner and information about it is needed for IDPrinting.
InterpretingParams * A set of resources that specify how the device should interpret the PDL files

which are referenced by the RunList for the process. Note that
InterpretingParams is an abstract resource. Instances are PDL-specific.

IDPrintingParams ? Specific parameters to set up the machinery.
Media ? The physical Media and information about the Media, such as thickness, type,

and size, are used to set up paper travel in the press. This has to be present if no
preprinted Component (input) resource is present.
Note: Printing a job on more than one web or sheet at the same time is parallel
processing.

RenderingParams ? This resource describes the format of the ByteMaps to be created.
RunList The set of pages to be printed.
ScreeningParams ? Parameters specifying which halftone mechanism is to be applied and with

what specific controls.
TransferFunctionControl ? Controls whether the device performs transfer functions and what values are

used when doing so.

Name Description
Component (Good) Components are produced for other printing processes or postpress pro-

cesses. Note that the Amount attribute of the ResourceLink to this
resource indicates the number of copies which will be produced.

Component ? (Waste) Produced waste, may be used by other processes.
750 Deprecated Processes

JDF Specification Release 1.2
is likely to happen after former folding, which is a LongitudinalRibbonOperations process. It may affect one
or more ribbons at the same time that are all part of one Component.

Input Resources

Output Resources

X.1.11 LongitudinalRibbonOperations
Deprecated in JDF 1.1
In-line finishing within web printing presses can include folding, perforating, or applying a line of glue on the ribbon
while it is traveling in longitudinal direction. In version 1.1.of JDF and beyond, in-line finishing is described using
the “standard” finishing processes, (e.g., Creasing, Cutting, Folding or in a combined node with
ConventionalPrinting).

Input Resources

Output Resources

X.1.12 SaddleStitching
Deprecated in JDF 1.1
In SaddleStitching, signatures are collected so that all sections have a common spine, and then stitched with sta-
ples through the spine. SaddleStitching has been replaced by Stitching in JDF 1.1.

Input Resources

Output Resources

X.1.13 SideSewing
Deprecated in JDF 1.1

Name Description
Component The Dividing process consumes one Component: the web(s) or ribbon(s) entering the

crosscutting machinery. The substrate might have been treated with
LongitudinalRibbonOperations and may be folded with a former fold.

DividingParams Specific parameters to set up the machinery.

Name Description
Component One Component is produced: either the divided web or ribbon.

Name Description
Component The Component can consist of more than one web or rib-

bon that has been combined with the Gathering process.
LongitudinalRibbonOperationParams Specific parameters to set up the machinery tools for the

LongitudinalRibbonOperations process.

Name Description
Component + A ribbon is produced that is used in other postpress processes. If the

LongitudinalRibbonOperations process was slitting, more than one
Component is produced.

Name Description
Component The only required Component is the collected pile.
SaddleStitchingParams Specific parameters to set up the machinery.

Name Description
Component The stitched-together components.
Deprecated Processes 751

Appendix X Deprecated Processes, Resources, and JMF Messaging Elements
Replaced by ThreadSewing.
This is a binding technique resulting in robust products that have a significant loss of inner margin space and poor
handling characteristics. For these reasons, other binding techniques are used more often. In SideSewing, the first
step is to create the holes in the book block and inject the glue (see Section 6.6.48.2, HoleMaking). Then the entire
book is sewn at once with a ThreadMaterial such as Cotton or Polyester. If the book block is rather thick, a
Stitching process using wire might be performed before SideSewing.

Input Resources

Output Resources

X.2 Deprecated Resources

X.2.1 BindingIntent Deprecated Subelements
Note: BindingIntent is still a valid resource. The following sections from within BindingIntent were depre-
cated and were deemed large enough to warrant moving them to this section.

Structure of the AdhesiveBinding Subelement.
Deprecated in JDF 1.1

Structure of the BookCase Subelement.
Deprecated in JDF 1.1
This subelements contains details of the book case for hard-cover book binding. The actual binding parameters are set
in the appropriate AdhesiveBinding, ThreadSewing, or ThreadSealing elements.

Name Description
Component The only required Component is the gathered sheets.
SideSewingParams Specific parameters to set up the machinery.

Name Description
Component The Component is produced.

Name Data Type Description
Scoring ? EnumerationSpan Scoring option for AdhesiveBinding. Possible values are:

TwiceScored
QuadScored
None
Values are based on viewing the cover in its flat pre-binding state.

SpineGlue ? EnumerationSpan Glue type used to define AdhesiveBinding procedures. Possible values
are:
ColdGlue
Hotmelt
PUR – Polyurethane Rubber

TapeBinding ? OptionSpan If “true”, a cloth tape which has been pre-glued with hot-melt adhesive is
used in AdhesiveBinding the unmilled block, (e.g., FastBack or
DocuTech binding).

Name Data Type Description
HeadBands ? OptionSpan The following CaseBinding choice specifies the use of headbands on a

case bound book.
If “true”, headbands are inserted both top and bottom.
752 Deprecated Resources

JDF Specification Release 1.2
X.2.2 SizeIntent
Deprecated in JDF 1.1
SizeIntent has been deprecated in JDF 1.1. All contents have been moved to LayoutIntent. This resource records
the size of the finished pages for the product component. It does not, however, specify the size of any intermediate
results, such as press sheets.
SizeIntent has been deprecated in JDF 1.1. All contents have been moved to LayoutIntent. This resource records
the size of the finished pages for the product component. It does not, however, specify the size of any intermediate
results, such as press sheets.

Resource Properties
Resource class: Intent
Resource referenced by: —
Process Resource Pairing: CutMark, CuttingParams, Layout, LayoutPreparationParams,

Sheet, Surface, TrimmingParams
Example Partition: Option
Input of processes: Any Product Node
Output of processes: —

Resource Structure

X.2.3 AdhesiveBindingParams
Deprecated in JDF 1.1
This resource describes the details of the following four subprocesses of the AdhesiveBinding process:

• Back preparation

• Multiple glue applications

• Spine taping

• Cover application
These subprocesses are identified as instances of the abstract ABOperation element. Although a workflow may
exist that groups these processes according to its own capabilities, it is likely that they will be performed in the order
presented. A description of each follows the table containing the contents of the AdhesiveBindingParams
resource.

Resource Properties

Shape ? EnumerationSpan Indicates the shape of the “back” or spine of a case bound book. Possible val-
ues are:
RoundedBack
SquareBack

Thickness ? NumberSpan Specifies thickness of board which is wrapped as front and back covers of a
case bound book, in points.

Name Data Type Description
Dimensions XYPairSpan Specifies the height and width of the product component in points. Note: Height

and width are ambiguously specified in JDF 1.0.
Pages ? IntegerSpan Specifies the number of pages of the product component.
Type =
“Folded”

enumeration Specifies whether the product component referred to is flat or finished. Possible
values are:
Folded = Size of the product after folding. The default value
Flat = Size of the unfolded sheet. Note that this describes the size of a sheet that
is folded to create a product, not the size of the sheet in the press.
Deprecated Resources 753

Appendix X Deprecated Processes, Resources, and JMF Messaging Elements
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: AdhesiveBinding
Output of processes: —

Resource Structure
Name Data Type Description

FlexValue ? double Flex quality parameter given in [N/cm].
PullOutValue ? double Pull out quality parameter given in [N/cm].
ABOperation + Element An abstract element which is a placeholder for an operation

(SpinePreparation, GlueApplication, SpineTaping, and
CoverApplication). Each ABOperation element describes
the parameters of one single operation of the complete
AdhesiveBinding process.

Figure X.1: Parameters and coordinate system for glue application
754 Deprecated Resources

JDF Specification Release 1.2
X.2.4 DividingParams
Deprecated in JDF 1.1.
Since the Dividing process has been replaced by Cutting, this resource is no longer required. This resource con-
tains attributes and elements used in executing the Dividing process.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: RibbonName, SheetName, SignatureName, WebName
Input of processes: Dividing
Output of processes: —

Resource Structure

X.2.5 IDPrintingParams
Deprecated in JDF 1.1
This resource contains the parameters needed to control the IDPrinting process.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: DocIndex, DocRunIndex, DocSheetIndex, PartVersion, Run,

RunIndex, RunTags, SheetIndex, SheetName, Side
Input of processes: IDPrinting
Output of processes: —

Resource Structure

Name Data Type Description
DividePositions DoubleList Array containing the cross cut positions in y-direction (direction of web traveling).

Name Data Type Description
AttributesNatur
alLang =
“US English”

language Language selected for communicating attributes. Default = “US English”

IDPAttributeFid
elity = “false”

boolean Indicates whether or not the device must reject the job if there are attribute values
or elements that it does not support. Default = “false”

IPPJobPriority =
“50”

integer The scheduling priority for the job where 100 is the highest and 1 is the lowest.
Amongst the jobs that can be printed, all higher priority jobs must be printed
before any lower priority ones. Default = 50

IPPVersion ? XYPair A pair of numbers indicating the version of the IPP protocol to use when commu-
nicating to IPP devices. The X value is the major version number.
Deprecated Resources 755

Appendix X Deprecated Processes, Resources, and JMF Messaging Elements
OutputBin ? NMTO-
KEN

Specifies the bin to which the finished document should be output. Possible val-
ues are:
Top – The bin that, when facing the device, can best be identified as "top”.
Middle – The bin that, when facing the device, can best be identified as “mid-
dle”.
Bottom – The bin that, when facing the device, can best be identified as “bot-
tom”.
Side – The bin that, when facing the device, can best be identified as “side”.
Left – The bin that, when facing the device, can best be identified as “left”.
Right – The bin that, when facing the device, can best be identified as “right”.
Center – The bin that, when facing the device, can best be identified as “cen-
ter”.
Rear – The bin that, when facing the device, can best be identified as “rear”.
FaceUp – The bin that can best be identified as “face up” with respect to the
device.
FaceDown –The bin that can best be identified as “face down” with respect to
the device.
FitMedia – Requests the device to select a bin based on the size of the media.
LargeCapacity – The bin that can best be identified as the “large capacity”
bin (in terms of the number of sheets) with respect to the device.
Mailbox-N – The job will be output to the bin that is best identified as “Mail-
box-1”, “Mailbox-2”…etc.
Stacker-N –The job will be output to the bin that is best identified as “Stacker-
1’, ‘Stacker-2” …etc.
Tray-N – The job will be output to the tray that is best identified as “Tray-1”,
“Tray-2” … etc.

PageDelivery ? enumera-
tion

Indicates how pages are to be delivered to the output bin or finisher. Possible val-
ues are:
SameOrderFaceUp – Order as defined by the RunList, with the “front” sides
of the media up.
SameOrderFaceDown – Order as defined by the RunList, with the “front”
sides of the media up.
ReverseOrderFaceUp – Order reversed, as defined by the RunList, with the
“front” sides of the media up.
ReverseOrderFaceDown – Order reversed, as defined by the RunList, with
the “front” sides of the media down.

PrintQuality ? enumera-
tion

Indicates how pages are to be delivered to the output bin or finisher. Possible val-
ues are:
High – Highest quality available on the printer.
Normal – The default quality provided by the printer.
Draft – Lowest quality available on the printer.

SheetCollate ? boolean Determines whether the sequencing of the leaves in the output of the job.
If true, sheets for each copy of the document are sequenced together, followed
by the sheets for the next copy.
If false, all copies of the first sheet are sequenced, followed by the second and
subsequent sheet.
SheetCollate describes the order of the final sheet, but does not prescribe the
order in which they are produced.

Cover * element 0, 1 or 2 Cover elements. The default instance is that there is no cover.

Name Data Type Description
756 Deprecated Resources

JDF Specification Release 1.2
Structure of the Cover Subelement
Deprecated in JDF 1.1
This element describes the cover requested for the job. Covers may be applied to the whole job, or to each instance
document in the job. Note that front and back covers may be specified.

Properties of the IDPFinishing Subelement
Deprecated in JDF 1.1
IDPFinishing elements describe finishing operations that should be applied to sets of sheets that are output by the
IDPrinting process. The finishings are applied to the entire job when there are no instance documents. Otherwise,
each instance document is finished separately. Operation-specific subelements may also be present when a device pro-

IDPFinishing ? refelement This element provides the details of how media for each instance document
should be finished.

IDPLayout ? refelement This element provides the details of how the contents the finished pages will be
imaged onto media.

JobSheet * element A set of sheets which must be produced with the job. The default case is that no
job sheets are produced

MediaIntent ? refelement A MediaIntent element. This element is ignored if a MediaSource resource
is present and can be honored for the IDPrinting process. If MediaSource is
absent or cannot be honored, this element describes the intended media for the
job to allow the device to select from among the available media.

MediaSource ? refelement Describes the source and physical orientation of the media to be used.

Name Data Type Description
BackSide =
“false”

boolean The next page from the RunList is imaged onto the back of this cover. This
would be the inside of a Front cover and outside of a Back cover.
Default = “false”

CoverType =
“Front”

enumeration Specifies whether this Cover element specifies the front or back cover.
Front – The front cover.
Back – The back cover.
Default = “Front”

FrontSide =
“false”

boolean The next page from the RunList is imaged onto the front of this cover. This
would be the outside of a Front cover and inside of a Back cover.
Default = “false”

IDPFinishing ? refelement An IDPFinishing element that describes the finishing options for the cover.
IDPLayout ? element This element provides the details of how page contents will be imaged onto the

cover.
MediaIntent ? refelement A MediaIntent element. This element describes the media to be used for the

job. This element is ignored if a MediaSource resource is present and can be
honored for the IDPrinting process. If MediaSource is absent or cannot be
honored, this element describes the intended media for the job to allow the
device to select from among the available media.

MediaSource ? refelement Describes the source and physical orientation of the media to be used.

Name Data Type Description
Deprecated Resources 757

Appendix X Deprecated Processes, Resources, and JMF Messaging Elements
vides controls for a finishing operation. Additional subelements are expected to be defined over time. Also, more detail will
be added to the currently defined elements.

Name Data Type Description
Finishings ? IntegerList A set of finishing operations to apply to the job. The operations are encoded as

an enumeration. Possible values are:
3 – (none) Perform no finishing
4 – (staple) Bind the document(s) with one or more staples. The exact number
and placement of the staples is site-defined.
5 – (punch) This value indicates that holes are required in the finished docu-
ment. The exact number and placement of the holes is site-defined The punch
specification may be satisfied (in a site- and implementation-specific manner)
either by drilling/punching, or by substituting predrilled media.
6 – (cover) This value is specified when it is desired to select a non-printed (or
preprinted) cover for the document. This does not supplant the specification of
a printed cover (on cover stock medium) by the document itself.
7 – (bind) This value indicates that a binding is to be applied to the document;
the type and placement of the binding is site-defined.
8 – (saddle-stitch) Bind the document(s) with one or more staples (wire
stitches) along the middle fold. The exact number and placement of the staples
and the middle fold is implementation and/or site-defined.
9 – (edge-stitch) Bind the document(s) with one or more staples (wire stitches)
along one edge. The exact number and placement of the staples is implementa-
tion and/or site-defined.
10 – (fold) Fold the document(s) with one or more folds. The exact number and
orientations of the folds is implementation and/or site-defined.
11 – (trim) Trim the document(s) on one or more edges. The exact number of
edges and the amount to be trimmed is implementation and/or site-defined.
12 – (bale) Bale the document(s). The type of baling is implementation and/or
site-defined.
13 – (booklet-maker) Deliver the document(s) to the signature booklet maker.
This value is a short cut for specifying a job that is to be folded, trimmed and
then saddle-stitched.
14 – (jog-offset) Shift each copy of an output document from the previous
copy by a small amount which is device dependent. This value has no effect on
the “job-sheet.” This value should not have an effect if each copy of the job
consists of one sheet.
50 – (bind-left) Bind the document(s) along the left edge. The type of the bind-
ing is site-defined.
51 – (bind-top) Bind the document(s) along the top edge. The type of the bind-
ing is site-defined.
52 – (bind-right) Bind the document(s) along the right edge. The type of the
binding is site-defined.
53 – (bind-bottom) Bind the document(s) along the bottom edge. The type of
the binding is site-defined.

IDPFolding ? refelement Provides details of how to fold the set of pages (or document). When this ele-
ment is present, Finishings is ignored.

IDPHoleMaking ? refelement Provides details of how to punch holes in the set of pages (or document). When
this element is present, Finishings is ignored.
758 Deprecated Resources

JDF Specification Release 1.2
Structure of IDPFolding Subelement
Deprecated in JDF 1.1
This element describes the folding requested for a set of pages in the document.

Structure of IDPHoleMaking Subelement
Deprecated in JDF 1.1
This element describes the hole making requested for a set of pages in the document.

Structure of the IDPLayout Subelement
Deprecated in JDF 1.1

IDPStitching ? refelement Provides details of how to stitch the set of pages (or document). When this ele-
ment is present, Finishings is ignored.

IDPTrimming ? refelement Provides details of how to trim the set of pages (or document). When this ele-
ment is present, Finishings is ignored.

Name Data Type Description
FoldingParams ? Refelement Describes the details of how to fold the media.

Name Data Type Description
HoleMakingParams ? refelement Describes the details of the holes to be punched into the Media.

Name Data Type Description
Border = “0” number A real number that indicates the width of a border, in points, which

will be drawn around the page images on the media.
Default = “0”, (i.e., no border will be drawn).

FinishedPageOrientation
= “Portrait”

enumeration Indicates the desired orientation of the finished page. This value is
used with PresentationDirection to determine how pages will
be imaged onto the media. Possible values are:
Portrait – The short edges of the media are the top and bottom.
Landscape – The long edges of the media are the top and bot-
tom.
Default = “Portrait”.

ForceFrontSide ? Number-
RangeList

A set of numbers which identify a set of finished pages in the
RunList that should always be imaged on the front side of a piece
of media.

ImageShift ? element Element which describes how page images should be placed onto
the media. When NumberUp is present and is not “1,1”,
NumberUp is applied before the ImageShift, and all contents
for each surface are shifted the same amount.

NumberUp ? XYPair The number of pages to impose onto a single side of media. The
way in which the pages are to be imaged onto the media is deter-
mined by the values of FinishedPageOrientation and
PresentationDirection. FinishedPageOrientation indi-
cates how the page will be oriented, and
PresentationDirection indicates how page images will be dis-
tributed, given that orientation.

Name Data Type Description
Deprecated Resources 759

Appendix X Deprecated Processes, Resources, and JMF Messaging Elements
Structure of IDPStitching Subelement
Deprecated in JDF 1.1

PresentationDirection ? enumeration Indicates the order in which the requested NumberUp pages will
be imaged onto the media. The value of
FinishedPageOrientation is used to define “top”, “left”,
“right” and “bottom” for the media. Possible values are:
ToBottomToRight – Pages are imaged in successive columns,
from left to right, starting at the top of each column.
ToBottomToLeft – Pages are imaged in successive columns,
from right to left, starting at the top of each column.
ToTopToRight – Pages are imaged in successive columns, from
left to right, starting at the bottom of each column.
ToTopToLeft – Pages are imaged in successive columns, from
right to left, starting at the bottom of each column.
ToRightToBottom – Pages are imaged in successive rows,
from top to bottom, starting at the left of each row.
ToRightToTop – Pages are imaged in successive rows, from
bottom to top, starting at the left of each row.
ToLeftToBottom – Pages are imaged in successive rows, from
top to bottom, starting at the right of each row.
ToLeftToTop – Pages are imaged in successive rows, from bot-
tom to top, starting at the right of each row.

Rotate = “0” number A number of degrees which the page contents are to be rotated
prior to being imaged onto page contents. A positive value is taken
to mean an counter-clockwise rotation. The page contents will be
scaled to fit the printable area of the media after the rotation.
Note: Text will be reflowed in cases where the PDL for the page
allows reflow by the device.
Default = “0”

Sides = “OneSided” enumeration Indicates how pages should be imposed onto sides of the medium.
Possible values are:
OneSided – Page contents will only be imaged on one side of the
media. The default.
TwoSidedLongEdge – Impose pages upon the front and back
sides of media sheets so that the orientation of the pages on each
side is appropriate for binding along the long edge. Equivalent to
“work-and-turn”.
TwoSidedShortEdge – Impose pages upon the front and back
sides of media sheets so that the orientation of the pages on each
side is appropriate for binding along the short edge. Equivalent to
“work-and-tumble”.
760 Deprecated Resources

JDF Specification Release 1.2
This element describes the stitching requested for a set of pages in the document.

Structure of IDPTrimming Subelement
Deprecated in JDF 1.1
This element describes the trimming requested for a set of pages in the document.

Structure of the ImageShift Subelement
Deprecated in JDF 1.1

Name Data
Type Description

StitchingPosition ? enumer-
ation

Specifies the location for stitching. All locations are interpreted as if the docu-
ment were a portrait document. Ignored if StitchingParams is present. Pos-
sible values are:
None – The document is not to be stitched.
TopLeft – Bind the document with one or more staples in the top left corner.
BottomLeft – Bind the document with one or more staples in the Bottom left
corner.
TopRight – Bind the document with one or more staples in the top right cor-
ner.
BottomRight – Bind the document with one or more staples in the bottom
right corner.
LeftEdge – Bind the document with one or more staples across the left edge.
TopEdge – Bind the document with one or more staples across the top edge.
RightEdge – Bind the document with one or more staples across the right
edge.
BottomEdge – Bind the document with one or more staples across the bottom
edge.
DualLeftEdge – Bind the document with two staples across the left edge.
DualTopEdge – Bind the document with two staples across the top edge.
DualRightEdge – Bind the document with two staples across the right edge.
DualBottomEdge – Bind the document with two staples across the bottom
edge.

StitchingReference
Edge ?

enumer-
ation

The edge of the output media relative to which the stapling or stitching must be
applied. If StitchingParams is present, StitchingReferenceEdge
defines the BindingEdge. Possible values are:
Bottom – The bottom edge coincides with the x-axis of the coordinate system.
Top – The top edge is opposite and parallel to the bottom edge.
Left – The left edge coincides with the y-axis of the coordinate system.
Right – The right edge is opposite and parallel to the left edge.

StitchingParams
?

refele-
ment

A StitchingParams element which provides detailed control of the stitching.
StitchingReferenceEdge must be present if StitchingParams is pro-
vided.

Name Data Type Description
TrimmingParams ? Refelement Describes the details of how to trim the media.
Deprecated Resources 761

Appendix X Deprecated Processes, Resources, and JMF Messaging Elements
ImageShift elements describe how finished page contents will be imaged onto media. All attributes refer to posi-
tioning along the “X” or “Y” axis. The “X” dimension is the first number of the Media Dimension attribute; “Y”
is the second number.

Structure of the JobSheet Subelement
Deprecated in JDF 1.1
This element describes a job sheet which may be produced along with the job. Job sheets include separators, sheets,
and error sheets. The information provided on the sheet depends on the type of sheet. In addition, any sheet type may

Name Data Type Description
PositionX =
“None”

enumeration Indicates how finished page images should be positioned horizontally on the sur-
face. Shifts are applied after positioning. Values are:
Center – Center the page images horizontally on the surface without regard to
limitations of the printable area.
Left – Position the left edge of the page images so they is coincident with the left
edge of the printable area of the surface.
None – Place the page images wherever the print data specifies (the default).
Right – Position the right edge of the page images so they is coincident with the
right edge of the printable area of the surface.

PositionY =
“None”

enumeration Indicates how finished page images should be positioned vertically on the surface.
Shifts are applied after positioning. Values are:
Bottom – Position the bottom edge of the page images so they is coincident with
the bottom edge of the printable area of the surface.
Center – Center the page images horizontally on the surface without regard to
limitations of the printable area.
None – Place the page images wherever the print data specifies (the default).
Top – Position the top edge of the page images so they is coincident with the top
edge of the printable area of the surface.

ShiftX ? integer The image is to be shifted along the x axis on both sides of the media.
ShiftY ? integer The image is to be shifted along the y axis on both sides of the media.
ShiftXSide1 ? integer The image is to be shifted along the x axis on the front side of the media.
ShiftXSide2 ? integer The image is to be shifted along the x axis on the back side of the media.
ShiftYSide1 ? integer The image is to be shifted along the y axis on the front side of the media.
ShiftYSide2 ? integer The image is to be shifted along the y axis on the back side of the media.
762 Deprecated Resources

JDF Specification Release 1.2
include an optional message as a comment subelement for the sheet element. Such a message comment must have a
Name attribute with the value ‘SheetMessage’.

Overriding IDPrintingParams using Partitioning
IDPrintingParams may be overridden using partitioning mechanisms as described in Section 3.8.2, Description
of Partitionable Resources. Overrides may apply to a set of instance documents, set of copies of instance documents,
or to a set of finished pages, output surfaces, sheets of media in a personalized printing job, or header or trailer insert
sheets added by a RunList. Note: If more than one override refers to the same content, the lowest level override
takes precedence. The following list defines partitioning precedence, from lowest to highest, (i.e., the lower entries in
the list take precedence):
Job level partitioning (lowest priority):
PartVersion, Run, SheetName, Side, RunTags

Name Data Type Description
SheetFormat =
“Standard”

NMTOKEN Identifies the format of the JobSheet. The default is “Standard”, but site-
specific values may be defined.

SheetOccurrence enumeration Indicates when the sheet is to be produced and inserted into the set of output
pages. Possible values are:
Always – Valid for ErrorSheet or AccountingSheet. The sheet is
always produced at the end of the job.
End – Valid for JobSheet or SeparatorSheet. The sheet is produced at
the end of the job (for JobSheet) or at the end of each copy of each instance
document (for SeparatorSheet).
OnError – Valid for ErrorSheet. The sheet is produced at the end of the
job when an error or warning occurs.
Slip – Valid for SeparatorSheet. The sheet is produced between each
copy of each instance document.
Start – Valid for JobSheet or SeparatorSheet. The sheet is produced
at the start of the job (for JobSheet) or at the start of each copy of each
instance document (for SeparatorSheet).
Both – Valid for JobSheet or SeparatorSheet. The sheet is produced at
the beginning and end of the job (for JobSheets) or at the beginning and end
of each copy of each instance document (for SeparatorSheets).
None – Valid for any SheetType.

SheetType enumeration Identifies the type of sheet. Possible values are:
AccountingSheet – A sheet that reports accounting information for the
job.
ErrorSheet – A sheet that reports errors for the job.
JobSheet – A sheet that delimits the job.
SeparatorSheet – A sheet that delimits one copy (set) of the job.

IDPFinishing ? refelement An IDPFinishing element that describes the finishing options for the job
sheet.

IDPLayout ? element This element provides the details of how page contents will be imaged onto the
job sheet.

MediaIntent ? refelement A MediaIntent element. This element describes the media to be used for the
job sheets. This element is ignored if a MediaSource resource is present and
can be honored. If MediaSource is absent or cannot be honored, this element
describes the intended media for the job sheets to allow the device to select
from among the available media.

MediaSource ? refelement Describes the source and physical orientation of the media to be used.
Deprecated Resources 763

Appendix X Deprecated Processes, Resources, and JMF Messaging Elements
Page level partitioning:
RunIndex
SheetIndex
Instance document level partitioning (highest priority):
DocCopies
DocIndex
DocSheetIndex
DocRunIndex
Note: It is strongly discouraged to mix page-level partitions and instance document-level partitions. Cover elements
in IDPrintingParams are counted when calculating DocSheetIndex or DocRunIndex.

Example of a partitioned IDPrinting Node
The following example shows how partitioning can be used to describe a fairly complex example. Three color models
(ColorantControl partitions) are applied to a set of sheets using the DocSheetIndex key;

1 DeviceN:DocSheetIndex = “0” defines the cover;

2 DeviceCMYK DocSheetIndex = “1” defines the first sheet (non cover);

3 DeviceGray:DocSheetIndex = “2~-1” defines all other sheets;
The cover is selected from a different input tray using the Location key. The same key is used to describe the
Media in each tray.

<?xml version='1.0' encoding='utf-8' ?>
<JDF ID="HDM20010402140111" Type="IDPrinting" JobID="HDM20010402140111"
Status="Waiting" Version="1.2">
 <ResourcePool>
 <Media ID="Link0003" Class="Consumable" Locked="false" Status="Available"
Dimension="700 900" MediaType="Paper" PartIDKeys="Location">
 <Media Weight="90" Location="Tray 1"/>
 <Media Weight="120" Location="Tray 2"/>
 </Media>
 <RunList ID="Link0004" Class="Parameter" Locked="false" Status="Available"
PartIDKeys="Run">
 <RunList Run="Run0005" Pages="0">
 <LayoutElement>
 <FileSpec URL="Cover.pdf"/>
 </LayoutElement>
 </RunList>
 <RunList Run="Run0006" Pages="0~7">
 <LayoutElement>
 <FileSpec URL="File2.pdf"/>
 </LayoutElement>
 </RunList>
 </RunList>
 <IDPrintingParams ID="Link0008" Class="Parameter" Locked="false"
Status="Available">
 <IDPLayout NumberUp="2 2"/>
 <MediaSource MediaLocation="Tray 1">
 <MediaRef rRef="Link0003"/>
 </MediaSource>
 <Cover CoverType="Front" FrontSide="true">
 <IDPLayout NumberUp="1 1"/>
 <MediaSource MediaLocation="Tray 2">
 <MediaRef rRef="Link0003"/>
 </MediaSource>
 </Cover>
 </IDPrintingParams>
764 Deprecated Resources

JDF Specification Release 1.2
 <ColorantControl ID="Link0009" Class="Parameter" Locked="false" Status="Available"
PartIDKeys="DocSheetIndex">
 <ColorantControl DocSheetIndex="0" ProcessColorModel="DeviceN"/>
 <ColorantControl DocSheetIndex="1" ProcessColorModel="DeviceCMYK"/>
 <ColorantControl DocSheetIndex="2~-1" ProcessColorModel="DeviceGray"/>
 </ColorantControl>
 </ResourcePool>
 <ResourceLinkPool>
 <MediaLink rRef="Link0003" Usage="Input"/>
 <RunListLink rRef="Link0004" Usage="Input"/>
 <IDPrintingParamsLink rRef="Link0008" Usage="Input"/>
 <ColorantControlLink rRef="Link0009" Usage="Input"/>
 </ResourceLinkPool>
</JDF>

X.2.6 LongitudinalRibbonOperationParams
Deprecated in JDF 1.1.
This resource provides the parameters of the LongitudinalRibbonOperation process. It is defined as a list of
abstract LROperation elements.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: RibbonName, SheetName, SignatureName, WebName
Input of processes: LongitudinalRibbonOperations
Output of processes: —

Resource Structure

Structure of LongitudinalRibbonOperationParams Elements
LROperation
Deprecated in JDF 1.1.
LROperation is an abstract element that describes the LongitudinalRibbonOperation process. The defined
instances (subclasses) of LROperation are LongFold, LongGlue, LongPerforate, and LongSlit. All instances
of LROperation have the following common contents.

LongFold
Deprecated in JDF 1.1.
LongFold is derived from the abstract element LROperation and describes a longitudinal fold operation and has
no further contents in addition to those of LROperation.

Name Data Type Description
LROperation + element Abstract element which is a placeholder for a longitudinal ribbon operation.

Name Data Type Description
WorkingList =
“0 1000000000”

NumberList List of lengths of the Operation to be performed in point. Entries with an
odd position (first, third, etc.) in the list define an offset where the tool is inac-
tive. Entries with an even position define a working length where the tool is
on. The start position is the leading edge of the plate.
If the sum of all entries is higher than the circumference of the press cylinder,
the values exceeding the circumference are cropped. Counting always restarts
at the leading edge. Default = “0 1000000000”, (i.e., always on).

XOffset double Position of the tool for longitudinal action along the cylinder axis.
Deprecated Resources 765

Appendix X Deprecated Processes, Resources, and JMF Messaging Elements
LongGlue
Deprecated in JDF 1.1.
LongGlue is derived from the abstract element LROperation and describes a longitudinal gluing operation and
has the following contents in addition to those of LROperation.

LongPerforate
Deprecated in JDF 1.1.
LongPerforate is derived from the abstract element LROperation and describes a longitudinal gluing operation
and has the following contents in addition to those of LROperation.

LongSlit
Deprecated in JDF 1.1.
LongSlit is derived from the abstract element LROperation and describes a longitudinal cut operation and has no
further contents in addition to those of LROperation.

X.2.7 MediaSource
Deprecated in JDF 1.1
This resource describes the source and physical orientation of the media to be used in DigitalPrinting or
IDPrinting.

Resource Properties
Resource class: Parameter
Resource referenced by: DigitalPrintingParams, IDPrintingParams, InsertSheet,

Layout, Sheet, Tile
Example Partition: —
Input of processes: DigitalPrinting, IDPrinting
Output of processes: —

Name Data Type Description
GlueBrand ? string Glue brand. Use only when Operation = Glue.
GlueType ? Enumeration If Operation = Glue, the following values can be used:

ColdGlue
Hotmelt
PUR – Polyurethane

LineWidth ? double Width of the Operation line.
MeltingTemperature ? integer Required temperature for melting the glue (in degrees centigrade).

Use only when GlueType = Hotmelt and Operation = Glue.

Name Data Type Description
TeethPerDimension ? integer If Operation = Perforate, the number of teeth in a given perforation

extent is defined in teeth/point.
MicroPerforation is defined by specifying a large number of teeth (n>1000).
766 Deprecated Resources

JDF Specification Release 1.2
Resource Structure

X.2.8 PackingParams
Deprecated in JDF 1.1
The PackingParams resource has been deprecated in version 1.1 and beyond. It is replaced by the individual resources
used by the processes defined in Section 6.6.48.4, Numbering and Section 6.6.48.5, Packaging Processes.

This resource specifies the box packing parameters for a JDF job, using information that identifies the type of
package, the wrapping used, and the shape of the package. Note that this specifies packing for shipping only, not
packing of items into custom boxes etc. Boxes are convenience packaging, and are not envisioned to be protection for
shipping. Cartons perform this function. All quantities are specified as finished pieces per wrapped/boxed/carton or pal-
letized package.

The model for packaging is that products are wrapped together, wrapped packages are placed in boxes, boxes are
placed in cartons, and cartons are stacked on pallets.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: Packing
Output of processes: —

Resource Structure

Name Data Type Description
LeadingEdge ? number Specifies the size, in points, of the edge of the media that represents the scanline

direction. If this attribute is absent, the scanline direction is assumed to be
along the x-axis of the Dimension parameter for the Media.

MediaLocation ? String Identifies the location, such as a slot name or ID, of the media in the device. If
the media resource is partitioned by Location (see also Section 3.8.2.6,
Locations of Physical Resources) there should be a match between one
Location partition key and this MediaLocation value.

ManualFeed =
“false”

boolean Indicates whether the media will be fed manually. Default = “false”

SheetLay ?
New in JDF 1.1

enumeration Lay of input media. Reference edge of where paper is placed in feeder. Possible
values are:
Left
Right
Center

Component ?
New in JDF 1.1

refelement A Component resource which identifies the preprinted media to be used.
Only one of Component or Media should be specified.

Media ? refelement A Media resource which identifies the media to be used. Only one of
Component or Media should be specified.

Name Data Type Description
BoxedQuantity ? integer How many units of product in a box.
BoxShape ? shape Describes the length, width and height of the box in points.
CartonQuantity ? integer How many units of product in a carton.
CartonShape ? shape Describes the length, width and height of the carton in points, (e.g., 288

544 1012).
Deprecated Resources 767

Appendix X Deprecated Processes, Resources, and JMF Messaging Elements
X.2.9 PlateCopyParams
Deprecated in JDF 1.1
This resource specifies the parameters of the FilmToPlateCopying process.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: FilmToPlateCopying
Output of processes: —

Resource Structure

X.2.10 ProofingParams
Deprecated in JDF 1.2

CartonMaxWeight ? double Maximum weight of an individual carton in kilograms.
CartonStrength ? double Strength of the carton in Newtons per square meter.
PalletQuantity ? integer Number of product per pallet
PalletSize ? XYPair Describes the length and width of the pallet in points, (e.g., 3500 3500).
PalletMaxHeight ? double Maximum height of a loaded pallet in points.
PalletMaxWeight ? double Maximum weight of a loaded pallet in kilograms.
PalletType ? enumeration Type of pallet used. Examples include:

2Way – Two-way entry
4Way – Four-way entry
Euro – Standard 1*1 m Euro pallet

PalletWrapping =
“None”

enumeration Wrapping of the completed pallet. Examples include:
StretchWrap
Banding
None – The default.

WrappedQuantity ? integer Number of units of product per wrapped package.
WrappingMaterial =
“None”

name Examples include:
RubberBand
ShrinkWrap
PaperBand
Polyethylene
None – The default.

Name Data Type Description
Cycle ? integer Number of exposure light units to be used. The amount depends

on the subject to be exposed.
Diffusion ? enumeration The diffusion foil setting. Possible values are:

On
Off

Vacuum ? double Amount of vacuum pressure to be used. Measured in bars.

Name Data Type Description
768 Deprecated Resources

JDF Specification Release 1.2
This resource specifies the settings needed for all proofing operations, including both “hard” or “soft” proofing, of
color and imposition proofs.

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: DocIndex, RunIndex, RunTags, SheetName, Side, SignatureName
Input of processes: Proofing, SoftProofing
Output of processes: —

Resource Structure
Name Data Type Description

ColorType ? enumeration Color quality of the proof. Possible values are:
Monochrome – Black and white.
BasicColor – Color does not match precisely. This implies the
absence of a color matching system.
MatchedColor – Color is matched to the output of the press using
a color matching system.

DisplayTraps = “false” boolean If true, the trap networks are shown in the proof. Default =
“false”

HalfTone = “false” boolean Specifies whether the proof should emulate halftone screens.
Default = “false”

ImageViewingStrategy
= “NoImages”

string Identifies which images will be displayed during the SoftProofing
process. Possible values are:
NoImages – Default value.
OmitReference – Displays only images actually embedded in the
file.
UseProxies – Displays images embedded in the file and proxy
versions of referenced data.
UseReplacements – Displays embedded images plus the full res-
olution version of referenced images.

ManualFeed = “false”
New in JDF 1.1

boolean Indicates whether the media will be fed manually. Default =
“false”

ProofRenderingIntent =
“Perceptual”
New in JDF 1.1

enumeration Identifies the rendering intents associated with the proof. Possible
ICC-defined rendering intent values are:
Saturation
Perceptual – The default.
RelativeColorimetric
AbsoluteColorimetric

ProofType = “None” enumeration Describes the type of the proof. Possible values are:
None – Default value. Not a proof or the type is unknown.
Page – Page proof
Imposition – Imposition proof.

Resolution ? XYPair Resolution of the output.
FileSpec ? refelement A FileSpec resource pointing to an ICC profile that describes the

proofer device. The ResourceUsage attribute of the FileSpec
must be “ProoferProfile”.

Media ? refelement Describes the media to be used.
Deprecated Resources 769

Appendix X Deprecated Processes, Resources, and JMF Messaging Elements
X.2.11 SaddleStitchingParams
This resource provides the parameters of the SaddleStitching process.
Deprecated in JDF 1.1

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: SaddleStitching
Output of processes: —

Resource Structure

The process coordinate system is defined as follows — The Y-axis is aligned with the binding edge, and increases
from the registered edge to the edge opposite the registered edge. The X-axis, meanwhile, is aligned with the regis-
tered edge. It increases from the binding edge to the edge opposite the binding edge, which is the product front edge.

Name Data Type Description
NumberOfStitches integer The number of stitches that will be made.
StitchPositions ? NumberList Array containing the stitch positions along the saddle. The center of the

stitch must be specified, and the number of entries must match the number
given in the NumberOfStitches attribute.

StapleShape ? enumeration Shape of staples. Possible values are:
Crown
Overlap
Butted
ClinchOut
Eyelet
These values are displayed in Figure X.2, below.

StitchWidth ? double Width of each stitch.
WireGauge ? double Gauge of the wire being used.
WireBrand ? string Brand of wire being used.

Figure X.2: Staple shapes
770 Deprecated Resources

JDF Specification Release 1.2
X.2.12 SideSewingParams
Deprecated in JDF 1.1
This resource provides the parameters for the SideSewing process. SideSewing is a special case of
ThreadSewing. The process coordinate system is defined in the following way: the Y-axis is aligned with the
binding edge. It then increases from the registered edge to the edge opposite to the registered edge. The X-axis is
aligned with the registered edge, which then increases from the binding edge to the edge opposite to the binding edge,
(i.e., the product front edge).

Resource Properties
Resource class: Parameter
Resource referenced by: —
Example Partition: —
Input of processes: SideSewing
Output of processes: —

Resource Structure

Figure X.3: Parameters and coordinate system used for side sewing

Name Data Type Description
NumberOfNeedles integer Specifies the number of needles to be used.
NeedlePositions ? NumberList Array containing the Y-coordinates of the needle positions. The number of

entries must match the number given in NumberOfNeedles.
Offset double Specifies the distance between the stitch and the binding edge.
SewingPattern ? enumeration Specifies the sewing pattern to be used. Possible values are:

Normal
Staggered
CombinedStaggered
Deprecated Resources 771

Appendix X Deprecated Processes, Resources, and JMF Messaging Elements
X.3 JMF Messaging Elements

X.3.1 KnownJDFServices
Deprecated in JDF 1.2
In JDF 1.2 and beyond, KnownJDFServices has been replaced with KnownDevices and DeviceDetails =
“Capabilities”.

The KnownJDFServices query returns a list of services that are defined in the JDF specification, such as
ConventionalPrinting, RIPing, or EndSheetGluing. It allows a controller to publish the services that the
devices it controls are capable of providing. The response is a list of JDFService elements, one for each supported
process type.

JDFService
JDFService elements define the node types that can be processed by the controller. A JDF processor should be
capable of processing Combined nodes of any of the individual JDFService elements that are specified. It is there-
fore not necessary to define every permutation of allowed combinations. It need not be able to process individual
nodes with a type defined in the Types attribute of a Combined JDFService element.

ThreadMaterial ? enumeration Specifies the thread material to be used. Possible values are:
Cotton
Nylon
Polyester

ThreadThickness ? double The thickness of the thread to be used.
ThreadBrand ? string The brand of thread to be used.

Table X-1: Contents of the KnownJDFServices message

Object Type Element name Description
QueryTypeObj — —
ResponseTypeObj JDFService * Processes that the controller or device can execute.

Table X-2: Contents of the JDFService element

Name Data Type Description
CombinedMethod ?
New in JDF 1.1

enumeration Specifies how the processes specified in Types may be specified. One of:
Combined – The list of processes in Types must be specified as a
Combined process.
ProcessGroup – The list of processes in Types must be specified as a
ProcessGroup of individual processes.
CombinedProcessGroup – The list of processes in Types may be
specified either as a Combined process or as a ProcessGroup of indi-
vidual processes.
None – No support for Combined or ProcessGroup. Only the individ-
ual process type defined in Types is supported. The default.

Type NMTOKEN JDF Type attribute of the supported process. Extension types may be spec-
ified by stating the namespace in the value.

Name Data Type Description
772 JMF Messaging Elements

JDF Specification Release 1.2
The following is an example of a response to a KnownJDFServices query:

<Response ID="M1" refID="Q1" Type="KnownJDFServices">
 <JDFService Type="Rendering" />
 <JDFService Type="Folding" />
 <JDFService Type="Combined" Types="Gathering Stitching"/>
 <JDFService Type="AnyCompaniesNamespace:MyFolding" />
 …
</Response>

X.3.2 QueueEntryStatus
Deprecated in JDF 1.2
In JDF 1.2 and beyond, use QueueStatus with an appropriate QueueFilter instead of QueueEntryStatus.

The QueueEntryStatus message returns queue entry descriptions. The QueueEntryDef elements specify the
queue entries to be queried. If no QueueEntryDef element is specified, the query returns a list of QueueEntry
elements, one for each entry in the queue. If no QueueEntryDef is specified and the query defines a persistent
channel, a Signal is emitted for any entry whose status changes. This includes changes as a result of modifications of
the queue status, such as hold or resume.

Structure of the QueueEntryDefList Element
New in JDF 1.1A
Deprecated in JDF 1.2

TypeOrder ?
New in JDF 1.1

enumeration Ordering restriction for combined nodes.
Fixed – The order of process types specified in the Types attribute is
ordered and each type can be specified only once, e.g., Cutting, Folding;
order does matter. The default.
Unordered – The order of process types specified in the Types attribute
is unordered and each type can be specified only once, e.g., DigitalPrinting,
Screening, Trapping; order does not matter.
Unrestricted – The order of process types specified in the Types
attribute is unordered and each type can be specified multiply, e.g., Cutting,
Folding, where the device can do both processes, in any order and multiple
times.

Types ? NMTOKENS If Type = Combined, or Type = ProcessGroup this attribute repre-
sents the list of combined processes. If any of the services are in a
namespace other than JDF, the namespace prefix should be included in this
list. For details, see Section 3.1.5, Combined Process Nodes.

Table X-3: Contents of the QueueEntryStatus message

Object Type Element name Description
QueryTypeObj
Modified in JDF 1.1A

QueueEntryDefList Defines the addressed queue entries. Note that this ele-
ment was QueueEntryDef * prior to JDF1.1A.

ResponseTypeObj QueueEntry * Describes the status of the queried queue entries.
For the definition of the elements above see Section 5.6.5, Queue-Handling Elements.

Table X-2: Contents of the JDFService element
JMF Messaging Elements 773

Appendix X Deprecated Processes, Resources, and JMF Messaging Elements
The QueryTypeObj of QueueEntryStatus has been modif ied from QueueEntryDef * to
QueueEntryDefList because of a type collision in the XML Schema. QueueEntryDef had been used both as a
QueryTypeObj and as a CommandTypeObj.

Table X-4: Contents of the QueueEntryDefList element

Name Data Type Description
QueueEntryDef * element Defines the addressed queue entries.
774 JMF Messaging Elements

JDF Specification Release 1.2
Appendix Y Table of Tables
Table 1-1 Basic References ... 2
Table 1-2 Conformance Terminology ... 7
Table 1-3 JDF data types ... 9
Table 1-4 Units used in JDF... 12
Table 2-1 Information contained in JDF nodes, arranged numerically....................................... 18
Table 2-2 Information contained in JDF nodes, arranged by group ... 18
Table 2-3 Matrices and Orientation values used to describe the orientation of a Component ... 24
Table 3-1 Generic Contents of elements.. 35
Table 3-2 Contents of the Comment element .. 36
Table 3-3 Definition of “Scope” Terms used in Table 3-4 on page 38 ... 37
Table 3-4 Contents of a JDF node ... 38
Table 3-5 Contents of the AncestorPool element... 48
Table 3-6 Attributes of the Ancestor element ... 48
Table 3-7 Contents of the CustomerInfo element .. 49
Table 3-8 Contents of the CustomerMessage element.. 50
Table 3-9 Contents of the NodeInfo element ... 51
Table 3-10 Contents of the StatusPool element... 52
Table 3-11 Contents of the PartStatus element.. 53
Table 3-12 Contents of the ResourcePool element ... 53
Table 3-13 Contents of the abstract Resource element... 53
Table 3-14 Additional contents of the abstract parameter Resource elements.......................... 57
Table 3-15 Additional contents of the abstract physical Resource elements 58
Table 3-16 Contents of the Location element .. 58
Table 3-17 Contents of the abstract ResourceUpdate Element... 60
Table 3-18 Contents of the ResourceLinkPool element... 63
Table 3-19 Contents of the abstract ResourceLink element .. 64
Table 3-20 Contents of the AmountPool element .. 65
Table 3-21 General contents of the PartAmount element .. 66
Table 3-22 Contents of the abstract ImplementationLink or PartAmount element..................... 66
Table 3-23 Additional contents of the abstract physical ResourceLink and PartAmount element ..
67
Table 3-24 Contents of the abstract ResourceRef element ... 68
Table 3-25 Contents of the abstract ResourceElement ... 69
Table 3-26 Example of Actual Amount and Amount Handling ... 73
Table 3-27 Contents of the Partitionable Resource Element ... 78
Table 3-28 Contents of the Part element ... 79
Table 3-29 PartUsage example uses ... 86
Table 3-30 Contents of the AuditPool element... 89
Table 3-31 Contents of the abstract Audit type .. 91
Table 3-32 Contents of the ProcessRun element .. 91
Table 3-33 Contents of the Notification element .. 92
Table 3-34 Contents of the PhaseTime element .. 93
Table 3-35 Contents of the ModulePhase element .. 94
Table 3-36 Contents of the ResourceAudit element .. 95
Table 3-37 Contents of the Created element ... 96
Table 3-38 Contents of the Deleted Element ... 97
Table 3-39 Contents of the Modified element .. 97
Table 3-40 Contents of the Spawned element ... 97
775

Appendix Y Table of Tables
Table 3-41 Contents of the Merged element.. 98
Table 3-42 Example from TrappingParams ... 100
Table 4-1 Business Objects as defined by PrintTalk .. 106
Table 4-2 Examples of resource and process states in the case of simple process routing..... 112
Table 4-3 Actions generated when a dynamic-pipe buffer passes various levels 116
Table 5-1 Contents of the JMF element ... 130
Table 5-2 Contents of the abstract Message element.. 130
Table 5-3 Contents of the Query message element... 132
Table 5-4 Contents of the Response message element .. 133
Table 5-5 Contents of the Signal message element .. 134
Table 5-6 Table 5-6 Contents of the Trigger element ... 134
Table 5-7 Contents of the ChangedPath element .. 135
Table 5-8 Contents of the ChangedAttribute element .. 135
Table 5-9 Contents of the Added element.. 136
Table 5-10 Contents of the Removed element... 136
Table 5-11 Contents of the Command message element .. 136
Table 5-12 Contents of the Acknowledge message element ... 138
Table 5-13 Contents of the Subscription element .. 139
Table 5-14 Contents of the ObservationTarget element... 139
Table 5-15 Messaging table template .. 141
Table 5-16 Process registration and communication messages.. 142
Table 5-17 Contents of the Events message ... 142
Table 5-18 Contents of the NotificationFilter element .. 143
Table 5-19 Contents of the NotificationDef element... 144
Table 5-20 Contents of the KnownControllers message.. 144
Table 5-21 Contents of the JDFController element.. 144
Table 5-22 Contents of the KnownDevices message .. 145
Table 5-23 Contents of the DeviceFilter element ... 145
Table 5-24 Contents of the DeviceList element ... 146
Table 5-25 Contents of the KnownMessages message... 146
Table 5-26 Contents of the KnownMsgQuParams element ... 146
Table 5-27 Contents of the MessageService element ... 146
Table 5-28 Contents of the RepeatMessages message .. 147
Table 5-29 Contents of the MsgFilter element ... 147
Table 5-30 Contents of the StopPersistentChannel message.. 148
Table 5-31 Contents of the StopPersChParams element .. 148
Table 5-32 Status and progress messages.. 149
Table 5.33 Contents of the FlushResources message .. 150
Table 5.34 Contents of the FlushResourceParams element.. 150
Table 5-35 Contents of the NewJDF query message .. 150
Table 5-36 Contents of the NewJDFQuParams element ... 151
Table 5-37 Contents of the NewJDF Command Message... 151
Table 5-38 Contents of the NewJDFCmdParams element .. 151
Table 5-39 Contents of the IDInfo element .. 151
Table 5-40 Contents of the NodeInfo query message.. 152
Table 5-41 Contents of the NodeInfoQuParams element .. 152
Table 5-42 Contents of the NodeInfo Command Message .. 152
Table 5-43 Contents of the NodeInfoCmdParams element ... 153
Table 5-44 Contents of the NodeInfoResp element ... 153
Table 5-45 Contents of the Occupation message .. 154
776

JDF Specification Release 1.2
Table 5-46 Contents of the EmployeeDef element .. 154
Table 5-47 Contents of the Occupation element.. 154
Table 5-48 Contents of the Resource query message... 155
Table 5-49 Contents of the ResourceQuParams element ... 155
Table 5-50 Contents of the Resource command message .. 156
Table 5-51 Contents of the ResourceCmdParams element... 157
Table 5-52 Contents of the ResourceInfo element... 158
Table 5.53 Contents of the ResourcePull message ... 160
Table 5.54 Contents of the ResourcePullParams element .. 160
Table 5.55 Contents of the ShutDown message.. 162
Table 5.56 Contents of the ShutdownCmdParams element .. 162
Table 5-57 Contents of the Status message .. 162
Table 5-58 Contents of the StatusQuParams element... 163
Table 5-59 Contents of the DeviceInfo element ... 164
Table 5-60 Contents of the JobPhase element .. 165
Table 5-61 Contents of the ModuleStatus element .. 167
Table 5-62 Contents of the Track message ... 168
Table 5-63 Contents of the TrackFilter element ... 168
Table 5-64 Contents of the TrackResult element ... 169
Table 5.65 Contents of the WakeUp message... 169
Table 5.66 Contents of the WakeUpCmdParams element... 169
Table 5-67 Dynamic pipe messages .. 170
Table 5-68 Contents of the PipeClose message.. 170
Table 5-69 Contents of the PipePull message ... 170
Table 5-70 Contents of the PipeParams element .. 171
Table 5-71 Contents of the PipePush message... 172
Table 5-72 Contents of the PipePause message... 173
Table 5-73 QueueEntry handling messages .. 174
Table 5-74 Status transitions for QueueEntry handling messages .. 174
Table 5-75 Contents of the AbortQueueEntry message .. 176
Table 5-76 Contents of the HoldQueueEntry message.. 176
Table 5-77 Contents of the RemoveQueueEntry message.. 177
Table 5-78 Contents of the RequestQueueEntry message.. 177
Table 5-79 Contents of the ResubmitQueueEntry message.. 178
Table 5-80 Contents of the ResubmissionParams element ... 178
Table 5-81 Contents of the ResumeQueueEntry message.. 178
Table 5-82 Contents of the ReturnQueueEntry message .. 178
Table 5-83 Contents of the ReturnQueueEntryParams element.. 179
Table 5-84 Contents of the SetQueueEntry message.. 179
Table 5-85 Contents of the QueueEntryPosParams element .. 179
Table 5-86 Contents of the SetQueueEntryPriority message .. 180
Table 5-87 Contents of the QueueEntryPriParams element .. 180
Table 5-88 Contents of the SubmitQueueEntry message.. 180
Table 5-89 Contents of the QueueSubmissionParams element .. 181
Table 5-90 Contents of the SuspendQueueEntry message... 182
Table 5-91 Global queue-handling commands .. 182
Table 5-92 Definition of the Queue Status Attribute values.. 183
Table 5-93 Contents of the CloseQueue message .. 183
Table 5-94 Contents of the FlushQueue Command message ... 184
Table 5-95 Contents of the FlushQueue Query message.. 184
777

Appendix Y Table of Tables
Table 5-96 Contents of the HoldQueue message .. 185
Table 5-97 Contents of the OpenQueue message... 185
Table 5-98 Contents of the QueueStatus message ... 185
Table 5-99 Contents of the ResumeQueue message .. 186
Table 5-100 Contents of the SubmissionMethods message.. 186
Table 5-101 Contents of the SubmissionMethods element.. 186
Table 5-102 Contents of the Queue element ... 187
Table 5-103 Contents of the QueueEntry element... 188
Table 5-104 Contents of the QueueEntryDef element ... 189
Table 5.105 Contents of the QueueFilter Element ... 189
Table 7-1 ChannelTypeDetails predefined values for different ChannelType values............... 322
Table 7-2 Terms and definitions for components ... 324
Table 7-3 Cut Mark Types .. 335
Table 7-4 Predefined variables used in FileTemplate .. 364
Table 7-5 Parameters in Stacking .. 473
Table 7-6 Example 1 of Ord in PlacedObjects ... 486
Table 7-7 Example 2 of Ord in PlacedObjects ... 486
Table 7-8 Document Object Classes.. 539
Table 7-9 Properties Implemented by Class .. 539
Table 7-10 Mapping between property types (in the preflight spec) and Evaluations.............. 540
Table 7-11 Allowed Box Types ... 542
Table A-1 JDFJMFVersion enumeration Values .. 575
Table A-2 Named Colors.. 576
Table A-3 Page Orientation.. 576
Table A-4 Side enumeration Values... 577
Table A-5 WorkStyle enumeration Values.. 577
Table A-6 XYRelation enumeration Values. ... 577
Table D-1 Conversion of PPF Data Types ... 598
Table D-2 JDF Representation of a product definition step ... 598
Table D-3 Converting a PPF Component... 599
Table D-4 Converting the PPF EndSheetGluing operation to JDF .. 600
Table D-5 Converting the PPF AdhesiveBinding operation to JDF.. 600
Table D-6 Converting the PPF AdhesiveBinding suboperation Lining 601
Table D-7 Converting the PPF AdhesiveBinding suboperation CoverApplication 601
Table D-8 Converting the PPF GluingIn operation to JDF ... 601
Table D-9 Converting the PPF Folding operation to JDF... 602
Table D-10 Converting the PPF Folding suboperation of type Fold... 602
Table D-11 Converting the PPF Folding suboperation of type Lime .. 603
Table D-12 Converting the PPF Folding suboperation of all other types 603
Table D-13 Converting administration data.. 605
Table D-14 PPF preview representation as PNG... 606
Table D-15 Converting the parameter of the CIP3PlaceRegisterMark command.................... 607
Table D-16 Converting PPF color-measuring data .. 608
Table D-17 Converting PPF density-measuring data... 608
Table D-18 Converting the parameter of the CIP3PlaceColorControlStrip command.............. 608
Table D-19 Converting the Cutting Data structure ... 609
Table D-20 Converting the parameter of the CIP3PlaceCutMark command 609
Table E-1 IFRA object states .. 611
Table G-1 StatusDetails and Status mapping for generic devices ... 615
Table G-2 Printing Device specific StatusDetails ... 615
778

JDF Specification Release 1.2
Table G-3 PostPress Device specific StatusDetails ... 616
Table H-1 ModuleType definition for conventional printing devices ... 617
Table H-2 ModuleType definition Gathering / Collecting .. 617
Table H-3 ModuleType definition for DigitalPrinting ... 617
Table I-1 Return codes for JMF.. 619
Table J-1 Contents of the Barcode element... 621
Table J-2 Contents of the FCNKey element... 621
Table J-3 Contents of the SystemTimeSet element ... 621
Table J-4 Contents of the CounterReset element .. 621
Table J-5 Contents of the Error element, derived from NotificationDetails 622
Table J-6 Contents of the Event element, derived from NotificationDetails 622
Table O-1 Locations within Printers ... 633
Table P-1 MimeType (MIME Media Types Registered with IANA), MimeTypeVersion combinations
635
Table P-2 MimeType (File Type) and MimeTypeVersion combinations 638
Table Q-1 Use Cases showing MimeType, URL, and Compression attribute values 641
Table S-1 AppOS and OSVersion Examples ... 651
Table T-1 Complete References .. 653
Table X-1 Contents of the KnownJDFServices message .. 772
Table X-2 Contents of the JDFService element ... 772
Table X-3 Contents of the QueueEntryStatus message... 773
Table X-4 Contents of the QueueEntryDefList element ... 774
779

Appendix Y Table of Tables
780

Appendix Z Terminology Usage
This document contains many terms specific to its interpretation and intent. Many of the terms are described in rela-
tion to various processes, components, and values throughout the document. The more prominent terms are listed
below to make it easier for the casual user to locate precise definitions and usage

Table Z.1: Terminology Usage

Term

Te
rm

 T
yp

e

G
lo

ss
ar

y
of

Te

rm
in

ol
og

y
(S

ec
t.

1.
4)

D
at

a
St

ru
ct

ur
es

(S
ec

t.
1.

5)

Jo
b

C
om

po
ne

nt
s

(S
ec

t.
2.

1.
1)

W
or

kf
lo

w

C
om

po
ne

nt
s

(S
ec

t.
2.

1.
2

R
el

at
io

ns
hi

ps
(S

ec
t.

2.
1.

1.
4)

O
th

er

Acknowle
dge

message Section
5.2.1.5

Activati
on

enumeration Table 3.3,
Table 5.38

Agent(s) consumer X Section
2.1.2.3

Ancestor element X
AncestorP
ool

element Sect. 3.3
Table 3.4

Attribute(s
)

attribute X Section
2.1.1.3

Sect. 3.1.2

AuditPool elements Sect. 3.10
Big job X
boolean data type X Table A.1
Branch node X
Child element X
Class data type X
CMYK
color

data type X A.2.1

Command message Section
5.2.1.4

Controllers consumer X Section
2.1.2.4

Coordinate
systems

Section 2.5

Customer node Section 3.4
Date data type X Table A.1
DateTime data type X Table A.1
Default value X Sect. 1.4.2.1
Deprecated X
Descende
nt

element X

Devices consumer X Section
2.1.2.2
781

Appendix Z Terminology Usage
Document
set

X

Double data type X Table A.1
DoubleList data type X A.2.11
Dou-
bleRange

data type X A.2.12

Dou-
bleRange-
List

data type X A.2.13

Duration data type X Table A.1
Duration-
Range

data type X A. 2.2

Element(s) job compo-
nent

X X Section
2.1.1.2

Enumerat
ion(s)

data type X

Finished
page

job compo-
nent

X

gYearMonth data type X Table A.1
ID/
IDREF(s)

X Table A.1

IfraTrack
modeling

App. E

Instance
document

job compo-
nent

X

Integer data type X Table A.1
IntegerList data type X A.2.3
Integer-
Range

data type X A.2.4

Integer-
RangeList

data type X A.2.5

intent
resources

3.2.1, 7.1.1.1

IPP mapping App. F
iterative pro-
cessing

2.3

JDF con-
sumer

X

JMF X Chapt. 5

Table Z.1: Terminology Usage

Term

Te
rm

 T
yp

e

G
lo

ss
ar

y
of

Te

rm
in

ol
og

y
(S

ec
t.

1.
4)

D
at

a
St

ru
ct

ur
es

(S
ec

t.
1.

5)

Jo
b

C
om

po
ne

nt
s

(S
ec

t.
2.

1.
1)

W
or

kf
lo

w

C
om

po
ne

nt
s

(S
ec

t.
2.

1.
2

R
el

at
io

ns
hi

ps
(S

ec
t.

2.
1.

1.
4)

O
th

er
782

JDF Specification Release 1.2
Job(s) job compo-
nent

X Section
2.1.1.1

Job part node X
LabColor data type X A.2.6
Language data type X Table A.1
Leaf element X
Links job compo-

nents
X Section

2.1.1.5
A.3.1

Machines job compo-
nents

X Section
2.1.2.1

Matrix data type X A.2.7
Merging process Section 4.4
MIME File
Packaging

A.4.1

MIS X Sesction
2.1.2.5

NamedColor data type X A.2.8
NameRange data type X A.2.9
Nam-
eRangeList

data type X A.2.10

NMTO-
KEN(S)

data type X Table A.1

Node(s) element X Section
2.1.1.1

Table 3.3

Parent element X
Partitioned
resource

resource X

Path data type X A.2.14
PDL X
PJTF con-
version

App. C

PNG format A.4.3
PPF conver-
sion

App. D

Process consumer X
Process
nodes

Section 3.2
Chapter 6

Product
intent nodes

node Section 3.2.1

Table Z.1: Terminology Usage

Term

Te
rm

 T
yp

e

G
lo

ss
ar

y
of

Te

rm
in

ol
og

y
(S

ec
t.

1.
4)

D
at

a
St

ru
ct

ur
es

(S
ec

t.
1.

5)

Jo
b

C
om

po
ne

nt
s

(S
ec

t.
2.

1.
1)

W
or

kf
lo

w

C
om

po
ne

nt
s

(S
ec

t.
2.

1.
2

R
el

at
io

ns
hi

ps
(S

ec
t.

2.
1.

1.
4)

O
th

er
783

Appendix Z Terminology Usage
Query message Section
5.2.1.1

Queue consumer X
Reader page value X
Rectangle data type X A.2.15
Refelement data type X
Relation-
ships

job compo-
nents

Section
2.1.1.4

Resource(s) job compo-
nent

X

Response message Section
5.2.1.2

Root element X
Shape data type X
ShapeRange data type X A.2.16
ShapeR-
angeList

data type X A.2.17

Sibling element X
Signal message Section

5.2.1.3
Small job X
Spawning process Section 4.4
sRGBcolor data type X A.2.18
String data type X Table A.1
Support value X
System
interaction

job compo-
nents

Section
2.1.2.6

Tag value X
Telem data type X
Text data type X
TimeRange data type X A.2.19
Transfer-
Function

data type X A.2.20

URI data type X Table A.1
URL data type X Table A.1
Work center X
Workflow
components

job compo-
nents

Section 2.1.2

Table Z.1: Terminology Usage

Term

Te
rm

 T
yp

e

G
lo

ss
ar

y
of

Te

rm
in

ol
og

y
(S

ec
t.

1.
4)

D
at

a
St

ru
ct

ur
es

(S
ec

t.
1.

5)

Jo
b

C
om

po
ne

nt
s

(S
ec

t.
2.

1.
1)

W
or

kf
lo

w

C
om

po
ne

nt
s

(S
ec

t.
2.

1.
2

R
el

at
io

ns
hi

ps
(S

ec
t.

2.
1.

1.
4)

O
th

er
784

JDF Specification Release 1.2
XYPair data type X A.2.21
XYPair-
Range

data type X A.2.22

XYPair/
RangeList

data type X A.2.23

Table Z.1: Terminology Usage

Term

Te
rm

 T
yp

e

G
lo

ss
ar

y
of

Te

rm
in

ol
og

y
(S

ec
t.

1.
4)

D
at

a
St

ru
ct

ur
es

(S
ec

t.
1.

5)

Jo
b

C
om

po
ne

nt
s

(S
ec

t.
2.

1.
1)

W
or

kf
lo

w

C
om

po
ne

nt
s

(S
ec

t.
2.

1.
2

R
el

at
io

ns
hi

ps
(S

ec
t.

2.
1.

1.
4)

O
th

er
785

	Legal Notice
	Table of Contents
	Legal Notice i
	Table of Contents iii
	List of Figures xxvii
	Chapter 1 Introduction 1
	Chapter 2 Overview of JDF 13
	Chapter 3 Structure of JDF Nodes and Jobs 33
	Chapter 4 Life Cycle of JDF 105
	Chapter 5 JDF Messaging with the Job Messaging Format 129
	Chapter 6 Processes 191
	Chapter 7 Resources 237
	Chapter 8 Building a System Around JDF 559
	Appendix A Encoding 565
	Appendix B Schema 579
	Appendix C Converting PJTF to JDF 581
	Appendix D Converting PPF to JDF 597
	Appendix E Modeling IfraTrack in JDF 611
	Appendix F Mapping between JDF and IPP 613
	Appendix G StatusDetails Supported Strings 615
	Appendix H ModuleType Supported Strings 617
	Appendix I Supported Error Codes in JMF and Notification elements 619
	Appendix J NotificationDetails 621
	Appendix K MessageEvents Values 623
	Appendix L Color Adjustment Attribute Description and Usage 625
	Appendix M North American Media Weight Explained 627
	Appendix N Media Sizes 629
	Appendix O Input Tray and Output Bin Names 633
	Appendix P FileSpec Attribute Examples for MimeType and MimeTypeVersion Attributes 635
	Appendix Q FileSpec MimeType, URL, and Compression attributes, and Container subelement 641
	Appendix R Resolving RunList/@Directory and FileSpec/@URL URI references 649
	Appendix S AppOS and OSVersion Attributes 651
	Appendix T References 653
	Appendix U JDF/CIP4 Hole Pattern Catalog 663
	Appendix V Examples 669
	Appendix W New, Deprecated, Modified, Illegal, & Removed Items 705
	Appendix X Deprecated Processes, Resources, and JMF Messaging Elements 743
	Appendix Y Table of Tables 775
	Appendix Z Terminology Usage 781

	List of Figures
	Chapter 1 Introduction
	1.1 Background on JDF
	1.2 Document References
	1.3 Conventions Used in This Specification
	1.3.1 Text Styles
	1.3.2 XPath Notation Used in this Specification
	1.3.3 Call-Outs
	1.3.4 Specification of Cardinality

	1.4 Glossary of Terminology
	1.4.1 Conformance Terminology
	1.4.2 Conformance Requirements for JDF Entities
	1.4.2.1 Conformance Requirements for Support of Attributes and Attribute Values
	1.4.2.2 Conformance Requirements for Support of Elements
	1.4.2.3 Conformance Requirements for Support of Processes
	1.4.2.4 Conformance Requirements for Support of Combined Processes

	1.4.3 Conformance to SettingsPolicy

	1.5 Data Structures
	1.6 Units

	Chapter 2 Overview of JDF
	2.1 System Components
	2.1.1 Job Components
	2.1.1.1 Jobs and Nodes
	2.1.1.2 Elements
	2.1.1.3 Attributes
	2.1.1.4 Relationships
	2.1.1.5 Links

	2.1.2 Workflow Component Roles
	2.1.2.1 Machines
	2.1.2.2 Devices
	2.1.2.3 Agents
	2.1.2.4 Controllers
	2.1.2.5 Management Information Systems-MIS
	2.1.2.6 System Interaction

	2.2 JDF Workflow
	2.2.1 Job Structure

	2.3 Hierarchical Tree Structure and Networks in JDF
	2.4 Role of Messaging in JDF
	2.5 Coordinate Systems in JDF
	2.5.1 Introduction
	2.5.2 How and Where Coordinates and Transformations Are Used/Defined in JDF
	2.5.3 Coordinate Systems of Resources and Processes
	2.5.3.1 Coordinate Systems of Combined Processes
	2.5.3.2 Coordinate System Transformations

	2.5.4 Product Example: Simple Brochure
	2.5.5 General Rules
	2.5.6 Homogeneous Coordinates

	Chapter 3 Structure of JDF Nodes and Jobs
	3.1 JDF Nodes
	3.1.1 Generic Contents of JDF Elements
	3.1.2 JDF Node Attributes and Elements
	3.1.2.1 Common Node Types

	3.1.3 Product Intent Nodes
	3.1.4 Process Group Nodes
	3.1.4.1 Use of the Types attribute in ProcessGroup nodes
	3.1.4.2 Use of the NamedFeatures attribute in Product and ProcessGroup nodes
	3.1.4.3 ResourceLink Structure in ProcessGroup nodes

	3.1.5 Combined Process Nodes
	3.1.5.1 Combined Process Nodes with Multiple Processes of the Same Type
	3.1.5.2 Examples of Combined Process Nodes

	3.1.6 Process Nodes

	3.2 AncestorPool
	3.3 Customer Information in CustomerInfo
	3.4 Node Information in NodeInfo
	3.5 StatusPool
	3.6 Resources
	3.6.1 Resource Classes
	3.6.1.1 Parameter Resources
	3.6.1.2 Intent Resources
	3.6.1.3 Implementation Resources
	3.6.1.4 Physical Resources (Consumable, Quantity, Handling)
	3.6.1.5 PlaceHolder Resources

	3.6.2 Position of Resources within JDF Nodes
	3.6.3 Pipe Resources
	3.6.4 ResourceUpdate Elements

	3.7 Resource Links
	3.7.1 Links to Parameter Resources
	3.7.2 Links to Implementation Resources
	3.7.3 Links to Physical Resources
	3.7.4 Links to PlaceHolder Resources
	3.7.5 Links to Intent Resources
	3.7.6 Inter-Resource Linking Using ResourceRef
	3.7.6.1 Status of Resources That Contain rRef References
	3.7.6.2 Alignment of ResourceLink and ResourceRef

	3.8 Subsets of Resources
	3.8.1 Resource Amount
	3.8.1.1 Evaluating and Updating Amount related attributes in a Device
	3.8.1.2 Specifying Amount for a partially completed process

	3.8.2 Description of Partitionable Resources
	3.8.2.1 Amount in Partitionable Resources
	3.8.2.2 Relating PartIDKeys and Partitions
	3.8.2.2.1 Incomplete Partitions
	3.8.2.2.2 Multiple Keys per Partitioned Leaf or Node
	3.8.2.2.3 Degenerate Partitions

	3.8.2.3 Partitioning of Resource sub-Elements
	3.8.2.4 Additional Attributes for use with partitioned Resources
	3.8.2.5 Options in Intent Resources
	3.8.2.6 Locations of Physical Resources

	3.8.3 Linking to Subsets of Resources
	3.8.3.1 Handling Amount in a ResourceLink to a Partitioned Resource
	3.8.3.2 Implicit and Explicit PartUsage in Partitioned Resources
	3.8.3.3 Referencing Partitioned Resources from Nodes That Allow Multiple ResourceLinks

	3.8.4 Splitting and Combining Resources

	3.9 AuditPool
	3.9.1 Audit Elements
	3.9.1.1 ProcessRun
	3.9.1.2 Notification
	3.9.1.2.1 NotificationDetails

	3.9.1.3 PhaseTime
	3.9.1.4 ResourceAudit
	3.9.1.4.1 Logging Machine Data by Using the ResourceAudit
	3.9.1.4.2 Logging Changes in Product Descriptions by Using the ResourceAudit

	3.9.1.5 Created
	3.9.1.6 Deleted
	3.9.1.7 Modified
	3.9.1.8 Spawned
	3.9.1.9 Merged

	3.10 JDF Extensibility
	3.10.1 Namespaces in XML
	3.10.1.1 JDF Namespace
	3.10.1.2 JDF Extension Namespace

	3.10.2 Extending Process Types
	3.10.3 Extending Existing Resources
	3.10.4 Extending NMTOKEN Lists
	3.10.5 Creating New Resources
	3.10.6 Future JDF Extensions
	3.10.7 Maintaining Extensions
	3.10.8 Processing Unknown Extensions
	3.10.9 Derivation of Types in XMLSchema

	3.11 JDF Versioning
	3.11.1 JDF Versioning Requirements
	3.11.2 JDF Version Definition
	3.11.3 JDF Version Policies
	3.11.3.1 JDF Specification Version Policies
	3.11.3.2 JDF Schema Version Policies
	3.11.3.3 JDF Application Version Policies
	3.11.3.3.1 JDF Agent Version Policies
	3.11.3.3.2 JDF Device/Controller Version Policies

	Chapter 4 Life Cycle of JDF
	4.1 Creation and Modification
	4.1.1 Product Intent Constructs
	4.1.1.1 Representation of Product Intent
	4.1.1.2 Representation of Product Binding

	4.1.2 Defining Business Objects Using Intent Resources
	4.1.3 Specification of Delivery of End Products
	4.1.4 Specification of Process Specifics for Product Intent Nodes

	4.2 Process Routing
	4.2.1 Determining Executable Nodes
	4.2.2 Distributing Processing to Work Centers or Devices
	4.2.3 Device / Controller Selection

	4.3 Execution Model
	4.3.1 Serial Processing
	4.3.2 Partial Processing of Nodes with Partitioned Resources
	4.3.3 Overlapping Processing Using Pipes
	4.3.3.1 Pipes of Partitionable Resources
	4.3.3.2 Dynamic Pipes
	4.3.3.3 Comparison of Non-Dynamic and Dynamic Pipes

	4.3.4 Parallel Processing
	4.3.5 Iterative Processing
	4.3.5.1 Informal Iterative Processing
	4.3.5.2 Formal Iterative Processing

	4.3.6 Approval, Quality Control, and Verification

	4.4 Spawning and Merging
	4.4.1 Case 1: Standard Spawning and Merging
	4.4.2 Case 2: Spawning and Merging with Resource Copying
	4.4.2.1 Spawning of Resources with Inter-Resource Links

	4.4.3 Case 3: Parallel Spawning and Merging of Partitioned Resources
	4.4.4 Case 4: Nested Spawning and Merging in Reverse Sequence
	4.4.5 Case 5: Spawning and Merging of Independent Jobs
	4.4.6 Case 6: Simultaneous Spawning and Merging of Multiple Nodes

	4.5 Node and Resource IDs
	4.6 Error Handling
	4.6.1 Classification of Notifications
	4.6.2 Event Description
	4.6.3 Error Logging in the JDF File
	4.6.4 Error Handling via Messaging (JMF)

	4.7 Test Running
	4.7.1 Resource Status During Testrun

	4.8 Capability and Constraint Definitions

	Chapter 5 JDF Messaging with the Job Messaging Format
	5.1 JMF Root
	5.2 JMF Semantics
	5.2.1 Message Families
	5.2.1.1 Query
	5.2.1.2 Response
	5.2.1.3 Signal
	5.2.1.4 Command
	5.2.1.5 Acknowledge

	5.2.2 JMF Handshaking
	5.2.2.1 Single Query/Command Response Communication
	5.2.2.2 Signal
	5.2.2.3 Persistent Channels

	5.3 JMF Messaging Levels
	5.4 Error and Event Messages
	5.4.1 Pure Event Messages

	5.5 Standard Messages
	5.5.1 Controller Registration and Communication Messages
	5.5.1.1 Events
	5.5.1.2 KnownControllers
	5.5.1.3 KnownJDFServices
	5.5.1.4 KnownMessages
	5.5.1.5 RepeatMessages
	5.5.1.6 StopPersistentChannel

	5.5.2 Device/Operator Status and Job Progress Messages
	5.5.2.1 FlushResources
	5.5.2.2 NewJDF
	5.5.2.3 NodeInfo
	5.5.2.4 Occupation
	5.5.2.5 Resource
	5.5.2.6 ResourcePull
	5.5.2.7 Shutdown
	5.5.2.8 Status
	5.5.2.9 Track
	5.5.2.10 WakeUp

	5.5.3 Pipe Control
	5.5.3.1 PipeClose
	5.5.3.2 PipePull
	5.5.3.3 PipePush
	5.5.3.4 PipePause

	5.6 Queue Support
	5.6.1 Queue Entry ID Generation
	5.6.2 Use of QueueFilter in Queue Entry Handling commands
	5.6.3 Queue Entry Handling Commands
	5.6.3.1 AbortQueueEntry
	5.6.3.2 HoldQueueEntry
	5.6.3.3 RemoveQueueEntry
	5.6.3.4 RequestQueueEntry
	5.6.3.5 ResubmitQueueEntry
	5.6.3.6 ResumeQueueEntry
	5.6.3.7 ReturnQueueEntry
	5.6.3.8 SetQueueEntryPosition
	5.6.3.9 SetQueueEntryPriority
	5.6.3.10 SubmitQueueEntry
	5.6.3.11 SuspendQueueEntry

	5.6.4 Global Queue Handling
	5.6.4.1 CloseQueue
	5.6.4.2 FlushQueue
	5.6.4.3 HoldQueue
	5.6.4.4 OpenQueue
	5.6.4.5 QueueEntryStatus
	5.6.4.6 QueueStatus
	5.6.4.7 ResumeQueue
	5.6.4.8 SubmissionMethods

	5.6.5 Queue-Handling Elements

	5.7 Extending Messages
	5.7.1 IfraTrack Support

	Chapter 6 Processes
	6.1 Process Template
	6.2 General Processes
	6.2.1 Approval
	6.2.2 Buffer
	6.2.3 Combine
	6.2.4 Delivery
	6.2.5 ManualLabor
	6.2.6 Ordering
	6.2.7 Packing
	6.2.8 QualityControl
	6.2.9 ResourceDefinition
	6.2.10 Split
	6.2.11 Verification

	6.3 Product Intent Descriptions
	6.4 Prepress Processes
	6.4.1 AssetListCreation
	6.4.2 ColorCorrection
	6.4.3 ColorSpaceConversion
	6.4.4 ContactCopying
	6.4.5 ContoneCalibration
	6.4.6 DBDocTemplateLayout
	6.4.7 DBTemplateMerging
	6.4.8 DigitalDelivery
	6.4.9 FilmToPlateCopying
	6.4.10 FormatConversion
	6.4.11 ImageReplacement
	6.4.12 ImageSetting
	6.4.13 Imposition
	6.4.14 InkZoneCalculation
	6.4.15 Interpreting
	6.4.16 LayoutElementProduction
	6.4.17 LayoutPreparation
	6.4.18 PDFToPSConversion
	6.4.19 Preflight
	6.4.20 PreviewGeneration
	6.4.21 Proofing
	6.4.22 PSToPDFConversion
	6.4.23 Rendering
	6.4.24 RIPing
	6.4.25 Scanning
	6.4.26 Screening
	6.4.27 Separation
	6.4.28 SoftProofing
	6.4.29 Stripping
	6.4.30 Tiling
	6.4.31 Trapping

	6.5 Press Processes
	6.5.1 ConventionalPrinting
	6.5.2 DigitalPrinting
	6.5.3 IDPrinting

	6.6 Postpress Processes
	6.6.1 AdhesiveBinding
	6.6.2 BlockPreparation
	6.6.3 BoxPacking
	6.6.4 Bundling
	6.6.5 CaseMaking
	6.6.6 CasingIn
	6.6.7 ChannelBinding
	6.6.8 CoilBinding
	6.6.9 Collecting
	6.6.10 CoverApplication
	6.6.11 Creasing
	6.6.12 Cutting
	6.6.13 Dividing
	6.6.14 Embossing
	6.6.15 EndSheetGluing
	6.6.16 Feeding
	6.6.17 Folding
	6.6.18 Gathering
	6.6.19 Gluing
	6.6.20 HeadBandApplication
	6.6.21 HoleMaking
	6.6.22 Inserting
	6.6.23 Jacketing
	6.6.24 Labeling
	6.6.25 Laminating
	6.6.26 LongitudinalRibbonOperations
	6.6.27 Numbering
	6.6.28 Palletizing
	6.6.29 Perforating
	6.6.30 PlasticCombBinding
	6.6.31 PrintRolling
	6.6.32 RingBinding
	6.6.33 SaddleStitching
	6.6.34 ShapeCutting
	6.6.35 Shrinking
	6.6.36 SideSewing
	6.6.37 SpinePreparation
	6.6.38 SpineTaping
	6.6.39 Stacking
	6.6.40 Stitching
	6.6.41 Strapping
	6.6.42 StripBinding
	6.6.43 ThreadSealing
	6.6.44 ThreadSewing
	6.6.45 Trimming
	6.6.46 WireCombBinding
	6.6.47 Wrapping
	6.6.48 Postpress Processes Structure
	6.6.48.1 Block Production
	6.6.48.1.1 Block Compiling
	6.6.48.1.2 Block Joining

	6.6.48.2 HoleMaking
	6.6.48.3 Laminating
	6.6.48.4 Numbering
	6.6.48.5 Packaging Processes
	6.6.48.6 Processes in Hardcover Book Production
	6.6.48.7 Sheet Processes
	6.6.48.8 Tip-on/in
	6.6.48.9 Trimming
	6.6.48.10 Web Processes

	Chapter 7 Resources
	7.1 Intent Resources
	7.1.1 Intent Resource Span Subelements
	7.1.1.1 Structure of Abstract Span Subelement
	7.1.1.2 Structure of the DurationSpan Subelement
	7.1.1.3 Structure of the EnumerationSpan Subelement
	7.1.1.4 Structure of the IntegerSpan Subelement
	7.1.1.5 Structure of the NameSpan Subelement
	7.1.1.5.1 Specifying New Values in a NameSpan Subelement

	7.1.1.6 Structure of the NumberSpan Subelement
	7.1.1.7 Structure of the OptionSpan Subelement
	7.1.1.8 Structure of the ShapeSpan Subelement
	7.1.1.9 Structure of the StringSpan Subelement
	7.1.1.10 Structure of the TimeSpan Subelement
	7.1.1.11 Structure of the XYPairSpan Subelement

	7.1.2 ArtDeliveryIntent
	7.1.3 BindingIntent
	7.1.4 ColorIntent
	7.1.5 DeliveryIntent
	7.1.6 EmbossingIntent
	7.1.7 FoldingIntent
	7.1.8 HoleMakingIntent
	7.1.9 InsertingIntent
	7.1.10 LaminatingIntent
	7.1.11 LayoutIntent
	7.1.12 MediaIntent
	7.1.13 NumberingIntent
	7.1.14 PackingIntent
	7.1.15 ProductionIntent
	7.1.16 ProofingIntent
	7.1.17 ScreeningIntent
	7.1.18 ShapeCuttingIntent
	7.1.19 SizeIntent

	7.2 Process Resources
	7.2.1 Process Resource Template
	7.2.2 Address
	7.2.3 AdhesiveBindingParams
	7.2.4 ApprovalParams
	7.2.5 ApprovalSuccess
	7.2.6 Assembly
	7.2.7 AssetListCreationParams
	7.2.8 AutomatedOverPrintParams
	7.2.9 BinderySignature
	7.2.10 BlockPreparationParams
	7.2.11 BoxPackingParams
	7.2.12 BufferParams
	7.2.13 Bundle
	7.2.14 BundlingParams
	7.2.15 ByteMap
	7.2.16 CaseMakingParams
	7.2.17 CasingInParams
	7.2.18 ChannelBindingParams
	7.2.19 CIELABMeasuringField
	7.2.20 CoilBindingParams
	7.2.21 CollectingParams
	7.2.22 Color
	7.2.23 ColorantAlias
	7.2.24 ColorantControl
	7.2.25 ColorControlStrip
	7.2.26 ColorCorrectionParams
	7.2.27 ColorMeasurementConditions
	7.2.28 ColorPool
	7.2.29 ColorSpaceConversionParams
	7.2.30 ColorSpaceConversionOp
	7.2.31 ComChannel
	7.2.32 Company
	7.2.33 Component
	7.2.34 Contact
	7.2.35 ContactCopyParams
	7.2.36 ConventionalPrintingParams
	7.2.37 CostCenter
	7.2.38 CoverApplicationParams
	7.2.39 CreasingParams
	7.2.40 CutBlock
	7.2.41 CutMark
	7.2.42 CuttingParams
	7.2.43 DBMergeParams
	7.2.44 DBRules
	7.2.45 DBSchema
	7.2.46 DBSelection
	7.2.47 DeliveryParams
	7.2.48 DensityMeasuringField
	7.2.49 DevelopingParams
	7.2.50 Device
	7.2.51 DeviceMark
	7.2.52 DeviceNSpace
	7.2.53 DigitalDeliveryParams
	7.2.54 DigitalMedia
	7.2.55 DigitalPrintingParams
	7.2.55.1 Coordinate systems in DigitalPrinting

	7.2.56 Disjointing
	7.2.57 Disposition
	7.2.58 DividingParams
	7.2.59 ElementColorParams
	7.2.60 EmbossingParams
	7.2.61 Employee
	7.2.62 EndSheetGluingParams
	7.2.63 ExposedMedia
	7.2.64 FeedingParams
	7.2.65 FileSpec
	7.2.66 FitPolicy
	7.2.67 Fold
	7.2.68 FoldingParams
	7.2.69 FontParams
	7.2.70 FontPolicy
	7.2.71 FormatConversionParams
	7.2.72 GatheringParams
	7.2.73 GlueApplication
	7.2.74 GluingParams
	7.2.75 GlueLine
	7.2.76 HeadBandApplicationParams
	7.2.77 Hole
	7.2.78 HoleLine
	7.2.79 HoleList
	7.2.80 HoleMakingParams
	7.2.81 IdentificationField
	7.2.82 IDPrintingParams
	7.2.83 ImageCompressionParams
	7.2.84 ImageReplacementParams
	7.2.85 ImageSetterParams
	7.2.86 Ink
	7.2.87 InkZoneCalculationParams
	7.2.88 InkZoneProfile
	7.2.89 InsertingParams
	7.2.90 InsertSheet
	7.2.91 InterpretedPDLData
	7.2.92 InterpretingParams
	7.2.93 JacketingParams
	7.2.94 JobField
	7.2.95 LabelingParams
	7.2.96 LaminatingParams
	7.2.97 Layout
	7.2.98 LayoutElement
	7.2.99 LayoutPreparationParams
	7.2.100 LongitudinalRibbonOperationParams
	7.2.101 ManualLaborParams
	7.2.102 Media
	7.2.103 MediaSource
	7.2.104 MISDetails
	7.2.105 NumberingParams
	7.2.106 ObjectResolution
	7.2.107 OrderingParams
	7.2.108 PackingParams
	7.2.109 PageList
	7.2.110 PalletizingParams
	7.2.111 Pallet
	7.2.112 PDFToPSConversionParams
	7.2.113 PDLResourceAlias
	7.2.114 PerforatingParams
	7.2.115 Person
	7.2.116 PlaceHolderResource
	7.2.117 PlasticCombBindingParams
	7.2.118 PlateCopyParams
	7.2.119 PreflightAnalysis
	7.2.120 PreflightInventory
	7.2.121 PreflightParams
	7.2.122 PreflightProfile
	7.2.123 PreflightReport
	7.2.124 PreflightReportRulePool
	7.2.125 Preview
	7.2.126 PreviewGenerationParams
	7.2.127 PrintCondition
	7.2.128 PrintRollingParams
	7.2.129 ProofingParams
	7.2.130 PSToPDFConversionParams
	7.2.131 QualityControlParams
	7.2.132 QualityControlResult
	7.2.133 RegisterMark
	7.2.134 RegisterRibbon
	7.2.135 RenderingParams
	7.2.136 ResourceDefinitionParams
	7.2.137 RingBindingParams
	7.2.138 RollStand
	7.2.139 RunList
	7.2.140 SaddleStitchingParams
	7.2.141 ScanParams
	7.2.142 ScavengerArea
	7.2.143 ScreeningParams
	7.2.144 SeparationControlParams
	7.2.145 SeparationSpec
	7.2.146 ShapeCuttingParams
	7.2.147 Sheet
	7.2.148 ShrinkingParams
	7.2.149 SideSewingParams
	7.2.150 SpinePreparationParams
	7.2.151 SpineTapingParams
	7.2.152 StackingParams
	7.2.153 StitchingParams
	7.2.154 Strap
	7.2.155 StrappingParams
	7.2.156 StripBindingParams
	7.2.157 StrippingParams
	7.2.158 Surface
	7.2.159 ThreadSealingParams
	7.2.160 ThreadSewingParams
	7.2.161 Tile
	7.2.162 Tool
	7.2.163 TransferCurve
	7.2.164 TransferCurvePool
	7.2.165 TransferFunctionControl
	7.2.166 TrappingDetails
	7.2.167 TrappingParams
	7.2.168 TrapRegion
	7.2.169 TrimmingParams
	7.2.170 VerificationParams
	7.2.171 WireCombBindingParams
	7.2.172 WrappingParams

	7.3 Device Capability Definitions
	7.3.1 Structure of the DeviceCap Subelement
	7.3.1.1 Structure of the ActionPool Subelement
	7.3.1.1.1 Structure of the Action Subelement

	7.3.1.2 Structure of the DevCaps Subelement
	7.3.1.2.1 Structure of the Loc Subelement
	7.3.1.2.2 Structure of the DevCap Subelement

	7.3.1.3 Structure of the DisplayGroupPool Subelement
	7.3.1.3.1 Structure of the DisplayGroup Subelement

	7.3.1.4 Structure of the FeaturePool Subelement
	7.3.1.5 Structure of the MacroPool Subelement
	7.3.1.5.1 Structure of the macro Subelement

	7.3.1.6 Structure of the Performance Subelement
	7.3.1.7 Structure of the TestPool Subelement
	7.3.1.7.1 Structure of the Test Subelement

	7.3.2 Examples of Device Capabilities

	7.4 Concept of the Preflight Process
	7.4.1 Object Classes
	7.4.1.1 Checking for the Presence of a Property
	7.4.1.2 Basic tests on set of objects

	7.4.2 Properties
	7.4.2.1 Annotation Properties
	7.4.2.2 Box Properties
	7.4.2.3 Class Properties
	7.4.2.4 Colorant Properties
	7.4.2.5 Document Properties
	7.4.2.6 Fill Properties
	7.4.2.7 Font Properties
	7.4.2.8 Graphic Properties
	7.4.2.9 Image Properties
	7.4.2.10 Logical Properties
	7.4.2.11 PageBox Properties
	7.4.2.12 Pages Properties
	7.4.2.13 PDLObject Properties
	7.4.2.14 Reference Properties
	7.4.2.15 Shading Properties
	7.4.2.16 Stroke Properties
	7.4.2.17 Text Properties
	7.4.2.18 Vector Properties

	Chapter 8 Building a System Around JDF
	8.1 Implementation Considerations and Guidelines
	8.2 JDF and JMF Interchange Protocol
	8.2.1 File-Based Protocol (JDF + JMF)
	8.2.1.1 JMF Transport Using The File Protocol

	8.2.2 HTTP-Based Protocol (JDF + JMF)
	8.2.2.1 Protocol Implementation Details

	8.3 JDF Packaging
	8.3.1 MIME Basics
	8.3.2 MIME Types and File Extensions
	8.3.2.1 MIME Fields
	8.3.2.1.1 Content Type
	8.3.2.1.2 Content ID
	8.3.2.1.3 Content Length
	8.3.2.1.4 Content Transfer Encoding
	8.3.2.1.5 Content Disposition

	8.3.2.2 Example Packaging of Individual JDF/JMF files in MIME
	8.3.2.3 CID URL Scheme
	8.3.2.4 Ordering of JDF/JMF in MIME Multipart/Related

	8.4 MIS Requirements
	8.5 Interoperability Conformance Specifications

	Appendix A Encoding
	A.1 Notes About Encoding
	A.1.1 Ranges and RangeLists
	A.1.2 Whitespace
	A.1.3 Infinity Limits

	A.2 Simple Types - Attribute Values
	A.2.1 boolean
	A.2.2 CMYKColor
	A.2.3 date
	A.2.4 dateTime
	A.2.5 DataTimeRange
	A.2.6 DateTimeRangeList
	A.2.7 double
	A.2.8 DoubleList
	A.2.9 DoubleRange
	A.2.10 DoubleRangeList
	A.2.11 duration
	A.2.12 DurationRange
	A.2.13 DurationRangeList
	A.2.14 gYearMonth
	A.2.15 hexBinary
	A.2.16 ID
	A.2.17 IDREF
	A.2.18 IDREFS
	A.2.19 integer
	A.2.20 IntegerList
	A.2.21 IntegerRange
	A.2.22 IntegerRangeList
	A.2.23 LabColor
	A.2.24 language
	A.2.25 matrix
	A.2.26 NameRange
	A.2.27 NameRangeList
	A.2.28 NMTOKEN
	A.2.29 NMTOKENS
	A.2.30 PDFPath
	A.2.31 rectangle
	A.2.32 RectangleRange
	A.2.33 RectangleRange List
	A.2.34 regExp
	A.2.35 shape
	A.2.36 ShapeRange
	A.2.37 ShapeRangeList
	A.2.38 sRGBColor
	A.2.39 string
	A.2.40 TimeRange
	A.2.41 TransferFunction
	A.2.42 URI
	A.2.43 URL
	A.2.44 XYPair
	A.2.45 XYPairRange
	A.2.46 XYPairRangeList
	A.2.47 XPath

	A.3 Enumerations and Lists
	A.3.1 enumeration
	A.3.2 enumerations
	A.3.3 Defined JDF enumeration Data Types
	A.3.3.1 JDFJMFVersion
	A.3.3.2 NamedColor
	A.3.3.3 Orientation
	A.3.3.4 Side
	A.3.3.5 WorkStyle

	A.3.4 XYRelation

	A.4 JDF File Formats
	A.4.1 PNG Image Format

	Appendix B Schema
	B.1 Using xsi:type
	B.1.1 Using xsi:type with JDF Nodes
	B.1.2 Using xsi:type with JMF Messages

	Appendix C Converting PJTF to JDF
	C.1 PJTF Object Conversion
	C.1.1 Accounting
	C.1.2 Address
	C.1.3 Analysis
	C.1.4 AuditObject
	C.1.5 ColorantAlias
	C.1.6 ColorantControl
	C.1.7 ColorantDetails
	C.1.8 ColorantZoneDetails
	C.1.9 ColorSpaceSubstitute
	C.1.10 Delivery
	C.1.11 DeviceColorant
	C.1.12 Document
	C.1.13 Finishing
	C.1.14 FontPolicy
	C.1.15 InsertPage
	C.1.16 InsertSheet
	C.1.17 Inventory
	C.1.18 Ticket
	C.1.19 JobTicketContents
	C.1.20 JTFile
	C.1.21 Layout
	C.1.22 Media
	C.1.23 MediaSource
	C.1.24 MediaUsage
	C.1.25 PageRange
	C.1.26 PlacedObject
	C.1.27 PlaneOrder
	C.1.28 Preflight
	C.1.29 PreflightConstraint
	C.1.30 PreflightDetail
	C.1.31 PreflightInstance
	C.1.32 PreflightInstanceDetail
	C.1.33 PreflightResults
	C.1.34 PrintLayout
	C.1.35 Profile
	C.1.36 Rendering
	C.1.37 ResourceAlias
	C.1.38 Scheduling
	C.1.39 Signature

	C.2 Sheet
	C.2.1 SlipSheet
	C.2.2 Surface
	C.2.3 Tile
	C.2.4 Trapping
	C.2.5 TrappingDetails
	C.2.6 TrappingParameters
	C.2.7 TrapRegion

	C.3 Translating Values
	C.4 Translating the Contents Hierarchy
	C.5 Representing Pages
	C.6 Representing Preseparated Documents
	C.7 Representing Inherited Characteristics
	C.8 Translating Layout
	C.9 Translating PrintLayout
	C.10 Translating Trapping

	Appendix D Converting PPF to JDF
	D.1 Converting PPF Data Types
	D.2 PPF Product Definitions
	D.2.1 Comparison of the PPF Component to the JDF Component
	D.2.2 Collecting
	D.2.3 Gathering
	D.2.4 ThreadSewing
	D.2.5 SaddleStitching
	D.2.6 Stitching
	D.2.7 SideSewing
	D.2.8 EndSheetGluing
	D.2.9 AdhesiveBinding
	D.2.10 Trimming
	D.2.11 GluingIn
	D.2.12 Folding

	D.3 PPF Sheet Structure
	D.3.1 Administration Data
	D.3.2 Preview Images
	D.3.3 Transfer Curves
	D.3.4 Register Marks
	D.3.5 Color and Ink Control
	D.3.6 Cutting Data
	D.3.7 Folding Data
	D.3.8 Comments and Annotations
	D.3.9 Private Data and Content

	Appendix E Modeling IfraTrack in JDF
	E.1 IFRA Objects and JDF Nodes
	E.1.1 Object Identification
	E.1.2 IFRA Object Hierarchy
	E.1.3 Object States
	E.1.4 Deadlines and Scheduling

	E.2 JMF Messages that Translate IfraTrack Messages

	Appendix F Mapping between JDF and IPP
	F.1 IPP References

	Appendix G StatusDetails Supported Strings
	Appendix H ModuleType Supported Strings
	Appendix I Supported Error Codes in JMF and Notification elements
	Appendix J NotificationDetails
	J.1 Predefined NotificationDetails
	J.1.1 Barcode
	J.1.2 FCNKey
	J.1.3 SystemTimeSet
	J.1.4 CounterReset
	J.1.5 Error
	J.1.6 Event

	Appendix K MessageEvents Values
	Appendix L Color Adjustment Attribute Description and Usage
	L.1 Adjustment Using Direct Attributes
	L.2 Adjustment using ICC Profile Attributes
	L.3 Adjustment using an ICC Abstract Profile Attribute
	L.4 Adjustment using an ICC DeviceLink Profile Attribute

	Appendix M North American Media Weight Explained
	Appendix N Media Sizes
	Appendix O Input Tray and Output Bin Names
	Appendix P FileSpec Attribute Examples for MimeType and MimeTypeVersion Attributes
	Appendix Q FileSpec MimeType, URL, and Compression attributes, and Container subelement
	Q.1 FileSpec attribute value examples
	Q.2 Corresponding XML examples
	Q.3 Additional examples showing partitioning of FileSpec
	Q.4 Example of an Intent Job Ticket with a doubly nested ZIP packaging file

	Appendix R Resolving RunList/@Directory and FileSpec/@URL URI references
	R.1 Semantics of the RunList/@Directory attribute

	Appendix S AppOS and OSVersion Attributes
	Appendix T References
	Appendix U JDF/CIP4 Hole Pattern Catalog
	Appendix V Examples
	V.1 Brief Example
	V.1.1 Before Processing
	V.1.2 After Processing

	V.2 Product JDF
	V.3 Spawning and Merging
	V.3.1 Example 2 Component JDF before Spawning
	V.3.2 Example 2 Component JDF Parent after spawning the cover node
	V.3.3 Example 2 Component JDF spawned node
	V.3.4 Example 2 Component JDF after merging
	V.3.5 Example of a Partitioned ImageSetting Node before Spawning
	V.3.6 The Spawned Cyan Partition of the ImageSetting Node
	V.3.7 The Root Partitioned ImageSetting Node after Spawning
	V.3.8 The Merged ImageSetting Node

	V.4 Conversion of PJTF to JDF
	V.4.1 PJTF input
	V.4.2 JDF output

	V.5 Conversion of PPF to JDF
	V.6 RunList
	V.7 Messages
	V.7.1 Simple KnownMessages
	V.7.2 Simple persistent channel

	V.8 Stripping
	V.8.1 Using Position
	V.8.2 Multiple BinderySignatures
	V.8.3 Multisection BinderySignatures
	V.8.4 Multiple job parts in one imposition
	V.8.5 FoldOuts
	V.8.6 Multiple Web Layout
	V.8.7 Stripping Process

	V.9 DigitalDelivery Examples

	Appendix W New, Deprecated, Modified, Illegal, & Removed Items
	W.1 Compatibility Warnings
	W.2 New Items
	W.3 Deprecated Items
	W.4 Modified Items
	W.5 Clarified Items
	W.6 New/Modified Attributes and Elements
	W.6.1 Structure of JDF Nodes and Jobs
	W.6.2 JDF Messaging with the Job Messaging Format
	W.6.3 Processes
	W.6.4 Resources

	Appendix X Deprecated Processes, Resources, and JMF Messaging Elements
	X.1 Deprecated Processes
	X.1.1 Packing
	X.1.2 FilmToPlateCopying
	X.1.3 PreflightAnalysis
	X.1.4 PreflightInventory
	X.1.5 PreflightProfile
	X.1.6 Proofing
	X.1.7 SoftProofing
	X.1.8 IDPrinting
	X.1.9 AdhesiveBinding
	X.1.10 Dividing
	X.1.11 LongitudinalRibbonOperations
	X.1.12 SaddleStitching
	X.1.13 SideSewing

	X.2 Deprecated Resources
	X.2.1 BindingIntent Deprecated Subelements
	X.2.2 SizeIntent
	X.2.3 AdhesiveBindingParams
	X.2.4 DividingParams
	X.2.5 IDPrintingParams
	X.2.6 LongitudinalRibbonOperationParams
	X.2.7 MediaSource
	X.2.8 PackingParams
	X.2.9 PlateCopyParams
	X.2.10 ProofingParams
	X.2.11 SaddleStitchingParams
	X.2.12 SideSewingParams

	X.3 JMF Messaging Elements
	X.3.1 KnownJDFServices
	X.3.2 QueueEntryStatus

	Appendix Y Table of Tables
	Appendix Z Terminology Usage

