JDF Specification

Page Intentionally Left Blank

Credits, Copyright Notice, Licenses & Trademarks i

Copyright Notice

Copyright © 2000-2002, International Cooperation for Integration of Processes in Prepress, Press and
Postpress, hereinafter referred to as CIP4. All Rights Reserved

Permission is hereby granted, free of charge, to any person obtaining a copy of the Specification and as-
sociated documentation files (the “Specification™) to deal in the Specification, including without limita-
tion the rights to use, copy, publish, distribute, and/or sublicense copies of the Specification, and to permit
persons to whom the Specification is furnished to do so, subject to the following conditions. The above
copyright notice and this permission notice must be included in all copies or substantial portions of the
Specification.

THE SPECIFICATION IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS,
IMPLIED, OR OTHERWISE, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE

AND NONINFRINGEMENT. IN NO EVENT WILL CIP4 BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE SPECIFICATION OR
THE USE OR OTHER DEALINGS IN THE SPECIFICATION.

Except as contained in this notice or as allowed by membership in CIP4, the name of CIP4 must not be
used in advertising or otherwise to promote the use or other dealings in this Specification without prior
written authorization from CIP4.

Licenses and Trademarks

International Cooperation for Integration of Processes in Prepress, Press and Postpress, CIP4, Job De-
scription Format, JDF and the CIP4 logo are trademarks of CIP4.

Rather than put a trademark symbol in every occurrence of other trademarked names, we state that we are
using the names only in an editorial fashion, and to the benefit of the trademark owner, with no intention
of infringement of the trademark.

Credits, Copyright Notice, Licenses & Trademarks

Page Intentionally Left Blank.

Preface & User Overview iii

JDF Preface and User Overview

This specification is immense ... there little doubt about that ... but it is also a keystone standard
for the future of graphic communications. The members of CIP4 believe that users and developers
alike should have a clear understanding of what the objectives of the Job Definition Format (JDF)
are as well as an understanding of its value and purpose. To that end we thought you would find a
“non-standard” preface and user overview helpful.

Before we get into the overview, we remind you that JDF is a living specification. We would
value your comments and input. There are several ways to contact the International Cooperation
for the Integration of Processes in Prepress, Press and Postpress (CIP4) association and to re-
ceive ongoing information about CIP4 activities. To get a list of contacts, join the JDF develop-
ers form, or sign up for email updates, visit the contact page at http://www.cip4.org/. (Of course,
we’d love to have you as a CIP4 member too! Be sure to review the membership page when you
visit the CIP4 Website.)

You will also find callouts throughout this document that are identified by three different
icons. These callouts, provided for your convenience, are not normative parts of the standard
(i.e., they’re not technically a part of the standard). They provide references to external sources,
executive summaries of complex technical concepts, and some thoughts or strategies you may
want to consider as you formulate your JDF implementation plan. Look for these callout icons:

Icon Callout Type

. : External references to online resources, related
g standards, tutorials, and helpful information.

25 Executive-style summaries of technical concepts in
' " easy to understand language.
. ’ Thoughts to ponder and strategy ideas for formu-
lating JDF implementation programs.

Value. This revision of JDF is significant because it builds upon the first version of JDF (v.1.0)
to deliver a fully functional and mature standard. As such, this revision includes elements from
which executives, shop managers, and technicians will all benefit equally, though in different
ways. In the next few years it is our belief that this specification will positively effect everyone in-
volved in the creation and production of printing; regardless of form (offset, digital, flexographic, and
so on) or function (direct mail, periodical publication, packaging, and so on). Furthermore, JDF will
be of value to companies both large and small. Some of the benefits that JDF may provide include:
e A common language for describing a print job across enterprises, departments, and soft-
ware and systems;
e A tool for verifying the accuracy and completeness of job tools;
e A systems interface language that can be used to benchmark the performance of new
equipment (hardware and software) and that can reduce the cost of expensive custom in-
tegration for printers, prepress services, and others;

http://www.cip4.org/

iv Preface & User Overview

e A basis for total workflow automation that incorporates Implementation
all aspects of production: human, machine, and com- Strategy
puter;

e A standard that can be applied to eliminate wasteful _
rekeying and redundancy of information; and As you read this standard,
e consider how to make JDF a
e A common computer language for printing and related | part of your equipment evalua-
industries as well as a platform for more effective | tion and purchasing proce-

communication. dures. Should you add JDF

. . . enabled systems slowly with
Most importantly, JDF provides an opportunity for users of equipment replacement and

graphic arts equipment to get a better return on their technology | ypgrades, or aggressively as
investment and an opportunity to create a print production and | part of a plant reengineering
distribution workflow that is more competitive with broadcast | process? What's your desired
media in terms of time-to-market. competitive position?

XML and Schema: Why? The Extensible Markup Language (XML) is the standard language
that is employed by JDF. JDF is also constructed to the World Wide Web Consortium’s (W3C)
recommendation for the construction of schema. Why is this important and, in layman’s terms,
what does it do for you?

First of all, it is helpful to understand how MIS professionals around the world use XML to-
day. Although there are some systems that manage and process XML directly, it is primarily
used as an exchange language or “middleware” element to create the “glue” that ties integrated
systems together.

For instance, complex systems such as enterprise resource planning (ERP), data warehousing,
or E-commerce systems often tap into numerous legacy databases and application environments. A
manager may wish to have a
“view” of corporate information
that is actually an aggregate of
information that may come from
various sources such as billing
and invoicing, sales management,
inventory, and other systems.
Rather than merge these systems
into a single, monstrous and cen-
tralized system, an operator
queries the legacy systems and
the results are wrapped in XML. :
This allows programmers to deal =
with one exchange language or R et
data format instead of a multitude BRI
of proprietary data formats.

XML is not a functional computer language like JAVA, C++ or FORTRAN — it is incapable
of manipulating data in anyway; rather, it is a descriptive computer language that can be used to
describe your information including its structure, interrelationships, and to some extent, its in-
tended usage. For this reason, modern program languages such as JAVA provide intrinsic sup-
port for XML processing. Most modern database applications also provide methods for
receiving and delivering XML.

HTML
Internet

s Browser

Accounting
& Financial

Preface & User Overview %

Early XML, based solely upon the XML 1.0 specification, had a
few limitations that prevented it from being used widely as a r XML
transactional data format across enterprises, as opposed to within '
enterprises (where it found its niche as described above.) For Q Schema
example, there is probably a database behind each of your major
systems and applications. If your database has reserved a fixed | To learn more about XML
space a data particular field and a supplier provides a transaction | Schema, including tools, usage,
. tutorials, and other resources visit
with a datq eyem.ent larger than that field, you hgve a problem. http://www.w3.org/XML/Schema
The data limitations of XML 1.0 cannot effectively deal with

this. The XML Schema specification solved this problem and
others.

The Pluses of Parsing. Schemas also provide one other feature that is perhaps the greatest
benefit. Tagged documents or transactions (called “instances” in XML parlance) are parsible.
Schemas, such as JDF, establish rules for structuring your information. A parser is a software
application that reads those rules, checks documents and transactions, and then validates that
they conform to the rules as established in your schema ... sort of like preflighting but for XML
instances rather than your layout pages.

Parsers can play many roles. Like preflighting software,
parsers can be run as standalone applications, but they can also

be found embedded into other applications. Some of the roles ’ Free
parsers may play in your JDF-enabled workflow include: Parsers

1. Acceptance checking of client job tickets.

Cl) .) The JDF schema was validated
2. Validation of JDF prior to or following transformation of | with the Xerces parser. This

data into and out of databases. parser, as well as other XML

. ST SR tools, is available for free from
3. Ensuring that source job information is collected as a The Apache Software Foundation

document is created. (Embedded in document layout open source software community
software.) at http://xml.apache.org/

4. Determining if equipment reads and writes Job
Messaging Format (JMF) commands, a subset of JDF, as part of equipment benchmarking
and testing software.

5. Controlling the movement of workflow information and controls within workflow soft-
ware, from process to process and as a specific JDF job ticket requires.

6. Working as a middleware component to communicate between JDF-enabled software and
systems and your legacy Management Information System (MIS) and corporate applica-
tions environments.

It is worth mentioning that parsing can be time consuming and computer intensive. But parsers
don’t have to be the gatekeepers everywhere in a JDF-enabled workflow. Equipment that is JDF-
enabled and part of a company’s internal production operations need not parse every communi-
cation. It can be limited to equipment evaluation and problem solving applications. The role of
JDF parser-enabled software in a printing plant that uses tightly coupled JDF-enabled print pro-
duction equipment might look like this:

Vi Preface & User Overview

Managemant ‘@ 3
Reparting A
: Accounting &
Financial Syslams

Suppliers

Customers

Other Document Sources
(Preprass services,
3" Parly Designars, alc.}

Distribution

JDF Enabled Prepress, Press, and Postpress Operations

Global Printing Company

The JDF Concept. The JDF schema is quite complex and detailed — something best left to pro-
grammers, MIS personnel, and XML experts. But the language and concepts behind JDF are quite
simple and straightforward. The schema itself can be downloaded from the CIP4 Website, but is not
part of this specification. Instead, this is your “cookbook.” It provides an explanation of each of the
components of JDF, its meaning, and intended usage. You will want to use the components of JDF
that fit best with your workflow and the needs of your customers. To start, a basic understanding of
the concepts behind JDF is in order. There are three primary components to JDF:

1. JDF itself,
2. The Job Messaging Format (JMF), and
3. The MIS system.

JDF is simply an exchange format for instructions and job parameters. You can use PDF, or its
standard variant (PDF/X), to relay production files from one platform to another. You can do the
same with JDF to relay job parameters and instructions. JDF can be used to describe a printing
job logically, as you would in exchanging a job description with a client within an estimate. It
can also be used to describe a job in terms of individual production processes and the materials
or other process inputs required to complete a job.

There is no such thing as a standard print workflow. In fact, printing is the ultimate form of
flexible manufacturing. This makes process automation quite a challenge for our industry. What
you’ll find in this standard are XML element definitions that describe all the production proc-
esses and material types you’re likely to encounter, regardless of your workflow. These are the
building blocks that you can use to emulate your workflow with JDF. As a matter of convention,
processes such as preflighting, scanning, printing, cutting, and so on are referred to as process

Preface & User Overview

Vi

nodes. Every process in the print production workflow requires input resources starting with the
client’s files or artwork and ending with the final bound, packaged, and labeled print product.
For example, before you can print, you need paper, ink, and plates, and before you can send a

document to a bindery line, you need printed and cut signatures.

Process nodes and resources
are the basic elements within
JDF. They can be strung
together to meet the
requirements of each job. The
output of one process becomes
the input of the following
process, and a process doesn’t
begin until its input resources are
available:

Node 1

This specification provides details on how to use these
building blocks to describe concurrent processes, spawned
processes, dynamic processes, and so on. To realize the
capabilities of JDF, there are two other things you will need: a
way of controlling the flow of process and a way of
communicating commands to equipment on the shop floor.

JMF is a subset of JDF that handles communication with
equipment on the shop floor. This may include major equipment,
such as platesetters, or subsystems, such as in-line color
measurement devices. JMF can be used to establish a queue,
discover the capabilities of a JDF-enabled device, determine the
status of a device (e.g., “RIP’ing,” “Idle”), and so on.

Although, theoretically, you can string together equipment
that supports JMF directly to one another, in almost all cases you
will want your production equipment to communicate with your

output Resource input

Example:

Node 2

JMF

The Job Messaging Format
(JMF) functions as a standard
interface between your
equipment and your informa-
tion systems, or other equip-
ment already on the shop
floor. By buying only equip-
ment that supports JMF you
will reduce the cost and com-
plexity of integrating new
equipment into your produc-
tion operations, and you will
improve the flexibility and
adaptability of your shop.

MIS system. This way it is the MIS system that controls the scheduling, execution, and control of
work in progress. The role of the MIS system is described within this standard, but it isn’t highly
defined. In fact, the JDF standard does not dictate how a JDF system should be built. Many print-
ers, prepress services, and other graphic arts shops will already have MIS systems in place. JDF
enabled workflow and MIS systems, custom-tailored to print production requirements, will soon be
available on the market. However, many printers already have MIS and workflow systems that
have been customized or developed for their own environments. In most cases these legacy sys-

XML & Databases

&)

To learn more about how XML and database work together, check
out the white papers and tutorials available from XML.org at
http://www.xml.org/xml/resources focus rdbms.shtml.

tems can be modified to work
with the new JDF workflows
and JDF enabled equipment.
There are a variety of XML
support tools available on the
market to address the
databases underlying all MIS
systems.

Table of Contents ix

Table of Contents

L0 o o) V7 T |41 e o i
Licenses and Trademarks.........ooo i e i
JDF Preface and USer OVeIVI@W... ... iiiiirirrcereresssre s sssss e s ss s s ss s s se s sne e sesssne e sesmsesesssnsenenss iii
Table Of CONEENTS ... s s e s s e e s e e e e nnnns ix
QLI 1] (=3 i o 10 =Y S XX
{0 S T=1 o £ g I T £ Yo 1172 £ T o S SR 1
1.1 Background On JDF ... e 1
1.2 Document REfErENCES ... e n e s s s e amn e e e e e s e n s mnn e e e e nas 1
1.3 Conventions Used in This Specification..........cccccocmiiiiiiininnii e 2
T B o5 (A (T OO OO UUPRUPPIR 2
1.3.2 Specification 0f CardiNalify..........c.coueieiiiieiie ettt ee et et eae et e e e beebeebeeseeneeneeneenes 3
1.4 Glossary Of TerMINOIOGYccccerrrririrrrrsrrrrsssnreresssseeresssssersssssmeerssssmresssssmnesesssnneeesssmenssssnsasssnnens 3
1.4.1 Conformance TeIMINOLOZYcciievierrieiieriierieeieeteetesteesteeteeteeseesteesseesseessesseesseesseesseessesssesssessenssesssesssensens 5
1.42 Conformance Requirements for JDF ENtIties.........ccieeiirierieriieiieieiiesieeie et e et eseeeeeesseesseessesssessnesseas 5
I T - 1 - S £ 1o (0= 6
T U 3T 8
Chapter 2 OVerview Of JDF iiiiiicccccecrrs s ssssne s e s ss s sssns s e e se s s s mnmn e e e e s s e s s smmnne e e e e nennnnnnnnns 1
b0 T - V=3 (Y 4 T 0T 1T o o 4T 3T 1
2 T B 1o 107301 1) 1 1S3 LTSS 1
2.1.2 Workflow Component ROIEScoiiiuieiiiieie ettt sttt ettt e et e et et e eneeeneeeneenneas 2
2.2 JDF WOTKFIOW ... mm s mme e s ms e e e s e mm s e e e e e s s e e mnne e e e s saa s mmn e e e s eennnnnn 4
2 B 1) o I 4 o113 SRS 5
2.3 Hierarchical Tree Structure and Networks in JDFcccciiiimiinimnesn s 7
24 Role of Messaging in JDF ... ooiiiccereriscre s ssssse e ssssse e ssssmr e s s sms s sssms e s sssmne s esssmnesssssnnssnsanes 8
2.5 Coordinate Systems in JDF ... ircre s esssre s ssssse s s sssne e s sme s sssms e s sssmn e s esssmn e s esssmneensanes 9
2.5.1 TIEEOAUCHION ...ttt ettt ettt et e e et e s taesteesaeesbeesseesseess e saesseesseessasssessaesseesseessesssesseesseensenssenssenseensens 9
2.5.2 How and Where Coordinates and Transformations Are Used/Defined in JDF............cccoooviviiiiiinciieiennnns 10
2.5.3 Coordinate Systems of ReSources and PrOCESSEScvvieriirriieriieieeierieieeteeiestesee e e eeesaeseeesseeneeeneeens 10
2.5.4 Product Example: Simple BrOCHULIEccoiiiiiieiieiieicee ettt es e sneesseeseenseens 12
2.5.5 GENETAL RUIESoeouiiieiiieiie ettt et e et e sttt e st e e st e e eabeesabeeesseessbaassseessseassseesssaesseensseensseesseansseenes 16
2.5.6 HomOZENEOUS COOTAINALES. ... eeuieueieuiietieetieteett et ete et e et e bt e et eeeestesaeesteenteeneeenseeseesseeseenseeneesneesseesneenseanseans 17
Chapter 3 Structure of JDF Nodes and JODS ... 19
B 0 N | 1 e o T 1 21
3.1.1 Generic Contents Of JDF EICIMENLSccceevuiiviiiiieieiiieiteeteete et st e st ete e eee e reeseebeesseessesteesseeseesseesneenns 21
3.1.2 Fundamental JDF Attributes and EICMENtSccoevuerieriieiiiiieiie sttt eee 22
3.2 COMMON NOAE TYPES -.ocereererrremrerrssmrerssssmrerssssmsesssssnsesssssnsesssssnesssssneessssansessnsansessnsansessnsanserssanes 26
3.2.1 Product INtent NOGEScceeirieiieieiieitesie ettt ettt ettt e st e st e e teesbessaesseesseesseesseesseessesssesssesseesseensenssensns 26
3.2.2 ProCesS GIOUP NOGESoocvieiieiieieiiesie st este et et e eitesteet e enteesteseaesseesseesseensesseesseeseanseenseassesssesseesseensesnsennsennns 27
3.2.3 CombINed ProCess INOGESccuiiiiiieiieeieerit ettt ete sttt et te st e st e s teebeeaesstesseesseesseenseesseesaenseesseensesnsesnsennns 28
3.2.4 PrOCESS INOGES ...eevvieeiieiieciiectie ettt ettt st et ettt et e st e st et e enseeasesseessee st enseenseesseeseenseenseenseessensaenseenseenseennennns 29
R T N A Y 4 e X =3 o1 o Y o) 29
3.4 Customer INformation...........ccciiiiii s e e e e nmnnes 30
R TR "o = 143 oY g 4P 14 o o 31
B I - 11 L] o o T 33

3.7 L3 o L1 (oY 33

X Table of Contents
371 RESOUICE CIASSESveueeuietitiitietieitetete sttt ettt ettt ettt et e st b e bt e bt eat et et e st e et e e bt ebeebeea e e st et e benbesbeabesbeebeentensensens 36
3.7.2 Position of Resources Within JDF NOAEScceruiiiriiiiiiiiieieeeeresesc ettt 39
3.7.3 PIPE RESOUICES ...oueiiiiiieiieiieie ettt ettt e st et et et e e st e s et e ss e e seensesasesseesseanseenseenseesseessessaenseenseensennsennns 39
3.7.4 ResourcelUpdate EICIMENTS.cccuiiieiieiiieiieie ettt ettt et et s aesee s e eseesseenseesseesaensaesseessesnsesnnennns 39
3.8 ReESOUICE LiNKS.....ccciiiuiiiiiniieiiiis i s s e e a e an e 40
3.8.1 Links to Parameter RESOUICEScooiiiuiiiieiietietieie ettt ettt ettt e et e e teeseesaeeseenseeneeenes 45
3.8.2 Links to Implementation RESOUICESc.cecuieiiriieitieieeie ettt ettt et ae e e enes 45
3.8.3 Links to PhySiCal RESOUICES.......cciiiiieiiiiieiietieie ettt ettt et ettt et e e e e s e s bt e sae e beeneeeneeenes 46
3.8.4 Links to PlaceHOIAEr RESOUICES.......couiiuieiiiuieiieieieie ettt ettt sttt ettt e e b e st et eneeeens 48
3.8.5 Links tO INteNt RESOUITESeeutiiiiiiiiiiiieitieie ettt ettt et sttt ettt ea e eb e sbeesbe e beemaesaeeseee 48
3.8.6 Inter-Resource Linking Using ReSOUICEREL..........ccoiiiiiiiiiiiiiii e e 48
3.9 Subsets Of RESOUICESccccceiiiiiiiniii e 49
3.9.1 RESOUICE ATNOUNLeiitiiiiiiieiteiiterite sttt ettt ettt et et satesbee s bt e bt e et eateebtesbe e bt e bt eabeebaenbeenbeenseemsesneennee 49
3.9.2 Description of Partitionable RESOUICEScc.vecuiriirieriieiieie ettt eseeseennesens 50
3.9.3 Linking to SUDSEtS Of RESOUICESeecviiieriieiicii ettt ettt ettt e st et et e s e esaessaeseesseeseenseennennns 57
3.9.4 Splitting and Combining RESOUICESc.eecviruieriieiieieiie ettt ettt et e e e ensessaesseeseenseensesens 59
3.10 U Lo 11 o o N 60
O 2 BN 14§ 21 (<3513 ST 62
3.1 JDF EXtenSIbilityccccooiiiiiiie e nmnnes 69
3011 NamMESPACES 1N XML ..oouiiiiiieiiieiiiecie ettt ste et e e stteesteeesteeeteesaeeesseeessaeesseeanseesssaesnseessseessseesssesansessnses 69
3.11.2 EXtending PrOCESS TYPES. . .eeieieiiiitiiteetiet ettt ettt ettt ettt et et e s ettt e bt eseeseeneense st e tesbeebeebeeseeneeneensesens 70
3.11.3 Extending EXIiStNG RESOUICESceuiiuiitietieiieiieieieste ettt sttt ettt et e e st be et ebeene e st e e e sesbesbeebeeseeneeneensesens 71
3.11.4 Extending NMTOKEN LiSTS......cccecciieieiiieriieriietietesiesteesteessessesseesseesseessesssesssesseessesssesssesssessessseessesssesssesses 71
3115 Creating NEW RESOUICEScc.viiiiiiiiiiiieiiestieit ettt ete et esteeseesbesteesaeesseeseesseesseesaesseenseessasssesseesseessesnsesssessns 71
3.11.6 FUUTE JDF EXEENSIONS ..euuiiuiiuieiiiiiiiiteitieteet et ettt ettt ettt ettt b e bbbt e st et et e e st e st ebeebeebeentennentens 71
3.11.7 Maintaining EXEENSIONSccvieitieieiieiiesteerte et e et et et et e teseaesseesseesseesseesaeeseesseesseenseensesnsessaesseensesnsesnnennns 72
3.11.8 Processing UnKnOWn EXLENSIONSc.eeeverieriieiieieeiestiesteetestesteesseesseesesseesseesseesseenseessesseessesseensesssesnsesnns 72
3.11.9 Derivation of Types in XIMLSCREMAcccoeviiiiiiiiieiecieeeeee et e sees 72
Chapter 4 Life Cycle Of JDF ... s s s 73
4.1 Creation and Modificationccciriiininii e ——————_—— 73
4.1.1 Product INteNt COMSIITCEScueeiieiieieetieetiet ettt ettt et ettt sate s et e se e e bt et e eneeeneesseebeenseensesmeesneesseesneanseanseans 73
4.1.2 Defining Business Objects Using Intent RESOUICEScceruieuirieiierieieiie ettt 74
4.1.3 Specification of Delivery of End Products...........ccooiiiiiiiiiiiieeeee e 76
4.1.4 Specification of Process Specifics for Product Intent NOdesccccveeierienieciieiiiiieceeceeee e 76
4.2 Process ROULING......oo s s 77
4.2.1 Determining EXeCutable NOGESceevvieiiiiiieiieiieieete ettt ettt te e esesaeste e se e seessessaesseesseesseensenns 78
4.2.2 Distributing Processing to Work Centers 0r DEVICESccveruieriieiieierieiieieeiesteseesieesseseeseesseesseeseenseens 78
4.2.3 Device / CONrOlIEr SEIECTIONecueriirtiriiriieiieietetet ettt st sttt ettt et sttt sttt et enaenees 79
4.3 Execution Model........cccoiiimiiiiminiiis i 79
431 SIIAL PTOCESSINEveeuvieiiieieeiieetieet ettt ettt ettt e st e st e et e ae e ea e e e se e st et e emteeaeeemeesntenseensesneesneesneanseanseans 79
4.3.2 Overlapping Processing USING PIPes.......c.cocieruieiiiiieiieiieie ettt et ee e s e e e e eneeens 80
4.3.3 Paralle] PrOCESSINGccueeiuieieieiieie ettt ettt et e et e e ate e et e sa e e bt et e eneeesee st eebe e seenteeneesneeeneesneeseenseans 84
4.3.4 TEEIatiVE PIOCESSINE .. .eeuieiieiieiiete ettt ettt sttt ettt et ea e e bt et e et e eateesaeebeesbtesbeembesatesbeenbeenteeneens 84
4.3.5 Proofing and VerifiCationc..coiuiiiiiiiiiiiiet ettt ettt ettt st b e be e bt et st e sbeesbeenbeenteens 85
4.4 Spawning and Merging......ccccciurisurriimismrrinisrrsinssr s s nr e eann e 85
4.4.1 Case 1: Standard Spawning and MEIZING.........c.cccvereerrieriirierieriieteeteeeesteesseesseesesresseesseessesssesseesseessesssenns 87
442 Case 2: Spawning and Merging with ReSOUICE COPYINGccvervieriieriieiiiiieiieieeiteeeeseeseesreenessnesseesseesseens 88
4.4.3 Case 3: Parallel Spawning and Merging of Partitioned RESOUICEScccevieriirrieicierieniieie e esie e 89
4.4.4 Case 4: Nested Spawning and Merging in Reverse SEqUENCE...........ccuerieriierireiierieniieieeieeee e seeeseeeseesnnens 89
4.4.5 Case 5: Spawning and Merging of Independent JODS..........c.cccuerieriieiieiienieniesiee e 90
4.4.6 Case 6: Simultanecous Spawning and Merging of Multiple NOdescceceveierienieiiiiiiieiee e 92
4.5 Node and ReSOUICE IDS.........ccoiiieiiiiiiiriieir s ss s as s e n e s an e e a s an e naan 92
T 3 1 4 o gl F- 10 Lo |5 T 92
4.6.1 Classification Of NOtIICATIONS .. .ceoutetieiietieitiet ettt ettt e b et et s ieesaeesbeesbeenbeeneeens 92

Table of Contents Xi

4.0.2 EVENTE DESCIIPIIONecuviiiiiiiieitietiete et etteettesteeteesbeeaestaesteesseesseassesseesseesseasseesseassasssesseessaesseessesssesssesssenseensenns 93
4.6.3 Error Logging in the JDF Fileccocoiiiiieiiiieiieece ettt ettt et ettt beesbessaessaeseeesseesseensanns 93
4.6.4 Error Handling via MesSaging (JME).........ccvoiiiiiiiieiieieieee ettt s ssee st eseanseens 93
L S =Y A {01 oY1 ' OSSR 93
4.7.1 Resource Status DUIING TESIUNc.eecuieierieriieieeiesteste st et et teestesteesteenteensessaessaesseesseensessnesseesseenseensenns 94
4.8 Describing Device Capabilities With JDF..........ccccoiiriiiinnii e 94
Chapter 5 JDF Messaging with the Job Messaging Format............ccccocveiiiiiiniin e 96
£ 00 N | 1| o o S 96
5.2 JMF SeMaANtICS ...ueiiiiieiiiiiieisi i 98
521 MeSSAZE FAMILIES ...cuteiiiiiiiitieitieee ettt st ettt ettt b e bttt b e bt b e bt et e eeee 98
5.2.2 JMF HandShaKingc.coouooioiiiiiiieie ettt ettt ettt sat e s b et e bt en e e et e enaesbeenaees 103
5.3 JMF Messaging LeVEIS ...t s e 105
5.4 Error and Event MeSSagesccccciiiiiiiiiiiimiiir s sss s s s 105
5.5 Standard MeSSAQes......ccccceiiiriirnmmiririiissssssssmereesrssssssssssssssessssssssssnssssesessassssssnsssssesssssssssnnnnsesssssnn 106
5.5.1 Controller Registration and Communication MESSAZESccuerrereerrierierrierierienrierieeresresseesseeseesesaesnees 106
5.5.2 Device/Operator Status and JOb Progress MESSAZESeeverreeriirrieriieiierieseeneeeeeseesseesseesseessesssessaessesnses 113
TR TR B o0 T 103U (o) LRSS S 124
LT TU T 0 =T T o Yo 128
5.6.1 Queue Entry ID GeNETAtION.coiuiiiiieiiiieeieetiesit ettt ettt e et et e eteseeesee e et e eeeneeeseeeseesseenteenseeneesneenneas 128
5.6.2 Queue Entry Handling Commands............cocuoiierieriiiiieieeieiieieeie ettt sttt ettt st 128
5.6.3 Global QUEUE HANAIING........cviiiiiiiieiietieete ettt sttt ettt e et et e beeeeebeeseenee e enee e 133
5.6.4 Queue-Handling EICMENTSc..coouiiiiiiiiiiiiieeie sttt ettt st s e bttt et eateeatesbaesbeenaeas 135
5.7 EXteNdiNg MeSSages.....cuiiiiiiiiieiiiiiii s ssse s smss s s as s s s e e e s mnn e s nn s aan 137
S5.7.1 TEQTTACK SUPPOTT ...eeuiieiiieeiieiieetiesieeie ettt ettt et e et este e beesbeesseessessaesseesseesseassesseesssesseesseessenssenssenssesnns 138
Chapter B PrOCESSES......ccccciiiiiiiiiccisscriee e s rsss s ssssse e e e s ee s s s s s s sm s e e e e eesaa s s s smn e e e e e essas s nmnnneeeessassssnnnnnsenssnssen 139
200 B o o Yo oY =T 4] o P |- S 139
6.2 GeNeral ProCeSSES......cciuiiiiiiriisiiiis i 139
LT B N o) 01 0) ¢ 1 TSRS 139
LT S 11 i (<) (TSRS 140
LT T 707 15 o3 14 LTSRS 140
LT B 1§ 1<) USRS 140
6.2.5 MAnUALILADOT ..ottt ettt h ettt ettt h e bt e bt et et en bt et e enaesbeenaeas 141
0.2.0 OTAEIINE .ttt ettt ettt ettt s a e s bt e bt et e ea et es e eh e e e bt e bt enbeea bt e aee e heeshteeb e e bt e bt en bt enteebeenbeenean 141
6.2.7 PACKINGcciiieiiciieiteie ettt ettt et e st este e bt e bt e st e e sseesees s e esseesseesbeasa e sa e s e eraeenaeereeesee st enseenseesseensensaenaeas 141
6.2.8 ReESOUICEDETINILION.euteutitiitiitietiee ettt ettt ettt b e s bbbt e st et e e sbesbeebeeseente e enaeee 142
0.2.9 SPIIE ettt bbb bt b e a e a et b e bbbt e st et et e bt eh e bt e st ent et et e 142
0.2.10 VETIFICALION ..utiuiiniiiiteiteeieet ettt ettt b ettt et b e s bbbt e bt e st e b et e b e saeebe e bt ente e enae e 142
6.3 PrepPreSS PrOCESSES....cciiiiiiiiiciieciirrriiissssssmnese e s ssssssssssmsr e e e eesassssssms s e e e eessasssssmnsneenessasssssnnsnnensssnssnn 143
0.3.1 COlOTCOITEOIION. ...ttt ettt ettt sttt a et ettt b e s et b e ebe bt et et et e st e st e b e seeebeebeeane e enaeee 143
(TR T8 0101 (o) o o 1ol 0] 11143 43) 1 SRS 143
(TR T80 B G703 L [o1 0] o) 1 =TSSR 144
(TR TR S 707 L0) 1 1< O 1o)X 1o o AU 144
6.3.5 DBDOCTEMPIAtELAYOULeouiiuiiiiitiie ettt ettt ettt be st e st et et e sbestesbeeeeebeeneenseneeneenes 144
6.3.6 DBTEMPIAtEMETIZINGccueeuiiiiieitieieeie ettt ettt ettt tteae e e e te st eabesaeebeeseeseeaeenseseeseeseseeeseeseeneansensensenes 145
6.3.7 FIIMTOPIAtECOPYING -.euteeutieiieitieitieteete ettt ettt ettt et et ettt eshee s b e e bt eatesateestesbeesbeenbeenteeneenbeenneas 145
6.3.8 FOIMAtCONVEISION ...c..iitiitiitiitieiteiiete ettt ettt ettt h e bt b e a e e st e s et e b sae e bt s bt eb e e st entenbe st e ebesbeseeebeeseenteneenaeee 146
6.3.9 IMAGEREPIACEIMENLcueieeiiiieiieiieie ettt ettt et e st e et eetaeste e be e beessessaesseessaesseesseessenssenssensaesneas 146
6.3.10 TMAGESELUNG ...ccueeevieiieiieiieieeiesteee et etestesteeste e bt esbeesseaseesseessaesseassesssesssesseesseessessseessesseenseessensseessenssenses 146
0.3.11 TMIPOSIEION 1.evvieniieniieieeieeiieet et et e et e sttestte st esseeteeeeesseesseenseesseanseessessaenseenseensesnsesssesseeseenseenseansennsesssensnennens 147
6.3.12 INKZONECAICULALIONeuvetiiiiiiciteietete ettt ettt st b ettt besaeebe bt ease e eae e 148
LT TR G T 417l o) (< 1 =TSRSS 148
6.3.14 LayoutElementProdUCLION..........cciiiiiiiiie ettt ettt ettt ettt ettt et e eneeeneeenean 149

(O T BT B)70 10 20 (<) o2 15 10 4 SRS SRSS 150

Xii

Table of Contents

6.3.16
6.3.17
6.3.18
6.3.19
6.3.20
6.3.21
6.3.22
6.3.23
6.3.24
6.3.25
6.3.26
6.3.27
6.3.28
6.4
6.4.1
6.4.2
6.4.3
6.5
6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.5.7
6.5.8
6.5.9
6.5.10
6.5.11
6.5.12
6.5.13
6.5.14
6.5.15
6.5.16
6.5.17
6.5.18
6.5.19
6.5.20
6.5.21
6.5.22
6.5.23
6.5.24
6.5.25
6.5.26
6.5.27
6.5.28
6.5.29
6.5.30
6.5.31
6.5.32
6.5.33
6.5.34
6.5.35
6.5.36
6.5.37
6.5.38

PDEFTOPSCONVETSION ...ttt sttt ettt ettt st b bt et s et e e st et e bt s bt et e e st e st et e te bt saeebe e st eneeneentenee 150
ST D d o L O TP PUU PP 150
PrEVIEWGENETALION ..c.euveeeeiieiieitetet ettt ettt ettt et e bbbt bt et e b et b st sa e bt bt et et et e 152
PLOOTING ... ettt ettt et e bt et e et e et e st et e et e e b e e nae st e st et e enteenee st enseenteenseensennaennean 154
PSTOPDFCONVETSION ...ttt sttt ettt ettt sttt et et et b e sa e bt et et et et et sheebesbeenee e enbe e 155
S 1T (<3 4 TR US 155
RIP I ..ttt ettt ettt et ettt et ettt et et e e st ese e s e be s e eseeseestessensan s e s et e eseesteseansensensensenseeneeneeneensensensenns 155
SCANMMIINE ...ttt ettt et ettt et e et e et e bt e et eatesaeesseesaeesseemseemeeemeeeseenseemseenteemseemseemeesnteeneenseenseantean 156
SCTEBIIIIE ...ttt ettt et ettt et e et s b e s bt e bt et e e s et e at e e bt e bt em bt ea bt ee s e eb e e e bt e b e e bt embeemeesatesbeenbeenteenteens 156
SO PATALION. ..eeuveeiieesiieeeiie e et ettt e sttt ettt estteette e tteeteeessaeseeesssaanseeessseeaseeensaeenseeansaeenseeeasseeneeesbeensaeesbeennreenn 157
SOTEPTOOTIIG ..ttt ettt b ettt e e e s b e s bt e b e e bt embe st e satesbeenbeenbeenteens 157
THLIIIE .ottt ettt ettt e et e et e s bt e s b e e beesbeesteese e s e enseesseas s e esbe st e b e enseenbeeatenReenseenseenseenseesbensaereas 158
TLAPDING ..eevveeteeeie ettt ettt et e et e st e et e et e esbesseesaeeseesbeesseesseassenseesseasseassesssenseenseenseenseeseenseenseenseenseesbenraereas 158
PreSs PrOCESSES.....cuiiiiiiiiiiir it 159
CONVENIONAIPTINEINGvevieiieiieiesiesieste ettt ettt e e et et e et e e sesbessaesseesseenseensesseesseanseenseensennsesssessens 159
DIGIAIPTINTINGeeeeiieiieit ettt et te s te st e et e bt et e e st et e esseenseesseessessaesseenseensesnsesseasseanseensennsennsenssensenn 160
IDPIINEIIE ...eeeeeee ettt ettt et ettt e et e et e at e e st e s e et e et e em e e emeees e e st e s e e et eaeeeeeeeae e st enteenteeneeeneennean 162
POStPIreSS PrOCESSESueiiiiiieiii ittt e an e e e 163
AdRESIVEBINAING ...ttt ettt et ettt e ae e s et e et e et et e enee e st e beeebeeneeneeneeenes 163
BIOCKPIEDATATIONeiviiiieiiieeiietieete ettt ete ettt e ete e bt et e etaeete e beebeesseessesssessaesseesseesseessesseenseenseesseessesssessens 163
BOXPACKING ...ttt ettt ettt et e a e bbbt ettt s he bt et et eateeaeenbeebean 164
CASEIMBKING ...ttt ettt ettt et ettt e e s e st et et e b e et e ebeseteb e enten s e s e s e beeeeebeeheen e ene e tebeeaeebeeneenee e entenee 164
(73 114 TP UR P PRPR 164
CRANNEIBINAING. ... ccviiiiiiieiecteseete ettt ettt e ettt e st e b e e b e esbesseesseesseesseessesssesssesseesseenseensesssenssenssesses 165
COUBINAINGvevieieeii ettt ettt e et et e et e esbessaesseesseesseesseesseassesseesseesseessesssesssesseeseenseensenssenssessseses 165
(07071 T 1 =PRSS 165
(010N AN o0 V(e 150 s PP S 166
CT@ASIIIG . .. vt enve et et eeteette it et eateesaeetee st eenseensesssesaea st anseenseesseesseseenseenseensesssessee s e enseensesseaseanseenseansennsenseensens 166
(03111572 167
D)3 16 13T USSR 167
EINDOSSIIE ... ettt ettt ettt et a et ettt et e e a e e eh e e eh e e bt e te e et e neeene e teenteenteeneeeneenean 167
ENASREEIGIUING ...ttt ettt ettt b et e et e et et e s bt et e eseeseeme e e e beseeebebeseeebeeneensensensenee 168
FOLAING .ttt ettt ettt et b e e et e st et e e b e et e e bt e et eb e enten s e s et e bt eaeebe e st ene et entenee 168
GALNETINE ... e eeve ettt ettt e e et e st este e beesbeesbeeseeeseesseesseesseessasseesseenseensesssesseesseenseenseessenssenssesens 169
GIUINE. ...ttt ettt ettt e e et e et e s bt e beesseesbeeseeeseesseenseesseassesssessaessaesseassesssesseesseenseenseessenssenssessens 169
HeadBandAPPLICATIONccveruieiieiieieeieeteseeie et e ste st e st e steesseesbeessesssessaesseesseessesssesseesseesseessenssenssesssesses 170
= £0) (510 1 < 1 TSRS 170
IIISEIEIIIE . . eeuveeete ettt ettt ettt e et e s et e st e s e esa e e st e et e e st enseeaseenteasee s e e s e enseenaeeneeeRee st enseenteenseensennaennean 170
JACKEHING. ... ettt ettt ettt e st e st esteessees b e s e et e e s seansesasesseess e e st enseenee st enseenseenseentenraennean 171
521 o Tc] 112 TS USRS 171
LAMUINATINE ..ottt ettt ettt ettt e st e bt et e e et e es e e et e et e e a et enteea e e st e bt e teeateeateene e st e st e et enteeneeeneennean 171
Longitudinal RIDDONOPETALIONScc.eeiuieiieiieeie ettt ettt et et te st e st eseeesteeeesseessee et eneeeneeeneesneenneas 172
INUINDETINZ ...ttt ettt ettt sttt e bt e e a et e e bt e bt e bt e bt e st e se e e sbeenb e et e em et eateebtesbeenbeenbeenbeeneesneesaee 172
PAlLETIZINEZ ...ttt ettt ettt b e bt e et e st et e et ekt e bt et eb e e n e et et et e bt eae bt e st ene et entenee 172
POITOTATINE ...ttt h bttt et e et e b e s bt e bt ettt s h e bt e bt et eatesatesbeenaean 173
PlastiCCOMBBINAING.ccviiiietiieiieiiete e eie sttt et ete et e et e steesbeebeessesssesseesseesseesseessesseesssaseensenssesssesseessees 173
RINGBINAINGc.vviiiiiieit ettt ettt e st et e esb e esbeessessae s e esseessessaessaesseesseenseensenssenssesssesens 173
SAAAIESHECIING.evieiieie ettt ste et e et e e b e et e steesbeesbeesbeesseessesssessaesseessesssesssesseesseeseensenns 174
SRAPECULLING ...ttt eeeeieeteete ettt et et et et e et esatesaee s st e st esseenseassesseesseenseenseessesnsessaesseensesnsesnsesseanseanseansenns 174
SIIINKINE ..ttt ettt s e st e bt e st et e e seeeste s st e st esseenseesseasaeseenseenseensesnsesnneeneenseeseenseans 174
SIS EWINIEZ ... enveeeee ettt ettt et et et e e e e e e s eestae s st e st enseenseeaseesee s e enseenseenseessessaeseenseenseensesnsesneanseenseanseans 175
N 011 g () 1621) A SRR 175
SPINETAPINE ..ottt ettt ettt et et e et e e bt e bt et e ea et eaeeeaeeas e e et emteemteeseeeseesseeseenseemeesneesneenseenseanseens 175
SEACKINE ...ttt ettt ettt ettt ettt et b e h e es et et e be e et e bt eaeeh e emeen e e be s e ke eheeheen e en e ens et et e ebeeheeneeneenteneentan 175
STIECRIIE «. ettt sttt ettt et e bt e e bt e bt e bt e e e sb b e ebee s b e e sbeembesmeesatesbeenbeenbeenteans 176
T8 :10] 011 TSSOSO OO PSSP UURPPRPURTRRRPONt 176

Table of Contents xiii

6.5.39 SHEPBINAING ...covviiiieiiieiieciecteetee ettt et e st e st e e be e b e esbeesbeeseeseesseesseessesseesseeseeseenseenseesseesaensaenneas 176
6.5.40 TRIrEAASEAIING.ccuiiiieiieiieieciecee ettt et ettt et e et e e b e esbeesaessaesseesseesseesaeesteseenseenseesseessensaenneas 177
0.5.41 TRICAASEWING. ... eeiieiieiieieeiie ettt e st et e st et e et e et e e se et e en s e enseessessaesseenseenseensesnseeseanseanseenseansennsensnennnas 177
0.5.42 TTIMINING.....cuteiteeteeieeteettestteteeteetesetesstesseesseesseesseesseessanseenseanseansesssesssesseeseenseansesnsesseesseenseansennsesssensennsees 177
6.5.43 WIr€COmMDBINAINGccviiiieiieiieiieie ettt ettt et e et e s saesaaess e e s e enseessesaeesseenseenseensennseensenssenneas 178
0.5.44 WIADPINE ...ttt ettt ettt et et ettt et e et e e s bt e te e et e et e es e et e e et em e e ea s e es e e e Rt e st e bt e et eaeeeaeeeeteene e st enteenteenseeneeanean 178
6.5.45 PoOStPress ProCesSes SIUCLUIE........uiiuiiiuiee ettt ettt ettt ettt st e see et e et e st eeseesaeesteenteenseeneesneenneas 178
03 =T o (=T g =TT o T o - 182
A I 111 T=T o =T o U o=, 182
7.1.1 Intent Resource Span SUDCICIMENTSccccccuiieiieiiiieeiieeiieeeeeieeeiee et eeteeeveesbeesereesbeessseessseessseesnseesnseens 183
T 1.2 ATEDEIIVETYINIENL ...ttt ettt et h e b et e bt e e s bt e s bt e sbe e bt e et e bt enteenteennesbeennees 187
8 5 T 21 1 T LY 53113 T SO SRS UUUURRR 191
0 S 0] (013 £ 1 1<) 1L OO OO OO OO OO O OSSP US TS UROURRRRRRRP 202
8 T T B Y <] 7 U L1 TSRS 203
7.1.6 EMDOSSINGINIENT.cuieiieeiieiieiieiieie ettt ettt et e st e st e teeabeesteesaesseenseenseensesasesseenseenseenseensennsesnsessnesnnas 208
/% R A o) [3124 1)L TSRS 210
8 R T & (o] (510 2 Q0T q U173 oL SRRSO 210
8 TR 1 11<3 110V d 034 LSRR 211
7.1.10 Laminatin@INLeNTcc.eeiieiietieet ettt ettt ettt et e st et ettt e ae e s e s et e eae e bt et e e st e ene e et enteenteenteeneeeneas 213
ToLAT LaYOULIIERIE ..ottt ettt et h e b et et e st e e bt e s bt e s bt e bt e st sateebee bt e bt enteenteesaenbeenneas 213
To112 0 MEAIAINEENLT ..ottt ettt b e bt ettt e bt e s bt e s bt e bt e bt e st e sateeb e e bt et e enteenteenaenbeennean 215
7113 NUMDEIINZINTENE ..ottt ettt et b e bt e bt et e e e e s et e satesbee bt e bt enbeenteenaesbeenneas 218
7114 PaCKINGINLENL.......ccuiiiiieiieiieieeie sttt ete ettt e st e bt e bt e b e etae e st e beesseesbesssessaesseesseesseasseassesseenseessenssenssesssenses 219
T 115 ProduCtioONINEENTccueiiiitiitiitieiieee ettt ettt sttt b e bt be et e et et e bbbt et eate e et 220
71,16 ProOfINGINTENT......cciiiiieiieiieiecie sttt ettt ettt ete e s te e be e beesbessaessaesseesseesseesseessesseenseenseesseessensnenneas 221
7.1.17 ShapeCUttNGINLENL.eeieeiieiieiieie ettt ettt ettt et e et e st e e see s eenseessessaesseesseenseenseenseansesnsensnesnnes 222
ToL I8 SIZEIMEEIIE. ..ttt sttt ettt ettt ettt b et h e bbbt et et et et e bt s bt e bt e bt es b et et e bt saeebe e bt eat et e b e 223
7.2 ProcCess RESOUICESccuccriiirinisiiiiesinsre it s s s e ae e n e a e e n e s e e n e e e 224
7.2.1 Process ReSource TemPIate........cceeiuiiiuiiieiieiiee ettt sttt ettt e st e st e te et eeneeeneeeneas 224
A N 14§ (SRS 225
7.2.3 AdhesiveBindingParamsccooouiiiiiiiiiie e e ettt ettt et enee s 225
724 APPIOVAIPATAIMScuviiiiieeiieiiectiecteeie ettt ete ettt e e teeete e beesbeesbeesbessaesssesseesseesseesseessesseesseesseesseessensnessnas 226
T.2.5 ADPPIOVAISUCCESS ...veeuvieerieerieeieitieiteesteeteeteetteeteesteeseesbeesseessesseeseesseesseessesssesseesseesseesseessesssesseesseesseessessnesseas 227
7.2.6 AutomatedOVEIPIINTPATAINScc.eerviiiiiieiieieese et ete et e et e steebeeseesbessaesseesseesseessesssesseesseeseessensseessenseesses 227
7.2.77 BloCKPreparationParamscceeviiieiieiiesieeie e eteettesteeteesteeseesaesteesseesseesseessesseesssesseesseesseassesssenssesnes 228
7.2.8 BOXPACKINGPATAMS.eciieiiiiieiieiicie ettt ettt ete e e et e e b e e sbestaesse e seessesssesseesseesseesseessansseessenssesseas 229
7.2.9 BUITETPAIAIMS. . .cueiiiiiiiiitecc ettt b e e b et h et a e sh ettt ae e 229
T 2100 BUNAIE ..ttt ettt b bbbt e h et b e bbbt eat et ae e 229
I B B 237 111 - o B O OO OSSO PURPPRRTPRTP 231
B W O 11511 .1 Q1T d o2 - oSSR 232
B B T O 13 1Y §31 o2 6y 4 LRSS 234
7.2.14 ChannelBindingParamsc.cocuiiiiiiiiieieeie ettt sttt et st e e et et e et et e eneeeneeenean 235
7.2.15 CIELABMEASUINEEICLAc..iiiiiiiiieiieeee ettt st b et ettt e e sbeenaeas 235
7.2.16 COlIBINAINZPATAMSoitiitiieiiiieiieieie ettt ettt ettt s e st e e e e s ae et e ebeeseeseeneense s e teabeseeeseeneenseneenaenes 236
7.2.17 COIECUNZPATAIMSeiiiiiitiiti ittt ettt ettt et be et e st et et e ae et e ebeeeeebeeneensens e teabeseeeneeneanseneeneenes 237
T2 18 C000T ettt bbbt h e h e st h e a ekt h e bt e st n b e st et et e bt st e bt bt eat et et nee 238
7.2.19 COlOTANTCONIIOL. ...c.eiiiteitieiieietete ettt b et ea ettt et be s et b e bt bt e st et et e st e st e sbesbeebeeseente e e e ee 241
7.2.20 COlOTCONIIOISIIIP .. eevieiieiieieetiestteste et eteetesteesteebeesbeessessaesseesseesseessesssesssesseesseessessseessesseesseessenssesssenssnssns 242
7.2.21 ColOrCOITECtIONPAIAINSc..eeuteitiiiteterteeteeicett ettt ettt ettt st b et b et ettt sbesa e b beease e eae e 243
7.2.22 ColorMeasurementCONAITIONS.ccuertirtiririirierteitet ettt sttt ettt s bbbt bt est et e tenbeseeebesbeeaseneennenee 244
7.2.23 COlOTPOOL ...ttt bbb bbbt s h ettt 245
7.2.24 ColorSpaceConVerSIONPATAMSc.eicuiiiiiieiieie ettt ettt ettt ettt e et e st eeeeesae e et enteenseeneeeneeaneas 245
B T €103 13 @] T 111 ORI 248
T.2.20 COMPANY ...ttt ettt et et et ee e ebtesb e e s bt e bt e et e atesateeh e e bt em bt em bt eeteesteabee b e e bt emeeeaeesateebte bt enteenteenbeaseenbeennean 248

Xiv

Table of Contents

7.2.27
7.2.28
7.2.29
7.2.30
7.2.31
7.2.32
7.2.33
7.2.34
7.2.35
7.2.36
7.2.37
7.2.38
7.2.39
7.2.40
7.2.41
7.2.42
7.2.43
7.2.44
7.2.45
7.2.46
7.2.47
7.2.48
7.2.49
7.2.50
7.2.51
7.2.52
7.2.53
7.2.54
7.2.55
7.2.56
7.2.57
7.2.58
7.2.59
7.2.60
7.2.61
7.2.62
7.2.63
7.2.64
7.2.65
7.2.66
7.2.67
7.2.68
7.2.69
7.2.70
7.2.71
7.2.72
7.2.73
7.2.74
7.2.75
7.2.76
7.2.77
7.2.78
7.2.79
7.2.80
7.2.81
7.2.82

(0701110103115, 1 L AU PSPPI 249
COMTACE ..ttt b ettt e at e s bt bt e bt et e et e a s e s bt e bt et e et e e atesbeesbe e bt et e enbeeabesanesbaenbeen 252
CONtACICOPYPATAIMSeoveeeiiiieiie ettt ettt e b ettt e bt e et e e bt e ebtesbbeenbeesabeeenbeesnbaesnseean 253
ConventionalPrintinGPAramISc.eeveiierieeiie ettt e e e saeseesseesaeeteeseesseeseenseensesnsesseenseas 253
COSECEILET ...ttt ettt st a et et et e sa e bt et eab e e et e s aeesae e b e e bt embeenneeanesanesanenaeen 256
CoVerAppliCAtIONPArAMS.ocueiiiieiieieie ettt ettt ettt e st e et et e b e et enteeneeeneeeneas 256
(5 (1T ed o2 1 PRSP SUS 257
(311327 1o PRSP 258
CUEMATK ..ottt etttk e b st e et e e bt e st e st e e et e eb e et e e bt ee e ebeemeensens e seabeeaeebeeneeneensentenes 259
CULINZPATAIIIS ...ttt h bt e et e et e s bt e s bt e bt et e e st e saeesbee bt enteenteentesbeenaeas 260
DBMEIZEPATAINScueiiieniieiiieiieeite ettt sttt ettt e e e et e b e bt e bt et e sate s bt e sb e e bt e bt sateeae e bt enteenteenteebaenbeas 261
DIBRUIES ...ttt ettt bbbt e a e bt et e ettt b e bt bt bt e a et e bt eh e bt bt eat et et 261
DBSCREIMA. ...ttt h ettt h bbbt bt a ettt e bt eh e bt bt eat et et ee 262
DBSEIECLION ...ttt ettt b e st b et e et e e b s et e b e bbbt ettt st b e bt ae et et nee 262
DEIIVEIYPATAIMSeovvieiiieiie ettt ettt e st e st et e esteansesssessaesseeseensesnsesseesseenseenseenseensennsennees 262
DensityMeasuriNGFICIAc.oeiiiieeiieiieeee ettt s ae e sttt a e e e e s et nteenteenaeenaenneas 264
DA (0] o111 Ted o o s USRS 264
D) T4 (o< RSSO 265
Digital PrintinGParamScoueiiuieiieiieieeie ettt et ettt et e e et esh e st e e seeete et e aeeeae e bt enteenteeneeeneeeneas 267
DISJOIMEINE ..ottt ettt ettt ettt eat e st e st ea e et et e eb e et e eaeeaeeseemsenseeb e ke ebeeeeeseemeensensenseaseeaeebeeneeneensensenes 269
DIVIAINZPATAINS ...ttt ettt b et e e bt st es et e e sbeeteebeeaeeseeneenseneansaseeaeeseeneensensensenes 270
EMDOSSINZPATAINS ..ottt ettt ettt ettt e et e et e bt e bt et ebeeneen s e e e seaseeaeebeeneeneeneentenes 270
250101 (0} <O ST PRSP U RR 272
EndSheetGIUINGPArAmMSc.ccovieiieieiierieeie ettt ettt e ste et eebessaeseaesseesseesseesseessesssesseessesssenssessens 272
EXPOSCAMEUIA.eiitieiieiieiiieii ettt ettt e te et e et e et e st e esseesbeessessbesseesaesseassesssesseesseenseensenssenssesssessens 273
ST T TP RS 274
2T o0 T PSS 277
FOLA <ttt e bttt bbbttt e b e e bt ettt 278
o) 1T ed o3 21 1 4 TP 278
S0 41 o 1 2V 4 1TSS 282
203 414 oo 5 TR 282
FormatConVerSiONPATAIMScuiiiiiiieieie ettt ettt ettt e et ettt ee et e e st e st et etebeseeebeeseeneeneeneenes 283
GAthETINZPATAIMSitiite ettt ettt sttt ae et e st et et e sb e et e e bt eaeeseeneense s enteabesaeeseeneensensensenee 284
GIUCAPPIICALION ...ttt ettt ettt e et e s tte st e beesbeesaeeteesseessaesseessesssesssessaesseansesssesseesssenseensenssenssensseses 284
GIUINGPATAIMNS ...ttt ettt et e bt et e est e e st e sseesseesseessesssassaessaenseessesssesseesseenseensenssenssesssesens 285
GIUELNEttt b e bt b e e a e s et e e s b ekt e bt e bt e bt e st e b en s et et e saeebeebeene et entenee 286
HeadBandAppliCationNParams............cccueeieeierieniieie ettt ettt s et e seetesaesaaesseesseensesnnesnsesnsessaensens 287
HOIE ..ttt ettt h bt et b et ettt h e bt b e a et e a et sh bt bt ae et et enee 287
HOLELANEttt bbbt bt et ettt bbbt e bt e st et et et et e st e bt ebeeae et et e 288
5 10) (S0 1 QT T4 o 2 V1 o TSRS 289
TdentifiCaAtIONFICIAeoiiiii ettt ettt et e et eeae e st et e et et e eneeeneeeneas 291
IDPIINTINZPATAINSeiiieie ettt ettt et ettt e et e e e e et e es e e s bt e seeaaesmeesaeessee st enteenteensesneenneas 292
IMageComPIeSSIONPAIAINScc..oiiiitiiiieieeie ettt ettt st sb e bt et ettt sbeesbe e bt et e eateeseesbeenaeas 303
ImageReplacemMentParamscooiiiiiiiiiiiiiee e ettt 305
IMA@ESEEEIPATAINScueiiii ittt et et b e b e bt ettt s ae e h ettt eateeneesbeenaeas 306
INK et e h bt bt h e h et e h ekt h e e bt e bt e a e n et ettt st be bt ene et et nee 307
INKZ0oNeCalCUlatiONPATAINScoutiiiiiiiieiteeteee ettt ettt ettt ettt st b et eae e e et 308
INKZOMEPTOTIIE ...ttt sttt e ae ettt saeeb e st et e e et e 309
INSEItINGPATAMIS ... eeiieiieiieie ettt et ettt et e et et e e tessaesseesseeseensesnsesseesseenseenseensennsennsenneas 309
INSEITSIEEL ...ttt b et ettt e e bbbttt b e sa e bttt et et 310
INterpretedPDILLDALAccuieiieieeiecieceee ettt ettt e bt e e e be st e s ree st e bt et e e ne e st e st enteenteenreenaenneas 313
INEEIPIETINZPATAINSeetiiiieiieti ettt ettt et ettt e et e bt et e e atesaeesseesaeeteemeeemeeesee st enteenteenseeneenneas 313
L To) S 1 0 Ted o 0 2 4 PR SUS 315
6] o) 33 157 1« OSSPSR 316
LabeliNZPATAIMSeiiieieietiete ettt ettt ettt st b st e s et et et e ettt bt eae e et et e bt eae bt st ens e s enteee 317

LaminatiN@ParaImS.ccuoiuiiuieiieeieieiee ettt sttt ae ettt e b e bttt e aeea e e a e et e te et e aeebeeae bt st enteeete e 318

Table of Contents XV

7.2.83
7.2.84
7.2.85
7.2.86
7.2.87
7.2.88
7.2.89
7.2.90
7.2.91
7.2.92
7.2.93
7.2.94
7.2.95
7.2.96
7.2.97
7.2.98
7.2.99
7.2.100
7.2.101
7.2.102
7.2.103
7.2.104
7.2.105
7.2.106
7.2.107
7.2.108
7.2.109
7.2.110
7.2.111
7.2.112
7.2.113
7.2.114
7.2.115
7.2.116
7.2.117
7.2.118
7.2.119
7.2.120
7.2.121
7.2.122
7.2.123
7.2.124
7.2.125
7.2.126
7.2.127
7.2.128
7.2.129
7.2.130
7.2.131
7.2.132
7.2.133
7.2.134
7.2.135
7.2.136
7.2.137
7.2.138

LAY OUL .ttt et ettt e st e ettt e e bt e ettt esat e e at e e s a b e e abeenhb e e tae et aeenteeenbaeenbeesnbaeenteenn 319
LaYOULEICIMENLc.veiiiiiicii ettt ettt s b e et e et e esbeesbessaesse e seenbeessessaesseesseenseessenssenssesens 320
LayoutPreparationParamsccocieiuieiieriieiiereee ettt ettt s re st et enteenteenaennaenneas 322
Longitudinal RibbonOperationParamscueeierieriieiieieeiesiesieeeete st eee e et e s ensesnsessaessaennees 330
ManUAlLabOTPATAINSc..coiiiiiiiiieni ettt ettt ettt sttt ettt 332
LT L T PP 332
IMEAIASOUICE ...ttt ettt ettt et et e etesa e e e ae e aeeat e eaeees e es e et e emeeemteemeesseesseeneeemeeemeeeseenseanseenseensesneesneas 337
NUMDETINZPATAIMS ..ottt ettt ettt et e e st e s st e bt e bt enteesee s eenseeneeneeneeenes 338
ODBJECERESOIUTION ...ttt ettt et b e b et et e st s bt e s bt e bt et e e bt enteeneesbeenaeas 338
OrdeIINEPATAIMSeetieie ettt ettt ettt et e et e sb e e s bt et e e bt et e eaeeebe e bt enteenteentesbeenaeas 339
PACKINGPATAIMS ...ttt ettt et et et st et e e bt st es e ene e s e b e teebesaeebeeseenseneentenes 339
PalletiZINGPATAINSveeiiiieiieiiecieeiteie ettt et et e st e s bt e ste e s e e b e essessbesseesaesseessesssesseesseenseenseessesssenssessens 340
PAlLEE .. bbbt h et e bbbt bt b e e a e st et bt sh e bt bt ent et et ee 341
PDEFTOPSCONVEISIONPATAIIS.cotiiiiiitiniiiteeitetetetete ettt ettt ettt s be s e et e 341
PDLRESOUICEATIAS ..c.euvetieteeieeiteit ettt ettt ettt ettt b et b e s bttt be et et et saeebe e b eat et ete e 344
Perforatin@Paramiscciiiieiiieieciecese ettt et ettt e e na e st et e enteenseenteenaenneas 345
o3 4o PRSP 345
PIaceHOIAETRESOUICEc..eeuiieiiieiieei ettt ettt ettt st s et et e et e e e aeeeae e e enteeneesneenneas 346
PlasticCombBINAINZPAIAIMScc.eeiiiiiieiieie ettt ettt ettt st ste e et e e st e s e teenteeneesneenneas 346
PLAatECOPYPATAINSeouiiieiiiite ettt ettt et h et s et e e st e e te e bt e st eseene e s e s eseabesaeebeeseeneensensenes 347
PrEflIZNEANALYSIS ...ttt ettt ettt et et bt s et et e st e st e e et e ae et e et e ebeeateneente bt eaeebeeneenteeenteee 347
PreflightINVENTOTY ..co..eiiiiiieie ettt ettt et et e b e s bt et e et et s et e s bt e bt et e enteentesbeenaeas 349
PreflightPrOTILE .. .oviivieiieie ettt ettt ettt e et e e tb e ta et e e b e e b e enaesreeeseeseenbeesbeesbensaerees 350
PLOVIEW ..ttt ettt b e bbbt e a e s et h e bbbt e st e et et et et eheeb e bt eae et e tenee 351
PreviewGenerationNParaimsc..oouiiiririii ettt ettt ettt et b ettt 352
PrOOfINGPATAMS ..ottt ettt ettt e e et e et e s se et e e se et e enaeene e st et e enteenseenteenaennees 353
PSTOPDFCONVEISIONPATAIIS........eotiiiiitiriieieeitetet ettt ettt ettt ettt et st b e st 354
a3 1Y 1 4 USRS 357
O 13 8 L] oo) o BTSRRI 358
RENAEIINZPATAINS ...ccuviiniieiii ettt ettt ettt et e e e s e e s bt e be e eeemtesmeeseeense e st eneeenseeneesneenneas 359
ReSOUrCEDEfINITIONPATAIMNSe..eieeietieitieteee ettt ettt e e et e et e et ete e et eene e st eteenteeneesneesneas 360
RINEBINAINZPATAINSotiiiitiitietieee ettt ettt ettt e bt et e bt et et e s e te e bt saeebeeseeneeneentenes 361
RUNLISE 11ttt ettt b ettt e a e e b e s bt e b e ea bt emb e s et e sbeesbee bt et e enteentesneesbeenbean 362
SaddleStEChINGPATAIMNSiiiieiieciietieiieie ettt et esteesbe et e e b e staesseesseesseessesssesseesssesseesseenseensenns 366
SCANPATAIIIS ...c.eeiiiiiiiii ettt ettt et et e at e st e bt et eab e e et e sbbesatesbtesbeenbeenbeenteeas 367
SCAVENZETATEAeeeuiieeniie ettt ettt ettt et te ettt ettt e stteestte e bt e esee e steensaeeasseensteesseesseensseenasesnsseensseensseensseenns 369
SCIEENINGPATAIMSeuiiiiiiieiieie ettt st et ettt et e et e s st e seenseesseessessaesseeseenseensesnsesneenseanseansenns 369
SeparatioNCONIIOIPATAIMNSeevirieriieiieie ettt ettt et e et e e ebeesaessaesseesseeseensesnnesssesseesseaseensenns 371
SEPATALIONSPEC ... veeeeeeeiiete et et et et e bt e bt et e setesetesaee st enseesseesseeseenseenseenseasseassesssensaesseensesnsesnsesseanseenseansenns 371
ShapeCULLINZPATAIISo.eiiiieie ettt ettt ettt ettt et et ees e e e st e beebeentesmeesmeeeneesseenseeseans 372
N 4 1<) RSSO 372
SRHENKINZPATAINSeeiiiiieii ettt ettt ettt et e st et e et et e ea e esee s st e beeseenseeneesnteeneesseenseeseans 373
SIAESEWINZPAIAINSeeiiiiieitieiteeit ettt ettt ettt et e bt et e s bt e sbeesbe e bt e bt eaeesetesaeenbeenbeenteans 374
SPINEPTEPATAtIONPATAINIS. ... eeitiiiiieeiiecieeeiee ettt ettt et e st e e ettt e sabeesabeessbeeesseessseensseessseensseessseensseenns 375
SPINETAPINEPATAMS ...ttt ettt et e e e st e bt e b e bt esbesaeesetesaeesbeenbeentens 377
STACKINZPATAINScuvieiiiiieiiieieeieete ettt ettt et e ste e bt e b e esee e st e sseesseesseesseesseessesssessaesseensesssesssesseenseenseensenns 378
SHECRINGPATAMS.........oiiiiiiiiiiieie ettt ettt et e et eete e teesbeesseesbesssessaesseessesnsesssesseesseenseensenns 381
15 21 o OO UU RO RPRUPRRPPRROt 384
SHrAPPINGPATAMIS.eiiiiieiieieee ettt et et e et e e st et e e be e seessesasessaesseenseensesssessnanseenseenseans 384
StrPBINAINZPATAINSeoviiiiieiiieieieeeie ettt ettt s e s st et ebeesseessesssesseesseenseensessnesseasseansennsenns 385
SUITACE. ...ttt ettt bbbttt et s et b e s bt bt ebt e st bt et ettt et bt bt et et enten 385
ThreadSealingParams..........ccuiiiiiieiee ettt ettt ettt et e bt et e e te et esaee s st e et enteenteeneesneesneas 389
ThreadSEeWINGPAIAIMScc.iiiiiiiet et ettt ettt ettt e e e e st e et e et e e saeesae e seenseeneeenteenseeneeaneesneas 390
1 OSSPSR 391
00 ettt ettt ettt h e bt h e a e a e et et e bt ekt Rt ea e en e enten s et e te bt eaeebe st ene et entenes 392
THANSTETCUIVE. ...ttt ettt ettt b et et e et e s bt e s bt e bt e ateeatesaee bt e bt emteenteeseesbeenaeas 392

http://www.cip4.org/

XVi Table of Contents

7.2.139 TransferCuIrVEPOOLcc.couiiiiiiiiee et b ettt et ettt besb e bbb et e e et e 393
7.2.140 TransferFunctionCONIIOL.........cuiiiiiiiiiiiiieete ettt ettt sb e st eb e et e e 394
7.2.141 TrapPINGDEALlSoccvieiieeieetieiieieeie et ete sttt ettt st e st et e e e esbeeste et aessee s e e s e ensesaeessee s eenseenseenteanseensennaenneas 394
B N b 1 oY 4 oV 2V o TSP RSS 395
A T I 1) 3 o5 1o USRS 398
7.2.144 TrimminGParamSoooiiiiiiiieiee ettt ettt et ettt h e bt e bt ettt e nteea e e bt e te et e enteeneeaneas 398
7.2.145 VerifiCatiONPATAIMNScc.eiitiitietieieeiie ettt ettt et ettt et e bt et et ea e esee s st e b e e beeaeeemeeeneeeseesaeeseenseenseeneesneeaneas 399
7.2.146 WireCombBINdiNGParamS.ceiuiiiiiiiiieieieseee ettt ettt sttt ettt e et e st e se e s teesteenteeneeeneesneenneas 400
T.2.147 WIAPPINZPATAINS ...ttt ettt ettt et e a e e b e s bt e b e e bt e et e st e satesb e e bt et e enteenteeebesbeenaeas 401
7.3 Device Capability Definitions.......cccccciiiiiiiiiniii s ————— 401
7.3.1 Structure of the DeviceCap SUbEIEMENL.............cceecuiiriiiiieiicieceee ettt re b reesaaesaees 401
7.3.2 Structure of the Performance SUDEIEMENLtcccoruiiiiiiiiiiiiiieec e 402
7.3.3 Structure of the DevCaps SUDCICIMENLc.ccvveriieiieiieieeieceeie ettt seesree e e sseesbeesseesaessnennees 403
7.3.4 Structure of the DevCap SUDCICMENLcceiiiriieiieiieieeeee ettt ettt eseaesneas 404
7.3.5 Structure of the Abstract State SUDEIEMENL.........c.ccuiririririiiiiei e 404
7.3.6 Examples 0f Device Capabilities.........cevierieririiiiieiieriierie ettt steeae e seeessaesseeseenseensesnsensnennees 409
Chapter 8 Building a System Around JDF..........coomiimir s 412
8.1 Implementation Considerations and Guidelinescccccciirimminiiinc s 412
8.2 JDF and JMF Interchange Protocol...........cccoimiininiinrniern s 412
8.2.1 File-Based ProtoCOl (JDF ONLY)....couiiiiiiiiieeie ettt ettt st e b ettt e e b eseene e e e es 412
8.2.2 HTTP-Based Protocol (JDF + JME).....cc.ooiiiiiiiieiicie ettt ettt ettt ettt e e e saeesaeesaeeveenreens 412
8.2.3 Protocol Implementation DEtails.........c.ccvveruiiviiiiiiieiiciieie ettt ettt et et re e re b ereesteereenreens 412
824 M IME Types and File EXIENSIONS........cciecviiiieiieriieiieteeteetteste et eteeseesteeseebeessessaesseesseesseensesssesseessessenns 412
8.3 MIS REQUIFEMENESeeeeiiiiiiiicccceciiee s e s e e re e re s s s s s smnn e e e e e s s s s s mmn e e e e e e sas s samnneeenesessssnnnnnenssnnssen 413
2N o1 0=T 0 Lo T G- N = 1o o T [4V 414
A1 XML Schema Data TYPeS....cccccuriiiiireismmrrerrissssssssseerersssssssssssssssssssssssssnsssssnsssssssssssssssnsssssssssnnsnsns 414
) 1T o 0 T T T Y- PR 415
A2T CMYKCOIOT ettt ettt h ettt b e et b e s bt bt et et et e st et e nbesbeebeebeenb et entes 415
A2.2 DUIAHONRANZE .. .ottt ettt et et e st e s et e s bt e bt e et eneeeae e st e bt et e en e e ereeene e beeneenneenes 415
N T U1 (< 03 o I] AU 416
A24 TEEGEIRANGEoneiieiiiieie ettt ettt ettt et e bttt e et e ne e e ae e h e et e et e st e bt e nne e teenteeneeeaee 416
A25 TEEGETRANGELISTeuiiiiiitietieeee ettt b ettt et st e b e bt e b e b e e be et et e eaee 416
AL2.0 LADCOLOT .ttt b e b h ettt h e e h e h e bt et ea bt eh e e eb e e b e e bt e bt entesaeenaes 416
AT IMIAITIX ¢ttt ettt h bt bt e h sttt bkt h e bt e b e e h e st et e b bt ekt e bt h e en s en e e et et e e be bt ebe et enentens 416
A28 NAMEACOIOT ..ttt h et h et e et b s bt eb e bt e st e st et et et e s bt e bt bt ent et enenaens 417
AL2.9 NAMERANGZE ...c.evieiiiieiiieeite ettt et e et e sttt e st e e sttt e sttt e sabeesabeesabeessseessseensteesseansseessseenseesnsaeenseesnsaesseean 417
A2.10 NAMERANGELISE.....c.eieiieiieiieitieieeie ettt ettt et e e e ssessaesseesseesseesseessesseaseenseenseassessaenseenseenseensennns 418
A2 LT NUIMDEILISE 1ottt ettt et b e st b e bt bt et et et s et be s bt ebe e st et e st e sbeebeebeenbetennen 418
A2.12 NUMDETRANGE.ioiieeiiiieiietieie ettt ettt ettt e et e st essee s e esseeasesseesseesseanseanseessenssessaenseenseenseensennns 418
A2.13 NUMDETRANGELISE ...ttt ettt et et ae e s st e bt entees e e eseesne e seeneeeneeenes 418
N S & 11 « WO TSSO 418
N B T 101 21 V. (USSR 419
AL2. 160 SNAPC....oocuiiiieiicieeeee ettt et et ta ettt a e be e beerbeerbeeraeete e bt e beeabeetbeetseats e taeaeenbeenteeraeeees 419
AL2.17 SRAPERANGE ...ttt ettt ettt ettt e bt e aeshe e bt e st ea b et et e e bt eh e e bt e et es e et et ebeebeeneeneene et enteanen 419
A 218 SRAPERANGELAST.....cutetiitieteieieiee ettt ettt ettt sttt e et et e e st et e be et e abesae et e eseeaeen s e senseseeebeeneeneeneeneeseanens 419
AL2.19 SRGBCOLOT ...ttt b et a et e e b st e bt s bt bt e bt e st et et e b et e st e e be e bt ebe et e e aens 419
A2.20 TIMERANGE ...cveiviiiieiicieeie ettt ettt et et e et e et eeebestaeste e seesseessesssesssesseesseessaesseessanssessaesseensesssesnsenens 420
A2.21 TranSTErFUNCLION ...c.eetiiiitiitiet ettt ettt ettt b e st b e bt eb et et e b e s beebe e bt eae et ennenaens 420
AL2.22 XY PNttt h bbbt h e bt h e a et a et be bbbt eat et entes 420
A2.23 XYPAIRANZE ...ccvieniieiieieeiiectiee ettt ettt ettt et e e e atesseessee s st esseenseeseeeseaseanseensaassessaesseenseenseensennns 420
A2.24 XY PATRANZELASTeeiieiieiieiieiiecie ettt ettt et e st ee st eseesesseessee st enseenseenseesseseensennsensaenseenseenseensennns 421
A.3 JDF Data StruCtUIeS.......ccciiiiiriiiiiir s es s an e s m e mna e ann e 421

N T R 155111 < TR 421

Table of Contents Xvii

N SN 1 T o | =T o 5 - 421
A4l MIME File PACKAZINGccueeiiiiiiiiieiieieeteettesteet ettt ettt e teeseestessaessaessa e seesseessasssanssessaesseenseessesnsensns 421
A42 HTTP 1.0 FIEI ittt ettt sttt ettt e sb e bt ebe st et enaenes 423
A43 PNG IMAZE FOIMALooiiiiiiiiiiii ettt et e sttt e st e s bt e sabeesabeesateesaseesates 423
2N o =1 ¢ Lo [= JRE T3 T 14 - TP 424
Appendix C Converting PJTF to JDF ... s s e 425
C.1 PJTF Object CONVEISIONcocciiiiiiiiii i s s s s s e nnas 425
(O I B X eTo 1 133U YOS 425
Col.2 AAIESS. ettt ettt ettt ettt h et e et et ettt ekt heeh e Rt en e e n b et e ke Rt ekt e Rt eaten s et et e abeeteeneeneene et ennenens 425
Cill3 ANALYSIS ittt ettt ettt et h e bbbttt e at e bt e e bt e bt et e ea b e eheeeb e e bt e bt e beenteeneeeaee 425
(O B S N 14 1 @ o] <] SO SO ST SE PSRRI 425
C.1.5 COIOTANTAIIAS ...ttt ettt b e h e h st e e et e bt s bt eb e e bt eates b et e be b e s beebesbeebeeneennenens 425
C.1.6 COlOTantCONIIOL. . .cueiuiiiiiieeieiiete ettt bbbttt b e s bt bt e bt e st e st et et et e st e ebesbeene et ennenaens 425
C.1.7 COlOTantDELAILS.cvertitieteriietieieet ettt ettt ettt b et s b bbbt et e et bbbt eae et enenaen 425
C.1.8 ColorantZoneDELailscoeeeiieiiriiriirerieeteeie ettt ettt ettt ettt sttt et et nae 426
C.1.9 COlOTSPACESUDSIITULEecvieiieiieieeie et ete st ettt ete et e st e st e beeseeseesstessee st esseenseansesssesseanseensaeseenseenseensennns 426
(O 0 L0 B 1<) 1<) 2SSOSR 426
(O I I R B T 4 17T 00 o) 4 LA OSSR 426
(O I 0 B 1o 133313 o | SRR 426
CLll13 FANISHINE .ottt ettt e b ettt et s b e s bt e s bt e bt et eateeb e e ebeeebeenbee bt enbeenteeneesaee 427
CLL14 FONTPOLICY .ottt ettt st h et e bt e et e a e e bt e bt et e en b e ebeeebeenbee bt e beenteeneesaee 427
CLLl1S TNSEIEPAZEconeeieeieeee ettt b e bt e bttt et sat e s bt e s bt et et e et e ebeeeb e e b e ebeenbe et eaeenas 427
Col.16 TNSEIESREET ...ttt ettt b e bbbt bt e st et e b e st e b e e bt eb e ea e et et e s beebesbeebe et ennenaens 427
[O T A 111703111) OO UUPRP 427
CLLI8 JODTICKEE .ttt stk bt b et es et e b s bt eb e bt e bt es s et et et e s bt ebesbeebeentennenaens 428
C.1.19 JODTICKEICOMNEENLS ..ottt sttt ettt ettt et sh et es et be s bt bt e bt e bt es s et et e nbestesbesbeeueeneennenaens 428
G200 JTFILRu ettt ettt ettt h et bt b e sttt e bbbt e bt e bt et e et et et e st e e besbeeueeneennenaens 429
CLl.21 LAYOUL ittt ettt e sttt e s et e s at e e s a b e e at e e sht e e bt e e sab e e bt e e bt e e bt e e b e e e bt e eabteeabeesnbeeeanee s 429
(O 0 Y, [T RSOSSN 429
C1.23 MEAIASOUICE ..ottt ettt ettt ettt e e et e et e bt e aeeateemeesaeesaee st e et ameeeneeesee st e st emteenseaseenseeneenseenseenseenes 429
Cl.24 MEAIAUSAZE. ... eeteetieieete ettt ettt ettt e et e st et e e e e et e e st e eseeab e e st emeeem et saeeese e st e st anseeneeeneaeseeaseeseenseenseenneenes 430
CL125 PAGERANGE....c..eeuiiiiiieiieeiet ettt ettt h et e bttt ea e e s bt e sb e e bt e et et s et e eh e e b e e eb e e b e e bt et et eaeeeaee 430
C.1.26 PlaCEAODJECL. ...ttt ettt ettt a et e et et e e aeebe e st ea e em s e s e beeee et e ebeeaeeneene e senseeseaneeeeeneeneennennans 431
Cl.27 PIANEOTAET ...ttt ettt b e s bt e b e a e ea et et et e eb e e bt e bt eb e eaten b e b e sbeebesbeebeeneennenaens 431
CLL28 PIEflIGNE...eiceiiciieiieiieieee ettt ettt et e et et esaaeste e beesseessesseeeseesseesseesseesseessanssesaesseenseenseensennns 431
C.1.29 PreflightCONSIIAINTeccviiieiieiiesieete et et et et e eteebeetessaesteesseesseessesssesssesssesseesseessesssasssessaesseessessseansenses 431
C.1.30 PreflightDEtail......cc.eciieieeie ettt ettt st et e e et e s st e ssee s st e st enseensesssensaessaenseenseenseennennns 431
C.1.31 PreflightInStance.ccoveeiieieieeciesieeie ettt ettt e s ae s te e ae e b e esaesseesseesseenseenseensesssessaessaeseensennseensennns 431
C.1.32 PreflightInStanceDEtail..........ccecuiiiiieiieieeieeiieseee ettt ettt e st et esaeense et e ensesseeseessaenseenseenseennennns 432
C.1.33 PreflightRESUILS «..ocueieieeeeee ettt ettt ettt et e s et e st e e et et et e e st e ebeaeseenseeneenseeneeeneeenes 432
(O G 7 S o o111 5)1 | OSSR 432
(O O T o3 (o) i1 (<SOSR 432
Col1.360 RENACTING ...ttt ettt ettt et e et et e et et e e bt eb e eseeaten s e e enseaseebeebeeseeseemtanseseeseabeeneeneeneensennens 432
C1.37 RESOUICEALIAS. ...ttt ettt ettt ettt e ettt e e ae st e es e e st en s et e beabe et e ebeeaeeseemeenseseebeeneeaeeneeneensennens 432
Col1.38 SCREAUIING ...ttt ettt e he et e bt e st ea b e e et e e be et e ebeeaeeseentanseaseeseeneeneeneeneensennens 432
C.1.39 SHZNALULEveevieiiieieeeieeteeiteseesteeste e bt ssteeteeeteesseesseesseessasssesssessaesseesseasseassesssesssenseenseensanssanssessaesseesseessesssensns 432
O] 1 T 433
C.21 SHPSREET ..ttt ettt ettt e bbbt e st es s et et e e bt eb e bt e bt eb e ent e et e bt ebe bt ebe et eaenaens 433
€22 SUITACE. ..ttt h ettt et b e s bbbt e st et et e bbbt e bt e bt e st e st et et et e e bt s bt ebeebe et enaens 433
€23 THLE ettt ettt et bt bbbt eh ettt et bbbttt a et beeheeue et eaeaen 433
(O ¥ o o) 10O 433
C.2.5 Trappin@DetailS.......cccueeiiiiiiieiiee ettt ettt et ettt h et e e et en e ae e b e e b e e bt e teeteenneenes 433

C.2.6 Trappin@ParameELersccceeouieiiiieetieetieite et ettt e st et et et e te st e st e e et e et eneeeneeeseesseanseenseensenseeneenseenseenneenes 433

XViii Table of Contents

C.2.7 TrAPREGION......eeiiiiieieeieeieiteerte et ettt e e testeesteesbeesbeesbesssesseessaesseassesssesssesseesseesseasseassesssanssesaesseenseessennsensns 433
O T I - 14 E=1 P 1T e T = 1= 433
C.4 Translating the Contents Hierarchy ... 434
C.5 RePresenting Pages......ccccccuiiiiiiiiciririiiiisissssmereessssssssssssssssesssssssssssssssssessassssssnsnsssssssssssssnnnnsssssnssnn 434
C.6 Representing Preseparated DOCUMENLS...........cccccccmmimiriiiiscsssssmere s s s ssssssmsese e s e s ssssssssmsnssssesnnnes 434
C.7 Representing Inherited CharacteristiCs.........ccccoonriiiiiiniin s 435
C.8 Translating Layout ... s 435
C.9 Translating PrintLayout............ccciiiiiiiiiiiiiieir i s s s 435
c.10 Translating TrapPing ..o 435
Appendix D Converting PPF to JDF ... s 437
D.1 Converting PPF Data TYPeSccccocviiriiiiiriiniss s ssss s s ssssss s s sssssss s ssssss s sssssss s snsnes 438
D.2 PPF Product DefinitioNsScccciiiiieciiirc e escse e ssssne s s s s s sme e s s e s e e e e e e s mneenmmes 438
D.2.1 Comparison of the PPF Component to the JDF Component...........c.cccuevueerreeciiecieneenienieeee e seeseeesieene e 439
D22 COILEOIIME ..uvtetieieeiieeie ettt ettt et e et e st e et et e esteesae s s ee s e e seenseessesssessee st enseenseanseessesssenssensaenseenseensesnsennns 439
D 0 T € 111 1<, 0 14T 439
D24 THICAASEWINIZ. . cuveveetietieie et eiesite it et e te et e stt et eesteesseessessaesseesseesseanseasseessesseenseanseensesssenssensaenseenseensennsennns 439
LD 0 T 14 | T o] 1V YU RPTR 440
LD 0 I 1] 1103 SO 440
D 0 B 14 T 1< 1 <SOSR 440
D.2.8 ENASREEIGIUING ...cuviiiitiitieeieiieeee ettt ettt ettt et ea et e et e st e ebe s et et e e st eneeneatetesaesseabeeseeneeneansenaens 440
D.2.9 AdRESIVEBINAING ... eetiiitiitietieieeii ettt ettt ettt ettt e st es b et e beebe et e ebeeaeeseeneenseseeteebeeaeeneeneaseanens 440
D210 TIIMIMINE. ¢ttt ettt ettt e st et e st ee e s bt e sbee s bt e bt eneeemtesaeeebeeebe e bt et e embeebeenbeenbeenbeenbeentesaeenae 441
D211 GIUINEIN ottt ettt e sttt e e e b e e st e s saeste e seesseesseassesseessaesseesseessesssanssessaesseenseenseansensns 441
D212 FOIAING ..ottt ettt ettt ettt e et e s te et e esb e e st e esaessaesseesseesseessesssesseessaesseesseessesssanssessaesseensenssesnnensns 441
D.3 PPF Sheet StrUCTUre....... ..o s e s s mn e e s mn e e e e e e e nns 443
D.3. 1 AdMINISration DAccveiieriieiiieie ettt ettt ettt et e et esteseee st e st enseesseesaesseenseensaenneenseenneennennns 444
D.3.2 PreVIEW IMAZES ..eovieieiiieiie ettt et ettt e e et e st estae st esseessesseesseesseanseenseanseassesseanssensaenseenseensennsennns 446
D.3.3 TranSTer CUIVESccueeiieiieie ettt ettt ettt e et e s e e s aeessee st enseesseesseessenseanseenseensensaessaeseenseenseensennns 446
D I B Y 4 1) G\ 3 4 < OSSR 446
D.3.5 Color and INK CONLIOL........cccuiiiiieiiieeieecieeeie ettt ste e e te e sveesteeestbeesteeestbeesseeessseasseeesseeanseeensseessesensseenseean 447
| I B O 11510V D 1 - SO 448
D37 FOIAING DAA....coutiiiiiiiieeiieeee ettt ettt ettt st b e bt ettt et e bt e b e bt e bt e b et ettt eaee 448
D.3.8 Comments and ANNOLALIONSceeevieriieitietieeesteerteeteetestesteesteesseesseesseessesseesseeseessesssesssesssesseesseessessseeses 449
D.3.9 Private Data and CONENL.........cceevuiiiiiiiiiesiesieete et eteete st e e esteebessteseeesseesseesseesseessesssasssessaesseenseesseessennes 449
Appendix E Modeling IfraTrack in JDFcooccooiiiiceeiirccmressscme e s s sms e s ssssss e sssssme s s s ssme e s s ssmn e s snsanes 450
E.1 IFRA Objects and JDF NOAESccccvrreerrrirearerrsssressssssne s ssssne s ssssme e sssssme s sssamsessssmsesssssnsessnsnns 450
| O T O o) [T A (3L T o) B SR UT 450
E. 1.2 TFRA ODJECt HICTAICHY ...cueiiiiiiieiieit ettt ettt ettt e e enaesse et e et aeseenseenseennennns 450
S G T O o) 1T A 1 USRS 450
E.1.4 Deadlines and SCheULINGcceeiieiiiiieiieeeet ettt ettt ettt e et e et ees e s beeaeeseeeeeneeenes 451
E.2 JMF Messages that Translate IfraTrack Messages........c.ccccvvcimiiniiiniinnnsn s 451
Appendix F Mapping between JDF and IPP............ccoiiiiinirr s 452
g S | e L= =T (=Y o 1T = 452
Appendix G StatusDetails Supported Strings ... —— 453
Appendix H ModuleType Supported Strings ... 455

Appendix | Supported Error Codes in JMF............ccoiiiiiiiicccccsecrrre s sssssseses s s s s smsnnssssssssssnnns 456

Table of Contents XiX

Appendix J NotificationDetails ... 457
J.1 Predefined NotificationDetailsccccrrriirrrresierrrcceerr e 457
J11 2T 1o < PP RR 457
JiL2 FONKEY -ttt ettt b et bbb et bbb e bt e bt e st et et et e st e e bt sheebeebee b eaens 457
J.1.3 SYSTEMTIMESEL.cuveeiieieeieeie ettt et ettt et e et e et e et e s ste st esseenseessesssessaessaesseensesnsesnsesseanseenseansenns 457
L B 101013 L OSSR 457
0 T 2 v o) USROS 457
Appendix K EXamPIESocciciiiiiii it s e 458
O T =T 4 1= -0 1 o[458
KLLT BefOTe PrOCESSINE .. ceuteiuiiiiieiiiiitieitee ettt ettt b ettt et sat e sb e sbe et emteea b e e bt e et e e nbeenbeenbeeneeeneeeaes 458
KLiL2 ASTOr PrOCESSINE ..eoutiiniiiiieeiie ittt ettt h e bbbttt sa e s bt e s bt et ent e ea e ebeeebeenbeenbeenbeenteeneeeaee 458
O o Yo 11T R |0 459
K.3 Spawning and Mergingcccccccerrreearrrrsssrerssssmresssssmsesssssssessssssesssssnsessssansessssansessssansessessnsessssnes 460
K.3.1 Example 2 Component JDF before SPaWningccceecveeierienieneriiesienieseeie et eveseeseeessee e esesneseneses 460
K.3.2 Example 2 Component JDF Parent after spawning the cover node............ccceeverenenenienienieneneneneneeee 461
K.3.3 Example 2 Component JDF Spawned NOA@.........c.oecuiriirieiieiienieie ettt 462
K.3.4 Example 2 Component JDF after Mergingcccveeeeruerierierieiiee ettt e 462
K4 Conversion of PJTF t0 JDF ... incncscers s sssms s s s s s smmne s s sa s smmns e s s s mmnes 463
KT PITF ANPUL .ttt ettt ekttt et e et e st e et e se et e et e eseassensensenseeseeseese et e entansensesseesesseaneansensensens 463
K42 TDF OULPUL.c.eeiiiieetie ettt et et e st e et e st e et e st e estaeessbeeesae e sbaessaeessseenseeensseenseesnsseansaeansseenseeansseessesanseennseean 466
K.5 Conversion of PPF tO JDF ... smms e s e 467
T o = 472
O 1T =T o 1= 474
K.7.1 Simple KNOWNIMESSAZESccvieeviieieriieriieieeteetesteesteesseeseesesseesseesseessessseessesssesssessesssesssesssesssessesssesssesssesses 474
K.7.2 Simple persiStent ChANNEL............ccveriiiiiiiieeiesieiecie et ettt et ete et e st esteeste e b e esbeessasssessaesseenseenseensennns 474
Appendix L JDF/CIP4 Hole Pattern Catalog..........ccccccmmriiiiicissemerees s ssssssscenessssssssssssssssssssssssssssmnenes 476
Appendix M New, Deprecated, Modified, lllegal, and Removed Itemscccoccrrrrrrrrrcccisncennnn. 482
g T - T 1 = o N 482
M.2 Deprecated ItEMS ... 482
(1T 1o T [=Y o I =T 4 487
T S |1 =Y 1IN 1 =T 4T 487
TR =Y 4 Lo =T I 1= 5 1= 487
M.6 New/Modified Attributes and Elements...........ccccviiiinniiiinns e, 487
M.6.1 Structure of JDF NOAes and JODSccuiiiiiiiriieiieiieieeiestestee ettt e ettt baesseesbeesseenneeens 487
M.6.2 JDF Messaging with the Job Messaging FOrmat............cccoveeriieiieniieiiiiecieseeseee e e 490
IMLLO.3 PTOCESSES ..eeuveeeutieeuiieetieeiteeteeeteestteeateesattesateesabeesaseesabeeesseesaseeaseesseensseensaeensaeensaeanseesnseeenseesnsaeenseesnsaesnseean 491
IMLO.4 RESOUITES ..uveeeniieeiiieeiie ettt ettt ettt e e st e sttt e s et e e s abeesat e e at e e sbteebte e bt e ebeeeabbeenbeeenbaeeabeesabteenseesnbaesnseean 493
Appendix N Table of TabIeS.......cccciiiiiicciccirire e e ssss e e e s e amn e e e e e s s s mmnnn e e s 506

Appendix O Terminology USQAQEecccccecmeimrriiiisicsssemrreesssssssssssssssssssssssssssmsssssssssssssssnsssssssssasssssnnsnns 511

XX Table of Figures

Table of Figures

Figure 2.1 Example of JDF and JMF workflow interactions..............cccceveeeiiiiiiiiieie e 4
Figure 2.2 JDF tre@ SITUCKUIE ... e e e e e e et e e e e e e e sanraaeeeaaeas 5
Figure 2.3 Example of a hierarchical tree structure of JDF NOdes............cooccmiiiiiiieiiiicieeee e, 7
Figure 2.4 Example of a process chain linked by input and output resourcesccccccceviiieiiniiien e, 8
Figure 2.5 Standard coordinate SYSIEMiiiiiiiie e 9
Figure 2.6 Examples of Transformations and Coordinate Systems in JDF...........ccccooiiiiiiiniii i, 16
Figure 2.7 Transforming @ point (EXAMPIE).......couuiiiiiiiiei e 18
Figure 3.1 Structure of the JDF NOGEooiiiiiiii e e 20
Figure 3.2 Structure of JDF Generic CONTENTS........coooiiiiiiiiiie e 22
Figure 3.3 Job hierarchy with process, process group, and product intent nodescccccceeeiiiiinnnee 26
Figure 3.4 Structure of the abstract reSOUrCE tYPES.......cociiiuiiiiiiiiiee e 36
Figure 3.5 Resource Links and RESOUICERETSccceiiiiiiiiiiiiic e 41
Figure 3.6 NOdes liNKEd DY @ FESOUICEccuuuiiiiiiiee ettt e e e e e e e e e e e e e b e e e e e s e nnnreees 41
Figure 3.7 Structure of the abstract ResourceLink types..........cooviiiiiiiiiie i 42
Figure 3.8 Splitting and combining physiCal FESOUICES...........coiiiiiiiiiiiie e 60
Figure 3.9 Structure of Audit element types derived from the abstract Audit typecccooiiiiiinnnne 61
Figure 4.1 Simplified PrintTalk workflow (negotiation phase) ... 76
Figure 4.2 Life Cycle of @ JDF NOAEcooiiiiiiiiie et 78
Figure 4.3 Example of a simple process chain linked by reSources............ooooooiiiiiieiii i 80
Figure 4.4 Example of a Pipe resource linking tWO proCESSESooiuuiiiiiiia e 81
Figure4.5 Example of status transitions in case of overlapping processing.........ccccceecvveeeriieeeeiiieeeeeeen. 82
Figure 4.6 The spawning and merging mechanism and itS Phasescccccviiiiiiiiiiei i 86
Figure 4.7 JDF node structure that requires resource copying during spawning and merging................. 88
Figure 4.8 Example for a JDF node structure with nested spawningcccoccciiiiiie i, 90
Figure 4.9 Example of the spawning and merging of independent jobs...........cccccveieieeiiiiiiiiieece e, 91

Figure 4.10 Parameter Space in device Capabilities.............eeeviiiiiiiciiiiiee e 94

Table of Figures XXi

Figure 5.1 Contents of a JMF root element and the message familiescccccoeeveeiiiiiciiie e 97
Figure 5.2 Interaction of Messages with @ SUDSCIIPLIONccoiiiiiiiiiiiiii e 98
Figure 5.3 Interaction of Command and Acknowledge MeSSagesccoovvieieiiiiiiiiiiieee e 103
Figure 5.4 Mechanism of a PipePull MEeSSage.cooiuiiiiiiiiii e 126
Figure 5.5 Mechanism of a PipePush mesSSagecc.cooiiiiiiiiii e 127
Figure 5.6 Effects of the global queue messages on the queue Statuscccocceeiiiiii s 136
Figure 6.1 Worst case scenario for area coverage calculation..............cccooiiieiiiiiiiiiiiieeee e 153
Figure 6.2 Packaging Process Coordinate SYSIemoooiiiiiiiiiii e 180
Figure 7.1 Parameters and coordinate system for glue applicationcccccoeviiiiiiii e 226
Figure 7.2 CaseMaKiNGParamSccuiiiiiiiiie ettt ste et e e e sttt e e e st e e e e st e e e e snbaeeeesnnaeaeenseeeeennnes 233
Figure 7.3 Parameters and Coordinate System for CasingIN..........ccoociiiii e 234
Figure 7.4 Parameters used for channel binding..........ccccuuiiiiiiii oo 235
Figure 7.5 Coordinate systems used for COllECHNGuviiiiiiiii i 238
Figure 7.6 Terms and definitions for COMPONENLScooiiiiiiiiiii e 250
Figure 7.7 Parameters and coordinate system for cover applicationcccooiiiiiiii e 257
FIgure 7.8 CUt Mark fYPES. .. .cooi it e ettt e e et e e et e e e e b e e e e ennee 260
Figure 7.9 Parameters and coordinate system used for end-sheet gluing ... 273
Figure 7.10 Names of the reference edges of a sheet in the FoldingParams resource...............ccco........ 279
Figure 7.11 Fold Catalog Part 1ueeiiiiiie e s 280
Figure 7.12 FoId Catalog PArt 2c.eiiiiiiiiie ettt et e et e e e et e e e e st e e e e sntae e e e snaeeeeenreeeeennnes 281
Figure 7.13 Coordinate system used for gathering...........ccccvii i 284
Figure 7.14 Parameters and coordinate system for glue applicationccccoeviiiiiiiiie i 285
Figure 7.15 Parameters and Coordinate system used for INSertingccoocciiiiiiieiiii i 310
Figure 7.16 Parameters and Coordinate System for Jacketing..........cccceeveiiiiiiciiiiiee e 316
Figure 7.17Parameters and Coordinate System for BlockPreparation..............ccccoveveieiiiiiiiiieeeee e, 358
Figure 7.18 Staple ShapES ... 367
Figure 7.19 Parameters and coordinate system used for side SeWiNg...........cccoooeeiiiiiiiii e 374

Figure 7.20 Parameters and coordinate systems for the SpinePreparation processccccoeceeeenee 376

XXii Table of Figures

Figure 7.21 Parameters and coordinate system for the SpineTaping process...........cccecevvvvieeeeeeecccnnnee. 378
Figure 7.22 Staple SNAPEScooiiiii e e e e e e e e e e e 381
Figure 7.23 Parameters and coordinate system used for saddle stitChing............ccccoooiiiiiii s 382
Figure 7.24 Parameters and coordinate system used for stitching..............ccccoiii s 382
Figure 7.25 Parameters and coordinate system used for thread Sewingccocceeiiiiiiiiiie s 390
Figure 7.26 Parameters and coordinate system used for side SEWINg...........ccoviiiiiiiiiiiii e 391
Figure 7.27 Parameters and coordinate system used for trimming........ccccceeiiiiii e 399
Figure D.8.1 JDF node of a CIP3 product StruCturecoooiiiiiiiii e 437

Figure D.8.2 JDF representation Of SNEEtScoiiiiiiiiiii e 444

Chapter 1 Introduction 1

Chapter 1 Introduction

This document defines the technical specification for the Job Definition Format (JDF) and its counterpart, the Job
Messaging Format (JMF). We will describe the components of JDF, both internal and external, and explain how to
integrate the format components to create a viable workflow. Ancillary aspects are also introduced, such as how to
convert PJTF or PPF to JDF, and how JDF relates to IfraTrack. It is intended for use by programmers and systems
integrators for operations addressed by the International Cooperation for Integration of Processes in Prepress, Press
and Postpress (CIP4). In this first chapter, we present the concept of JDF, how to use this document and some basic
document navigational aids.

1.1 Background on JDF

JDF is an extensible, XML-based format built upon the existing technologies of CIP3’s Print Production Format (PPF)
and Adobe’s Portable Job Ticket Format (PJTF). It provides three primary benefits to the printing industry: 1.) the abil-
ity to unify the prepress, press, and postpress aspects of any printing job, unlike any previous format; 2.) the means to
bridge the communication gap between production services and Management Information Systems (MIS); and 3.) the
ability to carry out both of these functions no matter what system architecture is already in place, and no matter what
tools are being used to complete the job. In short, JDF is extremely versatile and comprehensive.

JDF is an interchange data format to be used by a system of administrative and implementation-oriented com-
ponents, which together produce printed products. It provides the means to describe print jobs in terms of the prod-
ucts eventually to be created, as well as in terms of the processes needed to create those products. The format
provides a mechanism to explicitly specify the controls needed by each process, which may be specific to the de-
vices that will execute the processes.

JDF works in tandem with a counterpart format known as the Job Messaging Format, or JMF. JMF provides
the means for production components of a JDF workflow to communicate with system controllers and administra-
tive components. It relays information about the progress of JDF jobs and gives MIS the active ability to query de-
vices about the status of processes being executed or getting ready to be executed. JMF will provide the complete
job tracking functionality that is defined by IfraTrack messaging standard. Depending on the system architecture,
JMF may also provide the means to control certain aspects of these processes directly.

JDF and JMF are maintained and developed by CIP4 (http://www.cip4.org). They were originally developed by
four companies prominent in the graphic arts industry—Adobe, Agfa, Heidelberg, and MAN Roland, with significant
contributions provided by CIP3, the IfraTrack working group, Fraunhofer IGD and the PrintTalk consortium.

1.2 Document References

This specification assumes that the reader has a basic awareness of, or access to, the following documents:

Portable Job Ticket Format

Version 1.1

Date: 2-April-1999

Produced by Adobe Systems Inc.

Available at: http://partners.adobe.com/asn/developer/PDFS/TN/5620.pdf

Print Production Format

Version 3.0

Date: 2-June-1998

Produced by the International Cooperation for Integration of Prepress, Press, and Postpress
Available at: http://www.cip4.org/documents/technical_info/cip3v3_0.pdf

XML Specification

Version 1.0

Date: 10-February-1998

Produced by: World Wide Web Consortium (W3C)
Available at: http://www.w3.org/TR/REC-xml

XML Schema Part 0+1+2: Primer, Structures and Datatypes
Version (W3C Recommendation of 02 May 2001)

http://www.cip4.org)/
http://partners.adobe.com/asn/developer/PDFS/TN/5620.pdf
http://www.cip4.org/documents/technical_info/cip3v3_0.pdf
http://www.w3.org/TR/REC-xml

Chapter 1 Introduction

Date: 02-May-2001

Produced by: World Wide Web Consortium (W3C) XML Schema working group
Available at: http://www.w3.org/TR/xmlschema-0/, http://www.w3.org/TR/xmlschema-1/ and

http://www.w3.org/TR/xmlschema-2/

IfraTrack Specification

Version 2.0

Date: June-1998

IFRA Special Report 6.21.2
Produced by I[FRA

Available at: http:/www.ifra.com/

Spec ICC.1:1998-09

File Format for Color Profiles

Version 3.5

Date: 1998

Produced by: International Color Consortium

Available at: http://www.color.org/ICC-1_1998-09.PDF

PrintTalk Implementation

Version 1.0

Produced by:PrintTalk Consortium
Available at: http://www.printtalk.org/

1.3 Conventions Used in This Specification

This section contains conventions and notations used within this document.

1.3.1 Text Styles
The following text styles are used to identify the components of a JDF job:

Elements are written in sans serif. Examples are: Comment, Customerinfo, and ResourceLinks.
Attributes are written in italic sans serif. Examples are: Status, ResourcelD, and ID.

Resources are written in bold sans serif. Examples are ImpositionProof, Toner, and ExposedMedia.
Processes are written in bold-italic sans serif. Examples are ColorSpaceConversion, Rendering, and

Scanning.

Enumerative and boolean values of attributes are written in italics. Examples are: true, Waiting, Completed,

and Stopped.

Standard bold text is used for the following

purposes:

- to highlight glossary items. Examples are
device, element, and job.

- to highlight defined items inside a table. An
example is the data type NMTOKEN in the
table in Section 1.4 Data Structures.

- to highlight definitions of local terms. These
are terms that are of local importance for a
certain chapter, or some sections inside a
chapter. An example is a spawned job in
Section 4.4 Spawning and Merging.

- to designate PPF objects in Appendix D,
Converting PPF to JDF. Examples are
CIP3ProductName and
CIP3ProductComponent.

For the benefit of those who are reading this
document in PDF or online, cross-reference

’ Extended
Backus-Naur Form

The Extended Backus-Naur Form (EBNF) provides

a compact notation that is commonly used in the

specifications of programming languages. The offi-

cial EBNF standard, ISO/IEC 14977:1996(E), is not

freely available online. To order a paper copy from

ISO, contact:

International Organization for Standardization

Case postale 56

1, rue de Varembé

CH-1211 Genéve 20 Switzerland

Phone: +41 22 749 01 11

Fax: +41 22 733 34 30
Email: sales@isocs.iso.ch

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.ifra.com/
http://www.color.org/ICC-1_1998-09.PDF
http://www.printtalk.org/

Chapter 1 Introduction 3

links are denoted by gray text. Examples are Chapter 6 Processes, and Section 1.2 Conventions Used in
This Specification. To follow a link, click the highlighted text. The examples provided are not actual links.

e Also for the benefit of online readers, external hyperlinks are graphically designated. An example is
http://URL.com. To follow a link, click the highlighted text. The example provided is not an actual link.

1.3.2 Specification of Cardinality

The cardinality of JDF Data Types is expressed using a simple Extended Backus-Naur Form (EBNF) notation. The
symbols in this notation may be combined to indicate both simple and complex patterns, as demonstrated in the fol-
lowing table. A and B represent simple expressions.

Notation Description
(expression) | Expression is treated as a unit and may be combined as described in this list.

A Matches A. A must occur exactly one time.

A? Matches A or nothing. A is optional, or is required only in the circumstances explained in the de-
scription field.

A+ Matches one or more occurrences of A.

A* Matches zero or more occurrences of A.

1.4 Glossary of Terminology

The following terms are defined as they are used throughout this specification. For more detail on job and workflow
components, see Section 2.1 System Components.

B Term B Definition B

Agent The component of a JDF-based workflow that writes JDF.

Attribute An XML-based syntactic construct describing an unstructured characteristic of a JDF node or
element.

Big job The combined job that independent jobs are merged into in the case of independent spawning

and merging.

Class A set of complex data types with common content in an object-oriented sense. A complex
data type may consist of elements and attributes.

Controller The component of a JDF-based workflow that initiates devices, routes JDF, and communi-
cates status information.

Default Used to indicate the attribute value that a JDF Consumer must use if an Agent omits an Op-
tional attribute (as indicated by a "?" in this spec) from a JDF instance. See Section 1.4.2.1
Conformance Requirements for Support of Attributes and Attribute Values.

Deprecated Indicates that a JDF element is being phased out of JDF usually in favor of newer JDF ele-
ment(s). It is recommended that an Agent not include such a JDF element in a JDF instance.
Such an indicated JDF element may be removed from a future version of the JDF specifica-
tion. JDF Consumers should only support such JDF elements for backward compatibility
with previous versions of JDF. Deprecated items are flagged with Deprecated in JDF 1.1] in
this specification.

Device The component of a JDF workflow part that interprets JDF and executes the instructions.
Devices control machines in a proprietary manner.

Document set | A set of instance documents presumed to be related.
Element An XML-based syntactic construct describing structured data in JDF.

Chapter 1 Introduction

Term Definition

Finished page

A finished page is a page of a final product with no fold inside. The folds of the finished
product for packaging, e.g., folding letters into an envelope, have no effect on the finished
page definition. A sheet of paper with no fold inside consists of two finished pages (front and
back side). If there are folds seen in a sheet in the final product, the number of finished pages
of one sheet is given by 2*(X+1)*(Y+1), where X denotes the number of folds in X direction
and Y denotes the number of folds in Y direction, each seen in the completely opened sheet.
Examples: One sheet in a book has two finished pages, one front, one back; a brochure with
one fold inside has four finished pages.

Instance
document

A document that is part of the output of a job. This generally refers to personalized printing jobs.
Each of the individual documents produced from the same input template is referred to as an in-
stance document. For example, in a credit card statement run, each statement is an instance
document.

JDF consumer

A Device, Controller, Process, Queue or Agent that consumes JDF instances

JMF

Job Messaging Format. A communication format with multi-level capabilities. Structures in-
formation between MIS and controllers.

Job A hierarchical tree structure comprised of nodes. Describes the output that is desired by a
customer.

Job part One or more nodes which comprise the smallest level of control of interest to MIS.

Link A pointer to information that is located elsewhere in a JDF document or that is located in an-
other document.

Machine The part of a device that does not know JDF and is controlled by a JDF device in a proprietary
manner.

MIS Management Information Systems. The functional part of a JDF workflow that oversees all
processes and communication between system components and system control.

Node The JDF element type detailing the resources and process specification required to produce a

final or intermediate product or resource.

Partitioned re-

Structured resource that represents multiple physical or logical entities, such as separated plates.

source

PDL Page Description Language. A generic term for any language that describes pages, which
may be printed. Examples are PDF®, PostScript® or PCL®.

Process An individual step in the workflow.

Queue Entity that accepts job entries via a JMF messaging system.

Reader page A reader page is a logical page as perceived by a reader, for example one RunList entry.
One reader page may span more than one finished page, e.g,. a centerfold. One finished
page may contain contents defined by multiple reader pages, e.g., NUp imposition. Reader
pages are defined independent of finished pages.

Resource A physical or conceptual entity that is modified or used by a node. Examples include paper,
images, or process parameters.

Small job An independent job that is merged into a big job.

Support A JDF Consumer supports a JDF syntactic construct (processes, resources, elements, attrib-
utes, and attribute values) if the JDF Consumer performs the action defined in this specifica-
tion for the JDF construct when consuming a JDF instance that includes the JDF syntactic
construct. If the Machine that a Device is representing supports a feature which is repre-
sented by a JDF construct, then the Device should support that JDF syntactic construct.

Tag A syntactic construct that marks the start or end of an element.

Work center

An organizational unit, such as a department or a subcontracting company, that can accomplish
a task.

Chapter 1 Introduction 5

1.4.1 Conformance Terminology

The words “must”, “must not”, “required”, “should”, “should not”, “recommended”, “may”, and “optional” are
used in this specification to define a requirement for the indicated Agent or the indicated JDF Consumer as follows:

Table 1-1 Conformance Terminology

Term Meaning

Must, Mean that the definition is an absolute requirement of the specification.

Required

Must not Means that the definition is an absolute prohibition of the specification.

Should, Mean that there may exist valid reasons in particular circumstances for an implementer
Recommended to ignore a particular item, but the implementer must fully understand the implications

and carefully weigh the alternatives before choosing a different course.

Should not, Mean that there may exist valid reasons in particular circumstances when the particular
Not recommended | behavior is acceptable or even useful, but the implementer should fully understand the
implications and then carefully weigh the alternatives before implementing any behavior
described with this label.

May, Mean that an item is truly optional. Unless specified otherwise, the word “optional” re-
Optional fers to JDF syntax, i.e., what an Agent may include in a JDF instance, and does not refer
to a JDF Consumer option, i.e., not to what a JDF Consumer may support. If a JDF
Consumer is using a JDF parser, that parser will supply the default values indicated in
this specification, if any, for optional attributes that the Agent has omitted (indicated by
“?” in this specification.) See Section 1.3.2 Specification of Cardinality.

For features that are optional for a JDF Consumer to support, one vendor may
choose to support such an item because a particular marketplace requires it or because
the vendor feels that it enhances the product while another vendor may omit support of
that item. Similarly, one vendor of an Agent may choose to supply such an item in a
JDF instance, while another vendor may omit the same item in a JDF instance. A JDF
Consumer implementation which does not include support of a particular option must be
prepared to interoperate with an Agent implementation which does supply the option,
though with reduced functionality. In the same vein, a JDF Consumer implementation
which does include support for a particular option must be prepared to interoperate with
an Agent implementation which does not supply the option in the JDF instance.

Note: There is no corresponding “may not” or “need not” term for something that an implementation may option-
ally omit or optionally not perform. The term “may not” sounds more like a prohibition. Also, it is better form to
put the requirement into a positive statement. For example, instead of saying that an Agent need not include an at-
tribute that this specification indicates with a “?” character, it is better to say that a JDF produce may omit an attrib-
ute in a JDF instance that this specification indicates with a “?” character.

1.4.2 Conformance Requirements for JDF Entities

The subsections of this section define the general conformance requirements for the JDF entities: 1.) attributes and
attribute values, 2.) resources, 3.) processes, and 4.) combined processes.

1.4.2.1 Conformance Requirements for Support of Attributes and Attribute Values

If a JDF Consumer supports an attribute, it must support all of the values that this specification indicates are re-
quired for a JDF Consumer to support (whether or not the attribute is required for the Agent to supply in that con-
text). If this specification is silent on which values are required for support of an attribute, then the JDF Consumer
must support at least one value in order to claim support for the attribute.

Attributes that are optional for an Agent to include in a JDF instance are indicated by a "?" character fol-
lowing the attribute name as indicated in Section 1.3.2 Specification of Cardinality. In the description of most op-
tional attributes there is a "Default = ..." statement that indicates the default value that a JDF Consumer must use if
the Agent omits the optional attribute from a supplied resource in a JDF instance. Such an indicated default value

Chapter 1 Introduction

must have the same semantic meaning as if an Agent includes the attribute in the JDF instance with the same value.
If the indicated default value is the special SystemSpecified value or is indicated as "system specified", then the JDF
Consumer must provide an actual value that depends on the implementation of the JDF Consumer and which may be
configurable by a system administrator. If an optional attribute does not have a default value indicated in its de-
scription and the JDF instance does not include the attribute, then the JDF Consumer must supply a system-specified

value.

1.4.2.2 Conformance Requirements for Support of Resources
If a JDF Consumer supports a resource, it:

1.

2.

must support all of the attributes (see Section 1.4.2.1) defined for that resource that an Agent is required to
include in the resource instance (attributes with either no marks or a “+”), and — see section 1.3.2), and
must support the JDF:SettingsPolicy (see section 3.1.2), JDFResource:SettingsPolicy (see section 3.7),
JDF: BestEffortExceptions, JDF:MustHonorExceptions, and JDF:OperatorinterventionExceptions
(see section 3.1.1) attributes and all of their defined values. These attributes control the policy that a JDF
Consumer must follow when it encounters unsupported settings, i.e., subelements, attributes or attribute
values in the resource.

1.4.2.3 Conformance Requirements for Support of Processes

All processes are optional for a JDF Consumer to support. However, a Device must support at least one process or a
combined process. If a JDF Consumer supports a process, it:

1.

must support all of the input and output resources as described in Section 1.4.2.2 that this specification de-
fines for that process and

may make its own assumptions regarding attributes and subelements of an optional input resource (resources
with either a “?” or an “*” — see section 1.3.2) that an Agent has omitted from the process in the JDF in-
stance. Therefore, default attribute values defined in this specification are not guaranteed when the Agent
omits the resource from the process in the JDF instance (see section 6.1 Process Template).

must find the processes that it supports in a JDF instance and must ignore all other processes, independent of
the SettingsPolicy attribute for those other processes.

1.4.2.4 Conformance Requirements for Support of Combined Processes
All combined processes are optional for a JDF Consumer to support. If a JDF Consumer supports a combined process, it:

L.

must support all of the input resources as defined in Section 1.4.2.2 that this specification defines for the first
process in the combined process node, i.e., the first process listed in the Types attribute, and

must support all of the output resources as defined in Section 1.4.2.2 that this specification defines for the last
process in the combined process.

may support resources that are used as exchange resources between processes in the process chain of the com-
bined process, i.e., resources that are both produced and consumed within the combined node.

must support resources in intermediate process steps that are nof used as exchange resources between processes
in the process chain of the combined process.

may make its own assumptions regarding attributes and subelements of an optional input resource that an
Agent has omitted from the combined process in the JDF instance. Therefore, default attribute values defined
in this specification are not guaranteed when the Agent omits the resource from the combined process in the
JDF instance (see section 6.1 Process Template).

must search a JDF instance and find the combined process nodes that exactly match what it supports, i.e., that
match the value list of the Types attribute, and must ignore all other process nodes, independent of the Set-
tingsPolicy attribute for those other processes.

1.5 Data Structures

The following table describes the data structures as they are used in this specification. For more details on JDF
Schema and Datatypes, see Appendix A Encoding.

Chapter 1 Introduction

Table 1-2JDF data types

Data Type Description

boolean Binary-valued logic: (true | false).

CMYKColor Represents a CMYK color specification.

date Represents a time period that starts at midnight of a specified day and lasts for 24 hours.

dateTime Represents a specific instant of time. It must be a UTC-time or a local time that includes the
time zone.

double Corresponds to IEEE double-precision, 64-bit floating point type

duration Represents a duration of time.

DurationRange DurationRange is used to describe a range of time durations. More specifically, it de-
scribes a time span that has a relative start and end.

element Structured data. The specific data type is defined by the element name.

enumeration Limited set of NMTOKEN (see below).

enumerations Whitespace-separated list of enumeration data types.

gYearMonth Represents a specific gregorian month in a specific gregorian year.

ID Unique identifier as defined by [XML Specification 1.0] (see Section 1.2 Document Refer-
ences). Must be unique within the scope of the JDF-document.

IDREF Reference to an element holding the unique identifier as defined by [XML Specification
1.0].

IDREFS List of references (IDREFs) separated by white spaces as defined by [XML Specification
1.0].

integer Represents numerical integer values.

IntegerList Whitespace-separated list of integers.

IntegerRange Two integers separated by a “~” character that define a closed interval .

IntegerRangeList | Whitespace-separated list of integers and IntegerRanges.

LabColor Represents a Lab color specification.

language Represents a language and country code (for example, en-US) for a natural language.

matrix Whitespace-separated list of 6 numbers representing a coordinate transformation matrix.

NamedColor Represents a color definition by name. A list of valid NamedColor values is provided in Ap-
pendix A.2.8.

NameRange Two NMTOKEN separated by a “~” character that define an interval of NMTOKEN.

NameRangeList Whitespace-separated list of NMTOKEN and NameRanges.

NMTOKEN A continuous sequence of special characters as defined by the [XML Specification 1.0].

NMTOKENS Whitespace-separated list of NMTTOKEN.

number double or integer

NumberList Whitespace separated list of numbers.

NumberRange Two numbers separated by a “~” (tilde) character that defines the closed interval of the two.

NumberRangeList | Whitespace-separated list of NumberRanges

path Whitespace-separated list of path operators as defined in PDF.

rectangle Whitespace-separated list of 4 numbers representing a rectangle.

refelement element or a reference to an element. Used to define candidates for inter-resource linking in
resources.

Chapter 1 Introduction

Data Type Description

shape Whitespace-separated list of 3 numbers representing a 3-dimensional shape consisting of a
width, height, and length. Unless specified otherwise in the attribute Description, these
three numbers are an X-dimension, a Y-dimension, and a Z-dimension, respectively.

ShapeRange Two Shapes separated by a “~” (tilde) character that defines a 3-dimensional box bounded
by x1 yl z1~x2 y2 z2.

ShapeRangeList Whitespace-separated list of shapes or ShapeRanges.

sRGBColor Represents an sRGB color specification.

string Character strings without line feed.

telem Text elements that contain larger chunks of character data and may include line feeds.

text Text data contained in a telem (text element).

TimeRange Two dateTimes separated by a “~” (tilde) character that defines the closed interval of the two.
TimeRange corresponds semantically to the time interval (two time instants separated by a
slash) defined in ISO 8601.

TransferFunction | Whitespace separated list of an even number of numbers representing a set of XY coordi-
nates of a transfer function.

URI URlI-reference. Represents a Uniform Resource Identifier (URI) Reference as defined in
Section 4 of [RFC 2396].

URL URL-reference. Represents a Uniform Resource Locator (URL) Reference as defined in
Section 4 of [RFC 2396].

XYPair Whitespace-separated list of 2 numbers. Unless specified otherwise in the attribute De-
scription, these two numbers are an X-dimension and a Y-dimension, respectively.

XYPairRange Two XYPairs separated by a “~” (tilde) character that defines a rectangle bounded by x1 y1
~x2y2

XYPairRangeList | Whitespace-separated list of XYPairRanges.

1.6 Units

JDF specifies most values in default units. That means you can’t use alternate units instead of the defined default
units. All measurable quantities are stated in double precision. Processors should only specify a Unit if no default
exists, such as when new resources are defined. Then the units must be based on metric units. Overriding the de-
fault units that are defined in this table is non-standard and may lead to undefined behavior. Any exceptions are
specified in the appropriate descriptive tables.

The following table lists the units used in JDF. The representation column specifies the XML representation in
the Unit attribute of resources.
Table 1-3 Units used in JDF

Measurement Unit Representation Remarks

Length point (1/72 inch) | pt Used for all except microscopic lengths (see be-
low)

micron mu

Volume liter 1 -

Weight gram g -

Area m’ m2 -

Resolution dpi or Ipi dpi or Ipi -

Paper weight g/m’ g/m2 -

Speed units/hour */h Replace the “*” in the representation with the ap-
propriate unit

Chapter 1 Introduction

Measurement Unit Representation Remarks

Temperature C° (Celsius) C degree centigrade

Angle degrees® degree -

Countable Objects | 1 - Countable objects, such as sheets, have no unit

specification.

Chapter 2 Overview of JDF 1

Chapter 2 Overview of JDF

Introduction

This chapter explains the basic aspects of JDF. It outlines the terminology that is used and is recognized by the for-
mat, and the components of a workflow necessary to execute a printing job using JDF. Also provided is a brief dis-
cussion of JDF process structure and the role of messaging in a JDF job.

2.1 System Components

This section defines unique terminology used in this specification for the job and workflow components of JDF.
Links to additional information is included for some terms.

2.1.1 Job Components

This terminology describes how JDF is described conceptually and hierarchically.

2.1.1.1 Jobs and Nodes

A job is the entirety of a JDF project. Each job is organized in a tree structure containing all of the information re-
quired to complete the intended project. The information is collected logically into what is called a node. Each
node in the tree structure represents an aspect of the job to be executed.

The nodes in a job are organized in a hierarchical structure that resembles a pyramid. The node at the top of the pyra-
mid describes the overall intention of the job. The intermediate nodes describe increasingly process-oriented aspects of
the job, until the nodes at the bottom of the pyramid each describe a single, simple process. Depending on where in the
job structure a node resides, it can represent a portion of the product to be created, one or many processing steps, or other
job parts. For more information about jobs and nodes, see Chapter 3 Structure of JDF Nodes and Jobs.

2.1.1.2 Elements

An element is an XML syntactic construct. (See also: attributes.)
Within this document, the term refers to the structured subparts of a
JDF node. Technically, JDF nodes are themselves XML elements.
However, within this specification, “node” is used to distinguish
between the independent JDF aspect and its subparts. Furthermore,
elements that are subparts of other elements are often referred to as
subelements. There is no structural distinction between nodes,

XML

Crash Course

@

Need a crash course in XML?

elements and subelements; rather, the different terminology is
intended to describe the hierarchical relationships.

JDF elements are represented by two kinds of data types:
element and text element. The latter is abbreviated as telem. For

XML101.com provides online tutorials
that non-programmers can easily follow.
The site includes examples. See
http://xmI101.com/

more information about elements, see Section 3.1.2 Fundamental
JDF Attributes and Elements.

2.1.1.3 Attributes

An attribute is an XML syntactic construct. (See also: elements.) Within this document, the term refers to charac-
teristics of elements, a subpart of a node. For instance, each node has an /D attribute that contains a unique identi-
fier. Attributes contain parameters of different data types, such as string, enumeration, and dateTime.

For more information about attributes, see Section 3.1.2 Fundamental JDF Attributes and Elements. Note that an at-
tribute with an empty (zero length) value string is illegal except when the attribute value is defined as an arbitrary string.

2.1.1.4 Relationships
The hierarchical JDF structure implies relationships between nodes and elements within a JDF tree structure. The
terms used in this document to describe these relationships are defined below, and, in some cases, include a brief
representation of the encoding that would express them.
e Parent: An element that directly contains a child element.
<Parent><Child/></Parent>
e Child: An element that resides directly in the parent element.

2 Chapter 2 Overview of JDF

e Sibling: An element that resides in the same parent element as another child element.
<Any><Sibling/><Sibling/></Any>
e Descendent: An element that is a child or a child of a child, etc.
e Ancestor: An element that is a parent or a parent’s parent, etc.
<Ancestor>
<Any>
<Descendent/>
<MoreAnys>
<Descendent/>
</MoreAnys>
</Any>
</Ancestor>
¢ Root: The single element that contains all other elements as descendents.
e Leaf: Node without further children.
e Branch: An intermediate node in a hierarchy that contains at least one child node. A branch is never a leaf.

2.1.1.5 Links

There are two kinds of links in JDF: internal links and external links. Internal links are pointers to information that
is located elsewhere in a JDF document. The data that is referenced by the link is located in a target element. Ex-
ternal links are used to reference objects that are outside of the JDF document itself, such as content files or color
profiles. These objects are linked using standard URLs (Uniform Resource Locators).

JDF makes extensive use of links in order to reuse information that is relevant in more than one context of the
job. The same target may be referenced by multiple links. However, no link references more than one target.

2.1.2 Workflow Component Roles

The four components required to create, modify, route, interpret and execute a JDF job are known as agents, control-
lers, devices and machines. Overseeing the workflow created by these components is MIS, or Management Infor-
mation Systems. These five aspects of a JDF workflow are described in the sections that follow.

By defining these terms, this specification does not intend to dictate to manufacturers how a JDF/JMF system
should be designed, built, or implemented. The intention is to name the component mechanisms required for the in-
teraction of actual components in a workflow during the course of a JDF job. In practice, it is very likely that indi-
vidual system components will include a mixture of the capabilities described in the following sections. For
example, many controllers are also agents.

2.1.2.1 Machines

A machine is any part of the workflow system designed to execute a process.

Most often, this term refers to a piece of physical equipment, such as a press

. . Agents, Con-
or a binder, but it can also refer to the software components used to run a trgll er s’ & De-
particular machine. ~ Computerized workstations, whether run through vices

automated batch files or whether controlled by a human worker, are also

considered machines if they have no JDF interface.
“Agents,” “Controllers,” and “De-

2.1.2.2 Devices

The most basic function of a device is to execute the information specified
by an agent and routed by a controller. Devices must be able to execute
JDF nodes and initiate machines that can perform the physical execution.
The communication between machines and devices is not defined in this
specification. Devices may, however, support JMF messaging in order to
interact dynamically with controllers.

2.1.2.3 Agents

Agents in a JDF workflow are responsible for writing JDF. An agent has the
ability to create a job, to add nodes to an existing job, and to modify existing
nodes. Agents may be software processes, automated tools, or even text
editors. Anything that can be used in composing JDF can be considered an

vices” are special, logical de-
scriptions. You probably won’t
ever buy one. An agent (writes
and reads JDF) may be any
software tool that can parse
JDF. Controllers communicate
instructions that devices act
upon. They are functions that
may be embedded into your
software, production equipment,
or MIS systems.

Chapter 2 Overview of JDF 3

agent.

Actual implementations of devices or controllers will most often be able to modify JDF. These system components
have agent properties in the terms of this specification.

2.1.2.4 Controllers

Agents create and modify JDF information; controllers route it to the appropriate devices. The minimum require-
ment of a controller is that it can initiate processes on at least one device, or at least one other slave controller that
will then initiate processes on a device. In other words, a controller is not a controller if it has nothing to control. In
some cases, a pyramid-like hierarchy of controllers can be built, with controllers at the top of the pyramid control-
ling a series of lower-level controllers at the bottom. The lowest-level controllers in the pyramid, however, must
have device capability. Therefore, controllers must be able to work in collaboration with other controllers. In order
to communicate with one another, and to communicate with devices, controllers must support the JDF file-exchange
protocol and may support JMF. Controllers can also determine process planning and scheduling data, such as proc-

ess times and planned production amounts.

2.1.2.5 Management Information Systems—MIS
The overseer of the relationships between all of the units in a
workflow is known as Management Information Systems, or
MIS. MIS is, in effect, a macrocosmic controller. It is
responsible for dictating and monitoring the execution of all of
the diverse aspects of the workflow. To do this, it must remain in
contact with the actual production facilities. This can be
accomplished either in real time using JMF messaging or post-
facto using the audit records within JDF.

To allow MIS to communicate effectively with the other
workflow components, JDF supplies what is essentially a
messenger service, in the form of JMF, to run between MIS and
production. This format is equipped with a variety of message
types, ranging from simple, unidirectional notification to queries
and even commands. System designers have a great deal of
flexibility in terms of how they choose to use the messaging
architecture, so that they can tailor the processes to the
capabilities of the existing workflow mechanism. Figure 2.1
depicts how various communication threads can run between
MIS and production.

JDF also provides system components the ability to collect
performance data for each node, which can then be passed on to a
job-tracking system for use by the MIS system. These data may
be derived from the messages that the controller receives or from
the audit records in the job (for more information on audits, see
Section 3.10.1 Audit Elements). Alternatively, the completed job
may be passed to the job accounting system, which examines the
audit records to determine the costs of all the processes in the job.

2.1.2.6 System Interaction

>

Automating

Data Flows

A JDF-enabled workflow may require a
tremendous amount of information. This
could seem daunting to anyone who
expects to have to enter information into
a system, but it need not be the case.
From the style information in a layout
file, to automatically generated image
file header information, to the color
profiles tagged onto images
automatically by digital cameras or
image editing systems, a great deal of
information can be captured and passed
along from one JDF-enabled application
to another. Furthermore, where, in the
specification, there are many options,
those options can be set to a default
that represents your particular plant or
workflow. For instance, JDF provides a
variety of staple folds. If your plant only
supports a crown fold, that becomes the
default in your JDF-enabled system and
is never manually specified or keyed.

An example of the interaction and hierarchical structure of the components considered in the preceding sections is
shown in the following figure. Single arrows indicate uni-directional communication channels and double arrows
indicate bi-directional communication.

4 Chapter 2 Overview of JDF

Controller/Agent
(controller with agent properties)

WL | KA

Controller/ Controller/ ; :
Agent 1 Agent 2 Device 1 Device 2
L
[LL [T L E
O = (& = c
= -] - 1]
z
Device 1.1 Controller/Agent 2.1
(] (]
) -
Device/Agent 2.1.1 Device 2.1.2

Figure 2.1 Example of JDF and JMF workflow interactions

2.2 JDF Workflow

JDF does not dictate that a workflow be constructed in any prespecified way for it to be usable. On the contrary, its
flexibility has allowed JDF to model existing custom solutions for the graphic arts, as well as those yet to be imag-
ined. JDF is equally as effective with a simple system using a single controller-agent and device as it is with a com-
pletely automated industrial press workflow with integrated pre- and postpress operations.

Because of workflow system construction in today’s industry, the principal subsection procedures of a printing
job—prepress, press, and postpress—remain largely disconnected from one another. JDF provides a solution for
this lack of unity. With JDF, a print job becomes an interconnected workflow that runs from job submission through
trapping, RIP’ing, filmmaking, platemaking, inking, printing, cutting, binding, and sometimes even through ship-
ping. JDF enables an architecture that defines the process necessary to produce each intended result and identifies
the elements necessary to complete the processes. All processes are separated into nodes, and the entire job is repre-
sented by a tree of these nodes. All of the nodes taken together represent a desired printed product.

Each individual node in JDF is defined in terms of inputs and outputs. The inputs for a node consist of the re-
sources it uses and the parameters that control it. For example, the inputs in a node describing the process parame-
ters for imaging the cover of a brochure might include requirements for trapping, RIP’ing, and imposing the image.
The output of such a node might be a raster image.

Unless they represent the absolutely final product, resources that are produced by one node are in turn modified or
consumed by subsequent nodes. Therefore, the output of the process described above—the raster image—becomes one
of the input resources for a node describing the printing process for the brochure. This input resource would be joined
in the node by other input resources such as inks, press sheets, plates, and a set of parameters that indicate how many
sheets should be produced. The output would be a set of printed press sheets that in turn would become the input re-
source for postpress operations such as folding and cutting. And so on until the brochure is completed.

Chapter 2 Overview of JDF 5

This system of interlinked nodes effectively unites the prepress, press, and postpress processes, and even extends the
notion of where a job begins. A JDF job, like any printing job, is defined by the original intent for the end product.
The difference between a JDF job and a generic printing job, however, is that JDF allows the entire job, from pre-
press through postpress, to be defined up front. All of the resources and processes necessary to produce an entire
printed product can be identified and organized into nodes before the first prepress process is set in motion. Fur-
thermore, the product intent specification can be extremely broad or extremely detailed, or anywhere in between.
This means that a job may be so well defined before production begins that the system administrator only has to set
the wheels in motion and let the job run its course. It may also mean that the person submitting the job has only a
general idea of what the final product will look like and that modifications to the intent will be made along the way,
depending on the course of the job.

For example, the person submitting the job specification for the brochure described above may know that she
wants 400 copies, that she wants it done on a four-color press with no spot colors, that the cover will be on a particu-
lar paper stock and the contents on another, that the binding will be stapled, and that she requires the job in two
weeks. Another person might know only that he wants the pages she’s designed to be put into some sort of brochure
form, although she doesn’t know exactly what. Either person’s request can be translated into a JDF product intent
node that will eventually branch into a tree structure describing each process required to complete the brochure. In
the first example, the prepress, press, and postpress processes will be well defined from the start. In the second ex-
ample, information will be included as it is gathered. The following sections describe the way in which nodes can
combine to form a job.

2.2.1 Job Structure

JDF jobs consist of a set of nodes that specify the production steps needed to create the desired end product. The
nodes, in addition to being connected through inputs and outputs, are arranged in a hierarchical tree structure. Fig-
ure 2.2, below, shows a simple example of a tree of nodes.

Product nodes

Process group nodes

GE3S dob o\

Individual Process nodes

Figure 2.2 JDF tree structure

The following table provides a hypothetical breakdown of the nodes in the tree structure shown above:
Table 2-1 Information contained in JDF nodes, arranged numerically

Node # Meaning

1 Entire book

2 Cover

3 Contents

4 Production of cover

5 Production of all color pages

6 Chapter 2 Overview of JDF

Node # Meaning

6 Production of all black-and-white pages
7 Cover production process 1

8 Cover production process 2

9 Cover production process 3

10 Cover Finishing process

11 RIP’ing for color pages

12 Plate making for color pages

13 Printing for color pages

14 Color page finishing process

15 RIP’ing for black-and-white pages

16 Printing for black-and-white pages on a digital press
17 Binding process for entire book

The uppermost nodes (1, 2, & 3) represent the product intent in general terms. These nodes describe the desired end
product and the components of that product, which, in this case, are the cover and the content pages. As the tree
branches, the information contained within the nodes gets more specific. Each subnode defines a component of the
product that has a unique set of characteristic, such as different media, different physical size, or different color re-
quirements. The nodes that occur in the middle of the tree (4, 5, & 6) represent the groups of processes needed to
produce each component of the product. The nodes that occur closest to the bottom of the tree (7 — 17) each repre-
sent individual processes.

In this example, there are two subcomponents of the job, the cover and the contents, each with distinct require-
ments. Therefore, two nodes—nodes 2 and 3—are required to describe the elements of the job in broad terms.
Within the content pages there are some black-and-white pages and some color pages. Since fabricating each re-
quires a different set of processes, further branching is necessary. The following table arranges the nodes in groups
according to the processes they will be executing:

Table 2-2 Information contained in JDF nodes, arranged by group

Process Group Node # = Meaning
Entire book 1 Entire book
17 Assemble book
Cover 2 Cover
4 Cover assembly processes
7 Cover production process 1
8 Cover production process 2
9 Cover production process 3
10 Finishing process for cover
Contents 3 Contents
Color Pages 5 Production of all color pages
11 RIP’ing for color pages
12 Plate making for color pages
13 Printing for color pages
14 Color page finishing
Black-and-white pages 6 Production of all black-and-white pages
15 RIP’ing for black-and-white pages
16 Printing for black-and-white pages on a digital press

This hierarchical structure is discussed in more detail in the following section.

Chapter 2 Overview of JDF

2.3 Hierarchical Tree Structure an

Output resources of JDF nodes are often the input resources for

d Networks in JDF

other JDF nodes. Many nodes cannot begin executing until all
of their resources are complete and ready. This means that the
nodes execute in a well defined sequence. One process follows
the next. For example, a process for making plates will pro-
duce, as output resources, press plates that are required by a
printing process.

In the hierarchical organization of a JDF job, nodes that
occur higher in the tree represent high level, more abstract op-
erations, while lower nodes represent more detailed process op-
erations. More specifically, nodes near the top of the tree may
represent only intent regarding the components or assemblies
that make up the product, while the leaf nodes provide explicit

instructions to a device to perform some operation. Figure 2.3

iy £
" Trees & Nodes

In the real world, if you wanted to scan a photo,
you would probably go to the prepress depart-
ment to find a scanner. JDF uses this same
common-sense approach to organization. Proc-
esses (nodes) are organized into a hierarchy
(tree). Consider your own operations. If you
were to group your departments, equipment,
and processes into an “org chart,” what would it
look like?

shows an example of a hierarchical structure.

Parent JDF

Node

~ o

Figure 2.3 Example of a hierarchical tree structure of JDF nodes

In addition to the hierarchical structure of the node tree, sibling nodes are linked in a process chain by their respec-
tive resources. In other words, an output resource of one node ends up representing the input resource of the follow-
ing node (as represented in Figure 2.4). This interrelationship is known as resource linking.

With resource linking, complex networks of processes can be formed. Figure 2.4 displays an alternate represen-
tation of the process described in Figure 2.3. Whereas Figure 2.3 represents a hierarchical structure, Figure 2.4

shows an example of the linking mechanism of the same job.
that map to the same node hierarchy.

Note that there are many possible process networks

8 Chapter 2 Overview of JDF

A 4
N T
@

-

Yy

~ T

K

W - ~

—

5 FRD (RS)
Key: : 6 |
“P” = Process IPA I
“R” = Resource l_(NOde consisting of process P4, P5, & P6) I
__________ -

Figure 2.4 Example of a process chain linked by input and output resources

In JDF, the linking of processes is not explicitly specified. In other words, nodes are not arranged in an abstract
chronology, dictating, for example, that the trapping node must come before the RIP’ing node. Rather, the links are
implicitly defined in the exchange of inputs and outputs. Resource dependencies form a network of processes, and
the sequence of process execution—that is, the routing of processes—can be derived from these dependencies. One
resource dependency might have the possibility of multiple process routing scenarios. It is up to MIS to define the
proper solution to meet local constraints.

The agent or set of agents employed by MIS to write the JDF job must be familiar with these local constraints.
They must take into account factors such as the control abilities of the applications that complete the prepress proc-
esses, the transport distance between the prepress facility and the press itself, the load capabilities of the press, and
the time requirements for the job. All of the factors taken together build a process network representing the work-
flow of production. To aid agents in defining the workflow, JDF provides the following four different and funda-
mental types of process routing mechanisms, which may be combined in any way:

1. Serial processing that is subsequent production and consumption of resources as a whole, represented by a
simple process chain.

2. Overlapping processing that is simultaneous production and consumption of resources by pipes.

3. Parallel processing that involves the splitting and sharing of resources.

4. Tterative processing that is a circular or back and forward processing for developing resources by repeated activity.
These mechanisms are discussed in greater detail in Section 4.3 Execution Model.

2.4 Role of Messaging in JDF

JDF provides a container to define a job. Messaging language in JMF, defined in Chapter 5, provides a method to
generate snapshots of job status and to interactively manipulate elements of a workflow system.

JMF is specifically designed for communication between the production system controller and the work centers
or devices with which it interacts. It provides a series of queries and commands to check the status of processes and,
in some cases, to dictate the next course of action. For example, the KnownDevices and KnownJDFServices
queries allow the controller to determine what processes can be executed by a particular device or workcenter.
These processes are likely to be determined at system initialization time. The QueueEntry messages provide a
means for the controller to submit a job ticket to individual work centers or devices. And the Status, Resource
and Occupation messages allow the device or work center to communicate quasi real-time' processing status to a
controller. Depending on the system configuration, the message handler may choose to record status changes in the
history logs. The status message allows the controller to request status updates from the controller.

JDF also provides mechanisms to define recipients for individual messages on a node-by-node basis. This en-
ables controllers to define the aspects and the parts of jobs that they want to track. For more information about mes-
saging, see Chapter 5 JDF Messaging with the Job Messaging Format.

! Real-time is the time-scale typically associated with macro-cosmic production control systems. JMF is not in-
tended for real-time, lower level machine control.

Chapter 2 Overview of JDF 9

2.5 Coordinate Systems in JDF

This chapter explains how coordinate systems are defined and used in JDF. It also shows how the matrices are used
to specify a certain transformation and how these matrices can be used to transform coordinates from one coordinate
system to another coordinate system. In addition it clarifies the meaning of terms like Top or Left.

2.5.1 Introduction

During the production of a printed product it often happens that one object is placed onto another object. During im-
position, for example, single pages and marks (like cut, fold, or register marks) are placed on a sheet surface. Later,
at image setting, a bitmap containing one separation of a sheet surface is imposed on a piece of film. In a following
step, the film is copied to a printing plate, which then is mounted on a press. In postpress, the printed sheets are
gathered on a pile. The objects involved in all these operations have a certain orientation and size when they are put
together. In addition one has to know where to place one object on the other.

The position of an object, e.g., a cut mark, on a plane can be specified by a two-dimensional coordinate. Every
digital or physical resource has its own coordinate system. The origin of each coordinate system is located in the lower
left corner, i.e., the X coordinate increases from left to the right and the Y coordinate increases from bottom to top.

Origin

Figure 2.5 Standard coordinate system

Each page contained in a PDL file has its own coordinate system. In the same way a piece of film or a sheet of paper
has a coordinate system. Within JDF each of these coordinate systems is called resource coordinate system.

If a process has more than one input resources with a coordinate system, it is necessary to define the relation be-
tween these input coordinate systems. Therefore, an idealized process coordinate system is defined for each process.
The coordinate systems of the input resources are mapped to the process coordinate system. Each of those mappings
is defined by a transformation matrix, which specifies how a coordinate (or position) of the input coordinate system
is transformed into a coordinate of the target coordinate system. See Section 2.5.6 Homogeneous Coordinates for
mathematical background information. In the same way the mapping from the process coordinate system to the co-
ordinate systems of the output resources is defined. The process coordinate system is also used to defined the mean-
ing of terms like Top or Left, which are used as values for parameters in some processes.

resource coordinate system resource coordinate system resource coordinate system
of input resource 1 of input resource 2 of input resource n
ResourceLink:Transformation ResourceLink:Transformation ResourceLink:Transformation
A A A

process coordinate system

identity transformation identity transformation identity transformation
A 4 A A
resource coordinate system resource coordinate system resource coordinate system
of output resource 1 of output resource 2 of output resource n

Figure 2.6. Relation between resource and process coordinate systems

10 Chapter 2 Overview of JDF

It is important that no implicit rotations are assumed if the dimensions of the input resources of a process do not
match each other. Instead every transformation (e.g., a rotation) must be specified explicitly by using the Orienta-
tion or Transformation attribute of the corresponding ResourceLink. The same applies also to other areas in JDF,
e.g., the LayoutPreparation process.

2.5.2 How and Where Coordinates and Transformations Are Used/Defined in JDF
The following data types are used for the specification of coordinates and transformation:
o XYPair “612 7927

e Number “20.77

e Rectangle “0 0 595 843” (Order of elements is “lower-left x, lower-left y, upper-right x, upper-right
y” or “left, bottom, right, top”.)

e Matrix “100130.0235.3” (The ordering of elements is defined in 2.5.6 Homogeneous Coor-
dinates)

e Named orientations “Rotatel80” or “”’Flip90”

Coordinates and transformations are used throughout JDF, to include:

Intent Resources, such as:

e Layoutlntent specifies size of finished product
e Medialntent specifies size of media
e InsertingIntent specifies rotation and offset

Process Resources, such as:

e Component specifies coordinate system
e CutBlock specifies cut block coordinate system
e FoldingParams specifies folding operations

2.5.3 Coordinate Systems of Resources and Processes

Each physical input Resource, e.g., Component of a process has, by default, its own coordinate system, which is
called the source or resource coordinate system. The coordinate system also implies a specific orientation of that
Resource. On the other hand there is a coordinate system that is used to define various process-specific parame-
ters. This coordinate system is called target or process coordinate system.

It is often necessary to change the orientation of an input Resource before executing the operation. This can
be done by specifying a transformation matrix. It is stored in the Orientation or Transformation attribute of the
ResourceLink. This provides the ability to specify different matrices for the individual resources of a process.

The following table shows some matrices that can be used to change the orientation of a physical Resource.
Most of the transformations require the X- (w) and the Y-dimension (h) of the Component as specified in the Di-
mension element. If these are unknown, it is still possible to define a general orientation in the Orientation attrib-
ute of the ResourceLink. The naming of the attribute reflects the state of the Resource and not necessarily the order
of applied transformations. Thus Rotate90 and Flip90 specify that the original Y axis as represented by the spine is
on top. In the case of Flip90, the Component is additionally flipped front to back.

Chapter 2 Overview of JDF 11

Table 2-3 Matrices and names used to describe the orientation of a Component

Orientation Name | Source Transformation Matrix Target
Coordinate System According Action Coordinate System
100100
Rotate0
otate F No Action F
-100 1 w h
Rotatel 80
otate 4 180° Rotation F
’ 01 -10mhn0O0
Rotate90 | X 90° Counterclockwise F
: Rotation N
y
' 01100 w -
Rotate270 L) 90° Clockwise Rotation F
y y
= 1001 wo
Flip180 . .
B Horizontal Flip F
100 10 h
Flip0
P 8 Vertical Flip F
’ 011000
Flip270 Qo) 90° Counterclockwise F
Rotation + Horizontal Flip)
y
y 0-1-10hw =
o X 90° Clockwise Rotation + F
Flip90 : Horizontal Flip

The descriptions of Component-specific attributes use some terms whose meaning depends on the culture in which
they are used. For example, different cultures mean different things when they refer to the “front” side of a magazine.

12 Chapter 2 Overview of JDF

Other terms, such as binding, are defined by the production process and therefore do not depend on the culture. When-
ever possible, this specification endeavors to use culture-independent terms. In cases where this is not possible,
Western style (left-to-right and top-to-bottom writing) is assumed. Please note that these terms may have a different
meaning in other cultures (such as those writing from right to left).

Binding edge
(spine)
Product top }‘
Binding edge
(spine) "\ F /—Product front edge |
Product front
Product front —A o
\—Product bottom Product front edge
Book-like product viewed from first page (front side) Calendar-like product viewed from first page (front side)

Figure 2.7 Terms and definitions for components

2.5.3.1 Coordinate Systems in Combined processes

Combined processes have no resource links defined between the individual processes that comprise the combined
process. Therefore, the coordinate transformations for these processes must be specified within the resources them-
selves. For example, StitchingParams defines a ReferenceEdge attribute. If the document is actually a landscape or
a reverse-landscape document, the creator of the JDF supplies the appropriate transformed ReferenceEdge value
as follows: To position a staple in the upper left hand corner of a landscape document when held for reading, the
ReferenceEdge value must be Bottom and StitchType = “Corner” (since landscape is defined as a +90 degree ro-
tation of the image with respect to the media from portrait, i.e., counter-clockwise). On the other hand, to position a
staple in the upper left hand corner of a reverse-landscape document when held for reading, the ReferenceEdge
value must be Top and StitchType = “Corner” (since reverse-landscape is defined as a -90 degree rotation of the
image with respect to the media from portrait, i.e., clockwise). The same applies to the HoleReferenceEdge attrib-
ute of HoleMakingParams.

2.5.4 Product Example: Simple Brochure

To illustrate the use of coordinate systems in JDF, a simple saddle stitched brochure with eight pages is used as an
example. The brochure is printed on two sheets with front and back. The two sheets are then folded, collected on a
saddle, and saddle stitched. Finally the brochure is cut with a three-side trimmer. The following table lists the JDF
processes used for the production of the simple brochure.

Input Resources Process Output Resources

Layout Imposition RunList
RunList (Document)
RunList (Marks)

RunList Interpreting InterpretedPDLData
InterpretedPDLData Rendering RunList (rasterized ByteMaps)
Media

RenderingParams

RunList (rasterized ByteMaps) Screening RunList (Bitmaps)
ImageSetterParams ImageSetting (to Film) ExposedMedia (Film)

Media (Film)
RunList (Bitmaps)

ExposedMedia (Film) ContactCopying ExposedMedia (Plate)

Chapter 2 Overview of JDF 13

Input Resources Process Output Resources
ExposedMedia (Plate) ConventionalPrinting Component (Good)
ConventionalPrintingParams
FoldingParams Folding Component
Component
CollectingParams Collecting Component
Component
SaddleStitchingParams SaddleStitching Component
Component
TrimmingParams Trimming Component
Component

At imposition, the layout describes a signature with two sheets, each having a front and a back surface. On each sur-
face, two content objects, i.c., pages, are placed.

Sheet 1, Front Sheet 1, Back Sheet 2, Front Sheet 2, Back

8 1 2 7 6 3 4 5

Figure 2.8 Layout of simple saddle stitched brochure (product example)

Each surface has its own coordinate system, in which a surface contents box is defined. This coordinate system is
also referred to as the Layout coordinate system because the Surface, Sheet, and Signature elements are de-
fined within the hierarchy of the Layout resource. The content objects are placed by specifying the CTM attribute
relative to the surface contents box. If the position of an object within a page is given in the page coordinate system,
this coordinate can be transformed into a position within the surface coordinate system:

P P x CTM + [SurfaceContentsBoxXlowerleﬁ SurfaceContentsBoX v, . criert O]

Surface Page Page

Please note, that the width and height of the surface are not known at this point.
Y

Content object (page 1)

Surface contents box /

/_
8\ 1/ /—Surface

Origin
\ \\— Content object (page 8)

Figure 2.9 Surface coordinate system

The sheet coordinate system is identical with the coordinate system of the front surface. This means that no trans-
formation is needed to convert a coordinate from one system to the other. Instead, the coordinates are valid (and
equal) in both coordinate systems. The relation between the coordinate system of the front and the back surfaces de-
pends on the value of the Sheet:LockOrigins attribute. The sheet coordinate system is also identical with the signa-
ture coordinate system, which in turn is identical with the coordinate system of the imposition process.

The output resource of the imposition process is a run list. Each element of the run list has its own coordinate
system, which is identical with the corresponding signature coordinate system. The interpretation, rendering and
screening processes do not affect the coordinate systems. This means that the coordinate systems of all these proc-
esses are identical.

14 Chapter 2 Overview of JDF

At the image setting process, the digital data is set onto film. The process coordinate system is defined by the media
input resource. The width and height of the media are defined in the Media:Dimension attribute. The position of
the signatures (as defined by the run list input resource) on the film is defined by the ImageSetterPar-
ams:CenterAcross attribute.

The coordinate system of the conventional printing process is called press coordinate system. It is defined by
the press: the X-axis is parallel to the press cylinder, and the Y-axis is going along the paper travel. Y = 0 is at begin
of print, X = 0 is at the left edge of the maximum print area. The relation between the layout coordinate system and
the press coordinate system is defined by the CTM attributes of the corresponding TransferCurveSet elements lo-
cated in the TransferCurvePool.

orthogonal to cylinder axis

maximum print area

direction of
paper travel

begin of print —p

Figure 2.10. Press coordinate system used for sheet-fed printing

ribbon

orthogonal to cylinder axis

reel width

maximum print area of
one single impression

direction of
web travel

90UBJ8JWINDIIO JopUlAD

>
¥

begin of print —p

Figure 2.11 Press coordinate system used for web printing

The output of the printing process, e.g., a pile of printed sheets, is described as a Component resource in JDF. The
coordinate system of the printed sheets is defined by the transformation given in the TransferCurveSet:CTM at-
tribute (where Name = Paper).

Each of the two sheets is folded in a separate folding process. In this example, the orientation of the sheets is
not changed before folding. This can be specified by setting the Orientation attribute of the input resource to Ro-
tate0 or by setting the Transformation attribute to “1 0 0 1 0 0”. The folding process changes the coordinate system.
In this example the origin of the coordinate system is moved from the lower left corner of the flat sheet (input) to the
lower left corner of the folded sheet (output), i.e., it is moved to the right by half of the sheet width.

Chapter 2 Overview of JDF 15

Y A Sheet 1 Y A Sheet 2

Figure 2.12 Coordinate systems after Folding (product example)

The two folded sheets are now collected. In this example, the orientation of the folded sheets is not changed before
collecting. This can be specified by setting the Orientation attribute of the input resource to Rotate0 or by setting
the Transformation attribute to “1 0 0 1 0 0”. The collecting process does not change the coordinate system.

......................

Figure 2.13 Coordinate systems after Collecting (product example)

The two collected and folded sheets are now trimmed to the final size of the simple brochure. In this example, the ori-
entation of the collected and folded sheets is not changed before trimming. This can be specified by setting the Orien-
tation attribute of the input resource to Rotate() or by setting the Transformation attribute to “1 0 0 1 0 0”. The
trimming process changes the coordinate system: the origin is moved to the lower left corner of the trimmed product.

In looking at the whole production process, a series of coordinate systems is being involved. The relation between
the separate coordinate systems is specified by transformation matrices. This allows transformation of a coordinate
from one coordinate system to another coordinate system. As an example, note the position of the title on page 1 of the
product example in Figure 2.13. By applying the first transformation, this position can be converted into a position of
the surface (or layout) coordinate system. This position can then be converted into the paper coordinate system by ap-
plying (in this order) the Film, Plate, Press, and Paper transformations stored in the TransferCurvePool.

From now on, every process is using components as input and output resources. The resource link of each input
and output component contains a Transformation attribute or an Orientation attribute. The Transformation attrib-
ute is used if the width and the height of the component are known. Otherwise the Orientation attribute must be
used to specify a change of the orientation, e.g., a rotation.

Since the folding process changes the coordinate system depending on the fold type, the transformations speci-
fied in the resource links are not sufficient to transform a position given in the paper coordinate system to a position
in the coordinate system of the folded sheets, i.e. the resource coordinate system of the output component of the
folding process. An additional transformation depending on the fold type has to be applied. The corresponding trans-
formation matrix is not explicitly stored in the JDF file.

The collecting process does not change the coordinate system. Therefore, only the transformations specified in
the resource links of the input and output resources, i.e. components, have to be applied.

The trimming process again changes the coordinate system depending on the trimming parameters. Therefore, a
transformation depending on the trimming parameters has to be applied in addition to the transformations specified
in the resource links. The matrix for the additional transformation (depending on the trimming parameters) is not
explicitly stored in the JDF file.

16

Chapter 2 Overview of JDF

After having applied all transformations mentioned above, the resulting coordinate specifies the position of the
title in the coordinate system of the final product.

Figure 2.6 Examples of Transformations and Coordinate Systems in JDF.

2.5.5 General Rules

page coordinate system
= resource coordinate system of input component

Surface:SurfaceContentsBox and CTMpage

surface coordinate system = layout coordinate system
= process coordinate system of Imposition, Interpreting, Rendering, Screening

TransferCurveSet:CTM (Name = Film)

film coordinate system
= process coordinate system of ImageSetting

TransferCurveSet:CTM (Name = Plate)

plate coordinate system
= process coordinate system of ContactCopying

TransferCurveSet:CTM (Name = Press)

press coordinate system
= process coordinate system of ConventionalPrinting

TransferCurveSet:CTM (Name = Paper)

paper coordinate system

= resource coordinate system of input component of Folding

= resource coordinate system of output component of ConventionalPrinting

ResourceLink:Transformation (or ResourceLink:Orientation)

process coordinate system of Folding

Transformation according type of fold and

ResourceLink:Transformation (or ResourceLink:Orientation)

resource coordinate system of output component of Folding
= resource coordinate system of input component of Collecting

ResourceLink:Transformation (or ResourceLink:Orientation)

process coordinate system of Collecting

ResourceLink:Transformation (or ResourceLink:Orientation)

resource coordinate system of output component of Collecting
= resource coordinate system of input component of Trimming

A

ResourceLink:Transformation (or ResourceLink:Orientation)

process coordinate system of Trimming

Transformation according trimming parameters and

ResourceLink:Transformation (or ResourceLink:Orientation)

resource coordinate system of output component of Collecting
= coordinate system of final product

The following rules summarize the use of coordinate systems in JDF:

e Every individual piece of material (film, plate, paper) has a resource coordinate system.

e Every process has a process coordinate system.

Chapter 2 Overview of JDF

o Terms like fop, left, etc., are used with respect to the process coordinate system in which they are used and are
independent of orientation, i.e., landscape or portrait, and the human reading direction.

e The coordinate system of each input component is mapped to the process coordinate system.

e The coordinate system may change during processing, e.g., in Folding.

e The description of a product in JDF is independent of particular machines used to produce this product. When
creating setup information for an individual machine, it might be necessary to compensate for certain machine
characteristics. At printing, for example, it might be necessary to rotate a landscape job, because the printing

width of the press is not large enough to run the job without rotation.

2.5.6 Homogeneous Coordinates

A convenient way to calculate coordinate transformations in a two-dimensional space is by using so-called homoge-
neous coordinates. With this concept, a two-dimensional coordinate P=(x,y) is expressed in vector form as [x y 1].
The third element “1” is added to allow the vector being multiplied with a transformation matrix describing scaling,
rotation, and translation in one shot. Although this only requires a 2*3 matrix (as it is used in PostScript for exam-
ple), in practice 3*3 matrices are much more common, because they can be concatenated very easily. Thus, the third

column is set to “0 0 1.

Some often used transformation matrices are

1 0 0
Tef = (0 1 0
10 0 1
1 0
Trf = |0 1
|dx dy
[cos @
Trf = |- sin ¢
| 0

Transforming a point

In this example, the position P given in the coordinate system A is transformed to a position of coordinate system B.

sin ¢ 0
cos o O
0 1

would in JDF be written as “abcde

identity transformation

translation by dx, dy

rotation by ¢ degrees counter-clockwise

The relation between the two coordinate systems is given by the transformation matrix Trf.

18 Chapter 2 Overview of JDF

Y 4 Ya
P
Origin of
coordinate =
system A _\
Origin of
coordinate);
system B
X
Figure 2.7 Transforming a point (example)
P, = [30 100 1] P, =(30, 100)
P, = P, x Trf
I 0 0
P, = [30 100 1] x|0 1 0 in JDF, Trf'is written as “1 0 0 1 40 60”
40 60 1

P, = [70 160 1] Py = (70, 160)

Chapter 3 Structure of JDF Nodes and Jobs 19

Chapter 3 Structure of JDF Nodes and Jobs

Introduction

This chapter describes the structure of JDF nodes and how they interrelate to form a job. As described in Section
2.1.1 Job Components, a node is a construct, encoded as an XML element, that describes a particular part of a JDF
job. Each node represents an aspect of the job: 1.) in terms of a process necessary to produce the end result, such as
imposing, printing, or binding; 2.) in terms of a product that contributes to the end result, such as a brochure; or 3.)
in terms of some combination of the previous two. In short, a node describes a product or a process.

In addition to describing the structure of an individual JDF node, this chapter examines in what way those nodes
interact to form a coherent job structure. The interrelation of nodes can be divided into two categories: hierarchical
and lateral. Hierarchical interrelation is the nested structure of parent nodes that contain child nodes. The visual
correlative of this structure resembles a family tree, with a single node describing the entire job at the top, and a
number of nodes at the bottom that each describe only one specific process. JDF-supported, leaf-level processes are
described in Chapter 6 Processes.

Lateral interrelation, on the other hand, is the interrelation that occurs between nodes as a result of resource
linking. Resource linking is the result of the transformation of inputs into outputs, which in turn may become inputs
of other nodes. It also occurs when nodes share the same resource. The combination of hierarchical nesting of
nodes and lateral linking allows complex process networks to be constructed. In a very simple case, however, a JDF
file may contain only one node.

The hierarchical structure of a JDF job achieves a functional grouping of processes. For example, a job may be
split into a prepress node, a press node, and a finishing node that contain the respective process nodes. Each and
every node in turn contains attributes that represent various characteristics of that node. Nodes also contain subele-
ments of certain types, such as resources, process information, customer information, audits, logging information,
and other JDF nodes. Some elements, such as those that deal with customer information, generally occur only in the
root structure, while other elements, such as resources, may occur anywhere in the tree. Where the elements can re-
side depends on their type and their usage scope.

This chapter describes the elements, subelements, and attributes commonly found in JDF nodes, and provides
the characteristics necessary to understand where each belongs and how it is used. Many of these characteristics are
presented in tables, and each of these tables includes the following three columns:

e Name—Identifies the element being discussed.

o Data Type—Refers to the data type, all of which are described in Section 0. Only the data types element or
telem (which is short for text element) are applied to elements. All other types are attributes.

e Description—Provides detail about the element or attribute being discussed.

The JDF workflow model is based on a resource/consumer model. JDF nodes are the consumers that are linked by
input resources and output resources. The ordering of siblings within a node, however, has no effect on the execu-
tion of a node. All chronological and logical dependencies are specified using ResourcelLinks, which are defined
in Section 3.8 Resource Links.

Figure 3.1 is a schematic structure of the JDF node type. In this figure, generic attributes and elements (see
Section 3.1.1 Generic Contents of JDF Elements) are inserted only in the JDF root node. The element types that are
displayed in this figure are described in the subsequent sections. Abstract data types are surrounded by a dashed
line. Types derived from the abstract data type Resource are shown schematically in Figure 3.4.

20

Chapter 3 Structure of JDF Nodes and Jobs

JDF

Comment*

Part*

Activation?

ID

JobID?
JobPartIiD?
ProjectID?
SpawnID?
SettingsPolicy?
Status

Template?

Type

Types?

Version?
xmlns{:prefix]?
BestEffortExcep-
tions?

= CommentURL?

= DescriptiveName?

AncestorPool?

Ancestor+

—[Customerlnfo?]

. FileName ?
* NodeTD —[Nodelnfo? J
' g
— Customerinfo? Contact* Person?

BillingCode?
CustomerID?
CustomerJobName?
CustomerOrderID?
rRefs?

* ContactType

L_{Nodelnfo?

DueLevel?
End?

Route?
rRefs?
Start?
TargetRoute?

Businessinfo?

Employee?

Address?

ComChannel*

Company?

i

- MustHonorExcep-
ticns?

* OperatorInterven-
tionExceptions?

NotificationFilter*]

o
{Resourcepool?)—— Resource#* |

CatalogDetails?
CataloglID?
Class

ID

Locked?

PipelID?
ProductID?
rRefs?
SettingsPolicy?
SpawnIDs?
SpawnStatus?
Status

AmountPool?

0 CombinedProcessindex?

* CombinedProcessType?

* DraftOK?

= PipePartIDKeys?

. PipeProtocol?

= PipeURL?

. Processllsage?

= rRef

. rSubRef?

i Usage

(T T S e R
—{ AuditPool? Audit* |
L] rRefs? * Time
= Author?
r N {
— StatusPool? PartStatus™ Part
= Status? = Status?

Attributes —{JDF*)
JDF:
Type = Product | ProcessGroup | Combined | any process name
Status = Waiting | TestRunInProgress | Ready | FailedTestTun | Setup | InProgress | Cleanup | Spawned | Stopped | Completed | Aborted | Pool
Activation = Inactive | Informative | Held | TestRun | TestrunAndGo | Active
Resource:
Status = Incomplete | Unavailable | InUse | Draft | Complete | Available

SpawnStatus = NotSpwaned | SpawnedRQ | SpawnedRW
Locked= false | true ; (volatile or persistent)

ResourcelLink:
Usage = Input | Output

Figure 3.1 Structure of the JDF Node

Chapter 3 Structure of JDF Nodes and Jobs

21

3.1 JDF Nodes

JDF nodes are encoded as XML elements. Nodes, in turn, contain various attributes and further subelements, in-
cluding nested JDF nodes.

Many of the tables in this section contain a fourth column that provides further details about the valid range of
the attribute/element content, how the content is inherited by descendents (children, grandchildren, etc.), and where
the attribute/element may reside in the JDF tree. The heading for this column is “Scope,” which is short for “Scope
and Position.” The following abbreviations are defined:

D) Descendent: The content is valid locally within its node and in all descendent nodes, unless a descendent con-
tains an identical attribute that overrides the content.

L) Local: The content is only valid locally, within the node where the content is defined.

R) Root: The attribute may only be specified in the root node. An exception from the localization only in the
root node occurs if the spawning and merging mechanism for independent job tickets is applied as described
in Section 4.4 Spawning and Merging.

All attributes and elements listed in subsequent chapters should be considered local, unless otherwise noted.

3.1.1 Generic Contents of JDF Elements

JDF contains a set of generic structures that may occur in any element of a JDF or JMF document. These are pro-
vided as containers for human-readable comments and descriptions and are described below.

Table 3-1 Generic Contents of elements

Name Data Type Description

BestEffortExcep- NMTOKENS [The names of the attributes in this element that are to have the best effort

tions ? policy applied when JDF:SettingsPolicy or JDFRe-

_ source:SettingsPolicy is not BestEffort. A JDF Consumer must support
this attribute and must support any value of this attribute, so that an Agent
can specify any exceptions to the SettingsPolicy in a JDF instance. The
job will be processed by substituting or ignoring the attributes or attribute
values that are not supported.

BestEffortExceptions is ignored if the current value of SettingsPolicy =
BestEffort.

CommentURL ? URL URL to an external, human-readable description of the element.

DescriptiveName ? | string Human-readable descriptive name, e.g., a resource, process, or product.

MustHonorExcep- |NMTOKENS [The names of the attributes in this element that are to have the must honor

tions ? policy applied when JDF:SettingsPolicy or JDFResource:SettingsPolicy

_ is not MustHonor. A JDF Consumer must support this attribute and must
support any value of this attribute, so that an Agent can specify any excep-
tions to the SettingsPolicy in a JDF instance. The job will be rejected if
any of these attributes or attribute values are not supported.
MustHonorExceptions is ignored if the current value of SettingsPolicy
= MustHonor.

Operatorinterven- | NMTOKENS | The names of the attributes in this element that are to have the operator in-

tionExceptions ?

tervention policy applied when JDF:SettingsPolicy or JDFRe-
source:SettingsPolicy is not Operatorintervention. A JDF Consumer
must support this attribute and must support any value of this attribute, so
that an Agent can specify any exceptions to the SettingsPolicy in a JDF
instance. The job will be paused and the operator will be queried if any of
these attributes or attribute values are not supported. If a device has no op-
erator intervention capabilities, Operatorintervention is treated as
MustHonor.

OperatorinterventionExceptions is ignored if the current value of Set-

22 Chapter 3 Structure of JDF Nodes and Jobs
Name Data Type Description
tingsPolicy = Operatorintervention.
Comment * telem Any human-readable text.

The comment fields may contain a language attribute to support internationalization.

Name
Attribute ?

Data Type
NMTOKEN

Table 3-2 Contents of the Comment element

Description
Name of the attribute in this element that the comment refers to. The name should
include the prefix, if the attribute is in a non-JDF namespace.

Box ?

rectangle

The rectangle that is associated with the comment. The coordinate system of the
rectangle is the same as the coordinate system defined in the Path attribute.

Language ?

language

Possible values are defined in IETF RFC 1766.
If none is specified, the system specified value is assumed.

Name ?

NMTOKEN

A name that defines the usage of a comment. For example, it may determine
whether two comments should fill two distinct fields of a user interface. Predefined
values include:

Description — Human readable description, which is required if the Comment ele-
ment is required in a given context, as is the case in the Notification element (see
Table 3-30 Contents of the Notification element).

Orientation — Description of the orientation of a physical resource.

Default = Description, which is required if the Comment element may become re-
quired, as is the case in the Notification element (see Table 3-30 Contents of the
Notification element.

Path ?

path

Description of the area that the comment is associated with in the coordinate system
of the element where the path resides. For example, if the comment is inserted in an
ExposeMedia resource that describes a plate, the path refers to the plate coordinate
system.

text

Body of the comment.

The following figure shows the structure of the generic content defined above.

———————————————— - =

P
any JDF/JMF element — Comment*

RestEffortExceptions? . Attribute?
CommentURL? = Box?
DescriptiveName? . Language?
MustHonorExceptions? = Name?
Operatorlntervention- . Path?
Exceptions?

Figure 3.2 Structure of JDF Generic Contents

3.1.2 Fundamental JDF Attributes and Elements

The following table presents the attributes and elements likely to be found in any given JDF node. Three of the at-
tributes in Table 3.3, below, are required, and must appear in every JDF node. Although the rest are designated as
optional, they are optional in the sense that they are required only under certain circumstances, not that they may be
left out if desired. The circumstances under which they are required are described in the Description column.

The most important of the attributes is the Type attribute, which defines the node type. The value of the Type
attribute defines the product or process the JDF node represents. As is detailed in Section 3.2 Common Node Types,
all nodes fall into one of the following four general categories: process, process group, combined processes and
product intent. Each node is identified as belonging to one of these categories by the value of its Type attribute, as

Chapter 3 Structure of JDF Nodes and Jobs 23

described in the table below. For example, if Type = Product, the node is a product intent node. Each of these
categories is described in greater detail in the sections that follow.
Table 3-3 Contents of a JDF node

Name Data Type Scope | Description

Activation ? enumeration | special [Describes the activation status of the node. Allows for a range of
see activity, including deactivation and testrunning. Possible values,
text in order of involvement from least to most active, are:
(D) Inactive — The node and all its descendents must not be executed

or tested. This value is set if only certain parts of a JDF job
should be executed or tested or if the node contains information
required by other processes (as is the case with independent
spawning and merging, described in Section 4.4.5).

Informative — The JDF ticket is for information only. If a job is
Informative, it must not be processed. Jobs with Activation= In-
formative will generally be sent to an operator console for pre-
view but are still completely under the control of an external
controller.

Held — Execution has been held. If a job is Held, it must not be
processed until its Activation is changed to Active.

TestRun — The node requests a test run check by an controller or
a device. This does not imply that the node should be automati-
cally executed when the check is completed. Descendents of a
node that is being test run are not to be considered Active.

TestRunAndGo — Similar to TestRun, but requests a subsequent
automatic start if the testrun has been completed successfully.

Active — Default value. The node maybe executed as soon as all
inputs are Available or Complete and all outputs are not incom-
plete.

A child node inherits the value of the Activation attribute from
its parent. The value of Activation corresponds to the least ac-
tive value of Activation of any ancestor, including itself. There-
fore, if any ancestor has an Activation of Inactive, the node itself
is Inactive. If no ancestor is Inactive but any ancestor is TestRun,
the node is TestRun unless the node itself is /nactive. If no an-
cestor has a value of Inactive or TestRun and any ancestor has a
value of TestRunAndGo, the node has a value of TestRunAndGo
unless that node is Inactive or TestRun, and so on.

The following table illustrates the actions to be applied to a node
depending on the value of Activation.

Activation Test Node Execute Node
Inactive false false
Informative false false
Held false false
Active false true
TestRun true false
TestRunAndGo true true

ID ID L Unique identifier of a JDF node. This ID is used to refer to the
JDF node.

JobID ? string D Job identification used by the application that created the JDF

job. Typically, a job is identified by the internal order number of

Chapter 3 Structure of JDF Nodes and Jobs

WEi

Data Type

Scope

Description
the MIS system that created the job.

JobPartID ?

string

D

Identification of a part of a job, used by the application that cre-
ated the job. Typically, this is internal to the MIS system that
created the job and coincides with a process or set of processes.

ProjectID ?

string

Identification of the project context that this JDF belongs to.
Used by the application that created the JDF job.

SpawnlD ?

NMTOKEN

Identification of a spawned part of a job. Typically this is used to
map Audits and messages to a spawned processing step in the
workflow.

SettingsPolicy ?

enumeration

The policy for this Node indicates what happens when unsup-
ported settings, i.e., subelements, attributes or attribute values,
are present in the resources. A JDF Consumer must support this
attribute and all of the defined values so that an Agent can de-
pend on the JDF Consumer following the policy requested by the
Agent in a JDF instance. Possible values are:

BestEffort — Substitute or ignore unsupported attributes, attribute
values, default attribute values, or elements and continue proc-
essing the job.

MustHonor — Reject the job when (1) any unsupported attributes,
attribute values, or elements are present or (2) any omitted attrib-
utes have an unsupported default value defined in this specifica-
tion.

Operatorintervention — Pause job and query the operator when
(1) any unsupported attributes, attribute values, or elements are
present or (2) any omitted attributes have an unsupported default
value defined in this specification. If a device has no operator in-
tervention capabilities, OperatorIntervention is treated as
MustHonor.

Default = BestEffort

Status

enumeration

Identifies the status of the node. Possible values are:

Waiting — The node may be executed, but it has not completed a
test run.

TestRunlnProgress — The node is currently executing a test run.

Ready — As indicated by the successful completion of a test run,
all Resourcelinks are correct, required resources are available,
and the parameters of resources are valid. The node is ready to

start.

FailedTestRun — An error occurred during the test run. Error in-
formation is logged in the Notification element, which is an op-
tional subelement of the AuditPool element described in Section
3.10.

Setup —The process represented by this node is currently being set
up.
InProgress — The node is currently executing.

Cleanup — The process represented by this node is currently be-
ing cleaned up.

Spawned — The node is spawned in the form of a separate
spawned JDF.

The status Spawned can only be assigned to the original instance

Chapter 3 Structure of JDF Nodes and Jobs

25

WEi

Data Type

Scope

Description

of the spawned job. For details, see Section 4.4.

Stopped — Execution has been stopped. If a job is Stopped, run-
ning may be resumed later. This status may indicate a break, a
pause, maintenance, or a breakdown—in short, any pause that
does not lead the job to be aborted.

Completed — Indicates that the node has been executed correctly,
and is finished.

Aborted — Indicates that the process executing the node has been
aborted, which means that execution will not be resumed again.

Pool — Indicates that the node processes partitioned resources and
that the Status varies depending on the partition keys. Details
are provided in the StatusPool element of the node.

Derivation of the Status of a parent node from the Status of
child nodes is non-trivial and implementation-dependent.

Template ?

boolean

Identifies a template that is used to generate JDFs but should not
be exchanged as a job description. Default = “false”.

Type

NMTOKEN

Identifies the type of the node. Any JDF process name is a valid
type. The processes that have been predefined are listed in
Chapter 6, although the flexibility of JDF allows anyone to cre-
ate processes. In addition to these, there are three values which
are described in greater detail in the sections that follow:

Combined
ProcessGroup

Product: 1dentifies a Product Intent node.

Types?

NMTOKENS

List of the Type attributes of the nodes that are combined to cre-
ate this node. This attribute is required if Type = Combined, and
is ignored if Type equals any other value. For details on using
Combined nodes, see Section 3.2.3.

Version ?

string

RD

Text that identifies the version of the JDF node. The current ver-
sion of this specification is “1.1”. The Version attribute is re-
quired in the JDF root node, but not in child nodes.

xmins ?

URI

JDF supports use of XML namespaces. The namespace must be
declared in the root JDF element. For details on using name-
spaces in XML, see http://www.w3.org/TR/REC-xml-names/.
For version 1.1 of JDF xmins, see
http://www.CIP4.org/JDFSchema 1 1

AncestorPool ?

element

If this element is present, the current JDF node has been
spawned, and this element contains a list of all ancestors prior to
spawning. See Section 3.3.

AuditPool ?

element

List of elements that contains all relevant audit information. Au-
dits are intended to serve the requirements of MIS for evaluation
and invoicing. See Section 3.10.

Customerinfo ?

element

Container element for customer-specific information. See Sec-
tion 3.4,

JDF *

element

Child JDF nodes. The nesting of JDF nodes defines the JDF tree.

In contrast to the elements above, JDF child nodes are not con-
tained in a list element.

Nodelnfo ?

element

Container element for process-specific information such as
scheduling and messaging setup. Scheduling affects the planned

http://www.w3.org/TR/REC-xml-names/
http://www.cip4.org/JDFSchema_1_1

26 Chapter 3 Structure of JDF Nodes and Jobs

Name Data Type Scope | Description
times when a node should be executed. Actual times are saved in
the AuditPool. See Section 3.5 for more details.

ResourceLinkPool ? | element L List element for ResourceLink elements, which describe the in-
put and output resources of the node. See Section 3.8 for more
details.

ResourcePool ? element L' List element for resources. See Section 3.6 for more details.

StatusPool ? element L Lists the details of a nodes partition dependent Status if the

Status of the node is “Pool”.

3.2 Common Node Types

As was noted in the preceding section, the Type of a node can fall into four categories. The first is comprised of the
specific processes of the kind delineated in Chapter 6, known simply as process nodes. The other categories are
made up of three enumerative values of the Type attribute: ProcessGroup, Combined, and Product, which is also
known as product intent. These three node types are described in this section.

The figure below, which was also presented as an illustration in Chapter 2, represents a theoretical job hierarchy
comprised of Product nodes, ProcessGroup nodes, and nodes that represent individual processes. The diagram is
divided into three levels to help illustrate the difference between the three kinds of nodes, but these levels do not dic-
tate the hierarchical nesting mechanism of a job. Note, however, that an individual process node may be the child of
a product intent node without first being the child of a process group node. Likewise, a process group node may
have child nodes that are also process groups.

Product nodes

Process group nodes

5834 dob oo\

Individual Process nodes

Figure 3.3 Job hierarchy with process, process group, and product intent nodes

3.2.1 Product Intent Nodes

Except in certain specific circumstances, the agent assigned to begin writing a JDF job will very likely not know
every process detail needed to produce the desired results. For example, an agent that is a job-estimating or job-
submission tool may not know what devices can execute various steps, or even which steps will be required.

If this is the case, the initiating agent creates a set of top-level nodes to specify the product intent, without pro-
viding any of the processing details. Subsequent agents then add nodes below these top-level nodes to provide the
processing details needed to fulfill the intent specified.

! Resources are unique and cannot be overwritten by descendents. Rather, they can only be used by descendents.
An exception to this is described in Section 4.4.5 Case 5: Spawning and Merging of Independent Jobs. In this case,
resources may also be used by a parent node.

Chapter 3 Structure of JDF Nodes and Jobs 27

These top-level nodes have a Type attribute value of Product to indicate that they do not specify any process-
ing. All processing needed to produce the products described in these nodes must be specified in Process nodes,
which exist lower in the job hierarchy.

Product nodes include intent resources that describe the end results the customer is requesting. The intent re-
sources that have already been defined for JDF are easily recognizable, as they contain the word “intent” in their ti-
tles. Examples include FoldingIntent and Colorintent. All intent resources share a set of common subelements,
which are described in Section 7.1.1 Intent Resource Span Subelements. These resources do not attempt to define
the processing needed to achieve the desired results; instead they provide a forum to define a range of acceptable
possibilities for executing a job.

Each Product Intent node should contain at most one ResourceLink for one type of intent resource. If multiple
product parts with different intents are required, each part has its own Product Intent node. Deliverylntent re-
sources are a notable exception. Specifying multiple Deliverylntent resources effectively requests multiple options
of a quote. For more information about product intent, see Section 4.1.1 Product Intent Constructs.

3.2.2 Process Group Nodes

Intermediate nodes in the JDF job hierarchy—i.e., nodes 4, 5, and 6 in Figure 3.3—describe groups of processes.
The Type attribute value of these kinds of nodes is ProcessGroup. These nodes are used to describe multiple steps
in a process chain that have common resources or scheduling data.

Since the agent writing the job has the option of grouping processes in any way that seems logical, custom workflows
can be modeled flexibly. Process group nodes may contain further process group nodes, individual process nodes, or a
mixture of both node types. Sequencing of process group nodes should be defined by linking resources of the appro-
priate leaves or, if the nature of the interchange resources is unknown, by linking PlaceHolder resources.

The higher the level of the process group nodes within the hierarchy, the larger the number of processes the
group contains. A high level process group node might include, for example, prepress, finishing, or printing proc-
esses. Lower level process groups, on the other hand, define a set of individual steps that are executed as a group of
steps in the individual workflow hierarchy. For example, all steps performed by one designated individual may be
grouped in a lower level process group.

The following example shows the ResourceLink structure for a ProcessGroup in-line finishing node. Note the
presence of intermediate component links that link the individual processes. The corresponding Components have
been omitted for brevity.

<JDF Type = "ProcessGroup” ID = ”J1”>
<JDF Type = ”DigitalPrinting” ID = ”J2”>
<ResourcelLinkPool>

<!-- digital printing parameters -->
<DigitalPrintingParamsLink Usage="Input" rRef="L1"/>
<!-- input sheets -->
<MedialLink Usage="Input" rRef="1L2"/>
<!-- printed output components -->

<ComponentLink Usage="Output" rRef="L3"/>
</ResourcelLinkPool>
</JDF>
<JDF Type = ”“Gathering” ID = "J3”>
<ResourcelLinkPool>

<!-- gathering parameters -->
<GatheringParamsLink Usage="Input" rRef="1L4"/>
<!-- printed output components -->
< ComponentLink Usage="Input" rRef="1L3"/>
<!-- gathered output components -->

< ComponentLink Usage="Output" rRef="1L5"/>
</ResourceLinkPool>
</JDF>
<JDF Type = ”Stitching” ID = ”J4”>
<ResourcelLinkPool>
<!-- Stitching parameters -->

28 Chapter 3 Structure of JDF Nodes and Jobs

<StitchingParamsLink Usage="Input" rRef="L6"/>

<!-- gathered output components -->
<ComponentLink Usage="Input" rRef="L5"/>
<!-- stitched output components -->

<ComponentLink Usage="Output" rRef="L7"/>
</ResourceLinkPool>
</JDF>
</JDF>

3.2.3 Combined Process Nodes

The processes described in Chapter 6 Processes define individual workflow steps that are assumed to be executed by a
single-purpose device. Many devices, however, are able to combine the functionality of multiple single-purpose de-
vices and execute more than one process. For example, a digital printer may be able to execute the Interpreting,
Rendering, and DigitalPrinting processes. To accommodate such devices, JDF allows processes to be grouped
within a node whose Type = Combined. Such a node must also contain a Types attribute, which in turn contains an
ordered list of the Type values of each of processes that the node specifies. The ordering of the process names in the
Types attribute is significant and specifies the ordering in which the processes are assumed to be executed.

Furthermore, ResourceLink elements in Combined nodes should specify a CombinedProcessindex attribute in
order to define the subprocess to which the resource belongs. Combined nodes are leaf nodes and must not contain
further nested JDF nodes.

A device with multiple processing capabilities is able to recognize the Combined node as a single unit of work
that it can execute. Therefore, all resources for each of the subtasks that define the Combined node and that are ex-
plicitly defined as ResourceLinks must be available before the node can be executed. In addition, all input and out-
put resources that are consumed and produced externally by the process must be specified in the
ResourceLinkPool element of the node. This includes all required Parameter resources as well as the initial input
resources and final output resources. Intermediate resources that are internally produced and consumed, on the other
hand, need not be specified.

In a combined process node, the information defined by the various resources linked as input to the various
subprocesses are logically available to all processes of the combined node. In situations where the parameter re-
source of more then one subprocess specifies the mapping of sheet surface content to media, the subprocess that
specifies such a mapping that is defined earliest in the Types attribute list must be used, and any other mappings
specified by any down-stream subprocess Resource must be ignored.

3.2.3.1 Combined Process Nodes with Multiple Processes of the Same Type

A Combined node may contain multiple instances of the same process type, e.g. Types = “Cutting Folding Cut-
ting”. In this case, the ordering and mapping of links processes is significant — the parameters of the first Cutting
process are most likely to be different from those of the second Cutting process. Mapping is accomplished using
the CombinedProcessindex attribute in the respective ResourceLink.

<JDF Type = " Conbi ned” Types = "Cutting Folding Cutting” ID = "J1">
<! —Resources (inconplete.) -->
<Resour cePool >

<l-- paraneters of the first Cutting Process-->
<CuttingParans |ID="L1"/>

<!-- Folding paraneters -->
<Fol di ngPar anms | D="L2"/>

<l-- paraneters of the third Cutting Process-->
<CuttingParans |D="L3"/>

<!-- raw i nput conponents -->
<Conponent | D="L4"/>

<l-- conpl eted out put conmponents -->

<Conponent | D="L5"/>
</ Resour cePool >

<l-- Links -->

Chapter 3 Structure of JDF Nodes and Jobs 29

<Resour ceLi nkPool >

<l-- paraneters of the first Cutting Process-->

<Cutti ngPar ansLi nk Usage="I|nput" Conbi nedProcessl| ndex="0" rRef="L1"/>
<!-- Folding paraneters -->

<Fol di ngPar ansLi nk Usage="I nput" Conbi nedProcessl ndex="1" rRef="L2"/>
<l-- paraneters of the first Cutting Process-->

<Cutti ngPar ansLi nk Usage="I|nput"” Conbi nedProcessl| ndex="2" rRef="L3"/>
<!-- raw i nput conponents -->

<Conponent Li nk Usage="Input" rRef="L4"/>
<l-- conpl eted out put conmponents -->

<Conponent Li nk Usage="Cut put" rRef="L5"/>
</ Resour ceLi nkPool >
</ JDF>

3.2.3.2 Examples of Combined Process Nodes

The following example of the ResourceLinkPool of a JDF node describes digital printing with in-line finishing and
includes the same processes as the previous ProcessGroup example. The node requires the parameter resources and
consumable resources of all three processes as inputs, and produces a completed booklet as output. The intermedi-
ate printed sheets and gathered piles are not declared, since they exist only internally within the device and cannot
be accessed or manipulated by an external controller.

<JDF Type = “Conbi ned” Types = "Digital Printing Gathering Stitching” ID =
“J1" >
<Resour celLi nkPool >

<l-- digital printing paraneters -->
<Di gi tal PrintingParansLi nk Usage="Input" Conbi nedProcessl ndex="0" rRef="L1"/>
<!-- gathering paraneters -->

<Gat heri ngPar ansLi nk Usage="1nput" Conbi nedProcessl ndex="1" rRef="1L4"/>
<l-- Stitching paraneters -->
<Stitchi ngParansLi nk Usage="1nput" Conbi nedProcessl ndex="2" rRef="L6"/>

<l-- input sheets -->
<Medi aLi nk Usage="Input" Conbi nedProcessl ndex="0" rRef="L2"/>
<l-- stitched output components -->

<Conponent Li nk Usage="CQut put" Conbi nedProcessl ndex="2" rRef="L7"/>
</ Resour ceLi nkPool >
</ JDF>

3.2.4 Process Nodes

Process nodes represent the very lowest level in a job hierarchy. They must not contain further nested JDF nodes, as
every process node is a leaf node. These nodes define the smallest work unit that may be scheduled and executed
individually within the JDF workflow model. In Figure 3.6 below, nodes 7-17 represent process nodes. The various
individual process node types are specified in Chapter 6 Processes.

3.3 AncestorPool

When a job is spawned, an AncestorPool is created in the spawned job to
identify its parents and grandparents. This allows storing of information about job
context in a spawned node as well as allowing the job to be correctly merged with
its parent after it is completed. The AncestorPool element is only required in the
root of a spawned job. Spawning and merging is described in Section 4.4 | Ap ancestor pool contains
Spawning and Merging. The AncestorPool element contains an ordered list of | ¢ job’s context when the
one or more Ancestor elements, which reflect the family tree of a spawned job. job is spawned. This in-
Each Ancestor element identifies exactly one ancestor node. The ancestor nodes | judes scheduling informa-
reside in the original job where the job with the AncestorPool has been spawned | tion and optionally

off. The position of the Ancestor element in the ordered list defines the position | -,stomer information.

in the family tree. The first element in the list is the original root element, the last

Ancestor
Pool

element in the list is the parent, the last but one the grandparent, and so on. The

Chapter 3 Structure of JDF Nodes and Jobs

following table lists the contents of an AncestorPool element.

Table 3-4 Contents of the AncestorPool element

Name Data Type | Description

Ancestor + element Ordered list of one or more Ancestor elements, which reflect the family tree of a
spawned job.

Part * element List of parts that this node was spawned with. Used in case of parallel Spawning of

New IIDF 11 e

An Ancestor element may contain read only copies of all the attributes of the node that it represents with the excep-
tion of the /D attribute, which must be copied to the NodelD attribute of that Ancestor element. Ancestor ele-
ments cannot, however, contain further subelements except for read only copies of Customerinfo and Nodelnfo.
The attributes of Ancestor elements are described in

Table 3-5 Attributes of the Ancestor element

Name Data Type Description

Activation ? enumeration | Copy of the Activation attribute from the ancestor node. For details, see Table

FileName ? URL The URL of the JDF file where the ancestor node resided prior to spawning.

JobID ? string Copy of the JobID attribute from the ancestor node. For details, see Table
3-3.

JobPartID ? string Copy of the JobPartID attribute from the original ancestor node. For details,
see Table 3-3.

NodelD NMTOKEN * | Copy of the ID attribute of the ancestor node.

ProjectID ? string Identification of the project context that this JDF belongs to. Used by the ap-
plication that created the JDF job.

SpawnID ? NMTOKEN | Copy of the SpawnID attribute of the ancestor node.

Status ? enumeration | Copy of the Status attribute from the original ancestor node. For details, see
Table 3-3.

Type ? NMTOKEN | Copy of the Type attribute from the original ancestor node. For details, see
Table 3-3.

Types ? NMTOKENS | Copy of the Types attribute from the original ancestor node. For details, see
Table 3-3.

Version ? string Copy of the Version attribute from the original ancestor node. For details, see
Table 3-3.

Customerinfo ? | element Reference copy of the Customerinfo element from the original node. For de-

_ tails, see Table 3-3.

Nodelnfo ? element Reference copy of the Nodelnfo element from the original node. For details,

_ see Table 3-3.

3.4 Customer Information

? The data type is NMTOKEN and not IDREF because the ID does not reside in the spawned job. The correspond-
ing ID element resides in the original job.

Chapter 3 Structure of JDF Nodes and Jobs 31

The Customerinfo element
contains information about the -
customer who orders the job. ’ Creating Better
Usually, this element is specified
in the uppermost node of a job
(that is, the root node), although
it is also valid in lower nodes in | Customer information within JDF can provide a bridge between your
situations such as model CRM systems and production. How could JDF be used to automate
subcontracting. Table 3-6 | the process of reporting to customers on the status of their jobs?
Contents of the CustomerInfo
element describes the contents of this element.

Table 3-6 Contents of the Customerinfo element

Job Tracking & Reporting

Name \Data Type Description

BillingCode ? string A code to bill charges incurred while executing the node.

CustomerlID ? string Customer identification used by the application that created the job. This
is usually the internal customer number of the MIS system that created the
job.

CustomerJobName ? | string The name that the customer uses to refer to the job.

CustomerQrderID ? string The internal order number in the system of the customer. This number is

usually provided when the order is placed and then referenced on the order
confirmation or the bill.

rRefs ? IDREFS Array of IDs of any elements that are specified as ResourceRef ele-
ments. In this version it will be the IDREF of a ContactRef’.

Company ? refelement | Resource element describing the business or organization of the contact. In

Deprecated in JDF 1.1| JDF 1.1 and beyond, Company affiliation of Contacts is specified in
Contact.

Contact * refelement | Resource element describing contacts associated with the customer. There

_ must be one Contact which has ContactTypes including “Customer”.

3.5 Node Information

The Nodelnfo element contains information about planned scheduling and message routing. It allows MIS to plan,
schedule and invoice jobs or job parts. Table 3-7 Contents of the Nodelnfo element describes the contents of the
Nodelnfo element.

Table 3-7 Contents of the Nodelnfo element

Name Data Type Description
CleanupDuration ? | duration Estimated duration of the clean-up phase of the process.
Duelevel ? enumeration | Description of the severity of a missed deadline. Possible values are:

Unknown — Default value. Consequences of missing the deadline are not
known.

Trivial — Missing the deadline has minor or no consequences.
Penalty — Missing the deadline incurs a penalty.
JobCancelled — The job is cancelled if the deadline is missed.

End? dateTime Date and time at which the process is scheduled to end.

FirstEnd ? dateTime Earliest date and time at which the process may end.

FirstStart ? dateTime Earliest date and time at which the process may begin.

IPPVersion ? XYPair A pair of numbers indicating the version of the IPP protocol to use when

3 tRefs also enables spawning and merging if CustomerlInfo is extended with private ResourceRef elements.

32

Chapter 3 Structure of JDF Nodes and Jobs

Data Type

Description
communicating to IPP devices. The X value is the major version number.
Default = system specified

JobPriority ?

integer

The scheduling priority for the job where 100 is the highest and 1 is the
lowest. Amongst the jobs that can be printed, all higher priority jobs should
be printed before any lower priority ones. If one of the deadline oriented at-
tributes, e.g., FirstStart or LastEnd and JobPriority are specified, the
deadline oriented attributes must be honored before considering JobPri-
ority.

Default = 50.

LastEnd ?

dateTime

Latest date and time at which the process may end. This is the deadline to
which Duel evel refers.

LastStart ?

dateTime

Latest date and time at which the process may begin.

NaturalLang ?

language

Language selected for communicating attributes. If not specified, the oper-
ating system language is assumed.

MergeTarget ?
IDeprecated in JDF 1.1]

boolean

If MergeTarget = true and this node has been spawned, it must be merged
with its direct ancestor by the controller that executes this node. The path
of the ancestor is specified in the last Ancestor element located in the An-
cestorPool of this node. It is an error to specify both Merge Target and
TargetRoute in one node.

Default = false, which means that some other controller will take care of
merging.
Note: Merge Target has been deprecated in JDF 1.1 because avoiding con-

current access to the ancestor node is ill defined and cannot be implemented
in an open system without proprietary locking mechanisms.

Route ?

URL

The URL of the controller or device that should execute this node. If URL
is not specified, the routing controller must determine a potential controller
or device independently. For details, see Process Routing

rRefs ?

IDREFS

Array of IDs of any elements that are specified as ResourceRef elements.
In this version it may be the IDREF of a JMFRef or EmployeeRef".

SetupDuration ?

duration

Estimated duration of the setup phase of the process.

Start ?

dateTime

Date and time of the planned process start.

TargetRoute ?

URL

The URL where the JDF should be sent after completion. If TargetRoute
is not specified, it defaults to the input Route attribute of the subsequent
node in the process chain. If this is also not known, the JDF should be sent
to the processor default output URL.

TotalDuration ?

duration

Estimated total duration of the process, including setup and cleanup.

BusinessInfo?

element

Container for business related information. It is expected that JDF will be
utilized in conjunction with other eCommerce standards, and this container
is provided to store the eCommerce information within JDF in case a work-
flow with JDF as the root level document is desired. When JDF is used as
part of an eCommerce solution such as PrintTalk, the information given in
the envelope document overrides the information in Businessinfo.

Employee ?

refelement

The internal administrator or supervisor that is responsible for the product
or process defined in this node.

JMF *

element

Represents JMF query messages that set up a persistent channel, as de-
scribed in Section 5.2.2.3 Persistent Channels. These message elements
define the receiver that is designated to track jobs via JMF messages.

* rRefs also enables spawning and merging if Nodelnfo is extended with private ResourceRef elements.

Chapter 3 Structure of JDF Nodes and Jobs 33

Name Data Type Description

These message elements should be honored by any JMF-capable controller
or device that executes this node. When these messages are honored, a per-
sistent communication channel is established that allows devices to trans-
mit, for example, the status of the job as JMF Signals.

NotificationFilter * element Defines the set of Notification elements that should be logged in the
AuditPool. This provides a logging method for devices that do no not sup-
port JMF messaging. For details of the NotificationFilter element, see
5.5.1.1 Events.

3.6 StatusPool

The StatusPool describes the Status of a JDF node that processes partitioned resources. StatusPool elements are
only valid if the node’s Status="Pool”, otherwise the node’s Status is valid for all parts, regardless of the contents
of StatusPool. It may contain PartStatus elements that define the node’s status with respect to specific partitions.
It is an error to define PartStatus elements that reference identical or overlapping parts within one StatusPool.
Partitioned resources are described in Section 3.9.2 Description of Partitionable Resources.

Table 3-8 Contents of the StatusPool element

Name Data Type ‘ ' Description

Status ? enumeration | Identifies the status of the node. The Status of individual partitions may be
overwritten by PartStatus elements. Possible values are all valid Status attrib-
utes of a JDF node except “Pool” are valid as defined in Table 3-3 Contents of a
JDF node, Status.

PartStatus * | element Element that defines the node’s status for a set of parts.

The following table describes the PartStatus element.

Table 3-9 Contents of the PartStatus element

Name Data Type Description

Status ? enumeration | Identifies the status of an individual part of the node. Overwrites the Status at-
tribute defined in StatusPool. Possible values are identical to those defined in:
Status

Part ° element Specifies the selected part that the PartStatus is valid for. If a Part refers to less
PartIDKeys than are available in the resource, the unspecified PartIDKeys are

F implied to be accepted.

3.7 Resources

Resources represent the “things” that are produced or consumed by processes. They may be physical items such as
inks, plates, or glue; electronic items such as files or images; or conceptual items such as parameters and device set-
tings. Processes describe what resources they input or output through ResourceLinks, discussed in Section 3.8
Resource Links. By examining the input and outputs of a set of processes, it is possible to determine process de-
pendencies, and therefore job routing.

All resources are contained in the ResourcePool element of a node. The ResourcePool element is described
in the following table.

> The cardinality of Part in PartStatus has been changed from * to none, e.g. exactly one element in version 1.1 of
the JDF specification.

34 Chapter 3 Structure of JDF Nodes and Jobs

Table 3-10 Contents of the ResourcePool element

Data Type Description
Resource * | element List of Resource elements. The Resource elements are abstract and serve as
placeholders for any resource type.

Like the Type attribute in abstract JDF nodes, the Class attribute in Resource elements helps to identify how par-
ticular resources should be used. This attribute contains seven values, and all resources fall under one of these seven
classifications. For example, all resources whose Class = Consumable are physical resources that will be consumed
over the course of the process. These values are listed in Table 3-11, below, and are described in greater detail in
the sections that follow.

Table 3-11 Contents of the abstract Resource element

Name Data Type Description
CatalogID ? string Identification of the resource e.g. in a catalog environment. Defaults to the
ProductID.

CatalogDetails ? | string Additional details of a resource in a catalog environment.

Class enumeration Defines the abstract resource type. For details, see the sections that follow.
Possible values are:

Consumable
Handling
Implementation
Intent
Parameter
PlaceHolder
Quantity

ID ID Unique identifier of a resource.

Locked ? boolean If true, the resource is referenced by an Audit and cannot be modified
without invalidating the Audit.

Default = false

PipelD ? string If this attribute exists, the resource is a pipe. The PipelD is used by JMF
pipe-control messages to identify the pipe. For more information, see Sec-
tion 4.3.2 Overlapping Processing Using Pipes.

ProductID ? string An ID of the resource as defined in the MIS system.

rRefs ? IDREFS Array of IDs of internally referenced resources.

SettingsPolicy ? enumeration The policy for this Resource indicates what happens when unsupported
- settings, i.e., subelements, attributes, or attribute values, are present. A

JDF Consumer must support this attribute and all of the defined values so
that an Agent can depend on the JDF Consumer following the policy re-
quested by the Agent in a JDF instance. Possible values are:

BestEffort = Substitute or ignore unsupported attributes, attribute values,
default attribute values, or elements and continue processing the job.

MustHonor = Reject the job when (1) any unsupported attributes, attribute
values, or elements are present or (2) any omitted attributes have an un-
supported default value defined in this specification.

Operatorintervention = Pause the job and query the operator when (1) any
unsupported attributes, attribute values, or elements are present or (2) any
omitted attributes have an unsupported default value defined in this speci-
fication. If a device has no operator intervention capabilities, Opera-
torIntervention is treated as MustHonor.

Chapter 3 Structure of JDF Nodes and Jobs

35

Name

Data Type

Description
If not specified, the value defined for the node that this resource resides in
is used.

SpawnlIDs ?

NMTOKENS

List of SpawnlIDs. This is used as a reference count how often the resource
has been spawned.

SpawnStatus ?

enumeration

The spawn status of a node indicates whether or not a node has been
spawned, and under what circumstances. The list is assumed to be or-
dered, so that the SpawnStatus of a resource that has rRefs entries is de-
fined as the maximum SpawnStatus of all recursively linked resources.
Possible values are:

NotSpawned — Default value. Indicates that the resource has not been cop-
ied to another process.

SpawnedRO — Indicates that the resource has been copied to another proc-
ess where it cannot be modified. RO stands for read-only.

SpawnedRW — Indicates that the resource has been copied to another proc-
ess where it can be modified. RW stands for read/write.

Status

enumeration

The status of a node indicates under what circumstances it may be proc-
essed or modified. The list is assumed to be ordered, so that the Status of
a resource that has rRefs entries is defined as the minimum Status of all
recursively linked resources. Possible values are:

Incomplete — Indicates that the resource does not exist, and the metadata is
not yet valid.

Unavailable — Indicates that the resource is not ready to be used or that the
resource in the real world represented by the physical resource in JDF is
not available for processing. The metadata is valid.

InUse — Indicates that the resource exists, but is in use by another process.
Also used for active pipes (see Sections 3.7.3 and 4.3.2).

Draft — Indicates that the resource exists in a state that is sufficient for set-
ting up the next process but not for production.

Complete — Indicates that the resource is completely specified and the pa-
rameters are valid for usage. A physical resource with Status = Complete
is not yet available for production, although it is sufficiently specified for a
process that references it through a ResourceRef from a parameter re-
source to commence execution.

Available — Indicates that the whole resource is available for usage.

UpdatelD ?

NMTOKEN

Unique ID that identifies the Resource or Resource partition. Note that
only one Resource, Resource partition or ResourceUpdate with a
given value of UpdatelD may occur per JDF document, even though the
scope of the ResourceUpdate is local to the resource that it is defined in.

Figure 3.4 shows the structure of the abstract resource classes defined above. Arrows define inheritance relations
and the thin orthogonal lines describe containing relations.

36 Chapter 3 Structure of JDF Nodes and Jobs

________ Y
[ResourcePooI?]7'Resource* |

CatalogDetails?
CatalogID?
Class

ID

Locked?

PipeID?
ProductID?
rRefs?
SettingsPolicy?
SpawnlIDs?
SpawnStatus?
Status
UpdatelD ?]

® s s e * s e e e s e e e

BlockPreparationParams

|- NoOp? | : e
ConventionalPrintingParams]

PP PN
m——— = —— A PhysicalResource Contact?]
lilic_ejioid_er_ _ _I AlternateBrand?

v 7 e IdentificationField*)

AmountRequired?

e - 3
il Location? —{Address? |

o LocationName?

(PIac:eHoIderResource)

ResourceWeight?
e e e Unit? * LocID?
| Implementation |
o T o
Device | Employee |

—_—— ——— _—— -

——

|Handling | |Quantity | | Consumable |

— _..;._ P S— ——

(Exposed Media]

—

-—— L _——

Figure 3.4 Structure of the abstract resource types

3.7.1 Resource Classes
The following sections describe the functions of each of the seven values of the Class attribute. All resources fall
into one of these classes. In Chapter 7 Resources, the class of each resource is indicated in the Resource Properties
subheading.

3.7.1.1 Parameter Resources == Parameter &
Parameter resources Qeﬁne the details of processes, as — Intent Resources
well as any non-physical computer data such as files

used by a process. They are usually associated with a | parameter and Intent Resources are information

specific process. For example, a required input re- | a6yt the print job. Intent resources may originate
source of the ColorSpaceConversion process is the | in the customer's RFQ and may include informa-

ColorSpaceConversionParams resource. All prede- | tion such as trim size, paper, the number of colors,
fined parameter resources contain the moniker | gndq so on. Later on in the process of estimating

“Params” in their titles. Other examples of Parameter | 544 scheduling the job, these intents may become
resources include AdhesiveBindingParams and parameters for producti,on process.

ConventionalPrintingParams.

Table 3-12 Additional contents of the abstract parameter Re-

Chapter 3 Structure of JDF Nodes and Jobs 37

source elements

Description
NoOp ? boolean Indicates whether a resource or resource partition should be treated as if
- it did not exist, e.g., to switch off a complete process step for the process

that requires the given parameter resource or partition as input. Default =
false, i.e., the Resource is operational and should be honored.

3.7.1.2 Intent Resources

Intent resources define the details of products to be produced without defining the process to produce them. In addi-
tion, they provide structures to define sets of allowable options and to match these selections with prices. The de-
tails of all intent resources are described in Section 7.1 Intent Resources. The abstract Intent resource element
contains no attributes or elements besides those contained in the abstract Resource element.

3.7.1.3 Implementation Resources

Implementation resources define the devices and operators that execute a given node. Only two implementation re-
source types are defined: Employee (see Section 7.2.49) and Device, each of which is described in greater detail in
the Chapter 7.

Implementation resources can only be used as input resources and may be linked to any process. The abstract
Implementation resource element contains no attributes or elements besides those contained in the abstract Re-
source element. An example demonstrating how to use implementation resources is provided in Section 3.8.2
Links to Implementation Resources.

Note that it is not recommended to specify the capabilities of a Device that is linked to a process to specify that
it should execute the given process.

3.7.1.4 Physical Resources (Consumable, Quantity, Handling)
Any resource whose Class is Consumable, Quantity, or Handling is considered a physical resource. They are de-
fined as follows:

o Consumable resources are resources that are
consumed during a process. Examples include Ink)
and Media. They are the unmodified inputs in a ’ Automating Inventory

process chain. Management

e Quantity resources are resources that have been
created by a process from either a Consumable | JDF’s handling of physical resources provides
resource or an earlier Quantity resource. For | a bridge between your JDF enabled systems
example, printed sheets are cut and a pile of cut | and inventory management, ordering and
blocks is created. Component resources are an replenishing systems. This opens the door to
example of Quantity resources. just-in-time inventory management driven by

.))) real-time scheduling and consumption data.
e A Handling resource is used during a process, but is

not destroyed by that process. ExposedMedia and
Tool are examples of such a resource, although it does describe various kinds of items such as film and
plates. A Handling resource may be created from a Consumable resource.

Table 3-13 Additional contents of the abstract physical Resource elements defines the additional attributes and ele-
ments that may be defined for physical resources. The processes that consume physical resources—any kind of
physical resource—have the option of using these attributes and elements to determine in what way the resources
should be consumed. Table 3-13 Additional contents of the abstract physical Resource elements then describes the
contents of the Location subelement of physical resource elements.

38

Chapter 3 Structure of JDF Nodes and Jobs

Table 3-13 Additional contents of the abstract physical Resource elements

Name Data Type Description

AlternateBrand ? string Information, such as the manufacturer or type, about a resource compati-
ble to that specified by the Brand attribute, which is described below.

Amount ? number Actual amount of the resource that is available.

Note that the amount of consumption and production of a node is specified
in the corresponding resource links.

AmountRequired ? | number Total amount of the resource that is referenced by all nodes that will con-
sume this resource. This corresponds to the sum of all Amount values of
input resource links that reference this resource.

BatchID ? string ID of a specific batch of the physical resource

Brand ? string Information, such as the manufacturer or type, about the resource being
used.

ResourceWeight ? | double Weight of a single component of the resource in grams.

Unit ? NMTOKEN | Unit of measurement for the values of Amount and AmountRequired.
Note that it is strongly discouraged to specify units other than those that
are defined in Units

Weight ? double Weight of a single component of the resource in grams. This parameter

Meeal in 1.1 collides with Media::Weight and is therefore illegal and has been replaced

= with ResourceWeight in version 1.1 and beyond.

Contact ? refelement If this element is specified, it describes the owner of the resource.

IdentificationField | refelement If this element is specified, a bar code or label is associated with this

* physical resource.

Location ? refelement Description of details of the resource location.

Note, in order to describe multiple locations, resources may be partitioned
by the Location-key as described in Section 3.9.2 Description of Parti-
tionable Resources.

Structure of Location Subelement

Table 3-14 Contents of the Location element

Name Data Type Description

LocationName ? string Name of the location, e.g., for example in MIS. This part key allows to
- describe distributed resources.

LocID ? string Location identifier, e.g., within a warehouse system.

Address ? refelement Address of the storage facility. For more information, see Section 7.2.2.

3.7.1.5 PlaceHolder Resources

PlaceHolder resources, unlike physical resources, do not describe any logical or physical entity. Rather, they define
process linking and help to define process ordering when the exact nature of interchange resources is still unknown.
In essence, they serve as placeholders that stand in for defined resources. Using PlaceHolder resources, a process-
ing skeleton can be constructed that gives a basic shape to a job. The appropriate resources can be substituted for
PlaceHolder resources when they become known.

This kind of resource should only be used to link nodes of Type = ProcessGroup, since process leaf nodes have
well defined resources that should be used in preference. The only resource whose Class = PlaceHolder is called
PlaceHolderResource.

Chapter 3 Structure of JDF Nodes and Jobs 39

Like Parameter and Implementation resources, PlaceHolder resources contain no attributes besides those con-
tained in the abstract Resource element.

3.7.1.6 Selector Resources

[Removed in JDF 1.1|

Resources of class Selector have been removed in JDF version 1.1 and higher. Note that they are not only depre-
cated but actually removed from the format including the schema and must not be supported by a JDF 1.1 conform-
ing agent

3.7.2 Position of Resources within JDF Nodes

Resources may exist in any JDF node, but JDF nodes may only reference local or global resources. In other words,
JDF nodes may only reference resources in the two kinds of locations: in the node’s own ResourcePool element
or in JDF nodes that are hierarchically closer to the JDF root. An exception to this rule, however, occurs if two in-
dependent jobs are merged for a process step and are to be separated afterwards, as is the case when two independ-
ent jobs are printed on the same web-fed press. For further details on independent job merging, see Section 4.4.5
Case 5: Spawning and Merging of Independent Jobs.

It is good practice to put resources into the highest-level node that references the resource. For example, the
RenderingParams resource should be located in the Rendering node, unless it is used by multiple Rendering
processes, in which case it should be located in the ProcessGroup node that contains the Rendering process
nodes. Resources that link more than one node should be placed in the parent node of the siblings that are linked by
the resource.

A process that needs additional detailed process information specifying the creation of a resource must infer this
information by explicitly linking to the appropriate parameter resource.

3.7.3 Pipe Resources

A Pipe describes the resource dependency in which a process begins to consume a resource while it is being pro-
duced by another process. For example, stacking components while they are being printed, or consuming a data
stream while it is being written by an upstream process.

Using dynamic pipe control, a downstream process may control the total quantity produced by an upstream
process, and/or the quantity buffered by an inter-process transport device (i.e. Conveyor belt.) Additional description
of pipes and process communication via pipes is provided in Section 4.3.2 Overlapping Processing Using Pipes.

Resources may contain a string attribute called PipelD that declares the resource to be a pipe, and identifies it in
a dynamic-pipe messaging environment. A pipe that is also controlled by JMF pipe messages is called dynamic
pipe. For more information about dynamic pipes, see Section 4.3.2.2 Dynamic Pipes.

3.7.4 ResourceUpdate Elements

ResourceUpdate elements are an abstract element class that optionally contains any of the attributes and elements
valid for the Resource that they reside in. Required attributes and elements of resources are optional in the respec-
tive ResourceUpdate. In addition, a ResourceUpdate defined within a Resource must contain a unique Up-
datelD of type ID. Only devices that process the resource as input can reference the UpdatelD of a
ResourceUpdate. Such references to ResourceUpdate elements must update the current state of the device.

When a ResourceUpdate is referenced from a device, e.g., from a PPML TicketRef element, said device will
update ONLY those elements that are explicitly specified within the ResourceUpdate. No attributes are inherited
from the Resource that contains the ResourceUpdate.

ResourceUpdate elements are useful for process input resources only and must not be applied to product in-
tent resources.

40 Chapter 3 Structure of JDF Nodes and Jobs

Table 3-15 Contents of the abstract ResourceUpdate Element

Description
UpdatelD NMTOKEN Unique ID that identifies the ResourceUpdate. Note that
- only one Resource, Resource partition or ResourceUp-

date with a given value of UpdatelD may occur per JDF
document, even though the scope of the ResourceUpdate is
local to the resource that it is defined in.

Example:
The following example shows ResourceUpdate elements in highlight.

<JDF xmlns="http://www.CIP4.org/JDFSchema 1 1” ID="MyCombinedProcessNode" Status="Ready"
Type="Combined"
Types="Interpreting Rendering DigitalPrinting"” Version="1.1">

<ResourcelLinkPool>
<InterpretingParamsLink rRef="PDFIParams” Usage="Input” CombinedProcessIndex="0/>
<RenderingParamsLink rRef="RParams” Usage="Input” CombinedProcessIndex="1/>
<DigitalPrintingParamsLink rRef=”DPParams” Usage="Input” CombinedProcessIndex="2/>

</ResourceLinkPool>

<ResourcePool>
<Media ID="White" .. />
<InterpretingParams ID="PDFIParams" Class="Parameter" Status="Available" PrintQuality="High"
Polarity="Positive" EmitPDFTransfers="false" UpdateID="SetPrintQualityDefault"/>
<InterpretingParamsUpdate UpdateID="SetNegativePolarity” Polarity="Negative”/>
<InterpretingParamsUpdate UpdateID="SetPositivePolarity” Polarity="Positive”/>
<InterpretingParamsUpdate UpdateID="”SetPrintQualityDraft” PrintQuality="Draft”/>
<InterpretingParamsUpdate UpdateID="SetPrintQualityNormal” PrintQuality="”Normal”/>
<InterpretingParamsUpdate UpdateID="SetPrintQualityHigh” PrintQuality="High”/>
</PDFInterpretingParams>
<RenderingParams ID="RParams" Class="Parameter" Status="Available">
<AutomatedOverprintParams OverPrintBlackText="true" OverPrintBlackLineArt="true"/>
</RenderingParams>
<DigitalPrintingParams ID="DPParams" Class="Parameter" Status="Available" PrintingType="Sheet">
<MediaRef rRef="White" Medialocation="WhiteTray” UpdatelID="SetMediaDefault”/>
<DigitalPrintingParamsUpdate UpdateID="SetMediaYellow”/>
<Media ID="Yellow" MediaLocation="YellowTray” />
</DigitalPrintingParamsUpdate>
</DigitalPrintingParams>

</ResourcePool>

</JDF>

3.8 Resource Links

ResourceLinks describe what resources a node uses, and how it uses them. They also allow node dependencies to be
calculated. The following diagram summarizes resource linking within a JDF node. In this example there are two
resources, A and B, which are placed in the node’s ResourcePool. To reference the resources, the node has two re-
source links, ALink and BLink, in the ResourceLinkPool. The resource links are named by appending “Link” to the
type of resource referenced. Resource B also contains a reference to resource A, called ARef. References to re-
sources from within resources are named by appending “Ref” to the type of resource referenced.

Chapter 3 Structure of JDF Nodes and Jobs 41

ResourceLinkPool [l ResourcePool
ALink — VS

BLink

Figure 3.5 Resource Links and ResourceRefs

The previous section described resources used by the node in which it resides. This section describes how resources
may serve as links between nodes. As was described in Section 2.2 JDF Workflow, any resource that is the output
of one process will very likely serve as an input of a subsequent resource. Furthermore, some resources are shared
between ancestor nodes and their child nodes.

Each JDF node contains a ResourceLinkPool element that in turn contains all of the ResourceLink elements
that link the node to the resources it uses. They also define whether the resources are inputs or outputs. These in-
puts and outputs provide conceptual links between the execution elements of JDF nodes. Outputs of one node may
in turn become inputs in another node, and a given node must not be executed before all required input resources are
available.® Figure 3.6 shows two processes that are linked by a resource. The resource represents the output of Node
1, which in turn becomes an input for Node 2.

Node1 | oumut '— mout Y Node 2

Example:

Figure 3.6 Nodes linked by a resource

ResourceLink elements may also contain optional attributes to select a part of a resource, such as a single separa-
tion. A detailed description of resource partitioning is given in Section 3.9.2 Description of Partitionable Resources.

ProcessGroup and Product nodes may be defined without the knowledge of the individual process nodes that
define a specific workflow. In this case, these intermediate nodes will contain ResourceLink elements that link the
appropriate resources. For example, a prepress node may be defined that produces a set of plates. When the proc-
esses for creating the plates are defined in detail, the agent that writes the nodes may remove the ResourceLink
elements from the intermediate node. Removing the ResourcelLink specifies that the intermediate node may exe-
cute; that is, it may be sent to the appropriate controller or department, even though the specific resources are not yet
available. If the ResourcelLinks are not removed, the intermediate node must not execute until the input resources
that are linked are available.

Resource links may be used for process control. For example, if a proof input resource is required for a print
process, a print run may only commence when the proof is signed. The JDF format specification also includes a
complete specification of how resources are managed when JDF tickets are spawned and merged.

In some cases, determining whether information should be stored in an input or an output resource may be diffi-
cult, as the distinction can be ambiguous. For example, is the definition of the color of a separation in the RIP proc-
ess a property of the output separation or a parameter that describes the RIP process? In order to reduce this

® The availability of a resource that is consumed as a whole is given by the Resource attribute
Status = Available. In the case of pipe resources, the availability depends on the individual parameter defining the
dynamics of a pipe (for details see Section 4.3.2 Overlapping Processing Using Pipes).

42 Chapter 3 Structure of JDF Nodes and Jobs

ambiguity, the following rules have been applied for the definition of input and output resources of processes as de-
scribed in Chapter 6 Processes and Chapter 7 Resources:

e Product intent and process parameters are generally input resources, except when one process defines the pa-
rameters of a subsequent process.

e Consumable resources are always input resources.

e Quantity and Handling resources are used both as input and output resources. Their usage is defined by the
“natural” process usage. For example, a printing plate is described as an ExposedMedia resource that is the
output of a /Image Setting process and the input of a ConventionalPrinting process.

e Printed material is exchanged from node to node using the Component resource. Product intent nodes also
create Component output resources.

e Every detailed process description must be defined as an input parameter of the first process where it is refer-
enced. This means that a device must not imply process parameters from its output resources. For example,
paper grammage MAY be defined in the Component output resource of the printing process but MUST be
defined as an input parameter of the Media of the printing process.

e Any resource parameter that is used must be referenced explicitly. Resource parameters cannot be inferred
by following the chain of nodes backwards. This would make spawning of nodes non-local.

e The last process in a chain of processes defines the output resource of its parent process.

e In case of parallel processing, the sum of the outputs of all parallel subnodes defines the output of the parent node.

—————————— =Y g ™\
[ResourceLinkPool? | ResourceLink* AmountPool? PartAmount* Part

. CombinedProcessIndex? . DraftOK?

= Do frORe . PipeProtocol?

. PipePartIDKeys? . PipeURL?

. PipeProtocol? .

* PipeURL?

* ProcessUsage?

. rRef

- rSubRef?

o Usage

————————— -~

_________ = ‘ParameterLink |
{PlaceHolderLink ————————— .
_________ - L R R R

[ImplementationLink |

IntentLink S —_———— * Duration?
——————— 'PhysicalLink | . Recommendation?
. Start?
o ¢ StartOffset?
Orientation?
PipePause?
PipeResume?

RemotePipeEndPause?
RemotePipeEndResume?
Transformation?

——— — — —_——_——_———

{Quantit_yLink |

Figure 3.7 Structure of the abstract ResourceLink types

Like Resource elements, ResourcelLink elements are an abstract data type. The class tree of abstract Resour-
celLink elements is further subdivided into classes defined by the Class attribute of the resource that it references.

Chapter 3 Structure of JDF Nodes and Jobs 43

Individual instances of ResourceLink elements are named by appending the suffix “Link” to the name of the refer-
enced resource. For example the link to a Component resource is entitled ComponentLink and the link to a
ScanParams resource is entitled ScanParamsLink. The following eight abstract resource link classes exist:

e ParameterLink e HandlingLink

e ImplementationLink e PlaceHolderLink
e ConsumableLink e IntentLink

e QuantityLink

Each listed class name is described in greater detail in the sections that follow. The following figure shows the ab-
stract resource link types derived from the abstract ResourceLink type.
The following table lists the contents of a ResourceLinkPool element.

Table 3-16 Contents of the ResourceLinkPool element

Data Type Description
ResourceLink * | element List of ResourceLink elements. The ResourcelLink elements are abstract
and are a placeholder for any resource link element.

The following table lists the possible contents of all ResourcelLink elements.
Table 3-17 Contents of the abstract ResourceLink element

Name Data Type \ Description

CombinedProcessin- | IntegerList Combined nodes contain input resources from multiple process nodes.
dex ? The CombinedProcessindex attribute specifies the indices of indi-
- vidual processes in the Types attribute to which a ResourceLink in a

Combined node belongs. Multiple entries in CombinedProcessIndex
specify that the ResourceLink is used by the respective multiple proc-
esses in the Combined node.

CombinedProc- NMTOKEN Combined nodes contain input resources from multiple process nodes.
essType ? The CombinedProcessType attribute specifies the name individual
Deprecated in JDF 1.1| process to which a ResourceLink in a Combined node belongs. Must

match one of the entries in the Types attribute of the node. Replaced
by CombinedProcessindex in JDF 1.1.

DraftOK ? boolean If true, the process may commence with a draft resource. Default =
false
PipePartIDKeys ? enumerations | Defines the granularity of a dynamic pipe for a partitioned resource.

For instance, a resource may be partitioned by sheet, surface and sepa-
ration (resource attribute PartIDKeys = SheetName Side Separation),
but pipe requests should only be issued once per surface (resource link
attribute PipePartIDKeys = SheetName Side). The contents of
PipePartIDKeys must be a subset of the PartIDKeys attribute of the
resource that is linked by this ResourceLink. 1f PipePartIDKeys is
not specified, it defaults to PartIDKeys, i.e. maximum granularity. For
details on partitioned resources, see Section 3.9.2.

PipeProtocol ? NMTOKEN | Defines the protocol use for pipe handling. JMF is the only non-

- proprietary piping protocol that is supported. Proprietary pipe protocols
may be specified in addition to those defined below but will not neces-

sarily be interoperable. Allowed values include:
JMF — JMF based PipePush / PipePull messages.
None — No pipe support.

If PipeURL is specified and PipeProtocol is not specified, JMF is as-
sumed.

44 Chapter 3 Structure of JDF Nodes and Jobs

Name Data Type \ Description

PipeURL ? URL Pipe request URL. Dynamic pipe requests from this end of a pipe
should be made to this URL." Note that this URL is only used for initi-
ating pipe requests. Responses to a pipe request are issued to the URL
that is defined in the PipePush or PipePull message. For details on
using PipeURL, see Section 4.3.2.

ProcessUsage ? string Identifies the resource usage in the process if multiple resources of the
same type are required. For example, this attribute appears when two
components—one Cover and one BookBlock—are used in Adhesive-
Binding. The allowed values of ProcessUsage are defined in the ap-
propriate process descriptions in Chapter 6 Processes.

rRef IDREF Link to the target resource.
rSubRef ? IDREF Link to a subelement within the resource.
Usage enumeration | Resource usage within this JDF node. Possible values are:

Input — The resource is an input.

Output — The resource is an output.

AmountPool ? element Definition of partial amounts and pipe parameters for this Resour-
_ ceLink. The allowed contents of the AmountPool are described for the
various types of resource links in the sections below.

Part * element The Part elements identify the parts of a partitioned resource that are
referenced by the ResourceLink. The structure of the Part element is
defined in Table 3-25 Contents of the Part element For details on parti-
tioned resources, see Section 3.9.2.

The following table lists the generic contents of an AmountPool element. Further parameters of the AmountPool
are described in the sections below.
Table 3-18 Contents of the AmountPool element

Data Type Description
PartAmount * | element Element that defines the amounts and pipe parameters for a partitioned resource.
- The contents of a PartAmount depends on the type of the ResourceLink.

The following table lists the generic contents of a PartAmount element. Further parameters of the PartAmount are
described in the respective sections below (Table 3-20 Contents of the abstract ImplementationLink or PartAmount
element and Table 3-21 Additional contents of the abstract physical ResourceLink and PartAmount or AmountPool
element). Note that PartAmount inherits values from its parent ResourceLink.

Table 3-19 General contents of the PartAmount element

Data Type Description
DraftOK ? boolean If true, the process may commence with a draft resource partition.

! Note that in most cases this is the URL of the controller of the other end of the pipe. This may seem counterintui-
tive, but it allows parallel spawning and merging of processes that represent a dynamic pipe without having to in-
clude the node that describes the other end in the spawned file.

Chapter 3 Structure of JDF Nodes and Jobs 45

Name Data Type Description

PipeURL ? URL Pipe request URL for this partition. Dynamic pipe requests from this
end of a pipe should be made to this URL.> Note that this URL is only
used for initiating pipe requests. Responses to a pipe request are is-
sued to the URL that is defined in the PipePush or PipePull message.

For details on using PipeURL, see Section 4.3.2.

Part element Specifies the selected part that the PartAmount is valid for. If a Part
_ refers to less PartIDKeys than are available in the resource, the unspeci-
fied PartIDKeys are implied to be included.

3.8.1 Links to Parameter Resources

Parameter resources are linked by an instance of a ParameterLink element. These elements contain no further at-
tributes or elements besides those found in the abstract ResourcelLink element.

3.8.2 Links to Implementation Resources

Implementation resources are linked by an instance of an ImplementationLink element. Using the resource attrib-
utes, the link may specify whether the implementation is a recommendation that may be ignored or a request that
must be fulfilled. For example, the job may contain a request that the job be run by a specific, experienced operator.
If the value or the Recommendation is true and that operator is ill, he may be replaced by a less experienced
operator. If, on the other hand, a product could be created on a device that theoretically can do the job but does not
produce sufficient quality, and if it is certain that customer will reject inferior quality, Recommendation should be
set to false.

Since implementation ResourceLinks define the usage of a specific device during the course of a job, situa-
tions can arise where that resource is not required during the whole processing time. For instance, a forklift that
only has to transport the completed components is not required to be available during the entire process run, only
during the times when it is needed. This means that, contrary to the general rule that all resources must be Available
for node execution to commence, a node may commence when implementation resources are still /nUse by other
processes if Start or StartOffset are specified. ImplementationLink elements always have a Usage of Input.

Table 3-20 Contents of the abstract ImplementationLink or PartAmount element

Name Data Type \ Description
Duration ? duration Estimated duration during which the resource will be used.
Recommendation ? | boolean If true and the request cannot be fulfilled, the change may be logged as a

Modified Audit and the job may continue. If false, an error occurs if the
request is not fulfilled.

Default = false

Start ? dateTime Time and date when the usage of the implementation resource starts.

StartOffset ? duration Offset time when the resource is required after processing has begun. If
both Start and StartOffset are specified, Start has precedence.

The following example shows how the operator Smith is linked to a ConventionalPrinting process as the only valid
operator:

<ResourcePool>
<Employee PersonalID="007"” ID="L1"” Class="Implementation”>
<Person FamilyName="Smith” JobTitle="Press Operator”>
</Employee>

? Note that in most cases this is the URL of the controller of the other end of the pipe. This may seem counterintui-
tive, but it allows parallel spawning and merging of processes that represent a dynamic pipe without having to in-
clude the node that describes the other end in the spawned file.

46 Chapter 3 Structure of JDF Nodes and Jobs
</ResourcePool>
<ResourcelLinkPool>

<EmployeeLink Recommendation="false" Usage="Input" rRef="L1"/>
</ResourcelLinkPool>

3.8.3 Links to Physical Resources

The physical resources that fall into the Consumable, Quantity, and Handling classes are linked, predictably, by the
appropriate instances of ConsumableLink, QuantityLink, or HandlingLink resource link elements. Just as physi-
cal resources inherit the contents of the abstract resource element, physical resource links inherit the contents of the
abstract resource link element. They may, however, contain additional contents. These optional attributes are de-
scribed in Table 3-21, below. The attributes in Table 3-21 may occur either directly in the physical ResourceLink
or in AmountPool and PartAmount elements of a resource link.

It is important to note that the order of occurrence of links to physical resources may be significant — most spe-
cifically with QuantityLinks. For example, a Gathering process might have among its inputs, links to three com-
ponent resources. The order of these links indicates the order in which the components should occur in the new,
gathered output component.

Table 3-21 Additional contents of the abstract physical ResourcelLink and PartAmount or AmountPool element

WEiT
Amount ?

Data Type
number

Description
For a link with a Usage of ‘Input’, specifies the amount of the resource that is
required by the process, in units as defined in the resource.

For a link with a Usage of ‘Output’, specifies the amount of the resource that is
to be produced by the process, in units as defined in the resource.

Allows resources to be only partially consumed or produced (see Section 3.9.1
Resource Amount).

Orientation ?

enumeration

Named orientation describing the transformation of the orientation of a physi-
cal resource relative to the ideal process coordinate using this resource as input
or output. Allowed values are:

Rotate0:
Rotate90:
Rotatel80:
Rotate270:
Flip0:
Flip90:
Flip180:
Flip270:

For details, of the semantics of the enumeration, see Table 2-3. This is needed
to convert the coordinate system of the resource to the coordinate system of the
process. Agents should supply one of Orientation or Transformation for re-
sources where they are relevant, e.g., Component. When neither Orientation
or Transformation are present, the orientation of the resource is system speci-
fied.

If Orientation is specified for an output resource, the node that processes the
physical resource should manipulate the resource in such a way as to reflect the
transformation. The coordinate system of the resource itself is NOT modified.
Only one of Orientation or Transformation may be specified in one Resour-
ceLink.

PipePause ?

number

Parameter for controlling the pausing of a process if the resource amount in the
pipe buffer passes the specified value. For details on using PipePause, see
Section 4.3.2.

Chapter 3 Structure of JDF Nodes and Jobs 47

Name Data Type Description \

PipeResume ? number Parameter for controlling the resumption of a process if the resource amount in
the pipe buffer passes the specified value. For details on using PipeResume,
see Section 4.3.2.

RemotePipeEnd- | number Parameter for controlling the pausing of a process at the other end of the pipe if

Pause ? the resource amount in the pipe buffer passes the specified value. For details on
using RemotePipeEndPause, see Section 4.3.2.

RemotePipeEn- number Parameter for controlling the resumption of a process at the other end of the

dResume ? pipe if the resource amount in the pipe buffer passes the specified value. For
details on using RemotePipeEndResume, see Section 4.3.2.

Transformation ? matrix Matrix describing the transformation of the orientation of a physical resource

relative to the ideal process coordinate using this resource as input or output.
This is needed to convert the coordinate system of the resource to the coordinate
system of the process. Agents should supply one of Orientation or Transforma-
tion for resources where they are relevant, e.g., Component. When neither
Orientation or Transformation are present, the orientation of the resource is
system specified.

If Transformation is specified for an output resource, the node that processes
the physical resource should manipulate the resource in such a way as to reflect
the transformation. The coordinate system of the resource itself is NOT modi-
fied.

The following example shows an InkLink with an AmountPool.

<ResourcePool>

<Ink ID="Link0O015"
Status="Available" PartIDKeys="Separation">
<Ink ColorName="Cyan" Separation="Cyan"/>
<Ink ColorName="Magenta" Separation="Magenta"/>
<Ink ColorName="Yellow" Separation="Yellow"/>
<Ink ColorName="Black" Separation="Black"/>
<Ink ColorName="Heidelberg Spot Blau" Separation="Heidelberg Spot Blau"/>

</Ink>

</ResourcePool>

<ResourcelLinkPool>
<InkLink rRef="Link0015" Usage="Input">
<AmountPool>
<PartAmount Amount="1000">
<Part Separation="Cyan"/>
</PartAmount>
<PartAmount Amount="1200">
<Part Separation="Magenta"/>
</PartAmount>
<PartAmount Amount="700">
<Part Separation="Yellow"/>
</PartAmount>
<PartAmount Amount="3000">
<Part Separation="Black"/>
</PartAmount>
<PartAmount Amount="300">
<Part Separation="Heidelberg Spot Blau"/>
</PartAmount>
</AmountPool>

</InkLink>

</ResourcelLinkPool>

Brand="NoName" Class="Consumable" Locked="false"

48 Chapter 3 Structure of JDF Nodes and Jobs

3.8.4 Links to PlaceHolder Resources

PlaceHolder resources are linked by a PlaceHolderLink element. PlaceHolder links, used together with the
PlaceHolderResource resource, can be employed to predefine a skeleton of a processing network consisting of
process group nodes without knowing the exact nature of the interchange resources. For instance, although the
deadlines for the job may be known, it may not be known whether a press run will be defined for a digital press or a
conventional press.

3.8.5 Links to Intent Resources
Intent resources are linked by an instance of a IntentLink element. They have no additional parameters.

3.8.6 Inter-Resource Linking Using ResourceRef

In some cases, it is necessary to reference resource elements directly from other resources in order to reuse informa-
tion. These links are abstract ResourceRef elements. The ResourceRef ’s name is generated by appending the
string “Ref” to the element name. Candidate elements for inter-resource linking have a data type of refelement in
the content description tables of this chapter and Chapter 7. The following table defines the attributes of the ab-
stract ResourceRef element (see also Figure 3.4 and ResourceElement in Table 3-11). The ResourceElement
is defined in Table 3-22 Contents of the abstract ResourceElement

Table 3-22 Contents of the abstract ResourceElement

Name Data Type Description
ID? ID Unique identifier of a resource element.

Table 3-23 Contents of the abstract ResourceRef element

Name Data Type Description \
rRef IDREF Reference to the resource.

rSubRef ? IDREF Reference to a subelement of the resource.

Part ? element Definition of the partition that this ResourceRef references.

[New in JDF 1.1

In order to enable spawning and merging without having to scan every single resource, inter-resource links must be
specified in the rRefs attribute of the resource. In the case of a link to a resource subset, the rRefs attribute contains
a reference to the atomic resource. Even if a resource is linked more than once, one occurrence of that resource in
the rRefs array is sufficient.

The Part element in a ResourceRef defines the part of the target that this ResourceRef references. If both the
resource that contains ResourceRef element and the target resource are partitioned, the ResourceRef does NOT
implicitly reference the part of the target with the same partitioning attributes, but rather the parts of the target re-
source that are explicitly specified by the Part element within the ResourceRef.

<MediaRef rRef="MedialD’>
<Part Location="desk”’/>
</MediaRef>

ResourceRef elements may also occur in the Nodelnfo and Customerinfo element of a JDF node.

Elements within a resource, i.e. not direct children of the ResourcePool, may also contain an /D attribute (see
Table 3-22 Contents of the abstract ResourceElement). These elements are denoted as ResourceElement. These
elements may be explicitly referenced by a ResourceRef. The ResourceRef element has an optional rSubRef at-
tribute that contains an IDREF to the ID of the ResourceElement within the resource.

In some cases, it is desirable to define a ResourceElement that is not explicitly linked by a Node directly
within a ResourcePool as a Resource. These Resources are referenced only by other resources which contain
ResourceRef elements pointing to these. The ResourceElements instantiated as a Resource must contain the

Chapter 3 Structure of JDF Nodes and Jobs 49

required attributes of abstract resources and have a Class="Parameter". The following example demonstrates inter-
resource linking.

<ResourcePool>
<Layout rRefs="resl res2"><!-This is a Resource-->

<!—These are ResourceRefs-->

<SurfaceRef rRef="resl" rSubRef="surfl"/>
<SurfaceRef rRef="res2" rSubRef="surf2"/>
<SurfaceRef rRef="resl" rSubRef="surfl"/>

<!-- another link to the same resource -->
</Layout>
<Sheet ID="resl"><!—This is a Resource-->
<Surface ID="surfl" .. /> <!—This 1s a ResourceElement-->
</Sheet>
<Sheet ID="res2"> <!—This is a Resource-->
<Surface ID="surf2" .. /> <!—This is a ResourceElement-->
</Sheet>
</ResourcePool>

3.8.6.1 Status of Resources That Contain rRef References
The Status of a resource that contains an rRef attribute is defined by the lowest Status of all recursively referenced
resources. The ordering is defined as:

Incomplete Draft
Unavailable Complete
InUse Available

Thus, if any referenced resource has a Status of Incomplete, the complete resource has a calculated Status of In-
complete, even though its own Status attribute may be Unavailable, Draft, Available etc.

3.9 Subsets of Resources

In many cases, a set of similar resources—such as separation films, plates, or RunList resources—is produced by one
process and consumed by another. When this occurs, it is convenient to define one resource element that describes the
complete set and allows individual subsets to be referenced. This mechanism also removes process ambiguity if multi-
ple input resource links and multiple output resource links exist that must be unambiguously correlated.

In other cases, there can be a need to change some attribute of a parameter resource for some subset of the process-
ing to be done by a device (for instance, when printing a document using DigitalPrinting, it would be a common ap-
plication to change the dimensions of the media to be selected based on the actual media box changes in a PDF file).

Resource elements and ResourceLink elements have optional attributes that enable an agent to specify an ex-
plicit part of a structured resource. There are two ways to reference a subset of a resource. The first is by quantity,
by specifying an Amount in a ResourceLink that is less than the Resource’s Amount. The second is to select certain
parts of a partitioned resource by supplying a filtering Part element in the ResourceLink.

3.9.1 Resource Amount

Yet another flexible feature of resources is that they may be only partially consumed. For example, in a scenario in
which various versions of a product share identical parts—such as versioned books that all have the same cover—
each version will only use as many copies of the cover as it needs to fulfill its job requirement, even though all of
the covers can be printed in one step for all versions. This feature is specified in the Amount attribute of the re-
source links and allows multiple JDF nodes to share resources. It allows both the sharing of output resources (as
when a binding process consumes identical sheets from multiple press lines) and the sharing of input resources (as
when the covers for multiple jobs are identical and are all printed in one press run).

The Amount attribute of a physical resource element contains the actual amount of a given resource. It is ad-
justed by the production or consumption amount of every process that is executed, and refers to that amount in the
corresponding physical resource link element. Thus the value of the Amount attribute of a resource that is con-

50 Chapter 3 Structure of JDF Nodes and Jobs

sumed as an input should be reduced by the amount that is consumed. It is up to the agent that writes a JDF job to
ensure that the Amount attributes of resources and the resource links that reference them are consistent. The units
used in the Amount attribute of a physical resource link element is defined by the unit of the resource element to
which the link refers. The definition of Amount for partitioned resources is explained in detail in Section 3.9.2
Description of Partitionable Resources.

Note that for resources which are the output of processes, the Amount attribute on the ResourceLink determines
the quantity of the resource to be produced. For example, for a DigitalPrinting process that included a RunList as its
input with 16 pages to be printed and a ComponentLink to its output, the Amount attribute would indicate the num-
ber of copies of those 16 pages that the process would produce.

3.9.2 Description of Partitionable Resources

Printing workflows contain a number of processes that are repeated over a potentially large number of individual files,
sheets, surfaces or separations. In order to define a partitioned resource in a concise manner without having to create a
large number of individual nodes and resources, a set of resources may be partitioned by factoring them by one or more at-
tributes. The common elements and defaults are placed in the parent element, while partition-specific attributes and over-
rides are placed in the child elements. This saves space. Also, by providing a single parent ID for the resources, it allows
easy access to the entire resource, or iteration over each part.

To reference part of a resource, a ResourceLink references the parent resource, and supplies a Part element that contains
an actual value for a partition. The result is all the child elements with matching partition values, including common val-
ues and defaults from the parent resource. If PartUsage = “Implicit’, the parent attributes are returned even if there is no
matching partition.

A partitionable resource contains nested elements, each with the same name as the resource. The part-independent
resource elements and attributes are located in the root of the resource, while the partition-dependent elements are located
in the nested elements. Thus one individual part is defined by the convolution of the partition-independent elements and
attributes, with the elements and attributes contained in the appropriate nested elements. The attributes of nested part ele-
ments may be overwritten by the equivalent attributes in descendent parts. If a leaf contains elements that may multiply,
and additional elements with the same name exist in nodes that are closer to the root, only the elements in the leaf are valid
for the respective part. For example, the following SeparationSpec is two color duo-tone (only Black and SpotGreen) in
the part with PageNumber=1:

<LayoutElement PartIDKeys="PageNumber">
<SeparationSpec Name="Cyan"/>
<SeparationSpec Name="Magenta"/>
<SeparationSpec Name="Yellow"/>
<SeparationSpec Name="Black"/>
<FileSpec (..)/>
<LayoutElement PageNumber=0 (..)/>
<LayoutElement PageNumber=1 (..)>
<SeparationSpec Name="Black"/>
<SeparationSpec Name="SpotGreen"/>
</LayoutElement>
</LayoutElement>

The Amount attribute of a partitioned resource is treated formally exactly in the same manner as any other attribute.
This implies that the amount specified refers to the amount defined by one leaf and not to the amount defined by the
sum of leaves in a branch. The Amount attribute defined in the example below is, therefore, two, even though 24
physical plates are described.

The following example defines two sets of 12 plates for two sheets with three surfaces. Each has a common
brand attribute called “Gooey”. Each individual separation has its own ProductID. Furthermore, the Status attrib-
ute varies from part to part. For example, if a yellow plate breaks, only it will need to be remade and therefore set to
Unavailable; the others, meanwhile, may remain Available.

<ExposedMedia Class="Handling" Brand="Gooey" ID="L1" Status="Available" PartID-
Keys="SheetName Side Separation" Amount="2">
<Media MediaType="Plate” Dimension="500 600”/>

Chapter 3 Structure of JDF Nodes and Jobs 51

<ExposedMedia SheetName="S1">
<ExposedMedia Side="Front">
<ExposedMedia Separation="Cyan" ProductID="S1FCPlateJ42"/>
<ExposedMedia Separation="Magenta" ProductID="S1FMPlateJ42"/>
<ExposedMedia Separation="Yellow" ProductID="S1FYPlateJ42"
Status=“Unavailable"/>
<ExposedMedia Separation="Black" ProductID="S1FKPlateJ42"/>
</ExposedMedia>
<ExposedMedia Side="Back">
<ExposedMedia Separation="Cyan" ProductID="S1BCPlateJ42"/>
<ExposedMedia Separation="Magenta" ProductID="S1BMPlateJ42"/>
<ExposedMedia Separation="Yellow" ProductID="S1BYPlateJ42"/>
<ExposedMedia Separation="Black" ProductID="S1BKPlateJ42"/>
</ExposedMedia>
</ExposedMedia>
<ExposedMedia SheetName="S2" Side="Front">
<ExposedMedia Separation="Cyan" ProductID="S2FCPlateJ42"/>
<ExposedMedia Separation="Magenta" ProductID="S2FMPlateJ42"/>
<ExposedMedia Separation="Yellow" ProductID="S2FYPlateJ42"/>
<ExposedMedia Separation="Black" ProductID="S2FKPlateJ42"/>
</ExposedMedia>
</ExposedMedia>

Note: Only resources may be partitioned. If a resource contains subelements, the subelements must NOT be parti-
tioned. Subelements must be always specified completely in that part where they occur. The content of subele-
ments is not convoluted with the content of subelements in parts closer to the root.

Five examples are provided below. The first and the fourth example are valid, the second third, and fifth are
invalid. In the first example, the ExposedMedia resource is partitioned:

<ExposedMedia ID="L1" Status="Available" PartIDKeys="Separation" .. >
<Media MediaType="Film" Brand="foo"/>
<ExposedMedia Separation="Cyan"/>
<ExposedMedia Separation="Magenta">
<Media MediaType="Film" Brand="bar"/>
</ExposedMedia >
</ExposedMedia >

In this invalid example #2, the Media in the leaves is not complete because it does not contain the MediaType at-
tribute. MediaType cannot not be derived from the Media part in the root element:

<ExposedMedia ID="L1" Status="Available" PartIDKeys="Separation" .. >
<Media MediaType="Film”/>
<ExposedMedia Separation="”Cyan”>
<Media Brand="foo”/>
</ExposedMedia >
<ExposedMedia Separation="Magenta’”>
<Media Brand="bar”/>
</ExposedMedia >
</ExposedMedia >

In this invalid example #3, Media is a subelement that must NOT be partitioned:

<ExposedMedia ID="L1" Status="Available" PartIDKeys="Separation" .. >
<Media MediaType="Film”>
<Media Brand="foo” Separation="Cyan’”>
<Media Brand="bar” Separation="Magenta” />
</Media >
</ExposedMedia >

Partitioning may be combined with inter-resource links, i.e. RefElements. In this case the partitioning attributes of
the referenced resource must be a subset of the partitioning attributes of the resource leaf that contains the Re-
sourceRef. In the following valid example #4, each MediaRef is equivalent to an in-lined leaf with the identical par-
titioning attributes, i.e. it is equivalent to the valid example #1.

<Media ID="MedialD” MediaType="Film” PartIDKeys="Separation">
<Media Separation=”Cyan” Brand="foo”/>

52 Chapter 3 Structure of JDF Nodes and Jobs

<Media Separation="Magenta” Brand="bar”/>
</Media>
<ExposedMedia ID="L1" Status="Available" PartIDKeys="Separation" .. >
<ExposedMedia Separation="Cyan”>
<!—equivalent to <Media MediaType="Film” Brand="foo”/> -->
<MediaRef rRef="MedialID”/>
</ExposedMedia>
<ExposedMedia Separation="Magenta’”>
<!—equivalent to <Media MediaType="Film” Brand="bar”/> -->
<MediaRef rRef="MedialID”/>
</ExposedMedia >
</ExposedMedia >

In this invalid example #5, MediaRef does not reference the leaves of Media, but rather the root of Media. It is
equivalent to the invalid example #3.

<Media ID="MedialID” MediaType="Film” PartIDKeys="Separation">
<Media Separation=”Cyan” Brand="foo”/>
<Media Separation="Magenta” Brand="bar”/>

</Media>

<ExposedMedia ID="L1" Status="Available" PartIDKeys="Separation" .. >
<MediaRef rRef="MedialID”>

</ExposedMedia >

In addition to the usual resource attributes and elements, the partitionable Resource element has partition-specific
attributes and elements in its root. PartIDKeys is required in the root of a partitioned resource. Further attributes
are listed in the following table:

Table 3-24 Contents of the partitionable Resource element

Name Data Type Description

PartIDKeys ? | enumerations | List of attribute names that are used to separate the individual parts. Possible
values are:
BlockName PageNumber Setindex
DocCopies PartVersion SheetIndex
Doclndex PreviewType SheetName
DocRunIndex RibbonName Side
DocSheetIndex Run SignatureName
FountainNumber Runlindex TileID
LayerIDs RunTags WebName
Location RunPage
Option Separation

For details, see Table 3-25.
PartUsage ? enumeration Description of the interpretation of partitions. One of:

Explicit — Require explicit partition matches. All referenced partitions refer-
enced in Part must exist, otherwise it is an error. The default attributes are re-
turned, overridden by the partition’s values, if found. This is the default
behavior.

Implicit — Allow sparse overrides of default values. The referenced partition is
not required to exist. The default attributes are returned, overridden by the par-
tition’s values, if found.

Resource * element Nested resource elements that contain the appropriate part ID(s). These ele-
ments must be of the same type as the root Resource element. They represent
the individual parts or groups of parts.

Partitionable resources are uniquely identified by the attribute values listed in Part/[DKeys attributes. The choice of
which attributes to use depends on how the agent organizes the job.

Chapter 3 Structure of JDF Nodes and Jobs

53

The following table lists the content of a Part element, which contains a set of attributes that have a well de-
scribed meaning. Each of the attributes, except Sorting, may be used in the nested resource elements of partition-
able resources as the part ID key (see example above).

BlockName ?

Table 3-25 Contents of the Part element
Name Data Type _Descripton

NMTOKEN

Identifies a CutBlock from a Cutting process. The value of this at-
tribute must match the value of the BlockName attribute of a Cut-
Block.

Doclndex ?

IntegerRangeList

The DoclIndex attribute selects a set of logical instance documents
from a RunList resource. Doc/ndex is a logical reference that may
be independent of the RunList structure and must NOT be used as a
partition key for spawning and merging of RunList resources.

DocCopies ?

IntegerRangeList

Identifies a set of document copies to which the partition applies.
DocCopies is a logical reference that may be independent of the
RunList structure and must NOT be used as a partition key for
spawning and merging of RunList resources.

DocRunindex ?

IntegerRangeList

The DocRunindex attribute selects a set of logical pages from in-
stance documents of a RunList resource. For example DocRunin-
dex =70 —1" specifies the first and last page of every copy of every
selected instance document (assuming that additional partitioning us-
ing DocCopies and/or DocIndex is not also specified). DocRunin-
dex is a logical reference that may be independent of the RunList
structure and must NOT be used as a partition key for spawning and
merging of RunList resources. The index always refers to entries
of the entire RunList and must not be modified if only a part of the
RunlList is spawned. Not to be used in conjunction with RunTags.

DocSheetindex ?

IntegerRangeList

The DocSheetindex attribute selects a set of logical sheets from in-
dividual instance documents. For example DocSheetindex =0 —
1” specifies the first and last sheet of every selected copy of every
instance document (assuming that additional partitioning using
DocCopies and/or Doclndex is not also specified). DocSheetindex
is a logical reference that may be independent of the RunList struc-
ture and must NOT be used as a partition key for spawning and
merging of RunList resources. The index always refers to entries
of the entire RunList and must not be modified if only a part of the
RunList is spawned.

FountainNumber ?

integer

Zero based position index of the fountain. Used to partition foun-
tains along the axis of a roller, may be used for web printing.

LayerIDs ?

IntegerRangeList

The LayerIDs attribute selects a set layers that are defined by Lay-
erID. If not specified, all layers are processed.

Location ?

string

Name of the location, e.g., for example in MIS. This part key allows
to describe distributed resources.

Option ?

string

Option of an RFQ. Used mainly in Intent resources.

PageNumber ?

IntegerRangeList

Page number in a Component or document, e.g., FileSpec that is
not described as a RunList.

PartVersion ?

string

Version identifier, such as the language version of a catalog.

PreviewType ?

enumeration

Type of the preview. Possible values are:

Separation: separated preview in medium resolution.
SeparatedThumbNail: Very low resolution separated preview.
ThumbNail: Very low resolution rgb preview.

54

Chapter 3 Structure of JDF Nodes and Jobs

Name

\ \Data Type

Description
Viewable: rgb preview in medium resolution.

RibbonName ?

string

A string that uniquely identifies each ribbon. Multiple ribbons are
created out of one web after dividing in case of web printing.

Run ?

string

The Run attribute selects a set of partitioned RunList elements from
a RunList resource.

Runindex ?

IntegerRangeList

The Runindex attribute selects a set of logical pages from a
RunList resource in a manner that is independent from the internal
structure of the RunList. It contains an array of mixed ranges and
individual indices separated by whitespace. Each range consists of
two indices connected with a tilde (~) and no whitespace. For ex-
ample, Runindex =“2~5 8 10 22~-1”. Negative numbers reference
pages from the back of a file in base-1 counting. In other words, -1
is the last page, -2 the second to last, etc. Thus Runlndex = “0~-1"
refers to a complete range of pages, from first to last. Runindex is a
logical reference that is independent of the RunList structure and
must NOT be used as a partition key for spawning and merging. The
index always refers to entries of the entire RunList and must not be
modified if only a part of the RunList is spawned. Not to be used in
conjunction with RunTags.

RunTags ?

NMTOKENS

List of names in a named RunList. Used to partition resources that
are linked from processes that also have a RunList as input when
the sequence of the RunList is undefined. The partition is selected
if the RunTag of the RunList matches any of the entries in
RunTags. Not to be used in conjunction with Runindex or Do-
cRunindex.

RunPage ?

integer

Zero based page number. Used when a document / file based
RunList is broken down into a page based RunList.

Separation ?

string

Identifies the separation name. Possible values include:
Composite — Non-separated resource.

Separated — The resource is separated, but the separation definition
is handled internally by the resource, such as a PDF file that contains
Separationinfo dictionaries.

Cyan — Process color.

Magenta — Process color.

Yellow — Process color.

Black — Process color.

Red — Additional process color.
Green — Additional process color.
Blue — Additional process color.
Orange — Additional process color.

Spot — Generic spot color. Used when the exact nature of the spot
color is unknown.

Varnish — Varnish.

Other values may be any separation name defined in the Name at-
tribute of a Color element in the ColorPool.

Chapter 3 Structure of JDF Nodes and Jobs

55

Name
Setindex ?

\ \Data Type
IntegerRangeList

Description

The Setindex attribute selects a set of logical instance document
sets from a RunList resource. SetIndex is a logical reference that
may be independent of the RunList structure and must NOT be
used as a partition key for spawning and merging of RunList re-
sources. The index always refers to entries of the entire RunList
and must not be modified if only a part of the RunList is spawned.

Sheetindex ?

IntegerRangeList

The SheetiIndex attribute selects a set of logical sheets from a
RunList resource. In 1-up simplex printing, it is identical to Run-
Index. Sheetindex is a logical reference that is independent of the
RunList structure and must NOT be used as a partition key for
spawning and merging.

SheetName ?

string

A string that uniquely identifies each sheet. The value of this attrib-
ute must match the value of the Name attribute of a sheet.

Side ?

enumeration

Denotes the side of the sheet. Possible values are:
Front
Back

If Side is specified, the Part element refers to one surface of the
sheet. If it is not specified, it refers to both sides.

In case of web printing, Front is a synonym for the upper side and
Back for the down side of the web.

SignatureName ?

string

A string that uniquely identifies the signature within the partitionable
resource.

Sorting ?

IntegerRangeList

Mapping from the implied partitionable resource order to a process
order. The indices refer to the elements of the complete partition-
able resource, not to the index in the selection of parts defined by the
Part element.' Defaults to “0~-1”, i.e. the part order is the same as
the sorting order.

Sorting must NOT be used as a partition key.

SortAmount ?

boolean

If a sorted resource has an Amount attribute and SortAmount =
true, each resource must be processed completely. If SorfAmount =
false (the default), each Part element must be processed the number
of times specified in the Amount attribute before starting the next
Part.

SortAmount must NOT be used as a partition key.

TilelD ?

XYPair

XYPair of integer values that identifies the tile. Tiles are identified
by their X and Y indexes. Values are zero-based and expressed in
the PS coordinate system. So

“0 0” is the lower left tile and “1 0” is the tile next to it on the right.
Tile resources are described in detail in the Section 7.2.214 Tile.
May also be used to identify multiple plates per cylinder. Then the
x-index corresponds to a zero based position index along the axis of
aroller and the y-value to a zero based position index along the cir-
cumference of a roller.

WebName ?

string

A string that uniquely identifies each web.

If multiple Part ID keys are used in a partitioned resource, for example PartIDKeys="SheetName Side Separation
Location", then all part ID keys must be defined for each leaf in the partitioned resource. In other words, if you

! Note that Sorting is semantically different from the other attributes in this table, as it implies an ordering of parts,
whereas the other attributes define a selection of parts.

56 Chapter 3 Structure of JDF Nodes and Jobs

walk from a leaf of a partitioned resource up to the root, each of the part ID keys defined in Part/IDKeys must occur
exactly one time. For example, it is not allowed that only the part ID keys SheetName and Separation be defined for
some leaves in a partitioned resource with PartIDKeys="SheetName Side Separation" defined in the root.

3.9.2.1 Options in Intent Resources

JDF defines Option as a part key in order to specify multiple options e.g. for multiple quotes in a non-redundant
manner. A ResourceLink that links to a resource with an Option partition but has no Part element to choose the Op-
tion, defaults to the root resource.

3.9.2.2 Locations of Physical Resources

Unlike other kinds of resources, physical resources may be stored at multiple, distributed locations. This is specified
by including one or more Location parts in the resource element and accessing the location by specifying a Part
element with a Location attribute in the respective ResourceLink.

Location:LocationName may also be used to specify a Location within a device, e.g., a paper tray. When
specifying paper trays, the following locations are predefined (_):

Table 3-26 Locations within Printers

Name Description

Top The bin that, when facing the device, can best be identified as ‘top’.

Middle The bin that, when facing the device, can best be identified as ‘middle’.

Bottom The bin that, when facing the device, can best be identified as ‘bottom’.

Side The bin that, when facing the device, can best be identified as ‘side’.

Left The bin that, when facing the device, can best be identified as ‘left.

Right The bin that, when facing the device, can best be identified as ‘right.

Center The bin that, when facing the device, can best be identified as ‘center.

Rear The bin that, when facing the device, can best be identified as ‘rear’.

FaceUp The bin that can best be identified as ‘face up’ with respect to the device.

FaceDown The bin that can best be identified as ‘face down’ with respect to the device.

FitMedia Requests the device to select a bin based on the size of the media.

LargeCapacity The bin that can best be identified as the ‘large capacity’ bin (in terms of the number of
sheets) with respect to the device.

Mailbox-N The job will be output to the bin that is best identified as ‘Mailbox-1’, ‘Mailbox-2’...etc.

Stacker-N The job will be output to the bin that is best identified as ‘Stacker-1°, ‘Stacker-2’ ...etc.

Tray-N The job will be output to the tray that is best identified as ‘Tray-1’, ‘Tray-2’ ... etc.

SystemSpecified The job will be output to the tray that is defined by the system.

The following example describes a set of plates that are distributed over two locations:

<ExposedMedia ID="L1" PartIDKeys="Location" .. >
<ExposedMedia Amount="42" Location="Desk Drawer 1">
<Location LocationName="Desk Drawer 1" LocID="PP 01234">
<Address .. />
</Location>
</ExposedMedia>
<ExposedMedia Amount="100" Location="Desk Drawer 2">
<Location LocationName="Desk Drawer 2" LocID="PP 01235">
<Address .. />
</Location>
</ExposedMedia>

Chapter 3 Structure of JDF Nodes and Jobs 57

<ExposedMedialink ResourceID="L1" Amount="50" Usage="Input">
<Part Location="Desk Drawer 2"/>
</ExposedMedialink>
The following example describes two different Media in the top and bottom tray of a LayoutPreparation process.
The Media is selected for the cover and inside pages respectively.

<Media ID="TopMedia" .. >

<Location LocationName="Top"/>
</Media>
<Media ID="BottomMedia" .. >

<Location LocationName="Bottom"/>
</Media>

<LayoutPreparationParams Sides="TwoSidedFlipY” PartIDKeys="RunIndex” (..)>
<!-- Partition that defines the first and last page of the document -->
<LayoutPreparationParams RunIndex="0 1 -2 -1">
<MediaRef rRef="TopMedia”/>
</LayoutPreparationParams>
<!-- Partition that defines the inside pages of the document -->
<LayoutPreparationParams RunIndex="2~-3">
<MediaRef rRef="BottomMedia”/>
</LayoutPreparationParams>
</LayoutPreparationParams>

3.9.3 Linking to Subsets of Resources

An agent can link to a subset of a resource by including a Part element attribute in a ResourceLink element in or-
der to define a specific subset of a resource. For details of the Part element, please refer to Table 3-25 Contents of
the Part element .

Partitionable hierarchies define an implied ordering of the individual parts. In the example in Section 3.9.2
Description of Partitionable Resources, the first element has a ProductlD = S1FCPlateJ42 and the last has a Productld
= S2FKPlateJ42. 1f process ordering of a partitionable resource is important, the Part element of the ResourceLink
must specify a Sorting attribute. If Sorting is not specified, process ordering is arbitrary. If Sorting is specified mul-
tiple times, the resolution of the sorting must be unambiguous.

The Sorting attribute maps the implied part ordering to a specified process ordering in a 0-based list. The first
entry in Sorting defines the first entry to be processed. The following example, using a ResourceLink element, de-
scribes how the plates described in the previous example could be ordered by separation for the first sheet followed
by the complete second sheet, in reverse order (back to front). Each set of two plates, as specified in the Amount at-
tribute of the resource, would be processed together.

<ExposedMedialLink rRef="L1">
<Part Sorting="0 4 1 52 6 3 7 -1~8" SortAmount="false”/>
</ExposedMedialink>

A partitionable resource may also be split into individual resources by an agent. In this case, one resource must be
created for each individual part or set of parts. For example, a resource that describes a set of films that are also
separated may be split into a set of resources that each describe all separations of a sheet.

3.9.3.1 Handling Amount in a ResourcelLink to a Partitioned Resource

The Amount specified in a ResourceLink to a physical resource specifies the sum of individual resource partitions.
Individual amounts are specified in the PartAmount elements of the AmountPool. The following example shows
the ResourceLink that refers to the previous example for a total of five plates.

<ExposedMedialink rRef="L1" Amount="4">
<Part SheetName="S1" Separation="Cyan"/>
<Part SheetName="S1" Separation="Magenta"/>

58 Chapter 3 Structure of JDF Nodes and Jobs

<AmountPool Amount="1">
<PartAmount>
<Part SheetName="S1" Side="Front" Separation="Cyan"/>
</PartAmount>
<PartAmount>
<Part SheetName="S1" Side="Back" Separation="Cyan"/>
</PartAmount>
<PartAmount>
<Part SheetName="S1" Side="Front" Separation="Magenta"/>
</PartAmount>
<PartAmount Amount="2">
<Part SheetName="S1" Side="Back" Separation="Magenta"/>
</PartAmount>
</AmountPool>
</ExposedMediaLink>

3.9.3.2 Referencing Partitioned Resources from Nodes That Allow Multiple Resour-

ceLinks.
Some processes, e.g., Collecting, Gathering allow multiple input resources of the same type. These multiple in-
put resources may be represented by multiple individual resources or by partitioned resources or by a mixture of
both. If ordering is significant, the order of the leaves in a partitioned resource defines said ordering. The following
examples of gathering three input sheets are equivalent:

Explicit reference of ordered partitioned resources:
<JDF ID="Link0037" Type="Gathering" Status="Waiting">
<ResourcePool>
<GatheringParams ID="Gather0l" Class="Parameter" Locked="false"
Status="Available"/>
<Component ID="Sheets01l" Class="Quantity" Status="Available" PartID-
Keys="SheetName" ComponentType="Sheet" DescriptiveName="printed insert
sheets">
<Component SheetName="Sheetl"/>
<Component SheetName="Sheet2"/>
<Component SheetName="Sheet3"/>
</Component>
</ResourcePool>
<ResourceLinkPool>
<GatheringParamsLink rRef="Gather0l" Usage="Input"/>
<!—three ComponentLink explicitly reference individual parts -->
<ComponentLink rRef="Sheets0l" Usage="Input">
<Part SheetName="Sheetl"/>
</ComponentLink>
<ComponentLink rRef="Sheets0l" Usage="Input">
<Part SheetName="Sheet2"/>
</ComponentLink>
<ComponentLink rRef="Sheets0l" Usage="Input">
<Part SheetName="Sheet3"/>
</ComponentLink>
</ResourcelLinkPool>
</JDF>

Implicit reference of ordered partitioned resources:
<JDF ID="Link0037" Type="Gathering" Status="Waiting">
<ResourcePool>

<GatheringParams ID="Gather(0l" Class="Parameter" Locked="false"
Status="Available"/>

<Component ID="Sheets0l" Class="Quantity" Status="Available" PartID-
Keys="SheetName" ComponentType="Sheet" DescriptiveName="printed insert
sheets">

Chapter 3 Structure of JDF Nodes and Jobs 59

<Component SheetName="Sheetl"/>
<Component SheetName="Sheet2"/>
<Component SheetName="Sheet3"/>
</Component>
</ResourcePool>
<ResourcelLinkPool>
<GatheringParamsLink rRef="Gather0l" Usage="Input"/>
<!—the ComponentLink implicitly references all three parts -->
<ComponentLink rRef="Sheets0l1l" Usage="Input"/>
</ResourcelLinkPool>
</JDF>

3.9.4 Splitting and Combining Resources

Depending on the circumstances, it may be appropriate either to split a resource into multiple new nodes or to specify
multiple locations or parts for an individual resource. There are four possible methods for splitting and combining re-
sources, each of which is illustrated in Figure 3.8, below. Both Case A and Case B in Figure 3.8 represent workflows
that use the Amount attribute of their resource links to share resources. This method is practical when one controller
controls all aspects of resource consumption or production. In Case A, the resource amount is split between subsequent
processes. In Case B, individual processes produce amounts that are then combined into a unified resource that is, in
turn, used by a single process. In both cases, a single, shared resource is employed. To enable independent parallel
processing by multiple controllers, however, independent resources are required. To create independent resources from
one resource, the Split process is used, as shown in Case C (for further details, see Section 6.2.9 Split). This process
allows multiple processes to be spawned off, after which multiple processes can consume the same resource in parallel
and may therefore run in parallel. Case D demonstrates the reverse situation, which occurs if resources have been pro-
duced by multiple processes and are then consumed, as a unified entity, by a single subsequent process. To accomplish
this, the Combine process combines multiple resources to create the single resource.

A: brief workflow for splitting by a shared input resource

3;»
B: brief workflow for combining by a shared output resource
Amount 1

C: exact workflow for splitting

Split-Node

D: exact workflow for combining

Combine-Node

60

Chapter 3 Structure of JDF Nodes and Jobs

Figure 3.8 Splitting and combining physical resources

3.10 AuditPool

Audit elements contain the post-facto recorded results of a process. Au-
dit elements become static after a process has been finished. They can-
not ever be modified after the process has been aborted or completed.
Therefore, if Audit elements link to resources, those resources should be
locked in order to inhibit accidental modification of audited information,
which is why JDF includes a locking mechanism for resources. The /D
of all resources that are referenced by Audit elements must be included
in the rRefs attribute of the AuditPool in order to enable spawning and
merging. Audit elements record any event related to the following

Audit Pools

Audit information is the Job’s his-
tory and can support your daily,
quality control and troubleshooting
management reporting needs.

situations:

1. The creation of a JDF node by a Created element.

2. Spawning and merging, including resource copying by spawned and merged elements.

3. Errors such as unnecessary ResourceLink elements, wrongly linked resources, missing resources, or missing
links, which may be detected by agents during a test run or by a Notification element.

4. Actual data about the production and resource consumption by a ResourceAudit element.

5. Any process phase times. Examples include setting up a device, maintenance, and washing, as well as down-
times as a result of failure, breaks, or pauses. Changes of implementation resource usage, such as a change of
operators by a PhaseTime element, would also constitute an example of a phase time.

6. Actual process scheduling data. For example, the process start and end times, as well as the final process
state, as determined by a ProcessRun element.

7. Any modification of a JDF node not covered by the preceding items, as recorded by a Modified element.

Audit information may be used by MIS for operations such as evaluation or invoicing. Figure 3.9 depicts the struc-
ture of the AuditPool and Audit element types derived from the abstract audit type.

Chapter 3 Structure of JDF Nodes and Jobs

61

—(Device*)

—(Employee*)

L (ModulPhase* 1—| Employee*® |

L DevicelD?
L DeviceStatus
. End

= Modul Index
* ModulType

L Start

= StatusDetails?

Y e e e U e et |
AuditPool? |—— Audit* |
. rRefs? Autheor?
SpawnID?
TimeStamp
' \I’ 7
Created* Spawned
. ref . Independent?
* jRef
'—Modlﬁed* : J-%P‘-r)t-u.l i:ﬂl ion?
- NewSpawnlD
& jRef . rRefsROCopied?
o rRefsRWCopied?
. S5tatus?
! URL?
Merged*
. Independent?
. jRef
L jRefSource?
* MergelD
o rRefsOverwritten?
o URL?
Notification™
L] Class
. Type?
PhaseTime*
. End
o Start
. Status
L] StatusDetails?
1 .
ResourceAudit
o ContentsModified?
) Reason?
ProcessRun®
L Duration?
& End
o EndStatus
. Start
Attributes;
ref = reference via ID to a resource or a JOF-node
iRef = reference via ID to a JOF-node
Class = Event | Information | Warning | Error | Fatal

Figure 3.9 Structure of Audit element types derived from the abstract Audit type

Audit entries are ordered chronologically, with the last entry in the AuditPool representing the newest. A Proc-
essRun element containing the scheduling data finalizes each process run. All subsequent entries belong to the

next run. The following table defines the contents of the AuditPool element.

62 Chapter 3 Structure of JDF Nodes and Jobs

Table 3-27 Contents of the AuditPool element

Name Data Type Description

rRefs ? |IDREFS List of all resources that are referenced from within the AuditPool. Needed for Spawn-
ing.

Audit * | element Chronologically ordered list of Audit elements. The Audit elements are abstract and
serve as placeholders for any audit. Audit elements are described in the sections that fol-
low.

3.10.1 Audit Elements

All Audit elements inherit the content from the abstract Audit data type, described in the following table.
Table 3-28 Contents of the abstract Audit type

Name Data Type H Description

Author ? string Text that identifies who made the entry. This can describe a person, an agent, or
both.

SpawnID ? | NMTOKEN [Text that identifies the spawned processing step when the entry was generated. This
is a copy of the SpawnID attribute of the root JDF node of the process that generates
the Audit at the time the Audit is generated.

TimeStamp | dateTime In case of the audits Created, Modified, Spawned, Merged, and Notification, this
attribute records the date and time when the related event occurred.

In case of the audits PhaseTime, ProcessRun, and ResourceAudit, the attribute
describes the time when the entry was appended to the audit pool.

Listed in the following sections are the elements derived from the abstract Audit type. Following the description of
each element is a table outlining the attributes associated with that element.

3.10.1.1 ProcessRun

This element serves two related functions. Its first is to summarize one complete execution run of a node. It con-
tains attributes that record the date and time of the start, the end time, the final process state when the run is finished,
and, optionally, the process duration of the process run. These attributes are described in Table 3-29.

Table 3-29 Contents of the ProcessRun element

Name Data Type Description

Duration ? duration Time span of the effective process runtime without intentional or unintentional
breaks. That time span is the sum of all process phases when the status is InPro-
gress, Setup or Cleanup.

End dateTime Date and time at which the process ends.

EndStatus | enumeration | The Status of the process at the end of the run. For a description of process states,
see Table 3-3 Contents of a JDF node.

Possible values are:
Aborted
Completed
FailedTestRun
Ready

Stopped — The execution of the node is stopped and may commence at a later time,
e.g., on another device.

Start dateTime Date and time at which the process starts.

Chapter 3 Structure of JDF Nodes and Jobs 63

Data Type Description

Part * element Describes which parts of a process this ProcessRun belongs to. If Part is not
specified for a ProcessRun, it refers to all parts. For example, imagine a print job
that should produce three different sheets. All sheets are described by one parti-

tioned resource. The Part elements define, unambiguously, the processing of the
sheet to which the ProcessRun refers.

The second function of a ProcessRun element is to delimit a group of audits for each individual process run.
Every group of audits terminates with a ProcessRun element, which contains the information described above. If a
process must be repeated (as a result of a late change in the order, for example), all audits belonging to the new run
will be appended after the last ProcessRun element that terminates the audits of the previous run. The number of
ProcessRun elements is, therefore, always equivalent to the number of process runs.

Even if a node describes partitioned resources, only one ProcessRun should be specified. Details about the
individual part processing times are logged in PhaseTime elements.

3.10.1.2 Notification
This element contains information about individual events that occurred during processing. For a detailed discus-
sion of event properties, see Section 4.6 Error Handling.

Table 3-30 Contents of the Notification element

Data Type Description
Class enumeration | Class of the notification. Possible values, in order of severity from lowest to
highest, are:

Event — Indicates that a pure event due to any activity has occurred, for exam-
ple, machine events, operator activities, etc. This class is used for the transfer
of conventional event messages. In case of Class = Event, further event in-
formation should be provided by the Type attribute and NotificationDetails
element.

Information — Any information about a process which cannot be expressed by
the other classes. No user interaction is required.

Warning — Indicates that a minor error has occurred and an automatic fix was
applied. Execution continues.

Error — Indicates that an error has occurred that requires user interaction.
Execution cannot continue.

Fatal — Indicates that a fatal error led to abortion of the process.

Type ? NMTOKEN | Identifies the type of notification. Also defines the name of the abstract Noti-
ficationDetails element.” A list of predefined Notification types is compiled
in Appendix J NotificationDetails.

Comment * telem The Notification element may contain Comment elements with a verbose,
human-readable description of the event. If the value of the Class attribute is
one of Information, Warning, Error, or Fatal, it should provide at least one
Comment element. In case of Class = Event, Comment elements are op-

tional.
CostCenter ? element The cost center to which this event should be charged.
Employee * refelement The Employee associated with this event.
Notification- element Abstract element which is a placeholder for additional structured information.
Details ? It provides additional information beyond the Class and Type attribute and

beyond the Comment element. For a list of supported NotificationDetails
elements, see Appendix J NotificationDetails.

2 Type allows parsers that do not have access to the schema to find the instance of NotificationDetails.

Chapter 3 Structure of JDF Nodes and Jobs

Data Type Description

Part * element Describes which parts of a process this Notification belongs to. If Part is not

- specified for a Notification, it refers to all parts. For example, imagine a print
job that should produce three different sheets. All sheets are described by one
partitioned resource. The Part elements define, unambiguously, the sheet to
which the audit refers.
Table 3-31 Contents of the Notification element

Name Data Type Description

Class enumeration | Class of the notification. Possible values, in order of severity from lowest to

highest, are:

Event — Indicates that a pure event due to any activity has occurred, for exam-
ple, machine events, operator activities, etc. This class is used for the transfer
of conventional event messages. In case of Class = Event, further event in-
formation should be provided by the Type attribute and NotificationDetails
element.

Information — Any information about a process which cannot be expressed by
the other classes. No user interaction is required.

Warning — Indicates that a minor error has occurred and an automatic fix was
applied. Execution continues.

Error — Indicates that an error has occurred that requires user interaction.
Execution cannot continue.

Fatal — Indicates that a fatal error led to abortion of the process.

3.10.1.2.1 NotificationDetails
The abstract NotificationDetails element is a placeholder only with no additional attributes. For a list of supported
NotificationDetails elements, see Appendix J NotificationDetails.

3.10.1.3 PhaseTime
This element contains audit information about the start and end times of any process states and substates, denoted as
phases. Phases may reflect any arbitrary subdivisions of a process, such as maintenance, washing, plate changing,

failures, and breaks.

PhaseTime elements may also be used to log the actual time spans when implementation resources are used by
a process. For example, the temporary necessity of a fork lift can be logged if a PhaseTime element is added that
contains a link to the fork lift device resource and specifies the actual start and end time of the usage of that fork lift.

The times specified in the PhaseTime elements should not overlap with each other and should cover the com-
plete time range defined in the ProcessRun element that identifies the end of the run.

Table 3-32 Contents of the PhaseTime element

Name ‘ ‘Data Type Description
End dateTime Date and time of the end of the phase.
Start dateTime Date and time of the beginning of the phase.

Chapter 3 Structure of JDF Nodes and Jobs 65

WNENE \ \Data Type Description

Status enumeration | Status of the phase. Possible values of JDF node states are:
TestRunInProgress
Setup
InProgress
Cleanup
Spawned
Stopped
The states listed above are a subset of the possible states of a JDF node. For all
possible states of a JDF node see Table 3-3. The remaining set of states, i.e. the
end states — Ready, FailedTestRun, Aborted and Completed—must be logged
by the ProcessRun audit element that terminates the list of audits for one
process run.

StatusDetails ? | string Description of the status phase that provides details beyond the enumerative
values given by the Status attribute. For a list of supported values, see
Appendix G.

Device * refelement Links to Device resources that are working during this phase.

Employee * refelement Links to Employee resources that are working during this phase.

ModulePhase * | element Additional phase information of individual device modules, such as print units.

Part * element Describes which parts of a job is currently being logged. If Part is not speci-
fied for a node that modifies partitioned resources, PhaseTime refers to all
parts. For example, imagine a print job that should produce 3 different sheets.
All sheets are described by one partitioned resource. In order to separate the
different print phases for each sheet, the Part elements define, unambiguously,
the sheet to which the audit refers.

ResourcelLink * | element These resource links specify the actual consumption/usage or production of re-

_ sources during this production phase.

It is possible to monitor the states of individual modules of a complex device, such as a printer with multiple print
units, by defining ModulePhase elements. One PhaseTime element may contain multiple ModulePhase ele-
ments and can, therefore, record the status of multiple units in a device. In contrast to PhaseTime audit elements
ModulePhase elements are allowed to overlap in time with one another. ModulePhase clements are defined in

the following table.

Table 3-33 Contents of the ModulePhase element

Name Data Type Description

DevicelD string Name of the device. This must be the DevicelD attribute of one of the Device
elements specified in the PhaseTime audit.

DeviceStatus enumeration | Status of the device module. Possible values are:

Unknown — The module status is unknown.

Idle — The module is not used, for example, a color print module that is inactive
during a black-and-white print.

Down — The module cannot be used. It may be broken, switched off etc.
Setup — The module is currently being set up.

Running — The module is currently executing.

Cleanup — The module is currently being cleaned.

Stopped — The module has been stopped, but running may be resumed later.
This status may indicate any kind of break, including a pause, maintenance, or a

66 Chapter 3 Structure of JDF Nodes and Jobs

Name Data Type Description
breakdown, as long as running can be easy resumed.

These states are analog to the device states of Table 5-45.

End dateTime Date and time of the end of the module phase.
Modulelndex IntegerRange | 0-based indices of the module or modules. If multiple module types are avail-
List able on one machine, it is device dependent whether the indices of each type re-

start at 0 or simply continue indexing.

ModuleType NMTOKEN | Module description. The allowed values depend on the type of device that is
described. The predefined values are listed in Appendix A.

Start dateTime Date and time of the beginning of the module phase.

StatusDetails ? | string Description of the module status phase that provides details beyond the enu-
merative values given by the DeviceStatus attribute. For a list of supported
values, see Appendix G.

Employee * refelement Links to Employee resources that are working during this module phase on this
module (the module is specified by the attributes Modulelndex and Module-

Type).

3.10.1.4 ResourceAudit

The ResourceAudit element describes the usage of resources during execution of a node or the modification of the in-
tended usage of a resource, in other words the modification of a resource link. It logs consumption and production
amounts of any quantifiable resources, accumulated over one process run or one part of a process run. It contains one
or two abstract ResourceLink elements. The first is required and specifies the actual consumption/usage or production
of the resource. The second ResourceLink is optional and used to store information about the original resource link,
which also refers to the original resource. If the original resource does not need to be saved, a boolean ContentsModi-
fied attribute in the ResourceAudit should be used to indicate that a change has been made.

Table 3-34 Contents of the ResourceAudit element

Name Data Type Description

ContentsModified ? | boolean Specifies that a modification has occurred but that the original resource has been
deleted.

Reason ? enumeration | Reason for the modification. One of:

_ PlanChange — The resource was modified due to a change of plan before actual
processing.

ProcessResult — The default.

ResourcelLink element The first resource link specifies the actual consumption/usage or production of a
resource.

ResourcelLink ? element The second optional resource link logs the modification of a resource link and
the modification of the resource it refers to. It holds the planned resource link
which also refers to the planned resource. The planned and actual resource may
be the same.

For details on ResourceLink elements and ResourceLink subclasses, see Section 3.8 Resource Links. The parti-
tioning of resources using Part elements is defined in Section 3.9.2 Description of Partitionable Resources.

3.10.1.4.1 Logging Machine Data by Using the ResourceAudit

If a resource is modified during processing, any nodes that also reference the resource may also be affected. The
following logging procedure is recommended in order to track the resource modification and to insure consistency
of the job:

1. Create a copy of the original resource with a new ID.
2. Modify the original resource to reflect the changes.

3. Insert a ResourceAudit element that references the modified original resource with the first Resour-
celLink and the copied resource with the second ResourceLink attribute.

Chapter 3 Structure of JDF Nodes and Jobs 67

The following example describes the logging of a modification of the media weight and amount. The JDF document
before modification requests 400 copies of 80 gram media:

<JDF .. >
<ResourcelLinkPool>
<MediaLink rRef="RLink" Usage="Input" Amount="400"/>
</ResourcelLinkPool>
<ResourcePool>
<Media Weight="80" ID="RLink" Amount="400" (..)/>
<ResourcePool/>
</JDEF>

The JDF after modification specifies that 421 copies of 90-gram media have been consumed:

<JDF .. >
<ResourceLinkPool>
<MediaLink rRef="RLink" Usage="Input" Amount="400"/>
<!—note that the Resourcelink has not changed -->
</ResourcelinkPool>
<ResourcePool>
<Media Weight="80" ID="RPrev" Amount="400" (..) /> <!—Copy of the original re-
source-->
<Media Weight="90" ID="RLink" Amount="421" (..)/> <!-modified resource-->
<ResourcePool/>
<AuditPool>
<ResourceAudit (..)>
<MediaLink rRef="RLink" Usage="Input" Amount="421"/>
<MedialLink rRef="RPrev" Usage="Input" Amount="400"/>
</ResourceAudit>
</AuditPool>
</JDF>

3.10.1.4.2 Logging Changes in Product Descriptions by Using the ResourceAudit

ResourceAudit elements may also be used to store the original intent resources of a product specification in a
change order or request for requote. The mechanism is the same as above. The following example shows the struc-
ture of a Medialntent with Option partitions, where a late change of options from Optionl (80 gram paper) to Op-
tion2 (90 gram paper) is requested.

<JDF .. >
<ResourceLinkPool>
<MedialIntentLink rRef="id" Usage="Input">
<Part Option="Option2”/>
</MedialntentLink>
</ResourcelLinkPool>
<ResourcePool>
<MedialIntent PartIDKeys="Option” (..)>
<!— the common MediaIntent resource details -->
<MediaIntent Option="Optionl” (..)>
<Weight Preferred="80"/>
</Medialntent>
<MediaIntent Option="Option2” (..)>
<Weight Preferred="90"/>
</Medialntent>
</MedialIntent>
<ResourcePool/>
<AuditPool>
<ResourceAudit (..)>
<!— the actual MediaIntent resource link -->
<MedialIntentLink rRef="id" Usage="Input">
<Part Option="Option2”/>
</MedialntentLink>
<!— the original MedialIntent resource link -->
<MediaIntentLink rRef="id" Usage="Input"/>
<Part Option="Optionl”/>
</MedialntentLink>

68 Chapter 3 Structure of JDF Nodes and Jobs

</ResourceAudit>
</AuditPool>
</JDF>

3.10.1.5 Created

This element allows the creation of a JDF node or resource to be logged. If the element refers to a JDF node, it can

be located in the AuditPool element of the node that has been created or in any ancestor node. If the element refers

to a resource it must be located in the node where the resource resides so that the spawning and merging mechanism
can work effectively.

Table 3-35 Contents of the Created element

Name Data Type | ‘Description
ref? IDREF Represents the ID of the created element. Defaults to the ID of the local JDF node.

3.10.1.6 Modified

This element allows any modifications affecting a JDF node, such as changes made to the Nodelnfo element or
Customerinfo element, to be logged. Changes that can be logged by other audit element types, such as resource
changes, must not use this common log entry. The modification can be described textually by adding a generic
Comment element to the Modified element. The location of the element in the node tree is the same as the location
of the corresponding Created element.

Table 3-36 Contents of the Modified element

Name Data Type | |[Description
JjRef ? | IDREF The ID of the modified node. The modified element resides in the modified node. Defaults
to the ID of the local JDF node.

3.10.1.7 Spawned

This element allows a job that has been spawned to be logged in the AuditPool of the parent node of the spawned
job-part or in the AuditPool of the node that has been spawned in case of spawning of individual partitions. For de-
tails about spawning and merging, see Section 4.4 Spawning and Merging.

Table 3-37 Contents of the Spawned element

Name Data Type Description

Independent ? boolean Declares that independent jobs that have previously been merged into a big
job are spawned.

If it is set to true, the attributes jRefDestination, rRefsROCopied and
rRefsRWCopied have no meaning and should be omitted.

Default = false

JRef IDREF ID of the JDF node that has been spawned.

jRefDestination ? | NMTOKEN | ID of the JDF node to which the job has been spawned.” This attribute must
be specified in the parent of the original node if independent jobs are

spawned.
NewSpawnID NMTOKEN | Copy of the SpawnID of the newly spawned node. Note that a Spawned au-
_ dit may also contain a SpawnlD attribute, which is the SpawnID of the
node that this audit is being placed into prior to spawning.
rRefsROCopied ? | IDREFS List of IDs separated by whitespace. Identifies the resources copied to the

ResourcePool element of the spawned job during spawning. These re-
sources should NOT be modified by the spawned job.

rRefsRWCopied ? | IDREFS List of IDs separated by white spaces. Identifies the resources copied to the
ResourcePool element of the spawned job during spawning. These re-
sources may be modified by the spawned job and must be copied back into
their original location by the merging agent.

Resource copying is required if resources are referenced simultaneously from

3 The data type is NMTOKEN and not IDREF because the attribute refers to an external ID.

Chapter 3 Structure of JDF Nodes and Jobs

Name Data Type Description
spawned nodes and from nodes in the original JDF document.
Status ? enumeration | Status of the spawned node at the time of spawning. Allowed values are de-
_ fined in Table 3-3 Contents of a JDF node, Status.
URL ? URL Locator that specifies the location where the spawned node was stored by the
_ spawning process.
Part * element Identifies the parts that were selected for spawning in case of parallel spawn-
ing of partitionable resources (see Section 4.4.3).

3.10.1.8 Merged

This element logs a merging event of a spawned node. For more details, see Section 4.4 Spawning and Merging.

Table 3-38 Contents of the Merged element

Name Data Type | Description

Independent ? boolean Declares that independent jobs are merged into a big job for common pro-
duction.
If it is set to true, the attributes jRefSource and rRefsOverwritten have no
meaning and should be omitted.
Default = false

JjRef IDREF ID of the JDF node that has been returned or merged.

jRefSource ? NMTOKEN [ID of the JDF root node of the big job from which the spawned structure has
been returned. *

MergelD NMTOKEN | Copy of the SpawnID of the merged node. Note that a Merged audit may

_ also contain a SpawnlD attribute, which is the SpawnID of the node that
this audit is being placed into prior to merging.

rRefsOverwritten ? | IDREFS Identifies the copied resources that have been overwritten during merging.
Resources are usually overwritten during return if they have been copied
during spawning with read/write access.

URL ? URL Locator that specifies the location of the merged node prior to merging by

_ the merging process.

Part * element Specifies the selected parts of the resource that were merged in case of par-
allel spawning and merging of partitionable resources (see Section 4.4.3).

3.11 JDF Extensibility

JDF is meant to be flexible and therefore useful to any vendor, as each
vendor will have specific data to include in the JDF files. JDF is able to
provide this kind of versatility by using the XML namespaces.
chapter describes how JDF uses the XML extension mechanisms.

Using
This
Namespaces

In JDF

&

3.11.1 Namespaces in XML

JDF Extensibility is implemented using XML Namespaces. The Name-
spaces in XML specification is found at http://www.w3.org/TR/REC-
xml-names/.

XML namespaces are defined by xmins attributes. A general exam-
ple is provided below. The example illustrates how private namespaces
are declared and used to extend an existing JDF resource by adding pri-

It is required to define the de-
fault namespace in a JDF
document, even if no non-JDF
extensions are used. JDF may
be defined either in the default
namespace or in a qualified
namespace.

* The data type is NMTOKEN and not IDREF because the attribute refers to an external ID.

http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/

70 Chapter 3 Structure of JDF Nodes and Jobs

vate attributes and a private element.

<JDF xmlns="http://www.CIP4.o0rg/JDFSchema 1 1" xmlns:foo="fooschema URI" .. >
QSomeJDFDefinedResource name="abc" foo:specialname="cba">
zfoo:PrivateStuff type=""/>
</éomeJDFDefinedResource>
</EDF>
Namespaces are inserted in front of attribute and element names. The associated namespace of element names with
no prefix is the default namespace defined by the xmlns attribute. The associated namespace of attributes with no

prefix is that one of the element (see Appendix A.2 XML Namespace Partitions in the specification Namespaces in
XML). All namespaces prefixes must be declared using standard xm/ns:xxx attributes.

The official namespace URI for JDF Version 1.0 is: "http://www.CIP4.org/JDFSchema 1".
The official namespace URI for JDF Version 1.1 is: "http://www.CIP4.org/JDFSchema 1 1".

Extensibility Caution

JDF’s “Extensibility” simply means that you can add your own XML elements, attributes, and enu-
merations to a JDF application. Although JDF is quite extensive, odds are you'll find that your cur-
rent databases and workflow systems use information elements that are unique to your client
market or company ... they may have even been defined by your internal MIS staff. CIP4 ac-
knowledges that it can’t define everything, nor should it prevent innovation by codifying everything
in a static manner, and JDF’s extensibility provides both printers and technology providers with the
flexibility they need to make JDF a success.

However, if you or your technology vendors extend JDF, please do so with caution. JDF’s
success depends on the ability of MIS systems and JDF-enabled devices to write, read, parse,
and use JDF. Extensions are custom integration applications and great care needs to be made to
ensure that extensions made for one systems or device will not jam the JDF workflow or other JDF
enabled systems and devices. If they use extensions to JDF, your technology providers should be
able to provide you with a fully validated JDF schema and documentation that includes the use of
their extensions. Extensions that are not documented, or that may not be disclosed to third parties
for integration purposes, should be viewed skeptically.

3.11.2 Extending Process Types

JDF defines a basic set of process types. Because JDF allows flexible encoding, however, this list, by definition,
will not be complete. Vendors that have specific processes that do not fit in the general JDF processes and that are
not combinations of individual JDF processes (see Section 3.2.3 Combined Process Nodes) can create JDF process
nodes of their own type. Then the content of the Type attribute may be specified with a prefix that identifies the or-
ganization. The prefix and name must be separated by a single colon (°:”) as shown in the following example:

<JDF Type="myCompaniesNS:MyVeryImportantProcess" xmlns=
"http://www.CIP4.0org/JDFSchema 1 1" xmlns:myCompaniesNS="my companies namespace URI" ..
>

</JDF>
The use of namespace prefixes in the Type attribute is for extensions only. Standard JDF process types must be
specified without a prefix in the Type attribute or the Types attribute of a combined node.

Chapter 3 Structure of JDF Nodes and Jobs 71

If a process is simply an extension of an existing process, it is possible to describe the private data by extending the
existing resource types. This is described in greater detail in the sections below.

Extending the Nodelnfo and Customerinfo nodes is achieved in a manner analogous to the extension of re-
sources, which is described below. On the other hand, extending the direct contents of JDF nodes by adding new
elements or attributes is discouraged.

3.11.3 Extending Existing Resources

All resources defined by JDF may be extended by adding attributes and elements using one’s own namespace for
these resource extensions. This is useful when the predefined resource types need only a small amount of private
data added, or if those resources are the only appropriate place to put the data. The namespace of the resource ex-
tended must not be modified. However, the mechanism for creating new resources in a separate namespace is pro-
vided in the next section.

This does not mean that duplicate functionality may be added into these resource types. You must make sure to
use the JDF-defined attributes and elements where possible and extend them with additional information that cannot
be described using JDF-defined constructs. For example, it is not allowed to extend the RIP resource that controls
the resolution with a foo:Resolution or foo:Res attribute that overrides the JDF defined resolution parameter (see at-
tribute Resolution of resource RenderingParams in Section 7.2.112).

3.11.4 Extending NMTOKEN Lists

Many resources contain attributes of type NMTOKEN and some of these have a set of predefined, suggested enu-
merative values. These lists may be extended with private keywords. In order to identify private keywords, it is
strongly suggested to prefix these keywords with a namespace-like syntax, i.e., a namespace prefix separated by a
single colon (‘:”). Implementations that find an unknown NMTOKEN prefixed by a namespace prefix may then at-
tempt to use the default value of that attribute. For instance, if a JDF instruction contains the following text:

<TrappingParams TrapEndStyle="HDM:FooBar” (..)/>

Based of the definition of TrappingParams, the best assumption is to use TrapEndStyle = “Miter”.
Example from TrappingParams

Name Data Type Description
TrapEndStyle ? | NMTOKEN | Instructs the trap engine how to form the end of a trap that touches another ob-
ject. Possible values include:

Miter

Overlap

Other values may be added later as a result of customer requests.
Default = Miter

3.11.5 Creating New Resources

There are certain process implementations that have functionality that cannot be specified by the predefined Resource
types. In these cases, it is necessary to create a new Resource-type element, which must be clearly specified using its
own namespace. These resource types may only be linked to custom type JDF process nodes.

3.11.6 Future JDF Extensions

In future versions, certain private extensions will become more widely used, even by different vendors. As private exten-
sions become more of a general rule, those extensions will be candidates for inclusion in the next version of the JDF speci-
fication. At that time the specific extensions will have to be described and will be included into the JDF namespace.

72 Chapter 3 Structure of JDF Nodes and Jobs

3.11.7 Maintaining Extensions

Given the mix of vendors that will use JDF, it is likely that there will be a number of private extensions. Therefore,
JDF controllers must be prepared to re-
ceive JDF files that have extensions. ;
These controllers can and should ignore ’ Submit Your Extensions to CIP4
all extensions they don’t understand,
but under no circumstance are they al-
lowed to remove these extensions when | Writing JDF extensions? CIP4 encourages you to become part
making modifications to the JDF. If | of the standard and submit your private extensions for review
they do, it will break the extensibility | and possible inclusion in future versions of the JDF standard.
mechanism. For example, imagine that | Not only may adoption of extensions into the JDF standard
JDF Agent A creates a JDF and inserts | help make it easier for customers to decide to buy your
private information for Process P. Fur- | products, but CIP4 is also considering adopting a formal
thermore, the information is only under- review process for extensions with future editions of the JDF
stood by agent A and the appropriate | standard; by participating in JDF’s development now you could
device D for executing P. If the JDF | save time and customer confusion in the future.

needs to be processed first by another
Agent/Device C, and that process removes all private data for P, Process P will not be able to produce the correct re-
sults on device D that were specified by Agent A.

3.11.8 Processing Unknown Extensions

If a node is processed by a controller or device and it encounters an unknown extension in one of its input resources,
the expected behavior depends on the current value of SettingsPolicy.

If SettingsPolicy =”BestEffort”, a Notification audit element with Class = warning should be logged.

If SettingsPolicy =”MustHonor” the process must not continue and a Notification audit element with Class = er-
ror should be logged.

If SettingsPolicy =”Operatorintervention” the process must stop and wait for an operator intervention and a Notifi-
cation audit element with Class = warning should be logged.

3.11.9 Derivation of Types in XMLSchema

The XML Schema definition http://www.w3.org/TR/xmlschema-1/ describes a mechanism to create new types by
derivation from old types. This is an alternative to extend or create new elements and is described in Section 4 of
http://www.w3.org/TR/xmlschema-0/. This mechanism is not allowed to be applied to any elements defined by JDF
because such new element types can only be understood by agents/devices that know the extension. The use of the
derivation mechanism is allowed only for private extensions but not required.

http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-0/

Chapter 4 Life Cycle of JDF 73

Chapter 4 Life Cycle of JDF

Introduction

This chapter describes the life cycle of a JDF job, from creation through modification to processing. Information is pro-
vided about the spawning of individual aspects of jobs and in what way they are reincorporated into the job once the proc-
ess is completed. Ancillary aspects of the life cycle, such as test running and error handling, are also discussed.

4.1 Creation and Modification

The life cycle of a JDF job will likely follow one of two scenarios. In the first scenario, a job is created all at once,
by a single agent, and then is consumed by a set of devices. More often, however, a job is created by one agent and
is then transformed, or modified, over time by a series of other agents. This process may require specification of
product intent, which is defined in Section 4.1.1, below.

Jobs can be modified in a variety of ways. In essence, any job is modified as it is executed, since information
about the execution is logged. The most common instance of modification of a JDF job, however, occurs during
processing, when more detailed information is learned or understood and then added along the way. This informa-
tion may be added because an agent knows more about the processing needed to achieve some result specified in a
JDF node than the original, creating agent knew. For example, one agent may create a product node that specifies
the product intent of a series of pages. This product node may include information about the number of pages and
the paper properties. Another node may then be inserted that includes a resource describing how the pages should
be Ripped. Later, another agent may provide more detail about the RIP’ing process by appending optional informa-
tion to the RIP parameter resource.

Regardless of where in the life cycle they are written, nodes and their required resources must be valid and in-
clude all required information in order to have a Status of Ready (in case of nodes) or Available (in case of re-
sources). This restriction allows for the definition of incomplete output resources. For example, a URL resource
without a file name may be completed by a process. On the other hand, it is impossible to define a valid and execu-
table node with insufficient input parameters.

Once all of the inputs and parameters for the process requested by a node are completely specified, a controller
can route the JDF job containing this node to a device that can execute the process. When the process is completed,
the agent/controller in charge of the device will modify the node to record the results of the process.

4.1.1 Product Intent Constructs

JDF jobs, in essence, are requests made by customers for the | o>
production of quantities of some product or products. In —

other words, a job begins with a particular goal in mind. In
“Product Intent” is another way of saying “Job

Product Intent

JDF, product goals are often specified by using a construct
known as product intent, represented by intent resources. In

contrast to process resources that define precise values, in-
tent resources allow ranges or sets of preferred values to be
specified. Resources of this kind include Foldingintent,
Colorintent, Medialntent, and ShapeCuttingintent,
all of which are described in Chapter 7 Resources.

The product intent of a job is like a plan of action. The
plan may be extremely vague, detailing only the general
goal, or it may be very specific, stipulating the specific re-
quirements inherent in meeting that goal. Product intent
may be defined for an end product about which little is

known or about which the processing details for the job are entirely unknown. Product intent constructs also allow agents to

Specifications.” Rather than describing how a
job will be made, “Product Intent” describes
what a job (or some aspect of a job) will look
like when it is completed. “Product Intents” may
initiate with the customer and in rather vague
terms and they may be later flushed out or
completed by a printer's customer service
representative, estimating department or
production planners.

describe jobs that comprise multiple product components, and that may share some parts.

Product intent is defined by the initiating agent of a job. It is not required, however. Many JDF jobs are written
with full knowledge of the necessary processes, and are therefore comprised entirely of the various kinds of process

74 Chapter 4 Life Cycle of JDF

nodes described in Sections 3.2.1, 3.2.2, and 3.2.3. Any job that specifies product intent, however, must include
nodes whose Type = Product. This representation is described in the following section.

4.1.1.1 Representation of Product Intent

The product description of a job is a hierarchy of Product nodes, and the bottom-most level of the product hierarchy
represents portions of the product that are each homogeneous in terms of their materials and formats. All nodes be-
low these Product nodes begin specifying the processes required to produce the products.

Product nodes are required to contain only one thing, and that is a resource that represents the physical result
specified by the node. This resource is generally a Component. In addition, somewhere in the hierarchy of prod-
uct nodes, it is a good idea to include an intent resource to describe the characteristics of the intended product. Al-
though these are the only resources that should occur, product nodes can contain multiple resources. For example,
some ResourceTypes, such as Medialntent and Layoutlintent, are defined to provide more general mechanisms
to specify product intent.

In some cases, more than one high level product node will use the output of a product node. These high level
nodes represent the combination of homogeneous product parts. In this case, the Amount attribute of the Resour-
celLinks that connect the nodes will identify how the lower level product is shared.

4.1.1.2 Representation of Product Binding

Some product intent nodes, such as Bindinglntent, define how to combine multiple products. To accomplish this,
the respective Component resources must be labeled according to their usage. For example, the Cover and Insert
attributes use the ProcessUsage attribute of the respective resource links. For more information about product in-
tent, see Section 3.2.1 Product Intent Nodes.

4.1.2 Defining Business Objects Using Intent Resources

Business objects like requests for quote, quote, invoice, etc. need to reference processes at a level that is well represented
by product intent nodes. It is assumed that business object
metadata such as financial information, business document
type, customer information, etc. is defined by an XML en-
velope that contains JDF as a job description. If this is not
the case, the business related metadata may be placed into
the BusinessInfo element of the Nodelnfo element of the A PrintTalk implementation guide can be found at
root JDF and the customer related data may be placed into http://www.printtalk.org/implementation.html

the Customerinfo element of the root JDF.

PrintTalk Implementation

This section sketches the usage of JDF in an eCommerce environment using the business object model that was
defined by the PrintTalk www.PrintTalk.org consortium.

The following table describes the individual business objects and their relationships. Object Type defines the name
of the XML element that defines the metadata. All object types are inherited from the abstract PrintTalk Request
element. References defines the business objects that are responded to when generating the business object and
buyer-provider arrow defines the direction of the transaction.

Table 4-1. Business Objects as defined by PrintTalk

Object Type Description References Direction
Request for Quote Initiated by a buyer to a print supplier. It may in- | None, Quote, Confirmation | B—P
(RFQ) stigate a new product process or it may supersede

an existing RFQ. The Change Order and Request
for Requote variations are included within Re-
quest for Quote.

Quote Normally sent in response to a RFQ. The Requote | RFQ, PO, Confirmation B<P
and Change Order Quote variations are included
within Quote. A Quote may supersede an existing
Quote before the Print Buyer has answered with a
RFQ or an Order.

Purchase Order Typically sent as a response to a quote, but may None, Quote, Confirmation | B—P

http://www.printtalk.org/

Chapter 4 Life Cycle of JDF

75

Object Type

Description

be the initial document in a well defined buyer /
print supplier relationship or when ordering fin-
ished goods items. The Change Order variation is
included within Purchase Order. An order may
supersede an existing Order prior to the Print Pro-
vider having confirmed it.

References

Direction

Order Confirmation

Sent by the print supplier to the buyer acknowl-
edging receipt of the purchase order. It may con-
tain information about expected due dates and
final pricing that were undetermined at the time of
the quote.

PO

B—P

Cancellation

Cancels a complete job. If only parts of a job
should be cancelled, one must send a new RFQ,
Quote, or PO. In case of canceling parts of a con-
firmed order the Change Order variations of these
Business Objects must be sent.

RFQ, Quote, PO, Confir-
mation

B—P

Refusal

Used to explicitly decline a Business Object sent
by the counter party. Alternatively, the non-
accepted Business Object expires.

RFQ, Quote, PO

B—P

Order Status Request

Generated anytime one party requests status from
another party.

Confirmation

B~P

Order Status Re-
sponse

An Order Status Response can be sent as a re-
sponse to an Order Status Request or it can be sent
automatically.

Confirmation, Order Status
Request

B—P

Proof Approval Re-
quest

Provides a transport for proofing from supplier to
buyer. This may contain MIME data or a URL
where the proof is located.

Confirmation

B«P

Proof Approval Re-
sponse

Contains buyer’s approval or denial of a proof.

Proof Approval Request

B—P

Invoice

Typically sent once the job is shipped, but can
also be sent several times, when certain mile-
stones during production are reached. May in-
clude additional charges or discounts.

Confirmation, Cancellation

B—P

In the following figure the workflow of these business objects is partly illustrated in a simplified manner. See the
PrintTalk specification at www.printtalk.org for a complete picture.

Superceding

Change Order
RFQ

Change Order
Quote

Superceding Superceding
Quote

RFQ FO

Request for

Requote
Requote

Change
PO

http://www.printtalk.org/

76 Chapter 4 Life Cycle of JDF

Figure 4.1 Simplified PrintTalk workflow (negotiation phase)

The node that defines an RFQ must contain one or more Deliverylntent resources that define the amounts and
methods of delivery. The Usage of the ResourcelLinks is Input, its Type is “Product” and the Business object is
an RFQ.

The examples quoted in this section use an object model as defined by PrintTalk with the business objects de-
fined in BusinessInfo. This does not preclude the use of other eCommerce systems. The following examples show
equivalent PrintTalk and pure JDF document text. The highlights show the respective position of an RFQ.

PrintTalk example
<PrintTalk>
<Header>
Standard CXML header
</Header>
<Request>
<RFQ AgentID="Lara" RequestDate="”2002-04-05T1700-0800” Expires="2002-04-15T1700-0800" Esti-
mate="false" AgentDisplayName="Lara Garcia-Daniels" Currency="EUR" BusinessID="RFQ ID">
<JDF ID="ScreenTest" Type="Product" JobID="ScreenJob" Status="Waiting" Version="1.1"
xmlns="http://www.CIP4.0org/JDFSchema 1 1">
<NodeInfo LastEnd="2000-12-24T06:02:42+01:00"/>
()
</JDF>
</RFQ>
</Request>
</PrintTalk>

Equivalent pure JDF Example
<JDF ID="ScreenTest" Type="Product" JobID="ScreenJob" Status="Waiting" Version="1.1"
xmlns="http://www.CIP4.0org/JDFSchema 1 1">
<NodeInfo LastEnd="2000-12-24T06:02:42+01:00">
<BusinessInfo>
<RFQ AgentID="Lara" RequestDate="2002-04-05T1700-0800"” Expires="2002-04-15T1700-0800" Esti-
mate="false" AgentDisplayName="Lara Garcia-Daniels" Currency="EUR" BusinessID="RFQ ID"/>
</BusinessInfo>
</NodeInfo>

(...)
</JDF>

4.1.3 Specification of Delivery of End Products

A job may define one or more products and specify a set of deliveries of end products. To accomplish this, a node of
Type = Product is created to define each delivery mode to be made. A delivery contains a set of drops, which in turn
contain a set of drop items. Each drop has a common delivery address and each package contains the amount of an in-
dividual Component or ComponentRef that is to be delivered to this address. Quote generation as defined in the
previous chapter includes the specification of delivery addresses. For more information, see section 6.2.4 Delivery.

4.1.4 Specification of Process Specifics for Product Intent Nodes

Product intent nodes are designed to represent a customer’s view of the product. In some instances, a knowledgeable
customer may want to specify production details that are only available in JDF process resources for a given prod-
uct. Examples include scanning or screening parameters. This customer will still have no knowledge or control of
the process workflow.

Individual JDF nodes can be inserted into a product intent node. These nodes will contain the requested process
resource definitions as input resource links. The Status attribute of these resources should be “Incomplete”. No
output resources should be defined. In other words the actual specification of the process workflow should be left
undefined. The application that sets up the actual workflow can then use these resource templates as a starting point
for defining the process. The following example shows how an ellipse spot function is requested within a simple
product description. The JDF node in yellow highlight defines the screening parameters of the product.

<?xml version='1.0" encoding="utf-8' 7>
<JDF ID="HDM20001106181236" Type="Product" JobID="HDM20001106181236"
Status="Waiting" Version="1.0">

Chapter 4 Life Cycle of JDF 77

<ResourcePool>
<Component ID="Link0003" Class="Quantity" Amount="10000"
Status="Unavailable" DescriptiveName="complete 1l6-page Brochure"/>
<LayoutIntent ID="Link0004" Class="Intent" Status="Available">
<Dimensions Range="576 720~648 864" DataType="XYPairSpan" Pre-
ferred="612 792" />
<Pages DataType="IntegerSpan" Preferred="16"/>
</LayoutIntent>
<MediaIntent ID="Link0005" Class="Intent" Status="Available" PartID-
Keys="Option">
<FrontCoatings DataType="NameSpan" Preferred="None"/>
<MediaIntent Option="1">
<FrontCoatings DataType="NameSpan" Preferred="Glossy"/>
</MediaIntent>
<BackCoatings DataType="NameSpan" Preferred="None"/>
</Medialntent>
</ResourcePool>
<ResourcelLinkPool>
<ComponentLink rRef="Link0003" Usage="Output"/>
<LayoutIntentLink rRef="Link0004" Usage="Input"/>
<MediaIntentLink rRef="Link0005" Usage="Input"/>
</ResourceLinkPool>
<AuditPool>
<Created Author="Rainer's JDFWriter 0.2000" TimeStamp="2000-11-
06T18:12:36+01:00"/>
</AuditPool>
<JDF ID="Link0006" Type="Screening" Status="Waiting">
<ResourcePool>
<ScreeningParams ID="ScreenID" Class="Parameter" Status="Incomplete">
<ScreenSelector SpotFunction="Ellipse" ScreeningFamily="My favorite
screen" />
</ScreeningParams>
</ResourcePool>
<ResourceLinkPool>
<ScreeningParamsLink rRef="ScreenID" Usage="Input"/>
</ResourceLinkPool>
</JDF>
</JDF>

4.2 Process Routing

A controller in a JDF workflow system has two tasks. The first is to determine which of the nodes in a JDF docu-
ment are executable, and the second is to route these nodes to a device that is capable of executing them. Both of
these procedures are explained in the sections that follow.

In a distributed environment with multiple controllers and devices, finding the right device or controller to exe-
cute a specific node may be a non-trivial task. Systems with a centralized, smart master controller may want to
route jobs dynamically by sending them to the appropriate locations. Simple systems, on the other hand, may have a
static, well defined routing path. Such a system may, for example, pass the job from hot folder to hot folder. Both
of these extremes are valid examples of JDF systems that have no need for additional routing metadata.

In order to accommodate systems between these extremes, the Nodelnfo element of a node contains optional Route
and TargetRoute attributes that let an agent define a static process route on a node-by-node basis. If no Route or Tar-
getRoute attribute is specified and if a controller has multiple options where to route a job, it is up to the implementation
to decide which route to use.

78 Chapter 4 Life Cycle of JDF

The controller or device reading the JDF job is responsible for processing the nodes. A device examines the job
and attempts to execute those nodes that it knows how to execute, whereas a controller routes the job to the next
controller or device that has the appropriate capabilities.

4.2.1 Determining Executable Nodes
In order to determine which node should be executed, the controller/device uses the following procedures:

1. First, it searches the JDF docu-
ment for node types it can exe-
cute by comparing the Type

attribute of the node to its own Activation =
capabilities, and by determining TestRun or
the Activation of the nodes. It TestRunAndGo

should also verify that the
Status of the node is either
Waiting or Ready.

Activation
= Active
2. The controller/device may then

determine whether no resources

have a Status of Incomplete or a

SpawnStatus of SpawnedRW.

It should also determine whether

all of the input resources of the

respective nodes have a Status

of Available and that all proc-

esses that are attached through

pipes are ready to execute. A

controller may optionally skip

these checks and expect the Test Run

lower level controller or device Failed

that it controls to perform this

step and return with an error if it

fails.

TestRunIn
Progress

Test Run

Ok /" tiold

Resume

QueueEntryStatus
= Running

Stopped

3. Finally, if scheduling informa-
tion is provided in the Nodelnfo
element, the specified start
and/or end time must be taken
into account by the executing
device. If no process times are
specified, it is up to the device in
charge of queue handling to exe-
cute the process node.

In
Progress

Cleanup

¥
Completed w

Figure 4.2 Life Cycle of a JDF node

End
The node will go through various States

stati during its life time as is de-
scribed in the following diagram:

Failed
TestRun

4.2.2 Distributing Processing to Work Centers or Devices

JDF syntax supports two means of distributing processes to work centers or devices. Its first option is to use a
“smart” controller that has the ability to parse a JDF job and identify individual processes or process groups that
may be distributed to a particular work center or device. This smart controller may use spawning and merging fa-
cilities to subdivide the job ticket and pass specific instructions to a work center or device.

Chapter 4 Life Cycle of JDF 79

The second option, which is applicable when the controller being used isn’t “smart,” is to employ a simple con-
troller implementation that routes the entire job to each workcenter or device, thus leaving it up to the recipient to
determine which processing it can accomplish. For this option to work, each JDF-capable device must be able to
identify process nodes it is capable of executing. Furthermore, each device must have sufficient JDF-handling ca-
pabilities to identify processes that are ready to run.

4.2.3 Device / Controller Selection

The method used to determine which is the appropriate device or lower level controller to use to execute a given
node depends greatly on the implemented workflow being used. Although JDF provides a method for storing rout-
ing information in the Route attribute of the Nodelnfo element of a node, it does not prescribe any specific routing
methods. However, some of the tools available to figure out alternative workflows are described below.

Knowledge of the capabilities of lower level controllers/devices either may be hard-wired into the system or
gained using the KnownJDFServices message. Since JDF does not yet provide mechanisms to determine whether
a given device is capable of processing a node without actually performing a test run, a controller must either have a
priori knowledge of the detailed capabilities of devices that it controls or it must perform a test run to determine
whether a device is capable of executing a node. Furthermore, in addition to the explicit routing information in the
Route attribute of the Nodelnfo element of a node, JDF may contain implicit routing information in the form of
Device implementation resources.

JMF defines the KnownControllers query to find controllers and the KnownDevices query to find devices that are
controlled by a controller. The information provided by these queries can be used by a controller to infer the appropriate
routing for a node. In a system that does not support messaging, this information must be provided outside of JDF.

4.3 Execution Model

JDF provides a range of options that help controllers tailor a processing system to the needs of the workflow and of the
job itself. The following sections explain the ways in which controllers execute processes using these various options.

The processing model of JDF is based on a producer/consumer model, which means that the sequencing of
events is controlled by the availability of input resources. As has been described, nodes act both as producers and
consumers of resources. When all necessary inputs are available in a given node, and not before, the process may
execute. The sequence of processing, therefore, is implied by the chain of resources in which the output resources
of one node become the input resources of a subsequent node.

JDF supports four kinds of process sequences: serial processing, overlapping processing, parallel processing,
and iterative processing. All four are described in the following sections.

4.3.1 Serial Processing

The simplest kind of process routing, known as serial processing, executes nodes sequentially and with no overlap.
In other words, no nodes are executed simultaneously. Once the process has acted upon the resource in some way,
the resource availability is described by the Status attribute of the resource, as described above. When the process
state is Ready or Waiting, the process can begin executing.

In a workflow using serial processing, the controller is responsible for comparing the actual amount available
with the specified amount in the corresponding PhysicalLink element to determine whether or not the input re-
source can be considered available. If no amount is specified in the PhysicalLink, the process is assumed to con-
sume the entire resource.

80 Chapter 4 Life Cycle of JDF

P2

P1

p lime

Figure 4.3 Example of a simple process chain linked by resources

Figure 4.3 depicts a simple process chain that produces and consumes Quantity resources and uses an implementa-
tion resource. The resources R1, R2, and R3 represent Quantity resources. Process P1 consumes resource R1 and
produces resource R2. R2 is then completely consumed by P2, which also requires the implementation resource R4
for processing. Process P2 uses these two resources and produces resource R3. All of this is accomplished along a
linear time axis.

Table 4-2 shows the value of the Status attribute of each of the resources and processes used in Figure 4.3.
The time axis runs from left to right both in Figure 4.3 and in Table 4-2. Note that no process may execute until all
resources leading up to that process are in place. In other words, the job executes serially and sequentially. For
more information about the values of the Status attribute of resources, see Table 3-11. For more information about
the values of the Status attribute of processes, see Table 3-3.

Table 4-2 Examples of resource and process states in the case of simple process routing

before running P1

Object Status

during running P1 after running P1, be- during P2 after P2
fore P2

resource R1 Available InUse Unavailable Unavailable | Unavailable
resource R2 Unavailable Unavailable Available InUse Unavailable
resource R3 Unavailable Unavailable Unavailable Unavailable | Available
resource R4 Available Available Available InUse Available
process P1 Waiting or Ready InProgress Completed Completed | Completed
process P2 Waiting or Ready Waiting or Ready Waiting or Ready InProgress | Completed

When the attribute Amount is used in connection with the quantifiable resources R1, R2, or R3 and their links, then
the controller must decide whether or not a resource is available by comparing the individual values. If the amounts
are used to define the availability, then the resource Status may be set to Available for all Quantity resources. Note
that when the value of the Status attribute of the resource is Unavailable, the resource is not available even if a suf-
ficient amount is specified.

If amounts are specified in the resource element, they represent the actual available amount. If they are not
specified, the actual amount is unknown, and it is assumed that the process will consume the entire resource.
Amounts of PhysicalLink elements must be specified for output resources that represent the intended production
amount. The specification of the Amount attribute for input resources is not required, although it can be specified.
If the controller cannot determine the amounts, this constitutes a JDF content error, which is logged by error han-
dling. This process is described in Section 4.6 Error Handling.

If a process in a serial processing run does not finish successfully, the final process status is designated as
aborted. In an aborted job, only a part of the intended production may be available. If this occurs, the actual pro-
duced amount is logged into the audit pool by a resource audit element.

4.3.2 Overlapping Processing Using Pipes

Whereas pipes themselves are identified in the resource that represents the pipe, pipe dynamics are declared in the re-
source links that reference the pipe. This allows multiple nodes to access one pipe, each of them with its own pipe
buffering parameters.

Chapter 4 Life Cycle of JDF 81

In some situations, resource linking is a continuous process rather than a chronological one. In other words, one
process may require the output resources of another process before that process has completely finished producing
them. The ability to accomplish this kind of resource transfer is known as overlapping processing, and it is accom-
plished with the use of a mechanism known as pipes. Pipes are considered to be active if any process linking to the
pipe simultaneously consumes or produces that pipe resource.

Any resource may be transformed into a pipe re-

source. All that is required is that the PjpelD attribute be
specified in the resource. Pipes of quantifiable resources
resemble reservoir tanks that hang between processes.
Processes connected to the pipe via output links fill the
tank with necessary resources, while processes connected
via input links deplete it (see Figure 4.4). The level is

' 'i Pipe Resources

A pipe resource IS SImply an Input 10 a process
that can be exhausted and may be replenished.
Examples may include rolls of paper feeding
into a press, ink well levels, fountain solution, or

controlled by the PhysicalLink attributes PipeResume,
PipePause, RemotePipeEndPause, and Re-
motePipeEndResume (see Table 3-21). If none of
them are specified, any produced Quantity may be im-
mediately consumed by the consuming end of the pipe.
The unit of the buffers is defined by the Unit attribute of
the resource.

even proofing stock loaded into a proofer.

Another type of pipe resource in every-day
use is a “hot-folder” or “watched file.” Hot folders
are used to automate functions such as
preflighting. When a file is saved to a hot-folder,
the system knows to automatically apply a
defined process to the new file. When the folder
is emptv the processina stoos.

The two following diagrams show the ways in
which pipes mediate between the process producing the resource and the process consuming the resource. The fol-
lowing optional attribute values are defined for pipes: PipePartiIDKeys, PipePause, PipeResume, Re-
motePipeEndPause, and RemotePipeEndResume. The latter two—RemotePipeEndPause and
RemotePipeEndResume—are use to control the level in context with pipe command messages which will be de-
scribed in Section 4.3.2.2 Dynamic Pipes. The specified value of each of these attributes in any given node dictates
the levels at which a pipe should resume or pause execution. Figure4.5 gives an example of a view on the dynamics
of a pipe resource. The available level of the pipe resource, represented as R2, and the availability status of two en-
tity resources, represented as R1 and R3, are changing along a consistent time line. Below the progressions of these
resources is the status of two processes—P1 and P2. P1 represents the process producing the pipe resource and P2
represents the process consuming that resource. The resource status of a active pipe (here R2) is defined to be
Status = InUse (see also Table 3-11).

PipeResume (of input, P2)

Pipe Resource R2

PipePause = maximum (of output, P7)

PipeResume (of output, P1)

Supply
Level
R2

PipePause (of input, P2)

Figure 4.4 Example of a Pipe resource linking two processes

82 Chapter 4 Life Cycle of JDF

Figure 4.4 is a view on the structure and Figure4.5 a view on the dynamics of the pipe example considered here. R1
represents an input resource for P1, which feeds into the intermediate pipe resource R2. Once the tank R2 is filled to
the predetermined level, it is used as the input resource for P2, which in turn produces output resource R3.

Available
R1 Unaailable | |,

Levels
output PipePau

R2

InUse

R2 Unavailable |

Available I
R3 Unavailable

v

InProgress Completed

P1 Waiting .or.
Ready Stopped

Completed 5,

InProgress

P2 Waiting .or.
Ready Time

>

Start End

Figure4.5 Example of status transitions in case of overlapping processing

Resource linking through pipes is controlled through the specification of the PipePause and PipeResume attrib-
utes. The intended amount of a resource must be specified in advance in the output link. Whenever the level repre-
senting the available quantity of the pipe resource exceeds the PipePause level of the output link, the process P1 is
halted (Status = Stopped) so that the process does not overproduce. Once the level falls below the PipeResume
value, the process P1 resumes execution. P1 is completed when it has produced the intended amount. Once P1 has
performed its task, the resources still in the pipe are consumed by the subsequent process without level control. In
other words, after a process filling a pipe buffer has completed, pipe buffering becomes disabled.

Conversely, if the level representing the actual amount exceeds the PipeResume level of the input link, P2 can
start or resume execution. If it falls below the PipePause level, P2 is halted (Status = Stopped) unless the in-
tended amount of the pipe resource R2 has already been produced. Then the PipePause level is ignored and the
pipe resource is completely consumed.

In the case of output links, the PipeResume value must be smaller than the PijpePause value, whereas in the
case of input links, the PipeResume value must be greater than the PipePause value. If PipePause is specified for
an input or an output link and PjpeResume is not specified, the related process may run into a deadlock state. In other
words, the process stops and cannot resume execution automatically. Once a process is stopped under these circum-
stances it can only be resumed manually or by sending a pipe control message for resumption that allows intercon-
nected execution control (halting and resumption of processes by pipe control messages is described in Section 5.5.3
Pipe Control). Ifthe attributes PipeResume or PipePause of links to pipe resources are not specified, the controller
is responsible when the linked processes start and stop in dependence of the level.

4.3.2.1 Pipes of Partitionable Resources

Pipes of partitionable resources may also define the granularity of the resources that are considered to be one part. To
accomplish this, the PipePartIDKeys attribute must be specified in the appropriate ResourceLink element. For in-
stance, a partitioned ImageSetting process may be defined for multiple sheet separations, but a complete set contain-
ing all separations of both sides of a single sheet should be sent to the pressroom as one pipe request. In this case, the
value of the PartIDKeys attribute of the ExposedMedia resource would be SheetName Side Separation and the value
of the PipePartIDKeys attribute of the resource link to the pipe would be SheetName.

Chapter 4 Life Cycle of JDF 83

4.3.2.2 Dynamic Pipes

In addition to abstractly declaring pipe properties, JMF provides pipe messages that allow dynamic control of pipes.
Dynamic pipes can be used to model situations where the required amount of resources is not known beforehand but
becomes known during processing. An example of this behavior is a long press run where new plates are required
during a press run because of quality deterioration. The exact point in time where quality becomes unacceptable is
not predetermined and may even vary from separation to separation. Dynamic pipes provide the flexibility to adjust
to changing situations of this nature.

Dynamic pipes provide a PipeURL attribute that allows dynamic requests for a status change of the pipe while a
process is executing. Dynamic requests use JMF pipe control messages (see Section 5.5.3 Pipe Control) sent to an-
other controller whose URL address is specified by the PipeURL attribute of the respective resource link. Depending
on the values of the resource link's Usage attribute, the following actions are possible:

e Input — The consumer sends a PipePull message to its PipeURL in order to request additional resources or a
PipePause to halt production by the creator. The consumer sends a PipeClose message to the producer if
the consumer does not require any further resources.

e Output — The creator sends a PipePush message to its PipeURL in order to deliver additional resources or a
PipePause to halt consumption by the consumer.

When dynamic pipes are used—i.e., when the PipeURL attribute is specified—the pipe buffering parameters Re-
motePipeEndResume and RemotePipeEndPause define the buffering parameters of the remote (controlled) end.
PipeResume and PipePause, meanwhile, define the buffering parameters of the local node as described in Section
4.3.2. The buffering parameters of a non-dynamic pipe may control the process that contains the resource link,
whereas the buffering parameters of a dynamic pipe control the process at the other end of the pipe. The pipe control
messages described later in Section 5.5.3 Pipe Control are designed to establish communication between processes at
both ends of dynamic pipe, even if the corresponding processes are spawned separately.

The following table summarizes the actions to be taken when the buffer in a dynamic pipe reaches a certain level L:
J. 1 Actions generated when a dynamic-pipe buffer passes various levels

Controlling Pipe End Situation Message Description

Output (creator) L > RemotePipeEndResume | PipePush Sufficient resources have been pro-
duced by the creator and are ready
for delivery to the consumer.

Output (creator) L < RemotePipeEndPause PipePause | The consumer has consumed to the
low water mark and must pause until
a sufficient amount of resources have
been produced.

Input (consumer) L < RemotePipeEndResume | PipePull More resources are requested from
the creator and processing may con-
tinue by the consumer.

Input (consumer) L > RemotePipeEndPause PipePause | The creator has produced to the high
water mark and must wait until a suf-
ficient amount of resources have
been consumed.

Dynamic pipes are initially dormant, and must be activated by an explicit request. Dynamic pipe requests may be
initiated by both ends of the pipe. For example, a print process may notify an off-line finishing process when a cer-
tain amount is ready by sending a PipePush message, or the printing process may request a new plate by sending a
PipePull message.

4.3.2.3 Comparison of Non-Dynamic and Dynamic Pipes

The resource link between non-dynamic pipes provides the buffering parameters for the process to which the link
belongs. Therefore, many processes can link to the same pipe resource. Furthermore, each process has its own
buffering parameters, whether it is a consumer or a producer. In order to control non-dynamic pipes, one master-
controller must control all processes linked to the pipe resource.

84 Chapter 4 Life Cycle of JDF

In contrast, dynamic pipes provide a URL address to control a process at the other pipe end. Then the buffering pa-
rameters of the resource link control the process at the other end. In the case of dynamic pipes, no master-controller
is required in order to control the pipe. Control is accomplished by sending pipe messages. If pipe resources are
linked to multiple consumers or producers, such as two finishing lines that consume the output of one press one pal-
ette at a time, it is up to implementation to ensure consistency of the processes.

When using pipe resources, it is recommended that scheduling data for the process be specified only in the
Nodelnfo element of the parent node of the processes linked by pipe resources in order to avoid scheduling dead-
locks. In Figure4.5, for instance, the actual start and end time of the corresponding parent of P1 and P2 are marked
on the time axis.

4.3.3 Parallel Processing

While serial processing assumes that all resources will be produced and consumed in a linear fashion, and while
overlapping processing uses multiple processes that work together to use and create resources, there are times when
it makes sense to run more than one process simultaneously, creating a more multi-pronged workflow. This kind of
process routing is known as parallel processing. Subsections of jobs are spawned off so that nodes may be executed
individually and simultaneously by the appropriate devices. Once the processes are complete, the spawned nodes
are merged back into the original job. The output resources of the merged nodes become inputs for later processes.
For example, an insert may be produced independently of a cover, and both will be bound together later.

In parallel processing, processes can be run in a coordinated parallel fashion by using independent resources.
An independent resource is a resource that is not shared between multiple processes. Implementation resources, for
example, cannot be shared and are therefore always independent, and Consumable and Quantity resources can each
be split to function as independent resources. Individual partitions of partitionable resources are independent and
may be processed in parallel. Read-only resources, such as parameters, can be shared without any restrictions, and
can therefore be used in read-only mode for parallel processing. Process chains created using independent resources
are known as independent process chains.

Parallel processing can proceed in one of two ways. Either a controller may organize the JDF nodes in a way
that allows it to initiate parallel processing or it can use the spawning-and-merging mechanism to field out chunks of
the job to execute simultaneously. If a controller chooses the latter method, parent nodes that contain independent
process chains can be spawned off and processed independently. For example, in order to improve production ca-
pacity, an agent may split consumable resources and create independent process chains in which each chain con-
sumes its own resource part. Afterwards, the agent can submit one of the created job parts to a subcontractor and
process the other part with its own facilities.

Parallel processing is used only to process multiple aspects of a job simultaneously; it is not used to process
multiple copies of a JDF job. In other words, a job must not be copied and sent to different controllers for parallel
processing. For more information about spawning of jobs, see Section 4.4 Spawning and Merging.

4.3.4 Ilterative Processing

Some processes, especially in the prepress area of production, cannot be described as a serial or parallel set of process
steps. Instead, a set of interdependent processes is iterated in a non-deterministic order. These processes are known as
iterative processes. For example, an advertisement is laid out that requires a photographic image. During the layout
phase, changes must be made to the color settings of the image, which is the reinserted to the layout. Changes such as
these can be described in a high level fashion by defining a resource Status attribute of Drafi. As long as an input re-
source to a process has a status of Draft, the Status of the output resource must not be Available.

The ResourcelLink that links to a draft input resource must include a DraftOK attribute to state that a draft in-
put resource is acceptable for a process. Thus a prepress layout process can be abstractly defined to work on draft
resources until an acceptable output has been achieved, but the output PDL file must not be used for printing until it
is Available and no longer designated as a Draft.

Iterative processes may be set up in a formal fashion using dynamic pipes to convey parameter change requests
or in an informal way that assumes that the operators of the various processes have an informal communication
channel. Both are described in greater detail below.

Chapter 4 Life Cycle of JDF 85

4.3.4.1 Informal lterative Processing

Informal iterative processing does not require a complete redefinition of the required resources at every iteration.
This kind of processing is generally used in a creative workflow, where a job is defined and gets refined in a series
of steps until it is completed. The information about the changes is transferred through channels that bypass JDF.
Nonetheless, the description of these processes in JDF is useful for accounting purposes, as the status of each proc-
ess may be monitored individually.

The ResourceLink elements for informal processing contain an additional DraftOK attribute, but in all other
ways they are identical to the ResourceLink elements used in simple sequential processing. Furthermore, the nodes
run through the same set of phases as they would in sequential processing. Nodes are designated only as Stopped
and not as Completed after being processed for an iterative cycle. They are marked as completed after their output
resources lose their Status of Draft.

4.3.4.2 Formal lterative Processing

In formal iterative processing, all Resourcelink elements between interacting processes are dynamic pipes. Every
request for a new resource is initiated by a PipePush or PipePull message that contains at least one Resource
element with the updated parameters. This resource is used by the process, and the resulting new output resource
can be consumed by the requesting process. The Status of Draft can be removed from a resource by sending the
creator a PipeClose message that has the optional UpdatedStatus attribute set to Available. A node can only
reach a Status of Completed if it has no remaining draft resources. Another method to remove the draft status is to
define a node for an Approval process that accepts draft resources as inputs and has non-draft resources representing
the same entities as outputs.

4.3.5 Proofing and Verification

In many cases, it is desirable to ensure that an executed process or set of processes have been executed correctly. In
the graphic arts industry this is verified by generating approvals and signing them. JDF allows modeling of the
proof process and modeling of the verification processes by allowing an optional ApprovalSuccess input resource
in any process. An ApprovalSuccess resource may only be set as Available if it has been signed by an author-
ized person.

If an approval fails and one or more processes that create the approved resource must be rerun, an agent must
modify the job appropriately and resubmit it to the corresponding controllers and devices. All interchange resources
from the first unsuccessful process to the approval must be designated as Unavailable.

4.4 Spawning and Merging

JDF spawning is the process of extracting a JDF subnode from a job and creating a new, complete JDF document
that contains all of the information needed to process the subnode in the original job. Merging is the process of re-
combining the information from a spawned job part with the original JDF job, even after both documents have
evolved independently. By using the mechanism for spawning and merging different parts of a job, it is possible to
submit job parts to distributed controllers, devices, other work areas, or other work centers.

The JDF spawning-and-merging mechanism can be applied recursively, which means that subjobs that have al-
ready been spawned may in turn spawn other sub-subjobs, and so on. This does not mean, however, that a node may
be respawned. If a node is spawned a second time, the previously submitted version must first be deleted and the
spawning procedure must be applied again to the original node.

No matter how many job parts have been spawned, however, merging is realized by copying nodes back to their
original location and synchronizing the appropriate resources. Therefore, each spawning must be logged in the job
by the agent performing the actions that result in a spawned job. Furthermore, in order to avoid inconsistent JDF
states after merging, each merging should be logged, or the appropriate spawn audit must be removed from the
AuditPool element.

Figure 4.6, shows, schematically, the spawning and merging of a subjob, designated as P.b. The following three
phases are defined on a the demonstrated time scale:

1. The first phase occurs before the subjob is spawned off.

86 Chapter 4 Life Cycle of JDF

2. The second phase occurs during the spawn phase, when the spawned subjob is executed separately.
3. The third phase occurs after the spawned job has been merged back into the original job.

Spawning Diagram of
Existing Job Tickets Existing Job Tickets

» Spawning Depth

Job P JobP.b
Spawn Point:
J time of spawning off
Phase Before P.b as a separate job
4 ._) ___________________________________
Parent
Spawn Phaset
Original Spawned Job
3 ._u __________________________________
Return Point:
Phase After time of merging back P.b
to its original Icoation
LY
Time

Figure 4.6 The spawning and merging mechanism and its phases

The three phases of the job part are bordered by the spawning point and the merging point. On a job scale, denoted
as spawning depth in Figure 4.6, one job ticket exists during the phases before and after spawning, and the following
two job tickets exist during the spawning phase: The job with the parent (P) of the original job part (P.b', also de-
noted as a subjob) that has been spawned; and the spawned job (P.by) itself.

This section provides examples that outline the various ways in which spawning and merging can be applied.

The six following cases are considered in the next six sections:

1. Standard spawning and merging.

2. Spawning and merging with resource copying.

3. Parallel spawning and merging of partitioned resources.

4. Nested spawning and merging in reverse sequence.

5. Spawning and merging of independent job tickets.

6. Simultaneous spawning and merging of multiple nodes.
JDF can support any combination of the cases described, but these six represent a cross-section of likely scenarios.
Case one is the simplest of all of the cases and is required in every instance of spawning and merging, regardless of

the circumstances surrounding the process. Each subsequent case requires additional processing that builds upon the
processing described in the cases that precede it.

Chapter 4 Life Cycle of JDF 87

4.4.1 Case 1: Standard Spawning and Merging

The actions described in this case must be applied in every spawning and merging process. All cases described in
this chapter, as well as any other that may be invented, begin with these procedures.

Spawning

When spawning a JDF subnode, the JDF elements Customerinfo and Nodelnfo elements of the spawned job may
be created and/or filled with the appropriate information (for details, see Sections 3.4 Customer Information and 3.5
Node Information). All resources that are referenced in the spawned node and its subnodes are located in the Re-
sourcePool containers of the nodes in which they reside.

To indicate that a process has been spawned, the Status attribute of the original JDF node must be set to the
value Spawned (see Table 3-3). The Status attribute of the spawned node remains unchanged.

A unique SpawnlD attribute should be set in the spawned node and a copy of its value should be set in the
NewSpawnlID of the newly created Spawned audit. This simplifies bookkeeping of audits and merging in case a
node is multiply spawned, either due to error conditions or in parallel with individual partitions. The value of
SpawnlD should also be appended to the SpawnIDs list of all spawned resources.

In order to identify all of the ancestors of job that has been spawned, an AncestorPool element is included in
the root node every spawned job. This element contains an Ancestor element that identifies every parent, grandpar-
ent, great-grandparent, and so on of the spawned subnode. In this way, the family tree of every spawned node is
tracked in an ordered sequence that allows an unbroken trace back through all predecessors. Consequently, the ele-
ments that comprise the AncestorPool of a spawned job must be copied into the AncestorPool element of the
newly spawned job before the ancestor information of the previously spawned job is appended to the AncestorPool
element of the newly spawned job. The last Ancestor element in each AncestorPool is the parent, the second-to-
last the grandparent, and so on. The following code is an example of a family tree:

<AncestorPool>
<Ancestor NodeID="p 01" FileName=“file://grandparent.jdf”/>
<Ancestor NodeID="p 02” FileName=“file://parent.jdf”/>
</AncestorPool>

The complete ancestor information is required in order to merge back semi-finished jobs with nested spawns. If the
last spawn is always merged first (LIFO) then knowing the direct parent is sufficient, as each parent will in turn
know its own parent back to the original and a complete ancestor line may be inferred.

When a job is spawned, the action must be logged in the parent node of the spawned node in the original job.
This is accomplished by creating a Spawned element with the jRef attribute set to the ID of the spawned JDF node.
This Spawned element must be appended to the AuditPool container of the original parent node. If no AuditPool
container exists in the parent node, one must be created for the purpose.

After a node has been spawned, it is legal although not necessary, to remove all contents of the spawned node in
the original node except for the /D attribute. It is not, however, possible to undo the spawning operation without ac-
cessing the spawned node once the contents of the spawned node have been removed.

Merging

After processing, the spawned job must be merged back to its original location. Before this can occur, however, du-
plicate information contained in any elements that are not required for further processing (such as Customerinfo or
Nodelnfo) may optionally be deleted by the agent executing the spawning and merging. Once this has been accom-
plished, the spawned node is copied to the location of the original node, completely overwriting the original node.
The Status of the original node is then overwritten with the result.

To complete the merging process, the merging agent must add a Merged audit to the AuditPool (see Section
3.10 AuditPool). The MergelD of the Merged audit should be set to the value of the SpawnID attribute of the
merged node. Furthermore, the AncestorPool container with all child elements must be removed and the value
SpawnlD of should be removed from the SpawniDs attribute of the appropriate resources.

88 Chapter 4 Life Cycle of JDF

4.4.2 Case 2: Spawning and Merging with Resource Copying

Figure 4.7, shown below, represents an example of a job that requires that resources be copied during spawning. In
this job, the nodes By and B, are linked to the same resource, which is localized in the resource pool of an ancestor
node, denoted as node A. This node is the parent node.

JDF Node A
Resource 1

JDF Node B, JDF Node B,
Link to Resource 1 Link to Resource 1

Figure 4.7 JDF node structure that requires resource copying during spawning and merging

When node B, is spawned, its resources must also be duplicated. To accomplish this, the affected resources must be
copied to the spawned job and purged during merging, a process that is described below.

4.4.2.1 Spawning of Resources with Inter-Resource Links
Resources may be linked to a node by three mechanisms:

e Explicit links defined by a ResourceLink in the ResourceLinkPool of the node.
e Implicit links defined by the rRefs attribute of linked Resources. Implicit links are recursive.
e Implicit links defined by the rRefs attribute of the AuditPool, Customerinfo or Nodelnfo element of the node.

A spawning or merging agent must resolve all of these links by copying any non-local resources into the local Re-
sourcePool.

Spawning

Spawning begins as it did in Case 1. The affected resources must then be copied to the resource pool of the spawned
job. The copied resources retains the same /D values as the original resources. These resources can be spawned for
read-only access, which allows multiple simultaneous spawning of one resource, or for read/write access, in which case
a resource may only be spawned one time. The read/write spawning of a resource locks the resource in the original file
in order to avoid conflicts that result from simultaneous modification or reading and modification of a resource. The
SpawnStatus attribute of the original resource must be set to SpawnedRW (which stands for “spawned read/write) or
SpawnedRO (which stands for “spawned read-only ™) to indicate that the resource is spawned. In other words, a copy
of the resource is spawned together with the spawned job. Read/write access effectively locks the original resources,
just as if the attribute Locked = true' were present. If a resource is spawned as read-only, it is not a good idea to mod-
ify the original resource that remains in the parent job ticket as this may lead to inconsistencies. The Locked attribute
of spawned resources that are copied read-only should also be set true. Furthermore, the value of the ID attribute of
each copied resource must be appended to the appropriate rRefsROCopied or rRefsRWCopied values of the
Spawned element that resides in the AuditPool of the parent node.

Merging

Merging begins as it did in Case 1. Then, if resources have been copied for spawning, they must be purged after merging.
Read-only resources may simply be deleted in the spawned node before merging. If the original resource and the spawned
resource are not identical, however, a JDF content error should be logged by a Notification element of Class = Error (see
Section 4.6 Error Handling). Read/write resources must be copied into their original location, completely overwriting the
original resource. The /D attributes of the overwritten resources must be specified in the rRefsOverwritten attribute of

! Usually resources become locked (Locked = true) if they are referenced by audit elements (see also Section 3.10
AuditPool).

Chapter 4 Life Cycle of JDF 89

the Merged element. The Merged element is then inserted into the AuditPool container of the parent during the usual
merging procedure, which is shown as the return point in the spawning diagram.

4.4.3 Case 3: Parallel Spawning and Merging of Partitioned Resources

In many cases, it is desirable to define a parallel workflow for partitioned resources. This is modeled by spawning a
node that defines the process for each part that is to be processed individually.

Spawning

Spawning begins as it did in Case 1. Then the agent must loop over all ResourceLinks and add the appropriate Part
element or elements to any resources that are spawned with write access.. In addition, copies of the Part elements
are appended to the Spawned audit element. The Status of any partitioned resource is defined individually for each
partition. The Status of the parent node is set to “Pool” and a StatusPool is generated with the appropriate infor-
mation. The PartStatus that describes the newly spawned node is set to “Spawned”.

The spawning procedure described in this section can be performed iteratively for multiple parts, effectively
generating one Spawned audit element and one PartStatus in the StatusPool per part. The Spawned and
Merged audit elements are not placed in the parent node of the node to be spawned, but rather in the node itself.

Merging

After an individual partitioned spawned node has been processed, it is merged back to the parent as was described in
Case 1. In addition, a copy of the Part elements of the corresponding Spawned audit is appended to the Merged
element and any read/write resources are merged into their appropriate parts. The Status of the spawned node is
copied into the appropriate PartStatus in the StatusPool.

4.4.4 Case 4: Nested Spawning and Merging in Reverse Sequence

Figure 4.8 shows an example of nested spawning and merging in reverse sequence. Process A spawns node B, and node
B spawns node C. Even if B is merged back to A for any reason before C is merged back to B, C still contains the infor-
mation of its grandparent in the AncestorPool element. In this way, C can trace back its ancestors and find the localiza-
tion of its parent, node B, in node A even though the spawned job, with B as root node, has already been deleted.

90 Chapter 4 Life Cycle of JDF

JDF-node: A
Status="Waiting"

JDF-node: B JDF-node: B
Status="Spawned" Status="Waiting"
Ancestors :=(A)

JDF-node: C JDF-node: C
Status="Spawned" Status="Waiting"
Ancestors ;= (A, B)

Spawning Depth

>
Spawning Diagrams
Correctly nested Reversely nested
JobA JobB JobC JobA JobB JobC

Time Time

Figure 4.8 Example for a JDF node structure with nested spawning

4.4.5 Case 5: Spawning and Merging of Independent Jobs

It is useful to spawn and merge independent jobs in situations where the execution of separate, independent small
jobs is not efficient in a commercial sense. Business cards for individual customers that are printed on one set of
sheets and subsequently cut are an example of this kind of situation. In cases such as these, small jobs can be col-
lected in order to form a big job that may then be executed as a whole. This allows job aspects such as production,
equipment load, and balancing of implementation resources to be performed more efficiently.

In this example, diagrammed in Figure 4.9, nodes C and E represent small jobs of identical type. Node bigA
represents a big job, which may exist already or which may have been created for the purposes of this spawning-
and-merging process. Once nodes C and E are gathered beneath node bigA, as described below, a big job may then
be executed as a whole for the sake of efficiency. When the big job is executed, the small jobs are effectively exe-
cuted simultaneously. Nodes A, B, and D are provided to demonstrate that spawned nodes in this example may be
related to other nodes in various ways.

Chapter 4 Life Cycle of JDF 91

JDF-node: A
Status=" Waiting " JDF-node: bigA
Status="Waiting"
Type="XYZ"
AuditPool:
JDF-node: B JDF-node: D Merged (C, Indep.="true")
Status=" Waiting " Status="Waiting" Merged(E, Indep.="true")
JDF-node: C JDF-node: E JDF-node: C JDF-node: E
Status="Spawned" Status="Spawned" Status="Waiting" Status="Waiting "
Type="XYZ" Type="XYZ" Type="XYZ" Type="XYZ"
Activity="Inactive" Activity="Inactive"
Spawning Diagram
independent job A independent job D big job bigA
Jobs A, B, C Jobs D, E Job bigA
small Job C
small Job E

execution phase

Time ¢ Time ¢

Figure 4.9 Example of the spawning and merging of independent jobs

Spawning

Spawning begins as it did in Case 1. Then, the process to be spawned (job C in Figure 4.9) is copied into a newly created,
or already existing, big job (job E in Figure 4.9). The process type of the root node of the big job must be identical to that
of the spawned processes. The Activation state of the spawned processes is set to Inactive, and an AncestorPool element
is added to the inactive spawned job to define the ancestry (as was described above). A Merged element containing in-
formation about the spawned independent jobs and when they have been received is added to the big job.

In the original jobs, the Status of the process is designated as Spawned, and a Spawned element with the optional
attribute jRefDestination specified is added to the parent of the original job. The attribute jRefDestination contains the
ID of the big job beneath which the spawned process has been placed. The changes in the parent are the equivalent of
those described in Case 1, except for the specification of the attribute jRefDestination in the Spawned element.

Where necessary, resource instances must be copied and logged by appending the IDs to the appropriate attrib-
ute (rRefsROCopied or rRefsRWCopied) of the Spawned element in the parent of the original job. This is re-
quired in single spawning and merging. Furthermore, the ResourceLink elements of the spawned process must be
transferred in content to the ResourceLinkPool of the active, big process node. In this way, the input resources and
the resources to be produced are linked to the big job.

Merging

For each of the spawned small jobs, the return procedure is performed as it was in the preceding cases. Once the
process explained in Case 1 is performed, the completed job is copied back to its original location and the attribute
Activation is restored by setting it to the activation of the big-job node after completion.

Eventually, copied resources must be purged and handled just as they were in Case 2. Then, the merging must
be logged by appending the Merged element to the AuditPool container of the parent of the original node. In inde-
pendent spawning and merging, the attribute jRefSource must be specified in the appropriate Merged element.

If the big job is retained, a Spawned element with the attribute Independent = true must be appended to the
AuditPool of the big job. For instance, saving the finished big job may be desirable if the audit information con-
tained in the big job should be available for an individual invoicing. Finally, the newly created big JDF should be
deleted to avoid the double existence of nodes.

92 Chapter 4 Life Cycle of JDF

4.4.6 Case 6: Simultaneous Spawning and Merging of Multiple Nodes

It is not possible to explicitly spawn multiple nodes simultaneously. The nodes must be grouped into a single Proc-
essGroup node, and this node can then be spawned and merged as described in the previous sections.

4.5 Node and Resource IDs

All nodes and resources must contain a unique identifier, not only because it is important to be able to identify indi-
vidual components of a job, but because JDF uses these IDs for internal linking purposes. Each agent that creates
resources and subnodes or that performs spawning and merging is responsible for providing IDs that are unique in
the scope of the file, taking into account all of the phases of a job’s life cycle.

IDs come in two flavors: pure and composite. A pure ID is an ID that does not contain the character period “.”
A composite ID is made up of pure IDs delimited by periods. For example:

purelD :: = ID —{"."}
compositelD :: = purelD ["'pureID]+
ID :: = purelD | compositeID

IDs are used differently under different circumstances. Several different circumstances are described below.

In case of no spawning — If an agent inserts new elements requiring IDs into an original job, then the agent as-
signs pure IDs to the new elements and must guarantee their uniqueness.

In case of single spawning — If an agent inserts new elements into a spawned job, then the agent creates compos-
ite IDs by using the ID of the root node and appending a unique pure ID delimited by a period. For example:

e ID of spawned root node: ID ="Job_01234.Procl"

e ID used for new element: ID =" Job_01234.Procl.newpurelD"

In case of independent spawning — The agent that merges the independent jobs beneath a big job inserts a
unique, pure ID (delimited by a period) in front of all IDs of each small job it receives. That means that the agent
must replace all IDs of each job it receives whenever it encounters an ID collision. If an agent inserts new ele-
ments into a spawned job, then the agent creates composite IDs by using the ID of the respective root node of the
small job and appends unique purelD, delimited by a period. For example:

e ID of'the big job with node /D = “A”

e Receives small job A; with some IDs: ID=“A” ID=“A.A” ID =“A.B” where the first is the ID of the root node.

e Receives small job A, with some IDs: ID =“A” ID =“A.A” ID = “anything” ...

e The agent creates locally unique pure IDs: ID =“A1” and ID = “A2” each prepended to all IDs of each received
small job; the IDs of the small job A| become: ID =“A1.A” ID=“A1.A.A” ID=“A1.A.B” and the IDs of the
small job A, become: ID =“A2.A” ID = “A2.A.A” ID = “A2.anything”. All IDs in the big job are unique.

e The agent creates a new element added to the small job A; with ID: /D =“A1.A.C”. Here the agent must
resolve the possible conflict if it would append the pure ID = “A” to the root ID = “A1.A”. That means the
agent has to check the uniqueness of each created ID.

e Before merging the jobs back to its original location the agent must remove the prepended pure IDs of all IDs,
here “A1”, “A2” respectively. Then the newly created element will be merged back with the ID = “A.C”.

4.6 Error Handling

Error handling is an implementation-dependent feature of JDF-based systems. The AuditPool element provides a
container where errors that occur during the execution of a JDF may be logged using Notification elements. Notifi-
cation elements may also be sent in JMF Signal messages. The content of the Notification element is described in
Table 3-30. Further details about error handling are provided in the next four sections.

4.6.1 Classification of Notifications

Notification elements are classified by the attribute Class. Every workflow implementation must associate a class
with all events on an event-by-event basis. The following list shows the possible values for Class:

Chapter 4 Life Cycle of JDF 93

o FEvent Indicates a pure event which occurred due to a certain operation-related action, for exam-
ple, machine events, operator activities, etc. This class is used for messaging.

e [Information Indicates not an error, but rather any information about a process that cannot be expressed
by the other classes, for example, the beginning of execution.

e Warning Indicates that a minor error has occurred and an automatic fix was applied. Execution contin-
ues. The node’s Status is unchanged. Appears in situations such as A4-Letter substitutions,
when toner is low, or when unknown extensions are encountered in a required resource

e Error Indicates that an error has occurred that requires user interaction. Execution cannot con-
tinue until the problem has been fixed. The node’s Status is Stopped. This value appears
in situations such as when resources are missing, when major incompatibilities are detected,
or when the toner is empty.

o Fatal Execution must be aborted. The node’s Status is Aborted. This value is seen with most
protocol errors or when major device malfunction has occurred.

4.6.2 Event Description

A description of the event is given by a generic Comment element, which is required for the notification classes In-
formation, Warning, Error, or Fatal. For example, after a process is aborted, error information describing a device
error may be logged in the Comment element of the Notification element. If phase times are logged, the
PhaseTime element that logged the transition to the Aborted state may also contain a local Comment element that
describes the cause of the process abortion. PhaseTime and Notification elements are optional subelements of the
AuditPool, which is described in Section 3.10.

4.6.3 Error Logging in the JDF File

A JDF-compliant controller/agent should log an error by inserting a Notification element in the AuditPool of the
node that generated the error. The Nodelnfo element may contain NotificationFilter elements to define the notifica-
tion events (or, more specifically, errors) that should be logged.

4.6.4 Error Handling via Messaging (JMF)

A JMF Signal message with a Notification element in the message body should be sent through all persistent chan-
nels that subscribed events of class error. How to subscribe error events via JMF, see Sections 5.2.2.3 Persistent
Channels and 5.5.1.1 Events. Note that this is different from the NotificationFilter elements of the Nodelnfo ele-
ment, which is defined for logging events by Notification elements to the AuditPool.

4.7 Test Running

In JDF, the notion of a test run is similar to the press notion of preflight. The goal is to detect JDF content errors
and inconsistencies in a job before the job is executed.

The ability to perform a test run may be built into individual devices or controllers. Alternatively, a controller

implementation may perform test runs on behalf of its devices. A test run may be routed through all of the different
devices and controllers in a workflow, just as if the test run were a standard execution run. For the routing of jobs
and nodes through different devices and controllers for a test, the spawning and merging mechanism may also be
applied. The devices/controllers receiving a job read it and analyze WITHOUT initiating execution. Rather, they
investigate the content of the node they would execute. A device/controller with agent capabilities may record re-
sults into the audit pool associated with a given process.
During test running, the requirements of the processes specified are compared to the capabilities of the devices tar-
geted. A device or controller explicitly tests whether the inputs that have been specified as required are actually the
inputs that are required, and that none are missing or in error. For example, an input requirement may be a URL
that, when a test run is performed, is found to point to an item that no longer exists in that location. Test running is
meant to prevent errors as a result of that kind of misinformation. It is particularly useful when running expensive
or time-consuming jobs.

94 Chapter 4 Life Cycle of JDF

It is also possible to test run specific parts of a workflow, or even individual nodes. An agent may request a test
of certain nodes by setting the JDF attribute Activation to TestRun (see Table 3-3), which is inherited by all descen-
dent nodes that are not inactive (Activation = Inactive). If a device or controller® detects an error in a node a Notifi-
cation element containing a textual description should be appended to the AuditPool element of the node in which
the error occurred, and, if messaging is supported, the error should be also communicated to the connected listeners
via messaging (for more information see Section 5.4 Error and Event Messages). If an error has been detected, the
agent can modify the job in order to correct the error. Once a test run has been completed successfully, the de-
vice/controller with agent capabilities changes the Status attribute of the tested node to Ready. If a test run fails,
the device/controller is required to record the process status as FailedTestRun. After the test run has finished, the
agent should log the result by appending a ProcessRun element to the AuditPool element. For more information
about audits, see Section 3.10 AuditPool.

In principle, execution and test runs may be run simultaneously. For example, one job part may be executed
while another part requests only a test. JDF also defines an Activation value of TestRunAndGo that requests a test
run and, upon successful completion, automatically initiates processing.

4.7.1 Resource Status During Testrun

In order to test run a complete set of nodes, it is sometimes necessary to imply the Status of resources that are pro-
duced by prior nodes. Successful test running does not set the Status attribute of a resource to Available unless the
resource actually is available. Nodes that require an output resource of a node that has completed test running for
purposes of test running may assume that these resources have a Status of Available for the purpose of test running
as long as the producing node has a Status of Ready.

, by device
capabilities

@ Valid Parameter Point
@ |Invalid Parameter Point

Figure 4.10 Parameter Space in device Capabilities®

4.8 Describing Device Capabilities with JDF

Device capabilities are described as a space of allowed resource parameter values within JDF. A device in this con-
text is assumed to execute one or more JDF nodes. Its capabilities are defined by the space of acceptable JDF re-
sources for the product intent or process described by the node. An individual JDF job description can be compared
to the device capabilities of a device by looping over all resource parameters of a JDF node that is to be executed by
a device. The job can be executed if all job parameter values are within the ranges specified by the device capabili-

? Note that only devices and controllers with agent capabilities can write in a JDF document.
3 Note that the restriction to three dimensions is for graphical demonstration purposes only.

Chapter 4 Life Cycle of JDF 95

ties. Note that only orthogonal parameter relationships can be described. Functional dependencies between individ-
ual resources and resource attributes are NOT supported. If the device capabilities describe product intent, the job is
executable when all product intent ranges overlap with the device capabilities description.

Details of the elements needed for device capability description are specified in Section 7.3 Device Capability
Definitions.

It is assumed that Device elements that describe device capabilities will be transported in JMF
KnownDevices messages. It is not recommended to specify the capabilities of a Device that is linked to a process
to specify that it should execute the given process.

96 Chapter 5 JDF Messaging with the Job Messaging Format

Chapter 5 JDF Messaging with the Job Messaging Format

Introduction

A workflow system is a dynamic set of interacting processes, devices and MIS systems. For the workflow to run ef-
ficiently, these processes and devices must communicate and interact in a well defined manner. Messaging is a sim-

ple but powerful way to establish this kind of dynamic interaction. :
The JDF-based Job Messaging Format (JMF) provides a wide range | | C P JMF = ROI
of capabilities to facilitate interaction between the various aspects of
a workflow, from simple unidirectional notification through the issu-
ing of direct commands. This chapter outlines the way in which JMF,
accomplishes these interactions. The following list of use cases is
considered:

e System setup

In order to automate aspects of your
production with out JDF, your technical
staff must become proficient in each of
the command languages that each of
your devices employ. By only buying

e Dynamic status and error tracking for jobs and devices JDF-enabled devices that use JMF as

. their control language, you only have
* Pipe control to learn one new device command
e Device setup and job changes language ... eventually, the only one

your MIS staff will need.

¢ Queue handling and job submission

e Device Capability description

Both Controllers and Devices may support JMF. This support requires hosting by a Web server. JMF messages are
most often encoded in pure XML, without an additional MIME/Multipart wrapper. Only controllers that support
JDF job submission via the message channel must support MIME for messages.

5.1 JMF Root

JMF and JDF have an inherently different structure. In order to allow immediate identification of messages, JMF
uses the unique name JMF as its own root-element name.

The root element of the XML fragment that encodes a message, like the root element of a JDF fragment, contains a
series of predictable attributes and instances of Message elements. These contents are defined in the tables that fol-
low, and are illustrated in

Figure 5.1. Message elements are abstract, as is indicated by the dashed line surrounding the Message element

in
Figure 5.1.
Table 5-1 Contents of the JMF root

Name Data Type Description

DevicelD ? string Identifies the recipient device or controller. The envelope of the
message contains the URL address of the controller that receives the
message via HTTP. Therefore, if DevicelD does not specify a re-
cipient, that controller is assumed to be the recipient.

SenderID string String that identifies the sender device, controller or agent.

TimeStamp dateTime Time stamp that identifies when the message was created.

Version ? string JMF version. The current and default version is “1.1”.

xmins ? URI JDF supports use of XML namespaces. The namespace must be de-

- clared. For details on using namespaces in XML, see
http://www.w3.org/TR/REC-xml-names/.

Message + element Abstract message element(s).

http://www.w3.org/TR/REC-xml-names/

Chapter 5 JDF Messaging with the Job Messaging Format

The following table describes the contents of the abstract Message element. All messages contain an /D and a
Type attribute.

Table 5-2 Contents of the abstract Message element

Name Data Type Description

ID ID Identifies the message.

Time ? dateTime Time at which the message was generated. This attribute is only re-
quired if this time is different from the time specified in the Time-
Stamp attribute of the JMF element.

Type NMTOKEN Name that identifies the message type. Message types are described

in Sections 5.5 and 5.6.

The following figure depicts the basic messaging structure and the message families.

(IMF

~

—|Message+ |
* TimeStamp | = TEmema=====
= SenderID
e Version?
. DevicelD?
Message families: | Message
s ID
e Iype | T/ =T
+ Time? QueryTypeObj I

~

Command

AcknowledgeType?
AcknowledgeURL?

rAcknowIedge

. AcknowledgeType?
L] refID
L returnCode?

Notification

Query ‘ Subscription?

= RepeatStep?
= RepeatTime?
* URL

|—[ObservationTarget*]

— 2
Signal

= LastRepeat?

U TR

—[Notmcatlon'?]

Y . —|ResponseTypeOb_7 |

Response ————————
* Acknowledged? —(Trlgger?]
o refID
. ReturnCode?
. Subscribed?

Notification?]

ResponseTypeObj |

Figure 5.1 Contents of a JMF root element and the message families

97

98 Chapter 5 JDF Messaging with the Job Messaging Format

5.2 JMF Semantics

JMF encodes messages of several types. The first part of this section describes message elements that contain and convey
content, while the second describes the way in which these element types can be used to establish communication.

5.2.1 Message Families

A message contains one or more of the following five high level elements, referred to as message families, in the
root node. These families are Query, Command, Response, Acknowledge, and Signal. An explanation of each
family is provided in the following sections, along with an encoding example.

Response & Acknowledgement

The terminology used for message families contradicts common usage but will be retained for backwards
compatibility. The Response actually functions as an Acknowledgement that a Command will be acted upon,
while the Acknowledge could more properly be named Completion or Result. The naming was defined to be
consistent with HTTP naming conventions so that a Response is always transported on an HTTP response.

5.2.1.1 Query

A Query is a message that retrieves information from a controller without changing the state of that controller. A
query is sent to a controller. After a Query is sent, a Response is returned. If the Query included a Subscription,
Signals are sent to the designated URL until a StopPersistentChannel Command is sent.

Query with Subscription

Client's
Client Controller Subscription URL
Query >
< Response
Response -
Interestihg event 1
Signal 1 =
Interestifig event 2
Signal 2 A
Interestifg event n
Signal n -
Command >
StopPersistentChannel
- Response

Figure 5.2 Interaction of Messages with a subscription

It contains an /D attribute and a Type attribute, which it inherits from the abstract message type described in Table 5-2
Contents of the abstract Message element. JMF supports a number of well defined query types, and each query type
can contain additional descriptive elements, which are described in Sections 5.5 and 5.6. The following table shows
the content of a Query message element.

Chapter 5 JDF Messaging with the Job Messaging Format 99

Table 5-3 Contents of the Query message element

Name Data Type Description

QueryTypeObj * element Abstract element that is a placeholder for any descriptive elements
that provide details required for the query. The element type of
QueryTypeObj is defined by the Type attribute of the abstract
Message element.

Subscription ? element If specified creates a persistent channel. For the structure of a Sub-
scription element, see Section 5.2.2.3 Persistent Channels.

The following is an example of a query message:

<JMF TimeStamp="2000-07-25T11:38:23.3+02:00" SenderID="Controller-1">
xmlns="http://www.CIP4.0org/JDFSchema 1 1"

<Query Type="KnownJDFServices" ID="M0O0O7"/>
</JMF>

5.2.1.2 Response
A Response to a Query or a Command is always a direct answer of a Query or a Command. A response is re-
turned from a controller to the controller that put the query/command. Responses are not acknowledged themselves.
A command response indicates that the command has been received and interpreted. The response of com-
mands with short latency also includes the information about the execution. Commands with long latency may addi-
tionally generate a separate Acknowledge message (see Section 5.2.1.5 Acknowledge) to broadcast the execution of
the command. Command responses should comprise a Notification element that describes the return status in text.
Responses contain an attribute called refID, which identifies the initiating query or command. The following table
shows the content of a Response message.

Table 5-4 Contents of the Response message element

Name ' Data Type " Description

Acknowledged ? boolean Used only in responses to command messages. Indicates whether
the command will be acknowledged separately. If true, an Ac-
knowledge message will be supplied after command execution. If
false, no Acknowledge message will be supplied. Default = false

reflD NMTOKEN Copy of the ID attribute of the initiating query or command message
to which the response refers.

ReturnCode ? integer Describes the result. 0 indicates success. For all other possible
codes see Appendix I. Default =0

Subscribed ? boolean If a Subscription element has been supplied by the corresponding
query, this attribute indicates whether the subscription has been re-
fused or accepted. If frue, the requested subscription is accepted. If
false, the subscription is refused because the controller does not sup-
port persistent channels. For details, see Section 5.2.2.3 Persistent
Channels. Default = true

Notification ? element Additional information including textual description of the return
code. The Notification element should be provided if the Return-
Code is greater than 0, which indicates that an error has occurred, or
if the initiating message is a command.

ResponseTypeObj * element Abstract element that is a placeholder for any descriptive elements
that provide details queried for or details about command execution.

An example of a response on a command is provided in the Section 5.2.1.4 Command. The encoding example for
the query, shown above, might generate the following response:

<JMF TimeStamp="2000-07-25T711:38:25+02:00" SenderID="RIP-1">
<Response Type="KnownJDFServices" ID="M107" refID="MOO7">

100 Chapter 5 JDF Messaging with the Job Messaging Format

<JDFService Type="Rendering"/>
<JDFService Type="Imposition"/>
<JDFService Type="Trapping"/>

</Response>
</JMF>
5.2.1.3 Signal

A signal message, which is syntactically equivalent to a combination of a Query message and a Response mes-
sage, is a unidirectional message sent on any event to other controllers. This kind of message is used to automati-
cally broadcast some status changes.

Controllers can get signal messages in one of three ways. The first way is to subscribe for them with an initiat-
ing query transmitted via a message channel that includes a Subscription element. The second way is to subscribe
for them with an initiating query defined in the Nodelnfo element of a JDF node that also includes a Subscription
element (see JMF elements in Table 3-7). The first query is transmitted separately via a mechanism such as HTTP,
whereas the second is read together with the corresponding JDF node. Once the subscription has been established,
signals are sent to the subscribing controllers via persistent channels. In both cases, however, the Signal message
contains a reflD attribute that refers to the persistent channel. The value of the refID attribute identifies the persis-
tent channel that initiated the Signal.

The third way in which a controller may receive a signal is to have the signal channels hard-wired, for example,
by a tool such as a list of controller-URLs read from an initialization file. For example, signals may be generated
independently when a service is started, or when subcontrollers that are newly connected to a network want to in-
form other controllers about their capabilities. Hard-wired signals, however, must not have a reflD attribute. If no
reflD is specified, the corresponding query parameters must be specified instead.

Table 5-5 Contents of the Signal message element

Name Data Type Description

LastRepeat ? boolean If true, the persistent channel is being closed by the controller and no
further messages will be generated that fulfill the persistent channel
criteria. If false, further signals will be sent. For further details, see
Section 5.2.2.3 Persistent Channels. Default = false

reflD ? NMTOKEN Identifies the initiating query message that subscribed this signal
message. Hard-wired signals must not contain a reflD attribute.

Notification ? element Textual description of the signal. The Notification element should
be provided if the severity of the event that caused this signal is
greater than warning, or if pure events have been subscribed. For
details about subscribing pure events see Section 5.5.1.1 Events.

QueryTypeObj ? element If no refID is specified, the corresponding query parameters must be
specified instead by providing this element.

This element is an abstract element and a placeholder for any de-
scriptive elements that provide details for the virtual Query, which,
if sent, would convey the same ResponseTypeObj elements. The
element type of QueryTypeObj is defined by the Type attribute of
the abstract Message element.

ResponseTypeObj * element Abstract element that is a placeholder for any descriptive elements
that provide details subscribed. These element types are the same as
in the Response message element.

Trigger ? element Describes the trigger event which caused this signal. The Trigger
element recalls some information provided during the subscription of
the signal messages. For details on subscribing signals see Section
5.2.2.3 Persistent Channels.

The following table describes the structure of the Trigger element.

Chapter 5 JDF Messaging with the Job Messaging Format 101

Table 5-6 Contents of the Trigger element

Name Data Type Description

RepeatStep ? integer Recalls the RepeatStep attribute specified during subscription of
the signal. For details see Table 5-12.

RepeatTime ? number Recalls the RepeatTime attribute specified during subscription of
the signal. For details see Table 5-12.

ChangedAttribute * element If a change of an attribute triggered this signal, this element de-
scribes the attribute that changed.

Added ? element A pool that contains the description of trigger events caused by the
adding of elements like services, controllers, devices, or messages.

Removed ? element A pool that contains the description of trigger events caused by the

removal of elements like services, controllers, devices, or messages.

The following describes the structure of the ChangedAttribute element referenced in the table above.
Table 5-7 Contents of the ChangedAttribute element

Name Data Type Description

AttributeName NMTOKEN Name of the attribute that changed.

ElementID ? NMTOKEN ID of the element that changed. Used only in conjunction with a
change of a certain resource or node which cannot uniquely be ad-
dressed by the other attributes of this element. Default = none.

ElementType NMTOKEN Name of the element which contains the changed attribute.

OldValue string Old value. The string has to be cast to the appropriate data type that
depends on the attribute's data type.

NewValue string New value of the attribute.

The following describes the structure of the Added element referenced in Table 5-6.
Table 5-8 Contents of the Added element

Name
AddedElement *

Data Type
element

Description

If the appending of an element like a service, controller, device, or
message triggered this signal, this element describes which service,
controller, device, or message etc. has been added.

This is an abstract element. It is a placeholder for a Respon-
seTypeObj like NotificationDef, a JDFController, a Device, a
JDFService, or a MessageService.

For details on these elements see Section 5.5.1 Controller Registra-
tion and Communication Messages.

The following describes the structure of the Removed element referenced in Table 5-6.
Table 5-9 Contents of the Removed element

Name
RemovedElement *

Data Type
element

Description

If the removal of an element like a service, controller, device, or
message triggered this signal, this element describes which service,
controller, device, or message etc. has been removed.

This is an abstract element. It is a placeholder for a Respon-
seTypeObj like NotificationDef, a JDFController, a Device, a
JDFService, or a MessageService.

For details on these elements see Section 5.5.1 Controller Registra-
tion and Communication Messages.

102 Chapter 5 JDF Messaging with the Job Messaging Format

The following is an example of a signal message:

<JMF TimeStamp="2000-07-25T12:28:01+02:00" SenderID="Press 45">
<Signal Type="Status" ID="s123">
<StatusQuParams JobID="42”" JobPartID="66"/>
<DeviceInfo DeviceStatus="Setup”/>
</Signal>
</JMF>

5.2.1.4 Command

A command is syntactically equivalent to a Query, but rather than simply retrieving information, it also causes a
state change in the target device. The following table contains the contents of a Command message. A Response
is returned immediately after a Command. If the Command included an AcknowledgeURL, and the Command
was going to take a while, the device controller may elect to return the Response with Acknowledge = true, and
send an Acknowledge to the AcknowledgeURL when the Command completes.

Table 5-10 Contents of the Command message element

Name Data Type Description

AcknowledgeURL ? URL URL of the recipient of any Acknowledge. If specified, the com-
mand requests for a Acknowledge message depending on the value
of AcknowledgeType.

AcknowledgeType ? enumerations Defines the actions that should be acknowledged. This is necessary

- mainly for device-machine pairs where the machine is not accessible
online.

Received: The Command has been received and understood, e.g. by
an operator.

Applied: The Command has been applied to the machine, e.g. by an
operator.

Completed: The Command has been executed. The default.

CommandTypeOb; * element Abstract element that is a placeholder for any descriptive elements
that provide details of the command.

The following example demonstrates how a ResumeQueueEntry command may cause a job in a queue to begin executing:

<JMF DeviceID="A3 Printer" TimeStamp="2000-07-25T12:32:48+02:00" SenderID="MIS master A">
<Command ID="MO09" Type="ResumeQueueEntry">
<QueueEntryDef QueueEntryID="job-0032"/>
</Command>
</JMF>

The following example shows a possible response to the command example above:

<JMF .. SenderID="A3 Printer">
<Response ID="M109" Type="ResumeQueueEntry" refID="M009">
<Queue DevicelID="A3 Printer”>
<QueueEntry QueueEntryID="job-0032" Status="Running” JobID="job-0032"/>
</Queue>
</Response>
</JMF>

5.2.1.5 Acknowledge

An Acknowledge message is an asynchronous answer to a Command issued by a controller. Each Acknowledge
message is unidirectional and syntactically equivalent to a command Response, and the reflD attribute of each re-
fers to the initiating command. Acknowledge messages are generated if commands with long latency have been
executed in order to inform the command sender about the results. Acknowledge messages are only generated if
the initiating command has specified the attribute AcknowledgeURL.

Chapter 5 JDF Messaging with the Job Messaging Format 103

Command with Acknowledge

Client's
Client Controller Acknowledge URL
Command >
R
< esponse
Job Cofppletion
(Acknowledge) >

Figure 5.3 Interaction of Command and Acknowledge Messages

They are announced in the Response message to the command by the setting the attribute Acknowledged = true.

Table 5-11 Contents of the Acknowledge message element

Name Data Type Description
AcknowledgeType ? enumerations | Defines the context of this message. This is necessary mainly for de-
- vice-machine pairs where the machine is not accessible online.

Received — The initiating Command has been received and under-
stood, e.g. by an operator.

Applied — The initiating Command has been applied to the machine,
e.g. by an operator.

Completed — The initiating Command has been executed. The de-

fault.

Notification element Textual description of the command execution.

reflD NMTOKEN Identifies the initiating command message the acknowledge refers
to.

ReturnCode ? integer Describes the result. 0 indicates success. For all other possible

codes see Appendix I. Default =0

ResponseTypeObj * element Abstract element that is a placeholder for any descriptive elements
that provide details about command execution.

Delayed Acknowledge messages contain the same Respon-
seTypeObj elements as direct Response messages.

The following is an example of an Acknowledge message:

<JMF .. >
<Acknowledge ID="M109" Type="PipePush" refID="M010">
<JobPhase .. />
</Acknowledge>
</JMF>

5.2.2 JMF Handshaking

JMF can seek to establish communication between system components in several ways. This section describes the
actions and appropriate reactions in a communication using JMF.

5.2.2.1 Single Query/Command Response Communication

The handshaking mechanisms for queries and commands are equivalent. The initiating controller sends a Query or
Command message to the target controller. The target parses the Query or Command and immediately issues an
appropriate Response message. If a Command with long latency is issued, an additional Acknowledge message
may be sent to acknowledge when the command has been executed.

104 Chapter 5 JDF Messaging with the Job Messaging Format

5.2.2.2 Signal
JMF signal messages are “fire and forget.” In other words, no acknowledgment is sent by the receiver besides the
standard protocol HTTP response that is sent when a communication link is sought.

5.2.2.3 Persistent Channels
Queries may be made persistent by including a Subscription element that defines the persistent channel-receiving
end (see also
Figure 5.1). The responding controller should initially send a Response to the subscribing controller. Then the re-
sponding controller should send Signal messages whenever the condition specified by one of the attributes in the
following table is true. This is referred to as a persistent channel. The reflD attribute of the Signal is defined by
the ID attribute of the Query. In other words, the refID of the signal identifies the persistent channel. Any Query
may be set up as a persistent channel, although in some cases this may not make sense.

Table 5-12 Contents of the Subscription element

Name Data Type Description
RepeatStep ? integer Requests an update signal whenever the Amount associated with the
query is an integer multiple of RepeatStep.

Default = 0, which means no repeat. Then it is up to the sending
controller to generate Signals.

RepeatTime ? number Requests an update signal every RepeatTime seconds. If defined,
the Signal is generated periodically independent of any other trigger
conditions. Default = no repeat

URL URL URL of the persistent channel receiving end.

ObservationTarget * element Requests an updating Signal message whenever the value of one of
the attributes specified in ObservationTarget changes.

Table 5-13 Contents of the ObservationTarget element

Name Data Type Description

ElementType ? NMTOKEN Name of the element that contains attributes that may change. De-
faults to the abstract ResponseTypeObj of the message.

Attributes ? NMTOKENS | Requests an update signal whenever the value of one of the attrib-

utes specified by Aftributes is modified. A value of “*” denotes a
message request for any attribute change which is the default.

ElementIDs ? NMTOKENS | IDs of the elements that contain attributes that may change. Used
only in conjunction with a query of the state change of a certain re-
source or node which cannot uniquely be addressed by the other at-
tributes of this element. Default = none.

If a persistent signal channel has been set up and the device knows that this is the last time that the condition for sig-
naling will be frue, it should set the LastRepeat flag of the corresponding Signal message to true. In general, this
will happen for a Status query, as when the job that has been tracked is completed. It may also happen when a de-
vice is shut down and will, therefore, not send any further updates. If a controller that does not support persistent
channels is queried to set up a persistent channel, it must answer the query with a Response, set Subscribed to
“false”, and set the ReturnCode to “111”.

Multiple attributes of a Subscription element are combined as a boolean OR operation of these attributes. For instance,
if RepeatStep and ObservationTarget are both specified, messages fulfilling either of the requirements are requested. If
the subscription element contains only a URL, it is up to the emitting controller to define when to emit messages.

Creating Persistent Channels in a JDF Node

The Nodelnfo element of a JDF node may contain JMF elements that contains a set of queries (not commands) that
define persistent channels. Parsing a JDF that contains a JMF with a Subscription element is equivalent to receiv-
ing the messages that are specified in the JMF node. If the parsing controller cannot handle the request, it may gen-
erate a Response with ReturnCode = “111” and Subscribed = “false”, accompanied by a Notification element
describing the rejection. It is not required to emit the Response, e.g., if the agent parses a Resource request but
has no access to the device information.

Chapter 5 JDF Messaging with the Job Messaging Format 105

Deleting Persistent Channels
A persistent channel may be deleted by sending a StopPersistentChannel command, as described in Section
5.5.1.7 StopPersistentChannel.

5.3 JMF Messaging Levels

A JDF-conforming controller may opt to support one of
the following messaging compliance levels offered by

JMF:

[& What’s your JMF SOP?

No messaging Controllers have the option of
supporting no messaging at all. For this level, | As part of your strategic equipment purchasing
JDF includes Audit records for each process | procedures and requirements, consider what the
that allow the results of the process to be re- | JDF Messaging Levels are desired, and what the
corded. minimum level of conformance will be for youl
new equipment purchases.

Notification Most controllers will choose to
support some level of messaging capability.
Notification is the most basic level of support. Devices that support notification provide unidirectional
messaging by sending Signal messages. Notification messages inform the controller when they begin and
complete execution of some process within a job. They may also provide notice of some error conditions.
Setup of the notification channel can be defined in a JDF node or hard-wired. In order to set up notification
messages via a Nodelnfo element, the controller must be able to read JMF query elements from a JDF
document.

Query support The next level of communication supports queries. Controllers that support queries re-
spond to requests from other controllers by communicating their status using such tools as current Job/D
attributes, queued JoblD attributes, or current job progress. Queries require bi-directional communication
capabilities.

Command support This level of support provides controllers with the ability to process commands. The
controller can receive commands, for instance, to interrupt the current job, to restart a job, or to change the
status of jobs in a queue.

Submission support Finally, controllers may accept JDF jobs via an HTTP post request to the messaging
channel. In this case, the messaging channel must support MIME/Multipart/Related documents. For more
details on submission, see Section 5.6.3.8 SubmissionMethods.

5.4 Error and Event Messages

If a command or a query message is not successfully handled, a processor must reply with a standardized response
that may contain a Notification element. Notification elements, described in detail in Section 3.10.1.2 Notification,
convey a textual description. The information contained in the Notification element may be used by a user interface
to visualize errors.

The response messages Response and Acknowledge contain an ReturnCode attribute. ReturnCode de-
faults to 0, which indicates that the response is successful. In case of success and in responses to commands an in-
formational Notification element (Class = “Information”) may be provided. In case of a warning, error or fatal
error, the ReturnCode is greater than 0 and indicates the kind of error committed. In this case, a Notification ele-
ment should be provided. Error codes are defined in Appendix I. The following example uses a Notification ele-

ment to

<JMF ..
<Res
<N

</
</Re
</JMF>

describe an error:
>
ponse ID="M109" Type="ResumeQueueEntry" refID="M0O09" ReturnCode="5">
otification Class="Error" Type="Error”>
<Comment>StartJob unsuccessful - Device does not handle commands</Comment>
<Error ErrorID="1234"/>
Notification>
sponse>

106 Chapter 5 JDF Messaging with the Job Messaging Format

Notification elements are also used to signal usual events due to any activities of a device, operator, etc., e.g., scanning
a bar code. Such pure events can be subscribed by the Events message described in Section 5.5.1.1 Events.

5.5 Standard Messages

The previous sections in this chapter provide a description of the overall structure of JMF messages. This section
contains a list of the standard messages that are defined within the JDF framework. It is not required that every
JDF-compliant application support every one of the signals and queries described in this list. It is, however, possible
to discover which messages are supported in a workflow. A controller responds to the KnownMessages query by
publishing a list of all the messages it supports (see Section 5.5.1.3 KnownDevices, below).

At the beginning of each section there is a table that lists all of the message types in that category. These tables
contain three columns. The first is entitled “Message Type,” and it lists the names of each message type. The second
column is entitled “Family.” The values in this column describe the kind of message that is applicable in the cir-
cumstance being illustrated. The following abbreviations are used to describe the values:

Q: Query

C: Command
R: Response
S: Signal

More than one of these values may be valid simultaneously. If that is the case, then all applicable letters are in-
cluded in the column. Additionally, there are a few special circumstances indicated by particular combinations of
these letters. The letters “QR” or “CR” indicate that all Query and Command messages cause a Response mes-
sage to be returned. If the message may occur as a Signal, either from a subscription or independently, the “Fam-
ily” field in the table also contains the letter “S”. Finally, the third column provides a description of each element.

At the beginning of each section describing the contents and function of the message types listed in the tables
described above is a table containing the instantiation (i.e., the type) of all of the abstract subelements applicable to
the message being described. Each table contains an entry that describes the details of the query or command as
well as an additional entry that describes the details of the corresponding response. The tables resemble the follow-
ing template:

Table 5-14 Messaging table template

Object Type Element name ‘ Description
Abstract subelement of the | Name and type of the subelement that defines spe- | Short description of the subele-
query or command: cifics of the query or command, followed by a car- | ment(s), if applicable.

dinality symbol.
Abstract subelement of the | Name and type of subelement that contains spe- Short description of the subele-
response to a query or cific information about the response to the query | ment(s), if applicable.
command: or command followed by cardinality symbol.

The name of the abstract subelement of a Query element is QueryTypeObj, the name of the abstract subelement of
a Command element is CommandTypeObj, and the name of the abstract subelement of a Response as well as an
Acknowledge element is ResponseTypeOb;.

5.5.1 Controller Registration and Communication Messages

The message types of the following table are defined in order to exchange metadata about controller or device abili-
ties and for general communication.
Table 5-15 Process registration and communication messages

Message type Family | Description

Events QRS Used to subscribe pure events occurring randomly like scanning of a
bar code, activation of function keys at a console, error messages, etc.

KnownControllers QRS Returns a list of JMF-capable controllers.

KnownDevices QRS Returns information about the devices that are controlled by a control-
ler.

Chapter 5 JDF Messaging with the Job Messaging Format 107

Message type Family | Description

KnownJDFServices QRS Returns a list of services (JDF Node Types) that are defined in the JDF
specification.

KnownMessages QRS Returns a list of all messages that are supported by the controller.

RepeatMessages QR Returns a set of previously sent messages that have been stored by the
controller.

StopPersistentChannel CR Closes a persistent channel.

5.5.1.1 Events

Table 5-16 Contents of the Events message

Object Type Element name Description
QueryTypeObj NotificationFilter ? Refines the list of events queried.
ResponseTypeObj NotificationDef * List of Notification types that match NotificationFilter.

The Events message type is intended to be used to query for supported event messages and to subscribe for ran-
domly occurring events of a device or controller. These events are described in Section 4.6.1 Classification of Noti-
fications and can only be transmitted via Signal messages. If the query contains a Subscription element, a
NotificationFilter element is combined by a logical AND operation with the Subscription element for selective
subscriptions. An empty Events message (without a Subscription and NotificationFilter element) can be used to
query for all events, which are supported by a device or controller.

The controller that subscribes for Events messages receives Signal messages that convey only Notification
elements containing information about the event. The event type and values of these messages may then be pro-
vided by specifying a Type attribute and an abstract NotificationDetails element in the Notification element, as de-
scribed in Section 3.10.1.2 Notification. Possible NotificationDetails elements are defined in Appendix J
NotificationDetails. Example of a subscription of Events and the response:

<JMF .. >
<Query Type="Events" ID="M170">
<Subscription URL="http://www.anycompany.com/MIS/JMF/JobTracker"/>
<NotificationFilter Classes ="Event Warning Error Fatal"/>
</Query>
</JMF>
<JMF .. >
<Response ID="M1001l" refID="M170" Type="Events">
<NotificationDef Classes="Warning Error Fatal” Type="Error”/>
<NotificationDef Classes="Event" Type="FCNKey”/>
<NotificationDef Classes="Event Error" Type="Barcode”/>
<NotificationDef Classes="Event" Type="SystemTimeSet”/>
<NotificationDef Classes="Event" Type="anycompany:PrivateEvent 1”/>
<NotificationDef Classes="Event" Type="anycompany:PrivateEvent 2”/>
<Response/>
</JMF>

Structure of the NotificationFilter Element
Table 5-17 Contents of the NotificationFilter element

Name Data Type Description

DevicelD ? string ID of the device whose messages are queried/subscribed. May be
specified for device selection if the controller controls more than
one device.

JobID ? string JobID of the job whose messages are queried/subscribed.

JobPartlD ? string JobPartID of the job whose messages are queried/subscribed.

108 Chapter 5 JDF Messaging with the Job Messaging Format

Name Data Type Description

Types ? NMTOKENS [Possible notification type names are defined in Appendix J
NotificationDetails. Matching notification types are re-
turned/subscribed. Defaults to all supported notification types.

Classes ? enumerations | Defines the set of notification classes to be queried/subscribed for.
Possible values are:

Event
Information
Warning
Error

Fatal
Default = all.

If both Classes and Types are a list, the NotificationFilter defines
an OR of all permutations.

Structure of the NotificationDef Element
Table 5-18 Contents of the NotificationDef element

Name Data Type Description
Classes enumerations Possible values are:

Event

Information

Warning

Error

Fatal

For details, see Section 4.6.1 Classification of Notifications.

Type NMTOKEN Notification type, that is the name of the element derived from
the abstract NotificationDetails element. For a list of prede-
fined names see Appendix J NotificationDetails.

5.5.1.2 KnownControllers
Table 5-19 Contents of the KnownControllers message

Object Type Element name Description
QueryTypeObj - -
ResponseTypeObj JDFController * Known controllers.

The KnownControllers query requests information about the controllers and devices that are known to the control-
ler and may be directly accessed by JIMF messaging. KnownControllers is designed to define a registration server.
A processor that needs information about its system environment can query a registration server for a list of known
controllers. This list can subsequently be iterated using the other process registration queries in this section. The
URL of the master registration server must be defined using a method outside of JDF.

JDFController
Table 5-20 Contents of the JDFController element

Name Data Type Description
URL URL URL of the controller.

Chapter 5 JDF Messaging with the Job Messaging Format 109

The following is an example of a response to a KnownControllers query:

<Response ID="M1" refID="Ql" Type="KnownControllers">
<JDFController URL=“http://www.anycompany.com/controller" DescriptiveName="Printer
Controller"/>

</Response>

5.5.1.3 KnownDevices
Table 5-21 Contents of the KnownDevices message

Object Type Element name Description

QueryTypeObj DeviceFilter ? Refines the list of devices queried. Only devices that
match the DeviceFilter are listed. The default is to re-
turn a list of all known devices.

ResponseTypeObj Device * The known devices.

The KnownDevices query requests information about the devices that are controlled by a controller. If a high level
controller controls lower level controllers, it should also list the devices that are controlled by these. The response is
a list of Device resources (see Section 7.2.44 Device) controlled by the controller that receives the query, as dem-
onstrated in the following example:

<Response ID="M1" refID="Ql" Type="KnownDevices">
<Device DevicelID="Joe the SpeedMaster" DeviceType="Heidelberg SM102/6 rev. 47.11" />

</Response>

Structure of the DeviceFilter Element
The DeviceFilter element refines the list of devices that should be returned. Only devices that match all parameters
of one of the Device resources specified in the DeviceFilter element are included.

Table 5-22 Contents of the DeviceFilter element

Name Data Type Description
DeviceDetails ? | enumeration | Refines the level of provided information about the device. Possible values

None — Default value.
Brief— Provide all available device information except for Device elements.

Modules — ModuleStatus elements should be provided without module spe-
cific status details and without module specific employee information.

Details — Provide maximum available device information excluding device
capability descriptions. Includes Device elements which represent details of
the device.

Capability — Provide Device elements with DeviceCap subelements which
represent details of the capabilities of the device.

Full — Provide maximum available device information including device ca-

pability descriptions. Includes Device elements which represent details of
the device.

Device * element Only devices that match the attribute values specified in one of these De-
vice resources are included. Devices match the criteria if the attribute val-
ues specified here in the Device resource match the equivalent attribute
values of the known devices. Unspecified attributes always match. If De-
vice is not specified, all known Devices are returned.

110 Chapter 5 JDF Messaging with the Job Messaging Format

5.5.1.4 KnownJDFServices

Table 5-23 Contents of the KnownJDF Services message

_Object Type _ Element name ~ Description
QueryTypeObj - -
ResponseTypeObj JDFService * Processes that the controller or device can exe-

cute.

The KnownJDFServices query returns a list of services that are defined in the JDF specification, such as Conven-
tionalPrinting, RIPping, or EndSheetGluing. 1t allows a controller to publish the services that the devices it con-
trols are capable of providing. The response is a list of JDFService elements, one for each supported process type.

JDFService
JDFService elements define the node types that can be processed by the controller. A JDF processor should be ca-
pable of processing Combined nodes of any of the individual JDFService elements that are specified. It is therefore
not necessary to define every permutation of allowed combinations. It need not be able to process individual nodes
with a type defined in the Types attribute of a Combined JDFService element.

Table 5-24 Contents of the JDFService element

Name Data Type Description
CombinedMethod ? enumeration Specifies how the processes specified in Types may be specified.

NewIOF L1 One

Combined — The list of processes in Types must be specified as a
Combined process.

ProcessGroup — The list of processes in Types must be specified as
a ProcessGroup of individual processes.

CombinedProcessGroup — The list of processes in Types may be
specified either as a Combined process or as a ProcessGroup of in-
dividual processes.

None — No support for Combined or ProcessGroup. Only the indi-
vidual process type defined in Types is supported. The default.

Type NMTOKEN JDF Type attribute of the supported process. Extension types may
be specified by stating the namespace in the value.

TypeOrder ? enumeration Ordering restriction for combined nodes.

- Fixed — The order of process types specified in the Types attribute is

ordered and each type can be specified only once, e.g. ,Cutting,
Folding; order does matter. The default.

Unordered — The order of process types specified in the Types at-
tribute is unordered and each type can be specified only once, e.g.,
DigitalPrinting, Screening, Trapping; order does not matter.

Unrestricted — The order of process types specified in the Types at-
tribute is unordered and each type can be specified multiply, e.g.,
Cutting, Folding, where the device can do both processes, in any or-
der and multiple times.

Types ? NMTOKENS | If Type = Combined, or Type = ProcessGroup this attribute repre-
sents the list of combined processes. If any of the Services are in a
namespace other than JDF, the namespace prefix should be included
in this list. For details, see Section 3.2.3

The following is an example of a response to a KnownJDFServices query:

<Response ID="M1" refID="Ql" Type="KnownJDFServices">
<JDFService Type="Rendering" />

Chapter 5 JDF Messaging with the Job Messaging Format 111

<JDFService Type="Folding" />
<JDFService Type="Combined" Types="Gathering Stitching"/>
<JDFService Type="AnyCompaniesNamespace:MyFolding" />

</Response>

5.5.1.5 KnownMessages
Table 5-25 Contents of the KnownMessages message

Object Type “Element name 7 Description

QueryTypeObj KnownMsgQuParams ? Refines the query for known messages. If not specified,
list all supported message types.

ResponseTypeObj MessageService * Specifies the supported messages.

The KnownMessages query returns a list of all message types that are supported by the controller.

KnownMsgQuParams
The flags of the KnownMsgQuParams element filter out the types of messages that should be included in the re-
sponse list. Multiple flags are allowed.

Table 5-26 Contents of the KnownMsgQuParams element

Name Data Type Description

Exact ? boolean Requests an exact description of the known messages. If true, the

- response should also return the requested DevCaps of the messages.
Default = false

ListCommands ? boolean Lists all supported command types.

Default = true

ListQueries ? boolean Lists all supported query types.
Default = true

ListSignals ? boolean Lists all supported signal types.
Default = true

Persistent ? boolean If true, only lists messages that may use persistent channels. If false,
ignores the ability to use persistent channels.

Default = false

MessageService

The response is a list of MessageService elements, one for each supported message type. The flags of the Mes-
sageService response element are set in each MessageService entry. They define the supported usage of the mes-
sage by the controller. Note that no Response attribute is included in the list, since the capability to process one of the
other message families implies the capability to generate an appropriate Response. Multiple flags are allowed.

Table 5-27 Contents of the MessageService element

Name Data Type Description
Acknowledge ? boolean If true the device supports asynchronous Acknowledge answers to

New IIDF L s eag

Default = false

Command ? boolean If true the message is supported as a command.
Default = false

Persistent ? boolean If true the message is supported as a persistent channel.
Default = false

Query ? boolean If true the message is supported as a query.

Default = false

112 Chapter 5 JDF Messaging with the Job Messaging Format

Name Data Type Description
Signal ? boolean If true the message is supported as a signal.
Default = false
Type NMTOKEN Type of the supported message. Extension types may be specified
by stating the namespace in the value.
DevCaps * element Specifies the restrictions of the parameter space of the supported
- messages. For details on using DevCaps, see 7.3.3 Structure of the

DevCaps Subelement.

The following is an example of a response to a KnownMessages query:

<Response ID="M1" refID="Ql" Type="KnownMessages'">
<MessageService Type="KnownMessages" Query="true"/>
<MessageService Type="Status" Query="true" Signal="true" Persistent="true">

</Response>

5.5.1.6 RepeatMessages

Table 5-28 Contents of the RepeatMessages message

Object Type Element name Description

QueryTypeObj MsgFilter ? A filter for the messages to be repeated. For details, see
Section 5.5.1.1 Events.

ResponseTypeObj Message * The recent messages queried.

The RepeatMessages query returns a list of messages that have been previously sent by the controller. The op-
tional MsgFilter element allows the list to be filtered. The list of JMF messages that fulfill the filter criteria may be
sorted by time, with the most recent listed first. This specification places no requirements on the size of the message
buffer of a controller that supports RepeatMessages.

Structure of the MsgFilter Element
Table 5-29 Contents of the MsgFilter element

Name Data Type Description
After? dateTime Messages sent only after a certain time.
Before ? dateTime Messages sent only before a certain time.
Count? integer Maximum number of messages, most recent first.
DevicelD ? string ID of the device whose messages are required.
Family ? enumeration | Message family. Possible values are:
Acknowledge
Response
Signal

All — Default value. Response, Signal, and Acknowledge mes-
sages are queried.

MessageRefID ? NMTOKEN | The refID attribute must match the value of MessageRefID.
MessagelD ? NMTOKEN | The ID attribute must match the value of MessagelD.
MessageType ? NMTOKEN [Type attribute of the requested messages.

ReceiverURL ? URL URL for which the messages are intended.

If the returned list is incomplete because the parameters supplied in the MsgFilter element cannot be fulfilled by the
application, the ReturnCode may be 108 (empty list) or 109 (incomplete list) and should be flagged as a warning.

Chapter 5 JDF Messaging with the Job Messaging Format 113

The following is an example of a response to a RepeatMessages query. Note the nesting of Response messages,
where the first layer is the response to the RepeatMessages query and its contents are the repeated messages.

<JMF TimeStamp="2000-06-14T12:11+02:00" .. >
<Response .. >
<Response Time="2000-06-14T11:00+02:00" .. />
<Response Time="2000-06-14T10:50+02:00" .. />
<Signal Time="2000-06-14T08:20+02:00" .. />
<Signal Time="2000-06-14T03:01+02:00" .. />
</Response>
</JME>

5.5.1.7 StopPersistentChannel

Table 5-30 Contents of the StopPersistentChannel message

Object Type Element name Description
CommandTypeObj StopPersChParams Specifies the persistent channel and the mes-
sage types to be unsubscribed.

ResponseTypeObj - -

The StopPersistentChannel command unregisters a listening controller from a persistent channel. No more mes-
sages are sent to the controller once the command has been issued. A certain subset of signals may be addressed for
unsubscription by specifying a StopPersChParams element.

Structure of the StopPersChParams Element
If the optional attributes are not specified, those attributes default to match anything. Therefore it may be possible to
cancel the persistent channel for messages belonging to a certain type of message or to a certain job.

Table 5-31 Contents of the StopPersChParams element

Name Data Type Description

ChannellD ? NMTOKEN | ChannellD of the persistent channel to be deleted. If the channel has been
created with a Query message, the ChannellD specifies the ID of the Query
message (identical to the reflD of the Response message).

MessageType ? | NMTOKEN | Only messages with a matching message type are suppressed. Message types
are specified in the Type attribute of each Message element. Defaults to all
message types.

DevicelD ? string Only messages from devices or controllers with a matching DevicelD attrib-
ute are suppressed.

JobID ? string Only messages with a matching JobID attribute are suppressed.

JobPartID ? string Only messages with a matching JobPartID attribute are suppressed.

URL URL URL of the receiving controller. This must be identical to the URL that was

used to create the persistent channel. If no ChannellD is specified, all persis-
tent channels to this URL are deleted.

5.5.2 Device/Operator Status and Job Progress Messages

JDF Messaging provides methods to trace the status of individual devices and resources and additional job-
dependent job-tracking data.. The status of a job is described by the Status elements of that job.

Devices are uniquely identified by a name—that is, by the attribute DevicelD of the Device resource (see Sec-
tion7.2.44 Device)—while controllers are uniquely identified by their URL. In other words, controllers are implic-
itly identified as a result of the fact that they are responding to a message. One controller may control multiple
devices. The following queries and commands are defined for status and progress tracking:

114 Chapter 5 JDF Messaging with the Job Messaging Format

Table 5-32 Status and progress messages

Message type Family Description ‘
Occupation QRS Queries the occupation of an employee.
Resource QRSC Queries and/or modifies JDF resources that are used by a device,

such as device settings, or by a job. This message can also be used
to query the level of consumables in a device.

Status QRS Queries the general status of a device, controller or job.

Track QRS Queries the location of a given job or job part.

5.5.2.1 Occupation

Table 5-33 Contents of the Occupation message

Object Type Element name Description
QueryTypeObj EmployeeDef * Defines the employees queried.
ResponseTypeObj Occupation * The occupation status of the employees.

Occupation queries the occupation status of an employee. No job context is required to issue an Occupation message.

Structure of the EmployeeDef Element
The Occupation query may be focused to certain employees specifying a EmployeeDef element. If no Employ-
eeDef element is specified, a list of all known employees is returned.

Table 5-34 Contents of the EmployeeDef element

Name Data Type Description
PersonallD ? string PersonallD of the employee being tracked.

Structure of the Occupation Element
The response returns a list of Occupation elements for the queried employees. These elements consist of one entry
for every job that is currently being executed. The list format accommodates both employees that service multiple
jobs or job parts in parallel and multiple employees working on one job.

Table 5-35 Contents of the Occupation element

Name Data Type Description
Busy ? number Busy state of the employee in percentage. A value of 100,

the default, means that the employee is fully occupied with
this task. The sum of all Busy values should not exceed

100.
Device * element Devices that the employee is currently assigned to.
JobID ? string JobID of the JDF node that the employee is assigned to. If

no JobID is specified but devices are, the employee is per-
forming tasks not related to a job.

JobPartlD ? string Job part ID of the JDF node that is currently being exe-
cuted.
Employee element Description of the employee being tracked.

The following is an example of response to an Occupation query:

<Response ID="M1" refID="Q1l" Type="Occupation">
<!—Two Jjobs on one device with one operator-->
<Occupation JobID="J1" Busy="30">
<Employee PersonallID="P1234"/>
<Device Name="Joe"/>
</Occupation>

Chapter 5 JDF Messaging with the Job Messaging Format 115

<Occupation JobID="J2" Busy="70">
<Employee PersonallID="P1234"/>
<Device Name="Joe"/>
</Occupation>
<!—Another operator on job j2 -->
<Occupation JobID="J2" Busy="50">
<Employee PersonallID="P4321"/>
<Device Name="Joe"/>
</Occupation>
<!—No Job context -->
<Occupation Busy="0">
<Device Name="John"/>
<Employee PersonallID="P5678"/>
</Occupation>
</Response>

5.5.2.2 Resource

The Resource message can be used as a command or a query to modify or to query JDF resources. In both cases
(query and command), it is possible to address either global device resources, such as device settings, or job-specific
resources. The query simply retrieves information about the resources without modifying them, while the command
modifies those settings within the resource that are specified. Settings that are not specified remain unchanged.

Structure of the Resource Query Message
Table 5-36 Contents of the Resource query message

Object Type Element Name Description

QueryTypeObj ResourceQuParams ? Specifies the resources queried.

ResponseTypeObj Resourcelnfo * Contains the amount data of resources and, if
requested, the resources itself.

The Resource query may be made selective by specifying a ResourceQuParams element. The presence of the
JobID attribute determines whether global device resources or job-related resources are returned. If no Resour-
ceQuParams element is specified, only the global device resources are returned.

The query response returns a list of Resourcelnfo elements that contains the queried information concerning
the resources. If the list is empty because the selective query parameters of the ResourceQuParams lead to a null
selection of the known device/job resources, then the ReturnCode may be 103 (JobID unknown), 104 (JobPartID
unknown) or 108 (empty list) and should be flagged as a warning.

Structure of the ResourceQuParams Element
Table 5-37 Contents of the ResourceQuParams element

Name Data Type Description

Classes ? enumerations List of the resource classes to be queried. For example, in order to
query the actual level of consumables in a device outside of any job
context, specify Classes = Consumable in the query without a Jo-
bID attribute. For possible resource class names, see the Class at-

tribute in Table 3-11. Default = any class.

Exact? boolean Requests an exact description of the JDF resource. If true, the re-
sponse should also return the requested JDF resource. Default =
false

JoblD ? string Job ID of the JDF node that is being queried. If no JobID is speci-
fied, global device settings are queried.

JobPartID ? string Job part ID of the JDF node that is being queried.

Location ? string Identifies the location of a resource, such as paper tray, ink con-

tainer, or thread holder. The name is the same name used in the Par-
tition-key Location of distributed resources (see also Section 3.9.2.2
Locations of Physical Resources). Default = all locations

116 Chapter 5 JDF Messaging with the Job Messaging Format

Name Data Type Description

ProcessUsage ? string Selects a resource in which the value of the ProcessUsage attribute
of the resource link (see Table 3-17) matches the token specified
here in this attribute.

Only necessary if a resource name is used more than once by one
node. For example, the Component output resources of a Con-
ventionalPrinting process can be distinguished by specifying
ProcessUsage = Good and ProcessUsage = Waste, respectively.

The ResourceName, Usage and ProcessUsage attributes are
combined by a logical AND conjunction to select the resource to be
queried.

ResourceName ? NMTOKEN Name of the resource being queried. For possible resource names,
see titles in Chapter 7 Resources.

Usage ? enumeration Input — The resource is an input.
Output — The resource is an output.

Selects a resource in which the value of the Usage attribute of the
resource link (see Table 3-17) matches the token specified here in
this attribute. Only necessary if a resource name is used both as in-
put and output by one node.

Structure of the Resource Command Message
Table 5-38 Contents of the Resource command message

Object Type ' Element name { Description

CommandTypeObj ResourceCmdParams Specifies the resources to be modified.

ResponseTypeObj Resourcelnfo * Contains information about the resources and the re-
sources after modification.

The Resource command may be used to modify either global device settings or a running job. It may be made se-
lective by specifying the optional attributes in the ResourceCmdParams element. The presence of the JobID at-
tribute determines whether global device resources or job-related resources are modified.

The response contains a list of Resourcelnfo elements with all resources and private extensions of the device
after the changes have been applied. The type of the resource that is given as a response depends on the type of the re-
source given in the command.

If the resource command was successful, the value of the ReturnCode attribute is 0. If it is not successful, the
value of ReturnCode may be one of those that have been described above in the section about the Resource query
message, 200 (invalid resource parameters), or 201 (insufficient resource parameters). Partial application of the re-
source should also be flagged as a warning. If the value of RefurnCode is larger than 0, the controller that issued
the command can evaluate the returned resource in order to find the setting that could not be applied.

Chapter 5 JDF Messaging with the Job Messaging Format 117

Structure of the ResourceCmdParams Element
Table 5-39 Contents of the ResourceCmdParams element

Activation ?

__Data Type
enumeration

~ Description

Describes the activation status of the uploaded resource. Allows for
a range of activity, including deactivation and testrunning. Possible
values, in order of involvement from least to most active, are:

Held — Used for uploading a resource that requires operator interven-
tion before being applied.

TestRun — Used for a test run check by the controller or a device.
This does not imply that the update should be automatically applied
when the check is completed.

TestRunAndGo — Similar to TestRun, but requests a subsequent auto-
matic update of the resource if the testrun has been completed
successfully.

Active — Default value. The update must be applied immediately.

Note that the Inactive value defined in JDF::Activation is not a valid
value in this list.

Exact ?

boolean

Requests an exact description of the JDF resource. If true, the re-
sponse should also return the requested JDF-resource. Default =
false

JobID ?

string

Job ID of the JDF node that is being modified. If no JobID is speci-
fied, global device settings are modified.

JobPartID ?

string

Job part ID of the JDF node that is being modified.

ResourceName ?

NMTOKEN

Name of the resource whose production amount will be modified.
For possible resource names see titles in Chapter 7 Resources.

Default = any name

ProcessUsage ?

NMTOKEN

Selects a resource in which the value of the ProcessUsage attribute
of the resource link (see Table 3-17) matches the token specified
here in this attribute.

Only necessary if a resource name is used more than once by one
node. For example, the Component output resources of a Con-
ventionalPrinting process can be distinguished by specifying
ProcessUsage = Good and ProcessUsage = Waste, respectively.

The ResourceName and ProcessUsage attributes are combined
by a logical AND conjunction to select the resource to be queried.

ProductionAmount ?

number

New amount of resource production. This value replaces the
Amount in the output resource link of the resource specified by the
ResourceName attribute.

UpdatelDs ?

NMTOKENS

The UpdatelD attributes of one or more ResourceUpdate that are
defined in resources known to the recipient. The data type is
NMTOKENS and not IDREFS because no matching IDs exist
within this message. The order of tokens in defines the order in
which the updates are applied.

Resource *

element

Resources to be uploaded to the controller. They completely replace
the original resources with the same ID.

The resources to be modified are identified by their /D values, which
means that the /D attributes must be known to the controller that is-
sued the Resource command.

118 Chapter 5 JDF Messaging with the Job Messaging Format

Structure of the Resourcelnfo Element
Table 5-40 Contents of the Resourcelnfo element

~ Data Type | Description
Amount ? number Intended amount for consumption or production of a resource in a job
context. This corresponds to the value of the Amount attribute in the
corresponding resource link of the resource.

AvailableAmount ? number Device-specific amount of the Consumable resource that is available in
the device.

Level ? enumeration | This attribute is device dependent. A device may specify the level
status that describes a low or empty consumable level. Possible values
are:

Empty — Specification is left to the device manufacturer.

Low — Specification is left to the device manufacturer.

OK — Default value.

Location ? string Device-specific string to identify the location of a given consumable,
such as paper tray, ink container, or thread holder. The name is the

same name used in the Partition-key Location of distributed resources
(see also Section 3.9.2.2 Locations of Physical Resources).

Default = all locations

ResourceName ? NMTOKEN | Name of the resource if Exact = faise in the query. Only one of Re-
source or ResourceName must be specified.
ProcessUsage ? NMTOKEN | Selects a resource in which the value of the ProcessUsage attribute

of the resource link (see Table 3-17) matches the token specified here
in this attribute.

Only necessary if a resource name is used more than once by one node.
For example, the Component output resources of a Conventional-
Printing process can be distinguished by specifying ProcessUsage =
Good and ProcessUsage = Waste, respectively.

The ResourceName and ProcessUsage attributes are combined by a
logical AND conjunction to select the resource to be queried.

Unit? string Unit of the amount attributes.

In a job-context it is strongly discouraged to specify a unit other than
the unit defined in the respective JDF resource, although this may be
necessary due to technical considerations, such as when ink is speci-
fied in weight (g) and ink measurement is specified in volume (liter).

CostCenter ? element Cost center to which the resource consumption is allocated.
Resource ? element JDF description of the resource.

The following is an example for retrieving settings:

<Query ID="Ql" Type="Resource">
<ResourceQuParams Classes="Consumable" Exact="true"/>
</Query>

The following is a possible response to the query above:

<Response ID="M1" refID="Q1l" Type="Resource">
<ResourceInfo Location="Paper Tray 1" AvailableAmount="2120" >

<Media>
. <!-- Media resource defined in JDF -->
</Media>

</ResourceInfo>

<ResourceInfo Location="Inkl" AvailableAmount="0" Unit="1" Level="Empty">
<Ink>

Chapter 5 JDF Messaging with the Job Messaging Format 119

. <!-- Ink description resource defined in JDF -->
</Ink>
</ResourceInfo>
</Response>

The following is an example for modifying the production amount of a specific job to produce brochures:

<Command ID="C1" Type="Resource">

<ResourceCmdParams JobID="MakeBrochure 012" ResourceName="Component" Pro-
ductionAmount="7500"/>
</Command>

The following is a possible response to the resource command above:

<Response ID="M2" refID="C1l" Type="Resource">
<ResourceInfo Amount="7500" ResourceName="Component"/>
</Response>

5.5.2.3 Status
Table 5-41 Contents of the Status message

Object Type Element name Description
QueryTypeObj StatusQuParams Refines the query to include various aspects of the de-
vice and job states.
ResponseTypeObj Devicelnfo Describes the actual device status.
Queue ? Provides information about the queue and all its entries.

This element will only be provided if the device has
queue capabilities. The Queue element is described in
Section 5.6.4 Queue-Handling Elements.

The Status message queries the general status of a device or a controller and the status of jobs associated with this
device or controller. No job context is required to issue a Status message. The response contains one Devicelnfo
element, which contains the device specific information and which may contain other JobPhase elements that in
turn contain the job specific information. The response also provides a Queue element when commanded to do so.

Structure of the StatusQuParams Element

The various aspects of the device, queue, and job states may be refined by the StatusQuParams element. This
element contains three groups of parameters. The first group serves to refine the device-specific status information
queried. The parameters Employeelnfo and ModuleDetails belong to this group. The second group serves to re-
fine the job specific status information. These are JobDetails, JobID, and JobPartID. And the third determines
simply whether a queue element should be appended. This is specified by the attribute Queuelnfo.

In order to focus on the status of a certain job, the job must be uniquely identified using the JobID attribute. It
may be necessary to define a process or a part of a job as the query target under certain circumstances, such as when a
job is processed in parallel. This is accomplished using the JobPartID attribute of the StatusQuParams element. A
value of JobDetails = Full requests a complete JDF description of a snapshot of the specified job or job part.

If the specified job or job part is unknown, the value of the ReturnCode attribute is 103 or 104 (for error codes,
see Appendix I).

120

Chapter 5 JDF Messaging with the Job Messaging Format

Name
DeviceDetails ?

Table 5-42 Contents of the StatusQuParams element

Data Type
enumeration

Description
Refines the provided status information about the device. Possible val-
ues are:

None — Default value.

Brief— Provide all available device information except for Device ele-
ments.

Modules — ModuleStatus elements should be provided without mod-
ule specific status details and without module specific employee in-
formation.

Details — Provide maximum available device information excluding
device capability descriptions. Includes Device elements which repre-
sent details of the device.

Capability — Provide Device elements with DeviceCap subelements
which represent details of the capabilities of the device.

Full — Provide maximum available device information including device
capability descriptions.. Includes Device elements which represent de-
tails of the device.

Employeeinfo ?

boolean

If true, Employee elements may be provided in the response. Those
elements describe the employees which are associated to the device in-
dependent on any job. Default = false.

JobDetails ?

enumeration

Refines the provided status information about the jobs associated with
the device. Each higher entry includes the values specified in the
lower entries. Possible values are:

None — Default value. Specify only JobID, JobPartlD and Amount
and/or PercentCompleted.

MIS — Provide business with the relevant information contained in the
CostCenter element and the DeadLine, DeviceStatus, Status,
StatusDetails, and the various Counter attributes.

Brief— Provide all available status information except for JDF.

Full — Provide maximum available status information. Includes an ac-
tual JDF which represents a snapshot of the current job state.

JobID ?

string

Job ID of the JDF node whose status is being queried. Defaults to list
all known jobs.

JobPartID ?

string

JobPart ID of the JDF node whose status is being queried.

Queuelnfo ?

boolean

If true, a Queue element may be provided. This is analogous to a
QueueStatus query (see Section 5.6.3.6 QueueStatus). Default = false.

Structure of the Devicelnfo Element
The response returns a Devicelnfo element for the queried device.
Table 5-43 Contents of the Devicelnfo element

Name
CounterUnit ?

Data Type
string

Description
The unit of the ProductionCounter, the TotalProductionCounter
and nominator unit of Speed.

The default unit is the default unit defined by JDF for the output
resource of the node executed by the device. For example, in case
of a sheet printer, it is the number of sheets; in case of a web
printer, it is the length of printed web in meters.

Chapter 5 JDF Messaging with the Job Messaging Format 121

Name
DeviceStatus

Data Type
enumeration

Description

The status of a device. Possible values are:

Unknown — No device is known or the device cannot provide a
DeviceStatus.

Idle — No job is being processed and the device is accepting new
jobs.

Down — No job is being processed and the device currently cannot
execute a job. The device may be broken, switched off, etc.

Setup — The device is currently being set up. This state is allowed
to occur also during the execution of a job.

Running — The device is currently executing a job.

Cleanup — The device is currently being cleaned. This state is al-
lowed to occur also during the execution of a job.

Stopped — The device has been stopped, but running may be re-
sumed later. This status may indicate any kind of break, including
a pause, maintenance, or a breakdown, as long as execution has
not been aborted.

HourCounter ?

duration

The total integrated time (life time) of device operation in hours.
Default = unknown.

PowerOnTime ?

dateTime

Date and time when the device was switched on.
Defaults = unknown.

ProductionCounter ?

number

The current machine production counter. This counter can be re-
set. Typically, it starts counting at power-on time. The reset of
this counter may be signaled by an Events message of Type =
CounterReset (see Appendix J NotificationDetails). Default = un-
known.

Speed ?

number

The current machine speed. Speed is defined in the same units as
ProductionCounter / hour. Default = unknown.

StatusDetails ?

string

String that defines the device state more specifically. For a list of
supported values, see Appendix G.

TotalProductionCounter ?

number

The current total machine production counter. Default = un-
known.

Device ?

element

A Device resource that describes details of the device.

Employee *

element

Employee resources that describe which employees are currently
working at the device.

JobPhase *

element

Describes the actual status of jobs in the device. For details on us-
ing JobPhase elements, see Table 5-44.

ModuleStatus *

element

Status of individual modules. For details on using ModuleStatus
elements, see Table 5-45.

Structure of the JobPhase Element

A Status response may provide JobPhase elements. The JobPhase element represents the actual state of a job. The
JobPhase element is an analogue to the PhaseTime audit element described in Section 3.10.1.3 PhaseTime. The main
difference between a JobPhase element and a PhaseTime audit element is that a Phase message reflects a snapshot of
the current job status whereas the PhaseTime audit reflects a time span bordered by two (sub-)status transitions.

For exact information about the job phase a JobPhase element may embed a copy of the current state of the
job described as JDF. If an actual JDF is not supported by the controller, the same rules apply for the Status re-
sponse as those which apply for the Consumable response.

122

Chapter 5 JDF Messaging with the Job Messaging Format

Name

Activation ?

enumeration

Table 5-44 Contents of the JobPhase element

Data Type ‘ ‘ Description

The activation of the JDF node. Possible values are the same as the possible
values of a JDF node’s Activation attribute:

For details, see Table 3-3 Contents of a JDF node.

Amount ? number Produced amount. If Waste is also specified, the value is without waste.
The unit is specified in the CounterUnit attribute of the parent element De-
vicelnfo.

DeadLine ? enumeration | Scheduling state of the job. Possible values are:

InTime — The job or job part will probably not miss the deadline.
Warning — The job or job part could miss the deadline.

Late — The job or job part will miss the deadline.

Default = InTime

For more details on scheduling, see Section 3.5 Node Information.

JobID ? string Job ID of the JDF node the JobPhase belongs to.

JobPartID ? string Job part ID of the JDF node the JobPhase belongs to.

PercentCompleted ? | number Node processing progress in % completed.

QueueEntrylD ? string If the job was submitted to a Queue, and the QueueEntryID is known, this
attribute should be provided.

RestTime ? duration Estimated duration required for finishing of this job.

Speed ? number The current job speed. Speed is defined in the same units as Production-
Counter / hour. Defaults to the speed specified in the Devicelnfo element.

StartTime ? dateTime Time when the job has been started.

Status enumeration | The status of the JDF node. Possible values are the same as the possible val-
ues of a JDF node’s Status attribute:

For details, see Table 3-3 Contents of a JDF node.

StatusDetails ? string String that defines the job state more specifically. For a list of supported
values, see Appendix G.

TotalAmount ? number Amount that will be produced when this job phase is 100% completed. The
unit is specified in the CounterUnit attribute of the parent element De-
vicelnfo.

Waste ? number Produced amount of waste. The unit is specified in the CounterUnit attrib-
ute of the parent element Devicelnfo.

CostCenter ? element The cost center that the job is currently being charged to. Defaults to the
cost center specified in the Devicelnfo element.

JDF ? element Complete JDF node that represents a snapshot of the job that is currently be-
ing processed.

Part * element Describes which parts of a job are currently being processed.

Structure of the ModuleStatus Element

The ModuleStatus element is identical to the ModulePhase element of the PhaseTime audit element (see Table
3-33), except that the attributes Start and End are missing. These attributes specify the time interval in the audit
pendant ModulePhase and the DevicelD attribute, which is unnecessary here. The ModuleStatus element is de-
scribed in the following table.

Chapter 5 JDF Messaging with the Job Messaging Format 123

Table 5-45 Contents of the ModuleStatus element

Name Data Type ‘ Description
DeviceStatus enumeration Status of the module. Possible values are:

Unknown — The module status is unknown.

Idle — The module is not used. An example is a color print module that is
inactive during a black-and-white print.

Down — The module cannot be used. It may be broken, switched off etc.
Setup — The module is currently being set up.

Running — The module is currently executing.

Cleanup — The module is currently being cleaned.

Stopped — The module has been stopped, but running may be resumed
later. This status may indicate any kind of break, including a pause, main-
tenance, or a breakdown, as long as running can be easily resumed.

Modulelndex IntegerRange- | 0-based indices of the module or modules. If multiple module types are
List available on one machine, indices must also be unique.
ModuleType NMTOKEN Module description. The allowed values depend on the type of device that
is described. The predefined values are listed in Appendix A.
StatusDetails ? | string Description of the module status phase that provides details beyond the

enumerative values given by the DeviceStatus attribute. For a list of
supported values, see Appendix G.

Employee * element Links to Employee resources that are working at this module (the module
is specified by the attributes ModuleIndex and ModuleType).

The following is an example of a response to a Status query. The device in this example holds one job and exe-
cutes another job that is currently printed duplex each side on four-color modules for the front and three-color mod-
ules for the back, with one idle:

<Response ID="M1" refID="Ql" Type="Status">
<DeviceInfo JobID="678" JobPartID="01" DeviceStatus="Running" StatusDetails="Waste">
<JobPhase Amount="2560" DeadLine="InTime" JobID="678" JobPartID="01" PercentCom-
pleted="52" QueueEntryID="Job-05" Status="InProgress" StatusDetails="Waste"/>
<JobPhase Amount="0" DeadLine="Warning" JobID="679" JobPartID="01" PercentCom-
pleted="0" QueueEntryID="Job-06" Status="Ready"/>
<ModuleStatus ModuleIndex="0~3 6~8" ModuleType="PrintModule" DeviceS-
tatus="Running"/>
<ModuleStatus ModuleIndex="4" ModuleType="PrintModule" DeviceStatus="Idle"/>
<ModuleStatus ModuleIndex="5" ModuleType="PerfectingModule" DeviceS-
tatus="Running"/>

</DeviceInfo>
</Response>
5.5.2.4 Track
Table 5-46 Contents of the Track message
Object Type Element name Description
QueryTypeObj TrackFilter ? Refines the Track query.
ResponseTypeOb;j TrackResult * Details of the tracked jobs

The Track query requests information about the location of Jobs that are known by a controller. If a high level con-
troller controls lower level controllers, it should also list the jobs that are controlled by these. The response is a list
of TrackResult elements.

124 Chapter 5 JDF Messaging with the Job Messaging Format

Structure of the TrackFilter Element
The TrackFilter element refines the list of TrackResults that should be returned. Only jobs that match all parame-
ters specified are included.

Table 5-47 Contents of the TrackFilter element

Name Data Type Description

JoblD ? string Job ID of the JDF node that is being tracked. Defaults to list Job-
Phase elements of all known nodes.

JobPartID ? string JobPart ID of the JDF node that is being tracked.

Status ? enumerations | The status of the jobs being tracked. Possible values are a combi-

nation of any of the possible values of a JDF node’s Status attrib-
ute. Default = all. Possible values are:

Waiting
Ready
FailedTestRun
Setup
InProgress
Cleanup
Spawned
Stopped
Completed
Aborted

For details, see Table 3-3 Contents of a JDF node.

Structure of the TrackResult Element
One TrackResult is returned for each known job or spawned job part. TrackResult elements contain information
about the location of distributed jobs.

Table 5-48 Contents of the TrackResult element

Name Data Type Description

JobID string Job ID of the JDF node that is being tracked.

JobPartlD ? string JobPart ID of the highest level node of the JDF node that is being
tracked.

URL URL URL of the controller that owns this job.

IsDevice boolean If true, the controller that emitted this message is the device that has
access to the job and may be queried for details of the job.

The following is an example of a response on a Track message:

<Response ID="M1" refID="Ql" Type="Track">
<TrackResult URL=“http://www.anycompany.com/controller" JobID="1"” JobPar-
tID="42" IsDevice="true”/>

</Response>

5.5.3 Pipe Control

JDF Messaging provides methods to control dynamic pipes. Dynamic pipes are described in detail in Section 4.3.2
Overlapping Processing Using Pipes.

Chapter 5 JDF Messaging with the Job Messaging Format 125

Table 5-49 Dynamic pipe messages

Message type Family Description

PipeClose CR Closes a pipe because no further resources are required. This is typi-
cally used to terminate the producing process.

PipePull CR Requests a new resource from a pipe.

PipePush CR Notifies that a new resource is available in a pipe.

PipePause CR Pauses a process if no further resources can be consumed or produced.

5.5.3.1 PipeClose
Table 5-50 Contents of the PipeClose message

Object Type Element name Description
CommandTypeOb;j PipeParams Describes the pipe resource. The PipeParams ele-
ment is described in Section 5.5.3.2 PipePull.

ResponseTypeObj JobPhase The status of the responding process. The Job-
Phase element is defined in Table 5-44.,

The PipeClose message notifies the process at the other end of a dynamic pipe that the sender of this message
needs no further resources or will produce no further resources through the pipe. The PipeClose command response
is equivalent to the PipePull and PipePush command responses described below.

5.5.3.2 PipePull
Table 5-51 Contents of the PipePull message

Object Type Element name Description

CommandTypeObj PipeParams Describes the requested pipe resource.

ResponseTypeObj JobPhase The status of the responding process. The Job-
Phase element is defined in Table 5-44.

The PipePull message requests resources that are described in a JDF dynamic pipe (see Sections 3.7.3 Pipe Re-
sources and 4.3.2 Overlapping Processing Using Pipes). PipePull messages are the JMF equivalent of a dynamic
input resource link. Figure 5.4, below, depicts the mode of operation of a PipePull message.

The PipePull command response returns a ReturnCode of 0 if the command has been accepted by the receiv-
ing controller. If not successful the RefurnCode may be one of the codes presented in Appendix I. The response
may contain a Notification element. The JobPhase element (see Section 5.5.2.3 Status) returned should provide
only the Status attribute that describes the job status of the responding process after receiving the command.

126

Chapter 5 JDF Messaging with the Job Messaging Format

Immediate: JMF - PipePull command response
Delayed: JMF - Pipe acknowledge

Y)

JMF - PipePull command message

Pipe
Resource

input, consum. | P2 —b@GS.B)

PipeURL?

Figure 5.4 Mechanism of a PipePull message

Structure of the PipeParams Element
The PipeParams element is also used by the messages PipeClose, PipePush, and PipePause.

The URL where an optional Acknowledge should be sent when the pipe command has been executed may be de-
fined in the initiating command message by the attribute AcknowledgeURL. The Acknowledge is sent for the fol-

lowing commands:

e for PipeClose: when the process has been finished,

o for PipePull: when the resource is available,

o for PipePush: when the resource has been accepted, and

o for PipePause: when the process has been stopped.

Table 5-52 Contents of the PipeParams element

Name Data Type
PipelD string

Description
PipelD of the JDF resource that defines the dynamic pipe.

Status ? enumeration

Process status after the request. Possible values are defined in Table

2.1
J-J.

Default = InProgress

Resource * element

Updated input resources to be used by the process that receives the
pipe command: PipePull (the receiver creates the pipe resource),
PipePush (the receiver consumes the pipe resource), and PipePause
(the receiver only updates the inputs).

The resource to be updated is identified by the /D, that means the /D at-
tribute must be known to the controller that issued the pipe command.
Possible commands are: PipePull, PipePush, or PipePause. In case
of the PipeClose command, the resources are ignored.

ResourceLink ? element

Updated resource link to the pipe resource: PipePull (it is an output
link), PipePush (it is an input link), and PipePause (depends on the
pipe end). This resource link may be used by the process that links to
the pipe resource.

The attributes rRef and Usage of a resource link must not be updated.
For details see Section 3.7.4 ResourceUpdate Elements. In the context
of dynamic pipes these two attributes have no meaning.

In case of the PipeClose command, the resource link is ignored.

Chapter 5 JDF Messaging with the Job Messaging Format 127

Description

UpdatedStatus ? enumeration | This value represents the actual status of the pipe resource and may be
used by the receiving process for process termination control. For de-
tails see Section Formal Iterative Processing.

For possible values of the resource Status attribute see Table 3-11.

5.5.3.3 PipePush

J. 2 Contents of the PipePush message

Object Type Element name Description
CommandTypeObj PipeParams Describes the produced pipe resource. The PipePar-
ams element is described in Section 5.5.3.2 PipePull.

ResponseTypeObj JobPhase The status of the responding process. The JobPhase
element is defined in Table 5-44.

The PipePush message notifies the availability of pipe resources that are described in a JDF dynamic pipe (see Sec-
tions 3.7.3 Pipe Resources and 4.3.2 Overlapping Processing Using Pipes). PipePush messages are the JMF
equivalent of a dynamic output resource link. Figure 5.5 depicts the mode of operation of a PipePush message.
The PipePush command response is equivalent to the PipePull command response described above.

JMF - PipePush command message

PipeURL?
output, prod.)f \

Pipe
Resource

@es.@—» P1

=)

A
input, consum. L* P2
14

Immediate: JMF - PipePush command response
Delayed: JMF - Pipe acknowledge

Figure 5.5 Mechanism of a PipePush message

5.5.3.4 PipePause

Table 5-53 Contents of the PipePause message

Object Type Element name Description
CommandTypeObj PipeParams Describes the pipe resource. The PipeParams ele-
ment is described in Section 5.5.3.2 PipePull.

ResponseTypeObj JobPhase The status of the responding process. The JobPhase
element is defined in Table 5-44.

The PipePause message pauses execution of a process that is at the other end of a dynamic pipe. The PipePause
command response is equivalent to the PipePull command response described above.

128 Chapter 5 JDF Messaging with the Job Messaging Format

5.6 Queue Support

In JMF, a device is assumed to have one input queue that accepts submitted jobs. If a real device supports multiple
queues, it is represented by multiple logical devices in JDF. The simple case of a device with no queue can be
mapped to a queue with two Status states: Waiting and Full. JMF supports simple handling of priority queues. The
following assumptions are made:

¢ Queues support priority. Priority may only be changed for waiting jobs. A queue may round priorities to
the number of supported priorities, which may be one, indicating no priority handling.

e Priority is described by an integer from 0 to 100. Priority 100 defines a job that should pause a job that is
in progress and commence immediately. If a device does not support the pausing of running jobs, it should
queue a priority-100 job before the last pending priority-100 job.

e A controller may control multiple devices/queues.

¢ Queue entries can be unambiguously identified by a QueueEntryID.

Some conventions used in the following sections have already been introduced in Section 5.5 Standard Messages.
This affects the message families and the descriptive tables at the beginning of each message section that describe
the type objects related to the corresponding message. The type objects are QueryTypeObj, CommandTypeObj,
and ResponseTypeObj (see also

Figure 5.1).

5.6.1 Queue Entry ID Generation

Queue entries are accessed using a QueueEntryID attribute, which is generated by the controller of the queue when
the job is submitted. This attribute must uniquely identify an entry within the scope of one queue. An implementa-
tion is free to choose the algorithm that generates QueueEntrylIDs.

5.6.2 Queue Entry Handling Commands

Queue-entry handling is provided so that the state of individual jobs within a queue can be changed. Job submis-
sion, queue-entry grouping, priorities, and hold/resume of entries are all supported. The individual commands are
defined in the table and explained in greater detail in the sections that follow.

Table 5-54 QueueEntry handling messages

Message type Family = Description

AbortQueueEntry CR If a job is already running, it is aborted and removed. If it is not al-
ready running, it is removed from the queue. AbortQueueEntry is the
only Queue manipulation message that has an effect on running queue

entries.
HoldQueueEntry CR The entry remains in queue but is never executed.
RemoveQueueEntry CR A job is removed from the queue.
ResubmitQueueEntry CR Replaces a queue entry without affecting the entry’s parameters. The
command is used, for example, for late changes to a submitted JDF.
ResumeQueueEntry CR A held job is resumed. The job is requeued at the position defined by
its current priority. Submission time is set to the current time stamp.
SetQueueEntryPosition CR Queues a job behind a given position n, where n represents a numerical
value. 0= pole position. Priority is set to the priority of the job at po-
sition n.
SetQueueEntryPriority CR Sets the priority of a queued job to a new value. This does not apply to

jobs that are already running.
SubmitQueueEntry CR A job is submitted to a queue in order to be executed.

Chapter 5 JDF Messaging with the Job Messaging Format 129

5.6.2.1 AbortQueueEntry
Table 5-55 Contents of the AbortQueueEntry message

Object Type Element name 7 Description

CommandTypeObj QueueEntryDef Defines the queue entry.

ResponseTypeObj Queue Describes the state of the queue after the command has
been executed.

For the definition of the elements listed above, see Section 5.6.4.

Once this command is issued, the entry specified by QueueEntryDef is removed from the queue. If the device on
which the entry is running has already commenced processing, the entry is aborted. In this case the Audits and
Status of the JDF that is being processed should be appropriately filled and the JDF should be delivered to the URL
as specified by Nodelnfo: TargetRoute.

5.6.2.2 HoldQueueEntry
Table 5-56 Contents of the HoldQueueEntry message

Object Type Element name Description

CommandTypeObj QueueEntryDef Defines the queue entry.

ResponseTypeObj Queue Describes the state of the queue after the command has
been executed.

For the definition of the elements listed above, see Section 5.6.4.

The entry specified by QueueEntryDef remains in the queue but is never executed. The HoldQueueEntry com-
mand has no effect on running jobs.

5.6.2.3 RemoveQueueEntry

Table 5-57 Contents of the RemoveQueueEntry message

Object Type Element name Description

CommandTypeObj QueueEntryDef Defines the queue entry.

ResponseTypeObj Queue Describes the state of the queue after the command has
been executed.

For the definition of the elements listed above see, Section 5.6.4.

This command causes the entry specified by QueueEntryDef to be removed from the queue. It does not affect run-
ning jobs.

5.6.2.4 ResubmitQueueEntry

Table 5-58 Contents of the ResubmitQueueEntry message

Object Type Element name Description

CommandTypeObj ResubmissionParams Defines the job resubmission.

ResponseTypeObj Queue Describes the state of the queue after the command
has been executed.

For the definition of the Queue element, see Section 5.6.4.

A job is resubmitted to a queue using the ResubmitQueueEntry message. This allows late changes to be made to a job
without affecting queue parameters and without exporting the internal structure of a queue. Resubmission overwrites the
job specified in the URL attribute of the ResubmissionParams element. The job must not run. Job resubmission does
not affect other queue parameters as specified, for example, resubmission does not affect queue ordering.

130 Chapter 5 JDF Messaging with the Job Messaging Format

Structure of the ResubmissionParams Element
Table 5-59 Contents of the ResubmissionParams element

| Data Type Description
QueueEntrylD string ID of the queue entry to be replaced.

URL URL Location of the JDF to be submitted. May be either a URL or, in the case
of MIME/Multipart/Related, a CID.

5.6.2.5 ResumeQueueEntry

Table 5-60 Contents of the ResumeQueueEntry message

Object Type Element name Description

CommandTypeObj QueueEntryDef Defines the queue entry.

ResponseTypeObj Queue Describes the state of the queue after the command
has been executed.

For the definition of the elements listed above, see Section 5.6.4.

The hold status of the queue entry specified by QueueEntryDef is removed.

5.6.2.6 SetQueueEntryPosition
Table 5-61 Contents of the SetQueueEntry message

Object Type Element name Description
CommandTypeObj QueueEntryPosParams Defines the queue entry.

ResponseTypeObj Queue Describes the state of the queue after the command
has been executed.

For the definition of the Queue element, see Section 5.6.4.

The position of the queue entry is modified. The QueueEntryPosParams element provides the required parameters.

Structure of the QueueEntryPosParams Element
QueueEntryID specifies the queue entry to be moved. Jobs may either be set to a specific position within the queue
or positioned next to an existing queue entry. The priority of the entry matches the priority of the entry that pre-
cedes it, after it has been repositioned. Only one of NextQueueEntrylD, PrevQueueEntrylD or Position may be
specified.

Table 5-62 Contents of the QueueEntryPosParams element

Name Data Type Description

NextQueueEntryID ? string ID of the queue entry that should be ordered directly behind the en-
try.

QueueEntrylD string ID of a queue entry. The ID is generated by the queue owner.

PrevQueueEntrylD ? string ID of the queue entry that should be ordered directly in front of the
entry.

Position ? integer Position in the queue. 0 = pole position. Note that the position is
based on the queue before modification. Thus if a queue entry is
moved back in the queue, its final position is one lower than speci-
fied in Position.

Chapter 5 JDF Messaging with the Job Messaging Format

5.6.2.7 SetQueueEntryPriority
Table 5-63 Contents of the SetQueueEntryPriority element

_Object Type _ Element name _ Description
CommandTypeObj QueueEntryPriParams Defines the queue entry.
ResponseTypeObj Queue Describes the state of the queue after the command
has been executed.

For the definition of the Queue element, see Section 5.6.4.,

The priority of the queue entry is modified. The QueueEntryPriParams element provides the required parameters.

Structure of the QueueEntryPriParams Element
QueueEntryID, described in the table below, specifies the queue entry that has its priority modified.
Table 5-64 Contents of the QueueEntryPriParams element

Name Data Type Description

Priority integer Number from 0 to 100, where 0 = lowest priority and 100 = maxi-
mum priority.

QueueEntrylD string ID of a queue entry. The ID is generated by the queue owner.

5.6.2.8 SubmitQueueEntry
Table 5-65 Contents of the SubmitQueueEntry message

Element name
QueueSubmissionParams

Object Type
CommandTypeObj

Description
Defines the job submission.

ResponseTypeObj

QueueEntry
Queue

Provides the queue entry of the submitted job.

Describes the state of the queue after the command
has been executed.

Definition of the QueueEntry and Queue elements, see Section 5.6.4.

The SubmitQueueEntry message submits a job to a queue. The QueueSubmissionParams element provides the
required parameters.

Structure of the QueueSubmissionParams Element

The job submission may contain queue-ordering attributes equivalent to those used by the SetQueueEntryPriority
and SetQueueEntryPosition messages. The URL attribute specifies the location where the JDF file to be submitted
can be retrieved by the queue controller. The location type in the URL attribute (such as File, http or CID) defines
the submission method. The optional ReturnURL attribute specifies the location where the modified JDF should be
sent after the job is completed or aborted.

Table 5-66 Contents of the QueueSubmissionParams element

Name Data Type Description

Hold ? boolean If true, the entry is submitted as held. Default = false

NextQueueEntrylD ? string ID of the queue entry that should be ordered directly behind the entry.

PrevQueueEntryID ? string ID of the queue entry that should be ordered directly in front of the en-
try.

Priority ? integer Number from 0 to 100, where 0 = lowest priority and 100 = maximum
priority. Default =1

ReturnURL ? URL URL where the JDF file should be sent when the job is completed or
aborted. If not specified, the JDF should be placed in the default out-
put hot folder of the queue controller.

132 Chapter 5 JDF Messaging with the Job Messaging Format

Name Data Type Description

URL URL Location of the JDF to be submitted. In the case of
MIME/Multipart/Related, the location may be either a URL or a CID.

WatchURL ? URL URL of the controller that should be notified when the status of the

QueueEntry changes. Specifying this URL is the equivalent of send-
ing a QueueEntryStatus query with a persistent channel and
ChangeAttribute = “*” to this URL.

File Submission
If the URL defines a file, the controller may retrieve the file at the location specified in the URL attribute.

The following example declares a file on the network:

<Command Type="SubmitQueueEntry" >
<QueueSubmissionParams URL="File:///c:/AnyDirectory/jobl.jdf"/>
</Command>

HTTP External JDF Submission

The following example declares an intranet or Internet location. In this example, the queue controller can retrieve
the file with a standard HTTP get command. Note that the job itself may be a MIME/Multipart entity. It may also
be dynamically generated by a CGI script or another such tool.

<Command Type="SubmitQueueEntry" >
<QueueSubmissionParams URL="http://JobServer.JDF.COM?jobl"/>
</Command>

HTTP MIME/Multipart/Related Submission

If a message controller is capable of decoding MIME, it is legal to submit a MIME/Multipart/Related message. The
first section of the multipart MIME document must be the JMF submission command. Internal links are defined us-
ing the Content-ID (CID) label in MIME. The second section must be the JDF job. Subsequent sections are the
linked entities, such as the preview images shown in the following example:

MIME-Version: 1.0
Content-Type: multipart/Related; boundary=unique-boundary

--unique-boundary
Content-type: text/xml

<JMF TimeStamp="2000-06-12T08:56+02:00" SenderID="JobCreator P 01">
<Command ID="Cmd-0234" Type="SubmitQueueEntry"">
<QueueSubmissionParams URL="CID:JDF1/>

</Command>

</JMF>

--unique-boundary
Content-type: text/xml
Content-ID: JDF1

<JDF .. >

--unique-boundary
Content-type: image/png
Content-ID: Yellow-PNG-Pagel

png image of a separation may be here

--unique-boundary--

Chapter 5 JDF Messaging with the Job Messaging Format 133

5.6.3 Global Queue Handling

Whereas the commands in the preceding section change the state of an individual queue entry, the commands in this
section modify the state of an entire queue. Note that entries that are executing in a device are not affected by the
global queue-handling commands and must be accessed individually. An individual queue can be selected by speci-
fying the target device/queue in the DevicelD attribute of the JMF root. If no DevicelD is specified, the commands
or queries are applied to all devices/queues that are controlled by the controller that received the message. The fol-
lowing individual messages are defined:

Table 5-67 Global queue-handling commands

Message type qully Description

CloseQueue The queue is closed. No jobs may be accepted by the queue.
FlushQueue CR All entries in the queue are removed.

HoldQueue CR The queue is held. No jobs within the queue may be executed.
OpenQueue CR The queue is opened. Jobs may be accepted.

QueueEntryStatus QRS Returns a QueueEntry element.

QueueStatus QRS Returns the Queue elements that describe a queue or set of queues.
ResumeQueue CR The queue is activated and queue entries may be executed.
SubmissionMethods QR Queries a list of supported submission methods to the queue.

5.6.3.1 CloseQueue

Table 5-68 Contents of the CloseQueue message
Object Type Element name Descripton
CommandTypeObj

ResponseTypeObj | Queue Describes the state of the queue after the command has been exe-
cuted.

For the definition of the Queue element, see Section 5.6.4.,

The queue is closed. No further queue entries are accepted by the queue. The status of entries that are already in the
queue remains unchanged and prior entries may be executed.

5.6.3.2 FlushQueue

Table 5-69 Contents of the FlushQueue message

Object Type Element name Description

CommandTypeObj

ResponseTypeObj | Queue Describes the state of the queue after the command has been exe-
cuted.

For the definition of the Queue element, see Section 5.6.4.,

All queue entries in the queue are removed. Only pending queue entries may be removed.

5.6.3.3 HoldQueue
Table 5-70 Contents of the HoldQueue message

Object Type Element name Description
CommandTypeObj |-
ResponseTypeObj | Queue Describes the state of the queue after the command has been executed.

For the definition of the Queue element, see Section 5.6.4.

134 Chapter 5 JDF Messaging with the Job Messaging Format

The queue is held. No entries may be executed. Note that the status of a held entry prior to HoldQueue is retained so that
held jobs should remain held after a ResumeQueue. New entries may, however, still be submitted to a held queue.

5.6.3.4 OpenQueue

Table 5-71 Contents of the OpenQueue message
Object Type Element name ‘ Description
CommandTypeObj -

ResponseTypeObj Queue Describes the state of the queue after the command has been exe-
cuted.

For the definition of the Queue element, see Section 5.6.4.

The queue is opened and new queue entries may be accepted by the queue. A held queue remains held. The
OpenQueue command is the opposite of a CloseQueue command.

5.6.3.5 QueueEntryStatus
Table 5-72 Contents of the QueueEntryStatus message

Object Type Element name Description

QueryTypeObj QueueEntryDef * Defines the addressed queue entries.
ResponseTypeObj QueueEntry * Describes the status of the queried queue entries.

For the definition of the elements above see Section 5.6.4.

The QueueEntryStatus message returns queue entry descriptions. The QueueEntryDef elements specify the
queue entries to be queried. If no QueueEntryDef element is specified, the query returns a list of QueueEntry
elements, one for each entry in the queue. If no QueueEntryDef is specified and the query defines a persistent
channel, a Signal is emitted for any entry whose status changes. This includes changes as a result of modifications
of the queue status, such as hold or resume.

5.6.3.6 QueueStatus

Table 5-73 Contents of the QueueStatus message
"Object Type " Element name | Description)
QueryTypeObj -
ResponseTypeObj Queue Describes the status of the queue.
For the definition of the Queue element, see Section 5.6.4.

Returns a queue description.

5.6.3.7 ResumeQueue
Table 5-74 Contents of the ResumeQueue message

Object Type Element name ‘ Description
CommandTypeObj |-
ResponseTypeObj | Queue Describes the state of the queue after the command has been executed.

For the definition of the Queue element, see Section 5.6.4.

The queue is activated and queue entries may be executed. The ResumeQueue command is the opposite of a
HoldQueue command.

Chapter 5 JDF Messaging with the Job Messaging Format 135

5.6.3.8 SubmissionMethods

Table 5-75 Contents of the SubmissionMethods message

_Object Type | Element name | Description
QueryTypeObj -
ResponseTypeObj | SubmissionMethods ? Describes the submission methods supported by the

queue.

The SubmissionMethods message returns the submission methods that are supported by a queue controller.

Structure of the SubmissionMethods Element
The response element may contain multiple attributes, as defined below. If an attribute is not specified, the corre-
sponding submission method is not supported.

Table 5-76 Contents of the SubmissionMethods element

Name Data Type Description

File ? boolean Can retrieve a JDF from a File specified in the URL Default = false

HotFolder ? URL URL specification of a hot folder location. Default = no hot folder

HttpGet ? boolean Can retrieve a JDF via HTTP get commands. Default = false

MIME ? boolean Accepts MIME/Multipart/Related submission messages via a message post.
Default = false

The following is an example of a response to a SubmissionMethods query:

<Response ID="MI1" refID="Q1" Type="SubmissionMethods"/>
<SubmissionMethods File="true"
HotFolder="File://MyDevice/HotFolder" HttpGet="true" MIME="false"/>
</Response>

5.6.4 Queue-Handling Elements
In this section elements used by queue-handling commands are defined. The following table shows the resulting
status of a queue in dependence on global queue commands CloseQueue/OpenQueue and HoldQueue/ResumeQueue
as well as the load of queue and its processor. The first command pair determines the logical state of the first col-
umn "Closed" and the second of the column "Held". The queue is held if the queue manager doesn't send existing
entries to the queue's processor.

Table 5-77 Definition of the Queue Status Attribute values

Closed Held Queue Full Processor Full Status
Yes Yes Any Any Blocked
Yes No Any Any Closed
No Yes Any Any Held

No No Any No Waiting
No No No Yes Running
No No Yes Yes Full

136 Chapter 5 JDF Messaging with the Job Messaging Format

anenpownsal
ananpp|oy

"queue internal
communication"
"queue intermal
communication"

"gueue internal
communication”
"queue internal
communication”

Blocked

openQueue

closeQueue

Figure 5.6 Effects of the global queue messages on the queue Status

Structure of the Queue Element
The attributes in the following table are defined for Queue message elements.
Table 5-78 Contents of the Queue element

Name Data Type Description

Status Enumeration | Status of the queue. Possible values are:

Blocked — Queue is completely inactive. No entries may be added and no
entries are executed. The queue is closed and held. The queue requires an
interaction like OpenQueue or ResumeQueue to reactivate it.

Closed — Queue entries that are in the queue are executed, but no new en-
tries may be submitted. The lock must be removed explicitly by the
OpenQueue command.

Full — Queue entries that are in the queue are executed but no new entries
may be submitted. The lock is removed by the queue controller as soon as
it is able to do so.

Running — A process is executing. Entries may be submitted and will be
executed when they reach their turn in the queue.

Waiting — Queue accepts new entries and has free resources to immediately
commence processing.

Held — Entries may be submitted but will not be executed until the queue is
resumed by the ResumeQueue command.

DevicelD String Identifies the queue/device.

Device * Element The devices that execute entries in this queue.

Chapter 5 JDF Messaging with the Job Messaging Format 137

Data Type Description
QueueEntry * element Queue entry elements (see Table 5-79 , below). The entries are ordered in
the sequence they will be executed, beginning with the running entries.

Example of a Queue message element:

<Queue Status="Running" DeviceID="Q12345">

<QueueEntry QueueEntryId="111-1" Priority="1" Status="Running" JobId="111" JobPar-
tId="1"/>

<QueueEntry QueueEntryId="111-2" Priority="1" Status="Waiting" JobId="111" JobPar-
tId="2"/>

<QueueEntry QueueEntryId="112-1" Priority="55" Status="Held" JobId="112" JobPar-
tId="1"/>
</Queue>

Structure of the QueueEntry Element
Table 5-79 Contents of the QueueEntry element

Name Data Type Description

JobID ? string The Job ID of the JDF process.

JobPartID ? string The JobPartID of the JDF process.

Priority ? integer Priority of the QueueEntry. Values are 0-100. 0 = lowest priority,
while 100 = highest priority. Default = 1

QueueEntrylD string ID of a QueueEntry. This ID is generated by the queue owner.

StartTime ? dateTime Time when the job has been started.

Status enumeration Status of the individual entry. Possible values are:

Running — The queue entry is running and is no longer represented
in the queue.

Waiting — The queue entry is waiting and will be executed when re-
sources are available.

Held — The queue entry is held and will not execute until resumed.

Removed — The queue entry has been removed. This status can
only be sent when a persistent channel watches a queue and the
queue entry is removed.

SubmissionTime ? dateTime Time when the entry was submitted to the queue.

Structure of the QueueEntryDef Element
The element specifies a queue entry and is used to refer to a certain queue entry.
Table 5-80 Contents of the QueueEntryDef element

Data Type Description
QueueEntrylD string ID of the queue entry. The ID is generated by the queue owner.

5.7 Extending Messages

This specification defines a set of predefined messages for general usage. Extensions to existing messages and addi-
tional message types may be defined using the standard extension rules described in JDF Extensibility. Note, the
generic content of Section 3.1.1 Generic Contents of JDF Elements is also valid for JMF elements. It is not allowed
to define message extensions which duplicate the functionality of messaging types, messaging elements, or message
attributes that are already defined in this specification.

For example the content of the Type attribute may be specified with a prefix that identifies the organization that
defined the extension. The prefix and name should be separated by a single colon (‘:’). Any additional attributes
and elements are allowed, and internal elements may be declared with explicit namespaces. The official namespace

138 Chapter 5 JDF Messaging with the Job Messaging Format

of JMF elements is xmIns="http://www.CIP4.org/JDFSchema 1 1". This namespace is identical to that defined for
JDF in JDF Extensibility. An example is provided:

<JMF .. xmlns="http://www.CIP4.0org/JDFSchema 1 1" xmlns:Circus="Circus Schema URI">
<Query Type="Circus:IsClownHappy" ID="Q1">
<Circus:ClownParams Gender="male"/>
</Query>
</JMF>

The response will also have the “Circus:” namespace identifier. All Circus elements are explicitly declared.

<JMF .. xmlns="http://www.CIP4.org/JDFSchema 1 1" xmlns:Circus="Circus Schema URI">
<Response ID="M1" refID="Ql" Type="Circus:IsClownHappy">
<Circus:Clown name="Joe" happy="true">
<Circus:Clown name="John" happy="false">
</Response>
</JMF>

5.7.1 IfraTrack Support

The extending mechanism can be used to implement compatibility with other XML-based messaging standards, for
example ver-
sion 3.0 of ,-

[fraTrack. More on IfraTrack
The Type at-
tribute is set | IfraTrack is a specification for the interchange of status and management information

to the appro- | between local and global production management systems in newspaper production.
priate name- | For more information on IfraTrack, including a case study paper, please see

space, and | http://www.ifra.com/WebSite/news.nsf/(StructuredSearchAll)?OpenAgent&IFRATRACK
the foreign
message is included, as demonstrated in the following example:

<JMF .. xmlns="http://www.CIP4.org/JDFSchema 1 1" xmlns:IFRA="IfraTrack URI">
<Query ID="Ql" Type="IFRA:IMF">
<IMF xmlns="IfraTrack URI">
Whatever you want (may be multiple top level elements)
</IMF>
</Query>
</JMF>

The legal response would be:

<JMF .. xmlns="http://www.CIP4.org/JDFSchema 1 1" xmlns:IFRA="IfraTrack URI">
<Response ID="M1" refID="Ql" Type="IFRA:IMF">
<IMF xmlns="IfraTrack URI">
The appropriate IFRA response(s)
</IMF>
</Response>
</JMF>

Note that the application is free to select the appropriate response types in order to fulfill its local (IfraTrack) proto-
col requirements if it uses its own namespace. In the examples above the default namespace associated with the
IMF query and response elements has been overwritten by the Ifra-namespace. Additional information on using
IfraTrack and JDF is in Appendix E Modeling IfraTrack in JDF.

Chapter 6 Processes 139

Chapter 6 Processes

The following chapter describes the processes that are defined in detail for JDF.

6.1 Process Template :
Processes are defined by their input and output re- @ The JDF Cookbook

sources, therefore, all relevant resource information is
provided in tables for each process. Furthermore, al- | Chapter 6 and Chapter 7 is “the list of ingredients”
though they are not listed for each process, additional, in the JDF “cookbook.” The following processes
optional input resources as defined in the following table | and resources are fairly exhaustive. You can
as well as any implementation resources are implied for | choose to use only what fits your workflow.

all processes defined in this chapter.

Input Resources

Name Description

Resource Represents any input resource. If an optional resource is not specified in a
JDF instance, the JDF Consumer may make its own assumption regarding at-
tributes and subelements of the resource. Specification defined attribute de-
faults cannot be guaranteed.

Res1 (usagel) A resource of type Resl with the ProcessUsage attribute usage 1
Res1 (usage2) A resource of type Resl with the ProcessUsage attribute usage2
ApprovalSuccess * Any number of ApprovalSuccess resources may be appended to processes

in order to model proofing and verification requirements. This is implied and
not specified explicitly in the tables in the following section. For more in-
formation on the Approval process, see Section 6.2.1.

Implementation * Abstract resource that is a placeholder for any implementation resource (ex-
amples are Employee and Device) that is associated with processing this
node.

Output Resources
Name Description \
Resource Represents any output resource.

6.2 General Processes

6.2.1 Approval

The Approval process can take place at various steps in a workflow. For example, a resource, such as a printed
sheet or a finished book, is used as the input to be approved, and an ApprovalSuccess (given, for example, by a
customer or foreman) is produced. Combining the Approval process with any other process can be used to repre-
sent a request for a receipt.

Input Resources

ApprovalParams Details of the approval process.
Resource * The resources to be proofed. The input will most often be a resource of class
Handling or Quantity.

Output Resources
Name Description

ApprovalSuccess Result of any proofing process given, for example, by a customer or foreman.
Note that ApprovalSuccess resources are only available on success.

140 Chapter 6 Processes

Name Description

Resource * (Accepted) Represents the input resources that have been accepted for further processing by
the approval process as output resources. This is typically used to transfer the re-
source Status of Draft to Available (see also Formal Iterative Processing).

Resource * (Rejected) Represents the input resources that have been rejected for further processing by
the approval process as output resources. This may be used to define additional
processing for rejected resources.

6.2.2 Buffer

The Buffer process is used to buffer a resource for a certain time period. This can be buffering of a complete re-
source or of a partial resource, e.g., in a pipe. The quantity of the input and output of resources should be equal.
Waiting for printed material to dry before finishing is an example of the Buffer process.

Input Resources

Name Description

BufferParams The parameters, e.g. times and locations of the Buffer process.

Resource The physical resources to be buffered. These may be any resource whose
class is Consumable, Handling or Quantity.

Output Resources

Description

Resource The same resource after buffering. The resource must have a class of Con-
sumable, Handling, or Quantity.

6.2.3 Combine

The Combine process is used to combine multiple physical resources or logical resources, e.g., RunLists of the
same content to form one resource. The quantity of the input and output of resources should be equal. The ordering
of the input ResourceLinks must be honored.

Input Resources
Name Description
Resource + The resources to be combined.

Output Resources

Description
Resource Result of combining. The resource formed as a result of the Combine proc-
ess.

6.2.4 Delivery

This process can be used to describe the delivery of a physical resource to or from a location. This delivery may be
internal—meaning within the company—or to an external company or customer. The Customerinfo element of the
JDF node can also be used if the delivery to is to be made to only one customer. Note that a delivery receipt can be
requested by combining the Delivery process with an Approval process.

Input Resources

Name Description

DeliveryParams Necessary information about the item or items to be delivered is stored here.

Resource Any resource delivered to a location. This can be a physical resource or a Pa-
rameter resource that is delivered electronically.

Chapter 6 Processes 141

Output Resources

Name Description
Resource Any resource picked up from a location. This can be a physical resource or a
Parameter resource that is delivered electronically.

6.2.5 ManualLabor

This process can be used to describe any process where resources are handled manually. The ManualLabor proc-
ess is designed to monitor any type of non-automated labor from an MIS system.

Input Resources
Name Description

Resource * Resources that are required to create the output Resource.

ManualLaborParams Details on the ManualLabor process.

Output Resources

Name Description
Resource The resource that was created by manual work. In general these will be com-
ponents, but handling resources may also be created manually.

6.2.6 Ordering

This process can be used to describe the Ordering (requisition) of a Resource element. Orders can be placed in-
ternally, i.e., within the company, or externally.

Input Resources

Name Description

OrderingParams Necessary information about the items to be ordered, such as the supplier ad-
dress, item quantity, or unit type.

Output Resources
Name Description

Resource + All kinds of physical resources can be ordered.

6.2.7 Packing

|Deprecated in JDF 1.1|

This process can be used to describe the Packing of a PhysicalResource element for transport purposes. The
Packing process has been deprecated in version 1.1 and beyond. It is replaced by the individual processes defined
in Section 6.5.45.5 Packaging Processes.

Input Resources

Name Description

PackingParams Necessary information about the packing process.

PhysicalResource All kinds of physical resources can be packed.

Output Resources

Name Description
PhysicalResource The packaged physical resources. Note that Amount attributes referring to this
resource still refer to individual products and not to boxes, cartons or pallets.

142 Chapter 6 Processes

6.2.8 ResourceDefinition

This process can be used to describe the interactive or automated process of defining resources such as set-up informa-
tion. This process creates output resources or modifies input resources of the same type as the output resources. The
ResourceDefinition process is designed to monitor interactive work such as creating imposition templates. It can
also be used to model a hot folder process that accepts resources from outside of a JDF based workflow.

Input Resources
Name Description

Resource * Any type of resource. Generally these will be templates.

ResourceDefinitionParams | Details on how to handle defaults.
?

Output Resources

Name Description

Resource + The same type of resource as the input.

6.2.9 Split

This process is used for splitting one physical or logical resource into multiple physical or logical resources contain-
ing the same content as the original. The quantity of the input and output of resources should be equal.

Input Resources
Name Description
Resource The resource to be split.

Output Resources

Description
Resource + The resources formed as a result of splitting.

6.2.10 Verification

The Verification process is used to confirm that a process has been completely executed. In the case of variable
data printing, in which every document is unique and must be validated individually, database access is required.
Verification in this situation may involve scanning the physical sheet and interpreting a bar code or alphanumeric
characters. The decoded data may then be either recorded in a database to be later cross referenced with a verifica-
tion list, or cross referenced and validated immediately in real time.

Input Resources

Name Description

DBSchema ? Schema description of the cross-reference database.
DBSelection ? Database link that defines the database that contains cross-reference data.
IdentificationField * Identifies the position and type of data for an automated, OCR-based verifica-
tion process.
VerificationParams Controls the verification requirements.
Output Resources
ApprovalSuccess ? Signature file that defines verification success.
DBSelection ? Database link where the verification data should be recorded.

Chapter 6 Processes 143

6.3 Prepress Processes

6.3.1 ColorCorrection

ColorCorrection is the process of modifying the specification of colors in documents to achieve some desired vis-
ual result. The process may be performed to ensure consistent colors across multiple files of a job or to achieve a
specific design intent, e.g., “Brighten the image up a little”.

ColorCorrection is distinct from ColorSpaceConversion, which is the process of changing how the colors
specified in the job will be produced on paper. Rather, ColorCorrection is the process of modifying the desired
result, whatever the specified colorspace might be.

Input Resources

Name Description

ColorantControl Identifies the assumed color model for the job.
ColorCorrectionParams Parameters of the ColorCorrection process
RunList List of content elements that are to be operated on.

Output Resources

~ Description
RunList List of color-corrected pages.

6.3.2 ColorSpaceConversion

ColorSpaceConversion, as the name implies, is the process of converting all colors used in the job to a known
colorspace. There are two ways in which a controller can use this process to accomplish the color conversion. It
can simply order the colors to be converted by the device assigned to the task, or it can request that the process sim-
ply tag the input data for eventual conversion. Additionally, the process may remove all tags from the content.

The parameters of this resource provide the ability to selectively control the conversion or tagging of graphical
objects based on object class and/or incoming color space.

Like all other color manipulation supported in JDF, the color conversion controls are based on the use of ICC pro-
files. While the assumed characterization of input data can take many forms, each can internally be represented as an
ICC profile. In order to perform the transformations, input profiles must be paired with the identified final target de-
vice profile to create the transformation.

In order to avoid the loss of black color fidelity resulting from the transformation from a four-component
CMYK to a three-component interchange space, the agent may select a DeviceLink' profile as the assumed color
space characterization. In these instances, the final target profile is ignored. Since there is no algorithmic way to
determine that the output characterization in a device link profile is equivalent to another profile, some of the re-
sponsibility to select a sensible combination falls on the agent or end user.

Input Resources

Name Description

ColorantControl Identifies the assumed color model for the job.

ColorSpaceConversionParams | Parameters that define how colorspaces will be converted in the file.

RunList List of pages on which to perform the selected operation.

! DeviceLink profiles are ICC profiles that map directly from one device color space to another device color space.
Therefore, it represents a one-way link or connection between devices. Examples for DeviceLink profiles are
CMYK to CMYK print process conversions or RGB to CMYK color separations.

144 Chapter 6 Processes

Output Resources
Name Description

ColorantControl ? Identifies the assumed color model for the job. The ColorantControl re-
source may be modified by a ColorSpaceConversion Process.

RunList List of pages on which the selected operation has been performed.

6.3.3 ContactCopying

ContactCopying is the process of making an analog copy of a film onto a another film or plate. It includes Film-
ToPlateCopying as defined in JDF 1.1.

Input Resources

Name Description

ContactCopyParams The settings of the exposure task.

DevelopingParams ? Controls the physical and chemical specifics of the media development
process.

ExposedMedia + The film or films to be copied onto the plate.

Media The unexposed plate.

TransferCurvePool? Area coverage correction and coordinate transformations of the device.

Output Resources
Name Description
ExposedMedia The resulting exposed contact copy.

6.3.4 ContoneCalibration

This process specifies the process of contone calibration. It consumes contone raster data, such as that output from
an interpreting and rendering process. It produces contone raster data which has been calibrated to a press using a
well defined screening process.

In

put Resources

Description
Ordered list of rasterized ByteMaps representing pages or surfaces.

RunList

ScreeniniParams ?

TransferFunctionControl ? Specifies which calibration to apply.

Parameters specifying which halftoning mechanism is to be applied and
with what specific controls.

Output Resources

Name Description
RunList Ordered list of rasterized ByteMaps representing pages or surfaces.

6.3.5 DBDocTemplateLayout

This process specifies the creation of a master document template that is used as an input resource for the
DBTemplateMerging process. It is similar to the LayoutElementProduction process except that the output is a set
of document templates. Document template are represented in JDF as LayoutElement resources with Template = true.

Chapter 6 Processes 145

Input Resources
Name Description

LayoutElement * Page elements without links to a database.

DBRules Description of the rules that should be applied to database records in or-
der to generate graphic output.
DBSchema Database schema that describe the structure of data in the database.

Output Resources
Name
LayoutElement *

Description

The document template is a LayoutElement with links to a database.
These links are proprietary to the linking application and are not de-
scribed in JDF. The Template attribute must be true.

6.3.6 DBTemplateMerging

This process specifies the creation of personalized PDL instance documents by combining a document template and
instance data records from a database. The resulting instance documents will generally be consumed by an
Imposition, a RIP’ing, and ultimately by a DigitalPrinting process.

Input Resources

Name Description
DBMergeParams Parameters of the merge process.
DBSelection Instance database records to be merged into the document.

LayoutElement *

Document template page element with internal links to a database.

Output Resources

RunList

Description

Page element without links to a database. This element usually contains
a printable LayoutElement resource such as PPML, PDF or even plain
ASCII.

6.3.7 FilmToPlateCopying
|Deprecated in JDF 1.1|

FilmToPlateCopying has been replaced by the more generic ContactCopying.
FilmToPlateCopying is the process of making an analog copy of a film onto a printing plate.

Input Resources
Name
DevelopingParams ?

Description
Controls the physical and chemical specifics of the media development
process.

ExposedMedia

The film or films to be copied onto the plate.

Media

The unexposed plate.

PlateCopyParams

The settings of the exposure task.

Output Resources
Name
ExposedMedia

Description
The resulting exposed plate.

146

Chapter 6 Processes

6.3.8 FormatConversion

The FormatConversion process controls the conversion from one document type to another, for instance TIFF to BMP.

Input Resources
Name
FormatConversionParams

Description
Set of parameters required to control the FormatConversion process.

RunList

List of documents and/or pages to be converted.

Output Resources
Name
RunList

Description
List of documents and pages that have been converted.

6.3.9 ImageReplacement

This process provides a mechanism for manipulating documents that contain referenced image data. It allows for
the “fattening” of files that simply contain a reference to external data or contain a low resolution proxy. Addition-
ally, the ImageReplacementParams resource can be specified so that this process generates proxy images from
referenced data. ImageReplacement is intentionally neutral of the conventions used to identify the externally ref-
erenced image data.

Input Resources
Name Description
ImageCompressionParams ? This resource provides a set of controls that determines how images will

- be compressed in the resulting “fat” PDF pages.

ImageReplacementParams
RunList

Describes the controls selected for the manipulation of images.

List of page contents on which to perform the selected operation.

Output Resources
Name Description

RunList List of page contents with images that have been manipulated as indi-
cated by the ImageReplacementParams resource.

6.3.10 ImageSetting

The image recording process is executed by an imagesetter or platesetter that images a bitmap onto the film or plate
media.

Input Resources
Name Description

DevelopingParams ? Controls the physical and chemical specifics of the media development

process.

ImageSetterParams ? Controls the device specific features of the imagesetter.

Media The unexposed media.
RunList
TransferCurvePool ?

Identifies the set of bitmaps to image. May contain bytemaps or images.

Area coverage correction and coordinate transformations of the device.

Chapter 6 Processes 147

Output Resources

Name Description
ExposedMedia The exposed media resource.

6.3.11 Imposition

The Imposition process is responsible for combining several pages of input graphical content on to a single surface
whose dimensions are reflective of the physical output media. Printer’s marks can be added to the surface in order
to facilitate various aspects of the production process. Among other things, these marks are used for press align-
ment, color calibration, job identification, and as guides for cutting and folding.

Note that the Imposition process specifies the task of combining pages and marks on sheets. The task of setting up
the parameters needed for Imposition, ¢.g., Layout, is defined either by LayoutPreparation or by the generic
ResourceDefinition process.

There are two mechanisms provided for controlling the flow of page images onto Media. The default mechanism,
which provides the functionality of Layout in PJTF, explicitly identifies all page content for each Sheet imaged and
references these pages by means of the Documents and/or MarkDocuments array. Setting the Aufomated attribute
of the Layout resource to true activates a template approach to printing and relies upon the full Documents hierarchy
to specify the page content to image. Automated impositioning is equivalent to the PrintLayout functionality in PJTF.

In JDF, there is a single Layout resource definition. Its structure is broad enough to encompass the needs of both
fully specified and template-driven imposition. When described fully, the Layout resources include an array of
Signatures. Each Signature in turn specifies an array of Sheets, and each Sheet can have up to two Surfaces
(Front and Back), on which the page images and any marks are to be placed using PlacedObjects. A Sheet that
specifies no Surface content will be blank. Pages that are to be printed must be placed onto Surfaces using Con-
tentObject subelements which explicitly identify the page (via the Ord attribute which specifies an index into the
document RunList). Thus, the Layout hierarchy specifies explicitly which pages will be imaged.

When describing automated imposition, Layout resources specify a single Signature of Sheet(s) where page
contents are imaged. The (virtual) sequence of pages which is to be imaged via automated layout is defined by the
Document RunList. Pages are drawn in order from this sequence to satisfy the ContentObjects in the Surfaces
for the Signature in the Layout, and the Signature is repeated until all pages of the sequence are consumed. Each
time the Signature is repeated, pages are consumed in “chunks” whose size are determined by the value of MaxOrd
+ 1 (if present in the Layout), or by the largest Ord value or calculated OrdExpression value for any ContentOb-
ject in the Signature (if MaxOrd is absent).

Attributes of the Media are given for each Sheet used in printing. Because the same Signature is repeated until all
pages are consumed, the Layout hierarchy can provide hints or preferences about special needs for sets of page content
via InsertSheet elements. Inserting media is a way to separate sections of the document content. Thus alternate content
is printed only as necessary to fill areas which would normally have page content because new media has been added or to
designate where a document section will begin as specified by the odd or even position of the Signature.

In a JDF model, impositioning is defined separately from other processes, which may precede or follow it. A
Combined node may combine Imposition with other processes (such as Separation or Interpreting) to describe
a device that happens to perform both in a single execution module.

Input Resources
Name Description

Layout A Layout resource that indicates how the content pages from the Docu-
ment RunList and marks from the Marks RunList (see below) are com-
bined onto imposed surfaces.

RunList (Document) Structured list of incoming page contents which is transformed to pro-
duce the imposed surface images.

RunList ? (Marks) Structured list of incoming marks. These are typically printer’s marks
such as fold marks, cut marks, punch marks, or color bars.

148 Chapter 6 Processes

Output Resources
Name Description

RunList Structured list of imposed surfaces. The Type of the LayoutElements
must all be Surface. Typically the output RunList will be partitioned by
PartIDKeys = “SheetName Side Separation”. If the Imposition process
is executed before RIPping, this RunList will generally be consumed by
an Interpreting process. In the case of post-RIP Imposition it will be
consumed by DigitalPrinting or ImageSetting.

6.3.12 InkZoneCalculation

The InkZoneCalculation process takes place in order to preset the ink zones before printing. The Preview data
are used to calculate a coverage profile that represents the ink distribution along and perpendicular to the ink zones
within the printable area of the preview. The InkZoneProfile can be combined with additional, vendor-specific
data in order to preset the ink zones and the oscillating rollers of an offset printing press.

Input Resources

Name Description

InkZoneCalculationParams Specific information about the printing press geometry(such as the num-
ber of zones) to calculate the InkZoneProfile.

Layout ? Specific information about the Media (including type and color) and

_ about the Sheet (placement coordinates on the printing cylinder).

Preview A low resolution bitmap file representing the content to be printed.

Sheet ? Specific information about the Media (including type and color) and

lDeprecated in JDF 1.1| about the Sheet (placement coordinates on the printing cylinder). Re-
placed by Layout in JDF 1.1.

TransferCurvePool ? Function to apply ContactCopying, DigitalPrinting, and Conven-

tionalPrinting process characteristics such as press, climate, and sub-
strate under certain standardized circumstances. This function can be
used to generate an accurate InkZoneProfile.

Output Resources

~ Description
InkZoneProfile Contains information about ink coverage along and perpendicular to the
ink zones for a specific press geometry.

6.3.13 Interpreting

The interpreting device consumes page descriptions and instructions for controlling the printing device. The parsing of
graphical content in the page descriptions produces a canonical display list of the elements to be drawn on each page.

The interpreter may encounter, and must act upon, device control instructions that affect the physical function-
ing of the printing device, such as media selection and page delivery. Media selection determines which type of
medium is used for printing and where that medium can be obtained. Page delivery controls the location, orienta-
tion, and quantity of physical output.

The interpreter is also responsible for resolving all system resource references. This includes handling font sub-
stitutions and dealing with resource aliases. However, the interpreter specifically does not get involved with any
functions of the device that could be considered finishing features, such as stapling, duplexing, and collating.

Chapter 6 Processes 149

Input Resources
Name Description

ColorantControl ? Identifies the color model used by the job.

FontPolicy ? Describes the behavior of the font machinery in absence of requested
fonts.

InterpretingParams Provides the parameters needed to interpret the PDL pages specified in

the RunList resource.

PDLResourceAlias * These resources allow a JDF to reference resources which are defined in
a Page Description Language (PDL). For example, a PDLResour-
ceAlias resource could refer to a font embedded in a PostScript file.

RunList This resource identifies a set of PDL pages or surfaces which will be in-
terpreted.

Output Resources
Name Description

InterpretedPDLData Pipe of streamed data which represents the results of Interpreting the
pages in the RunList. The format and detail of these data is implemen-
tation specific. In particular, it is assumed that the Interpreting and
Rendering processes are tightly coupled and that there is no value in at-
tempting to develop a general specification for the format of this data.

6.3.14 LayoutElementProduction

This process describes the creation of page elements. It also explains how to create a layout that can put together all
of the necessary page elements, including text, bitmap images, vector graphics, PDL, or application files such as
Adobe InDesign®, Adobe PageMaker®, and Quark XPress®. The elements might be produced using any of a
number of various software tools. This process is often performed several times in a row before the final Lay-
outElement, representing a final layout file, is produced.

Input Resources

Description

LayoutElement * URL of the PDL or application file, bitmap image file, text file, vector
graphics file, etc. Additional information (e.g., the page number or X, Y-
coordinates) might be stored in the Comment element of the Lay-
outElement resource. Customer information such as the file templates,
manuscripts, and sketches are handled via URL.

Output Resources

Name Description

LayoutElement ? A URL of the PDL or application file is produced by this process if no
RunList is produced. Additional information, e.g., page number or X,
Y-coordinates, might be stored in the Comment of the LayoutElement.

RunList ? A RunList of LayoutElement resources of ElementType Page or
Document is produced if this LayoutElementProduction task is the last
process of type LayoutElementProduction.

150 Chapter 6 Processes

6.3.15 LayoutPreparation

The LayoutPreparation process specifies the process of defining the Layout resource for the Imposition proc-
ess. Note that it is possible to create a Combined process that includes both LayoutPreparation and
Imposition. In this case, the Layout and RunList (Marks) resource would not be explicitly defined, since they
are exchange resources between the two processes.

Input Resources

Name Description
LayoutPreparationParams Set of parameters required to control the LayoutPreparation process.
RunList (Document) List of documents and/or pages that will be input into the layout. Note

that this Runlist is for information only and not modified by the Lay-
outPreparation process.

RunList ? (Marks) List of marks that will be input into the layout. These are typically
printer’s marks such as fold marks, cut marks, punch marks, or color
bars.

Output Resources

Name Description

Layout The layout of the document to be imposed.

RunList (Marks) ? List of marks that may be used as input of the following Imposition
process.

TransferCurvePool ? Definition of the transfer curves and coordinate systems of the devices.

6.3.16 PDFToPSConversion

The PDFToPSConversion process controls the generation of PostScript from a single PDF document. This proc-
ess may be used at any time in a host-based PDF workflow to exit to PostScript for use of tools that consume such
data. Additionally, it may be used to actively control the physical printing of data to a device that consumes Post-
Script data. The JDF model of this may include a PDFToPSConversion process in a Combined node with a
PSToPDFConversion process.

Input Resources
Name Description

PDFToPSConversionParams Set of parameters required to control the generation of PostScript.

RunList List of documents and pages to be converted to PostScript.

Output Resources

Name Description

RunList Stream or streams of resulting PostScript code. This PostScript code may end up physically
stored in a file or be piped to another process. The GeneratePageStreams attribute of the
PDFToPSConversionParams resource determines whether there is a single stream gener-
ated for all pages in the RunList or whether each page is generated in to a separate consecu-
tive stream.

6.3.17 Preflight

Preflighting is the process of examining the components of a print job to ensure that the job will print successfully
and with the expected results. Preflight checks may be performed on each PDL document identified within the as-
sociated RunList resource.

Preflighting a file is generally a three-step process. First, the pages are inventoried against a preflight profile, de-
tailing the expected or hoped-for results. The resulting inventory identifies the significant characteristics of all the

Chapter 6 Processes 151

pages in the job. Next, the characteristics are tested against a set of criteria specified by a series of preflight constraint
resources. Finally, results and discrepancies are reported in a PreflightAnalysis hierarchy log as analysis.

Agents record the instructions for, and devices record the results of, preflight operations in JDF jobs, using hierar-
chies headed by three types of resources: Inventory, Profile, and Results. The Inventory hierarchy may be used to re-
cord all the information gathered in the first step, although devices need not record this information. The Profile
hierarchy is used to record the criteria used to test the file in the second step. And the Results hierarchy is used to re-
cord the results of the tests. In all three hierarchies, information is grouped into categories. There are six predefined
categories in JDF—Colors, Document, Fonts, FileType, Images and Pages, but applications may define other catego-
ries if needed.

In a profile hierarchy, each category is populated with PreflightConstraint elements. Each PreflightConstraint
element specifies a test that the application will perform when analyzing the file. In the Inventory and Results hier-
archies, each category is populated with two kinds of subelements that record information about specific characteris-
tics of the file: Preflightinstance and PreflightDetail. Such information is recorded in the following two ways:

1. Information that is specific to one instance of some file object is recorded via Preflightinstance subele-
ments that occur in each of the results pools such as FontResultsPool and ImageResultsPool). Within
each Preflightinstance element, PreflightinstanceDetail subelements provide detailed information about
that instance. For example, to record information about each font used in the file, the FontResultsPool
contains one Preflightinstance subelement, which groups a set of PreflightinstanceDetail subelements.
Each of these subelements records one specific characteristic of the font.

2. Information that applies to the file as a whole is recorded via PreflightDetail subelements, which occur in
the various results pools. For example, to record all the page sizes used in the file, the PagesResultsPool
would contain several PreflightDetail subelements, one for each page size used in the file.

An Inventory hierarchy may be used to record all information about a file. Preflight tools are not required to create
an Inventory hierarchy as part of the preflight information they record. However, tools may find it useful to record
this information, allowing them to avoid reparsing the entire file in order to perform a new Analysis.

Profile hierarchies specify the constraints against which the file is tested. Each Analysis hierarchy reflects the re-
sults of evaluating the file characteristics, which may be recorded in an Inventory hierarchy, against a set of tests re-
corded in a Profile hierarchy.

PreflightConstraint elements record the specific details for the constraints specified in the PreflightProfile re-
source. PreflightDetail and PreflightinstanceDetail elements record results, while Preflightinstance elements group
PreflightinstanceDetail subelements for instances of file objects. The details recorded are PDL-specific.

Applications can define constraints within any of the defined constraint categories for any file type. In addition,
applications may add to the set of defined constraints and constraint categories, defining both the new category and the
constraint within the category.

Whether constraints are specified for predefined or new constraint categories, the eventual values for those con-
straints are always expressed as PreflightConstraint elements which are part of a PreflightProfile. Furthermore,
the results are always expressed as either PreflightDetail elements or Preflightinstance elements, which group
PreflightinstanceDetail subelements for Analysis results.

Input Resources
Name Description

Preflightinventory ? Provides an exhaustive list of all items already resolved in a previous preflight.

PreflightProfile A specified list of constraints against which pages may be tested.

RunList The list of pages to be preflighted.

152 Chapter 6 Processes

Output Resources
Name Description

PreflightAnalysis ? Describes the results of a preflight operation. Provides analytical information for the
constraints against which the file was tested.

Preflightinventory ? Provides an exhaustive list of all items considered in preflight.

RunList ? A list of pages that may or may not have been modified as a result of a fix-up opera-
tion.

6.3.18 PreviewGeneration

The PreviewGeneration process produces a low resolution Preview of each separation that will be printed. The
Preview can be used in later processes such as InkZoneCalculation. The PreviewGeneration process typi-
cally takes place after Imposition or RIPping.

The PreviewGeneration can be performed in one of the following two ways: 1.) the imaged printing plate is
scanned by a conventional plate scanner or 2.) medium to high resolution digital data are used to generate the Pre-
view for the separation(s). The extent of the PDL coordinate system (as specified by the MediaBox attribute, the
resolution of the preview image, and width and height of the image) must fulfill the following requirements:

MediaBox length / 72 * x-resolution = width + 1
MediaBox height / 72 * y-resolution = height £ 1

A gray value of 0 represents full ink, while a value of 255 represents no ink (see the DeviceGray color model in
chapter 4.8.2. of the PostScript Language Reference Manual).

Rules for the Generation of the Preview Image

To be useful for the ink consumption calculation, the preview data must be generated with an appropriate resolution.
This means not only spatial resolution, but also color or tonal resolution. Spatial resolution is important for thin
lines, while tonal resolution becomes important with large areas filled with a certain tonal value. The maximum er-
ror caused by limited spatial and tonal resolution should be less than 1 %.

Spatial Resolution

Since some pixel of the preview image might fall on the border between two zones, their tonal values must be split
up. In a worst case scenario, the pixels fall just in the middle between a totally white and a totally black zone. In
this case, the tonal value is 50%, but only 25% contributes to the black zone. With the resolution of the preview im-
age and the zone width as variables, the maximum error can be calculated using the following equation:

100

error[%]=
4 *resolution[L | mm]* zone _ width[mm)

For zone width broader than 25 mm, a resolution of 2 lines per mm will always result in an error less than 0.5 %.
Therefore, a resolution of 2 lines per mm (equal to 50.8 dpi) is suggested.

Chapter 6 Processes 153

Zone 1

Border between zones

Overlapping pixel

Figure 6.1 Worst case scenario for area coverage calculation

Tonal Resolution
The kind of error caused by color quantization depends on the number of shades available. If the real tonal value is
rounded to the closest (lower or higher) available shade, the error can be calculated using the following equation:

error[%]= 100
2 *number _of _shades

Therefore, at least 64 shades should be used.

Line Art Resolution

When rasterizing line art elements, the minimal line width is 1 pixel, which means 1/resolution. Therefore, the rela-
tionship between the printing resolution and the (spatial) resolution of the preview image is important for these kind
of elements. In addition, a specific characteristic of PostScript RIPs adds another error: within PostScript, each
pixel that is touched by a line is set. Tests with different PostScript jobs have shown that a line art resolution of more
than 300 dpi is normally sufficient for ink-consumption calculation.

Conclusion
There are quite a few different ways to meet the requirements listed above. The following list includes several examples:

e The job can be Ripped with 406.4 dpi monochrome.

e With anti-aliasing, the image data can be filtered down by a factor of 8 in both directions. This results in an
image of 50.8 dpi with 65 color shades.

e High resolution data can also be filtered using anti-aliasing. First, the Ripped data, at 2540 dpi monochrome,
is taken and filtered down by a factor of 50 in both directions. This produces an image of 50.8 dpi with 2501
color shades. Finally those shades are mapped to 256 shades, without affecting the spatial resolution.

Rasterizing a job with 50.8 dpi and 256 shades of gray is not sufficient. The problem in this case is the rendering of
thin lines (see Line Art Resolution).

Recommendations for Implementation

The following three guidelines are strongly recommended:

e The resolution of RIPped line art must be at least 300 dpi.

e The spatial resolution of the preview image must be approximately 20 pixel/cm (= 50.8 dpi).
e The tonal resolution of the preview image must be at least 64 shades.

Input Resources
Name Description
ColorantControl ? The ColorantControl resources that define the ordering and usage of

inks in print modules. Needed for generating thumbnails.

154 Chapter 6 Processes

Name Description

ExposedMedia ? The PreviewGeneration process can use an exposed printing plate to
produce a Preview resource. This task is performed using an analog
plate-scanner. Only one of ExposedMedia, Preview, or RunList
may be specified in any PreviewGeneration process.

Preview ? Medium or low resolution bitmap file that can be used for calculation of

- overviews and thumbnails. Only one of ExposedMedia, Preview, or
RunList may be specified in any PreviewGeneration process.

PreviewGenerationParams Parameters specifying the size and the type of the preview.

RunList ? High resolution bitmap data is consumed by the PreviewGeneration

process. These data represent the content of a separation that is recorded
on a printing plate or other such item. Only one of ExposedMedia,
Preview, or RunList may be specified in any PreviewGeneration
process.

TransferCurvePool? Area coverage correction and coordinate transformations of the device.

Output Resources

Name Description

Preview The Preview data are comprised of low resolution bitmap files repre-
senting, for example, the content of a separation that is recorded on a
printing plate or other such item.

6.3.19 Proofing

The Proofing process results in the creation of a physical proof, represented by an ExposedMedia resource.
Proofs can be used to check an imposition or the expected colors for a job. The inputs of this process are a RunList,
which identifies the pages to proof; the ProofingParams resource, which describes the type of proof to be created;
and a Media resource to describe the physical media that will be used.

Input Resources

Name Description

ColorantControl Identifies the color model used by the job.

ColorSpaceConversionParams | This resource provides information needed to convert colorspaces in the
? pages for proofing. Generally present if a color proof is desired, unless
the pages in the RunList have already been operated on by a previous
colorspace conversion process.

Layout ? Required if an imposition proof is desired.

Media This resource characterizes the output media for the proof.

ProofingParams This resource provides the parameters needed to produce the desired
proof.

RunList (Document) Identifies the pages to be proofed. When the Layout resource is present

in the ProofingParams resource, Ord values from ContentObject
subelements refer to pages in this RunList.

RunList ? (Marks) Structured list of incoming marks. These are typically printers marks,
e.g., fold, cut or punch marks, or color bars.

When the Layout resource is present in the ProofingParams resource,
Ord values from MarkObject subelements refer to pages in this
RunList.

Chapter 6 Processes 155

Output Resources

Name Description
ExposedMedia The resulting physical proof.

6.3.20 PSToPDFConversion

This section defines the controls required to invoke a device that accepts a PostScript stream and produces a set of
PDF pages as output.

Input Resources

Name Description

FontParams ? These parameters determine how the conversion process will handle font
errors encountered in the PostScript stream.

ImageCompressionParams ? This resource provides a set of controls that determines how images will
be compressed in the resulting PDF pages.

PSToPDFConversionParams ? | These parameters control the operation of the process that interprets the
PostScript stream and produces the resulting PDF pages.

RunList This resource specifies where the PostScript stream is to be found.

Output Resources
Name Description
RunList This resource identifies the location of the resulting PDF pages.

6.3.21 Rendering

The Rendering process consumes the display list of graphical elements generated by an interpreter. It color man-
ages and scans/converts the graphical elements according to the geometric and graphic state information contained
within the display list. The controls governing the external rendering processes provide overrides and additional pa-
rameters for controlling the behavior of the process.

Input Resources

Name Description
Media This resource provides a description of the physical media which will be
IDeprecated in JDF 1.1| marked. The physical characteristics of the media may affect decisions made

during Rendering.

InterpretedPDLData Pipe of streamed data that represents the results of Interpreting the pages in
the RunList. The format and detail of these data is implementation specific.
In particular, it is assumed that the Interpreting and Rendering processes
are tightly coupled and that there is no value in attempting to develop a gen-
eral specification for the format of this data.

RenderingParams ? This resource describes the format of the ByteMaps to be created and other
specifics of the Rendering process.

Output Resources

Name Description
RunList Ordered list of rasterized ByteMaps representing pages
6.3.22 RIP’ing

RIP’ing is, in the context of a workflow, a Combined process that is an amalgamation of at least two processes.
Most often it includes Inferpreting and Rendering, but it may also include SoftProofing, Trapping,
Separation, Imposition, and Screening. Thus a typical RIP node is of Type Combined, as shown in the fol-
lowing example:

156 Chapter 6 Processes

<JDF Type="Combined" Types="Interpreting Rendering Screening" .. />

The RIPping process consumes page descriptions and instructions for producing the graphical output. It parses the
graphical contents in the page descriptions, renders the contents, and produces a rasterized image of the page. This
raster may contain contone data and be represented upon output as a ByteMap. Alternatively, the RIPping process
may also perform halftone screening, in which case the output is in the form of a bitmap. It is also responsible for
resolving all system resource references that include font handling and resource aliasing.

Instructions read by the RIP include information about the media, halftoning, color transformations, colorant
controls and other items that affect that rasterized output. They do not, however, represent any specific controls for the
physical output device, nor do they deal with any instructions intended for the finishing device.

When a RIPping process is comprised of only the Interpreting and Rendering processes, various intermedi-
ary steps are required before the output can be run through a ConventionalPrinting process. In theory, however,
a workflow could include no intermediary steps between a RIPping process and a DigitalPrinting process. The
following workflow scenarios represent possible process chains in each circumstance:

e RIP—Screening—ImageSetting—ContactCopying—ConventionalPrinting
e RIP—(Screening)—DigitalPrinting

Since RIP’ing never stands alone as a process, see the processes that contribute to the RIP for input and output resources.

6.3.23 Scanning

The Scanning process creates bitmaps from analog images using a scanner.

Input Resources

Name Description

ExposedMedia Description of the media to be scanned. The ExposedMedia should be parti-
tioned by Runindex, in order to provide unique mapping from ExposedMe-
dia to the output RunList.

ScanParams High level scanner settings. These settings are specifically not intended as a
replacement for low-level device interfaces such as TWAIN.

Output Resources

Name Description
RunList List of ByteMap resources or LayoutElement resources of Type = Image.
6.3.24 Screening

This process specifies the process of halftone screening. It consumes contone raster data, e.g., the output from an in-
terpreting and rendering process. It produces monochrome which has been filtered through a halftone screen to
identify which pixels are required to approximate the original shades of color in the document.

This process definition includes capabilities for post-RIP halftoning according to the PostScript definitions. Alterna-
tively it allows for the selection of FM screening/error diffusion techniques. However, in these circumstances no
specific parameter sets are defined. In general, an actual screening process will be a Combined process of Cali-
bration and Screening.

Input Resources
Name Description

RunList Ordered list of rasterized ByteMaps representing pages or surfaces.

ScreeningParams Parameters specifying which halftone mechanism is to be applied and with
what specific controls.

Chapter 6 Processes 157

Output Resources

Name Description

RunList Ordered list of rasterized and screened output pages. Assumes that the
resolution remains the same and that resulting data is one bit per compo-
nent. Furthermore, the organization of planes within the data does not
change.

6.3.25 Separation

The Separation process specifies the controls associated with the generation of color-separated data. It is designed
to be flexible enough to allow a variety of possible methods for accomplishing this task. First of all, it sponsors
host-based PDF separating operations, in which a RunList of preseparated PDF data is generated. It can also be
combined with a RIP to allow control of In-RIP separations. In this scenario a RunList containing ByteMaps is
generated as the output. Yet another anticipated combination is with the ColorCorrection process to deal with in-
coming device-dependent data. And finally, it may be combined with an ImageReplacement process in order to
do image substitution for omitted or proxy images.

Input Resources

Name Description

ColorantControl Identifies which colorants in the job are to be output.
RunList List of pages that are to be operated on.
SeparationControlParams Controls for the separation process.

Output Resources

Name Description
RunList List of separated pages or separated raster bytemaps.
6.3.26 SoftProofing

SoftProofing is the process of reviewing final-form output on a monitor rather than in paper form. The inputs are a
RunList, which identifies the pages to proof; the ProofingParams resource, which describes the type of proof to
be created.

Within the ProofingParams resource, the proof device parameter specifies the characterization the monitor
on which the proof will be viewed. This processor must create and perform a transformation from the final target de-
vice to the proof device colors before displaying the document contents.

The soft proofing parameters allow sufficient control to determine whether any images are displayed in the proof.
If so, the ability to select low resolution proxies or full resolution images is provided. The mechanism for approving
proofs requires the generation of a PDF file containing the proofing parameters and a digital signature noting the accep-
tance of them. The approval PDF file need not contain any graphical data.

Like all other color manipulation supported in JDF, the color conversion controls are based on the use of ICC pro-
files. While the assumed characterization of input data can take many forms, each can internally be represented as an
ICC Profile. In order to perform the transformations, input profiles must be paired with the identified final target
device profile to create the transformation.

Input Resources

Name Description

ColorantControl Identifies the color model used by the job.

ColorSpaceConversionParams ? | This resource provides information needed to convert colorspaces in
the pages for proofing. Generally present if a color proof is desired,
unless the pages in the RunList have already been operated on by a
previous colorspace conversion process.

Layout ? Required if an imposition proof is desired.

158 Chapter 6 Processes

Name Description

ProofingParams Provides the parameters needed to produce the desired proof.

RunList (Document) Identifies the pages to be proofed. When the Layout resource is pre-
sent in the ProofingParams resource, Ord values from ContentOb-
ject subelements refer to pages in this RunList.

RunList ? (Marks) Structured list of incoming marks. These are typically printer’s marks,
e.g., fold marks, cut marks, punch marks, or color bars.

When the Layout resource is present in the ProofingParams re-
source, Ord values from MarkObject subelements refer to pages in this
RunList.

Output Resources
None. The SoftProofing process is always combined with an Approval process.

6.3.27 Tiling

The Tiling process allows the contents of Surfaces to be imaged onto separate pieces of media. Note that many
different workflows are possible. Tiling must always follow Imposition, but it can operate on imposed PDL page
contents or on contone or halftone data. Tiling will generally be combined with other processes. For example, Til-
ing might be combined with ImageSetting. In that case, the input would be a RunList that contains ByteMaps
for each Surface.

Input Resources

Name Description

RunList (Surface) Structured list of imposed page contents or ByteMaps that are to be de-
composed to produce the images for each tile. The Type value of Lay-
outElement resources must all be Surface.

RunList ? (Marks) Structured list of incoming marks. These are typically printer’s marks
that provide the information needed to combine the tiles.

Tile A partitioned Tile resource that describes how the Surface contents are
to be decomposed.

Output Resources

Name Description
RunList Structured list of portions of the decomposed surfaces. The value of the
Type attribute of the LayoutElement resources must be Tile.

6.3.28 Trapping

Trapping is a prepress process that modifies PDL files to compensate for a type of error that occurs on presses.
Specifically, when more than one colorant is applied to a piece of media using more than one inking station, the me-
dia may not stay in perfect alignment when moving between inking stations. Any misalignment will result in an er-
ror called misregistration. The visual effect of this error is either that inks are erroneously layered on top of one
another, or, more seriously, that gaps occur between inks that should abut. In this second case, the color of the me-
dia is revealed in the gap and is frequently quite noticeable. Trapping, in short, is the process of modifying PDL
files so that abutting colorant edges intentionally overlap slightly, in order to reduce the risk of gaps.

The Trapping process specifies that a set of document pages should be modified to reduce or (ideally) eliminate
visible misregistration errors in the final printed output. The process may be combined with RIPping or specified as
a stand-alone process.

Chapter 6 Processes 159

Input Resources
Name Description

ColorantControl Identifies color model used by the job.

FontPolicy ? Describes the behavior of the font machinery in absence of requested
NewmIDF L fonts

RunList Structured list of incoming page contents that are to be trapped.
TrappingDetails Describes the general setting needed to perform trapping.

Output Resources
Name Description
RunList Structured list of the modified page contents to which traps have been added.

6.4 Press Processes

Press processes are various technological procedures involving the transfer of ink to a substrate. From a technical
standpoint they are often classified in impact and non-impact printing technologies. The impact printing class can
be further subdivided into relief, intaglio, planograph, or screen technologies, which in turn can be divided in further
subparts. Because of the way a workflow is constructed in JDF, however, a different approach to classification was
used. All of the various printing technologies are gathered into three categories: 1.) ConventionalPrinting, which
involves printing from a physical master, 2.) DigitalPrinting, which involves generic commercial printing from a
digital master. A third process, 3.) IDPrinting, which stands for integrated digital printing and involves simple digi-
tal printing as specified in the IPP protocol was defined in JDF 1.0 but is deprecated in JDF 1.1. A Combined proc-
ess including DigitalPrinting should be implemented instead.

The most prominent physical, planographic printing technologies are offset lithography and electrophotography.
They are also the printing processes with the highest adoption in today’s graphic arts industry. Consequently, the
ConventionalPrinting process in JDF takes them as models. That does not mean, however, that other printing
techniques can not make use of the ConventionalPrinting process and its resources. The extensibility features of
JDF may be used to fill other requirements related to printing technology.

6.4.1 ConventionalPrinting

This process covers several conventional printing tasks, including sheetfed printing, web printing, web/ribbon coat-
ing, converting, and varnishing. Typically, each takes place after prepress and before postpress processes. Press ma-
chinery often includes postpress processes, e.g., Folding, Numbering, and Cutting, as in-line finishing
operations. The ConventionalPrinting process itself does not cover these postpress tasks. Using a conventional
printing press for producing a pressproof can be performed in the following two ways:

e A proof of type Component is produced with a ConventionalPrinting process. The result of this
process is then sent to the Approval process, which in turn produces an ApprovalSuccess resource.
That resource is then passed on to a second ConventionalPrinting process, which requires that the press
be set up a second time.

e The DirectProof attribute of the ConventionalPrintingParams can be used to specify the proof if it is
produced during the ConventionalPrinting process. In this case, the press need only be set up once.

Note, the definition and ordering of separations is specified by the DeviceColorantOrder attribute of the appropri-
ate ColorantControl resource.

160

Chapter 6 Processes

Input Resources
Name Description

ColorantControl ?

The ColorantControl resources that define the ordering and usage of
inks in print modules.

Component ? (Input)

Various components in the form of preprints can be used in Conven-
tionalPrinting in licu of Media. Examples include waste or a set of
preprinted sheets.

Component ? (Proof)

A Proof component is used if a proof was produced during an earlier
ConventionalPrinting process.

ConventionalPrintingParams

Specific parameters to set up the press.

ExposedMedia ? (Proof)

A Proof is used to compare color and content during Conventional-
Printing. This Proof is produced by a prepress proofing device.

ExposedMedia (Plate)

The printing plate and information about it (such as Thickness and Regis-
terPunch) is used to set up the press.

Ink ?

Information (brand, type, clone) about the ink is useful to set up the
press.

InkZoneProfile ?

The InkZoneProfile contains information about how much ink is
needed along the printing cylinder of a specific printing press. It is only
useful for Offset Lithography presses with ink key adjustment functions.

Laiout ?

Sheet and Surface elements from the Layout tree such as CIELAB-
MeasuringField, DensityMeasuringField, or ColorControlStrip
can be used for quality control at the press. The quality control field
value and position can be of interest for automatic quality control sys-
tems. RegisterMark can be used to line up the printing plates for the
press run, and its position can in turn be used to position items such as a
camera.

IDeprecated in JDF 1.1]

Media ? The physical substrate, e.g., paper or foil, and information about the Me-
dia, e.g., such as thickness, type, and size, are useful in setting up paper
travel in the press. This resource must be present if no preprinted Com-
ponent (Input) resource is used.

Sheet ? Specific information about the Media (including type and color) and

about the Sheet (placement coordinates on the printing cylinder). Re-
placed by Layout in JDF 1.1.

TransferCurvePool?

Area coverage correction and coordinate transformations of the device.

Output Resources
Name Description

Component (Good)

Describes the printed sheets or ribbons which may be used by another
printing process or postpress processes. Note that the Amount attribute of
the ResourceLink to this resource indicates the number of copies of the
entire job which will be produced.

Component ? (Waste)

Produced waste of printed sheets or ribbons.

6.4.2 DigitalPrinting

DigitalPrinting is a direct printing process that, like ConventionalPrinting, occurs after prepress processes but before
postpress processes. In DigitalPrinting, the data to be printed are not stored on an extra medium (such as a printing plate
or a printing foil), but instead are stored digitally. The printed image is generated for every output using the digital data.
Electrophotography, inkjet, and other technologies are used for transferring ink (both liquid ink and dry toner) onto the
substrate. Furthermore, both sheet and web presses can be used as machinery for DigitalPrinting.

Chapter 6 Processes 161

DigitalPrinting is often used to image a small area on preprinted Components to perform actions such as ad-
dressing or numbering another Component. This kind of process can be executed by imaging with an inkjet
printer during press, postpress, or packaging operations. Therefore, DigitalPrinting is not only a press or prepress
operation but sometimes also a postpress process.

Digital printing devices which provide some degree of finishing capabilities, such as collating and stapling, as
well as some automated layout capabilities, such as N-up and duplex printing may be modeled as a combined proc-
ess which includes DigitalPrinting. Such a combined process may also include other processes, e.g., Contone-
Calibration, Cutting, Folding, HoleMaking, Imposition, Interpreti