RリDF

XJDF Specification

Kodak
HEIDELBERG
RICOH
MULLER MARTINI
xerox

Legal Notice

Use of this document is subject to the following conditions which are deemed accepted by any person or entity making use hereof.

Copyright Notice

Copyright © 2000-2017, International Cooperation for the Integration of Processes in Prepress, Press and Postpress (CIP4) with registered office in Zurich, Switzerland. All Rights Reserved. CIP4 hereby grants to any person or entity obtaining a copy of the Specification and associated documentation files (the "Specification") a perpetual, worldwide, non-exclusive, fully paid-up, royalty-free copyright license to use, copy, publish, distribute, publicly display, publicly perform, and/or sublicense the Specification in whole or in part verbatim and without modification, unless otherwise expressly permitted by CIP4, subject to the following conditions. This legal notice SHALL be included in all copies containing the whole or substantial portions of the Specification. Copies of excerpts of the Specification which do not exceed five (5) pages SHALL include the following short form Copyright Notice: Copyright © 2000-2013, International Cooperation for the Integration of Processes in Prepress, Press and Postpress (CIP4) with registered office in Zurich, Switzerland.

Trademarks and Tradenames

International Cooperation for the Integration of Processes in Prepress, Press and Postpress, CIP4, Exchange Job Definition Format, XJDF, Exchange Job Messaging Format, JMF, XJDF, XJMF and the CIP4 logo are trademarks of CIP4. Rather than put a trademark symbol in every occurrence of other trademarked names, we state that we are using the names only in an editorial fashion, and to the benefit of the trademark owner, with no intention of infringement of the trademark.

Except as contained in this legal notice or as allowed by membership in CIP4, the name of CIP4 SHALL not be used in advertising or otherwise to promote the use or other dealings in this Specification without prior written authorization from CIP4.

Waiver of Liability

The XJDF Specification is provided as is, without warranty of any kind, express, implied, or otherwise, including but not limited to the warranties of merchantability, fitness for a particular purpose and non infringement. In no event will CIP4 be liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise, arising from, out of, or in connection with the XJDF Specification or the use or other dealings in the XJDF Specification.

Table of Contents

Chapter 1 Introduction 1
1.1 Further Information 1
1.2 Background on XJDF 1
1.3 Design Criteria for XJDF 1
1.3.1 Simplify and reduce variations 2
1.3.2 Enable dynamic changes 2
1.3.3 Retain the semantic structures 3
1.3.4 Remove implementation specific details 3
1.3.5 Enhance Compatibility with standard XML and XML Tools 3
1.3.6 Device Capabilities 3
1.4 Use of XML 3
1.4.1 Use of XML Schema 3
1.4.2 Schema and XJDF Context. 3
1.5 Conceptual Changes from JDF to XJDF 4
1.5.1 Use of Abstract Elements 4
1.5.2 Resource Partitioning 4
1.5.3 Structural Changes 4
1.5.4 Process Model Changes. 4
1.5.5 Alignment of Signals and Audits. 5
1.5.6 Messaging Changes. 5
1.6 Conventions Used in This Specification 6
1.6.1 Document References. 6
1.6.2 Text Styles 6
1.6.3 XPath Notation Used in this Specification 6
1.6.4 Specification of Cardinality 6
1.6.5 Template for Tables that Describe Elements 7
1.7 Glossary 7
1.8 Conformance 9
1.8.1 Conformance Terminology 9
1.8.2 Interoperability Conformance Specifications 10
1.9 Data Structures 10
1.9.1 Units 10
1.9.2 Counting in XJDF 11
Chapter 2 Overview 13
2.1 Introduction 13
2.2 Referencing Data 13
2.2.1 Referencing External Data 13
2.2.2 Identifying Sections of XJDF from External Sources 13
2.2.3 Identifying Sections of XJDF from within the Same XJDF. 13
2.3 System Components 13
2.3.1 Workflow Component Roles 13
2.4 XJDF Workflow 14
2.4.1 Product Intent and Processes 14
2.5 Role of Messaging in XJDF 14
2.6 Coordinate Systems in XJDF 15
2.6.1 Introduction 15
2.6.2 Coordinate Systems of Resources and Processes 16
2.6.3 Coordinate System Transformations 16
2.6.4 General Rules 17
2.6.5 Homogeneous Coordinates 18
Chapter 3 Structure 21
3.1 XJDF 21
3.1.1 XJDF for Product Intent 23
3.1.2 XJDF for Process Description and Gray Boxes 23
3.2 ProductList 23
3.3 ResourceSet 23
3.3.1 Dependent 25
3.4 AuditPool and Audit 26
3.4.1 AuditPool. 26
3.4.2 AuditCreated 26
3.4.3 AuditNotification 27
3.4.4 AuditProcessRun 27
3.4.5 AuditResource 27
3.4.6 AuditStatus 29
3.5 XJDF Extensibility 30
3.5.1 Foreign Namespaces 30
3.5.2 Creating Extension ResourceSets 30
3.5.3 Creating Extension Message Type Elements 30
3.5.4 Creating Extension Intent Elements 31
3.5.5 Extending NMTOKEN Lists 31
3.5.6 Extending Process Types 31
Chapter 4 Product Intent 33
4.1 ProductList 33
4.1.1 Product 33
4.1.2 Product Amount 33
4.1.3 Intent 34
4.1.4 Product Intent 35
4.1.5 Representation of Product Binding 35
4.2 AssemblingIntent 35
4.2.1 Assemblyltem 36
4.2.2 Bindln 36
4.2.3 Blowln 36
4.2.4 StickOn 37
4.3 BindingIntent 37
4.3.1 AdhesiveNote 39
4.3.2 EdgeGluing 40
4.3.3 HardCoverBinding 40
4.3.4 LooseBinding 41
4.3.5 SaddleStitching 43
4.3.6 SideStitching 44
4.3.7 SoftCoverBinding. 44
4.3.8 Tabs 45
4.3.9 ThreadSewing 45
4.4 ColorIntent 45
4.4.1 SurfaceColor 46
4.5 ContentCheckIntent 46
4.5.1 Preflightltem 47
4.5.2 Proofltem 47
4.6 EmbossingIntent 48
4.6.1 EmbossingItem 48
4.7 FoldingIntent 48
4.8 HoleMakingIntent 49
4.9 LaminatingIntent 49
4.10 LayoutIntent 50
4.11 Medialntent 51
4.12 ProductionIntent 52
4.13 ShapeCuttingIntent 53
4.13.1 ShapeCut 53
4.14 VariableIntent 54
Chapter 5 Processes 57
5.1 Combining Individual Process Steps 57
5.1.1 Exchange ResourceSets in combined processes 57
5.1.2 XJDF with Multiple Processes of the Same Type 57
5.2 Process Template 57
5.3 General Processes 58
5.3.1 Approval 58
5.3.2 Delivery 59
5.3.3 ManualLabor 60
5.3.4 QualityControl 61
5.3.5 Verification 61
5.4 Prepress Processes 62
5.4.1 Bending 62
5.4.2 ColorCorrection 62
5.4.3 ColorSpaceConversion 62
5.4.4 DieDesign 63
5.4.5 DieLayoutProduction 64
5.4.6 ImageEnhancement 64
5.4.7 ImageSetting 65
5.4.8 Imposition 65
5.4.9 InkZoneCalculation 67
5.4.10 Interpreting 68
5.4.11 LayoutElementProduction 68
5.4.12 LayoutShifting 68
5.4.13 PDLCreation 69
5.4.14 Preflight 69
5.4.15 PreviewGeneration 70
5.4.16 RasterReading 72
5.4.17 Rendering 72
5.4.18 Screening 73
5.4.19 Separation 73
5.4.20 ShapeDefProduction 74
5.4.21 SheetOptimizing. 74
5.4.22 Stripping 75
5.4.23 Trapping 77
5.5 Press Processes 78
5.5.1 ConventionalPrinting 78
5.5.2 DigitalPrinting 79
5.5.3 Varnishing 80
5.6 Postpress Processes 80
5.6.1 BlockPreparation 80
5.6.2 BoxFolding 81
5.6.3 BoxPacking. 81
5.6.4 Bundling 82
5.6.5 CaseMaking 83
5.6.6 Casingln 83
5.6.7 Collecting 84
5.6.8 CoverApplication 84
5.6.9 Creasing 84
5.6.10 Cutting 85
5.6.11 DieMaking 85
5.6.12 Embossing 86
5.6.13 EndSheetGluing 86
5.6.14 Feeding 87
5.6.15 Folding 88
5.6.16 Gathering 88
5.6.17 Gluing 89
5.6.18 HeadBandApplication 89
5.6.19 HoleMaking 89
5.6.20 Inserting 90
5.6.21 Jacketing 91
5.6.22 Labeling 91
5.6.23 Laminating 92
5.6.24 LooseBinding 92
5.6.25 Palletizing 93
5.6.26 Perforating 94
5.6.27 ShapeCutting 94
5.6.28 Shrinking 94
5.6.29 SpinePreparation 95
5.6.30 SpineTaping 95
5.6.31 Stacking 96
5.6.32 StaticBlocking 96
5.6.33 Stitching 96
5.6.34 Strapping 97
5.6.35 ThreadSealing 97
5.6.36 ThreadSewing 98
5.6.37 Trimming 98
5.6.38 WebInlineFinishing 99
5.6.39 Winding 99
5.6.40 Wrapping 100
Chapter 6 Resources 101
6.1 Resource 101
6.1.1 AmountPool 102
6.1.2 PartAmount 102
6.1.3 PartWaste 103
6.1.4 Part 104
6.2 ApprovalDetails 107
6.3 ApprovalParams 108
6.4 Assembly 108
6.4.1 AssemblySection 109
6.5 BendingParams 110
6.6 BinderySignature 110
6.6.1 SignatureCell 112
6.7 BlockPreparationParams 114
6.8 BoxFoldingParams 115
6.8.1 BoxFoldAction 117
6.9 BoxPackingParams 120
6.10 Bundle 121
6.10.1 Bundleltem 121
6.11 BundlingParams 123
6.12 CaseMakingParams 124
6.13 CasingInParams 125
6.14 Color 126
6.14.1 DeviceNColor 128
6.14.2 Diecutting Data (DDES3). 128
6.15 ColorantControl 129
6.15.1 ColorantAlias 130
6.15.2 DeviceNSpace 131
6.16 ColorCorrectionParams 131
6.16.1 ColorCorrectionOp 131
6.17 ColorSpaceConversionParams 132
6.17.1 ColorSpaceConversionOp 133
6.18 Component 137
6.19 Contact 139
6.19.1 ComChannel 139
6.19.2 Company 140
6.19.3 Person 140
6.20 Content 141
6.20.1 BarcodeProductionParams 143
6.20.2 ContentMetadata 143
6.20.3 PositionObj 143
6.21 ConventionalPrintingParams 144
6.22 CoverApplicationParams 145
6.22.1 Score 145
6.23 CreasingParams 146
6.24 CustomerInfo 146
6.25 CuttingParams 147
6.25.1 CutBlock 147
6.26 DeliveryParams 147
6.26.1 Dropltem 149
6.27 DevelopingParams 149
6.28 Device 149
6.28.1 Icon 151
6.28.2 IconList 151
6.28.3 Module 151
6.29 DieLayout 152
6.29.1 RuleLength 153
6.29.2 Station 153
6.30 DieLayoutProductionParams 153
6.30.1 RepeatDesc 153
6.31 DigitalPrintingParams 158
6.31.1 Coordinate systems in DigitalPrinting 158
6.32 EmbossingParams 159
6.32.1 Emboss 159
6.33 EndSheetGluingParams 160
6.34 ExposedMedia 161
6.35 FeedingParams 161
6.35.1 CollatingItem 161
6.35.2 Feeder 162
6.35.3 FeederQualityParams 163
6.36 FoldingParams 164
6.37 FontPolicy 165
6.38 GluingParams 165
6.39 HeadBandApplicationParams 165
6.40 HoleMakingParams 166
6.41 ImageCompressionParams 166
6.42 ImageEnhancementParams 166
6.42.1 ImageEnhancementOp 166
6.43 ImageSetterParams 166
6.44 Ink 167
6.45 InkZoneCalculationParams 167
6.46 InkZoneProfile 168
6.47 InsertingParams 168
6.48 InterpretingParams 169
6.48.1 InterpretingDetails 170
6.48.2 PDFInterpretingParams 171
6.48.3 ReferenceXObjParams 172
6.49 JacketingParams 172
6.50 LabelingParams 173
6.51 LaminatingParams 173
6.52 Layout 174
6.52.1 CIELABMeasuringField 176
6.52.2 ColorControlStrip 177
6.52.3 Condition 177
6.52.4 ContentObject 178
6.52.5 CutMark. 178
6.52.6 DensityMeasuringField 179
6.52.7 MarkObject 179
6.52.8 PageActivation 180
6.52.9 PageCondition 180
6.52.10 PlacedObject 181
6.52.11 Position 183
6.52.12 RegisterMark 184
6.52.13 ScavengerArea 185
6.52.14 SheetActivation 185
6.52.15 More about Layout 185
6.53 LayoutElementProductionParams 187
6.54 LayoutShift 189
6.54.1 ShiftPoint 189
6.55 LooseBindingParams 190
6.55.1 ChannelBindingDetails 191
6.55.2 CoilBindingDetails 192
6.55.3 CombBindingDetails. 192
6.55.4 RingBindingDetails 192
6.55.5 StripBindingDetails 193
6.56 ManualLaborParams 193
6.57 Media 193
6.57.1 TabDimensions 198
6.57.2 More about Media 200
6.58 MiscConsumable 202
6.59 Nodelnfo 203
6.60 Pallet 204
6.61 PalletizingParams 205
6.62 PDLCreationParams 205
6.62.1 AdvancedParams 206
6.62.2 FontParams 207
6.62.3 PDFCreationDetails 207
6.62.4 PDFXParams 208
6.62.5 PSCreationDetails 209
6.62.6 ThinPDFParams 211
6.63 PerforatingParams 212
6.64 PreflightParams 212
6.64.1 PreflightTest 212
6.65 PreflightReport 213
6.65.1 PreflightCheck. 213
6.66 Preview 213
6.67 PreviewGenerationParams 214
6.68 QualityControlParams 215
6.68.1 BindingQualityParams 215
6.69 QualityControlResult 215
6.69.1 BindingQualityMeasurement 216
6.70 RasterReadingParams 216
6.71 RenderingParams 217
6.71.1 TIFFEmbeddedFile 217
6.71.2 TIFFFormatParams 218
6.71.3 TIFFtag 219
6.72 RunList 219
6.72.1 Referencing pages of a RunList from a Layout 219
6.72.2 Filtering parts of a RunList 219
6.72.3 Pages, Documents and Sets for common PDL types 222
6.72.4 Band 222
6.72.5 ByteMap 222
6.73 ScreeningParams 223
6.74 SeparationControlParams 223
6.75 ShapeCuttingParams 223
6.76 ShapeDef 224
6.77 ShapeDefProductionParams 225
6.77.1 ObjectModel. 225
6.77.2 ShapeDimension 226
6.77.3 ShapeTemplate 226
6.78 SheetOptimizingParams 228
6.78.1 GangElement 229
6.79 ShrinkingParams 230
6.80 SpinePreparationParams 231
6.81 SpineTapingParams 231
6.82 StackingParams 232
6.82.1 Disjointing 235
6.82.2 InsertSheet 235
6.83 StaticBlockingParams 236
6.84 StitchingParams 237
6.85 StrappingParams 239
6.86 ThreadSealingParams 240
6.87 ThreadSewingParams 241
6.88 Tool 242
6.89 TransferCurve 243
6.90 TrappingParams 243
6.91 TrimmingParams 244
6.92 UsageCounter 245
6.93 VarnishingParams 246
6.94 VerificationParams 246
6.95 WebInlineFinishingParams 247
6.95.1 FolderProduction 247
6.95.2 ProductionPath 247
6.96 WindingParams 247
6.97 WrappingParams 248
Chapter 7 Messaging 249
7.1 XJMF Root 249
7.1.1 Message 249
7.1.2 Header 250
7.2 XJMF Message Families 250
7.2.1 Query 250
7.2.2 Command 251
7.2.3 Signal 251
7.2.4 Response 251
7.3 List of All XJMF Messages 252
7.4 ForceGang 253
7.4.1 CommandForceGang 253
7.4.2 253
7.4.3 ResponseForceGang 254
7.5 GangStatus 254
7.5.1 QueryGangStatus 254
7.5.2 254
7.5.3 ResponseGangStatus 254
7.5.4 SignalGangStatus 255
7.6 KnownDevices 255
7.6.1 QueryKnownDevices 255
7.6.2 ResponseKnownDevices 256
7.6.3 SignalKnownDevices 256
7.7 KnownMessages 256
7.7.1 QueryKnownMessages 257
7.7.2 ResponseKnownMessages 257
7.8 KnownSubscriptions 257
7.8.1 QueryKnownSubscriptions 258
7.8.2 ResponseKnownSubscriptions 258
7.8.3 SignalKnownSubscriptions 258
7.9 ModifyQueueEntry 258
7.9.1 CommandModifyQueueEntry 259
7.9.2 ResponseModifyQueueEntry 261
7.10 Notification 261
7.10.1 QueryNotification 262
7.10.2 ResponseNotification 262
7.10.3 SignalNotification 262
7.11 PipeControl 262
7.11.1 CommandPipeControl 263
7.11.2 ResponsePipeControl 263
7.12 QueueStatus 263
7.12.1 QueryQueueStatus 264
7.12.2 ResponseQueueStatus 264
7.12.3 SignalQueueStatus 264
7.12.4 Queue 264
7.13 RequestQueueEntry 265
7.13.1 CommandRequestQueueEntry 265
7.13.2 ResponseRequestQueueEntry 265
7.14 Resource 266
7.14.1 QueryResource 266
7.14.2 CommandResource 268
7.14.3 ResponseResource 269
7.14.4 SignalResource 270
7.15 ResubmitQueueEntry 271
7.15.1 CommandResubmitQueueEntry 271
7.15.2 ResponseResubmitQueueEntry 272
7.16 ReturnQueueEntry 272
7.16.1 CommandReturnQQueueEntry. 273
7.16.2 ResponseReturnQueueEntry. 273
7.17 ShutDown 273
7.17.1 CommandShutDown 273
7.17.2 ResponseShutDown 274
7.18 Status 274
7.18.1 QueryStatus 274
7.18.2 ResponseStatus. 275
7.18.3 JobPhase 276
7.18.4 SignalStatus 278
7.19 StopPersistentChannel 278
7.19.1 CommandStopPersistentChannel 278
7.19.2 ResponseStopPersistentChannel 279
7.20 SubmitQueueEntry 279
7.20.1 CommandSubmitQueueEntry 279
7.20.2 ResponseSubmitQueueEntry 280
7.21 WakeUp 281
7.21.1 CommandWakeUp 281
7.21.2 ResponseWakeUp 281
Chapter 8 Subelements 283
8.1 Address 283
8.2 ApprovalPerson 283
8.3 AutomatedOverPrintParams 284
8.4 BarcodeCompParams 284
8.5 BarcodeReproParams 284
8.6 Certification 285
8.7 Comment 286
8.8 ConvertingConfig 287
8.9 Crease 287
8.10 Cut 287
8.11 FileSpec 288
8.11.1 Disposition. 289
8.12 FitPolicy 290
8.13 Fold 291
8.14 GangSource 291
8.15 GeneralID 291
8.16 Glue 292
8.17 HolePattern 293
8.18 IdentificationField 294
8.18.1 BarcodeDetails 297
8.18.2 ExtraValues 298
8.18.3 Usage of barcode Attributes 298
8.19 ImageCompression 300
8.19.1 CCITTFaxParams. 302
8.19.2 DCTParams 302
8.19.3 FlateParams 303
8.19.4 JBIG2Params 303
8.19.5 JPEG2000Params 303
8.19.6 LZWParams 304
8.20 MediaLayers 304
8.21 MetadataMap 305
8.21.1 Expr 305
8.22 MISDetails 306
8.23 Notification 307
8.23.1 Event 308
8.23.2 Milestone 308
8.24 ObjectResolution 308
8.25 OCGControl 308
8.26 Perforate 309
8.27 QueueEntry 309
8.28 QueueFilter 310
8.29 RefAnchor 311
8.30 RegisterRibbon 312
8.31 ScreenSelector 313
8.32 Shape 314
8.33 StripMark 315
8.33.1 FillMark 316
8.33.2 MarkColor 317
8.33.3 JobField 317
8.34 SubscriptionInfo 319
Chapter 9 Building a System 321
9.1 Queue Support 321
9.1.1 Queue Entry ID Generation 321
9.2 Status Transitions 321
9.3 Execution Model 322
9.3.1 Determining Executable XJDF 322
9.3.2 Serial Processing 322
9.3.3 Partial Processing of XJDF with Partitioned ResourceSets. 322
9.3.4 Parallel Processing. 323
9.3.5 Overlapping Processing 323
9.3.6 Approval, Proofing, Quality Control and Verification 324
9.3.7 Gang Jobs 325
9.3.8 Error Handling 325
9.4 Specifying Complex Processing 325
9.4.1 Referencing Multiple XJDF in a Directory 325
9.5 XJDF and XJMF Interchange Protocol 325
9.5.1 HTTP Port 326
9.5.2 HTTP Request Method 326
9.5.3 HTTPS-Based Protocol - TLS 326
9.6 XJMF Handshaking 326
9.6.1 Single Query/Command Response Communication 326
9.6.2 Subscribing for Signals 327
9.6.3 Managing Persistent Channels. 328
9.6.4 Signal Handshaking 328
9.6.5 Reliable Signalling 328
9.6.6 Deleting Persistent Channels 329
9.6.7 XJMF Bootstrapping 329
9.6.8 Device / Controller Selection 329
9.7 XJDF Packaging 329
9.7.1 MIME Types and File Extensions 329
9.7.2 ZIP Packaging 330
9.8 Job Modification 330
9.8.1 Rescheduling with ModifyQueueEntry 330
9.8.2 Modifying Jobs 330
9.8.3 Examples for Job Modification 332
9.9 Use of XML Schema for Capability Descriptions 335
Appendix A Data Types and Values 337
A. 1 XJDF Data Types 337
A.1.1 TransferFunction 339
A. 2 Enumerations. 339
A.2.1 Action 339
A.2.2 Activation 339
A.2.3 Anchor 340
A.2.4 Automation 340
A.2.5 Axis 340
A.2.6 BinderMaterial 340
A.2.7 BundleType 341
A.2.8 ChannelMode 341
A.2.9 Coating 341
A.2.10 Compensation 342
A.2.11 DeviceStatus 342
A.2.12 Drying. 342
A.2.13 Edge 342
A.2.14 EmbossDirection 343
A.2.15 EmbossType 343
A.2.16 Face. 343
A.2.17 FeedQuality 343
A.2.18 FitPolicy 344
A.2.19 GangPolicy 344
A.2.20 Glue 344
A.2.21 IncludeResources 344
A.2.22 ISOPaperSubstrate 345
A.2.23 MappingSelection 345
A.2.24 MediaDirection 345
A.2.25 MediaType 346
A.2.26 NamedColor 346
A.2.27 NodeStatus 346
A.2.28 Opacity 347
A.2.29 Orientation 347
A.2.30 Polarity 347
A.2.31 PositionPolicy 348
A.2.32 RenderingIntent 348
A.2.33 Scope 348
A.2.34 Severity 348
A.2.35 SheetLay 349
A.2.36 Side. 349
A.2.37 Sides 349
A.2.38 SourceObjects 349
A.2.39 StapleShape 349
A.2.40 TightBacking 350
A.2.41 UpdateGranularity 350
A.2.42 Usage 350
A.2.43 WorkingDirection 351
A.2.44 WorkStyle 351
A. 3 Preferred String and NMTOKEN Values 351
A.3.1 Comb and Coil Shapes 351
A.3.2 Device Classes 352
A.3.3 Flute Types 353
A.3.4 Fold Catalogs 354
A.3.5 Ink and Varnish Coatings 356
A.3.6 Input Tray and Output Bin Names. 357
A.3.7 MediaTypeDetails 358
A.3.8 Milestones 359
A.3.9 Module Types 360
A.3.10 Printing Technologies 363
A.3.11 PrintStandard Characterization Data Sets 364
A.3.12 Product Types 364
A.3.13 Spine Operations 365
A.3.14 Status Details 366
Appendix B Return Values. 371
Appendix C Media Weight 373
C. 1 North American Media Weight 373
C. 2 Japanese Media Weight 374
C. 3 Paper Grade 375
Appendix D Media Size 377
D. 1 Architectural Paper Sizes 377
D. 2 Business Card Sizes 377
D. 3 International A Paper Sizes 377
D. 4 International B Paper Sizes 378
D. 5 International C Envelope Sizes 379
D. 6 RA and SRA Paper Sizes 379
D. 7 US ANSI Paper Sizes 379
D. 8 US Paper Sizes 380
Appendix E String Generation 381
Appendix F Pagination Catalog 383
F. 1 How to interpret the diagrams 383
F.1.1 Legend 383
F.1.2 Meaning of a Pagination Scheme 383
F.1.3 Modifying the Pagination Schemes with BindingOrientation 384
F.1.4 Examples of applying BindingOrientation 384
F. 2 Pagination Diagrams 385
Appendix G Hole Pattern Catalog 419
G. 1 Naming Scheme 420
G. 2 Ring Binding - Two Hole 420
G. 3 Ring Binding - Three Hole 422
G. 4 Ring Binding - Four Hole 422
G. 5 RingBinding - Five Hole 424
G. 6 Ring Binding - Six Hole 424
G. 7 Ring Binding - Seven Hole 426
G. 8 Ring Binding - Eleven Hole 426
G. 9 Plastic Comb Binding 427
G. 10 Wire Comb Binding 427
G. 11 Coil and Spiral Binding 428
G. 12 Special Binding 428
Appendix H References 429
Appendix I List of Figures 437
Appendix J List of Tables 441

1 Introduction

This document defines the technical specification for the Exchange Job Definition Format (XJDF) and its counterpart, the Exchange Job Messaging Format (XJMF).
XJDF is a technology that allows systems from many different vendors to interoperate in automated workflows. While technically it is an XML software specification, it is more importantly a means to connect multiple vendor solutions to a workflow solution for automation.
XJDF is the first major version update of JDF. It is such a major update that we decided to provide a new name for the XML root element: XJDF. Whereas the minor revisions were at least nominally backwards compatible, XJDF is a major redesign that takes more than a decade of experience into account.
Note: The specification uses two forms for references to XJDF/XJMF (the general concept of the specification) and XJDF/ XJMF (for specific reference to the root element of an XML instance.
This document is intended for use by programmers and systems integrators It provides both the syntactical requirements for the elements and attributes of XJDF and XJMF as well as requirements for devices and controllers to enact upon the data. In this first chapter, we present the concept of XJDF, and its relationship to JDF and other industry standards.

1.1 Further Information

Additional information such as application notes and examples can be found on the CIP4 website at http://www.cip4.org.

1.2 Background on XJDF

XJDF is an extensible, XML-based data interchange format built upon more than 15 years of experience with JDF - [JDF15].

XJDF is an interchange data format that can be used by a system of controllers, devices and MIS, which together produce printed products. It provides the means to describe print jobs in terms of the products eventually to be created, as well as in terms of the work steps needed to create those products. XJDF provides a syntax to explicitly specify the details of processes, which might be specific to the devices that execute the processes.
XJDF is aligned with a communication format known as the Exchange Job Messaging Format or XJMF. XJMF provides the means for production components of an XJDF workflow to communicate with controllers such as MIS. It gives MIS and other controllers the ability to receive information from devices or other controllers about the status of jobs and devices. XJDF and XJMF are maintained and developed by CIP4 (http://www.cip4.org).

1.3 Design Criteria for XJDF

The major conceptual change is that XJDF no longer attempts to model the entire job as one large "job ticket" but rather specifies an interchange format between 2 applications that are assumed to have an internal data model that is not necessarily based on XJDF. Thus each XJDF ticket specifies a single transaction between two parties. A single job may be modeled as one or more XJDF transactions.
The following criteria were taken into account in this redesign:

- XJDF. should be simple to use.
- The number of methods to describe similar traits should be as limited as possible, ideally one.
- XJDF should be compatible with developments of XML enabling tools as "out of the box" as possible.
- Simple XPath expression to reference XJDF. traits.
- Direct use of ID-IDREF pairs for referencing distributed data within an XML document.
- Use of XML schema rather than proprietary data structures to describe device capabilities.
- The semantics of JDF 1.x should be retained and mapping between JDF 1.x and XJDF should be simple.
- Change orders (Modifications of submitted jobs) should be easy to describe

These requirements lead to some significant modifications that are not syntactically backwards compatible, but can easily be converted using a JDF 1.x aware middleware.

1.3.1 Simplify and reduce variations

JDF 1.x allowed shorthand for some simple cases. What seemed reasonable actually made things more complex, since both shorthand and the long version had to be implemented. For instance, amount related attributes could be found either directly in a ResourceLink or in a ResourceLink/AmountPool/PartAmount. XJDF removes much of this variability.

1.3.1.1 Reduce the barrier of entry

Simple tasks should be easy to describe. In such cases the XJDF should be capable of being described as a short list of simple XPaths.

1.3.1.2 Single XJDF

JDF 1.x allowed for multiple JDF nodes within one ticket. This grouping of multiple JDF nodes in process groups resulted in many variations of JDF for the same or similar requirements. Version $2 . x$ has exactly one XJDF element, namely the root element; this contains no XJDF child nodes. This means there can be no ambiguity about where to locate and retrieve a give trait.

1.3.1.3 Replace abstract data types with explicit elements and children

Abstract elements are more concise to write, but inherited traits also tend to be overlooked by newcomers to a specification. If elements are designed to be final with sub-elements, each specification entry can be found by searching for the explicit element name.

1.3.1.4 Remove ResourceLinks

XJDF allowed specification of interdependencies of processes using 'ResourceLink' elements. In most cases, this feature is not required if the controller maintains an internal job model. Therefore XJDF does not provide mechanisms to describe process networks within a single XJDF.
The Process / Resource model has been conceptually retained. But since there is only one XJDF element per XJDF transaction, reuse of resources is no longer an issue and 'ResourceLink' elements have been merged with their respective resources. Thus data that belongs together is also stored in the same region of the XML.

1.3.1.5 Remove RefElements

RefElements have been replaced with one of IDREF, IDREFS or inline element.
For each RefElement (i.e., choice of ResourceRef or inline element), exactly one choice was made. Thus the variability is reduced and implementation is simplified.

1.3.1.6 Product Description

Product descriptions are now elements in their own right rather than a different type of JDF element. Thus a modification of the underlying product structure no longer modifies the overall structure of the XJDF. This also allows description of gang jobs where production relates to multiple products.
Intent traits are now simple attributes rather than structured spans of ranges that allow negotiation between customer and print provider. This specification assumes that any negotiation between print provider and customer take place dynamically out of scope of this specification.
Intents that were essentially 1 to 1 copies of the respective process resource such as DeliveryIntent or PackingIntent have been removed. If the data that was provided in these intents is required for a product, then the respective process resource, e.g. DeliveryParams should be provided.

1.3.1.7 Imposition

JDF had three methods to describe imposed sheets: LayoutPreparationParams for digital printing, StrippingParams for MIS level imposition and Layout for low level RIP imposition. XJDF has removed StrippingParams and merged its properties with Layout which can now describe both MIS level descriptions and RIP level descriptions. Since digital printing is also moving to larger sheet sizes, LayoutPreparationParams have been replaced with automated Layout.

1.3.2 Enable dynamic changes

The monolithic model of JDF 1.x lent itself well to a plan and execute philosophy but had its limitations when changes were made after a job had been submitted. Since a job may be modeled as a set of transactions in XJDF, the idea of multiple transactions and thus also job changes is inherently built into the standard. The simplest method of initiating a change transaction is to send an XJDF that contains only the modified values. Only the explicitly stated values will then be modified.
1.3.2.1 Remove schema defaults.

All schema defaults have been removed.

1.3.3 Retain the semantic structures

A lot of work was put into the definition of individual messages, processes and resources. The detailed semantics of JMF messages and resources have been retained. Thus detailed element and attribute names and their definitions have been retained. Thus translation between JDF 1.x and XJDF is straight forward. All deprecated traits have been removed completely.

1.3.4 Remove implementation specific details

JDF 1.x exposes many implementation details that are not necessarily easily obtained by the writers of JDF. XJDF is designed as a pure interface specification that encapsulates internal data as much as possible.

1.3.4.1 Spawning and Merging

Since XJDF is only an interface, the specification of serializing from the internal data model and deserializing to the internal data model is outside the scope of this specification and has been removed.

1.3.5 Enhance Compatibility with standard XML and XML Tools

XML and XML related tools and technologies such as XPath, XSL transforms, Schema, class generators etc. have evolved and matured significantly since the turn of the century. Some of the choices in JDF 1.X, although compliant with XML have proved difficult to implement using standard tools.

1.3.5.1 Order of Child Elements

JDF 1.x allowed for arbitrary ordering of sibling elements. This is convenient for the writer, but degrades the quality of XML schema validation because cardinality cannot be correctly enforced for unordered elements. Therefore XJDF generally requires sibling elements to be provided in the order as specified in the element definitions. In general the order of elements is lexically sorted in ascending order. Exceptions to alphabetical sorting will be explicitly called out in the relevant sections.
Note: Although XML is case sensitive, the ordering of elements will be determined ignoring the case of any capital letters. Note: Attributes NEED NOT be sorted within an element.

1.3.5.2 Partitioning and Inheritance

The general concept of partitioning (i.e., the notion of resource sets with multiple individual parts) is retained but the encoding has been simplified. While inheritance of elements and attributes in partitioned resource sets can reduce data redundancy, it also greatly increases the flexibility and variability of specifying similar data. This causes potential for reader/writer mismatch. Inheritance and the corresponding definition of cardinality (e.g., "SHALL occur somewhere in the inherited hierarchy") is also difficult to encode as XPath or in an XML schema. XJDF therefore removes inheritance at the cost of redundant specification of traits in partitioned resources.

1.3.5.2.1 Removal of Partition SignatureName

@SignatureName in JDF was used to describe a set of multiple printed sheets, which is contrary to the usage of signature in traditional printing. Since most systems refer directly to sheets, the @SignatureName partition key was removed.

1.3.6 Device Capabilities

JDF provided proprietary methods to describe device limitations. XML schema is a standard technology that is also designed for this purpose albeit with some limitations such as the lack of a mechanism to describe constraints dependencies. Nonetheless we decided to define device limitations using XML schema in order to make use of the existing tool base for XML schema.

1.4 Use of XML

XJDF is encoded as XML and SHALL be a valid XML document according to $\stackrel{\text { [XML }}{ }$.
Note: The data model does not require use of XML. Conceptually, any hierarchical data syntax could be used. XML was chosen because it is in widespread use and in addition, leaving the choice of an underlying grammar open would lead to non-interoperable implementations.

1.4.1 Use of XML Schema

The XML schema for XJDF is designed to ensure that XJDF documents are syntactically valid, thus XJDF documents that are successfully validated against the XJDF schema SHALL be considered conformant to the syntax requirements described in this specification. However, due to restrictions in schema technology, it is not possible to create a schema that encompasses all the rules required by the XJDF specification. Thus there will be cases where an XJDF or XJMF document is considered to be schema valid, but are nonetheless invalid or incorrect XJDF or XJMF respectively.

1.4.2 Schema and XJDF Context.

CIP4 anticipates the uses of XJDF in three broad contexts:

- Original job instruction
- Change order
- Device capabilities

For original job instructions, this specification defines mandatory content that SHALL be present in the XJDF document. As change orders can only be used to alter an existing job, mandatory content will have been delivered to the executing device by the original job instruction, and the change order does not need to convey this same data again. In fact, the XJDF document being used for a change order SHOULD only describe those values that have changed (or become available). This very much simplifies the executing device's task of identifying and implementing the required changes.
CIP4 provides two XML schema definitions for use with XJDF depending upon which context the XJDF document is being used in. The schema for original job instruction validates an XML document ensuring all cardinality requirements are met and can be considered to be a more rigid implementation. The schema for change orders is much less rigid and allows XML documents with minimum structure to be used to convey simple alterations to the consuming device. Both schemas are defined for the XJDF namespace: http://www.CIP4.org/JDFSchema_2_0. It is strongly RECOMMENDED to use this namespace either with no prefix (i.e. as the default namespace) or with a prefix of 'xjdf'.
For convenience the latest schema implementation can be found online as shown in the following table. Conforming XML documents NEED NOT use this in an xsi:schemaLocation attribute.
Table 1.1: CIP4 XJDF/XJMF Schema Locations

SCHEMA USAGE	LOCATION
XJDF job submission	$\underline{\text { http://www.CIP4.org/JDFSchema_2_0 }}$
XJDF change order	http://www.CIP4.org/JDFSchema_2_0/ChangeOrder
XJDF Device capabilities	Device specific schemas MAY be provided by the respective device vendors.

1.5 Conceptual Changes from JDF to XJDF

This section details significant structural and conceptual changes between JDF and XJDF

1.5.1 Use of Abstract Elements

The concept of abstract element types has been replaced by explicit element definitions. Specific details are provided in the relevant subsections in Chapter 3 Structure

1.5.2 Resource Partitioning

Resource partitioning has been completely revised. Inheritance of abstract resource elements has been replaced by lists of resource elements within a ResourceSet.

1.5.3 Structural Changes

XJDF is no longer nested, there is exactly one XJDF element in an XJDF ticket. Multiple XJDF each with a different @JobPartld MAY be sent to a controller to specify multiple individual tasks.
In JDF terms, an XJDF is a Gray Box that is to be processed by a device. There are no Gray Box expansion requirements to allow a Gray Box to be processed by lower level devices.
Resources have been split into two classes. Product intent elements are specified within their respective product elements. All other resource classes from JDF 1.x have been combined into the ResourceSet/Resource group. All generic attributes and elements SHALL be specified in the product intent or resource element, whereas specific attributes and elements SHALL be specified in a corresponding product intent or specific resource as specified in \rightarrow Chapter 4 Product Intent or Chapter 6 Resources, respectively.
Partitioning has been limited syntactically to exactly one level. Zero or more Part elements specify the part usage, and each Part element MAY still contain multiple partition attributes. Multiple Part elements replace the Identical element. Product descriptions are now specified as a ProductList subelement of the XJDF. This allows informative specification of one or more products for any process, without requiring the process to be a descendent of the respective product.

1.5.4 Process Model Changes

 ities of a device. Capabilities are described as XML schema, see $>$ Section 9.9 Use of XML Schema for Capability Descriptions.
Whereas JDF 1.x supported explicit encoding of process networks, XJDF assumes that the network is implemented in a proprietary fashion by the controller. Each individual XJDF therefore pertains only to the receiving device. Nonetheless, this version of XJDF allows for a number of execution models as detailed in Section 9.3 Execution Model.
1.5.5 Alignment of Signals and Audits

In JDF, audits and signals were conceptually paired but syntactically slightly different. XJDF aligns the signals that are relevant for job costing with their respective audits. The data is syntactically identical whether it is contained in an audit or a signal. e.g. AuditStatus and SignalStatus.

1.5.6 Messaging Changes

The root element of the message package has been renamed from JMF to XJMF. This allows immediate identification of XJMF and aligns closely with XJDF.

1.5.6.1 Removal of Redundant Message Families

Two JMF families have been removed:
1 Registrations, i.e the request to the recipient of the registration to send command messages to a command recipient that is specified in subscription. Registrations have been replaced by command elements with embedded subscriptions. This follows the same model as query elements with embedded subscriptions.
2 Acknowledges, i.e. asynchronous responses. The only valid asynchronous response is a signal that may be subscribed to. Note that this does require all queue submissions to be handled synchronously, but this has also been the case in JMF, where the Command/@AcknowledgeURL could be omitted, thus forcing the recipient to handle the message synchronously.

1.5.6.2 Typesafe Message Elements

Message/@Type has been replaced by an explicit message element that is structured as the combination of message family and type. For instance:

Example 1.1: Message Type vs Explicit Message Element

A JMF known devices query:

```
<?xml version="1.0" encoding="UTF-8"?>
<JMF xmlns="http://www.CIP4.org/JDFSchema_1_1"
    AgentName="CIP4 JDF Writer Java" AgentVersion="1.5 BLD 93"
    MaxVersion="1.5" SenderID="SenderID"
    TimeStamp="2017-05-06T16:49:46+02:00" Version="1.5"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="JMFRootMessage">
    <!--Generated by the CIP4 Java open source JDF Library version : CIP4 JDF Writer Java 1.5 BLD
93-->
    <Query ID="m.1831._170506_164946177_000002" Type="KnownDevices" xsi:type="QueryKnownDevices">
        <DeviceFilter DeviceDetails="Brief"/>
    </Query>
</JMF>
```

Is now encoded in XJMF as:

```
<?xml version="1.0" encoding="UTF-8"?>
<!--XJDF converter version: using: CIP4 JDF Writer Java 1.5 BLD 93-->
<XJMF xmlns="http://www.CIP4.org/JDFSchema_2_0">
    <Header AgentName="CIP4 JDF Writer Java" AgentVersion="1.5 BLD 93"
        DeviceID="SenderID" ID="l_170506_164946811_001007" Time="2017-05-06T16:49:46+02:00"/>
    <QueryKnownDevices>
            <Header AgentName="CIP4 JDF Writer Java" AgentVersion="1.5 BLD 93"
                DeviceID="SenderID" ID="m.1831._170506_164946177_000002" Time="2017-05-06T16:49:46+02:00"/>
        <DeviceFilter DeviceDetails="Brief"/>
    </QueryKnownDevices>
</XJMF>
```

This naming element structure allows a much cleaner XML schema definition and specification of the respective message elements.

1.5.6.3 Combining Queue and Pipe Control Messages

Individual QueueEntry modification messages have been combined into a single ModifyO्eueEntry message.
All pipe control messages have been combined into a single PipeControl message.

1.6 Conventions Used in This Specification

This section contains conventions and notations used within this document.

1.6.1 Document References

Throughout this specification references to other documents are indicated by short symbolic names inside square brackets (e.g., [ICC.1]). Appendix H References lists all such references, with their full title, date, source and availability.

1.6.2 Text Styles

The following text styles are used to identify the components of an XJDF.

- Elements are written in blue san serif bold italic.

Examples are Comment, Bundleltem and all Resources. This style is also used when refering to the XML XJDF or XJMF root elements.

- Attributes are written in dark blue san serif italic.

Examples are @Status, @ResourceID and @ID.

- Process types are written in purple san serif bold.

Examples are ColorSpaceConversion and Rendering.

- Enumerative and boolean values of attributes are written in red san serif.

Examples are "true", "Waiting", "Completed" and "Stopped".

- Standard bold text is used to highlight; glossary items, defined items inside a table and definitions of local terms. Examples are XJDF and XJMF which are used when discussing either the specification in general or an instance document.
- Internal cross-reference links are denoted by a red triangle followed by gray text.

An example is 'see Section 1.6.2 Text Styles'.

- External hyperlinks are denoted by blue underlined text.

An example is http://www.cip4.org.

1.6.3 XPath Notation Used in this Specification

A simple subset of the XPath Language \bullet [XPath] is used throughout this specification to describe the hierarchical structure of an XML document. The simple subset of XPath used is:

- Element • Subelement hierarchy is indicated by a slash (e.g., "Element/Element").
- Element attribute hierarchy is indicated by a slash and an at (@) symbol) (ex., "Element/@Attribute")
- Paths beginning with a single slash: "/" indicate root elements: (ex. /XJDF indicates the root element).
- Paths beginning with a double slash "//" indicate attributes or elements that reside in any parent.
- Paths containing square brackets that enclose an attribute="value" expression describe an element that contains
an attribute with the specified value. For instance, $E[@ A=" V "]$ specifies an element E whose attribute A has the value V.

1.6.4 Specification of Cardinality

The cardinality of XJDF attributes and elements is expressed using a simple Extended Backus-Naur Form (EBNF) notation.
The cardinality for XJDF and any child elements applies to original job instruction XJDF documents that are submitted to a device. In case of change orders, i.e. XJDF that is referenced by a CommandResubmitQueueEntry, the cardinality restrictions are loosened and all elements and attributes that are not required to identify the context of the change order become optional.
Note: The XML schema for change orders is designed to reflect this loosened state.
The symbol T in the table below represents an attribute or element. The symbol T consists of either a single name, such as "RunList" or an element name followed by a parenthesized name, such as "RunList (Document)". The name in parentheses "Document" identifies a particular element instance when several of the same type exist in some context. For further details, see \geqslant Section 5.2 Process Template and \bullet Section 1.6.5 Template for Tables that Describe Elements.

Table 1.2: Cardinality Symbols (Sheet 1 of 2)

NOTATION	DESCRIPTION
\mathbf{T}	T SHALL occur exactly once and represents an attribute or element.
$\mathbf{T} ?$	T MAY occur zero or once, and represents an attribute or element. The description field MAY explain some circumstances that if met SHALL result in T occurring exactly once.
$\mathbf{T}+$	T occurs one or more times, and represents an element.

Table 1.2: Cardinality Symbols (Sheet 2 of 2)

NOTATION	DESCRIPTION
\mathbf{T}^{*}	T occurs zero or more times, and represents an element.

1.6.5 Template for Tables that Describe Elements

Elements are defined by their attributes and sub-elements.
The ordering of the elements in the tables defines the order in which the elements SHALL appear in the respective elements.

Table 1.3: Template for Element Descriptions

NAME	DATA TYPE	DESCRIPTION
Attribute-Name Cardinality	Attribute- data-type	Information about the attribute.
Element-Name Cardinality	element	Information about the element.
FileSpec (ResourceUsage) Cardinality	element	Information about the FileSpec element. If "ResourceUsage" is specified, FileSpec@ResourceUsage SHALL match the value specified in the parentheses. Note: When an element potentially contains multiple FileSpec children, the value of FileSpec/@ResourceUsage is used to distinguish them.

1.7 Glossary

The following terms are defined as they are used throughout this specification. For more detail on job and workflow components, see $\stackrel{\text { Section } 2.3 \text { System Components. }}{\text {. }}$

Table 1.4: Glossary (Sheet 1 of 3)

TERM	DEFINITION
Allowed values are	The phrase "Allowed values are:" precedes the complete (closed) list of values for an - Attribute whose values are enumeration or enumerations.
Allowed values are from	The phrase "Allowed values are from:" precedes a reference to the values. The reference may be an XPath to a value or a reference to a table of attribute values. The referenced values are as complete (closed) as a the reference says they are.
Attribute	An XML syntactic construct describing an unstructured characteristic of an Element. See - [XML] for details.
Binding Side	The edge on which the (partial) product is glued or stitched. This edge is also often called working edge or spine. The binding side of a signature is defined as the last fold.
Controller	The component of an XJDF-based workflow that initiates • Devices, routes XJDF, and communicates status information. MIS is an example of a top level controller.
Deprecated	Indicates that an XJDF feature is being phased out of XJDF. Controllers and devices SHOULD NOT write XJDF that contains deprecated features.
Device	The component of an XJDF workflow part that interprets XJDF and executes the instructions. If a Device controls a Machine, it does so in a proprietary manner. For details, see \bullet Section 2.3.1.2 Device about devices in workflow components.
Document Set	A set of Instance Documents presumed to be related.
Element	An XML-based syntactic construct describing structured data in XJDF.
Enumeration	A data type that represents a closed set of values, which are specified in this document.

TERM	DEFINITION
Face Side	The side, where you open the (partial) product. This edge is opposite to the binding side.
Finished Page	A page of a final product that normally has no folds inside. The folds of the finished product for packaging (e.g., folding letters into an envelope) or Z-fold of an oversized book, have no effect on the Finished Page definition.
Gray Box	A Gray Box is an incomplete specification of a process. ResourceSets that are required for actual production MAY but NEED NOT be complete. Gray Boxes are typically specified by an MIS.
Input Resource	A resource is an input to a $>$ Process.
Instance Document	A document record that is part of the output of a variable data job. For example, in a credit card statement run, each statement is an Instance Document.
Intent	An $>$ Intent is an element that defines the details of products to be produced without defining the process to produce them. Intent elements typically describe aspects of the end-customer view of a printed product.
Job Part	A granular task that is represented by a single XJDF.
Jog Edge	The jog edge of a signature is defined as the last fold that is perpendicular to the $>$ Binding Side. If there is no fold that is perpendicular to the \rightarrow Binding Side, then the jog edge is the edge on the bottom when the folded signature is not flipped after the final fold.
Machine	The part of a device that does not know XJDF and is controlled by a XJDF $~$ Device in a proprietary manner.
Message Family	A Message Family is a set of messages. The 4 Message Families are Query, Command, Response and Signal.
MIS	Management Information System. The functional part of a XJDF workflow that oversees all Processes and communication between system components and system control. MIS is assumed to be a role rather than an individual application. A single application may fulfill various roles of an MIS and various roles of an MIS may be implemented by multiple applications. Typical MIS roles include estimation, costing, scheduling, process planning and invoicing.
NamedFeature	The term \downarrow NamedFeature describes a value that is identified by a name using a XJDF/ GeneralID[@DataType = "NamedFeature"]. The value is specified by GeneralID/@IDValue, and the name is specified by GeneralID/@IDUsage. For example, the GeneralID with @IDUsage="a1" and @IDValue="a2 b2" and @DataType="NamedFeature" is a NamedFeature with a value "a2 b2" that is identified by the name "a1". GeneralID/ @IDValue is defined as a string. Note: That blanks are allowed in the value.
Output Resource	A resource that is an output from a Process.
Partition	Resource elements within 1 ResourceSets are partitions.
Partition Key	within its parent ResourceSet.
PDL	Page Description Language. A generic term for any language that describes pages which might be printed. Examples are PDF ${ }^{\circledR}$, PostScript ${ }^{\circledR}$ or PCL ${ }^{\circledR}$.
Phase	A Phase is a distinct part of a \downarrow Workstep such as setup, production or cleanup.
Process	An individual step in the workflow.
Product Intent	Describes the end result that a customer is requesting. See Section $^{\text {P Product Intent. }}$
Queue	A Queue is a representation of a Device that receives, manipulates and stores multiple - Queue Entry items for execution.
Queue Entry	A Queue Entry is a the representation of an individual XJMF process in a Queue. A Queue Entry MAY be comprised of multiple Workstep processes.

Table 1.4: Glossary (Sheet 3 of 3)

TERM	DEFINITION
Reader Page	A logical page as perceived by a reader. One Reader Page might span more than one - Finished Page (e.g., a centerfold). One $~$ Finished Page might contain contents defined by multiple Reader Pages.
Receiver	Device or controller that responds to an XJMF request.
Registered Side	A side on which a collection of Sheets or partial products is aligned during a production step. All production steps require two registered sides, which SHALL NOT be opposite to each other. The two registered edges define the origin of the coordinate system used within the production step. When there is a binding edge, this is one of the registered sides.
Roll	A Roll is media that is mainly used in connection with web printing. In British English the name "reel" for "roll" is in widespread use. Roll is used as synonym of reel. Also, see the term web in this glossary.
Sender	Device or controller that initiates an XJMF exchange.
Subelement	A child *lement of some other * Element
Unique	The word "Unique" without further scope details means "Unique within the job, message or file depending on the context". Possible scopes are: Unique within the machine (e.g., ProductionPath/@ProductionPathID). Unique within the workflow - This covers the whole scope at one installation (e.g., StatusQuParams/@JoblD, FileSpec/@UID, Device/@DeviceID. Unique within the company - identification of a company or contact SHALL be unique within the company's database because it can be used on multi tenant systems like web approval) (e.g., Contact[(Part/@ContactType, "Approver")]/@ExternalID).
Values include	The phrase "Values include:" precedes an open list of values for an • Attribute whose values are of type NMTOKEN, NMTOKENSor string. The list includes recommended values but does not preclude potential vendor or customer extensions.
Values include those from	The phrase "Values include those from:" precedes a reference to the open list of values. This may be an XPath to a value defined elsewhere in the specification, or it may be a reference to a table of possible values. In either case the reference values do not include potential vendor or customer extensions.
Workstep	A workstep is an individual XJMF process that can be processed on a single device in one pass. A workstep is comprised of one or multiple \quad Phases such as setup, production or cleanup.

1.8 Conformance

1.8.1 Conformance Terminology

The words "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY" and "NEED NOT" are used in this specification to define a requirement for the indicated XJDF consumer as follows.
Table 1.5: Conformance Terminology (Sheet 1 of 2)

TERM	MEANING
SHALL or REQUIRED	Means that the definition is an absolute requirement of the specification.
SHALL NOT	Means that the definition is an absolute prohibition of the specification.
SHOULD or RECOMMENDED	Means that there might exist valid reasons in particular circumstances for an imple- menter to ignore a particular item, but the implementer SHALL fully understand the implications and carefully weigh the alternatives before choosing a different course.

Table 1.5: Conformance Terminology (Sheet 2 of 2)

TERM	MEANING
SHOULD NOT or NOT RECOMMENDED	Means that there might exist valid reasons in particular circumstances when the partic- ular behavior is acceptable or even useful, but the implementer should fully understand the implications and then carefully weigh the alternatives before implementing any behavior described with this label.
MAY or NEED NOT	Means that an XJDF feature is truly optional.

1.8.2 Interoperability Conformance Specifications

Interoperability Conformance Specifications (i.e., ICS documents) are developed by CIP4 working committees. They establish the minimum XJDF support requirements for devices of a common class, including expected behavior. An ICS document can subset XJDF but can not expand upon XJDF. For instance, an ICS that covers desktop printers can either omit or prohibit all of the postpress processes related to case binding. ICS documents can also establish minimum XJMF support requirements for a class of devices.
Once published, ICS documents will form the basis for testing and certification by CIP4-sanctioned facilities. XJDF enabled products that pass these tests will be deemed "XJDF Certified" to conform to an identified level of one or more ICS documents and will be permitted upon certification to use a "XJDF Certified" logo in connection with certified XJDF enabled products.
The development of ICS documents are done in parallel, but not in synchronization, with the development of editions of the XJDF specification (e.g., an ICS is related to a specific edition of the XJDF specification, but might be released at a later date). Once approved, all published ICS documents will be available at http://www.cip4.org .

1.9 Data Structures

Unless stated otherwise, this specification uses XML data types as defined by $>$ [XMLSchema]. For more details on XJDF data types, see \quad Appendix A Data Types and Values.

1.9.1 Units

XJDF specifies most values in default units. That means that an implementation SHALL use the defined default units and SHALL NOT use alternate units. Processors SHOULD NOT specify a unit unless no default exists, such as when new resources are defined. Then the units SHALL be based on metric units. Overriding the default units that are defined in this table is non-standard and MAY lead to undefined behavior. Any exceptions are specified in the appropriate descriptive tables.
The following table lists the units used in XJDF. The "XML Value" column specifies the XML representation to indicate the units used in the following XJDF attributes:

- //ResourceSet/@Unit (see • Table 6.1 Resource).
- //DeviceInfo/@CounterUnit (see •Table 7.67 DeviceInfo Element):

Table 1.6: Units Used in XJDF (Sheet 1 of 2)

MEASUREMENT	UNIT	XML VALUE	REMARKS
Angle	degree ${ }^{\circ}$	degree	-
Area	m^{2}	m 2	Used for media, (e.g., in wide format printing).
Countable Objects	1	count	Countable objects, such as sheets, MAY be specified as "count".
Length	point (1/72 inch)	pt	Used for all except microscopic lengths (see below)
	micron (μ)	um	Used for microscopic lengths - where used (instead of points) it will be explicitly stated in the definition of the item. See Media/@Thickness.
Line Screen	lpi	lpi	The lines per inch (lpi) for conventionally screened halftone, screened grayscale and screened monotone bitmap images.

Table 1.6: Units Used in XJDF (Sheet 2 of 2)

MEASUREMENT	UNIT	XML VALUE	REMARKS
Paper weight	$\mathrm{g} / \mathrm{m}^{2}$	gsm	Paper weight SHALL be provided in grams per square meter. See Appendix C Media Weight for details of calculating non-gsm paper weights.
Power (electrical)	kilowatt hour	kWh	Used to measure consumption of electricity. Note: Current power consumption (kW) MAY be provided in a Resourcelnfo as 'rate of consumption' of electric power, i.e. $\mathrm{kWh} / \mathrm{h}=\mathrm{kW}$.
Resolution	dpi	dpi	The dots per inch (dpi) for print output and bitmap image (TIFF, BMP, etc.) file resolution.
Screen Resolution	ppi	ppi	The pixels per inch (ppi) for screen display (e.g., softproof display and user interface display), scanner capture settings and digital camera settings.
Speed	unit/hour		Speed SHALL be specified in base units per hour. The base units that are used to represent speed SHALL be identical to the base unit.
Spot Resolution	spi	spi	For imaging devices such as filmsetters, platesetters and proofers, the fundamental imaging unit (e.g., one "on" laser or imaging head imaged unit). Note: Many imaging devices construct dots from multiple imaging spots, so dpi and spots per inch (spi) are not necessarily equivalent.
Temperature	C° (Celsius)	C	degree centigrade
Volume (gas)	m^{3} (cubic meter)	m3	Used to measure consumption of gas
Volume (liquid)	liter	1	-
Weight	gram	g	-

1.9.2 Counting in XJDF

Zero-based indices SHALL be used in XJDF. Thus the first index is 0 , the second index is 1 etc. Note that this restriction applies to the XJDF representation only. Display of values, for instance in a user interface, is implementation defined.

2 Overview

2.1 Introduction

This chapter explains the basic aspects of XJDF. It outlines the terminology that is used and the components of a workflow necessary to execute a printing job using XJDF. Also provided is a brief discussion of XJDF process structure and the role of messaging in an XJDF job.
The reader is assumed to have basic knowledge of XML syntax, i.e. \bullet [XML], \bullet [XPath], $>$ [XMLNS] and $>$ [XMLSchema].

2.2 Referencing Data

2.2.1 Referencing External Data
 External data is referenced from XJDF using standard URLs (Uniform Resource Locators) ${ }^{[R F C 1738] .}$

2.2.2 Identifying Sections of XJDF from External Sources

Certain data elements need to be identified from multiple XJDF or XJMF instances. Examples include XJDF/@JobID, XJDF/ @JobPartID, @ExternalID and all attributes of Part. These entities do NOT have a data type of ID and systems that use XJDF SHALL maintain them.
An individual workstep shall be uniquely identified by the combination of @JobID, @JobPartID and the partition keys defined in any Part.

2.2.3 Identifying Sections of XJDF from within the Same XJDF

Certain data elements of a job need to be identified from within a single XJDF instance. XML provides an ID - IDREF mechanism where an ID SHALL only be defined once within an XML instance and MAY be referenced multiple times by an IDREF or IDREFS from within the same XJDF instance.
All attributes in XJDF with a data type of ID SHALL be named ID. The reference types MAY have names other than IDREF. IDs and IDREFS are only valid within the scope of a single XJDF instance and NEED NOT be maintained when a new XJDF is generated.
The @ID attribute is generally defined in generic elements such as Header, Product or Resource. When the referencing element requires to reference a specific element such as Media, the @ID attribute will be that of the containing generic element.
Example: An attribute @MediaRef will reference Resource/@ID of the respective parent of the Media.

2.3 System Components

This section defines unique terminology used in this specification for the job and workflow components of XJDF. Links to additional information are included for some terms.

2.3.1 Workflow Component Roles

The components that create, modify, route, interpret and execute an XJDF job are known as controllers, queues, devices and machines. The MIS or Management Information Systems is the top level controller in an XJDF workflow.
By defining these terms, this specification does not intend to dictate to manufacturers how to design, build or implement an XJDF/XJMF system. In practice, it is very likely that individual system components will include a mixture of the roles described in the following sections.

2.3.1.1 Machine

A machine is any part of the workflow system designed to execute a process. Most often, this term refers to a piece of physical equipment, such as a press or a binder, but it can also refer to the software components used to run a particular machine or perform a calculation. Computerized workstations, whether run through automated batch files or controlled by a human worker, are also considered machines if they have no XJDF interface.

2.3.1.2 Device

The most basic function of a Device is to execute the information specified and routed by a Controller. devices SHALL be able to execute the instructions that are specified in XJDF and initiate \rightarrow Machines that can perform the physical ex-
ecution. The communication between machines and \bullet Devices is by definition proprietary and therefore not defined in this specification. Devices SHOULD support XJMF messaging in order to interact dynamically with a Controller.

2.3.1.3 Queue

Whereas - Device process XJDF to produce a result, queues provide a method of ordering, prioritizing and scheduling queue entries that represent XJDF processes. Every $~$ Device that is capable of accepting XJDF via XJMF messaging SHALL provide exactly one queue. This specification makes no assumptions on implementation limitations of a queue. Thus a device that can only process a single queue entry and cannot store any waiting queue entries still implements an albeit minimalistic queue.

2.3.1.4 Controller

Controllers route XJDF information to the appropriate $>$ Devices. The minimum requirement of a Controller is that it can initiate $>$ Processes on at least one Device, or at least one other slave \rightarrow Controller that will then initiate $>$ Processes on a Device. In other words, a Controller is not a Controller if it has nothing to control. A pyramid-like hierarchy of $\stackrel{\text { Controllers can be built, with } a>\text { Controller at the top of the pyramid controlling a series of lower-level } \bullet \text { Controllers }}{ }$ at the bottom. The lowest-level $>$ Controllers in the pyramid, however, SHALL have $>$ Device capability. Therefore,

- Controllers SHALL be able to work in collaboration with other • Controllers. - Controllers can also determine • Process planning and scheduling data, such as $>$ Process times and planned production amounts.

2.3.1.5 Management Information System—MIS

The highest level - Controller in a workflow is known as a Management Information Systems or MIS. It is responsible for dictating and monitoring the execution of all of the diverse aspects of the workflow. This task is facilitated by access to production information, either in real time using XJMF messaging or post facto using the audit records within a returned XJDF.

2.4 XJDF Workflow

XJDF does not dictate that a workflow be constructed in any pre-specified way. XJDF is equally as effective with a simple system using a single controller and device as it is with a completely automated industrial press workflow with integrated prepress and postpress operations.
An XJDF is defined in terms of inputs and outputs. The inputs of an XJDF consist of the materials it uses and the parameters that control it. For example, the inputs of an XJDF describing the process parameters for imaging the cover of a brochure might include requirements for trapping, raster image processing, and imposing the image. The output of our example XJDF might be a raster image.
A print job will typically require more than one process step to produce the final product. Each process step is completely defined by an XJDF. The interdependencies of the process steps MAY be specified in XJDF if the receiving device requires this information. Otherwise these interdependencies SHOULD remain opaque and be processed in a proprietary manner by the job controller.

2.4.1 Product Intent and Processes

XJDF describes a job from two points of view that are related but not identical.

- Product Intent: The customer or product designer will typically describe the desired final product without any knowledge of the manufacturing process. In XJDF this type of information is encoded in the ProductList and its child elements. Product intent is described in detail in $\stackrel{\text { Chapter }}{4}$ Product Intent
- Process: The devices that execute a processing step will typically receive processing instructions for that specific work as part of the manufacturing process for a product. In XJDF this type of information is encoded in ResourceSet and their child elements. Process resources are described in detail in Chapter 6 Resources.
Intent descriptions have been consciously limited to details of the more common products. In order to reduce duplication of resources and keep intent definitions simple, some features that are typically required to describe products that are used in business to business workflows such as packaging have not been included in Intent descriptions. These specialized products SHOULD be described by adding process resources that describe the desired features.
Controllers such as MIS SHOULD evaluate product intent and provide all processing instructions for devices as ResourceSet elements. Devices NEED NOT evaluate product intent to infer processing instructions. Product intent is provided to devices in order to provide operators with an overview of the context of the process step within one or more customer jobs.

2.5 Role of Messaging in XJDF

Whereas XJDF will typically be submitted to a device and only be returned after the process has been executed, XJMF provides methods to dynamically synchronize and manipulate controllers and devices. For more details on XJMF, see - Chapter 7 Messaging and Chapter 9 Building a System.

2.6 Coordinate Systems in XJDF

This chapter explains how coordinate systems are defined and used in XJDF. It also shows how the matrices are used to specify a certain transformation and how these matrices can be used to transform coordinates from one coordinate system to another coordinate system.

2.6.1 Introduction

During the production of a printed product it often happens that one object is placed onto another object. During imposition, for example, single pages and marks (like cut, fold or register marks) are placed on a sheet surface. Later, at image setting, a bitmap containing one separation of a sheet surface is imposed on a piece of film. In a following step, the film is copied to a printing plate which then is mounted on a press. In postpress, the printed sheets are gathered on a pile. The objects involved in all these operations have a certain orientation and size when they are put together. In addition, one has to know where to place one object on the other.
The position of an object (e.g., a cut mark) on a plane can be specified by a two-dimensional coordinate. Every digital or physical Resource has its own coordinate system. The origin of each coordinate system is located in the lower left corner (i.e., the X coordinate increases from left to the right, and the Y coordinate increases from bottom to top).

Figure 2-1: Standard coordinate system

Each page contained in a PDL file has its own coordinate system. In the same way a piece of film or a sheet of paper has a coordinate system. Within XJDF each of these coordinate systems is called Resource coordinate system.
If a process has more than one input resource with a coordinate system, it is necessary to define the relationship between these input coordinate systems. Therefore, a process coordinate system is defined for each process. XJDF tickets are written assuming an idealized device that is defined in the process coordinate system for each process that the device implements. A real device SHALL map the idealized process coordinate system to its own device coordinate system.
The coordinate systems of the input resources are mapped to the process coordinate system. Each of those mappings is defined by a transformation matrix, which specifies how a coordinate (or position) of the input coordinate system is transformed into a coordinate of the target coordinate system. (See \rightarrow Section 2.6.5 Homogeneous Coordinates for mathematical background information.) In the same way, the mapping from the process coordinate system to the coordinate systems of the output resources is defined. The process coordinate system is also used to define the meaning of terms like "Top" or "Left", which are used as values for parameters in some processes.

Figure 2-2: Relation between Resource and process coordinate systems

It is important that no implicit transformations (such as rotations) are assumed if the dimensions of the input resources of a process do not match each other. Instead every transformation (e.g., a rotation) SHALL be specified explicitly by using the Resource/@Orientation or Resource/@Transformation.

2.6.1.1 Source Coordinate Systems

The source coordinate system of a referenced object is defined by the lower left of the object. X values are increasing to the right, Y values are increasing towards the top. In case of PDF the lower left of the MediaBox defines the lower left of the source coordinate system.
Note: Some object coordinate systems have optional tags to indicate internal transformations. These internal transformations SHALL be applied prior to defining the source coordinate system; for instance:

- PDF: the rotation defined by the Rotate key SHALL be applied. The lower left of the MediaBox of the rotated PDF defines the lower left of the PDF source coordinate system.
- TIFF: the orientation defined by the Orientation tag SHALL be applied. The lower left of the rotated TIFF defines the lower left of the TIFF source coordinate system.

2.6.2 Coordinate Systems of Resources and Processes

Each physical resource (e.g., Component) of a process has its own coordinate system, which is called the "resource coordinate system." The coordinate system also implies a specific orientation of that Resource. On the other hand there is a coordinate system that is used to define various process-specific parameters. This coordinate system is called a target or process coordinate system.
It is often necessary to change the orientation of an input resource before executing the operation. This can be done by specifying Resource/@Orientation or Resource/@Transformation. This provides the ability to specify different matrices for the individual resources of a process.

2.6.2.1 Use of Preview to Display Resource Orientation

It is often necessary to load printed material into finishing equipment manually. Particularly in the case of imposed sheets, the page orientation will not be unique and even the concept of "Front" or "Back" can be confusing, since front and back pages can be printed on the same surface of the imposed sheet. Previevv ResourceSets with Part/@PreviewType = "ThumbNail" or Part/@PreviewType = "Viewable" SHOULD be provided to illustrate the desired orientation of the input components with respect to the device.

2.6.2.2 Coordinate Systems of Combined Processes

XJDF/@Types MAY specify multiple individual processes and thus also that processes' respective coordinate systems. The individual process coordinate systems are not modified by the fact that the processes are part of a combined process. The orientation of a Resource for a specific process can be modified by specifying Resource/@Orientation or Resource/ @Transformation. The resources that apply to a given process are defined explicitly in the process tables in Chapter 5 Processes for a mapping of parameter resources to process types.

2.6.3 Coordinate System Transformations

The following table shows some matrices that can be used to change the orientation of a Resource. Most of the transformations require the width (\boldsymbol{w}) and the height (\boldsymbol{h}) of the Component as specified by X and Y in Component/@Dimensions. If these are unknown, it is still possible to define a general orientation in Resource/@Orientation. The naming of the attribute reflects the state of the resource and not necessarily the order of applied transformations. Thus "Rotate90" and "Flip90" specify that the original Y axis as represented by the spine is on top. In the case of Flip90, the Component is additionally flipped front to back.
Table 2.1: Matrices and Orientation values for describing the orientation of a Component (Sheet 1 of 2)

| ORIENTATION VALUE | SOURCE
 COORDINATE SYSTEM | TRANSFORMATION MATRIX
 ACCORDING ACTION | 1 0 0 1
 COORDINATE SYSTEM |
| :--- | :---: | :---: | :---: | :---: |
| RotateO | 0 | | |

Table 2.1: Matrices and Orientation values for describing the orientation of a Component (Sheet 2 of 2)

ORIENTATION VALUE	$\begin{gathered} \text { SOURCE } \\ \text { COORDINATE SYSTEM } \end{gathered}$	TRANSFORMATION MATRIX ACCORDING ACTION	TARGET COORDINATE SYSTEM
Rotate90		$\begin{array}{llllll}0 & 1 & -1 & 0 & h & 0\end{array}$ 90° Counterclockwise Rotation	
Rotate180		$\begin{array}{llllll} \hline-1 & 0 & 0 & -1 & w & h \\ 180^{\circ} & \text { Rotation } \end{array}$	
Rotate270		$\begin{array}{llllll}0 & -1 & 1 & 0 & 0 & w\end{array}$ 270° Counterclockwise Rotation	
Flip0		$1000 \quad-100 h$ Flip around X	
Flip90		$\begin{array}{llllll} 0 & -1 & -1 & 0 & h & w \\ 90^{\circ} & \text { Counterclockwise Rotation } \\ + \\ + \text { Flip around X } \end{array}$	
Flip180		$\begin{array}{llllll} -1 & 0 & 0 & 1 & w & 0 \\ 180^{\circ} & \text { Rotation }+ \text { Flip around X } \end{array}$	
Flip270		$\begin{array}{llllll} 0 & 1 & 1 & 0 & 0 & 0 \\ 270^{\circ} & \text { Counterclockwise } \\ \text { Rotation + Flip around X } \end{array}$	

2.6.4 General Rules

The following rules summarize the use of coordinate systems in XJDF.

- Every individual piece of material (film, plate, paper) has a resource coordinate system.
- Every process has a process coordinate system.
- Terms like top, left, etc., are used with respect to the process coordinate system in which they are used and are independent of orientation (i.e., landscape or portrait), and the human reading direction.
- The coordinate system of each input component is mapped to the process coordinate system.
- The coordinate system might change during processing (e.g., in Folding).
- The description of a product in XJDF is independent of the particular $>$ Machine used to produce this product. When creating setup information for an individual Machine, it might be necessary to compensate for certain
- Machine characteristics. At printing, for example, it might be necessary to rotate a landscape job because the printing width of the press is not large enough to run the job without rotation.

2.6.5 Homogeneous Coordinates

A convenient way to calculate coordinate transformations in a two-dimensional space is by using so-called homogeneous coordinates. With this concept, a two-dimensional coordinate $P=(x, y)$ is expressed in vector form as [x y 1]. The third element " 1 " is added to allow the vector being multiplied with a transformation matrix describing scaling, rotation, and translation in one shot. Although this only requires a $2 * 3$ matrix (e.g., as it is used in PostScript) in practice $3 * 3$ matrices are much more common, because they can be concatenated very easily. Thus, the third column SHALL be set to " 0 01 ".

Table 2.2: Coordinate Transformation Examples

MATRIX	XJDF VALUE	DESCRIPTION
$\left[\begin{array}{lll}\text { a b } & 0 \\ c & d & 0 \\ e & f & 1\end{array}\right]$	"abcdef"	General transformation case.
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$	"100100"	Identity transformation.
$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ d x & d y & 1\end{array}\right]$	"1001dx dy"	Translation by dx, dy.
$\left[\begin{array}{ccc}\cos \varphi & \sin \varphi & 0 \\ -\sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1\end{array}\right]$	$" \cos \varphi \sin \varphi-\sin \varphi \cos \varphi 000$	Rotation by φ degrees counter-clockwise

2.6.5.1 Transforming a point

In this example, the position P given in the coordinate system A is transformed to a position of coordinate system B. The relationship between the two coordinate systems is given by the transformation matrix Trf.

Figure 2-3: Transforming a point (example)

Transformation sequence

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{A}}=\left[\begin{array}{lll}
300 & 100 & 1
\end{array}\right] \\
& \mathrm{P}_{\mathrm{B}}=\mathrm{P}_{\mathrm{A}} \times \operatorname{Trf}
\end{aligned}
$$

Starting position
$\mathrm{P}_{\mathrm{A}}=(30,100)$
Transformation

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{B}}=\left[\begin{array}{lll}
30 & 100 & 1
\end{array}\right] \times\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
40 & 60 & 1
\end{array}\right] \\
& \begin{array}{l}
\text { Expanded translation trans- } \\
\text { formation. In XJDF, Trf is } \\
\text { written as @Trf="10014060" }
\end{array} \\
& \mathrm{P}_{\mathrm{B}}=\left[\begin{array}{lll}
70 & 160 & 1
\end{array}\right] \quad \begin{array}{l}
\text { Result position } \\
\end{array} \quad \begin{array}{l}
\mathrm{PB}=(70,160)
\end{array}
\end{aligned}
$$

3 Structure

A single XJDF describes the information about a job or process step that is transferred from a controller to a device. The scope of the exchanged information varies depending on the nature of the recipient device. An XJDF that is targeted at an individual device will typically contain only the details that are required by that device, along with some optional information about the final product. Multiple work steps belonging to one job that need to be submitted from a controller to a workflow system that controls multiple devices SHALL be submitted as a separate XJDF for each work step. These MAY be packaged together and submitted as one or more transactions. See \downarrow Chapter 9 Building a System for details of packaging and referencing of the individual XJDF.

3.1 XJDF

The top-level element of a XJDF instance SHALL be an XJDF element. See • Table 3.1 XJDF below for details. XJDF elements MAY be embedded within other XML documents.
XJDF/@Types defines whether an XJDF specifies an end product or a list of processes that SHALL be executed. XJDF that are created by print buyers typically describe only the desired product rather than manufacturing process details. XJDF that describe finished products SHALL have a value of XJDF/@Types that contains "Product". If additional process information that is not defined in the ProductList is required, this information SHOULD be provided in ResourceSet elements. ProductList MAY be provided in a process XJDF for informational purposes. If the ResourceSet elements contain all required processing instructions then the value of XJDF/@Types SHALL NOT contain "Product".

Table 3.1: XJDF (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
Category?	NMTOKEN	@Category specifies the named category of this XJDF. Controllers SHOULD specify @Category for processes that have many optional values in @Types.This allows processors to identify the general purpose of an XJDF without parsing the @Types field. For instance, a RIP for final output and a RIP for proof process have identical @Types attribute values, but have @Category = "ProofRIPing" or @Category = "RIPing", respectively. Values include those from: • Table 3.2 Category Attribute Values. Note: @Category MAY also be the name of a gray box defined by an ICS document. See - Section 1.8.2 Interoperability Conformance Specifications for details.
CommentURL ?	URL	URL SHALL refer to an external, human-readable description of this XJDF.
DescriptiveName?	string	Human-readable descriptive name of this XJDF. @DescriptiveName SHOULD be provided for communication from applications to humans in order to reference the XJDF.
ICSVersions?	NMTOKENS	@ICSVersions SHALL list all CIP4 Interoperability Conformance Specification (ICS) Versions that this XJDF complies with. Value format is: <ICSName>_L<ICSLevel>-<ICSVersion>. Example: MISPRE_L1-2.0 for the MIS to Prepress ICS.
Jobld	NMTOKEN	Job identification used by the application that created the XJDF job. Typically, a job is identified by the internal order number of the MIS system that created the job.
JobPartlD?	NMTOKEN	@JobPartID SHALL identify one or more worksteps of the same type that can be described as one XJDF. @JobPartID is internal to the MIS system that created the XJDF.
ProjectID ?	NMTOKEN	Identification of the project context that this XJDF belongs to. @ProjectID SHOULD be used by a controller to group a set of XJDF jobs.

STRUCTURE

Table 3.1: XJDF (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
RelatedJobID ?	NMTOKEN	Job identification of a related job. Used to identify the @JobID of a previous run of this job or job with very similar settings. It MAY be used to retrieve additional job and device specific settings from a data store.
RelatedJobPartID ?	NMTOKEN	Job identification of a related job part. Used to identify the @JobPartID of a previous run of this job or job with very similar settings. It MAY be used to retrieve additional job and device specific settings from a data store.
RelatedProjectID ?	NMTOKEN	Identification of a related project context that this XJDF belongs to. @RelatedProjectID SHOULD be used by a controller to group a set of XJDF jobs.
Types	NMTOKENS	A list of one or more process names that are specified within this XJDF document. For details on using processes, see $>$ Section 3.1.2 XJDF for Process Description and Gray Boxes. A value of @Types that contains "Product" specifies that the products that are described shall be produced without complete knowledge of the production workflow. Additional process specifics MAY be supplied in a ticket that contains "Product". Values include those from: © Chapter 5 Processes.
xmlns	URI	XJDF supports use of XML namespaces. For details on using namespaces in XML, see $>$ [XMLNS]. For versions 2.0 of XJDF, @xmlns = "http:// www.CIP4.org/JDFSchema_2_0".
AuditPool?	element	List of elements that contains all relevant audit information. AuditPool elements are intended to serve the requirements of MIS for evaluation and post calculation. See $>$ Section 3.4 AuditPool and Audit.
Comment *	element	Any human-readable text. The Comment element is different from an XML comment <!-- XML Comment -->. The XJDF comment is meant for display in a user interface whereas the XML comment is used to add developers comments to the underlying XML.
GeneralID *	element	Additional identifiers related to the XJDF.
ProductList?	element	Bill of materials - description of the product, or products that this XJDF produces.
ResourceSet *	element	Container elements for Resource elements.

Table 3.2: Category Attribute Values

VALUE	DESCRIPTION
Binding	Binding of a bound product.
Cutting	Specifies cutting of a Component.
DigitalPrinting	A RIP and print run on a digital printer that produces final output.
Finallmaging	A RIP and image that produces final output that is ready for further processing (e.g., film or plates).
FinalRIPing	A RIP process for generating final output.
Folding	Folding of a product.
Newsprinting	A press run on a newsprinting web press.
PostPress	General postpress. Includes "Folding" and "Binding".
PrePress	General prepress.
Printing	A press run that produces final output.
Prooflmaging	A RIP that produces proof output.

Table 3.2: Category Attribute Values

VALUE	DESCRIPTION
ProofRIPing	A RIP process for generating a proof. The processes are identical to those in specified for "FinalRIPing".
RIPing	General RIP gray box.
WebPrinting	A press run on a web press can produce one or more components as output at the same time. A web printing press might be equipped with prepress and postpress equipment.
WebToPrint	A product description that describes a product order in a web shop.

3.1.1 XJDF for Product Intent

XJDF that are created by end customers typically describe only the desired product rather than manufacturing process details.
XJDF/@Types SHALL have a value of "Product" to indicate that the XJDF does not specify any processing.
Product elements SHOULD include intent elements that describe the end results the customer is requesting. If additional process information that is not defined in the intent elements is required, this information SHOULD be provided in ResourceSet elements. The value of xJDF/@Types SHALL remain "Product".

3.1.2 XJDF for Process Description and Gray Boxes

Process XJDF contain processing instructions in ResourceSet elements that are targeted to a specific device in addition to an optional product definition in a ProductList and intent elements. @Types of process XJDF SHALL NOT contain the token "Product" if any additional process type tokens are present. In some cases such as prepress, a controller such as an MIS will not know all the details of the process including the exact list of XJDF/@Types or any details of the ResourceSets for the respective processes. It can still provide an XJDF with the limited, known information. These limited XJDF are referred to as Gray Boxes.
Note: There is no syntactical difference between a gray box and a dedicated process XJDF. The boundary between Gray Boxes and dedicated process XJDF is very fuzzy, since devices will typically apply defaults to any data that is missing in a process XJDF.

3.1.2.1 Specifying NamedFeatures with GenerallD

XJDF MAY contain zero or more GeneralII[@Datatype="NamedFeature"] elements to specify global setup definitions. These GeneralID elements that are referred to as "NamedFeatures" in this paragraph allow a controller to define a named set of parameters for processes that SHALL be executed without defining the details or even the resources.
Explicitly specified traits SHALL override any implied traits defined by GeneralID[@Datatype="NamedFeature"] .
XJDF/@Types abstractly specifies the set of processes to execute, whereas "NamedFeatures" abstractly specifies the set of resources for the processes specified in @Types.

3.2 ProductList

The ProductList specifies a list of products and product parts from the print buyers point of view. For more details on product intent, see Chapter 4 Product Intent.
Table 3.3: ProductList Element

NAME	DATA TYPE	DESCRIPTION
Product +	element	Each Product element in this list represents a product or part of a product with unique properties such as substrate, colors or size.

3.3 ResourceSet

A ResourceSet describes a set of one or more Resource elements that are logically grouped together. ResourceSets can describe either physical entities such as paper or logical entities such as process parameters. ResourceSet elements with the same values of @Name, @Usage, @ProcessUsage and common or no entries in @CombinedProcessIndex SHALL NOT be specified.
Note: This restriction is designed to ensure that the applicable ResourceSet for a process can be unambiguously identified.
For instance ResourceSet/@Name="Nodelnfo" MAY be defined based upon end customer scheduling requirements by specifying ResourceSet/@ProcessUsage="EndCustomer" and partitioned by @ProductPart. Then the production scheduling SHOULD be defined in a separate ResourceSet/@Name="Nodelnfo" without @ProcessUsage.

STRUCTURE

An individual Resource SHALL be referenced by referencing Resource/@ID. The ResourceSet SHALL be referenced by referencing ResourceSet/@ID. Unless otherwise specified, an @IDREF or @IDREFS will refer to an individual Resource rather than an entire ResourceSet.

In some cases the partitioning structure of a ResourceSet is not explicitly required because the Resource elements are individually referenced by ID from other elements. In this case the Part elements NEED NOT be specified, even if there are multiple Resource elements in one ResourceSet.

Table 3.4: ResourceSet Element

NAME	DATA TYPE	DESCRIPTION
CombinedProcessInd ex?	IntegerList	@CombinedProcessIndex specifies the zero based indices of individual processes within the complete list of XJDF/@Types which this ResourceSet SHALL apply to. Multiple entries in @CombinedProcessIndex specify that the ResourceSet is used by the respective multiple processes. @CombinedProcessIndex SHALL be specified if multiple ResourceSet items with the same @Name, @ProcessUsage and @Usage are specified in one XJDF. If @CombinedProcessIndex is not specified, the ResourceSet applies to all processes that match the @Name, @ProcessUsage and @Usage requirements as listed in •Chapter 5 Processes.
CommentURL ?	URL	URL to an external, human-readable description of the ResourceSet.
DescriptiveName?	string	Human-readable descriptive name of the ResourceSet.
ID?	ID	Identifier of the ResourceSet.
Name	NMTOKEN	@Name SHALL specify the name of the explicit resource that this ResourceSet represents. Child resource elements of this ResourceSet SHALL NOT contain resources that do not match @Name. @Name of resource types that are specified in \rightarrow Chapter 6 Resources of this specification SHALL be provided without an XML namespace prefix. @Name of proprietary resources SHALL be provided with an XML namespace prefix. See Section 3.5 XJDF Extensibility for details. A list of predefined resources is specified in $\stackrel{\text { Chapter }}{ } 6$ Resources.
ProcessUsage?	NMTOKEN	@ProcessUsage identifies the context of a Resource if multiple Resource elements of the same type are supplied for an individual process type. Values include those specified in the appropriate process descriptions in - Chapter 5 Processes. Note: ICS documents MAY define additional values for @ProcessUsage.
Unit?	NMTOKEN	Unit of measurement for the values of AmountPool/PartAmount/@Amount, AmountPool/PartAmount/@MaxAmount, AmountPool/PartAmount// @MinAmount and AmountPool/PartAmount//@Waste. Values include those from: - Table 1.6 Units Used in XJDF. Note: Units other than those defined in the above table SHOULD NOT be specified.
Usage?	enumeration	@Usage shows that the resource is either consumed or produced within this XJDF document. If no @Usage is specified, the ResourceSet SHALL be used as both input and output and SHOULD be modified by the device. Allowed value is from: * Usage Note: ResourceSet[@Usage="Output"] MAY be prefilled with data that is conceptually input data for the XJDF.
Comment *	element	Any human-readable text that relates to the ResourceSet.
Dependent *	element	Reference to an XJDF that produces this ResourceSet[@Usage="Input"] or consumes this ResourceSet[@Usage="Output"]. Multiple Dependent elements specify that the Dependent relates to multiple consuming or producing processes.
Generalld *	element	Additional identifiers related to the ResourceSet.
Resource *	element	List of Resource elements.

Example 3.1: ResourceSet with CombinedProcessIndex

The following example shows the use of ResourceSet/@CombinedProcessIndex to differentiate the scheduling for a finishing combined process that contains both Cutting and Folding. The Nodelnfo with @CombinedProcessIndex="0" applies to the first token in XJDF/@Types, i.e Cutting, whereas the Nodelnfo with @CombinedProcessIndex="1" applies to the second token in XJDF/@Types, i.e Folding. Since CuttingParams is uniquely linked to the Cutting process, and similarly FoldingParams is uniquely linked to the Folding process (see \vee Cutting - Input Resources and \vee Folding - Input Resources), @CombinedProcessIndex NEED NOT be specified for those resources.

```
<XJDF xmlns="http://www.CIP4.org/JDFSchema_2_0"
    JobID="CombinedProcessIndex" Types="Cutting Folding">
    <ResourceSet CombinedProcessIndex="0" Name="NodeInfo" Usage="Input">
            <Resource>
                <NodeInfo Start="2017-02-06T13:00:00+01:00"/>
            </Resource>
    </ResourceSet>
    <ResourceSet CombinedProcessIndex="1" Name="NodeInfo" Usage="Input">
        <Resource>
            <NodeInfo Start="2017-02-06T17:00:00+01:00"/>
        </Resource>
    </ResourceSet>
    <ResourceSet Name="CuttingParams" Usage="Input">
        <Resource/>
    </ResourceSet>
    <ResourceSet Name="FoldingParams" Usage="Input">
        <Resource/>
    </ResourceSet>
</XJDF>
```


3.3.1 Dependent

A Dependent element SHALL reference an XJDF that produces an input ResourceSet or consumes an output ResourceSet. The data in Dependent elements allows devices to communicate directly with other devices in the workflow that are processing the same job. The data provided in Dependent also provides pipe control information. See $\boldsymbol{\text { Section } 9 . 3 . 5}$ Overlapping Processing and $\stackrel{\text { Section } 7.11 \text { PipeControl. }}{\text { Pe }}$.
Table 3.5: Dependent Element

NAME	DATA TYPE	DESCRIPTION
JobID	NMTOKEN	@JobID of the referenced process. Note: @JobID will typically match XJDF/@JobID unless parts of the job are being produced on gang forms.
JobPartID?	NMTOKEN	@JobPartID of the referenced process. @JobPartID SHALL NOT match XJDF/ @JobPartID.
PipeID?	NMTOKEN	If this attribute exists, the resource is a pipe. @PipeID is used by XJMF pipe- control messages to identify the pipe. For more information, see 9.3.5 Overlapping Processing.
PipeProtocol ?	NMTOKEN	@PipeProtocol defines the protocol use for pipe handling. Proprietary pipe protocols MAY be specified in addition to those defined below but will not necessarily be inter-operable. Values include: IdentificationField - The pipe data is provided by barcodes that are defined in IdentificationField elements. XJMF - XJMF based PipeControl messages. The sequence of pipe initialization is undefined. See next two values: "XJMFPush" and "XJMFPull".
XJMFPush - XJMF based PipeControl protocol. The producing device initiates		
the protocol.		
XJMFPull - XJMF based PipeControl protocol. The consuming device initiates		
the protocol.		

STRUCTURE

3.4 AuditPool and Audit

AuditPool elements contain the post-facto recorded results of a process. Audits are conceptually very similar to job-specific signals. Signals record the current state of a process or device, whereas audits summarize that device state over a longer period during the execution of a single process. Thus an audit will summarize the result of multiple signals belonging to a unique phase in the returned XJDF. A unique phase SHOULD contain the same combination of JobPhase/ @Status and JobPhase/@StatusDetails. Thus minor variations such as speed NEED NOT be recorded as separate audits although they MAY have slightly varying values in the respective signals. AuditPool elements record any event related to the situations described in $>$ Table 3.6 Alignment of Audits and Messages.
Note: Audits are always in the context of a process. Thus job independent signals such as the SignalStatus of an idle device will never be tracked as an audit.
Note: The data in XJDF responses are very similar to the data in XJDF signals. The only difference is that XJDF responses are synchronous HTTP responses. Therefore, all discussions referring to signals in this section apply equally to responses.
Table 3.6: Alignment of Audits and Messages

AUDIT	SIGNAL	COMMENT
AuditCreated	-	First audit in the XJDF.
AuditNotification	SignalNotification	One AuditNotification SHOULD be written for each SignalNotification.
AuditProcessRun	CommandReturnQueueEntry	A process run SHOULD be written whenever an XJDF is returned to the controller by a device.
AuditResource	SignalResource	One AuditResource SHOULD be written with the final data for each unique phase.
AuditStatus	SignalStatus	One AuditStatus SHOULD be written with the final data for each phase.

Audit information might be used by MIS for operations such as evaluation or invoicing. AuditPool entries are ordered chronologically, with the last entry in the AuditPool representing the newest. A AuditProcessRun element shall finalize each $\stackrel{\text { Workstep. All subsequent entries in the AuditPool belong to the next • Workstep. }}{\text {. }}$

3.4.1 AuditPool

The following table defines the contents of the AuditPool element. In contrast to most other elements in XJDF the child elements of AuditPool SHALL be ordered chronologically from oldest to newest rather than alphabetically.

Table 3.7: AuditPool Element

NAME	DATA TYPE	DESCRIPTION
AuditCreated *	element	Logs creation of an XJDF or creation of a resource.
AuditNotification *	element	Logs individual events that occurred during processing.
AuditProcessRun *	element	Summarizes one complete execution run of a XJDF or delimits a group of AuditPool elements for each individual process run.
AuditResource *	element	Describes the usage of resources during execution of a XJDF or the modifica- tion of the intended usage of a resource.
AuditStatus *	element	Logs start and end times of any process states and sub-states, denoted as phases. Phases can reflect any arbitrary subdivisions of a process.

3.4.2 AuditCreated

This element allows the creation of an XJDF or resource to be logged.
Table 3.8: AuditCreated Element

NAME	DATA TYPE		DESCRIPTION
Header	element	See Message/Header.	

3.4.3 AuditNotification

AuditNotification contains information about individual events that occurred during processing. For a detailed discussion of event properties, see Section 9.3.8 Error Handling.
AuditNotification is syntactically the same as SignalNotification. A device SHOULD write an AuditNotification element for every SignalNotification XJMF that it emits.
Table 3.9: AuditNotification Element

NAME	DATA TYPE	DESCRIPTION
Header	element	See Message/Header.
Notification	element	Notification that describes the event. See \vee 8.23 .2 Milestone

3.4.4 AuditProcessRun

AuditProcessRun summarizes one execution of a process. An AuditProcessRun SHALL be written each time an XJDF is returned to a controller.
All job related amounts in subsequent AuditPool elements and XJMF messages SHALL restart at 0 when a XJDF is processed on a device after a AuditProcessRun has been sent.

Table 3.10: AuditProcessRun Element

NAME	DATA TYPE	DESCRIPTION
Header	element	See Message/Header.
ProcessRun	element	Details of the individual process execution.

3.4.4.1 ProcessRun

The ProcessRun element contains the details of the individual process execution.
Table 3.11: ProcessRun Element

NAME	DATA TYPE	DESCRIPTION
Duration ?	duration	Time span of the effective process runtime without intentional or uninten- tional breaks. That time span is the sum of all process phases when the Nodelnfo/@Status is "InProgress", "Setup" or "Cleanup".
End	dateTime	Date and time at which the process ended.
EndStatus	enumeration	The Nodelnfo/@Status of the process at the end of the run. For a description of process states, see Allowed values are:
Aborted - The XJDF has been aborted before producing the desired result.		
Completed - The XJDF has been completed and the desired result has been		
produced.		

3.4.5 AuditResource

The AuditResource element describes the usage of resources during execution of a process. It logs consumption and production amounts of any quantifiable resources, accumulated over one process run or one part of a process run.

STRUCTURE

AuditResource is syntactically the same as SignalResource. Whereas XJMF/SignalResource MAY convey the momentary consumption or production of a resource, AuditResource conveys the consumption or production of a resource during an entire phase. A device SHALL write a copy of the last SignalResource that it emits during a AuditProcessRun as an SignalResource.

Table 3.12: AuditResource Element

NAME	DATA TYPE	DESCRIPTION
PreviousRef ?	NMTOKEN	Reference to Header/@ID of a prior AuditResource that has been updated by this AuditResource. If @PreviousRef is specified, the contents of the prior AuditResource are effectively overridden and SHOULD not be used for calcu- lating total consumption.
Header	element	See Message/Header.
Resourcelnfo	element	Resourcelnfo shall describe the consumption or production of an individual Resource. ResourceInfo/ResourceSet/Resource elements NEED NOT contain the explicit resources as defined in ResourceInfo/ResourceSet/@Name.

Example 3.2: AuditResource: Logging of Consumption

The following example describes the logging of a modification of the media weight and amount. The XJDF document before modification requests 400 copies of 80 gram media. The XJDF after modification specifies that 421 copies of $90-$ gram media have been consumed. The

```
<XJDF xmlns="http://www.CIP4.org/JDFSchema_2_0" JobID="PaperAudit" Types="ConventionalPrinting">
    <AuditPool>
        <AuditCreated>
            <Header AgentName="CIP4 JDF Writer Java" AgentVersion="1.5 BLD 93"
                DeviceID="TestSender" ID="l_000003" Time="2017-04-01T01:01:58+02:00"/>
        </AuditCreated>
        <AuditResource>
            <Header AgentName="CIP4 JDF Writer Java" AgentVersion="1.5 BLD 93"
                DeviceID="TestSender" ID="l_000012" Time="2017-04-01T01:01:58+02:00"/>
            <ResourceInfo>
                <ResourceSet Name="Component" Usage="Input">
                    <Resource>
                        <AmountPool>
                            <PartAmount Amount="400" Waste="21"/>
                            </AmountPool>
                            <Part SheetName="S1"/>
                            <Component/>
                    </Resource>
                    </ResourceSet>
            </ResourceInfo>
        </AuditResource>
        <AuditResource>
            <Header AgentName="CIP4 JDF Writer Java" AgentVersion="1.5 BLD 93"
                DeviceID="TestSender" ID="l_000014" Time="2017-04-01T01:01:58+02:00"/>
            <ResourceInfo>
                <ResourceSet Name="Media">
                        <Resource>
                            <Media Weight="90"/>
                    </Resource>
                    </ResourceSet>
            </ResourceInfo>
        </AuditResource>
    </AuditPool>
    <ResourceSet Name="Media">
        <Resource ID="Media_000008.1">
            <Part SheetName="S1"/>
            <Media Weight="80"/>
        </Resource>
    </ResourceSet>
    <ResourceSet Name="Component" Usage="Input">
        <Resource>
            <AmountPool>
                    <PartAmount Amount="400"/>
            </AmountPool>
            <Part SheetName="S1"/>
            <Component MediaRef="Media_000008.1"/>
        </Resource>
    </ResourceSet>
</XJDF>
```


3.4.6 AuditStatus

AuditStatus contains audit information about the start and end times of any process states and sub-states, denoted as phases. Phases can reflect any arbitrary subdivisions of a process, such as maintenance, washing, plate changing, failures and breaks. AuditStatus elements SHOULD be written for every significant status change that is detected.
AuditStatus is syntactically the same as SignalStatus. Whereas XJMF/SignalStatus conveys the momentary status of a device and or job, AuditStatus conveys the status during an entire phase. A device SHALL not write new AuditStatus elements for every SignalStatus XJMF that it emits.
AuditStatus elements MAY also be used to log the actual time spans when Resources are used by a process. For example, the temporary usage of a fork lift can be logged if an AuditStatus element is added that contains an AuditStatus/Header/ @DeviceID of the fork lift and specifies the actual start and end time of the usage of that fork lift.

Note: AuditStatus is syntactically the same as SignalStatus.
Table 3.13: AuditStatus Element

NAME	DATA TYPE	DESCRIPTION
PreviousRef?	NMTOKEN	Reference to Header/@ID of a prior AuditStatus that has been updated by this AuditStatus. If @PreviousRef is specified, the contents of the prior AuditStatus are effectively overridden and SHOULD not be used for calculating total costs.
Header	element	See Message/Header.
Devicelnfo	element	Devicelnfo describes details of the actual device status.

3.5 XJDF Extensibility

The XJDF specification aims to support plug-and-play as much as possible. None the less, XJDF is meant to be flexible and therefore useful to any vendor, as each vendor may have specific data to include in the XJDF files. However, foreign namespace extensions SHOULD NOT duplicate functionality of XJDF-defined attributes and elements. This section describes how XJDF MAY be extended. XJDF extensibility SHALL be implemented using XML namespaces \downarrow [XMLNS].

3.5.1 Foreign Namespaces

Attributes in a foreign namespace MAY be added to any XJDF element.
Elements in a foreign namespace SHALL NOT be specified in any XJDF element other than the Notification, Resource and Intent elements. The children of these elements SHALL be ordered so that all elements in a foreign namespace follow all of the elements in the XJDF namespace.

Example 3.3: Namespaces in XML

The example illustrates how private namespaces are declared and used to extend an existing XJDF Media element by adding a private attribute and a namespace declaration.

<Resource>

<Part SheetName="S1"/>
<Media xmlns:foo="http://www.foo.org" foo:FooAtt="FooVal"/>
</Resource>

3.5.2 Creating Extension ResourceSets

New types of ResourceSet may be defined by creating a ResourceSet with @Name referring to a proprietary xml namespace. The extension element SHALL reside in the appropriate child ResourceSet/Resource element.

Example 3.4: Creating Extension ResourceSets

```
<ResourceSet ID="FooParams_000004" Name="foo:FooParams" Usage="Input"
    xmlns:foo="http://www.foo.org">
    <Resource ID="FooParams_000004.1">
        <Part Run="R1"/>
        <foo:FooParams FooAtt="FooVal"/>
    </Resource>
</ResourceSet>
```


3.5.3 Creating Extension Message Type Elements

New message types may be defined by creating a message in a proprietary xml namespace that adheres to the naming scheme of XJMF.
The extension message SHALL reside in the XJMF element. The following example shows a query and it's matching response for a new message type in the "foo" namespace.

Example 3.5: Creating Extensions Messages

```
<Query TBD />
```

<Response TBD />

3.5.4 Creating Extension Intent Elements

New intent elements may be defined by creating an intent with @Name referring to a proprietary xml namespace. The extension element SHALL reside in the intent element.

Example 3.6: Creating Extension Intent elements

```
<Product IsRoot="true">
    <Intent Name="foo:FooIntent">
        <foo:FooIntent xmlns:foo="http://www.foo.org" FooAtt="FooVal"/>
    </Intent>
</Product>
```


3.5.5 Extending NMTOKEN Lists

Some elements contain attributes of type NMTOKEN and some of these have a set of predefined suggested values. These sets are open by design and MAY be extended with other values providing such additional values do not conflict with the usage of those already defined in this specification.
Additional values MAY use a namespace-like syntax (i.e., a namespace prefix separated by a single colon ":"), in which case the namespace prefix SHOULD be defined in the XJDF ticket with the standard xmlns:Prefix="someURI" notation, even if no other use of that namespace occurs in the XJDF ticket. Implementations that find an unknown NMTOKEN that has a namespace prefix MAY then attempt to use its default value of that attribute.
For other NMTOKEN lists that have a pre-defined meaning or employ a specific syntax (e.g. @Separation or @FoldCatalog), additional values should not use the namespace prefix format but should conform to the usage for that data type. i.e. a new value for @Separation SHOULD be the name of a separation employed within the XJDF. Similarly, a new value of @FoldCatalog SHOULD conform to the normal 'Fx-y' syntax. Implementations that find an unknown NMTOKEN without a namespace prefix MAY then raise an error.

3.5.6 Extending Process Types

XJDF defines a basic set of process types. However, because XJDF allows flexible encoding, this list, by definition, will not be complete. Vendors that have specific processes that do not fit in the general XJDF processes and that are not combinations of individual XJDF processes (see \bullet Section 3.1.2 XJDF for Process Description and Gray Boxes) can create process XJDF of their own type. Then the content of the @Types attribute MAY be specified with a prefix that identifies the organization. The prefix and name SHALL be separated by a single colon (:) as shown in the following example.

Example 3.7: Extending Process Types

```
<XJDF xmlns="http://www.CIP4.org/JDFSchema_2_0" JobID="IntentExtension"
    Types="foo:FooMaking" xmlns:foo="http://www.foo.org">
</XJDF>
```


3.5.6.1 Rules about Process Extension

The use of namespace prefixes in the @Types attribute is for extensions only. Standard XJDF process types SHALL be specified without a prefix in XJDF/@Types. If a process is simply an extension of an existing process, it is possible to describe the private data by extending the existing resource types. This is described in greater detail in the sections below.

4 Product Intent

Product Intent provides a description of finished products from the print buyer point of view.

4.1 ProductList

The products or set of products that are processed during a given workstep MAY be specified in a ProductList, which describes a bill of materials. Multiple end products MAY be specified, e.g. when a press sheet of a gang job that contains multiple individual customer jobs is printed.

4.1.1 Product

The Product element specifies an individual product or product part.
Table 4.1: Product Element

NAME	DATA TYPE	DESCRIPTION
Amount?	integer	Total number of products or product parts of this type to produce. For product parts, if present @Amount SHALL specify the number of copies of the product part that are needed in order to produce one product.
CommentURL ?	URL	URL to an external, human-readable description of the product or product part.
DescriptiveName?	string	Human-readable descriptive name of the product or product part.
ExternalID ?	NMTOKEN	Identifier of the product in an MIS.
ID?	ID	Internal identifier of this product.
IsRoot?	boolean	If true, this Product is a self-contained product. If false, this Product is a product part of another Product, such as a cover or insert. Multiple Product elements with @IsRoot="true" MAY be specified, for instance in a gang job. If the parent ProductList element contains multiple Product elements, @isRoot SHOULD be specified.
MaxAmount?	integer	Maximum total number of products to produce including the maximum overage that the customer is willing to accept. @MaxAmount SHOULD NOT be specified for product parts.
MinAmount?	integer	Minimum total number of products to produce including the maximum underage that the customer is willing to accept. @MinAmount SHOULD NOT be specified for product parts.
ProductType?	NMTOKEN	Classification of this product or product part. Values include those from: Appendix A.3.12 Product Types.
ProductTypeDetails ?	string	@ProductTypeDetails specifies additional details of the product or product part which MAY be site specific and MAY be human readable. @ProductType SHOULD be present if @ProductTypeDetails is specified.
Comment *	element	Any human-readable text that relates to the product or product part.
Generalld *	element	Additional identifiers related to the product or product part.
Intent *	element	Container elements for intents.

4.1.2 Product Amount

Product/@Amount SHALL be applied within the context of one parent product. If Product/@lsRoot = "true" then Product/ @Amount SHALL specify the total number of products. If Product/@IsRoot = "false" then Product/@Amount SHALL specify the total number of the respective child products required to create one parent product.
The following example shows the simplified description of 10 notebooks with a front and back cover and a 50 page book block.

PRODUCT INTENT

Example 4.1: Amounts in a Notebook

```
<ProductList>
    <Product Amount="10" IsRoot="true" ProductType="Notebook">
        <Intent Name="BindingIntent">
            <BindingIntent BindingSide="Top" BindingType="EdgeGluing" ChildRefs="IDBack IDBody
IDCover"/>
        </Intent>
    </Product>
    <Product Amount="1" ID="IDCover" IsRoot="false" ProductType="FrontCover"/>
    <Product Amount="50" ID="IDBody" IsRoot="false" ProductType="BookBlock"/>
    <Product Amount="1" ID="IDBack" IsRoot="false" ProductType="BackCover"/>
</ProductList>
```


4.1.2.1 Product Amount for Variable Data

If a Product contains a Variablelntent, then Product/@Amount SHALL refer to the number of instance documents, also referred to as recipients or records.

The following example describes a variable job with two finishing options. The entire job has 10000 records of which 9000 are brochures and 1000 are hard cover books. Each brochure and each book has one cover and one body.

Example 4.2: Amounts in Variable Data

```
<ProductList>
    <Product Amount="10000" IsRoot="true">
        <Intent Name="VariableIntent">
            <VariableIntent ChildRefs="IDBrochure IDBook" VariableType="Area"/>
        </Intent>
    </Product>
    <Product Amount="1000" ID="IDBook" IsRoot="false" ProductType="Book">
        <Intent Name="BindingIntent">
            <BindingIntent BindingType="HardCover" ChildRefs="IDBookCover IDBody"/>
        </Intent>
    </Product>
    <Product Amount="1" ID="IDBookCover" IsRoot="false" ProductType="Cover"/>
    <Product Amount="1" ID="IDBody" IsRoot="false"/>
    <Product Amount="9000" ID="IDBrochure" IsRoot="false">
        <Intent Name="BindingIntent">
            <BindingIntent BindingType="SaddleStitch" ChildRefs="IDBrochureCover IDBody"/>
        </Intent>
    </Product>
    <Product Amount="1" ID="IDBrochureCover" IsRoot="false" ProductType="Cover"/>
</ProductList>
```


4.1.3 Intent

Intent elements are a container for specific Product Intent elements. Product elements SHALL contain at most one intent element with the same Intent/@Name. If multiple product parts with different intent descriptions are needed, each product part SHALL be defined as a separate Product.
Table 4.2: Intent Element

DescriptiveName ?	string	Human readable descriptive name of the Intent.
ExternalID ?	NMTOKEN	Identifier of the Intent in an external system such as an MIS
Name	NMTOKEN	Type of the product intent. A list of predefined intent types is specified in Thable 4.3 Product Intent Elements. Extension intent types MAY be defined. See Section 3.5.4 Creating Extension Intent Elements for details.
Product Intent ?	element	Details of the Intent. The XML element name SHALL be the value of @Name.
<foreign name- space elements> $*$	element	Any elements in a foreign namespace. Foreign namespace extensions SHOULD NOT duplicate functionality of XJDF.

4.1.4 Product Intent

A Product Intent is any specific intent defined in this chapter (e.g., BindingIntent). A Product Intent is a child of a Intent element.
The following table defines the list of product intents.
Table 4.3: Product Intent Elements

NAME	DESCRIPTION
AssemblingIntent ?	This intent specifies the placing or inserting of one component within another, using information that identifies page location, position and attachment method.
BindingIntent?	This intent specifies the binding intent for a Product.
ColorIntent?	This intent specifies the type of ink to be used for a Product.
ContentCheckIntent?	This intent specifies the prepress proofing intent for a Product, using information that identifies the type, quality, brand name and overlay of the proof.
EmbossingIntent?	This intent specifies the embossing and/or foil stamping intent for a Product.
FoldingIntent?	This intent specifies the fold intent for a Product using information that identifies the number of folds, the height and width of the folds, and the folding catalog number.
HoleMakingIntent?	This intent specifies the hole making intent for a Product.
LaminatingIntent?	This intent specifies the laminating intent for a Product using information that identi- fies whether or not the product is laminated.
LayoutIntent?	This intent records the size of the finished pages for the product component.
Medialntent?	This intent describes the media to be used for the product component.
ProductionIntent?	This intent specifies the manufacturing intent and considerations for a Product using information that identifies the desired result or specified manufacturing path.
ShapeCuttingIntent?	This intent specifies form and line cutting for a Product.

4.1.5 Representation of Product Binding

BindingIntent and AssemblingIntent SHALL specify how multiple product parts are combined.

4.2 AssemblingIntent

This Product Intent element specifies the creation of a composite component by providing page location, position and attachment method of the respective child products that shall be assembled with the parent product. The containing Product SHALL be referenced in AssemblingIntent/@Container.
Note: The containing Product is not identical to this parent Product. For instance an empty envelope (the product that is referenced by @Container) is not the same thing as a filled envelope (the parent Product). Whereas products that are bound together with BindingIntent SHALL be counted when calculating the page numbers of final bound products, Assemblyltems SHALL be ignored when calculating page numbers.

Intent Properties

Process Resource Pairing: InsertingParams,ManualLaborParams
Table 4.4: AssemblingIntent Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
Container	IDREF	@Container SHALL reference the main Product that the additional products that are referenced from Assemblyltem, Bindln, Blovvln or StickOn are assem- bled with. @Container SHALL NOT reference the parent Product of this Assemblinglntent.
Assemblyltem *	element	Each Assemblyltem element describes an individual item that is assembled with the main Product that is referenced by @Container.
Bindln *	element	Each Bindln element describes an individual insert that is glued into the main Product that is referenced by @Container.

PRODUCT INTENT

Table 4.4: AssemblingIntent Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
Blowln *	element	Each BlovvIn element describes an individual insert that is loosely inserted into the main Product that is referenced by @Container.
StickOn *	element	Each StickOn element describes an individual child Product that is glued onto the main Product that is referenced by @Container. StickOn is typically used for labels.

4.2.1 Assemblyltem

An Assemblyltem element describes any individual item that is assembled with the main Product. Examples of assembly items include stands for roll-up displays or frames.
Figure 4-1: Roll-up Display

Table 4.5: Assemblyltem Element

NAME	DATA TYPE	DESCRIPTION
ChildRef	IDREF	Product/@ID of the product that describes the Assemblyltem.

4.2.2 Bindln

Bindlln elements describe inserts that are glued into the main product.
Table 4.6: BindIn Element

NAME	DATA TYPE	DESCRIPTION
ChildRef	IDREF	Product/@ID of the product that describes the insert.
Folio?	integer	Index of the parent surface where the insert SHALL be bound in the context of the main product that is referenced by Assemblinglntent/@Container.
Orientation?	enumeration	Orientation of the insert in the coordinate system of the surface specified by @Folio. Allowed value is from: Orientation
Position?	XYPair	Position of the bottom left corner of the insert in the coordinate system of the surface specified by @Folio after applying all rotations
Glue?	element	Details of the glue used to fasten the insert.

4.2.3 BlowIn

Blovin elements describe inserts that are loosely inserted into the main product. This includes filling items into an envelope.
Table 4.7: Blowin Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
ChildRef	IDREF	Product/@ID of the product that describes the insert.

Table 4.7: Blowin Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
FolioFrom ?	integer	Index of the first valid parent surface where the insert SHALL be placed in the context of the main product that is referenced by AssemblingIntent/ @Container.
FolioTo?	integer	Index of the last valid parent surface where this Product SHALL be placed in the context of the main product that is referenced by AssemblingIntent/ @Container.
Orientation?	enumeration	Orientation of the referenced insert in the coordinate system of the surface specified by @Folio. Allowed value is from: Orientation

Example 4.3: Inserting a Letter into an Envelope

This example illustrates using Blovin to describe a single letter in an envelope.

```
<ProductList>
    <Product Amount="10" IsRoot="true" ProductType="FilledEnvelope">
        <Intent Name="AssemblingIntent">
            <AssemblingIntent Container="ID_Envelope">
                <BlowIn ChildRef="ID_Letter"/>
            </AssemblingIntent>
        </Intent>
    </Product>
    <Product Amount="1" ExternalID="MISID_Envelope" ID="ID_Envelope"
        IsRoot="false" ProductType="Envelope"/>
    <Product Amount="1" ID="ID_Letter" IsRoot="false" ProductType="Letter"/>
</ProductList>
```


4.2.4 StickOn

StickOn elements describe labels that are applied to the main product.
Table 4.8: StickOn Element

NAME	DATA TYPE	DESCRIPTION
ChildRef	IDREF	Product/@ID of the product that describes the stick-on.
Face?	enumeration	Location of the stick-on on the Product. @Face SHALL NOT be specified if @Folio is specified. Values are from: Face
Folio?	integer	Index of the parent surface where the stick-on SHALL be placed in the con- text of the main product that is referenced by AssemblingIntent/@Container. @Folio SHALL NOT be specified if @Face is specified.
Orientation?	enumeration	Orientation of the stick-on in the coordinate system of the surface specified by @Folio or @Face. Allowed value is from: Orientation
Position?	XYPair	Position of the bottom left corner of the stick-on in the coordinate system of the surface specified by @Folio or @Face after applying all rotations.
Glue?	element	Details of the glue used to fasten the stick-on.

4.3 BindingIntent

This Product Intent specifies the binding intent for a Product using information that identifies the desired type of binding and which sides SHALL be bound. All other Products SHALL be bound in the order of their appearance in BindingIntent@ChildRefs. When stack binding (see Gathering) the first product in the BindingIntent@ChildRefs list SHALL represent the bottom or back of the bound items (and therefore the last product SHALL represent the top or front). When wrap around binding (see Collecting) the first product in the BindingIntent@ ChildRefs list SHALL represent the outer most item of the bound items (and therefore the last product SHALL represent the inner most item).

Intent Properties

Process Resource Pairing: BlockPreparationParams, CaseMakingParams, CasingInParams, CoverApplicationParams, EndSheetGluingParams, Glue, GluingParams, InsertingParams, JacketingParams, LooseBindingParams, SpinePreparationParams, SpineTapingParams, StitchingParams, ThreadSealingParams, ThreadSewvingParams

Table 4.9: BindingIntent Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
BackCoverColor?	enumeration	Defines the color of the back cover material of the binding. Allowed value is from: NamedColor
BackCoverColorDetai is?	string	A more specific, specialized or site-defined name for the color. If BackCoverColorDetails is supplied, BackCoverColor SHOULD also be supplied.
BindingColor ?	enumeration	Defines the color of the spine material of the binding. Allowed value is from: NamedColor
BindingColorDetails	string	A more specific, specialized or site-defined name for the color. If BindingColorDetails is supplied, BindingColor SHOULD also be supplied.
BindingOrder?	enumeration	Specifies whether the child Component resources are to be collected or gathered if multiple child Component resources are combined. Allowed values are: None - The products referenced by @ChildRefs are NOT bound together. Typically used for flatwork jobs. Collecting - The products referenced by @ChildRefs are collected on a spine and placed within one another. The first Component is on the outside. Gathering - The child Component resources are gathered on a pile and placed on top of one another. The first child product specificed by @ChildRefs is on the top.
BindingSide ?	enumeration	@BindingSide indicates which side of the product SHALL be bound. Each of these values SHALL identify the binding edge. @BindingSide is defined in the coordinate system of the product. @BindingSide SHALL NOT be provided if @BindingOrder = "None". Allowed value is from: Edge.
BindingType	enumeration	Describes the desired binding for the job. Allowed values are from: • Table 4.10 BindingType Attribute Values.
ChildRefs?	IDREFS	Reference to one or more child products each identified by Product/@ID (e.g., cover and body of a book) that shall be bound together. Note: IDREFS must contain a valid ID.
CoverColor?	enumeration	Defines the color of the cover material of the binding. Allowed value is from: NamedColor
CoverColorDetails?	string	A more specific, specialized or site-defined name for the color. If CoverColorDetails is supplied, CoverColor SHOULD also be supplied.
AdhesiveNote?	element	Details of AdhesiveNote binding. AdhesiveNote SHALL NOT be provided unless BindingIntent/@BindingType = "AdhesiveNote".
EdgeGluing ?	element	Details of EdgeGluing. EdgeGluing SHALL NOT be provided unless BindingIntent/@BindingType="EdgeGluing".
HardCoverBinding?	element	Details of HardCoverBinding. HardCoverBinding SHALL NOT be provided unless BindingIntent/@BindingType="HardCover".
LooseBinding?	element	Details of LooseBinding. LooseBinding SHALL NOT be provided unless BindingIntent/@BindingType is one of "ChannelBinding", "CoilBinding", "PlasticComb", "Ring", "StripBind" or "WireComb".
SaddleStitching?	element	Details of SaddleStitching. SaddleStitching SHALL NOT be provided unless BindingIntent/@BindingType="SaddleStitch".

Table 4.9: BindingIntent Element (Sheet 2 of 2)

NAME	DATA TYPE	\quad DESCRIPTION
SideStitching?	element	Details of SideStitching. SideStitching SHALL NOT be provided unless BindingIntent/@BindingType="SideStitch".
SoftCoverBinding?	element	Details of SoftCoverBinding. SoftCoverBinding SHALL NOT be provided unless BindingIntent/@BindingType="SoftCover".
Tabs?	element	Details of Tabs.
ThreadSewing?	element	Details of ThreadSewving. ThreadSewving SHALL NOT be provided unless BindingIntent/@BindingType="Sewn".

Table 4.10: BindingType Attribute Values

VALUE	DESCRIPTION
AdhesiveNote	Binding with removable adhesive on the back side of a product. Typically used for small brightly colored paper designed to be stuck prominently to an object or surface and eas- ily removed when necessary.
ChannelBinding	This type of binding can be handled with the LooseBinding process.
CoilBinding	This type of binding can be handled with the LooseBinding process.
CornerStitch	Stitch in the corner that is at the clockwise end binding edge. For example, to stitch in the top left corner, set @BindingSide = "Left". This type of binding can be handled with the Stitching process.
EdgeGluing	Gluing gathered sheets at one edge of the pile. This type of binding can be handled with the Gluing process. Products of this type are also referred to as padded.
HardCover	This type of binding defines a hard-cover bound book.
LooseBinding	Generic loose binding - one of "CoilBinding", "PlasticComb", "Ring", "StripBind" and "WireComb".
None	This type of binding defines a stack of pages with no additional binding.
PlasticComb	This type of binding can be handled with the LooseBinding process.
Ring	This type of binding can be handled with the LooseBinding process.
SaddleStitch	This type of binding can be handled with the Stitching process.
SideStitch	This type of binding can be handled with the Stitching process.
SoftCover	This type of binding defines a soft cover bound book. It includes perfect binding.
StripBind	This type of binding can be handled with the LooseBinding process.
Tape	This type of binding is an inexpensive version of the "SoftCover".
WireComb	This type of binding can be handled with the LooseBinding process.

4.3.1 AdhesiveNote

Details of adhesive note binding.
Table 4.11: AdhesiveNote Element

NAME	DATA TYPE	DESCRIPTION
Glue?	element	Glue provides details of the shape of the glue application and type of glue used

PRODUCT INTENT

4.3.2 EdgeGluing

Table 4.12: EdgeGluing Element

NAME	DATA TYPE	DESCRIPTION
EdgeGlue?	enumeration	Glue type used to glue the edge of the gathered sheets. Allowed value is from:

4.3.3 HardCoverBinding

Table 4.13: HardCoverBinding Element

NAME	DATA TYPE	DESCRIPTION
BlockThreadSewing ?	boolean	Specified if the block is thread sewn.
CoverStyle?	NMTOKEN	Defines the style of the cover board. Values include: Simple - Single layer cover board, see \downarrow Figure 4-2: Structure of a normal hardcover book. Padded - Padded cover board, see \rightarrow Figure 4-3: Structure of a padded hardcover book.
EndSheets?	boolean	@EndSheets SHALL be specified if end sheets SHALL be applied. Additional details of the EndSheets MAY be specified by supplying a Product that is referenced by the parent BindingIntent/@ChildRefs with @ProductType = "EndSheet".
HeadBands?	boolean	The following case binding choice specifies the use of headbands on a case bound book. If "true", headbands are inserted both top and bottom.
HeadBandColor?	enumeration	Defines the color of the headband. Allowed value is from: NamedColor.
HeadBandColorDetai Is?	string	A more specific, specialized or site-defined name for the color. If HeadBandColorDetails is supplied, HeadBandColor SHOULD also be supplied.
Jacket?	enumeration	Specifies whether a hard cover jacket is needed and how it is attached. Details of the jacket MAY be described in the Product that is referenced by the parent BindingIntent/@ChildRefs whose @ProductType = "Jacket". Allowed values are: None - No jacket is needed. Loose - The jacket is loosely wrapped. Glue - The jacket is glued to the spine
JacketFoldingWidth ?	float	Dimension of the jacket folds. See JacketingParams for details.
JapanBind ?	boolean	Bind the book block at the open edge, so that the folds are visible on the outside. If not specified, explicitly, this option is never selected.
SpineGlue?	enumeration	Glue type used to glue the book block to the cover. Allowed value is from: Glue.
SpineOperations?	NMTOKENS	@SpineOperations lists the operations that SHOULD be performed when preparing the spine. Allowed values are from: Appendix A.3.13 Spine Operations.
Thickness ?	float	Specifies thickness of board which is wrapped as front and back covers of a case bound book, in points.
TightBacking ?	enumeration	Definition of the geometry of the back of the book block. Allowed value is from: * TightBacking.
RegisterRibbon*	element	Number, materials, colors and details of register ribbons.

Figure 4-2: Structure of a normal hardcover book

Figure 4-3: Structure of a padded hardcover book

4.3.4 LooseBinding

Table 4.14: LooseBinding Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
Brand?	string	@Brand specifies the binder brand.
Diameter?	float	@Diameter specifies the diameter of coil, comb or rings, in points.

PRODUCT INTENT

Table 4.14: LooseBinding Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
HolePattern ?	element	HolePattern describes the hole pattern that the binder requires. Note that this MAY differ from the holes in the media. For instance the media for a 2 hole ring binder MAY have additional holes that are compatible with a 3 hole ring binder.
CoilBinding?	element	CoilBinding specifies additional details of coil binding. CoilBinding SHALL NOT be specified unless BindingIntent/@BindingType="PlasticCoilBinding".
CombBinding?	element	CombBinding specifies additional details of either plastic comb binding or wire comb binding. CombBinding SHALL NOT be specified unless BindingIntent/@BindingType="PlasticCombBinding" or "WireCombBinding".
RingBinding?	element	RingBinding specifies additional details of ring binding. RingBinding SHALL NOT be specified unless BindingIntent/@BindingType="RingBinding".

4.3.4.1 CoilBinding

Table 4.15: CoilBinding

NAME	DATA TYPE	DESCRIPTION
CoilShape?	NMTOKEN	The shape of the wire coil used for the binding. Value includes those from:
Material ?	enumeration	The material available for forming the coil binding when BindingIntent/ @BindingType="CoilBinding" or "WireCombBinding". Allowed value is from: \rightarrow BinderMaterial.

4.3.4.2 CombBinding

Table 4.16: CombBinding

NAME	DATA TYPE	DESCRIPTION
CombShape?	NMTOKEN	The shape of the plastic comb used for the binding. Value includes those from:
Mappendix A.3.1 Comb and Coil Shapes.		

4.3.4.3 RingBinding

Table 4.17: RingBinding

NAME	DATA TYPE	DESCRIPTION
BinderMaterial ?	NMTOKEN	$\begin{array}{l}\text { @BinderMaterial describes the required material to be used for the binder } \\ \text { cover. } \\ \text { Values include: } \\ \text { Cardboard - Cardboard with no covering. } \\ \text { ClothCovered - Cardboard with cloth covering. } \\ \text { Plastic - Binder cover fabricated from solid plastic sheet material (e.g., PVC } \\ \text { sheet). } \\ \text { VinylCovered - Cardboard with colored vinyl covering. }\end{array}$
RingShape?	NMTOKEN	$\begin{array}{l}\text { @RingShape specifies the shape of the ring binder rings. } \\ \text { Values include: } \\ \text { Round } \\ \text { Oval } \\ \text { D-shape } \\ \text { SlantD }\end{array}$
RivetsExposed?	boolean	$\begin{array}{l}\text { @RivetsExposed describes mounting of ring mechanism in binder case. If } \\ \text { "true", the heads of the rivets are visible on the exterior of the binder. If } \\ \text { "false", the binder covering material covers the rivet heads. }\end{array}$
ViewBinder?	NMTOKEN	$\begin{array}{l}\text { @ViewBinder specifies the details of clear vinyl outer-wrap types on top of a } \\ \text { colored base wrap: } \\ \text { Values include: } \\ \text { Embedded - Printed material is embedded by sealing between the colored and } \\ \text { clear vinyl layers during the binder manufacturing. }\end{array}$
Pocket - Binder is designed so that printed material can be inserted between		
the color and clear vinyl layers after the binder is manufactured.		

4.3.5 SaddleStitching

Table 4.18: SaddleStitching Element

NAME	DATA TYPE	DESCRIPTION
StapleShape?	enumeration	Specifies the shape of the staples to be used. Allowed value is from: \& StapleShape. Note: Representations of the values are displayed in \& Figure A-1: Staple shapes.
StitchNumber?	integer	Number of stitches used for saddle stitching.

4.3.6 SideStitching

Table 4.19: SideStitching Element

NAME	DATA TYPE	DESCRIPTION
StapleShape?	enumeration	Specifies the shape of the staples to be used. Allowed value is from: \& StapleShape. Note: Representations of the values are displayed in shapes. Figure A-1: Staple
StitchNumber?	integer	Number of stitches used for side stitching.

4.3.7 SoftCoverBinding

Table 4.20: SoftCoverBinding Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
BlockThreadSewing $?$	boolean	Specifies whether the block is also thread sewn.
EndSheets?	boolean	@EndSheets SHALL be specified if end sheets SHALL be applied. Additional details of the EndSheets MAY be specified by supplying a Product that is ref- erenced by the parent BindingIntent/@ChildRefs whose @ProductType = "EndSheet".
FoldingWidth ?	float	Definition of the dimension of the folding width of the front cover fold. See JacketingParams for details.
FoldingWidthBack?	float	Definition of the dimension of the folding width of the back cover fold. If not specified, FoldingWidthBack defaults to FoldingWidth.
GlueProcedure?	enumeration	Glue procedure used to glue the book block to the cover. Allowed values are: Spine SideOnly - Glued at the side or endsheets but not at the spine. "SideOnly" books are also referred to as "layflat" if EndSheets are also specified. See (Ligure 4-4: Structure of a book with GlueProcedure = "SideOnly"
Scoring?	enumeration	Scoring option for SoftCoverBinding. Values are based on viewing the cover in SingleSide - Swiss brochure. SideSpine - Both side gluing and spine gluing.
SpineGlue? prebound state.		
Allowed values are:		
TwiceScored		
QuadScored		
None		

Table 4.20: SoftCoverBinding Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
SpineOperations?	NMTOKENS	@SpineOperations lists the operations that SHOULD be performed when pre- paring the spine. Allowed values are from:

Figure 4-4: Structure of a book with GlueProcedure = "SideOnly" (Layflat)

4.3.8 Tabs

Specifies tabs in a bound document.
Table 4.21: Tabs Element

NAME	DATA TYPE	DESCRIPTION
ReinforceTabs ?	boolean	If "true", the tab extension will be reinforced, e.g. with polyester film.
ReinforceBind ?	boolean	If "true", the tab bind edge will be reinforced, e.g. with polyester film.
ReinforceColor?	enumeration	Specifies the color of the tab extension reinforcement. @ReinforceColor SHALL NOT be specified unless @ReinforceTabs="true". Allowed value is from:
ReinforceColorDetail s?	string	A more specific, specialized or site-defined name for the color. If @ReinforceColorDetails is supplied, @ReinforceColor SHOULD also be supplied.
TabBrand?	string	Strings providing available brand names for the Tabs.
TabCount ?	integer	Number of tabs across all banks. If @TabsPerSet is not an even multiple of @TabsPerBank, the last bank in each set is partially filled.
TabsPerBank ?	Number of equal-sized tabs in a single bank if all positions were filled. Note that banks can have tabs only in some of the possible positions	
TabExtensionDistanc $e ?$	float	Distance tab extends beyond the body of the book block, in points.
TabBodyCopy ?	boolean	If "true", color will be applied not only on tab extension, but also on tab body. Note: The lack of body copy allows all tabs within a bank to be printed on a single sheet.

4.3.9 ThreadSewing

Table 4.22: ThreadSewing Element

NAME	DATA TYPE	DESCRIPTION
Sealing?	boolean	If "true", thermo-sealing is needed in ThreadSewing.

4.4 ColorIntent

Colorlntent specifies the color and varnishing of the product. Each surface SHALL be specified individually in a SurfaceColor element. Single sided printing SHALL be specified by providing exactly one SurfaceColor element.

PRODUCT INTENT

In addition to the printed images, ColorIntent also provides details of protective or gloss enhancing coatings. Customers may either specify the performance characteristic they desire in the coating or specify a coating type. Common examples are water-resistance, and rub-resistance. Both characteristics may be required at the same time. An example is in the wine industry, where the white wine label has to survive transport rubbing, followed by water and rubbing ice cubes in a bucket upon serving.

Intent Properties

Process Resource Pairing: Color, ColorantControl, ColorCorrectionParams, ColorSpaceConversionParams, Ink, VarnishingParams

Table 4.23: ColorIntent Element

NAME	DATA TYPE	DESCRIPTION
SurfaceColor (Back) ?	element	SurfaceColor[@Surface="Back"] describes the color intent of the back surfaces of the final product. If not specified the "Back" surfaces shall not be marked.
SurfaceColor (Front)?	element	SurfaceColor[@Surface="Front"] describes the color intent of the front sur- faces of the final product. If not specified the "Front" surfaces shall not be marked.

4.4.1 SurfaceColor

This element specifies the color configuration of the desired products surface.
Table 4.24: SurfaceColor Element

NAME	DATA TYPE	DESCRIPTION
Coatings ?	NMTOKENS	Material usually applied to a full surface on press as a protective or glossenhancing layer over ink. Values include those from: Appendix A.3.5 Ink and Varnish Coatings. Note: Multiple NMTOKENS MAY be selected to indicate multiple coatings. Note: @Surface specifies the surface to which this coating applies. Note: Spot coating is specified in @ColorsUsed.
ColorsUsed?	NMTOKENS	Array of colorant separation identifiers that are requested for this SurfaceColor. If specified @ColorsUsed SHALL contain a list of all separation identifiers used by the product or a list of spot colors specified by "Spot" which specifies a generic spot color whose details are unknown. "Spot" MAY be specified multiple times in one @ColorsUsed value. If not specified, then this SurfaceColor explicitly requests no colors on the surface that is specified in @Surface. If additional information about the colors and colorants is needed, it MAY be specified in ResourceSet/Resource/Color elements that are partitioned by matching Part/@Separation. In addition, partial (spot) coating MAY be specified by adding NMTOKENS with any value from @Coatings:
Coverage?	float	Cumulative colorant coverage percentage. For example, a full sheet of 100% deep black in CMYK has @Coverage = "400". Typical coverages based on one color plane are: Light - 1-9\% Medium - 10-35\% Heavy - 36+\% Note: @Surface specifies the surface to which this coverage applies.
PrintStandard ?	NMTOKEN	Specifies the reference name of a characterization data set. See $>$ Appendix A.3.11 PrintStandard Characterization Data Sets for details.
Surface	enumeration	Allowed value is from: - Side

4.5 ContentCheckIntent

This Product Intent element specifies the prepress proofing and preflighting intent for a Product.

Intent Properties

Process Resource Pairing:
ApprovalParams, ApprovalDetails,ColorantControl, ColorSpaceConversionParams, ExposedMedia, ImageSetterParams, InterpretingParams, Layout, Media, RenderingParams, ScreeningParams, SeparationControlParams

Table 4.25: ContentCheckIntent Element

NAME	DATA TYPE	DESCRIPTION
Preflightltem *	element	Preflightltem defines the preflight rules for the Product.
Proofltem *	element	Specifies the details of the proofs that are needed. If no Proofltem exists in a ContentChecklntent, no customer proofs SHALL be provided. Note: Proofltem describes proofs that will be provided to the customer and does not specify internal production proofs.

4.5.1 Preflightltem

Preflightltem defines the preflight rules for the pages in a Product.
Table 4.26: Preflightltem Element

NAME	DATA TYPE	DESCRIPTION
PreflightLevel ?	enumeration	Level of content data checking / preflighting. The details are implementation specific. Allowed values are: Basic - Check only for severe errors. Examples include missing fonts, unknown file format, incorrect page size, missing passwords. Extended - Check for additional errors that can degrade output quality and can be resolved by the customer. Examples include: low image resolution, unknown color space details. Premium - Highest available check for additional errors. This level MAY include manual repairs by the printer.

4.5.2 Proofltem

Table 4.27: Proofltem Element

NAME	DATA TYPE	DESCRIPTION
Amount?	integer	Specifies the total number of copies of this proof that is needed.
ColorType?	enumeration	Color quality of the proof. Allowed values are: Monochrome - Generic single color printing condition (e.g., black and white or one single spot color). BasicColor - Color does not match precisely. This implies the absence of a color matching system. MatchedColor - Color is matched to the output of the press using a color matching system.
Contract?	boolean	Requires proof to be a legally binding, accurate representation of the image to be printed (i.e., color quality requirements have been met when the printed piece acceptably matches the proof).
HalfTone?	boolean	IDIf @HalfTone = "true", the proof SHALL emulate halftone screens.
ID?	IntegerRange	Index of pages that SHALL be proofed in reader order. If @Pagelndex is not specified, then all pages SHALL be proofed.
Pagelndex?	identifier of the Proofltem. This field SHALL be specified if delivery of a proof is specified in DeliveryParams.	
ProofTarget?	URL	Identifies a remote target for the proof output in a remote proofing environ- ment. This can be either a soft or a hard proofing target. The file to be dis- played or output SHALL be sent to the URL specified in @ProofTarget.

PRODUCT INTENT

4.6 EmbossingIntent

This Product Intent specifies the embossing and/or foil stamping intent for a Product using information that identifies whether the product is embossed or stamped, and if desired, the complexity of the affected area.

Intent Properties

Process Resource Pairing: EmbossingParams

Table 4.28: EmbossingIntent Element

NAME	DATA TYPE	DESCRIPTION
Embossingltem +	element	Each embossed image is described by one Embossingltem.

4.6.1 Embossingltem

Table 4.29: Embossingltem Element

NAME	DATA TYPE	DESCRIPTION
Direction?	enumeration	The direction of the image. Allowed value is from: EmbossDirection.
EmbossingType	enumeration	The strings defined in EmbossingType are whitespace separated combinations of the following tokens. Allowed value is from: EmbossType.
Face?	enumeration	Position of the embossing on the product. Values are from: Face
FoilColor?	enumeration	Defines the color of the foil material which is used for embossing. Allowed value is from: NamedColor.
FoilColorDetails?	string	A more specific, specialized or site-defined name for the color. If FoilColorDetails is supplied, FoilColor SHOULD also be supplied. @FoilColorDetails SHOULD be used to specify specialized foil properties such as holographic or transparent foils. Example combinations of @FoilColor and @FoilColorDetails include: Holographic foils: @FoilColor = "Silver" and @FoilColorDetails = "Holographic"; Matte transparent foil: @FoilColor = "White" and @FoilColorDetails = "TransparentMatte".
Height?	float	The height of the levels. This value specifies the vertical distance between the highest and lowest point of the stamp, regardless of the value of Direction.
ImageSize?	XYPair	The size of the bounding box of one single image.
Position ?	XYPair	Position of the lower left corner of the bounding box of the embossed image in the coordinate system of the surface of the Component that is selected by @Face.
Separation?	NMTOKEN	@Separation identifies the separation within the PDL whose color values SHALL be used as the embossing values. A value of 0 in the PDL SHALL specify no embossing, a value of 1.0 in the PDL SHALL specify embossing with full depth. If a ResourceSet/Resource/Color element is specified for this separation, the value of Color/@ColorType SHALL be "DieLine".
ToolName?	NMTOKEN	Name of the embossing tool.

4.7 FoldingIntent

This Product Intent specifies the straight line folding, creasing and perforating of a product.
Intent Properties
Process Resource Pairing: CreasingParams, CuttingParams, Fold, FoldingParams, PerforatingParams

Table 4.30: FoldingIntent Element

NAME	DATA TYPE	DESCRIPTION
FoldCatalog?	NMTOKEN	Describes the folding scheme according to the folding catalog in A.3.4 Fold Catalogs. Note: The folding scheme in this context refers to the folding of the finished product as seen after the cutting, not the folding, of the sheet as seen in pro- duction.
FoldingDetails?	NMTOKEN	@FoldingDetails is a system dependent descriptor of the folding. @FoldingDetails MAY be used to differentiate differing fold dimensions with the same general topology, such as asymmetrical Z-folds. @FoldingDetails SHALL NOT be specified if @FoldCatalog is not present
Orientation?	enumeration	@Orientation indicates the orientation of the unfolded product with respect to the lay of the fold. A value of "RotateO SHALL be mapped to the lay of the fold on the lower left of the product prior to folding and the front side of the product oriented in the direction of an upward fold. Allowed value is from: Orientation
Crease *	element	Crease elements describe the details of any creasing operations in the coordinate system of the final product. If no geometrical details are specified in the Crease element and a @FoldCatalog is specified, the customer is requesting production creasing.
Fold *	element	This describes the details of folding operations in the sequence described by the value of @FoldCatalog. Fold SHALL be specified if non-symmetrical folds are requested.
Perforate *	element	Perforate elements describe the details of any perforating operations in the coordinate system of the final product. If no geometrical details are specified in the Perforate element and a @FoldCatalog is specified, the customer is requesting production per- foration.

4.8 HoleMakingIntent

This Product Intent specifies the hole making intent for a Product. This Product Intent does not specify whether the media will be pre-drilled or the media will be drilled or punched as part of making the product.

Intent Properties

Process Resource Pairing: HolePattern, HoleMakingParams, Media

Table 4.31: HoleMakingIntent Element

NAME	DATA TYPE	DESCRIPTION
HolePattern +	element	Each HolePattern describes one hole or a specific set of holes that SHALL be provided. The coordinate system for applying the holes SHALL be the coordinate sys- tem of the product.

4.9 LaminatingIntent

This Product Intent specifies the laminating intent for a Product.

Intent Properties

Process Resource Pairing: LaminatingParams

Table 4.32: LaminatingIntent Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
Surface	enumeration	The surface to be laminated. Omit this attribute if both surfaces are to be laminated. Allowed value is from: Side.

PRODUCT INTENT
Table 4.32: LaminatingIntent Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
Temperature?	enumeration	Temperature used in the Laminating process. Allowed values are: Hot Cold
Texture?	NMTOKEN	The intended texture of the laminate. Values include: Glossy - Glossy laminate. Matte - Matte laminate.
Thickness?	float	Thickness of the laminating material. Measured in microns [$\mu \mathrm{m}]$.

4.10 LayoutIntent

This Product Intent records the size of the finished pages for the product component. It does not, however, specify the size of any intermediate results such as press sheets. It also describes how the finished pages of the product component SHALL be imaged onto the finished media.

Intent Properties

Process Resource Pairing: Layout

Table 4.33: LayoutIntent Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
Bleed?	float	$\begin{array}{l}\text { Bleed of the artwork in points. The value of o means no bleed. A negative } \\ \text { value indicates bleed is needed but the value is unknown. }\end{array}$
Dimensions?	XYPair	$\begin{array}{l}\text { Specifies the width (X) and height (Y) in points, respectively, of the trimmed } \\ \text { and unfolded (flat) product. For example, Dimensions for a Z-fold is the } \\ \text { unfolded dimensions, while @FinishedDimensions is the folded dimensions if } \\ \text { known. Use Dimensions if @FinishedDimensions is not known. @Dimensions is } \\ \text { provided for the rare case that @FinishedDimensions does not unambiguously } \\ \text { define the finished product, due to complex folding schemes. If both values } \\ \text { are specified, @FinishedDimensions takes precedence }\end{array}$
FinishedDimensions	shape	$\begin{array}{l}\text { Specifies the width (X), height (Y) and depth (Z) in points, respectively, of the } \\ \text { finished product Component after all finishing operations, including folding, } \\ \text { trimming, etc. If the Z coordinate is o, it SHALL be ignored. Only } \\ \text { @FinishedDimensions SHOULD be specified if both @FinishedDimensions and } \\ \text { @Dimensions are known }\end{array}$
NamedDimensions?	NMTOKEN	$\begin{array}{l}\text { Named size (e.g., "A4" or "Letter" that corresponds to the value specified in } \\ \text { @FinishedDimensions). If both @NamedDimensions and @FinishedDimensions }\end{array}$
are specified, then @FinishedDimensions has precedence. See • Appendix D		
Media Size for a list of preferred values.		

Table 4.33: LayoutIntent Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
Sides ?	enumeration	@Sides specifies which side of the product SHALL be printed. Allowed value is from: Sides.
SpreadType?	enumeration	@SpreadType SHALL specify the treatment of individual PDF pages refer- enced by the DPart node for which SpreadType is specified for imposition purposes. Allowed values are: Combine - the content of each page SHALL be combined into a surface that folding etc. SHALL apply to. Examples include foldouts that are delivered as multiple pages or a trifold that is delivered as 6 logical pages. FoldOut - the content of each page SHALL be imaged onto a foldout. Each page SHALL be processed as a surface of the foldout.
SinglePage - the content of each page SHALL be imaged in a single cell in		
imposition.		
Spread - the content of each page SHALL be imaged as a single surface onto		
the final product. Examples include wraparound covers. Spread SHOULD		
NOT be provided for adjacent pages that are not imaged onto the same		
surface.		

4.11 Medialntent

This Product Intent describes the media to be used for the Product.

Intent Properties

Process Resource Pairing: Media
Table 4.34: MediaIntent Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
BackCoating ?	enumeration	@BackCoating SHALL specify the pre-process coating of the back surface of the media. If not specified the value of @Coating SHALL be applied. Allowed value is from: Coating.
BackISOPaperSubstr ate?	enumeration	@ISOPaperSubstrate SHALL specify the back surface of paper material defined in accordance with the print substrate set forth in [ISO12647-2:2013]. If not specified, the value of @ISOPaperSubstrate SHALL be applied. Allowed value is from: ISOPaperSubstrate
Brand ?	string	Strings providing available brand names. The customer might know exactly what paper is to be used. Example is "Lustro" or "Warren Lustro" even though the manufacturer name is included.
BuyerSupplied ?	boolean	Indicates whether the customer will supply the media.
Coating ?	enumeration	@Coating SHALL specify the pre-process coating of the media. Allowed value is from: Coating.
Flute?	NMTOKEN	Single, capital letter that specifies the flute type of corrugated media. Values include those from: Appendix A.3.3 Flute Types.
FluteDirection ?	enumeration	Direction of the flute of corrugated media in the coordinate system of the product. Allowed value is from: MediaDirection.
GrainDirection ?	enumeration	Direction of the grain in the coordinate system of the Product. Allowed values are from: MediaDirection.
ISOPaperSubstrate?	enumeration	@ISOPaperSubstrate SHALL specify the type of paper material defined in accordance with the print substrate set forth in \bullet [ISO12647-2:2013]. Allowed value is from: ISOPaperSubstrate

Product intent
Table 4.34: MediaIntent Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
LabColorValue?	LabColor	@LabColorValue is the CIELAB color value of the media, computed as specified in \bullet [TAPPI T527].
MediaColor ?	enumeration	Color of the media. If more-specific, specialized or site-specific media color names are needed, use MediaColorDetails. Allowed value is from: NamedColor
MediaColorDetails ?	string	A more specific, specialized or site-defined name for the media color. If MediaColorDetails is supplied, MediaColor SHOULD also be supplied. Note that there is a one-to-many relationship between entries in MediaColor and MediaColorDetails (e.g., MediaColorDetails values of "Burgundy" and "Ruby" both correspond to a MediaColor of "DarkRed").
MediaQuality ?	string	Named quality description of the media. Media with the same @MediaQuality are identical from the customer point of view. Thus characteristics such as weight, coatings or recycling percentage are identical whereas lot or sheet dimension may vary based on production or warehousing requirements.
MediaType	enumeration	Describes the medium being employed. Allowed values are from: • Appendix A.2.25 MediaType.
MediaTypeDetails ?	NMTOKEN	Describes additional details of the medium described in MediaType. Values include those from: Appendix A.3.7 MediaTypeDetails. Note: Values from Media/@MediaTypeDetails are RECOMMENDED. However, some process related values, such as "DryFilm", SHOULD NOT be used for this attribute.
Opacity?	enumeration	The opacity of the media. See OpacityLevel to specify the degree of opacity for any of these values. Allowed value is from: Opacity.
PrePrinted?	boolean	Indicates whether the media is preprinted.
StockType?	NMTOKEN	@StockType defines the base size when calculating North American or Japanese paper weights. See Section C Media Weight for details including predefined values.
Texture?	NMTOKEN	The intended texture of the media. Values include those from: Media/@Texture.
Thickness ?	float	The thickness of the chosen medium. Measured in microns [$\mu \mathrm{m}$].
Weight?	float	The intended weight of the media, measured in grammage $\left(\mathrm{g} / \mathrm{m}^{2}\right)$ of the media. See Appendix C Media Weight for an explanation of how to calculate the US weight from the grammage for different stock types.
Certification *	element	Each Certification specifies a minimum requested paper certification level.

4.12 ProductionIntent

This Product Intent specifies the manufacturing intent and considerations for a Product using information that identifies the desired result or specified manufacturing path. If specific details of print quality, such as color quality need to be specified, @Types SHOULD contain "QualityControl". A QualityControlParams ResourceSet that contains the requirements SHOULD also be provided.

Intent Properties
 Process Resource Pairing: All

Table 4.35: ProductionIntent Element

NAME	DATA TYPE	DESCRIPTION		
PrintPreference?	enumeration	$\begin{array}{l}\text { Intended result or goal. } \\ \text { Allowed values are: } \\ \text { Balanced - Request for a manufacturing process that balances the require- } \\ \text { ments for cost, speed and quality. } \\ \text { CostEffective - Request for the most cost effective manufacturing process. } \\ \text { Fastest - Request for the most time effective manufacturing process. Cost } \\ \text { and quality can be sacrificed for a fast turnaround time. } \\ \text { HighestQuality - Request for the manufacturing process which will result in } \\ \text { the highest quality. }\end{array}$		
PrintProcess?	NMTOKEN	$\begin{array}{l}\text { Print process requested. } \\ \text { Values include: }\end{array}$		
Electrophotography				
Flexography				
Gravure			$\}$	Inkjet
:---				
Lithography - Includes offset printing				
Letterpress				
Screen				
Thermography				

4.13 ShapeCuttingIntent

ShapeCuttingIntent describes finishing of products with irregular shapes, including die cutting and adding windows to envelopes.

Intent Properties

Process Resource Pairing: CuttingParams, ShapeCuttingParams

Table 4.36: ShapeCuttingIntent Element

NAME	DATA TYPE	DESCRIPTION
ShapeCut +	element	Array of all ShapeCut elements. Used when each shape is exactly specified.

4.13.1 ShapeCut

Table 4.37: ShapeCut Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
CutBox?	rectangle	Specification of a rectangular window. An orthogonal line MAY be defined by specifying a rectangle with identical dimensions.
CutDepth?	enumeration	Allowed values are: Full - The form is completely cut out or perforated. Partial - The form is not completely cut out or perforated. The exact depth MAY be specified in ShapeCuttingParams.
CutOut?	boolean	@CutOut specifies whether the inside or outside of the ShapeCut SHALL be removed. If @CutOut="true", the inside of a specified shape SHALL be removed otherwise the outside of a specified shape SHALL be removed. An example of an inside shape is a window, while an example of an outside shape is a shaped greeting card.
CutPath ?	PDFPath	Specification of a complex path. This MAY be an open path in the case of a single line.

Table 4.37: ShapeCut Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
CutType?	enumeration	Type of cut or perforation used. Allowed values are: Cut - Full cut. Perforate - Interrupted perforation that does not span the entire sheet.
ShapeType	enumeration	Describes any precision cutting other than hole making. Allowed values are: Line - The coordinates specified in @CutBox specify the end points of a straight line. Path - Any irregular shape. Additional details should be provided in @CutPath or @ShapeTypeDetails. Rectangular - The coordinates specified in @CutBox specify the lower left and upper right coordinates of a rectangle. Round - Circular or elliptical shape depending on the aspect ratio of @CutBox. RoundedRectangle - Rectangle with rounded corners. The coordinates speci- fied in @CutBox specify the outer bounds of the rectangle.
ShapeTypeDetails ?	string	A more specific, specialized or site-defined name for the shape of the ShapeCut.

4.14 VariableIntent

Variablelntent specifies the variations of the content for printed data with variable content such as lottery tickets or direct mail.

Table 4.38: VariableIntent Element

NAME	DATA TYPE	DESCRIPTION
Area?	float	$\begin{array}{l}\text { Ratio of the document that can contain variable content. A value of o specifies } \\ \text { a non variable document. A value of 1 specifies a full variable document. }\end{array}$
AveragePages?	integer	$\begin{array}{l}\text { AveragePages SHALL specify the average number of printed pages in each } \\ \text { record. }\end{array}$
ChildRefs ?	IDREFS	$\begin{array}{l}\text { Product/@ID of the product elements that describe individual finishing vari- } \\ \text { ants. @ChildRefs SHALL NOT be specified if Assemblinglntent or BindingIntent } \\ \text { are specified for this product. }\end{array}$
ColorsUsedBack?	NMTOKENS	$\begin{array}{l}\text { Array of colorant separation identifiers that are required to print the variable } \\ \text { part of the documents. The values that are specified in @ColorsUsedBack }\end{array}$
SHALL also be specified in Colorlntent/SurfaceColor[@Surface="Back"]//		
@ColorsUsed. See Colorlntent/SurfaceColor/@ColorsUsed for additional details.		

Table 4.38: VariableIntent Element

NAME	DATA TYPE	DESCRIPTION
VariableQuality?	enumeration	VariableQuality specifies the desired quality of the variable data. Allowed Values are: Simple - The variable text MAY be recognized as printed by a different tech- nology such as dot matrix or simple inkjet overprints.
Imprint - The variable data SHOULD be similar to the non-variable part but		
MAY be imprinted.		
Full - All data SHOULD be printed with the same technology.		

5 Processes

The following chapter lists the individual processes that are defined in detail for XJDF.

5.1 Combining Individual Process Steps

The processes described in this chapter define individual workflow steps that are assumed to be executed by a single-purpose device. Some controllers and devices are able to combine the functionality of multiple single-purpose devices and execute more than one process type. For example, a digital printer might be able to execute the Interpreting, Rendering and DigitalPrinting processes. Each XJDF SHALL contain a @Types attribute, which in turn contains an ordered list of values of each of processes that the XJDF specifies. The ordering of the process names in the @Types attribute specifies the ordering in which the processes SHOULD be executed. If the final product result would be indistinguishable, the device MAY change the execution order of the processes from that given in the @Types attribute.

Example 5.1: Combined Process Steps

Example of combining three processes in sequence: Interpreting, Rendering and DigitalPrinting.

```
<XJDF xmlns="http://www.CIP4.org/JDFSchema_2_0" JobID="CombinedExample" Types="Interpreting
Rendering DigitalPrinting">
</XJDF>
```


5.1.1 Exchange ResourceSets in combined processes

A ResourceSet that is produced by one process and immediately consumed by the following process NEED NOT be explicitly specified in the XJDF. Any such ResourceSet MAY be completely under the control of the receiving device. In the example above, the output RunList of the Interpreting process is the input RunList of Rendering process and NEED NOT be specified explicitly in the XJDF.
If an exchange ResourceSet is provided, ResourceSet/@Usage SHALL NOT be present and ResourceSet/
@CombinedProcessIndex SHALL reference all processes that use the ResourceSet either as input or as output.

5.1.2 XJDF with Multiple Processes of the Same Type

XJDF/@Types MAY contain multiple instances of the same process type, e.g., "Cutting Folding Cutting". The parameters of the first Cutting process are most likely to be different from those of the second Cutting process. If multiple processes that consume identical resources are specified in @Types, ResourceSet/@CombinedProcessIndex SHALL be present and refer to the index of the process type in the complete list of XJDF/@Types. In the example above, for instance ResourceSet/@CombinedProcessIndex="0" for the CuttingParams that apply to the first Cutting process and ResourceSet/ @CombinedProcessIndex="2" for the CuttingParams that apply to the second Cutting process. ResourceSet/
@CombinedProcessIndex="1" is not required for the FoldingParams since there is only one Folding process.

5.2 Process Template

Processes are defined by their input and output resources (i.e. ResourceSet[@Usage="Input"] and
ResourceSet[@Usage="Output"]. The requirements for the individual processes are provided in the tables below. Table 5.1 Generic Input ResourceSets provides a list of resources that are valid for any process. In addition to the resources listed in the tables for each process, extension ResourceSets, i.e. those in a foreign namespace, MAY be provided. Foreign namespace extensions SHOULD NOT duplicate any XJDF functionality. See ${ }^{\text {• Creating Extension ResourceSets for details. }}$ All
Note: Each entry provides the requirements in the format

- Name: The ResourceSet/@Name of the resource, e.g: Media or RunList;
- (ProcessUsage): If present, the ResourceSet/@ProcessUsage of the resource, e.g Document or Marks in case of a RunList.
- Cardinality: The cardinality of the ResourceSet. See \quad Table 1.2 Cardinality Symbols: for details.

Note: The cardinality applies to the number of ResourceSet elements. Each ResourceSet may contain multiple Resource elements.

Table 5.1: Generic Input ResourceSets

NAME	DESCRIPTION
ApprovalDetails?	ApprovalDetails MAY be appended to processes in order to model proofing and verification requirements. If multiple approvals are requested for an individual workstep, ApprovalDetails SHALL be partitioned by Part/@Option. For more information on the Approval process, see \rightarrow Section 5.3.1 Approval.
Color ?	Color Identifies all colors that are used in the job. Color may include separations that represent die lines or other auxiliary colors.
Contact ?	List of internal and external contacts that are associated with processing this XJDF. Resource/Part/@ContactType SHALL be provided for all contacts.
CustomerInfo ?	CustomerInfo (without the @ProcessUsage attribute) specifies information about the direct customer.
Customerinfo (EndCustomer)?	CustomerInfo (EndCustomer) specifies information about the end customers in a subcontracting situation where the direct customer is not the end customer.
Device?	Device that is associated with processing this XJDF.
MiscConsumable *	Generic consumable resources that are associated with processing this XJDF. If multiple MiscConsumable of different types are specified, ResourceSet/@ProcessUsage SHALL be set to the value of MiscConsumable/@Type.
Nodelnfo ?	Nodelnfo specifies scheduling information about the explicit process described by this XJDF.
Nodelnfo (EndCustomer)?	Nodelnfo specifies scheduling information from the end customers in a subcontracting situation where the direct customer is not the end customer.
Previev?	Any number of previews MAY be associated with a process and used for display purposes such as illustrating the orientation of a resource to an operator. For details of coordinate systems see • Section 2.6 Coordinate Systems in XJDF. Part/@PreviewType SHOULD be "ThumbNail" or "Viewable".
Tool *	Miscellaneous reusable tools required for a process. If multiple tools of different types are specified, ResourceSet/@ProcessUsage SHALL be set to the value of Tool/@ToolType.
TransferCurve?	TransferCurve specifies area coverage correction and coordinate transformations.
UsageCounter?	Devices MAY use counters, called "usage counters", to track equipment utilization or work performed, such as impressions produced or documents generated. If multiple counters are provided, UsageCounter SHALL be partitioned by Option and Part/@Option SHOULD contain a value from UsageCounter/@CounterTypes.
<foreign namespace ResourceSets>	Any ResourceSets in a foreign namespace. Foreign namespace extensions SHOULD NOT duplicate functionality of XJDF. See $~$ Creating Extension ResourceSets for details.

5.3 General Processes

General processes that can take place throughout the workflow.

5.3.1 Approval

The Approval process can take place at various steps in a workflow. For example, a ResourceSet (e.g., a printed sheet or a finished book) is used as the input to be approved, and an ApprovalDetails (given, for example, by a customer or foreman) is produced. If Approval is combined with any other process type, the workstep that follows Approval in XJDF/ @Types SHALL NOT commence until a successful ApprovalDetails is provided for a given partition.

Table 5.2: Approval - Input Resources (Sheet 1 of 2)

NAME	
DESCRIPTION	
ApprovalParams	Details of the approval process.

Table 5.2: Approval - Input Resources (Sheet 2 of 2)

NAME	DESCRIPTION
ResourceSet *	The resources to be approved. When the input resource of an Approval process is a ByteMap, it is assumed that it will be displayed on a viewing device.
Generic Input Resources*	See $~$ Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.3: Approval - Output Resources

| NAME | DESCRIPTION |
| :---: | :---: | :---: |
| ApprovalDetails | Result of any Approval process given, for example, by a customer or foreman. |

5.3.2 Delivery

This process can be used to describe the delivery of an end product or a ResourceSet to or from a location that SHALL be specified in a Contact with Part/[@ContactType="Delivery"]. Delivery of data over the network MAY also be specified in the Delivery process.
If the delivery only requires the address of a single end customer and no specific details of the delivery are known, then the delivery process need not be specifically parametrized.
Delivery to multiple destinations or in multiple steps SHOULD be specified in DeliveryParams that are partitioned by @DropID. If multiple DeliveryParams contain the same @DropID, they SHOULD be delivered in one delivery, regardless of whether the DeliveryParams belong to the same XJDF or not. Common delivery of multiple products to the same address SHALL be specified by providing multiple DeliveryParams/Dropltem elements.

Table 5.4: Delivery - Input Resources

NAME	DESCRIPTION
Bundle?	Bundle describes the structure of the packaging of the products that SHALL be deliv- ered. If DeliveryParams is partitioned by Part/@DropID, Bundle SHOULD also be parti- tioned by Part/@DropID.
DeliveryParams	Details of the individual deliveries SHALL be provided in DeliveryParams.
Generic Input Resources *	See for all proble 5.1 Generic Input ResourceSets for additional input resources that are valid

Table 5.5: Delivery - Output Resources

NAME	DESCRIPTION
ResourceSet *	Any ResourceSet that is delivered to the process SHALL be specified as an output of the Delivery process.

PROCESSES

Example 5.2: Split Delivery

The following example illustrates a split delivery of thirty books, ten of which go to the contact defined by "Drop1" and twenty of which go to the contact defined by "Dropz".

```
<XJDF xmlns="http://www.CIP4.org/JDFSchema_2_0" JobID="splitDelivery" Types="Product">
    <ProductList>
        <Product Amount="30" ID="IDBook" IsRoot="true" ProductType="Book"/>
    </ProductList>
    <ResourceSet Name="Contact" Usage="Input">
        <Resource>
            <Part ContactType="Delivery" DropID="Drop1"/>
            <Contact>
                    <Address City="cityl"/>
                    <Person FirstName="Name1"/>
            </Contact>
        </Resource>
        <Resource>
            <Part ContactType="Delivery" DropID="Drop2"/>
            <Contact>
                    <Address City="city2"/>
                    <Person FirstName="Name2"/>
            </Contact>
        </Resource>
    </ResourceSet>
    <ResourceSet Name="DeliveryParams" Usage="Input">
        <Resource>
            <Part DropID="Drop1"/>
            <DeliveryParams>
                    <DropItem Amount="10" ItemRef="IDBook"/>
            </DeliveryParams>
        </Resource>
        <Resource>
            <Part DropID="Drop2"/>
            <DeliveryParams>
                    <DropItem Amount="20" ItemRef="IDBook"/>
            </DeliveryParams>
        </Resource>
    </ResourceSet>
</XJDF>
```


5.3.3 ManualLabor

This process can be used to describe any process where resources are handled manually. The ManualLabor process is designed to monitor any type of non-automated labor from an MIS system.

Table 5.6: ManualLabor - Input Resources

NAME	DESCRIPTION
ManualLaborParams	Details on the ManualLabor process.
ResourceSet*	Resources that are used to create the output resource.
Generic Input Resources*	See $~$ Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.7: ManualLabor - Output Resources

NAME	DESCRIPTION
ResourceSet *	The resources that were created by manual work. In general these will be Component re- sources, but other resources MAY also be processed manually. If no output resources are specified, the ManualLabor process describes incidental work.

5.3.4 QualityControl

This process defines the setup and frequency of quality controls for a process. OualityControl is generally performed on Component resources.

Table 5.8: QualityControl - Input Resources

NAME	DESCRIPTION
QualityControlParams	Detailed definition of the QualityControl process.
ResourceSet	The resource to be quality controlled. In general this will be a Component.
Generic Input Resources*	See \downarrow Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.9: QualityControl - Output Resources

NAME	DESCRIPTION
QualityControlResult	Results of the process. e.g. measurement statistics.
ResourceSet	This ResourceSet describes the resources after QualityControl has been applied.

5.3.5 Verification

The Verification process is used to confirm that a process has been completely executed.
Verification differs from QualityControl in that Verification verifies the existence of a given set of resources, whereas QualityControl verifies that the existing resources fulfill certain quality criteria.

Table 5.10: Verification - Input Resources

NAME	DESCRIPTION
FileSpec (Verification)?	Reference to data that contains implementation specific descriptions of the resources to be verified.
ResourceSet?	The resources to be verified. The input will most often be a Component.
VerificationParams	Controls the verification requirements.
Generic Input Resources*	See for all process types. 5.1 Generic Input ResourceSets for additional input resources that are valid

Table 5.11: Verification - Output Resources

NAME	DESCRIPTION
ApprovalDetails?	Signature file that defines verification success.
FileSpec (Accepted)?	Reference to data that contains implementation specific descriptions of the resources that were correctly verified.
FileSpec (Rejected)?	Reference to data that contains implementation specific descriptions of the resources that were NOT correctly verified.
FileSpec (Unknown)?	Reference to data that contains implementation specific descriptions of the resources that were scanned but NOT in the explicit or implied list of known resources.
ResourceSet	The resource after verification. Most often the ResourceSet will not be modified by Verification.

PROCESSES

5.4 Prepress Processes

This section lists all processes that are performed prior to printing. This includes processes that are performed to make digital assets press ready and the creation of physical assets such as plates or cut dies that are required for printing or converting.

5.4.1 Bending

The Bending device consumes a printing plate and bends and/or punches it. An in-line plate puncher SHOULD be modeled as a combined process consisting of ImageSetting and Bending processes.

Table 5.12: Bending - Input Resources

NAME	DESCRIPTION
BendingParams	List of assets used to create a listing of dependent assets.
ExposedMedia?	The ExposedMedia resource to be bent/punched. Dummy forms are also described as ExposedMedia even though they NEED NOT be imaged.
Generic Input Resources*	See for all process types.

Table 5.13: Bending - Output Resources

NAME	DESCRIPTION
ExposedMedia	The bent/punched ExposedMedia resource.

5.4.2 ColorCorrection

ColorCorrection is the process of modifying the specification of colors in documents to achieve some desired visual result. The process might be performed to ensure consistent colors across multiple files of a job or to achieve a specific design intent (e.g., "brighten the image up a little"). ColorCorrection provides simple controls for adjusting colors. See ColorSpaceConversion for color manipulations based on ICC profiles.
Individual output color separations MAY be directly modified by providing an input TransferCurve/@Curve to the ColorCorrection process. If present @Curve shall be applied after any modifications specified in ColorCorrectionParams.

Table 5.14: ColorCorrection - Input Resources

NAME	DESCRIPTION
ColorantControl ?	Identifies the assumed color model for the job.
ColorCorrectionParams	Parameters of the ColorCorrection process
RunList	List of content elements that SHALL be operated on.
Generic Input Resources *	See Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.15: ColorCorrection - Output Resources

NAME	DESCRIPTION
RunList	List of color-corrected content elements.

5.4.3 ColorSpaceConversion

ColorSpaceConversion is the process of converting colors that are provided in a PDL to an output color space. There are two ways in which a controller can use this process to accomplish the color conversion. It can simply order the colors to be converted by the device assigned to the task, or it can request that the process simply tag the input data for eventual conversion. Additionally, the process can remove all tags from the PDL.

The color conversion controls are based on the use of ICC profiles. While the assumed characterization of input data can take many forms, each can internally be represented as an ICC profile. In order to perform the transformations, input profiles SHALL be paired with the identified final target device profile to create the transformation.
The target profile for color space conversion selection should be based on ColorSpaceConversionParams/@ICCProfileUsage in the following order of precedence.

6 UsePDL - If present, the embedded target profile SHALL be used.
7 UseSupplied - The embedded target profile SHALL NOT be used.
In order to avoid the loss of black color fidelity resulting from the transformation from a four-component CMYK to a three-component interchange space, the controller MAY provide a DeviceLink ${ }^{1}$ transform as the transform that SHALL be applied when converting from a specific source color space to the final target device color space specified for the ColorSpaceConversion operation being applied. In these instances, the final target profile SHALL NOT be specified.

Table 5.16: ColorSpaceConversion - Input Resources

NAME	DESCRIPTION
ColorantControl ?	Identifies the assumed color model for the job. The ColorantControl resource MAY mod- ified by a ColorSpaceConversion process.
ColorSpaceConversionPara ms	Parameters that define how color spaces will be converted in the file.
RunList	List of pages, sheets or byte maps on which to perform the selected operation.
Generic Input Resources*	See Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.17: ColorSpaceConversion - Output Resources

NAME	DESCRIPTION
RunList	List of pages, sheets or byte maps on which the selected operation has been performed.

5.4.4 DieDesign

This process describes the design of a die tool set with one or more stations starting from a DieLayout that describes the layout of the one-up designs on a die. The output of this process is a DieLayout resource, describing a tool set for the die cutter machine that can be used in a following DieMaking process. DieDesign typically follows DieLayoutProduction.

Table 5.18: DieDesign - Input Resources

NAME	DESCRIPTION
DieLayout	A resource describing the die cutter layout. This layout is already imposed for a specific sheet size and MAY describe multiple stations.
Generic Input Resources *	See Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.19: DieDesign - Output Resources

| NAME | DESCRIPTION |
| :---: | :---: | :---: |
| DieLayout + | A set of resources describing the die cutter tool set. |

1. A DeviceLink transform is a transform that is defined in an ICC profile file [ICC.1] that maps directly from one specific source color space to a specific destination device color space. An example of this is a transform that maps directly from PDL source objects defined using sRGB directly to SWOP CMYK

PROCESSES

5.4.5 DieLayoutProduction

This process describes the layout of one or more structural designs for a given Media. The output of this process is a DieLayout resource describing the positioning of the individual one-ups on the die. The DieLayoutProduction process can be performed by a human operator using a CAD application. In some cases it can be an automated process. The process can be run in estimation mode in which case multiple solutions are returned that can then be used as input of a cost estimation module to determine the optimal layout. The DieLayoutProduction process is the packaging equivalent of a Stripping process in conventional printing. The output DieLayout of DieLayoutProduction is typically the input of a subsequent DieDesign process.

Table 5.20: DieLayoutProduction - Input Resources

NAME	DESCRIPTION
DieLayoutProductionPara ms	The parameters for DieLayoutProduction.
Generic Input Resources*	See Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.21: DieLayoutProduction - Output Resources

NAME	DESCRIPTION
DieLayout?	DieLayout describes a die cutter tool set. If DieLayoutProductionParams/ @Estimate="True", multiple alternative DieLayout Resource elements that SHALL be partitioned by Part/@Option SHALL be returned, otherwise a single DieLayout SHALL be generated.

Example 5.3: DieLayoutProduction: Single Shape and Two Sheet Sizes

Example of DieLayoutProduction of a single shape on 2 stock sheet sizes

```
<XJDF xmlns="http://www.CIP4.org/JDFSchema_2_0"
    DescriptiveName="Single shape versus a set of sheet sizes"
    JobID="n_001003" JobPartID="ID234" Types="DieLayoutProduction">
    <ResourceSet Name="ShapeDef" Usage="Input">
            <Resource>
                <ShapeDef>
                    <FileSpec URL="file://myserver/myshare/olive.dd3"/>
            </ShapeDef>
            </Resource>
    </ResourceSet>
    <ResourceSet Name="DieLayoutProductionParams" Usage="Input">
            <Resource>
                <DieLayoutProductionParams>
                    <ConvertingConfig SheetHeightMax="2267.72"
                    SheetHeightMin="2267.72" SheetWidthMax="2834.64" SheetWidthMin="2834.64"/>
                    <ConvertingConfig SheetHeightMax="2834.64"
                    SheetHeightMin="2834.64" SheetWidthMax="3401.57" SheetWidthMin="3401.57"/>
                <RepeatDesc AllowedRotate="None" GutterY="0" GutterY2="14.17"
LayoutStyle="Reverse2ndRow"/>
            </DieLayoutProductionParams>
        </Resource>
    </ResourceSet>
    <ResourceSet Name="DieLayout" Usage="Output"/>
</XJDF>
```


5.4.6 ImageEnhancement

The ImageEnhancement process describes generic image data processing.
Note: The source MAY be any image, but also text or vector graphics.

Table 5.22: ImageEnhancement - Input Resources

NAME	DESCRIPTION
ImageEnhancementParam s	Describes the controls selected for the manipulation of images.
RunList	List of content data elements on which to perform the selected operations.
Generic Input Resources *	See $~$ Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.23: ImageEnhancement - Output Resources

NAME	DESCRIPTION
RunList	List of page contents with images that have been manipulated as indicated by the ImageEnhancementParams resource.

5.4.7 ImageSetting

The ImageSetting process is executed by an imagesetter or platesetter that images a bitmap onto the film or plate media.
Table 5.24: ImageSetting - Input Resources

NAME	DESCRIPTION
ColorantControl ?	The ColorantControl resources that define the ordering and usage of inks during mark- ing on the imagesetter.
DevelopingParams?	Controls the physical and chemical specifics of the media development process.
ImageSetterParams?	Controls the device specific features of the imagesetter.
Media	The film or plate prior to imaging.
RunList ?	Identifies the set of bitmaps to image. MAY contain bytemaps or images.
Generic Input Resources*	See Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.25: ImageSetting - Output Resources

NAME	
ExposedMedia	The exposed media resource. In case of plate setting, this is the exposed set of plates. In case of film setting, this is the exposed set of films.

5.4.8 Imposition

The Imposition process is responsible for combining pages of input graphical content onto surfaces of the physical output media. Static or dynamic printer's marks can be added to the surface in order to facilitate various aspects of the production process. Among other things, these marks are used for press alignment, color calibration, job identification and as guides for cutting and folding.
Note: The Imposition process specifies the task of combining pages and marks on sheets. The task of setting up the parameters needed for Imposition is defined by Stripping.

Table 5.26: Imposition - Input Resources (Sheet 1 of 2)

NAME	DESCRIPTION
Layout	A Layout resource that indicates how the content pages from the Document RunList and marks from the Marks RunList (see below) are combined onto imposed surfaces.

Table 5.26: Imposition - Input Resources (Sheet 2 of 2)

NAME	DESCRIPTION
RunList (Document)	Structured list of incoming page contents which is transformed to produce the imposed surface images.
RunList (Marks)?	Structured list of incoming marks. These are typically printer's marks such as fold marks, cut marks, punch marks or color bars.
Generic Input Resources *	See Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.27: Imposition - Output Resources

NAME	DESCRIPTION
RunList	Structured list of imposed surfaces. Typically the output RunList will be partitioned by Part/@SheetName, Part/@Side and Part/@Separation. If the Imposition process is exe- cuted before any raster image processing, this will generally be consumed by an Interpreting process. In the case of where Imposition is executed after any raster image processing, it will be consumed by DigitalPrinting or ImageSetting.

There are two mechanisms provided for controlling the flow of page images onto sheet surfaces:
The default mechanism is for non-automated (e.g., fully-specified) Imposition, which originally derived from Layout in PJTF. Fully-specified imposition explicitly identifies all page content for each sheet imaged and references these pages by means of the order in which they are defined in the input RunList (Document) resource. Static printer's marks are referenced in a similar fashion from the input RunList (Marks) resource.
Setting the @Automated attribute of the Layout resource to "true" activates a template approach to imposition and relies upon the full hierarchy structure of the document (as specified by the RunList (Document)) to specify the page content to be imposed.
In XJDF, there is a single Layout definition. When described fully (@Automated = "false"), the Layout resource partition structure explicitly defines the imposition to take place.
Note: The XML order in which the partitions of the Layout resource are defined is significant for both automated and non-automated imposition and defines the order in which the imposition engine SHALL create the output RunList.

5.4.8.1 Execution Model for Automated Imposition

The Imposition process transforms the sequences of pages contained within the input RunList to a sequence of imposed sheet surfaces. The input RunList (Document) and the order of the documents defined by the Layout resource explicitly define the page to sheet surface mapping transformation that SHALL be applied by the imposition engine.
The pseudo-code below describes the processing performed by the imposition engine at a high level:

```
For each Set in the set in the order specified in the input RunList(Document)
    For each Document in the order specified in the input RunList (Document)
        For each Layout Partition that matches the Document
            For each Page in the Document process the page through the Layout
                partition.
```

Thus, each Resource in the ResourceSet[@Name="Layout"] SHALL be processed in the XML order specified. Every document belonging to the current set is then evaluated against the partition keys specified for that Layout to determine if it SHALL be processed by that Layout.
The RunList output from the Imposition process represents a sequence of imposed sheet surfaces The structure of the Layout affects the partition keys conserved by its output RunList (and its referenced content), by conserving all partition keys specified in the Layout along with generating all of the appropriate partition keys, such as @SetIndex, @DocIndex, @SheetIndex. The output RunList can be viewed conceptually as a collection of sheet surface pairings (front and back) that conserves information about which PDL metadata was in scope at the time the sheets were generated.

5.4.8.2 Cut and Stack Imposition

Pages are normally distributed onto an entire imposed sheet prior to processing the next imposed sheet. If cut and stack imposition is selected by specifying Layout/Position/@StackOrd, this distribution order shall be modified so that pages are distributed in the order of the individual stacks. Each stack is filled to the calculated value of Layout/Position/ @StackDepth prior to filling the stack with the next highest value of @StackOrd.

Example 5.4: Cut and Stack Imposition

This simple example is configured for 2 stacks with a depth of 10 sheets. Therefore the first 20 pages will be filled into the position with @StackOrd="0", the next 20 pages will be filled into the position with @StackOrd="1", and the following pages will be continue switching stacks every 20 pages.

```
<Layout Automated="true" WorkStyle="WorkAndTurn">
    <Position RelativeBox="0 0 50 100" StackDepth="10" StackOrd="0"/>
    <Position RelativeBox="50 0 100 100" StackDepth="10" StackOrd="1"/>
</Layout>
```


5.4.8.3 Imposition for Tiling

Sometimes content from a surface needs to be imaged onto media that is smaller than the designated surface. Each tile SHALL be specified as a Layout Resource with a Part/@TileID. PlacedObject/@ClipBox SHOULD be specified as the size of the tile. PlacedObject/@CTM will typically be the same except for an image shift that moves the source image into the clip box.

```
<ResourceSet Name="Layout" Usage="Input">
    <Resource>
        <Part Side="Front" TileID="0 0"/>
        <Layout SurfaceContentsBox="0 0 600 420">
            <PlacedObject CTM="1 0 0 1 0 0" ClipBox="0 0 600 420" Ord="0">
                    <ContentObject/>
            </PlacedObject>
        </Layout>
    </Resource>
    <!--More tiles here-->
    <Resource>
        <Part Side="Front" TileID="1 1"/>
        <Layout SurfaceContentsBox="0 0 600 420">
            <PlacedObject CTM="1 0 0 1 -600 -420" ClipBox="0 0 600 420" Ord="0">
                    <ContentObject/>
            </PlacedObject>
        </Layout>
    </Resource>
</ResourceSet>
```


5.4.9 InkZoneCalculation

The InkZoneCalculation process takes place in order to preset the ink zones before printing. The Preview data are used to calculate a coverage profile that represents the ink distribution along and perpendicular to the ink zones within the printable area of the preview. The InkZoneProfile can be combined with additional, vendor-specific data in order to preset the ink zones and the oscillating rollers of an offset printing press.

Table 5.28: InkZoneCalculation - Input Resources

NAME	DESCRIPTION
InkZoneCalculationParams $?$	Specific information about the printing press geometry (e.g., the number of zones) to calculate the InkZoneProfile.
Layout?	Specific information about the Media (including type and color) and about the sheet (placement coordinates on the printing cylinder).
Preview	A low to medium resolution bitmap file representing the content to be printed.
Generic Input Resources *	See Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.29: InkZoneCalculation - Output Resources

NAME	DESCRIPTION
InkZoneProfile	InkZoneProfile contains information about ink coverage along and perpendicular to the ink zones for a specific press geometry.

PROCESSES

5.4.10 Interpreting

The Interpreting process consumes PDL data and translates a stream of display list data in a system-specified format based on information about the marking engine and media.
See PDLCreation for the inverse process, which consumes display list data and generates PDL.
See RasterReading for the process that generates display list data from raster byte map images.
See Rendering for the process that consumes display list data and generates raster byte map images.
Table 5.30: Interpreting - Input Resources

NAME	DESCRIPTION
ColorantControl ?	Identifies the color model used by the job.
FontPolicy?	Describes the behavior of the font machinery in absence of requested fonts.
InterpretingParams	Provides the parameters needed to interpret the PDL pages specified in the RunList resource.
RunList	This resource identifies a set of PDL pages or surfaces which SHALL be interpreted.
Generic Input Resources *	See for all process types.

Table 5.31: Interpreting - Output Resources

NAME	DESCRIPTION
RunList	Pipe of streamed data which represents the results of Interpreting the pages in the RunList. In general, it is assumed that the Interpreting and Rendering processes are tightly coupled and that there is no value in attempting to develop a general specifica- tion for the format of this data.

5.4.11 LayoutElementProduction

This process describes the creation of page elements. It also explains how to create a layout that can put together all of the necessary page elements, including text, bitmap images, vector graphics, PDL or application files such as Adobe InDesign ${ }^{\circledR}$, Adobe PageMaker ${ }^{\circledR}$ and Quark XPress ${ }^{\circledR}$. The elements might be produced using any of a number of various software tools. This process is often performed several times in a row before the final RunList, representing a final page layout file, is produced.

Table 5.32: LayoutElementProduction - Input Resources

NAME	DESCRIPTION
LayoutElementProduction Params?	The parameters for the LayoutElementProduction process.
PreflightParams?	Preflight profile that describes the rules that the completed RunList SHALL adhere to.
RunList?	Location or metadata about the PDL or application file, bitmap image file, text file, vector graphics file, etc.
Generic Input Resources *	See Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.33: LayoutElementProduction - Output Resources

NAME	DESCRIPTION
RunList	A RunList that represents the page elements SHALL be produced.

5.4.12 LayoutShifting

LayoutShifting specifies how to apply separation dependent shifts on a flat or objects on a press sheet.

The exact ordering of the process within the Interpreting, Rendering and ImageSetting and the elements referenced by input and output RunList elements are not defined. LayoutShifting MAY occur on display lists, raster data or in the image setting hardware.

Table 5.34: LayoutShifting - Input Resources

NAME	DESCRIPTION
LayoutShift	Parameters for the LayoutShifting
RunList	References the input objects/flats to apply shifting to.
Generic Input Resources*	See $~$ Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.35: LayoutShifting - Output Resources

NAME	DESCRIPTION
RunList	The output RunList references the image data that the separation dependent layout shifts applied to.

5.4.13 PDLCreation

The PDLCreation device consumes the display list of graphical elements generated by an Interpretingor RasterReading and produces a new PDL output RunList based on the selected output parameters.
See Interpreting for the inverse process, which consumes PDL data and generates display list data.
See RasterReading for the process that generates display list data from raster byte map images.
See Rendering for the process that consumes display list data and generates raster byte map images.
Table 5.36: PDLCreation - Input Resources

NAME	DESCRIPTION
ImageCompressionParams $?$	This resource provides a set of controls that determines how images will be compressed in the resulting PDL pages.
PDLCreationParams?	These parameters control the operation of the process that interprets the display list and produces the resulting PDL pages.
RunList	This resource is a pipe of streamed data that represents a device independent display list structure. The RunList SHALL specify a ByteMap element.
Generic Input Resources *	See $~$ Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.37: PDLCreation - Output Resources

NAME	
RunList	This resource identifies the location of the resulting PDL file(s). If the FileSpec/ @MimeType is specified, then the value SHALL match PDLCreationParams/@MimeType. If not specified, then PDLCreationParams/@MimeType SHALL be inserted.

5.4.14 Preflight

Preflighting is the process of examining the components of a print job to ensure that the job will print successfully and with the expected results. Preflight checks can be performed on each document or page identified within the associated RunList.
Preflighting a file is generally a two-step process. First, the documents are analyzed and compared to the set of tests. Then, a preflight report is built to list the encountered issues (according to the tests).

Table 5.38: Preflight - Input Resources

NAME	DESCRIPTION
PreflightParams	A specified list of tests against which documents and/or pages are to be tested.
RunList	The list of documents and/or pages to be preflighted.
Generic Input Resources *	See . Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.39: Preflight - Output Resources

NAME	DESCRIPTION
PreflightReport	PreflightReport is a container for logging information that is generated by the Preflight process.
RunList?	The list of output documents that MAY have been repaired by the preflight process.

5.4.15 PreviewGeneration

The PreviewGeneration process produces a low resolution Preview of each separation that will be printed. The Previevv can be used in later processes such as InkZoneCalculation.
The extent of the PDL coordinate system (as specified by the MediaBox attribute, the resolution of the preview image, and width and height of the image) SHALL fulfill the following requirements:
MediaBox-length $/ 72 *$ x-resolution $=$ width ± 1
MediaBox-height / 72 * y-resolution $=$ height ± 1
A gray value of o represents full ink, while a value of 255 represents no ink (see the DeviceGray color model in $>$ [PS] Chapter 4.8.2.

5.4.15.1 Rules for the Generation of the Preview Image

To be useful for the ink consumption calculation, the preview data SHALL be generated with an appropriate resolution. This means not only spatial resolution, but also color or tonal resolution. Spatial resolution is important for thin lines, while tonal resolution becomes important with large areas filled with a certain tonal value. The maximum error caused by limited spatial and tonal resolution SHOULD be less than 1%.

5.4.15.2 Spatial Resolution

Since some pixel of the preview image might fall on the border between two zones, their tonal values SHALL be split up. In a worst case scenario, the pixels fall just in the middle between a totally white and a totally black zone. In this case, the tonal value is 50%, but only 25% contributes to the black zone. With the resolution of the preview image and the zone width as variables, the maximum error can be calculated using the following equation:

$$
\text { error }[\%]=\frac{100}{4 * \text { resolution }[\mathrm{L} / \mathrm{mm}]^{*} \text { zone__width }[\mathrm{mm}]}
$$

For zone width broader than 25 mm , a resolution of 2 lines per mm will always result in an error less than 0.5%. Therefore, a resolution of 2 lines per mm (equal to 50.8 dpi) is suggested.

Figure 5-1: Worst case scenario for area coverage calculation

5.4.15.3 Tonal Resolution

The kind of error caused by color quantization depends on the number of shades available. If the real tonal value is rounded to the closest (lower or higher) available shade, the error can be calculated using the following equation:

$$
\text { error }[\%]=\frac{100}{2 * \text { number_of_shades }}
$$

Therefore, at least 64 shades SHOULD be used.

5.4.15.4 Line Art Resolution

When rasterizing line art elements, the minimal line width is 1 pixel, which means $1 /$ resolution. Therefore, the relationship between the printing resolution and the (spatial) resolution of the preview image is important for these kind of elements. In addition, a specific characteristic of PostScript RIPs adds another error: within PostScript, each pixel that is touched by a line is set. Tests with different PostScript jobs have shown that a line art resolution of more than 300 dpi is normally sufficient for ink-consumption calculation.

5.4.15.5 Conclusion

There are quite a few different ways to meet the requirements listed above. The following list includes several examples:

- The job can be RIPed with 406.4 dpi monochrome.
- With anti-aliasing, the image data can be filtered down by a factor of 8 in both directions. This results in an image of 50.8 dpi with 65 color shades.
- High resolution data can also be filtered using anti-aliasing. First, the RIPed data, at 2540 dpi monochrome, are taken and filtered down by a factor of 50 in both directions. This produces an image of 50.8 dpi with 2501 color shades. Finally those shades are mapped to 256 shades, without affecting the spatial resolution.
Rasterizing a job with 50.8 dpi and 256 shades of gray is not sufficient. The problem in this case is the rendering of thin lines (see Line Art Resolution above).

5.4.15.6 Recommendations for Implementation

The following three guidelines are strongly RECOMMENDED:

- The resolution of RIPed line art SHOULD be at least 300 dpi.
- The spatial resolution of the preview image SHOULD be approximately $20 \mathrm{pixel} / \mathrm{cm}$ (= 50.8 dpi).
- The tonal resolution of the preview image SHOULD be at least 64 shades.

Table 5.40: PreviewGeneration - Input Resources (Sheet 1 of 2)

NAME	DESCRIPTION
ColorantControl ?	The ColorantControl resources that define the ordering and usage of inks in print mod- ules. Needed for generating thumbnails.
PreviewGenerationParams	Parameters specifying the size and the type of the preview.
RunList?	Bitmap data are consumed by the PreviewGeneration process.

Table 5.40: PreviewGeneration - Input Resources (Sheet 2 of 2)

NAME	DESCRIPTION
Generic Input Resources *	See Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.41: PreviewGeneration - Output Resources

NAME	DESCRIPTION
Previevv	Representation of the Preview files that were produced by the PreviewGeneration pro- cess.

5.4.16 RasterReading

The RasterReading device consumes raster graphic formatted files into a display list structure.
rhubarb
See Rendering for the inverse process that consumes display list data and generates byte maps of raster images.
See Interpreting for the process, which consumes PDL data and generates display list data.
See PDLCreation for the process, which consumes display list data and generates PDL.
Table 5.42: RasterReading - Input Resources

NAME	DESCRIPTION
RasterReadingParams ?	Additional parameters for reading raster files.
RunList	This resource identifies a set of raster pages or surfaces that will be inserted into the display list. This resource SHALL reference ByteMap images.
Generic Input Resources *	See Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.43: RasterReading - Output Resources

NAME	DESCRIPTION
RunList	Pipe of streamed data that represents the results of RasterReading the pages in the input RunList. The format and detail are implementation dependent. The RunList SHALL specify the output content data for RasterReading.

5.4.17 Rendering

The Rendering process consumes the display list of graphical elements generated by the Interpreting or RasterReading process. It converts the graphical elements according to the geometric and graphic state information contained within the display list, combined with the RenderingParams information to produce binary rasterized data suitable for processes which consume ByteMap information.
See PDLCreation for the process, which consumes display list data and generates PDL.
Table 5.44: Rendering - Input Resources (Sheet 1 of 2)

NAME	DESCRIPTION
ImageCompressionParams $?$	Allows definition of compressed Raster Images
RenderingParams?	This resource describes the format of the byte maps to be created and other specifics of the Rendering process.

Table 5.44: Rendering - Input Resources (Sheet 2 of 2)

NAME	DESCRIPTION
RunList	Pipe of streamed data that represents the results of Interpreting or RasterReading the pages in the input RunList. . In general, it is assumed that the Interpreting, RasterReading, Rendering and PDLCreation are tightly coupled and that there is no value in attempting to develop a general specification for the format of this data.
Generic Input Resources *	See $~$ Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.45: Rendering - Output Resources

NAME
RunList

DESCRIPTION

Pipe of streamed data that represents the results of Rendering. This RunList MAY be consumed by any following process that consumes raster data, including PDLCreation, ImageSetting or DigitalPrinting. The data MAY be specified in ByteMap sub-elements. In general, it is assumed that the Interpreting, RasterReading, Rendering and PDLCreation are tightly coupled and that there is no value in attempting to develop a general specification for the format of this data.

5.4.18 Screening

This process specifies the process of halftone screening. It consumes contone raster data (e.g., the output from a RasterReading or Rendering process). It produces monochrome which has been filtered through a halftone screen to identify which pixels are needed to approximate the original shades of color in the document.
This process definition includes capabilities for halftoning after raster image processing according to the PostScript definitions. Alternatively it allows for the selection of FM screening/error diffusion techniques.

Table 5.46: Screening - Input Resources

NAME	DESCRIPTION
RunList	Ordered list of rasterized ByteMap or interpreted data representing pages or surfaces.
ScreeningParams	Parameters specifying which halftone mechanism SHALL be applied and with what specific controls.
Generic Input Resources *	See $~$ Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.47: Screening - Output Resources

NAME	DESCRIPTION
RunList	Ordered list of rasterized and screened output pages. The resolution SHALL remain the same and that resulting data are one bit per component. Furthermore, the organization of planes within the data SHALL not change.

5.4.19 Separation

The Separation process specifies the controls associated with the generation of color-separated data. Separation may be applied either to PDL data or raster data.

Table 5.48: Separation - Input Resources (Sheet 1 of 2)

NAME	DESCRIPTION
ColorantControl ?	Identifies which colorants in the job are to be output.
RunList	List of elements, surfaces or pages that are to be operated on.
SeparationControlParams	Controls for the separation process.

Table 5.48: Separation - Input Resources (Sheet 2 of 2)

NAME	DESCRIPTION
Generic Input Resources *	See , Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.49: Separation - Output Resources

NAME	DESCRIPTION
RunList	List of separated elements, separated surfaces, separated pages or separated raster bytemaps.

5.4.20 ShapeDefProduction

This process describes the structural design of a one-up product (e.g., a non rectangular label, a box, a display, a bag, a pouch, etc.). This is a description of the unprinted blank box as it will be available after ShapeCutting and before BoxFolding. Also, this process typically (but not exclusively) describes the process of designing the shape of a new box using a CAD application. See DieLayoutProduction for the process of designing a die for multiple one-up products. The output of the ShapeDefProduction process can be multiple ShapeDef resources (e.g., when the design of the box results in multiple pieces, such as a box, an object and an insert piece, where the insert piece is fixed to the object to be packed in the box). Another example would be a multi-piece display. The ShapeDefProduction process can be performed by a human operator using a CAD application. In some cases it can be an automated process.
Note: ShapeDefProduction needs information stored in both ShapeDefProductionParams and ShapeDef to make a new structural design.

Table 5.50: ShapeDefProduction - Input Resources

NAME	DESCRIPTION
RunList ?	A rough drawing or outline (e.g., an EPS) of the ShapeDef that serves as the input for structural design.
ShapeDefProductionParam s	Parameters for the structural design.
Generic Input Resources *	See Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.51: ShapeDefProduction - Output Resources

NAME	DESCRIPTION
ShapeDef	A resource describing the shape of the product to be produced. If the product consists of multiple parts, the ShapeDef SHALL be partitioned by Part/@Option.

5.4.21 SheetOptimizing

SheetOptimizing describes ganging of multiple BinderySignatures onto one or more printed sheets. These BinderySignatures MAY be parts of unrelated customer jobs. This process is also referred to as job ganging.
SheetOptimizing MAY be used together with QueueSubmissionParams/@GangName and the ForceGang command. In this case, individual jobs with identical QueueSubmissionParams/@GangName are collected with each job submission. A ForceGang command instructs the ganging engine to process the waiting GangInfo elements.

Table 5.52: SheetOptimizing - Input Resources

NAME	DESCRIPTION
Assembly?	Input Assembly that MAY be used to specify the binding order e.g. for creep calculation. This Assembly MAY contain sections that are not included in this sheet optimization (e.g., when only covers are optimized and the bodies are produced individually). If the assemblies vary based on GangElement/@GangElementID, Assembly SHALL be parti- tioned by Part/@ProductPart and GangElement/@ProductID SHALL match Part/ @ProductPart.
BinderySignature?	List of BinderySignature elements that describe the individual gang candidate signa- tures. If more than one BinderySignature resource is provided, then BinderySignature SHALL at least be partitioned by @BinderySignatureID.
SheetOptimizingParams?	Parameters specifying details that allow individual sections to be distributed on the printed sheets.
Generic Input Resources *	See R Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.53: SheetOptimizing - Output Resources

NAME	DESCRIPTION
Layout	The Layout resource that will be populated by the SheetOptimizing process. The resource MAY be partially populated by the submitter with restrictions on what the SheetOptimizing is allowed to do.

5.4.22 Stripping

An important aspect of the interface between an MIS system and a prepress workflow system is imposition. When an order is accepted or even during the estimation phase, the MIS system determines how the product will be produced using the available equipment (e.g., presses, folders, cutters, etc.) in the most cost-efficient way. The result of this exercise has a large impact on imposition in prepress.
The Stripping process specifies the process of translating a high level structured description of the imposition of one or multiple job parts or part versions represented by a partially populated Layout resource into a fully populated Layout resource for the Imposition process. Note that the Stripping process can generate all resources needed for the Imposition process, thus also the RunList (Marks).

5.4.22.1 Pagination in Stripping

The distribution and orientation of pages on a BinderySignature is determined by the geometry of the final product. The Assembly resource determines which pages SHALL be placed on which BinderySignature.
Example: if two 8 page BinderySignatures are gathered on top of one another, then pages $1-8$ will go on the first
BinderySignature and pages 9-16 will go on the second BinderySignature. If the same BinderySignatures are collected on a saddle, then pages 1-4 and 13-16 will go on the first BinderySignature and pages 5-12 will go on the second BinderySignature.
The BinderySignature determines how the pages that are selected by the Assembly SHALL be distributed on each BinderySignature. The page distribution is modified by BinderySignature/@BinderySignatureType that determines whether the pagination SHALL be explicitly defined in SignatureCell/@FrontPages and SignatureCell/@BackPages, or SHALL be calculated from @FoldCatalog and @BindingOrientation using the methods defined in • Appendix F Pagination Catalog.

5.4.22.1.1 Pagination and page orientation for BinderySignatureType Fold

If @BinderySignatureType = "Fold", the distribution of the selected pages on a BinderySignature is determined by the two attributes: @FoldCatalog and @BindingOrientation. The default orientation assumes the Binding Side on the left and the - Jog Edge at the bottom.

If the value of @BindingOrientation is one of the flip values ("Flip0", "Flip90" etc.), then the implied page ordering of the BinderySignature SHALL be reversed.
If the value of @BindingOrientation results in a binding side on the left or right, ("Rotate0" or "Rotate180") then the default alignment of page cells along the binding side SHALL be parallel.
If @BindingOrientation results in a binding side on the bottom or top ("Rotate90" or "Rotate270"), then the default alignment of page cells along the binding side SHALL be head to foot.
Note: This results in the default behavior that all pages are right side up when the folded BinderySignature is opened along the bind.

PROCESSES

If multiple BinderySignatures are gathered, the flow of pages SHALL be modified by the value of Assembly/@Order and, if specified, AssemblySection/@BinderySignatureID.
If BinderySignatures are gathered, each BinderySignature consumes pages from the current front position in the document and the current position is incremented by the number of consumed pages.
If BinderySignatures are collected, each BinderySignature consumes the first half of pages from the current front position in the document and the second half of pages in reverse order from the current back position in the document. The current front position is incremented by the number of pages that were consumed from the front and current back position is decremented by the number of pages that were consumed from the back.

See also $\stackrel{\text { Appendix F Pagination Catalog for additional details. }}{\text { I }}$
Table 5.54: Stripping - Input Resources

NAME	DESCRIPTION
Assembly?	Assembly describes how the individual BinderySignature elements are combined relative to one another to a final product. If multiple final products are ganged on a sheet Assembly SHALL be partitioned by Part/@Product/D.
BinderySignature?	List of BinderySignature elements that describe the individual signatures that are com- bined to produce a final product. If more than one BinderySignature resource is provided, then BinderySignature SHALL at least be partitioned by @BinderySignatureID.
ColorantControl ?	Contains information on the colors and separations. Useful when creating marks that need color information.
Layout ?	High level structured description of the imposition of one or multiple fold sheets. If XJDF/@Types does not contain Imposition, then ResourceSet/@Usage of Layout SHOULD NOT be provided. Note: The previous restriction enforces that only one ResourceSet/[@Name="Layout"] is provided as both input and output and will be modified appropriately.
RunList (Document)?	List of document pages that SHALL be used to calculate the exact geometry of the Layout based on the page geometry of the pages referenced by this Layout.
Generic Input Resources *	See for all proble 5.1 Generic Input ResourceSets for additional input resources that are valid

Table 5.55: Stripping - Output Resources

NAME	DESCRIPTION
Layout	A Layout that describes the exact positions of the pages and SHALL be filled by the device.
RunList (Marks)?	List of marks that SHALL be used as input of the following Imposition process.

Example 5.5: \quad Stripping: Simple Digital Print
The following example defines a simplex layout where each surface is exactly one page.

```
<Layout Automated="true" WorkStyle="Simplex">
    <Position/>
</Layout>
```

Example 5.6: Stripping: Simple Example
This simple example specifies three 16 page bindery signatures using folding catalog scheme F16-6.

```
<XJDF xmlns="http://www.CIP4.org/JDFSchema_2_0" JobID="Layout"
    JobPartID="3F-16" Types="Stripping">
    <ResourceSet Name="BinderySignature" Usage="Input">
        <Resource>
            <Part BinderySignatureID="bs1"/>
            <Part BinderySignatureID="bs2"/>
            <Part BinderySignatureID="bs3"/>
            <BinderySignature BinderySignatureType="Fold" FoldCatalog="F16-6"/>
        </Resource>
    </ResourceSet>
    <ResourceSet Name="Layout" Usage="Input">
        <Resource>
            <Part SheetName="sheet1"/>
            <Layout WorkStyle="WorkAndBack">
                <Position BinderySignatureID="bs1"/>
            </Layout>
        </Resource>
        <Resource>
            <Part SheetName="sheet2"/>
            <Layout WorkStyle="WorkAndBack">
                <Position BinderySignatureID="bs2"/>
            </Layout>
        </Resource>
        <Resource>
            <Part SheetName="sheet3"/>
            <Layout WorkStyle="WorkAndBack">
                <Position BinderySignatureID="bs3"/>
            </Layout>
        </Resource>
    </ResourceSet>
    <ResourceSet Name="Assembly" Usage="Input">
        <Resource>
            <Assembly BinderySignatureIDs="bs1 bs2 bs3" Order="Collecting"/>
        </Resource>
    </ResourceSet>
</XJDF>
```


5.4.23 Trapping

The Trapping process modifies a set of document pages to reduce or (ideally) eliminate visible misregistration errors in the final printed output. XJDF makes no assumptions about the RunList data. Thus Trapping MAY occur on PDL data, display list data or raster image data.
Table 5.56: Trapping - Input Resources

NAME	DESCRIPTION
ColorantControl ?	Identifies color model used by the job.
FontPolicy?	Describes the behavior of the font machinery in absence of requested fonts.
RunList	Structured list of incoming page contents that are to be trapped.
TrappingParams	Describes the general setting needed to perform trapping.
Generic Input Resources*	See for all process types.

Table 5.57: Trapping - Output Resources

NAME	DESCRIPTION
RunList	Structured list of the modified page contents after Trapping has been executed.

5.5 Press Processes

Press processes involve the transfer of colorant to a substrate. All of the various printing technologies are gathered into two categories:

1 ConventionalPrinting, which involves printing from a physical master,
2 DigitalPrinting, which involves printing from a digital master.
The ConventionalPrinting and DigitalPrinting processes can be applied to either web or sheet fed printing.

5.5.1 ConventionalPrinting

ConventionalPrinting describes any printing process that involves printing from a physical master, including offset lithography, gravure, potato, screen and flexo printing. Press machinery often includes postpress processes (e.g., WeblnlineFinishing, Folding and Cutting) as in-line finishing operations. The ConventionalPrinting process itself does not cover these postpress tasks.
Using a conventional printing press for producing a press proof can be performed by employing a ConventionalPrinting process to create a Component with @ProductType="Proof".
In the context of web printing, the ConventionalPrinting process SHALL be in a combined process with the WeblnlineFinishing process. The following drawing gives an overview about web printing in general.

Figure 5-2: Overview of Web Printing

Table 5.58: ConventionalPrinting - Input Resources (Sheet 1 of 2)

NAME	DESCRIPTION
ColorantControl ?	ColorantControl SHALL specify the complete set of colors that SHALL be printed on a sheet. The ordering of separations SHALL be specified by ColorantControl/ @ColorantOrder.
Component	Component SHALL specify the substrate that will be printed on. The most common Component used is unprinted paper. Resource/@ExternalID of a Component that describes the unprinted media SHOULD be identical to the Resource/@ExternallD of the referenced Media.
ConventionalPrintingPara ms	Specific parameters to set up the press. Any process coordinate transformations that apply to ConventionalPrinting SHALL be specified in the respective parent Resource/ @Orientation or Resource/@Transformation.
ExposedMedia (Plate)?	This ExposedMedia SHALL specify the set of physical masters such as offset plates, flexo plates, screens or potatoes that SHALL be used by the ConventionalPrinting pro- cess. This ExposedMedia SHALL be partitioned by at least "Separation".
ExposedMedia (Sleeve)?	This ExposedMedia SHALL specify the flexo sleeve if this ConventionalPrinting process describes a flexo print process.
Ink?	Information about the physical properties of the ink. Ink SHALL be partitioned by at least "Separation". Note: See also Color for a description of the logical properties of the color separations.
InkZoneProfile?	The InkZoneProfile contains information about how much ink is needed along the print- ing cylinder of offset lithographic presses with ink key adjustment functions.

Table 5.58: ConventionalPrinting - Input Resources (Sheet 2 of 2)

NAME	DESCRIPTION
Layout?	Layout MAY be used to provide the positioning of MarkObject elements such as CIELABMeasuringField, DensityMeasuringField, RegisterMark or ColorControlStrip that can be used for quality control at the press.
MiscConsumable (MountingTape)?	Description of a mounting tape for a sleeve.
Generic Input Resources *	See , Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.59: ConventionalPrinting - Output Resources

NAME	DESCRIPTION
Component	Component SHALL specify the printed output. The number of copies produced SHALL be specified in ../Resource/AmountPool/PartAmount/@Amount.

5.5.2 DigitalPrinting

DigitalPrinting is a direct printing process that, like ConventionalPrinting, occurs after prepress processes but before postpress processes. In DigitalPrinting, the data to be printed are not stored on an extra medium (e.g., a printing plate or a printing foil), but instead are stored digitally. The printed image is generated for every output using the digital data. Electrophotography, inkjet, and other technologies are used for transferring colorant (either liquid ink or dry toner) onto the substrate. Furthermore, both Sheet-Fed and Web presses can be used as machinery for DigitalPrinting. The DigitalPrinting process SHALL also be used to describe hard copy proofing (see $\stackrel{\text { Section 5.3.1 Approval). }}{\text {) }}$
DigitalPrinting MAY also be used to image a small area on preprinted Component resources to perform actions such as addressing or numbering another Component. This kind of process can be executed by imaging with an inkjet printer during press, postpress or packaging operations.
Digital printing devices which provide some degree of finishing capabilities (e.g., collating and stapling) as well as some automated layout capabilities (e.g., N-up and duplex printing) MAY be modeled as a combined process which includes DigitalPrinting. Such a combined process MAY also include other processes (e.g., Approval, ColorCorrection, ColorSpaceConversion, Cutting, Folding, HoleMaking, Imposition, Interpreting, Perforating, Rendering, Screening, Stacking, Stitching, Trapping or Trimming).
Controls for DigitalPrinting are provided in the DigitalPrintingParams resource. The set of input resources of a combined process which includes DigitalPrinting MAY be used to represent an Internet Printing Protocol (IPP) Job or a PPML Job. See Application Notes for IPP and Variable Data printing. Note that putting a label on a product or Dropltem is not DigitalPrinting but Inserting.

Table 5.60: DigitalPrinting - Input Resources (Sheet 1 of 2)

NAME	DESCRIPTION
ColorantControl ?	The ColorantControl resources that define the ordering and usage of inks in print mod- ules.
Component	Component SHALL specify the substrate that will be printed on. The most common Component used is unprinted paper. Resource/@ExternalID of a Component that describes the unprinted media SHOULD be identical to the Resource/@ExternalID of the referenced Media.
DigitalPrintingParams	Specific parameters to set up the machinery. Any process coordinate transformations that apply to DigitalPrinting SHALL be specified in the respective parent Resource/ @Orientation or Resource/@Transformation.
Ink?	Ink or toner and information that is needed for DigitalPrinting.
Layout?	Sheet and surface elements from a Layout (e.g., the CIELABMeasuringField, DensityMeasuringField or ColorControlStrip) can be used for quality control at the press. The value and position of the quality can be of interest for automatic quality control systems. RegisterMark resources can be used to line up the printing registration during press run, and its position can in turn be used to position an item such as a camera.
RunList	Raster data that will be printed on the digital press are needed for DigitalPrinting.

Table 5.60: DigitalPrinting - Input Resources (Sheet 2 of 2)

NAME	DESCRIPTION
Generic Input Resources *	See $~$ Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.61: DigitalPrinting - Output Resources

NAME	DESCRIPTION
Component	Components are produced for other printing processes or postpress processes..../Resource/ AmountPool/PartAmount/@Amount SHALL specify the number of copies which SHALL be produced. If the input RunList specifies a PDL with multiple documents or sets, such as pdf/vt, the amount SHALL BE defined as the number of sets in the input RunList.

5.5.3 Varnishing

Varnishing is the process of varnishing a Component. Spot varnishing with a ripped image or a printing plate from ExposedMedia SHALL be described as DigitalPrinting or ConventionalPrinting with Ink/@InkType = "Varnish". All types of all-over (flood) varnishing or spot varnishing applied without a ripped image or a printing plate from ExposedMedia SHALL be described with the Varnishing process.
Offline coatings are typically intended to be protective. They can increase water-resistance, scuff-resistance, and even food resistance in the case of restaurant menus.

Common coating types requested by customers include UV coatings (Ultra Violet cured polymers) which provide higher durability, and aqueous coatings that are viewed as greener and typically more easily recycled at end-of-life. Both types of overall coating protect the printed image as well as the substrate.

Table 5.62: Varnishing - Input Resources

NAME	DESCRIPTION
Component	The Component to be varnished.
ExposedMedia?	Various types of ExposedMedia MAY be specified for varnishing. See VarnishingParams/ @VarnishMethod for details.
Ink?	Details of the colorant that is used for Varnishing. Ink/@InkType SHOULD be "Varnish".
VarnishingParams?	Details of the setup of the varnishing device. Any process coordinate transformations that apply to Varnishing SHALL be specified in the respective parent Resource/ @Orientation or Resource/@Transformation.
Generic Input Resources *	See Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.63: Varnishing - Output Resources

NAME	
Component	The varnished Component.

5.6 Postpress Processes

Postpress is the most flexible and varied area that is covered by this specification. The individual postpress processes are provided in alphabetical order.

5.6.1 BlockPreparation

As there are many options for a hardcover book, the block preparation is more complex than what has already been described for other types of binding. Those options are the ribbon band (numbers of bands, materials and colors), gauze (material and glue), headband (material and colors), kraft paper (material and glue) and tightbacking (different geometry and measurements).

Table 5.64: BlockPreparation - Input Resources

NAME	DESCRIPTION
Component	The BlockPreparation process consumes one Component and creates a book block.
BlockPreparationParams	Specific parameters to set up the machinery. Any process coordinate transformations that apply to BlockPreparation SHALL be specified in the respective parent Resource/ @Orientation or Resource/@Transformation.
Generic Input Resources *	See R Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.65: BlockPreparation - Output Resources

NAME	DESCRIPTION
Component	One Component is produced: the prepared book block. The value of Component/ @ProductType SHALL be "BookBlock".

5.6.2 BoxFolding

BoxFolding defines the process of folding and gluing blanks into folded flat boxes for packaging.
Table 5.66: BoxFolding - Input Resources

NAME	DESCRIPTION
BoxFoldingParams	Specific parameters to set up the folder gluer.
Component	The BoxFolding process consumes one Component, the folding blank. Its @ProductType = "BlankBox".
Generic Input Resources *	See • Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.67: BoxFolding - Output Resources

NAME	DESCRIPTION
Component	One Component is produced: the folded flat box. The value of Component/@ProductType SHALL be "FlatBox".

5.6.3 BoxPacking

A pile, stack or bundle of products can be packed into a box or carton.
Table 5.68: BoxPacking - Input Resources (Sheet 1 of 2)

NAME	DESCRIPTION
BoxPackingParams	Specific parameters to set up the machinery.
Bundle?	Bundle describes the structure of the packed boxes that are represented by the output Component.
Component (Contents)?	The BoxPacking process puts a set of Product or Component resources into the Component(Box). If more than one Component(Contents) resource is specified, Bundle/Bundleltem/ @ItemRef SHALL also be specified for each Component.
Component (Box)?	Details of the box or carton.
Media (Tie)?	Protective Media can be placed between individual rows of Component resources.

Table 5.68: BoxPacking - Input Resources (Sheet 2 of 2)

NAME	DESCRIPTION
Media (Underlay)?	Protective Media can be placed between individual layers of Component resources.
MiscConsumable (FillMaterial)?	Filler material.
Generic Input Resources*	See Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.69: BoxPacking - Output Resources

NAME	DESCRIPTION
Component	One Component is produced: the Component that represents the packed Box.

5.6.4 Bundling

The Bundling process normally will be followed by a Strapping process. In a Bundling process, single products like sheets or signatures are bundled. The bundle is the output Component of the process and is used to store the products. As input a Component to a consuming or subsequent process (e.g., Gathering, Collecting or Inserting), the single components of a bundle are used.

Figure 5-3: Bundle Creation

Figure 5-4: Bundle Transport

Table 5.70: Bundling - Input Resources

NAME	DESCRIPTION
Bundle?	Bundle describes the structure of the input Component that SHALL be bundled.
BundlingParams	Bundling parameters.
Component	The Component to be bundled.
Media?	End boards to protect the bundle. For each bundle a pair of end boards is needed.
Generic Input Resources *	See $~ T a b l e ~ 5.1 ~ G e n e r i c ~ I n p u t ~ R e s o u r c e S e t s ~ f o r ~ a d d i t i o n a l ~ i n p u t ~ r e s o u r c e s ~ t h a t ~ a r e ~ v a l i d ~$ for all process types.

Table 5.71: Bundling - Output Resources

NAME	
Component	The completed bundle.

Parameters like manufacturer and device type are defined in the Device element.

5.6.5 CaseMaking

Case making is the process where a hard cover book case is produced.
Table 5.72: CaseMaking - Input Resources

NAME	DESCRIPTION
CaseMakingParams	Specific parameters to set up the machinery. Any process coordinate transformations that apply to CaseMaking SHALL be specified in the respective parent Resource/ @Orientation or Resource/@ Transformation.
Component (CoverMaterial)?	The cover material is either a preprinted or processed sheet of paper.
Component (CoverBoard)	The cardboard Component used for the cover board.
Component (SpineBoard)?	The cardboard Component used for the spine board. If not specified, the Component (CoverBoard) SHALL be used for the spine board.
Generic Input Resources *	See $~$ Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.73: CaseMaking - Output Resources

NAME	DESCRIPTION
Component	One Component is produced: the book case. Component/@ProductType SHALL be "BookCase".

5.6.6 CasingIn

The hard cover book case and the book block are joined in the Casingln process.
Table 5.74: CasingIn - Input Resources

NAME	DESCRIPTION
CasingInParams	Specific parameters to set up the machinery.
Component	The prepared book block.
Component (Case)	The hard cover book case.
Generic Input Resources *	See for all process types.

Table 5.75: CasingIn - Output Resources

NAME	DESCRIPTION
Component	One Component is produced: the completed hard cover book.

5.6.7 Collecting

This process collects folded sheets or partial products, some of which might have been cut. The first Component to enter the workflow lies at the bottom of the pile collected on a saddle, and the sequence of the input components that follows depends upon the produced component. The figure to the right shows a typical collected pile.

The operation coordinate system is defined as follows: The y-axis is aligned with the binding edge. It increases from the registered edge to the edge opposite to the registered edge. The x-axis is aligned with the registered edge. It increases from the binding edge to the edge opposite to the binding edge (i.e., the product front edge).

Table 5.76: Collecting - Input Resources

NAME	DESCRIPTION
Assembly?	Assembly explicitly describes the sequence of the Component resources to be collected. If Assembly is not specified, the sequence SHALL be defined by the sequence of the Component.
Component	The Component Resource elements in the ResourceSet represent the individual signa- tures that shall be collected. The first Resource element in XML order shall represent the outer Component.
Generic Input Resources *	See Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.77: Collecting - Output Resources

NAME	DESCRIPTION
Component	A block of collected sheets is produced. This Component can be joined in further post- press processes.

5.6.8 CoverApplication

CoverApplication describes the process of applying a soft cover to a book block.
Table 5.78: CoverApplication - Input Resources

NAME	DESCRIPTION
Component	The book block on which the cover is applied. If Component (Cover) is NOT provided, this Component SHALL be partitioned, and the first partition of this Component SHALL specify the cover.
Component (Cover)?	The soft cover that is applied.
CoverApplicationParams	Specific parameters to set up the machinery.
Generic Input Resources *	See $~$ Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.79: CoverApplication - Output Resources

NAME	DESCRIPTION
Component	The book block with the applied soft cover.

5.6.9 Creasing

Sheets are creased or grooved to enable folding or to create even, finished page delimiters.

Table 5.80: Creasing - Input Resources

NAME	DESCRIPTION
Component	This process consumes one Component.
CreasingParams	Details of the Creasing process. Any process coordinate transformations that apply to Creasing SHALL be specified in the respective parent Resource/@Orientation or Resource/@Transformation.
Generic Input Resources *	See Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.81: Creasing - Output Resources

NAME	DESCRIPTION
Component	One creased Component is produced.

5.6.10 Cutting

Sheets are cut using a guillotine Cutting machine.
Since Cutting is described here in a way that is machine independent as much as possible, the specified CutBlock elements do not directly imply a particular cutting sequence. Instead, the device SHALL determine the sequence.
Cutting MAY also be used to describe cutting of a web into multiple ribbons on a web press. This process is commonly referred to as "Slitting".

Table 5.82: Cutting - Input Resources

NAME	DESCRIPTION
Component	This process consumes one Component: the printed sheets.
CuttingParams	Details of the Cutting process. Any process coordinate transformations that apply to Cutting SHALL be specified in the respective parent Resource/@Orientation or Resource/ @Transformation.
Generic Input Resources *	See Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.83: Cutting - Output Resources

NAME	DESCRIPTION
Component	One or several blocks of cut Component resources are produced. The output SHOULD be partitioned by CutBlock.

5.6.11 DieMaking

This process describes the production of tools for a die cutter (e.g., in a die maker shop).
Table 5.84: DieMaking - Input Resources

NAME	DESCRIPTION
DieLayout	A resource describing the die cutter tool set.
Generic Input Resources*	See $~$ Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

NAME	DESCRIPTION
Tool	The set of tools for the die cutter. If the tool set contains multiple parts, e.g an upper an a lower die, the Tool SHALL be partitioned by Part/@Option and/or Part/@Side.

5.6.12 Embossing

The Embossing process is performed after printing to stamp a raised or depressed image (artwork or typography) into the surface of paper using engraved metal embossing dies, extreme pressure and heat. Embossing styles include blind, deboss and foil-embossed.

Table 5.86: Embossing - Input Resources

NAME	DESCRIPTION
Component	This process consumes one Component which is embossed by the process.
EmbossingParams	Parameters to setup the machinery. Any process coordinate transformations that apply to Embossing SHALL be specified in the respective parent Resource/@Orientation or Resource/@Transformation.
Media (Foil)*	Media(Foil) SHOULD be provided if an EmbossingParams/Emboss/@EmbossingType = FoilEmbossing or FoilStamping.
Tool ?	The embossing stamps or calenders. If the tool set contains multiple parts, e.g an upper an a lower stamp, the Tool SHALL be partitioned by Part/@Option and/or Part/@Side.
Generic Input Resources *	See $~$ Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.87: Embossing - Output Resources

NAME	
Component	One Component is created.

5.6.13 EndSheetGluing

EndSheetGluing finalizes the folded sheet or book block in preparation for case binding. It requires three Component resources - the back-end sheet, the book block and the front-end sheet - and information about how they are merged together. Back-end sheets and front-end sheets are in most cases sheets folded once before EndSheetGluing takes place. The end sheets serve as connections between the book block and the cover boards.

Table 5.88: EndSheetGluing - Input Resources

NAME	DESCRIPTION
Component	A back-end sheet and a front-end sheet are glued onto the book block. At least one of Component, Component (BackEndSheet) or Component (FrontEndSheet) SHALL be present.
Component (BackEndSheet)?	A back-end sheet that SHALL be mounted on the book block.
Component (FrontEndSheet) ?	A front-end sheet that SHALL be mounted on the book block.
EndSheetGluingParams	Specific parameters to set up the machinery.
Generic Input Resources *	See Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

NAME	DESCRIPTION
Component	A book block is produced that includes the end sheets.

5.6.14 Feeding

The Feeding process separates sheets or signatures from a stack, roll or stream and feeds single Components to processes such as Folding, Gathering, Collecting, ConventionalPrinting, etc.
The Feeding process allows an arbitrary complex selection of input Component elements in any number, and in any order, as long as elements are consumed consecutively (i.e., no random access within a single input component).
When specified for a web press or web finishing device, Feeding describes the process of unwinding Components from a roll.
Figure 5-5: Combined Process with Feeding Process

In our example above, one input component (Component A) consists of a collated set of three sheets, the other one (Component B) is a collated set consisting of two sheets per set. Both sets are oriented face-up (See Figure 5-6: Input Components). Figure 5-7: Output Component shows the output for the case of Gathering.

Figure 5-6: Input Components

Figure 5-7: Output Component

Note that, by default, none of the sheets is flipped, so surfaces of sheet 1 of Component A do not show in a different direction. To flip sheets, FeedingParams/CollatingItem/@Orientation MAY be specified.

Table 5.90: Feeding - Input Resources

NAME	DESCRIPTION
Component +	Sheets or signatures to be fed to the machinery. ResourceSet/@ProcessUsage of a Component MAY be specified as any valid @ProcessUsage of the feed consuming process.
FeedingParams	Specific parameters to set up the Feeding process
Generic Input Resources *	See $~$ Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.91: Feeding - Output Resources

NAME	DESCRIPTION
Component +	Component(s) fed to the consuming process.

5.6.15 Folding

Buckle folders or knife folders are used for Folding sheets. One or more sheets can be folded at the same time. Web presses often provide in-line Folding equipment. Longitudinal Folding is often performed using a former, a plow folder or a belt. While jaw folding, chopper folding or drum folding equipment is used for folding the sheets that have been divided.
The XJDF Folding process covers both operations done in stand-alone Folding machinery - typically found for processing printed materials from sheet-fed presses - and in-line equipment of web presses. Creasing and/or slot perforating are sometimes necessary parts of the Folding operation that guarantee exact process execution. They depend on the folder used, the Media and the folding layout. These operations are specified in FoldingParams/Crease and FoldingParams/ Perforate respectively.

Table 5.92: Folding - Input Resources

NAME	DESCRIPTION
Component	Component resources, including a printed sheet or a pile of sheets, are used in the Folding process.
FoldingParams	Specific parameters to set up the machinery. Any process coordinate transformations that apply to Folding SHALL be specified in the respective parent Resource/@Orientation or Resource/@Transformation.
Generic Input Resources*	See Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.93: Folding - Output Resources

NAME	DESCRIPTION
Component	The process produces a Component, which in most cases is a folded sheet.

5.6.16 Gathering

In the Gathering process, sheets or other Component resources are accumulated on a pile. Figure 5-8: Gathering shows typical gathered piles.

Figure 5-8: Gathering

Table 5.94: Gathering - Input Resources

NAME	DESCRIPTION
Assembly?	Explicitly describes the sequence of the Component resources to be gathered. If Assembly is not specified, the sequence is defined by the sequence of the Component.
Component	The Component Resource elements in the ResourceSet represent the individual signatures that SHALL be gathered on a pile. The first Resource element in XML order SHALL represent the top Component.
Generic Input Resources *	See Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.95: Gathering - Output Resources

| NAME | DESCRIPTION |
| :---: | :---: | :---: |
| Component | Components gathered together (e.g., a pile of folded sheets). |

5.6.17 Gluing

Gluing describes arbitrary methods of applying glue to a Component.
Table 5.96: Gluing - Input Resources

NAME	DESCRIPTION
Component	This process consumes one Component: the printed sheets.
GluingParams	Details of the Gluing process. Any process coordinate transformations that apply to Gluing SHALL be specified in the respective parent Resource/@Orientation or Resource/ @Transformation.
Generic Input Resources*	See Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.97: Gluing - Output Resources

NAME	DESCRIPTION
Component	One Component is produced, the input Component with glue applied to it.

5.6.18 HeadBandApplication

Head bands are applied to the hard cover book block. In case different headbands are desired for top and bottom, MiscConsumable (HeadBand) SHOULD be partitioned with Part/@Option = "Top" and Part/@Option = "Bottom".

Table 5.98: HeadBandApplication - Input Resources

NAME	DESCRIPTION
Component	The prepared book block.
HeadBandApplicationPara ms	Specific parameters to set up the machinery.
Generic Input Resources *	See $~$ Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.
MiscConsumable (BackReinforcement)?	Additional details such as color and brand of the head band MAY be specified in this MiscConsumable. If required, the strip material SHOULD be specified in MiscConsumable/@TypeDetails.
MiscConsumable (HeadBand)?	Additional details such as color and brand of the head band MAY be specified in this MiscConsumable.

Table 5.99: HeadBandApplication - Output Resources

NAME	DESCRIPTION
Component	One Component is produced: the hard cover block with head bands.

5.6.19 HoleMaking

A variety of machines (e.g., those responsible for stamping and drilling) can perform the HoleMaking process.

Table 5.100: HoleMaking - Input Resources

NAME	
Component	One Component (e.g., a printed sheet or a pile of sheets) is modified in the HoleMaking process.
HoleMakingParams	Specific parameters, including hole diameter and positions, used to set up the machin- ery. Any process coordinate transformations that apply to HoleMaking SHALL be speci- fied in the respective parent Resource/@Orientation or Resource/@Transformation.
Generic Input Resources *	See $~$ Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.101: HoleMaking - Output Resources

NAME	DESCRIPTION
Component	A Component with holes (e.g., a book block or a single sheet) is produced.

5.6.20 Inserting

This process can be performed at several stages in postpress. The process can be used to describe the labeling of products, labeling of packages or the gluing-in of a Component (e.g., a card, sheet or CD-ROM). Two Component resources are required for the Inserting process: the "mother" Component and the "child" Component. Inserting multiple child components is specified as a combined process with multiple individual Inserting steps.
Figure 5-9: Parameters and coordinate system used for Inserting

The process coordinate system is defined as follows: The Y -axis is aligned with the binding edge and increases from the registered edge to the edge opposite the registered edge. The X-axis, meanwhile, is aligned with the registered edge. It increases from the binding edge to the edge opposite the binding edge, which is the product front edge.
Table 5.102: Inserting - Input Resources (Sheet 1 of 2)

NAME	DESCRIPTION
Component	Designates where to insert the child Component.
Component (Child)	The Component that SHALL be inserted in the mother Component. Any coordinate trans- formations that apply to the child Component SHALL be specified in the respective par- ent Resource/@Orientation or Resource/@Transformation.
InsertingParams	Specific parameters (e.g., placement) to set up the machinery.

Table 5.102: Inserting - Input Resources (Sheet 2 of 2)

NAME

DESCRIPTION

Generic Input Resources *
See Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.103: Inserting - Output Resources

NAME	DESCRIPTION
Component	A mother Component is produced containing the inserted child Component.

5.6.21 Jacketing

Jacketing is the process where the book is wrapped by a jacket that needs to be folded twice. As long as the book is specified and the jacket dimensions are known, there are just a few important details. If the jacketing device also creases the jacket, this can be described with a combined process of Jacketing and Creasing.

Table 5.104: Jacketing - Input Resources

NAME	DESCRIPTION
Component (Book)	The book that the jacket is wrapped around.
Component (Jacket)	The description of the jacket.
JacketingParams	Specific parameters to set up the machinery.
Generic Input Resources *	See Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.105: Jacketing - Output Resources

NAME	
DESCRIPTION	
Component	The jacketed book.

5.6.22 Labeling

A label can be attached to a Component. The label can contain information on the addressee, the product, the product quantities, etc., which can be different for each Component.

Table 5.106: Labeling - Input Resources

NAME	DESCRIPTION
Bundle?	Bundle describes the structure of the input Component that SHALL be labeled.
Component	The Labeling process labels one Component with a set of labels.
Component (Label)?	The label to be attached to the Component.
LabelingParams	Specific parameters to set up the machinery.
Generic Input Resources *	See $~$ Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.107: Labeling - Output Resources

NAME	DESCRIPTION
Component	One Component is produced: the labeled Component.

5.6.23 Laminating

In the Laminating process, a plastic film is bonded to one or both sides of a Component resource's media, and adhered under pressure with either a thermal setting or pressure sensitive adhesive.

Table 5.108: Laminating - Input Resources

NAME	DESCRIPTION
Component	A Component SHALL be specified for Laminating.
LaminatingParams	Specific parameters to set up the machinery. Any process coordinate transformations that apply to Laminating SHALL be specified in the respective parent Resource/ @Orientation or Resource/@Transformation.
Media (Foil)?	The laminating foil material.
MiscConsumable (Glue)	Details of the dispersion glue used if LaminatingParams/ @LaminatingMethod="DispersionGlue".
MiscConsumable (Hardener)	Details of the dispersion glue hardener used if LaminatingParams/ @LaminatingMethod="DispersionGlue".
Generic Input Resources*	See Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.109: Laminating - Output Resources

NAME	DESCRIPTION
Component	One Component is produced: the laminated component.

5.6.24 LooseBinding

LooseBinding describes a binding (as for a notebook, catalog, price list) holding pages together by spiral wire, plastic combs, metal clamps, rings or metal rods.

5.6.24.1 Loose-Leaf Binding Methods

This binding techniques allow contents to be changed, inserted or removed at will. There are two essential groups of loose-leaf binding systems: those that require the paper to be punched or drilled and those that do not. The RingBinding method is the most prominent binding in the loose-leaf binding category. Loose-leaf binding methods include:
Ring binding: In this process, prepunched sheets are placed in a ring binder. Ring binders have different numbers of rings that are fixed to a metal backbone. In most cases, two, three or four metal rings hold the sheets together as long as the binding is closed. Depending on the amount of sheets to be bound together, ring binders of different thickness are be used. Additional details MAY be specified in LooseBindingParams/RingBindingDetails.

5.6.24.2 Mechanical Binding Methods

Single leafs are fastened into what is essentially a permanent system that is not meant to be reopened. However, special machinery can be used to reopen some of the mechanical binding systems described below.
In mechanical binding, printing and folding can be done in a conventional manner. The gathered sheets, however, often require the back to be trimmed, as well as the other three sides. Mechanical bindings are often used for short-run jobs such as ones that have been printed digitally. Mechanical binding methods include:
Channel Binding: Various sizes of metal clamps can be used. The process can be executed in two ways. In the first, a pile of single sheets - sometimes together with a front and back cover - is inserted into a U-shaped clamp and crimped in special machinery. In the second, a pre-assembled cover that includes the open U-shaped clamp is used instead of the U-shaped clamp alone. The thickness of the pile of sheets determines in both cases the width of the U-shaped clamp to be used for forming the fixed document, which is not meant to be reopened later. Additional details MAY be specified in LooseBindingParams/ChannelBindingDetails.
Coil Binding: Another name is spiral binding. Metal wire, wire with plastic or pure plastic is used to fasten prepunched sheets of paper, cardboard or other materials. First, automated machinery forms a spiral of proper diameter and length. The ends of the spiral are then "tucked-in". Finally, the content is permanently fixed. Note that every time a coil-bound book is opened, a vertical shift occurs as a result of the coil action. This is a characteristic of the method. Additional details MAY be specified in LooseBindingParams/CoilBindingDetails.

Comb Binding: In this method, a metal wire, wire with plastic or pure plastic insert wraps through prepunched holes in the substrate. In case of plastic combs, these holes are most often rectangular and elongated. After the comb is opened with a special tool, the prepunched block of sheets - often together with a top and bottom cover - is inserted onto the "teeth" of the comb. Additional details MAY be specified in LooseBindingParams/CombBindingDetails.
Strip Binding: Hard plastic strips are held together by plastic pins, which in turn are bound to the strips with heat. The sheets to be bound are prepunched so that the top strip with multiple pins fits through the assembled material. The top strip is then connected to the bottom strip with matching holes for the pins. The binding edge is often compressed in a special machine before the excess pin length is cut off. The backstrip is permanently fixed with plastic clamping bars and cannot be removed without a special tool.

Table 5.110: LooseBinding - Input Resources

NAME	DESCRIPTION
Component	The operation requires one component: the block of sheets to be bound. If Component (Cover) is NOT provided and there is a cover, this Component SHALL be par- titioned, and the first partition of this Component SHALL specify the cover
Component (Cover)?	Covers for LooseBinding.
LooseBindingParams	Specific parameters to set up the machinery. Any process coordinate transformations that apply to LooseBinding SHALL be specified in the respective parent Resource/ @Orientation or Resource/@Transformation.
MiscConsumable (Cover)?	Details such as brand and color of the cover excluding the spine.
MiscConsumable (Spine)?	Details such as brand and color of the spine. The spine is dependent on the binding type: ChannelBinding: the clamp/cover. CoilBinding: the coil. PlasticCombBinding: the plastic comb. RingBinding: the binders spine; see also @BinderColor. StripBinding: the strip. WireCombBinding: the wire comb.
Generic Input Resources *	See Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.111: LooseBinding - Output Resources

NAME	DESCRIPTION
Component	One Component is produced: the bound item such as a brochure.

5.6.25 Palletizing

Bundles, stacks, piles or boxes can be loaded onto a pallet.
Table 5.112: Palletizing - Input Resources

NAME	DESCRIPTION
Bundle?	Bundle describes the structure of the loaded pallets that are represented by the output Component.
Component?	The Palletizing process puts the set of Product or Component resources onto the pallet. If more than one Component resource is specified, Bundle/Bundleltem/@ItemRef SHALL also be specified for each Component.
Pallet	The pallet.
PalletizingParams	Specific parameters to set up the machinery.
Generic Input Resources *	See for all process types.

Table 5.113: Palletizing - Output Resources

NAME	DESCRIPTION
Component	One Component is produced. It represents the loaded pallet.

5.6.26 Perforating

Perforating describes any process where a Component is perforated.
Table 5.114: Perforating - Input Resources

NAME	DESCRIPTION
Component	This process consumes one Component: the printed sheets.
PerforatingParams	Details of the Perforating process. Any process coordinate transformations that apply to Perforating SHALL be specified in the respective parent Resource/@Orientation or Resource/@Transformation.
Generic Input Resources *	See Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.115: Perforating - Output Resources

NAME		DESCRIPTION
Component	One Component is produced.	

5.6.27 ShapeCutting

The ShapeCutting process can be performed using tools such as hollow form punching, perforating or die-cutting equipment.

Table 5.116: ShapeCutting - Input Resources

NAME	DESCRIPTION
Component	This process consumes one Component: The sheets to be cut.
MiscConsumable (Wire)?	Details such as brand and color of the stitching wire.
ShapeCuttingParams?	Details of the ShapeCutting process. Any process coordinate transformations that apply to ShapeCutting SHALL be specified in the respective parent Resource/@Orientation or Resource/@Transformation.
Tool ?	The set of tools (die, counter, blankers, strippers, etc.). If the tool set contains multiple parts, e.g an upper an a lower die, the Tool SHALL be partitioned by Part/@Option and/ or Part/@Side.
Generic Input Resources *	See Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.117: ShapeCutting - Output Resources

NAME	DESCRIPTION
Component	One or more Components are produced by the ShapeCutting process. The Component SHOULD be partitioned by @StationName.

5.6.28 Shrinking

The Shrinking process shrinks the shrink-wrap that is wrapped around a bundle. Shrink-wrap foil SHALL be treated in order to shrink.

Note: Shrinking does NOT include the wrapping of the Component with foil. The actual wrapping is described by the Wrapping process. See $>$ Section 5.6.40 Wrapping

Table 5.118: Shrinking - Input Resources

NAME	DESCRIPTION
Bundle?	Bundle describes the structure of the input Component that SHALL be treated.
Component	The Bundle including the shrink-wrap media is represented by this Component.
ShrinkingParams	Specific parameters to set up the machinery.
Generic Input Resources *	See Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.119: Shrinking - Output Resources

NAME	DESCRIPTION
Component	One Component is produced: the bundle including the shrunk shrink-wrap media.

5.6.29 SpinePreparation

The SpinePreparation process describes the preparation of the spine of book blocks for hard and soft cover book production (e.g., milling and notching).

Table 5.120: SpinePreparation - Input Resources

NAME	DESCRIPTION
Component	The raw book block.
SpinePreparationParams	Specific parameters to set up the machinery. Any process coordinate transformations that apply to SpinePreparation SHALL be specified in the respective parent Resource/ @Orientation or Resource/@Transformation.
Generic Input Resources *	See Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.121: SpinePreparation - Output Resources

NAME	DESCRIPTION
Component	The book block with a processed spine.

5.6.30 SpineTaping

SpineTaping describes the process of applying a tape strip to the spine of a book block. It also describes the process of applying kraft paper to a hard cover book block.

Table 5.122: SpineTaping - Input Resources

NAME	DESCRIPTION
Component	The book block that the spine is taped to.
MiscConsumable (Tape)?	Details such as brand and color of the tape.
SpineTapingParams	Specific parameters to set up the machinery. Any process coordinate transformations that apply to SpineTaping SHALL be specified in the respective parent Resource/ @Orientation or Resource/@Transformation.
Generic Input Resources *	See $~$ Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.123: SpineTaping - Output Resources

NAME	
Component	The book block with the spine.

5.6.31 Stacking

The Stacking process collects Components and produces a pile, stack or bundle for delivery. In a standard production each bundle consists of the same amount of identical products, possibly followed by one or more odd-count bundles. In a production with variable data (e.g., newspaper dispatch, demographic production or individual addressed products), each bundle has a variable amount of products, and, in the worst case, each product can be different from the others. The input components are single products; the output components are stacks of this product.

Table 5.124: Stacking - Input Resources

NAME	DESCRIPTION
Bundle?	Bundle describes the structure of the stacks that are represented by the output Component
Component	The Stacking process consumes one Component and stacks it onto a stack.
StackingParams	Specific parameters to set up the machinery. Any process coordinate transformations that apply to Stacking SHALL be specified in the respective parent Resource/ @Orientation or Resource/@Transformation.
Generic Input Resources *	See for all process types.

Table 5.125: Stacking - Output Resources

| NAME | DESCRIPTION |
| :---: | :---: | :---: |
| Component | One Component is produced: the stack of input components. |

5.6.32 StaticBlocking

The StaticBlocking process puts an electrical charge on a stack in order to hold it together for shipping.
Table 5.126: StaticBlocking - Input Resources

NAME	DESCRIPTION
Component	The StaticBlocking process puts an electrical charge on the specified Component.
StaticBlockingParams	Specific parameters for the electrical charging.
Generic Input Resources *	See $~$ Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.127: StaticBlocking - Output Resources

NAME	DESCRIPTION
Component	The resulting electrically charged Component.

5.6.33 Stitching

Gathered or collected sheets or signatures are stitched together with a cover.

Table 5.128: Stitching - Input Resources

NAME	DESCRIPTION
Component	A Component SHALL be specified that represents the pile of gathered or collected sheets, including the cover.
MiscConsumable (Wire)?	Details such as brand and color of the stitching wire.
StitchingParams	Specific parameters to set up the machinery. Any process coordinate transformations that apply to Stitching SHALL be specified in the respective parent Resource/ @Orientation or Resource/@Transformation.
Generic Input Resources *	See Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.129: Stitching - Output Resources

NAME	DESCRIPTION
Component	One Component is produced: the gathered or collected sheets including the cover stitched together.

5.6.34 Strapping

The Strapping process specifies how straps are wrapped around a bundle. The straps that are used SHOULD be specified as a MiscConsumable.

Table 5.130: Strapping - Input Resources

NAME	DESCRIPTION
Bundle?	Bundle describes the structure of the input Component that SHALL be strapped.
Component	The Strapping process puts straps around a bundle that is represented by a Component.
StrappingParams	Specific parameters to set up the machinery. Any process coordinate transformations that apply to Strapping SHALL be specified in the respective parent Resource/ @Orientation or Resource/@Transformation.
Generic Input Resources *	See $~$ Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

5.6.35 ThreadSealing

Table 5.131: Strapping - Output Resources

NAME	DESCRIPTION
Component	One Component is produced: the strapped Component.

Similar to Smythe sewing, ThreadSealing involves sewing the signatures at the spine of the book. After the signatures are sewn, they are gathered and run through the perfect binder. The perfect binder however does not grind the spine. Instead the binding adhesive (which attaches the cover) envelops the thread that holds the book together. This special thread holds to the glue to create a sewn book with most of the same properties as Smythe sewing.

Table 5.132: ThreadSealing - Input Resources (Sheet 1 of 2)

NAME	DESCRIPTION
Component	This process consumes one Component: the printed sheets.
MiscConsumable (Thread) $?$	Details such as brand and color of the thread.

Table 5.132: ThreadSealing - Input Resources (Sheet 2 of 2)

NAME	DESCRIPTION
ThreadSealingParams	Details of the ThreadSealing process. Any process coordinate transformations that apply to ThreadSealing SHALL be specified in the respective parent Resource/@Orientation or Resource/@Transformation.
Generic Input Resources*	See Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.133: ThreadSealing - Output Resources

NAME	
Component	One Component is produced.

5.6.36 ThreadSewing

This process might include a gluing application, which would be used principally between the first and the second sheet or the last and the last sheet but one. Gluing might also be necessary if different types of paper are used.

Table 5.134: ThreadSewving - Input Resources

NAME	DESCRIPTION
Component	The operation requires one component: the gathered sheets.
ThreadSewvingParams	Specific parameters to set up the machinery. Any process coordinate transformations that apply to ThreadSewing SHALL be specified in the respective parent Resource/ @Orientation or Resource/@Transformation.
Generic Input Resources *	See $~$ Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.135: ThreadSewing - Output Resources

NAME	DESCRIPTION
Component	One Component is produced: the thread-sewn components forming an item such as a raw book block.

5.6.37 Trimming

The Trimming process is performed to adjust a book block or sheet to its final size. In most cases, it follows a block joining process, and the process is often executed as an in-line operation of a production chain. For example, the binding station might deliver the book blocks to the trimmer. A combined process in the trimming machinery would then execute a cut at the front, head and tail in a cycle of two operations. Closed edges of folded signatures would then be opened while the book block is trimmed to its predetermined dimensions.
The separation of N -up multiple products is specified with a Cutting process prior to a Trimming process.
Table 5.136: Trimming - Input Resources

NAME	DESCRIPTION
Component	The bound book block or sheet that will be trimmed.
TrimmingParams	Specific parameters (e.g., trim size) to set up the machinery. Any process coordinate transformations that apply to Trimming SHALL be specified in the respective parent Resource/@Orientation or Resource/@Transformation.
Generic Input Resources *	See Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.137: Trimming - Output Resources

NAME	DESCRIPTION
Component	One Component is produced: the trimmed component.

5.6.38 WebInlineFinishing

The WeblnlineFinishing process combines all additional information about inline finishing functionality in connection with Web printing. In order to describe the WeblnlineFinishing functionality fully, it is necessary to combine additional processes like Stitching, Trimming, Gluing, etc.

Table 5.138: WebInlineFinishing - Input Resources

NAME	DESCRIPTION
Component	Printed webs or ribbons, which will be processed by the WebInlineFinishing process
Layout?	Defines how the surfaces of the bindery signatures of a single job or jobs are placed onto the web(s) or sheet(s) This information MAY be used for counting the amount of components produced.
WebInlineFinishingParams	Additional parameters for production are described by WebInlineFinishingParams
Generic Input Resources *	See Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.139: WebInlineFinishing - Output Resources

NAME	DESCRIPTION
Component	Describes the finished printed Component out of web inline finishing equipment. This could be printed and / or folded sheets or rolls. With one production run, it is possible to produce more than one product per press run. Component MAY be partitioned by @ProductPart.

5.6.39 Winding

The Winding process describes the winding of continuous media or processed components onto a core or roll stand. The setup is defined in WindingParams. The final orientation of the labels or components on the output roll is specified in Component/@WindingResult.

Table 5.140: Winding - Input Resources

NAME	DESCRIPTION
Component	Ribbon or web to be wound.
Media (Core)?	Core that the input Component is wound around.
WindingParams ?	Setup parameters of the winding process. Any process coordinate transformations that apply to Winding SHALL be specified in the respective parent Resource/@Orientation or Resource/@Transformation.
Generic Input Resources*	See Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.141: Winding - Output Resources

NAME	DESCRIPTION
Component	The roll including the core and the wound products. Component/@WindingResult SHALL be evaluated to determine the winding orientation.

5.6.40 Wrapping

Single products, bundles or pallets can be wrapped using bags, bands or wrapping material.
Table 5.142: Wrapping - Input Resources

NAME	DESCRIPTION
Bundle?	Bundle describes the structure of the input Component that SHALL be wrapped.
Component	The Wrapping process wraps a bundle that is represented by a Component.
Component (Wrapper)?	If the wrapping material is preprinted, then Component (Wrapper) represents the wrap- ping material.
MiscConsumable (Wrapper)?	Additional details of the wrapper material. Non-printed material SHOULD be repre- sented as MiscConsumable. MiscConsumable(Wrapper) SHALL NOT be present if Component (Wrapper) is provided.
WrappingParams	Specific parameters to set up the machinery.
Generic Input Resources *	See Table 5.1 Generic Input ResourceSets for additional input resources that are valid for all process types.

Table 5.143: Wrapping - Output Resources

Component One Component is produced: the wrapped Component.

6 Resources

This chapter provides a list (in alphabetical order) of all specific resource types.

6.1 Resource

Resource elements are child elements of a ResourceSet and describe the physical or logical entity in the partition context that is defined in Resource/Part. For instance a ResourceSet/@Name = "ExposedMedia" can specify a set of printing plates and each child Resource element will describe an individual plate.
Table 6.1: Resource Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
Brand ?	string	Brand or manufacturer of the Resource.
CommentURL ?	URL	URL to an external, human-readable description of the Resource.
DescriptiveName?	string	Human-readable descriptive name of the Resource. It is strongly RECOMMENDED to supply @DescriptiveName in Resource elements that describe physical entities for communication from applications to humans in order to reference the Resource.
Duration?	duration	If @Duration is specified for ResourceSet/@Usage = "Input", @Duration specifies the time duration during which the Resource will be or has been used. Note: @Duration in conjunction with @Start or @StartOffset can be used to schedule or track resources such as tools that are only required during part of the processing time as define in NodeInfo. If @Duration is specified for ResourceSet/@Usage = "Output", @Duration specifies the time that the Resource SHALL be or has been stored after it has been produced. Note: @Duration can be used to define resting periods, e.g. to allow press sheets to dry prior to further processing. Note: If @Duration is specified in descendents of Resourcelnfo it SHALL specify actual duration. In all other cases it SHALL specify a planned or requested duration.
Externalid ?	NMTOKEN	An identifier of the resource as defined in the MIS system. For instance item codes or article numbers or identifiers on semi-finished products. @ExternallD SHALL be used to uniquely identify resources and products for the purpose of inventory tracking.
GrossWeight?	float	Gross weight of a single Resource, as counted in @Amount, in grams.
ID ?	ID	Unique XJDF internal identifier of a Resource.
Orientation?	enumeration	Named orientation describing the orientation of a Resource relative to the ideal process coordinate that uses this Resource as input or output. If @Orientation is specified for an output Resource, the XJDF that processes the Resource SHALL manipulate the Resource in such a way as to reflect the transformation. The coordinate system of the Resource itself is not modified. At most one of @Orientation or @Transformation SHALL be specified. For details on coordinate systems, see $>$ Section 2.6 Coordinate Systems in XJDF. Allowed value is from: Orientation.
ResourceWeight?	float	Net weight of a single Resource, as counted in @Amount, in grams.
Start?	dateTime	Time and date when the usage of the Resource SHALL start or has started. If @Start is specified in descendents of ResourceInfo it SHALL specify an actual start time. In all other cases, it SHALL specify a planned or requested start time.

Table 6.1: Resource Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
StartOffset?	duration	Offset time when the Resource is scheduled to be used after processing has begun. @StartOffset SHALL NOT be specified if @Start is present. @StartOffset SHALL NOT be specified in the context of Resourcelnfo.
Status?	enumeration	The status of a resource indicates whether it is available for processing. @Status shall not be specified if ResourceSet/@Usage = "Output". Allowed values are: Available - Indicates that the resource is available for processing. Unavailable - Indicates that the resource is not available for processing.
Transformation?	matrix	Matrix describing the orientation of a Resource relative to the ideal process coordinate using this Resource as input or output. If @Transformation is spec- ified for an output Resource, the XJDF that processes the Resource SHALL manipulate the Resource in such a way as to reflect the transformation. The coordinate system of the resource itself is not modified. At most one of @Orientation or @Transformation SHALL be specified. For details on coordi- nate systems, see Section 2.6 Coordinate Systems in XJDF.
AmountPool ?	element	AmountPool specifies partial amounts and waste for this Resource.
Comment *	element	Any human-readable text that describes the Resource.
GeneralID*	element	Additional identifiers related to the Resource.
Part *	element	The Part elements identify the partition context of the Resource element. The structure of the Part element is defined in details on partitioned Resource elements, see Part Element. For Section 6.1.4.2 Selecting a
Partition.		
If no Part element is specified, then the Resource applies to the entire		
ResourceSet. If multiple Part elements are specified, the Resource describes		
one entity that applies to multiple partitions (e.g., the color plates that apply		
to all versions of a multi version job).		

6.1.1 AmountPool

Whereas Resource/Part identifies the context of Resource that the process is consuming or producing, AmountPool is a container for the amount-related metadata of the Resource.
The interpretation of the amounts specified in an AmountPool depends on the context of the AmountPool, i.e. AmountPool elements that are specified in descendents of Resourcelnfo elements SHALL specify actual amounts. All other AmountPool elements SHALL specify planned or requested amounts.
Table 6.2: AmountPool Element

NAME	DATA TYPE	DESCRIPTION
PartAmount +	element	PartAmount SHALL specify the amounts and waste of a resource partition.

6.1.2 PartAmount

PartAmount provides a container for specifying amount related attributes.

Note: Multiple PartAmount elements are used to specify partial completion of resources. For instance, specifying
PartAmount/Part/@Side="Front" for a Component would define the number of sheets that have been printed on the front side prior to printing the back side in a second press run.
Table 6.3: PartAmount Element

NAME	DATA TYPE	DESCRIPTION
Amount?	float	Amount, excluding waste, in units defined in ResourceSet/@Unit or implied by Table 1.6 Units Used in XJDF.
MaxAmount?	float	Defines the planned @Amount including the maximum overage. @MaxAmount SHALL NOT be specified as actual amounts.
MinAmount?	float	Defines the planned @Amount including the maximum underage that the customer is willing to accept. @MinAmount SHALL NOT be specified as actual amounts.
Waste?	float	Waste amount in units defined in ResourceSet/@Unit or implied by 1.6 Units Used in XJDF. For a resource with a @Usage of "Input", @Waste specifies the amount of the resource that MAY be consumed or has been con- sumed by the process. For an resource with a @ Usage of "Output", @ Waste specifies the amount of the resource that MAY be produced by the process.
Part *	element	Part specifies the selected parts that the PartAmount is valid for. If the parent AmountPool is specified in a Resource element that also contains Part ele- ments, then these PartAmount/Part elements SHALL NOT include any parti- tion keys that are already specified in any parent Resource/Part.
Part/Vaste *	element	Particulars of different types and/or sources of waste MAY be specified by providing one or more PartWaste elements.

6.1.2.1 Specifying Amount for a Partially-Completed Process

A process can be interrupted before the requested amount of output has been produced. When the job is resent from the controller to the device, the controller SHALL specify only the remaining @Amount that the device SHALL produce in the resent job run.

6.1.3 PartWaste

PartlWaste associates waste with individual device modules or waste types.
Note: The sum of specific waste can be higher than the total waste due to double counting.
Table 6.4: PartWaste Element

NAME	DATA TYPE	DESCRIPTION
ModuleIDs ?	NMTOKENS	Specifies the module or modules where the waste was produced.
Waste	float	Specific waste amount that SHALL be in the same units as those of the parent PartAmount
WasteDetails?	NMTOKEN	@WasteDetails specifies additional details about how the waste was pro- duced. See $~$ Table 6.5 WasteDetails Attribute Values for suggested values. At least one of @ModuleIDs or @WasteDetails SHALL be specified.

Table 6.5: WasteDetails Attribute Values

VALUE	DESCRIPTION
AuxiliarySheet	This partition identifies Media that was consumed as specified by StackingParams/ Disjointing/InsertSheet/@SheetType = "AccountingSheet", "ErrorSheet", "JobSheet" or "SeparatorSheet".
BadFeedWaste	Waste caused by a bad feed.
BindingQualityTest	Components that were destroyed in a QualityControl process that tests binding quality. Additional information about failed and passed tests SHOULD be provided in QualityControlResult.
CaliperWaste	Waste by caliper on gathering / collecting.

RESOURCES

Table 6.5: WasteDetails Attribute Values

VALUE	DESCRIPTION
DoubleFeedWaste	Waste by double feeds on feeders.
IncorrectComponentWaste	Waste by the attempted use of an incorrect components (e.g., on a feeder).
ObliqueSheetWaste	Waste by oblique sheets on gathering / collecting chains.
Overrun	Excess Component resource(s) that were produced by running the device after the spec- ified amount has been produces.
PaperJamWaste	Waste by paper or other media jam.
Rejected	Rejected in an approval process
Reusable	Waste to be used for setup in the next process.
Waste	General waste.
WhitePaperWaste	White paper waste.

6.1.4 Part

Part elements define the context in which the individual Resource is used. Resource partitions are uniquely identified by the Resource/Part elements. If multiple Part elements are specified within one Resource, the Resource specifies one entity that applies to all parts.
Note: The attributes of Part are also referred to as 'partition keys'.
Table 6.6: Part Element (Sheet 1 of 3)

NAME	DATA TYPE	DESCRIPTION
BinderySignatureID?	NMTOKEN	Master identifier of a BinderySignature.
BlockName?	NMTOKEN	Identifies a CutBlock from a Cutting process. The value of this attribute SHALL match the value of the @BlockName attribute of a CutBlock.
ContactType?	NMTOKEN	@ContactType specifies the role of a contact. @ContactType shall be provided for ResourceSet/[@Name="Contact"]. Values include: Accounting - Contact information that refers to the invoice. Administrator - Person to contact for queries concerning the execution of the job.
	Agency - The contact is an employee of an agency. Approver - Person who approves this job. ArtDelivery - Delivery contact for artwork of this job. ArtReturn - Return delivery contact for artwork of this job. Author - Customer - The end customer.	
Delivery - The delivery address for all products of this job.		
DeliveryCharge - The Contact is charged for delivery of this job.		
Designer -		
Editor -		
Employee - Employee who works for the printer that is processing this job.		
Illustrator -		
Owner - The owner of a resource.		

Table 6.6: Part Element (Sheet 2 of 3)

NAME	DATA TYPE	DESCRIPTION
DropID ?	NMTOKEN	Identifier of an individual drop within a Delivery. A drop represents one or more items being delivered to one address at one point in time. If multiple DeliveryParams contain the same @DropID, they SHOULD be delivered in one delivery, regardless of whether the DeliveryParams are defined in the same XJDF or not.
Location?	NMTOKEN	Name of a location. This part key allows the description of distributed ResourceSet items. Values include those from: - Appendix A.3.6 Input Tray and Output Bin Names.
LotID ?	NMTOKEN	Identifier of the lot of a resource in a lot controlled environment. Examples include individual reels for web printing.
Metadata?	regExp	Metadata SHALL match metadata extracted from a PDL using RunList/ MetadataMap or IdentificationField/MetadataMap. See •Section 8.21 MetadataMap.
Option?	NMTOKEN	Generic option that MAY be semantic free.
PageNumber?	IntegerRange	Page number in a Component or document (e.g., FileSpec that is not described as a RunList). References an index in a Content where Content/@ContentType = "Page".
PartVersion?	NMTOKEN	Version identifier (e.g., the language version of a catalog).
PreviewType?	enumeration	@PreviewType specifies the type and usage of a Preview. @PreviewType SHALL NOT be specified for resources other than Preview or PrevievuGenerationParams. Allowed values are: Animation - animated previews for 3D display. Identification - Preview is used as a visual help to identify one or more products, e.g. on a gang form SeparatedThumbNail - Very low resolution separated preview. Separation - Separated preview in medium resolution. SeparationRaw - Separated preview in medium resolution with no compensation. Static3D - static 3D model. ThumbNail - Very low resolution RGB preview. Viewable - RGB preview in medium resolution.
PrintCondition ?	NMTOKEN	@PrintCondition specifies a characterization data set that is applied to a specific setup including paper selection and screening. See $>$ Appendix A.3.11 PrintStandard Characterization Data Sets for details of characterization data sets.
ProductPart?	NMTOKEN	References the Product/@ID that this Part applies to.
QualityMeasurement ?	NMTOKEN	Identifier of an individual quality measurement in a QualityControl process.
Run?	NMTOKEN	@Run identifies an individual RunList Resource.
RunIndex ?	IntegerRange	@RunIndex SHALL select a set of logical pages from a RunList resource in a manner that is independent from the internal structure of the RunList. The index SHALL refer to the list of pages in the context of all documents and sets selected by @DocIndex and @SetIndex. Specifying @RunIndex in a RunList SHALL select individual pages without modifying the page position.

Table 6.6: Part Element (Sheet 3 of 3)

NAME	DATA TYPE	DESCRIPTION
Separation?	NMTOKEN	Identifies a color separation. If the separation name can be represented as an NMTOKEN, the value of @Separation SHOULD be identical to the separation name. Otherwise the separation name SHALL be provided in Resource/ Color@/ActualColorName of a Resource that contains a matching value of Part/ @Separation. Values include: Cyan - Process color. Magenta - Process color. Yellow - Process color. Black - Process color. Red - Additional process color. Green - Additional process color. Blue - Additional process color. Orange - Additional process color. Spot - Generic spot color. Used when the exact nature of the spot color is unknown. Varnish - Varnish. none - explicit reference to a skipped module (i.e., no separation). Note that "none" is spelled in lower case so that its value is identical to the predefined separation "none" in \rightarrow [PDF1.6].
SetIndex?	IntegerRange	The @SetIndex attribute SHALL select a set of logical instance document sets. The index always refers to entries of the entire RunList. Specifying @SetIndex in a RunList SHALL select individual document sets without modifying the page position.
SheetIndex?	IntegerRange	@SheetIndex selects a set of logical sheets from a RunList resource either implicitly or explicitly partitioned by @SheetIndex. @SheetIndex SHALL NOT be specified unless the RunList is describing imposed sheets or surfaces.
SheetName?	NMTOKEN	A string that uniquely identifies each sheet.
Side?	enumeration	Denotes the side of the sheet. If @Side is specified, the Part element refers to one or both surfaces of the sheet. In case of web printing, "Front" is a synonym for the upper side and "Back" for the down side of the web. Allowed value is from: side
StationName?	NMTOKEN	The name of the 1-up design in a DieLayout.
TileID ?	XYPair	XYPair of integer values that identifies a tile when a surface has been split into multiple tiles by the Imposition process. Values are zero-based and expressed in the PS coordinate system. So " 00 " is the lower left tile and " 10 " is the tile next to it on the right.
TransferCurveName ?	enumeration	@TransferCurveName SHALL specify the destination system that the TransferCurve SHALL apply to. Allowed values are: Film - The transformation from the Layout system to the "Film". Plate - The transformation from the Layout system to the "Plate". Press - The transformation from the Layout system to the "Press". Substrate - The transformation from the Layout system to the final printed substrate such as paper or plastic. Proof - The transformation from the Layout system to the "Proof".
WebName?	NMTOKEN	A string that uniquely identifies each web on a web press.

6.1.4.1 Partition Bootstrapping

Partition bootstrapping is the process that is employed by a consuming device to identify the Resource partitions that SHOULD be used when executing an XJDF.
ResourceSet[@Name = "Nodelnfo"] defines the structure of the individual planned process steps. Thus the list of ResourceSet[@Name = "Nodelnfo"]/Resource/Part defines the planned partitions that shall be searched for each workstep. The Nodelnfo structure may be a superset of the actual processes, since the planning can be less granular than the ca-
pabilities of a given device. For instance, an MIS might plan press runs on a sheet level for a non-perfecting press. In this case, each surface will be printed in one press run, and Part/@Side will have to be taken into account to retrieve the correct set of plates, even though ResourceSet/[@Name = "Nodelno"]/Resource/Part/@Side is not specified. The expansion of underspecified ResourceSet/[@Name = "Nodelnfo"] is device dependent.
Note: In general the partitioning of NodeInfo will correspond to the partitioning of the least granular resources. In the case of binding, input sheets will be ignored, since all sheets are bound together, whereas in the case of cutting, the output cut blocks will be ignored, since there will be a cutting process planned to cut the blocks.

6.1.4. Selecting a Partition

A matching partition for a given set of partition keys is selected by iterating the Resource elements of the respective ResourceSet from top to bottom. If any of the Resource/Part elements has no mismatching attributes, that Resource SHALL be selected. If a single result is expected, for instance when searching for setup parameters, the iteration SHALL stop after the first match. If multiple results are expected, for instance when selecting the process color plates for a press sheet, the iteration SHALL continue for all Resource elements of the ResourceSet.
Note: There NEED NOT be a match for any given partition. This feature can be used to exclude an operation from given partition. Thus if a process finds no matching Resource for a given set of partition keys, then this operation SHALL NOT be applied.
Note: Any Resource that contains a Part with no attributes or that contains no Part at all, SHALL always be selected.

6.1.4.3 Multiple Part Elements in One Resource

A ResourceSet MAY contain one or more Resource elements which MAY respectively contain or more Part elements. Each Resource represents one entity, regardless of the number of Part elements. If a Resource contains more than one Part element, this Resource is applicable to any of the contained Part elements. For instance a set of plates for a versioned CMYK sheet with black change for English and French versions could have 5 plates. The Cyan, Magenta and Yellow would each contain 2 Part elements with both English and French whereas the two individual Resource elements for the Black plates would contain the respective individual @PartVersion.

Example 6.1: \quad Versioned Set Of Plates with Multiple Part Elements

```
<ResourceSet Name="ExposedMedia">
    <!-- 3 Common Plates for English and French -->
    <Resource>
        <Part Separation="Cyan" PartVersion="English"/>
        <Part Separation="Cyan" PartVersion="French"/>
        <ExposedMedia .../>
    </Resource>
    <Resource>
        <Part Separation="Magenta" PartVersion="English"/>
        <Part Separation="Magenta" PartVersion="French"/>
        <ExposedMedia .../>
    </Resource>
    <Resource>
            <Part Separation="Yellow" PartVersion="English"/>
            <Part Separation="Yellow" PartVersion="French"/>
            <ExposedMedia .../>
    </Resource>
    <!-- Specific Black Plate for English -->
    <Resource>
        <Part Separation="Black" PartVersion="English"/>
            <ExposedMedia .../>
    </Resource>
    <!-- Specific Black Plate for French -->
    <Resource>
        <Part Separation="Black" PartVersion="French"/>
        <ExposedMedia .../>
    </Resource>
</ResourceSet>
```


6.2 ApprovalDetails

The signed ApprovalDetails resource indicates whether a resource has been approved or rejected.
Resource Properties
Input of Processes:

Table 6.7: ApprovalDetails Resource

NAME	DATA TYPE	DESCRIPTION
ApprovalState	enumeration	Decision made by the approver. Allowed values are: Approved - approver approved the resource. ApprovedWithComment - approver approved the resource but still had some comments. Rejected - approver rejected the resource.
ApprovalStateDetail s?	string	Additional details on the decision made by the approver are specified in this @ApprovalStateDetails. This value provides additional machine readable details of @ApprovalState. Hand written comments and notes MAY be speci- fied in ApprovalDetails/Comment.
ApprovalPerson?	element	Details of the person (e.g., a customer, printer or manager) who processed the approval.
Comment?	element	This Comment provides a container for human readable notes that are pro- vided by the approver.
FileSpec?	element	The file that contains the approval signature.

6.3 ApprovalParams

ApprovalParams provides the details of an Approval process.
Resource Properties
Intent Pairing ContentCheckIntent

Input of Processes: Approval
Table 6.8: ApprovalParams Resource

NAME	DATA TYPE	DESCRIPTION
ApprovalPerson +	element	List of people (e.g., a customer, printer or manager) who can sign the approval.

6.4 Assembly

Assembly describes how multiple BinderySignatures are bound together to produce a bound product.
Resource Properties
Input of Processes:
Collecting, Gathering, SheetOptimizing, Stripping, WebInlineFinishing
Table 6.9: Assembly Resource (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
BinderySignatureIDs ?	NMTOKENS	@BinderySignatureIDs specifies an ordered list of BinderySignature that SHALL be assembled by the method specified in @Order. @BinderySignatureIDs SHALL NOT be present, if @Order = "List".
Order	enumeration	Ordering of the individual BinderySignature elements. Order specifies the topology of the final Assembly. Allowed values are: Collecting - The sections are placed within one another. The first BinderySignature specified in @BinderySignatureIDs is on the outside. An example is a saddle-stitched brochure. See •Section 5.6.7 Collecting Gathering - The sections are placed on top of one another. The first BinderySignature specified in @BinderySignatureIDs is on the top. An example is a perfect bound magazine. See $~$ Section 5.6.16 Gathering. None - The sections are not bound. Typically used for flatwork jobs. List - The Assembly SHALL be fully described with AssemblySection elements.

Table 6.9: Assembly Resource (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
AssemblySection *	element	Each AssemblySection elements represents one section that SHALL be gath- ered. The first AssemblySection SHALL be placed on top, i.e. it is the front of the Assembly. AssemblySection elements SHALL NOT be specified unless
@Order = "List" and SHALL be specified if @Order = "List".		

6.4.1 AssemblySection

An AssemblySection represents a recursive set of BinderySignature elements. The topology of the AssemblySection elements represents the topology of the binding, where sibling AssemblySection elements SHALL be gathered from top to bottom and child AssemblySection elements SHALL be collected from outside to inside.

Table 6.10: AssemblySection Element

NAME	DATA TYPE	DESCRIPTION
BinderySignatureID?	NMTOKEN	@BinderySignatureID identifies the BinderySignature that this AssemblySection represents. @BinderySignatureID SHALL be provided if no AssemblySection child elements are provided. @BinderySignatureID SHALL NOT be provided if AssemblySection child elements are provided.
AssemblySection *	element	Additional child AssemblySection elements which SHALL be gathered. The resulting set of AssemblySection elements SHALL be collected inside this AssemblySection.

Example 6.2: Perfect Bound (Gathering)

Cover wrapped around a perfect bound (gathering) body.

```
<ResourceSet Name="Assembly">
    <Resource>
        <Assembly Order="List">
                <AssemblySection BinderySignatureID="Ass_Cover" >
                    <AssemblySection BinderySignatureID="Ass_Body1" />
                    <AssemblySection BinderySignatureID="Ass_Body2" />
                    <AssemblySection BinderySignatureID="Ass_Insert" />
                    <AssemblySection BinderySignatureID="Ass_Body3" />
                    <AssemblySection BinderySignatureID="Ass_Body4" />
                </AssemblySection >
        </Assembly>
    </Resource>
</ResourceSet>
```


Example 6.3: Saddle-Stitched Brochure (Collecting)

```
<ResourceSet Name="Assembly">
    <Resource>
        <Assembly Order="List">
            <AssemblySection BinderySignatureID="Ass_Cover" >
                    <AssemblySection BinderySignatureID="Ass_Body1" >
                <AssemblySection BinderySignatureID="Ass_Body2" >
                            <AssemblySection BinderySignatureID="Ass_Body3" >
                                    <AssemblySection BinderySignatureID="Ass_Body4" />
                            </AssemblySection >
                </AssemblySection >
            </AssemblySection >
                </AssemblySection >
        </Assembly>
    </Resource>
</ResourceSet>
```


6.5 BendingParams

BendingParams describes the parameter set for a plate bending and punching device. A plate is bent and/or punched to fit the press cylinder.

Resource Properties

Input of Processes:

Bending

Table 6.11: BendingParams Resource

NAME	DATA TYPE	DESCRIPTION
Bend?	boolean	If "true", indicates that the device SHALL bend.
Punch?	boolean	If "true", indicates that the device SHALL create registration punch holes.
PunchType?	NMTOKEN	Name of the registration punch scheme (e.g., Bacher).

6.6 BinderySignature

A BinderySignature represents both sides of a folding signature, a die cut surface or a flat product such as a postcard, each with one or more pages. Resource/Part/@BinderySignatureID shall be provided for a BinderySignature. Multiple Resource/Part elements may be provided, in which case the BinderySignature element represents multiple physical bindery signatures.
Resource Properties
Input of Processes: SheetOptimizing, Stripping
Table 6.12: BinderySignature Resource (Sheet 1 of 3)

NAME	DATA TYPE	\quad DESCRIPTION
BinderySignatureSiz $e ?$	XYPair	Size of the BinderySignature. @BinderySignatureSize shall be identical to the sum of sizes including trim of all SignatureCells.
BinderySignatureTyp e	enumeration	@BinderySignatureType specifies the type of BinderySignature and the pagi- nation rules. Allowed values are: Fold - The BinderySignature represents a folding signature.The pagination SHALL be calculated from the Assembly, Layout and BinderySignature. See Appendix F Pagination Catalog. Grid - The BinderySignature represents a grid based layout. The pagination SHALL be explicitly specified in SignatureCell/@FrontPages and SignatureCell/@BackPages. Grid SHALL be used for flatwork.
Die - a layout defined by an existing die.		

Table 6.12: BinderySignature Resource (Sheet 2 of 3)

NAME	DATA TYPE	DESCRIPTION
FoldCatalog?	NMTOKEN	$\begin{array}{l}\text { @FoldCatalog describes folding of the BinderySignature. Values are defined in } \\ \text { the folding catalog in Figure A-2: Fold Catalog Part 1 and Figure A-3: } \\ \text { Fold Catalog Part 2. If a given folding scheme is not provided in these figures, } \\ \text { a new folding scheme MAY be defined that also adheres to the naming } \\ \text { scheme Fx-n as defined in the figures. } \\ \text { Constraint: At least one of SignatureCell, @FoldCatalog or @DieLayoutRef } \\ \text { SHALL be specified. }\end{array}$
NumberUp?	XYPair	$\begin{array}{l}\text { Specifies a regular, multi-up grid of SignatureCell elements into which con- } \\ \text { tent pages are mapped. The first value specifies the number of columns of } \\ \text { SignatureCell elements, and the second value specifies the number of rows of } \\ \text { SignatureCell elements in the multi-up grid (both numbers SHALL be inte- } \\ \text { gers). }\end{array}$
Overfold?	float	$\begin{array}{l}\text { Size of the overfold. }\end{array}$
OverfoldSide?	enumeration	$\begin{array}{l}\text { Position of the overfold in the finished signature. } \\ \text { Allowed values are: } \\ \text { Back - The overfold is on the back side. All pages have an overfold. } \\ \text { BackHalf - The overfold is on the back side. Only pages on one side of the } \\ \text { unfolded signature have an overfold. }\end{array}$
Fragt - The overfold is on the front side. All pages have an overfold.		

Note: Each value MAY be negative e.g., @StaggerColumns = "0.0-0.333 0.666" specifies to shift each)

- $3^{*} \mathrm{n}$ column up by 0%
- $3^{*} \mathrm{n}+1$ column down by 33.3% of the SignatureCell height
- $3^{*} \mathrm{n}+2$ column up by 66.6% of the signatureCell height

This element SHALL NOT be present unless @BinderySignatureType="Grid". At most one of @StaggerColumns or @StaggerRows SHALL be specified.

StaggerContinuous ?	boolean

Indicates if the BinderySignature SHALL be considered as a continuous repetition for staggering. This attribute SHALL NOT be present unless exactly one of @StaggerRows or @StaggerColumns is specified. Consider a grid with m columns and n rows with @StaggerContinuous = "true". If @StaggerColumns is specified, the BinderySignature SHALL be considered continuous with a height H equal to n multiplied by the SignatureCell height. If @StaggerColumns has a value of y for a certain column, that column is shifted up (assuming $y>0$) by an amount equal to y multiplied by the signatureCell height (in the same way as described for @StaggerColumns). All content (even partial cells) that falls above H (the top of BinderySignature) is shifted to the bottom such that the top of the shifted content is just below the original bottom cell in the column. For example, if y is 0.666 , then the top 66.6% of the top cell is shifted to be just below the original bottom cell. Analogous for @StaggerRows.

StaggerRows?	FloatList

A list of values describing the staggering for subsequent rows. The number of entries in the list describes the periodicity of the staggering. Each value gives a factor of the SignatureCell width by which to shift the corresponding row.
Note: Each value MAY be negative e.g., "0.0 0.333-0.666" specifies to shift each

- $3^{*} \mathrm{n}$ row right by 0%
- $3^{*} \mathrm{n}+1$ row right by 33.3% of the SignatureCell width
- $3^{*} \mathrm{n}+2$ row left by 66.6% of the SignatureCell width

This element SHALL NOT be present unless @BinderySignatureType = "Grid". At most one of @StaggerColumns or @StaggerRows SHALL be specified.

Table 6.12: BinderySignature Resource (Sheet 3 of 3)

NAME	DATA TYPE	DESCRIPTION
SignatureCell *	element	Describes the SignatureCell elements used in this BinderySignature. SignatureCell elements are ordered in X-Y direction starting at the lower left- hand corner of the BinderySignature. When both SignatureCell and @FoldCatalog are specified, @FoldCatalog defines the topology of the folding scheme, and the specifics of each individual signature cell are described by the SignatureCell elements. The SignatureCell elements SHALL have prece- dence.

Figure 6-1: BinderySignature Trims
Position/@xxBox

BinderySignature

Margin area

StripCells

Trim / Cutoff area

6.6.1 SignatureCell

SignatureCell elements describe the geometry of one or more individual page cells in a BinderySignature.
The width (horizontal size) of a SignatureCell SHALL be calculated as the X value of @TrimBox + @TrimFace + @TrimSpine + @FrontOverfold + @BackOverfold. The height (vertical size) of a signatureCell SHALL be calculated as the Y value of @TrimHead + @TrimFoot. If no SignatureCell is specified, the exact margins should be calculated by the stripping process.

Table 6.13: SignatureCell Element (Sheet 1 of 3)

NAME	DATA TYPE	DESCRIPTION
BackPages?	IntegerList	Page numbers of the back pages of a SignatureCell. The number of entries in @FrontPages and @BackPages SHALL be identical. The entries with an identi- cal index in @FrontPages and @BackPages are back-to-back in the layout. If not specified, the layout is one-sided.
BackSpread?	IntegerList	Index of SignatureCell elements that are combined into a spread on the back side.

Table 6.13: SignatureCell Element (Sheet 2 of 3)

NAME	DATA TYPE	DESCRIPTION
BleedFace ?	float	Amount of bleed that SHALL be added to the box defined in @TrimBox at the face side.
BleedFoot?	float	Amount of bleed that SHALL be added to the box defined in @TrimBox at the foot side.
BleedHead ?	float	Amount of bleed that SHALL be added to the box defined in @TrimBox at the head side.
BleedSpine?	float	Amount of bleed that SHALL be added to the box defined in @TrimBox at the spine side.
FaceCells?	IntegerList	List of indices of SignatureCell elements that form a foldout together with this SignatureCell. The SignatureCell that contains @FaceCells is the parent of the foldout, typically the page that is attached to the spine. Details of each foldout page are described by a SignatureCell element.
FrontPages?	IntegerList	Page numbers of the front pages of a SignatureCell. Multiple page cells with the same properties except for the pages to which they are assigned MAY be summarized as one signatureCell with multiple entries in @FrontPages.
FrontSpread?	IntegerList	Index of SignatureCell elements that are combined into a spread on the front side.
Mask ?	enumeration	The definition of the clipping mask for the placed graphics. Allowed values are: None - No mask TrimBox - The mask is derived from the TrimBox as defined by the SignatureCell. BleedBox - The mask is derived from the BleedBox as defined by the SignatureCell. SourceTrimBox - The mask is derived from the TrimBox of the graphical element placed in the SignatureCell. SourceBleedBox - The mask is derived from the BleedBox of the graphical element placed in the SignatureCell. PDL - The mask is derived from the PDL of the graphics. @MaskSeparation MAY determine which separation SHALL be used as the clipping mask for the graphics. If @MaskSeparation is not present, the mask SHALL be determined from the underlying PDL, e.g. [ISO19593-1:2016]. DieCut - The mask is the cut line as defined in the DieLayout. DieBleed - The mask is the bleed line as defined in the DieLayout.
MaskBleed?	float	The distance over which to expand the mask in points.
MaskSeparation?	NMTOKEN	Color/../Resource/Part/@Separation of the Color that specifies @Mask. @MaskSeparation SHALL NOT be specified unless @Mask = "PDL". Color/ @ColorType of this separation SHALL be "DieLine".
Orientation?	enumeration	Indicates the orientation of the SignatureCell on the BinderySignature. Allowed values are: Down - 180° rotation. Left -90° counter-clockwise rotation. Right -270° counter-clockwise rotation Up - 0° rotation.
Sides?	enumeration	Sides SHALL specify which side of the media SHALL be printed. Allowed value is from: Sides.
StationName?	NMTOKEN	The name of the 1-up station in the die layout. Constraint: if BinderySignature/@BinderySignatureType = "Die", this element SHOULD be specified. Constraint: if BinderySignature/@BinderySignatureType = "Die" and BinderySignature/DieLayout contains more than 1 Station, this attribute SHALL be specified.

Table 6.13: SignatureCell Element (Sheet 3 of 3)

NAME	DATA TYPE	DESCRIPTION
TrimFace?	float	Value for the trim distance at the face side. When no Folding is done, this is the right margin. When @BinderySignatureType = "Grid", the horizontal gutter between cells is @TrimFace + @TrimSpine.
TrimFoot?	float	Value for the trim distance at the foot side. When no Folding is done, this is the bottom margin. When @BinderySignatureType = "Grid", the vertical gutter between cells is @TrimHead + @TrimFoot.
TrimHead?	float	Value for the trim distance at the head side. When no Folding is done, this is the top margin. When @BinderySignatureType = "Grid", the vertical gutter between cells is @TrimHead + @TrimFoot. Note: See • Appendix F Pagination Catalog.
TrimSize?	XYPair	Defines the dimensions of the trim box.
TrimSpine?	float	Amount of paper which is not cut-off from the spine. When no Folding is done, this is the left margin. When @BinderySignatureType = "Grid", the hori- zontal gutter between cells is @TrimFace + @TrimSpine. Note: See • Appendix F Pagination Catalog.

Figure 6-2: Definition of margins in SignatureCell

6.7 BlockPreparationParams

BlockPreparationParams describes the settings of a BlockPreparation process. For the tightbacking there are four different kinds of book forms as shown in Figure 6-3: Tightbacking for Block Preparation.

Figure 6-3: Tightbacking for Block Preparation

For the rounding and for the backing there are two additional measurement as shown in \rightarrow Figure 6-4: Rounding and Backing for Block Preparation.

Figure 6-4: Rounding and Backing for Block Preparation

NAME	DATA TYPE	DESCRIPTION
Backing?	float	Backing distance in points.
Rounding?	float	Rounding distance in points.
TightBacking?	enumeration	Definition of the geometry of the back of the book block. Allowed value is from: TightBacking.
RegisterRibbon *	element	Description of the register ribbons that are included within the book block.

6.8 BoxFoldingParams

BoxFoldingParams defines the parameters for folding and gluing blanks to folded flat boxes in a box folder-gluer device.
Resource Properties
Input of Processes: BoxFolding
Table 6.15: BoxFoldingParams Resource (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
BlankDimensions X ?	FloatList	X position of folds for an unfolded box beginning from the origin of the coordinate system (left side) increasing from minimum to maximum (expressed in points). See Figure 6-6: BoxFoldingType Attribute for values of Typeoo, Typeo1 and Type02 through •Figure 6-9: BoxFoldingType Attribute for values of Type15 and Type20. The first value of @BlankDimensions X is the position of the fold marked by Xo in a diagram (e.g., Figure 6-6: BoxFoldingType Attribute for values of Typeoo, Type01 and Type02). The second value of @BlankDimensionsX is the position of the fold marked by X1, and so on. @BlankDimensions \times SHALL NOT be specified unless @BoxFoldingType is also specified.

Table 6.15: BoxFoldingParams Resource (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
BlankDimensionsY ?	FloatList	Y position of folds for of an unfolded box beginning from the origin of the coordinate system (bottom side) increasing from minimum to maximum (expressed in points). See \rightarrow Figure 6-6: BoxFoldingType Attribute for values of Typeoo, Typeo1 and Typeo2 through Figure 6-9: BoxFoldingType Attribute for values of Type15 and Type20. The first value of @BlankDimensionsY is the position of the fold marked by Yo in a diagram (e.g., Figure 6-6: BoxFoldingType Attribute for values of Typeoo, Type01 and Type02). The second value of @BlankDimensionsY is the position of the fold marked by Y2, and so on. @BlankDimensionsY SHALL NOT be specified unless @BoxFoldingType is also present.
BoxFoldingType ?	enumeration	Basic predefined folding types. See the drawings referenced from each defined value below. Each drawing is shown from the print side with the lid at the top. Each type is described with a sequence of BoxFoldAction elements. The most common sequences (folding types) are predefined, All other are 'special' and SHALL be described in detail. Allowed values are: Type00 - Special type for boxes that are not pre-defined. See \rightarrow Figure 6-6: BoxFoldingType Attribute for values of Typeoo, Type01 and Type02. Type01 - see Figure 6-6: BoxFoldingType Attribute for values of Typeoo, Type01 and Type02. Type02 - see \downarrow Figure 6-6: BoxFoldingType Attribute for values of Typeoo, Type01 and Typeoz. Type03 - see •Figure 6-7: BoxFoldingType Attribute for values of Type03, Typeo4 and Type10. Type04 - see •Figure 6-7: BoxFoldingType Attribute for values of Type03, Typeo4 and Type10. Type10 - see •Figure 6-7: BoxFoldingType Attribute for values of Type03, Typeo4 and Type10. Type11 - see Figure 6-8: BoxFoldingType Attribute for values of Type 11, Type12 and Type13. Type12 - see Figure 6-8: BoxFoldingType Attribute for values of Type 11, Type12 and Type13. Type13 - see $\boldsymbol{*}$ Figure 6-8: BoxFoldingType Attribute for values of Type 11, Type12 and Type13. Type15 - see Figure 6-9: BoxFoldingType Attribute for values of Type15 and Typezo. Type20 - see Figure 6-9: BoxFoldingType Attribute for values of Type15 and Typezo.
BoxFoldAction *	element	Individual work step in a box folder-gluer. The sequence of BoxFoldAction and Glue elements SHALL define the sequence of work steps and MAY occur in any order. The first element SHALL be applied first. ${ }^{\text {a }}$
Glue *	element	Specification of a glue line. The Glue is applied to the blank in the coordinate system of the folder gluer at the state after all prior BoxFoldActions have been applied. The sequence of BoxFoldAction and Glue elements defines the sequence of work steps and MAY occur in any order. The first element SHALL be applied first. ${ }^{\text {a. }}$

a. The order of BoxFoldAction and Glue precisely determines the sequence of operations. Hence the normal XJDF rules for ordering XML elements does not apply.

6.8.1 BoxFoldAction

BoxFoldAction describes an action in the folder-gluer that is perpendicular or diagonal to the movement path of the blank.
Table 6.16: BoxFoldAction Element

NAME	DATA TYPE	

Table 6.17: Action Attribute Values

VALUE	DESCRIPTION
LongFoldLeftToRight	
LongFoldRightToLeft	
LongPreFoldLeftToRight	
LongPreFoldRightToLeft	
FrontFoldComplete	
FrontFoldDiagonal	A "ReverseFold" is topologically equivalent to "FrontFoldDiagonal" but uses different equipment with other restrictions on Media weight and size and is therefore specified individually.
BackFoldComplete	
BackFoldDiagonal	90° counter-clockwise rotation
BackFoldCompleteDiagonal	180° rotation ReverseFold RotatleteDiagonal Rotate180

Example 6.4: BoxFoldingParams/BoxFoldAction

For instance, processing a Type01 blank (\downarrow Figure 6-6: BoxFoldingType Attribute for values of Typeoo, Type01 and Type02) has the following actions:

```
<XJDF xmlns="http://www.CIP4.org/JDFSchema_2_0" JobID="n_001006"
    JobPartID="n_000002" Types="BoxFolding">
    <ResourceSet Name="BoxFoldingParams" Usage="Input">
        <Resource>
            <BoxFoldingParams>
                    <BoxFoldAction Action="LongPreFoldLeftToRight" FoldIndex="0 -1"/>
                    <BoxFoldAction Action="LongPreFoldRightToLeft" FoldIndex="2 -1"/>
                    <BoxFoldAction Action="LongFoldLeftToRight" FoldIndex="1 -1"/>
                    <BoxFoldAction Action="LongFoldRightToLeft" FoldIndex="3 -1"/>
            </BoxFoldingParams>
        </Resource>
    </ResourceSet>
</XJDF>
```

Figure 6-5: Folding examples for some values of BoxFoldAction/aAction

Dimensions and Actions for below Figures:

- Shown from print side, lid at the top, arrow is transport direction in folder-gluer.
- In the folder-gluer the blank box is fed with the print side down.
- From this point of view all folds are made toward the $-z$ axis.
- For front and back folds, pay attention to transport direction

Figure 6-6: BoxFoldingType Attribute for values of Type00, Type01 and Type02

Typeoo

Individual shape with customer defined dimensions and actions

Type01

X0 LongPreFoldLeftToRight X2 LongPreFoldRightToLeft X1 LongFoldLeftToRight X3 LongFoldRightToLeft

Type02

X3 LongPreFoldLeftToRight X1 LongPreFoldRightToLeft X0 LongFoldLeftToRight X2 LongFoldRightToLeft

Figure 6-7: BoxFoldingType Attribute for values of Type03, Type04 and Type10

X0 LongPreFoldLeftToRight X2 LongPreFoldRightToLeft X2/Y1: FrontFoldComplete
X4/Y1: FrontFoldComplete
X1/Y1: FrontFoldCompleteDiagonal
X3/Y1: FrontFoldCompleteDiagonal
X1 LongFoldLeftToRight
X3 LongFoldRightToLeft

X3 LongPreFoldLeftToRight
X1 LongPreFoldRightToLeft
X1/Y1: FrontFoldComplete
X3/Y1: FrontFoldComplete
$\mathrm{X} 0 / \mathrm{Y} 1$: FrontFoldCompleteDiagonal X2/Y1: FrontFoldCompleteDiagonal X0 LongFoldLeftToRight X2 LongFoldRightToLeft

Figure 6-8: BoxFoldingType Attribute for values of Type 11, Type12 and Type13

Type11
Type12

X1/Y0:
FrontFoldCompleteDiagonal
X1/Y2:
BackFoldCompleteDiagonal
X0 LongFoldLeftToRight
X2 LongFoldRightToLeft
$\mathrm{X} 0 / \mathrm{Y} 0$: FrontFoldComplete
X2/Y0: FrontFoldComplete
X0/Y2: BackFoldComplete
X2/Y2: BackFoldComplete
X1/Y0: FrontFoldCompleteDiagonal
X1/Y2: BackFoldCompleteDiagonal
X0 LongFoldLeftToRight
X2 LongFoldRightToLeft

X0 LongPreFoldLeftToRight
X1 LongPreFoldRightToLeft

Type13

$\mathrm{X} 0 / \mathrm{Y} 0$: FrontFoldComplete
X2/Y0: FrontFoldComplete
X0/Y2: BackFoldComplete
X2/Y2: BackFoldComplete
X1/Y0: FrontFoldCompleteDiagonal
X1/Y2: BackFoldCompleteDiagonal
X0 LongFoldLeftToRight
X2 LongFoldRightToLeft

Figure 6-9: BoxFoldingType Attribute for values of Type15 and Type20

Type15

Type20

Figure 6-9: BoxFoldingType Attribute for values of Type15 and Type20

X0/Y0: FrontFoldComplete
X2/Y0 FrontFoldComplete
X4/Y0 FrontFoldComplete
X0/Y2 BackFoldComplete
X2/Y2 BackFoldComplete
X4/Y2 BackFoldComplete
X1/Y0 FrontFoldCompleteDiagonal
(continued from previous column) X3/Y0 FrontFoldCompleteDiagonal X1/Y2 BackFoldCompleteDiagonal X3/Y2 BackFoldCompleteDiagonal X0 LongFoldLeftToRight X3 LongFoldRightToLeft X2 LongFoldRightToLeft

6.9 BoxPackingParams

BoxPackingParams defines the parameters for packing a box of components. Details of the box used for BoxPacking can be found in the Component (Box) resource that is also an input of the BoxPacking process.

Resource Properties

Input of Processes:
BoxPacking
Table 6.18: BoxPackingParams Resource (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
BoxType	enumeration	@BoxType specifies the general category of the package to be packed. Allowed values are: Box - Boxes are convenience packaging and are not envisioned to be protection for shipping. Carton - Cartons envisioned to be protection for shipping. Envelope - Envelopes are packages that are envisioned for shipping. Tube - Tubes are cylinder shaped cartons that are envisioned for shipping.
BoxTypeDetails ?	string	Additional details of @BoxType. @BoxType MAY be a site specific identifier. Values include: Neutral Carton Branded Carton Easter Bunny Box
ComponentsPerRow ?	integer	Components or Products per row in the shipping box, as illustrated by A in - Figure 6-10: Box packing. If the Components represent Bundles, the number of Bundles SHALL be specified.
Columns?	integer	Columns per shipping box. Columns are in the 3rd Dimension in \downarrow Figure 610: Box packing, and are thus not illustrated.
Copies ?	integer	Number of copies in the box. @Copies SHALL NOT be specified if @MaxWeight is present.
FaceDown?	enumeration	Defines the surface that is facing the bottom of the box, defining the horizontal plane. Allowed values are from: Face
Layers?	integer	Layers per shipping box, as illustrated by L in Figure 6-10: Box packing.
MaxWeight ?	float	Maximum weight of a packed box in grams. @MaxWeight SHALL NOT be specified if @Copies is present.
Pattern?	NMTOKEN	Name of the box packing pattern. Used to store a predefined pattern that defines the layers and positioning of individual component in the box or carton.
Rows?	integer	Rows per shipping box, as illustrated by R in \downarrow Figure 6-10: Box packing.
Ties ?	IntegerList	Number of tie sheets at each row. The first value is outside the first row, the next value between the first and second row and so forth. If more rows than values are specified, counting SHALL restart at the o position. If fewer layers than values are specified, all tie sheets that are not adjacent to a row SHALL be ignored.

Table 6.18: BoxPackingParams Resource (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
UnderLays?	IntegerList	Number of underlay sheets at each layer, as illustrated by U in Figure 6-10: Box packing. The first value is underneath the bottom layer, the next value above the first layer and so forth. If more layers than values are specified, counting SHALL restart at the o position. If less layers than values are speci- fied, all underlay sheets that are not adjacent to a layer SHALL be ignored.

Figure 6-10: Box packing

6.10 Bundle

Bundles are used to describe various kinds of sets of packing units such as boxes, cartons and pallets.
Resource Properties
Input of Processes: BoxPacking, Bundling, Labeling, Palletizing, Shrinking, Stacking, Strapping, Wrapping
Table 6.19: Bundle Resource

NAME	DATA TYPE	
Bundleltem +	element	References to the individual Bundleltem that form this Bundle.

6.10.1 Bundleltem

A Bundle is described as a set of Bundleltem elements. Bundleltem elements describe packages that MAY reference other Bundleltem elements which themselves can reference further Bundleltem elements.
Table 6.20: Bundleltem Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
Amount	integer	Number of identical bundle items of the same type and structure that this Bundleltem represents.
BundleType?	enumeration	@BundleType defines the type of bundle that the Bundleltem represents. Allowed values are from: Note: BundleType. ement is present.
ItemRef?	IDREF	Reference to an individual Component or Product that is represented by this Bundleltem. @ItemRef SHALL NOT be specified if a child Bundleltem element is present.
TotalAmount?	integer	Total amount of individual products that this Bundleltem contains. If @Amount !=1, then @TotalAmount refers to the total amount that is contained in all bundle items that the Bundleltem represents. If the Bundleltem or its descendent Bundleltem elements contain one or more @ltemRef that refer- ence a ProductList/Product, then @TotalAmount refers to the number of final products.
TotalDimensions?	shape	Total dimensions in points of all individual items including packaging that belong to this Bundleltem.
TotalVolume?	float	Total volume in liters of all individual items including packaging that belong to this Bundleltem.

RESOURCES

Table 6.20: Bundleltem Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
TotalWeight?	float	Total weight in gram of all individual items including packaging that belong to this Bundleltem.
Unit ?	NMTOKEN	Unit of measurement for the @Amount of the resource that is referenced by@ltemRef. Default value is from: Resource/@Unit
Bundleltem *	element	Individual Bundleltem elements that this parent Bundleltem contains. All Bundleltem elements in one level of the Bundleltem tree SHOULD have the same value of Bundleltem/@BundleType.

Figure 6-11: Packaging Process Coordinate System

Example 6.5:

The following example XJDF describes 10 pallets with 420 books in 10 boxes of 42 books each.

```
<XJDF xmlns="http://www.CIP4.org/JDFSchema_2_0" JobID="Bundle" Types="Palletizing">
    <ProductList>
        <Product Amount="4200" ID="BookProductID" IsRoot="true"/>
    </ProductList>
    <ResourceSet Name="Component" Usage="Input">
        <Resource GrossWeight="650">
            <AmountPool>
                <PartAmount Amount="4200"/>
            </AmountPool>
            <Part ProductPart="BookProductID"/>
            <Component/>
        </Resource>
    </ResourceSet>
    <ResourceSet Name="Component" Usage="Output">
        <Resource GrossWeight="50300">
            <AmountPool>
                        <PartAmount Amount="10"/>
            </AmountPool>
            <Component/>
        </Resource>
    </ResourceSet>
    <ResourceSet Name="Bundle" Usage="Input">
        <Resource>
            <Bundle>
                <BundleItem Amount="10" BundleType="Pallet" TotalAmount="4200">
                            <BundleItem Amount="10" BundleType="Carton"
                            ItemRef="BookProductID" TotalAmount="420"/>
                </BundleItem>
            </Bundle>
        </Resource>
    </ResourceSet>
</XJDF>
```


6.11 BundlingParams

BundlingParams describes the details of a Bundling process.
Resource Properties
Input of Processes: Bundling
Table 6.21: BundlingParams Resource

NAME	DATA TYPE	DESCRIPTION
Copies?	integer	Number of products within a bundle. @Copies SHALL NOT be specified if @Length is present.
Length?	float	Length of a bundle. @Length SHALL NOT be specified if @Copies is present.

Figure 6-12: BundlingParams Coordinate System

6.12 CaseMakingParams

CaseMakingParams describes the settings of a CaseMaking process for hardcover binding.
Resource Properties
Intent Pairing:
BindingIntent
Input of Processes:
CaseMaking
Figure 6-13: CaseMakingParams

Table 6.22: CaseMakingParams Resource

NAME	DATA TYPE	DESCRIPTION
BottomFoldln?	float	Defines the width of the part of the cover material on the lower edge inside of the case. If not specified, defaults to @TopFoldln.
CornerType?	NMTOKEN	Method of wrapping the corners of the cover material around the corners of the board. Values include: LibraryCorner - The American Library Corner style.
CoverWidth?	float	float
FrontFoldln?	Width of the cover cardboard in points. of the case.	
Height?	float	Height of the book case, in points.
JointWidth?	float	Width of the joint as seen when laying the cardboard on the cover material, in points.
SpineWidth?	element	Width of the spine cardboard, in points. Because the glue is applied to the whole back side of the cover material, Glue/ TopFoldln?
Glue?	Defines the width of the cover material on the top edge inside of the case.	

6.13 CasingInParams

CasingInParams describes the settings of a CasingIn process. The geometry SHALL always be centered See $>$ Figure 6-14: Parameters and coordinate system for CasingIn.

Figure 6-14: Parameters and coordinate system for Casingln

Resource Properties

Intent Pairing:
 Input of Processes:
 BindingIntent
 Casingln

Table 6.23: CasingInParams Resource (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
CaseRadius?	float	Inner radius of the case spine rounding. If not specified, no rounding of the case spine is performed.

RESOURCES

Table 6.23: CasingInParams Resource (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
CoverBoardWidth?	float	Width of the cover board. Note: Height and total case dimensions are specified in the Component(Case) of the Casingln process. For details of @CoverBoardWidth, see also $~$ Figure 6-13: CaseMakingParams.
SpineBoardWidth?	float	Width of the spine board. Note: Height and total case dimensions are specified in the Component(Case) of the Casingln process. For details of @SpineBoardWidth, see also \vee Figure 6-13: CaseMakingParams.
Glue *	element	Properties of the glue to attach the case.

6.14 Color

Color describes the details of spot color inks, process color inks and any other coating, for instance varnish or gloss coating. Spot colors are named colors that can either be separated or converted to process colors. At most one
ResourceSet[@Name = "Color"] SHALL be specified in one XJDF instance. This color ResourceSet summarizes the properties of all colorants that are used in the XJDF.
Resource/Part/@Separation SHALL be specified for each ResourceSet[@Name = "Color"]/Resource. Individual colors SHALL be referenced by selecting a Resource/Color with a matching ../Resource/Part/@Separation /Resource/Part/ @Separation SHOULD match the PDL separation name and thus Color/@ActualColorName unless the separation name cannot be represented as an NMTOKEN.

Resource Properties

Intent Pairing: ColorIntent

Table 6.24: Color Resource (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
ActualColorName?	string	Actual name of the color in the PDL. If not specified, defaults to the value of @Name ../Part/@Separation. If @ActualColorName and ../Part/@Separation are different, the separation SHALL be identified by the value of ../Part/ @Separation.
CMYK?	CMYKColor	CMYK value of the 100\% tint value of the colorant. @CMYK SHOULD be speci- fied if known and @ColorType ! = "Transparent" and @ColorType != "DieLine".
ColorBook?	string	Definition of the color identification book name that is used to represent this color. The color book name SHALL match the name defined by the color book vendor.
ColorBookEntry?	string	Definition of the Color within the standard specified by @ColorBook. This entry SHALL exactly match the color book entry as defined by the @ColorBook specified vendor, including capitalization and media type extension. When using ICC profiles, this maps to the NCL2 value of a namedColorType tag of an ICC color profile. This entry is used to map from the XJDF Color to an ICC namedColorType tag.
ColorDetails?	string	A more specific, specialized or site-defined name for the color. If @ColorDetails is supplied, @ColorName SHOULD also be supplied.
ColorName?	enumeration	Mapping to a color name. Allowed value is from: NamedColor.

Table 6.24: Color Resource (Sheet 2 of 2)

NAME	DATA TYPE	\quad DESCRIPTION
ColorType?	enumeration	$\begin{array}{l}\text { A name that characterizes the colorant. } \\ \text { Allowed values are: } \\ \text { DieLine - Marks made with colorants of this type are ignored for trapping. } \\ \text { Trapping processes need not generate a color plane for this colorant. } \\ \text { "DieLine" can be used for auxiliary process separations. "DieLine" marks } \\ \text { will generally appear on proof output but will not be marked on final out- } \\ \text { put (e.g., plates). Note that the ColorantControl resource SHALL be cor- } \\ \text { rectly set up for the RIP and that @ColorType = "DieLine" does not } \\ \text { implicitly remove the "DieLine" separation from final output. }\end{array}$
RawName?		$\begin{array}{l}\text { Normal - Marks made with colorants of this type, marks covered by colorants } \\ \text { of this type, and marks on top of colorants of this type are trapped. } \\ \text { Opaque - Marks covered by colorants of this type are ignored for trapping. } \\ \text { "Opaque" can be used for metallic inks. }\end{array}$
Opaquelgnore - Marks made with colorants of this type and marks covered by		
colorants of this type are ignored for trapping. "Opaquelgnore" can be used		
for metallic inks.		
Primer - Colors with @ColorType = "Primer" are used as background filler and		
SHALL be ignored when trapping.		

RESOURCES

6.14.1 DeviceNColor

Table 6.25: DeviceNColor Element

NAME	DATA TYPE	DESCRIPTION
ColorList	FloatList	Value of the 100\% tint value of the colorant in the ColorantControl/ DeviceNSpace that is selected by @Name. Each index SHALL refer to the sep- aration defined at the same position in DeviceNSpace/@Separations. A value of o SHALL specify no ink and a value of 1 SHALL specify full ink.
Name	NMTOKEN	@Name of the matching DeviceNSpace. Exactly one ColorantControl/ DeviceNSpace/@Name SHALL match @Name.

6.14.2 Diecutting Data (DDES3)

The following list of line types is taken from Annex A of ANSI ${ }^{\circledR}$ IT8.6-2002 Graphic Technology — Prepress Digital Data Exchange - Diecutting data [DDES3]. The list is included in the XJDF specification with permission of IT8.6.

Table 6.26: Diecutting Data (DDES3)

DDES3 LINE TYPE NUMBER	DDES3 LINE TYPE	DESCRIPTION
12	Non-varnish / UV area	Contour indicating a varnish free area
15	Printing / UV Blanket Edge	Contour enclosing a spot varnish area. Spot varnish will be applied with a varnish blanket.
16	Zipper / Tear Strip / Tear Edge (reference lines for cutting edge)	Cutting contours indicating a tear strip.
17	Wave / Scallop (reference lines for cutting edge)	Cutting contours indicating a wave /scallop.
18	Punches (reference lines for center / cutting edge)	Contours indicating the shape and center of a punch
100	Miscellaneous ruled lines for dies	
101	Knife / Cutting rule	Contour indicating how the printed artwork will be cut from the printed sheet e.g. with a guillotine cutter or die cutting device.
102	Crease / Scoring rule	Contour indicating where the substrate will be creased to guide subsequent folding.
103	Perforation (Alternating cutting and spaces)	Contour indicating where the substrate will be perforated.
104	Cutscore / Halfcut (Partial depth cutting rule)	Contour indicating where the substrate will be cut partially i.e. not entirely through the material. Cutting is done from the front side.
105	Cut-Crease rule (Alternating cutting and creasing rule)	Contour indicating alternating cutting and creasing
106	Cutscore-Crease (Alternating partial depth cutting and creasing rule)	Contour indicating alternating half-cutting and creasing
107	Reverse cutscore / halfcut (for anvil in die)	Contour indicating where the substrate will be cut partially i.e. not entirely through the material. Cutting is done from the back side.
108	Emboss / Deboss crease profile	Contour enclosing an area where embossing will be applied.

6.15 ColorantControl

ColorantControl defines how color separations of PDL or raster data SHALL be output on a target device or file. Color separations can be either output as real colorants, mapped to process colorants or ignored.
Colorants are referenced in ColorantControl by matching values of Part/@Separation. Additional details about individual colorants can be found in ResourceSet[@Name = "Color"].

Resource Properties

Intent Pairing:
Input of Processes

Output of Processes:

ColorIntent

ColorCorrection, ColorSpaceConversion, ConventionalPrinting, DigitalPrinting, ImageSetting, Interpreting, PreviewGeneration, Separation, Stripping, Trapping

ColorSpaceConversion

Table 6.27: ColorantControl Resource

NAME	DATA TYPE	DESCRIPTION
ColorantConvertProc ess?	NMTOKENS	List of colors that SHALL be converted to process colors. Defaults to all colors that are not listed in @ColorantParams. An application MAY issue a warning for all PDL colors that are not in @ColorantParams + @ColorantConvertProcess.
ColorantOrder?	NMTOKENS	The ordering of the colorant identifiers to be processed. All of the colorants named SHALL occur in the @ColorantParams list. If present, then only the colorants specified by @ColorantOrder SHALL be output. Colorants listed in the @ColorantParams, but not listed in @ColorantOrder, SHALL NOT be output. They SHALL still be processed for side effects in the colorants that are listed such as knockouts or trapping. If not present, then all colorants specified in @ColorantParams SHALL be out- put.
ColorantParams?	NMTOKENS	@ColorantParams defines all the colorant identifiers that are expected to be available on the printing device. Colorant identifiers found in the PDL that are not listed in @ColorantParams SHALL be implemented through their @ProcessColorModel equivalents. (See ColorSpaceConversion process.) The colorants implied by the value of @ProcessColorModel SHALL be specified in this list. Note: The spot colors defined in Colorlntent/SurfaceColor/@ColorsUsed will in general be mapped to @ColorantParams for each spot color to be used as part of any product intent to process conversion.
ColorantAlias *	element	element
MappingSelection?	enumeration	@MappingSelection specifies how a combination of process colorant values SHALL be obtained for any spot color when the separation spot colorant itself is not available. Allowed value is from:
ErochappingSelection.		

RESOURCES

6.15.1 ColorantAlias

ColorantAlias is an element that specifies a replacement colorant name string to be used instead of one or more named colorant strings.

Table 6.28: ColorantAlias Element

NAME	DATA TYPE	DESCRIPTION
ColorantName	string	The name of the colorant to be replaced in PDL files.
RawName?	hexBinary	@RawName represents the original 8-bit byte stream of the color specified in @ColorantName. Used to transport the original byte representation of a color name when moving XJDF tickets between computers with different locales.
ReplacementColoran tName	NMTOKEN	The separation identifier that SHALL be selected for the colorant @ColorantName.

Example 6.6: ColorantAlias/@RawName

The following example shows how the two colorants "Grün" and "grün" are mapped to the separation identifier "Spot1" which is mapped to the actual separation "Green"

```
<XJDF xmlns="http://www.CIP4.org/JDFSchema_2_0" JobID="RawName" Types="ColorSpaceConversion">
    <ResourceSet Name="ColorantControl" Usage="Input">
        <Resource>
            <ColorantControl>
                        <ColorantAlias ColorantName="Grün" RawName="4772FC6E" ReplacementColorantName="Spot1"/>
                    <ColorantAlias ColorantName="grün" RawName="6772FC6E" ReplacementColorantName="Spot1"/>
            </ColorantControl>
        </Resource>
    </ResourceSet>
    <ResourceSet Name="Color" Usage="Input">
        <Resource>
            <Part Separation="Spot1"/>
            <Color ActualColorName="Green" RawName="477265656E" sRGB="0 1 0"/>
        </Resource>
    </ResourceSet>
</XJDF>
```

The following table describes which separations are output for various values of @ProcessColorModel, @ColorantOrder, ColorantControl, and @ColorantParams. Note that all separations that are neither specified in @ColorantParams nor implied by @ProcessColorModel are mapped to the colors implied by @ProcessColorModel prior to any color selection defined by @ColorantOrder.

Table 6.29: Sample output for different values of ProcessColorModel, ColorantParams and ColorantOrder elements. (Sheet 1 of 2)

PROCESSCOLORMODEL	COLORANTPARAMS	COLORANTORDER	COLORANTS NOT SHOWN IN THE OUTPUT
DeviceCMYK	Cyan Magenta Yellow Black	Cyan Magenta	Yellow Black
DeviceCMYK	Cyan Magenta Yellow Black Spot1 Spot2	Cyan Magenta Yellow Black Spot2	Spot1

Table 6.29: Sample output for different values of ProcessColorModel, ColorantParams and ColorantOrder elements. (Sheet 2 of 2)

PROCESSCOLORMODEL	COLORANTPARAMS	COLORANTORDER	COLORANTS NOT SHOWN IN THE OUTPUT
DeviceGray	Black Spot1 Spot2	Black Spot2	Spot1
DeviceN (with example N = 2 colorants as identified in DeviceNSpace)	DeviceN1 DeviceN2 Spot1 Spot2	Spot2 DeviceN1 DeviceN2	Spot1

6.15.2 DeviceNSpace

DeviceNSpace lists the process color separations that define a non-standard process color space. Additional details of the DeviceNSpace SHOULD be provided as references to ICC profiles, e.g. in ColorSpaceConversionParams/FileSpec (FinalTargetDevice).

Table 6.30: DeviceNSpace Element

NAME	DATA TYPE	DESCRIPTION
Name	NMTOKEN	Name of the DeviceNSpace.
Separations	NMTOKENS	Ordered list of colorant identifiers that define the DeviceN color space. Addi- tional details of the colorants SHOULD be provided in ResourceSet[@Name = "Color"].

6.16 ColorCorrectionParams

ColorCorrectionParams provides the information needed to algorithmically correct colors on some PDL pages or content elements such as image, graphics or formatted text.

Resource Properties

Intent Pairing: ColorIntent
Input of Processes: ColorCorrection
Table 6.31: ColorCorrectionParams Resource

NAME	DATA TYPE	DESCRIPTION
ColorCorrectionOp *	element	List of ColorCorrectionOp subelements. ColorCorrectionOp SHOULD contain the complete set of parameters for a given color correction operation. Otherwise the results are implementation dependent.

6.16.1 ColorCorrectionOp

If present, the following attributes SHALL be applied at a point where an abstract profile would be applied following any abstract profiles used in the order: @AdjustLightness, @AdjustContrast, @AdjustSaturation, @AdjustHue.

Table 6.32: ColorCorrectionOp Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
AdjustContrast?	float	Specifies the L*a*b* contrast adjustment in the range -100 to +100 . @AdjustContrast SHALL scale the L* channel about mid-scale (where L* = 50). $\mathrm{L}_{\text {Adjust }}=50+(\mathrm{L}-50) *(@ A d j u s t$ Contrast $/ 100+1)$. Note: Increasing the contrast value increases the variation between light and dark areas and decreasing the contrast value decreases the variation between light and dark areas.

Table 6.32: ColorCorrectionOp Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
AdjustHue?	float	Specifies the change in the $L^{*}{ }^{*} * \mathrm{~b} *$ hue in the range -180 to +180 of all colors by the specified number of degrees of the color circle. $\begin{aligned} & \mathrm{a}_{\text {Adjust }}=\mathrm{a} * \cos (@ \text { AdjustHue })-\mathrm{b} * \sin (@ \text { AdjustHue }) \\ & \mathrm{b}_{\text {Adjust }}=\mathrm{a} * \sin (@ \text { AdjustHue })+\mathrm{b} * \cos (@ \text { AdjustHue }) \end{aligned}$
AdjustLightness?	float	Specifies the decrease or increase of the $L^{*} \mathrm{a} * \mathrm{~b} *$ lightness in the range -100 to + 100. @AdjustLightness SHALL offset the L* channel. LAdjust $+=$ @AdjustLightness. Note: Increasing the lightness value causes the output to appear lighter and decreasing the lightness value causes the output to appear darker.
AdjustSaturation ?	float	Specifies the increase or decrease of the $\mathrm{L} * \mathrm{a} * \mathrm{~b} *$ color saturation in the range -100 to +100. @AdjustSaturation SHALL scale the a* and b* channels around zero. $\begin{aligned} & \mathrm{a}_{\text {Adjust }} *=(@ \text { AdjustSaturation / 100 + 1) } \\ & \mathrm{b}_{\text {Adjust }} *=(@ \text { AdjustSaturation / 100 + 1) } \end{aligned}$ Note: Increasing the saturation value causes the output to contain more vibrant colors and decreasing the saturation value causes the output to contain more pastel and gray colors.
SourceObjects ?	enumerations	Identifies which class(es) of incoming graphical objects SHALL be operated on. Allowed values are from: SourceObjects.

6.17 ColorSpaceConversionParams

This set of parameters defines the rules for a ColorSpaceConversion process, the elements of which define the set of operations to be performed. Information inside the ColorSpaceConversionOp elements defines the operation and identifies the color spaces and types of objects to operate on. Other attributes define the color management system to use, as well as the working color space and the final target device.

Resource Properties

Intent Pairing:

ColorIntent, ContentCheckIntent

Input of Processes: ColorSpaceConversion
Table 6.33: ColorSpaceConversionParams Resource (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
ICCProfileUsage ?	enumeration	$\begin{array}{l}\text { @ICCProfileUsage specifies where to obtain either the destination profile or } \\ \text { device link transform that SHALL be applied. } \\ \text { Note: Use of a final target device profile provides a profiled destination to be } \\ \text { used when converting a source object through PCS (Profiled Connection } \\ \text { Space) to that profiled destination, and a device link transform specifies a } \\ \text { conversion directly of the source object from the source space directly to the } \\ \text { destination. } \\ \text { Note: PDF/X workflows assume that @ICCProfileUsage="UsePDL" } \\ \text { Allowed values are: }\end{array}$
UsePDL - If present, the embedded target profile SHALL be used.		
UseSupplied - The embedded target profile SHALL NOT be used.		

Table 6.33: ColorSpaceConversionParams Resource (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
FileSpec ?	element	A FileSpec element pointing to an ICC profile that describes the characteriza- tion of the final output target device.

6.17.1 ColorSpaceConversionOp

The ColorSpaceConversionOp element identifies a type of object, defines the source color space for that type of object, and specifies the behavior of the conversion operation for that type of object. Many of these attribute descriptions refer to ICC Color Profiles • [ICC.1]. See also the International Color Consortium (ICC) web site at http://www.color.org.
Table 6.34: ColorSpaceConversionOp Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
Operation	enumeration	@Operation specifies the task that this ColorSpaceConversionOp defines. Allowed values are: Convert - Selected graphical elements SHALL be transformed into the target color space. Tag - Selected graphical elements SHALL be tagged with the source color space defined in FileSpec(SourceProfile). Untag - The source profile SHALL be removed from all selected graphical ele- ments.
PreserveBlack?	boolean	Controls how the tints of black (K in CMYK) are to be handled. If @PreserveBlack is "false", these colors are processed through the standard ICC workflow. If @PreserveBlack is "true", these colors are to be converted into other shades of black. The algorithm is implementation-specific.
RenderingIntent?	enumeration	Identifies the rendering intent to be applied when rendering the objects selected by this ColorSpaceConversionOp. Allowed value is from:
RGBGray2Black? ReringIntent.		

RESOURCES

Table 6.34: ColorSpaceConversionOp Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
SourceRenderingInte nt?	enumeration	Identifies the rendering intent transform elements to be selected from the source profile that will be used to interpret objects of type identified by the @SourceObjects and @SourceCS attributes. Allowed value is from:
Default value is from: @RenderingIntent		
Note: The @SourceRenderingIntent will pertain to the source profile used in a		
particular ColorSpaceConversion process (e.g., sources can be the native orig-		
inal color space, an intermediate working color space or an reference output		
simulation color space).		

Table 6.35: SourceCS Attribute Values (Sheet 1 of 2)

VALUE	DESCRIPTION
All	Operates on all source color spaces. This is useful when specifying a convert operation using all PDL source-supplied characterizations with an XJDF-supplied final target device profile.
CalGray	Defines a calibrated device independent representation of gray.
Calibrated	Operates on "CalGray" and "CalRGB" color spaces.
CalRGB	defines a calibrated based device independent representation of RGB.
CIEBased	Operates on CIE-based color spaces ("CIEBasedA", "CIEBasedABC", "CIEBasedDEF" and "CIEBasedDEFG").
CMYK	Operates on all CMYK color spaces. This includes both characterized and uncharacter- ized CMYK color spaces.
DeviceCMYK	Operates on uncharacterized CMYK color spaces.
DeviceGray	Operates on uncharacterized gray color spaces.
DeviceN	Identifies the source color encoding as a "DeviceN" color space. The specific "DeviceN" color space to operate on is defined in the ColorantControl/DeviceNSpace resource. If "DeviceN" is specified, then ColorantControl/DeviceNSpace SHALL also be present.
DeviceRGB	Operates on uncharacterized RGB color spaces.
DevIndep	Operates on device independent color spaces (equivalent to "Calibrated", "CIEBased", "ICCBased", "Lab" or "YUV").
Gray	Operates on all gray color spaces. This includes both characterized and uncharacterized gray color spaces.

Table 6.35: SourceCS Attribute Values (Sheet 2 of 2)

VALUE	DESCRIPTION
ICCBased	Operates on color spaces defined using ICC profiles. The "ICCBased" value includes EPS, TIFF or PICT files with embedded ICC profiles. See $\boldsymbol{[I C C . 1] . ~ I n c l u d e s ~ P D F ~ d e v i c e ~ c o l o r ~}$ spaces that are characterized in Footnote 1 on page 137 following • Table 6.36 Mapping of SourceCS enumeration values to color spaces in the most common input file formats.
ICCCMYK	Operates on ICCBased color spaces with ICC CMYK profiles or DeviceCMYK having an ICC-based characterization. See Footnote 1 on page 137 following • Table 6.36 Mapping of SourceCS enumeration values to color spaces in the most common input file formats.
ICCGray	Operates on ICCBased color spaces with ICC gray profiles or DeviceGray having an ICCbased characterization. See Footnote 1 on page 137 following • Table 6.36 Mapping of SourceCS enumeration values to color spaces in the most common input file formats.
ICCLAB	Operates on ICC based device independent representation of LAB
ICCRGB	Operates on ICCBased color spaces with ICC RGB profiles or DeviceRGB having an ICCbased characterization. See Footnote 1 on page 137 following • Table 6.36 Mapping of SourceCS enumeration values to color spaces in the most common input file formats.
Lab	Operates on "Lab".
RGB	Operates on all RGB color spaces. This includes both characterized and uncharacterized RGB color spaces.
Separation	Operates on "Separation" color spaces (spot colors). The specific separation(s) to operate on are defined in the @Separations attribute. If no @Separations is defined, the operation will operate on all the separation color spaces in the input RunList.
YUV	Operates on "YUV" (Also known as YCbCr). See • [CCIR601-2]

Note: The following table summarizes how the @SourceCS attribute SHALL be mapped to/from different file formats.
Table 6.36: Mapping of SourceCS enumeration values to color spaces in the most common input file formats (Sheet 1 of 2)

SOURCECS	$\begin{gathered} \text { FILE } \\ \text { FORMAT } \end{gathered}$	COLOR SPACE
Calibrated	PDF (2)	CalGray, CalRGB
	PostScript (2)	n/a
	TIFF	n/a
CIEBased	PDF (2)	n/a
	PostScript (2)	CIEBasedABC, CIEBasedA, CIEBasedDEF and CIEBasedDEFG
	TIFF	n/a
CMYK	PDF (2)	DeviceCMYK (1) PDF ICCBased color spaces with ICC CMYK profiles. CIEBasedDEFG spaces that resolve to a characterized CMYK space.
	PostScript (2)	DeviceCMYK
	TIFF	$\begin{aligned} & \text { PhotometricInterp }=5 \\ & \text { Samples per pixel = } 4 \end{aligned}$
DeviceCMYK	PDF (2)	DeviceCMYK (1)
	PostScript (2)	DeviceCMYK
	TIFF	PhotometricInterp = 5 Samples per pixel $=4$

resources
Table 6.36: Mapping of SourceCS enumeration values to color spaces in the most common input file formats (Sheet 2 of 2)

| SOURCECS | |
| :--- | :--- | :--- |
| Fevice
 FORMAT | COLOR SPACE |

1) In PDF, DeviceCMYK, DeviceRGB, and DeviceGray source color spaces can be characterized through providing a DefaultCMYK, DefaultRGB, or DefaultGray resource specifying a profile to be associated with source objects in that color space. In which case, the resulting color space is considered characterized by XJDF operations.
2) Where a "Pattern" or "Indexed" color space has been used, the base color space is used to determine whether to apply this operation.

6.18 Component

Component is used to describe the various versions of semi-finished goods in the press and postpress area, such as a pile of folded sheets that have been collected and are then be joined and trimmed. Nearly every postpress process has a Component resource as an input as well as an output.

Glossary - Component

The descriptions of Component specific attributes use some terms whose meaning depends on the culture in which they are used. For example, different cultures mean different things when they refer to the "front" side of a magazine. Other terms (e.g., binding) are defined by the production process and, therefore, do not depend on the culture.
Whenever possible, this specification endeavors to use culturally independent terms. In cases where this is not possible, western style (left-to-right writing) is assumed. Please note that these terms might have a different meaning in other cultures (i.e., those writing from right to left).
Figure 6-15: Component - terms and definitions

Resource Properties

Resource referenced by: Input of Processes:

Output of Processes:

Bundle/Bundleltem, FeedingParams/Feeder, FeedingParams/Collatingltem
Product Intent, ConventionalPrinting, DigitalPrinting, Varnishing, BlockPreparation, BoxFolding, BoxPacking, Bundling, CaseMaking, Casingln, Collecting, CoverApplication, Creasing, Cutting, Embossing, EndSheetGluing, Feeding, Folding, Gathering, Gluing, HeadBandApplication, HoleMaking, Inserting, Jacketing, Labeling, Laminating, LooseBinding, Palletizing, Perforating, ShapeCutting, Shrinking, SpinePreparation, SpineTaping, Stacking, StaticBlocking, Stitching, Strapping, ThreadSealing, ThreadSewing, Trimming, WebInlineFinishing, Winding, Wrapping
Product Intent, ConventionalPrinting, DigitalPrinting, Varnishing, BlockPreparation, BoxFolding, BoxPacking, Bundling, CaseMaking, Casingln, Collecting, CoverApplication, Creasing, Cutting, Embossing, EndSheetGluing, Feeding, Folding, Gathering, Gluing, HeadBandApplication, HoleMaking, Inserting, Jacketing, Labeling, Laminating, LooseBinding, Palletizing, Perforating, ShapeCutting, Shrinking, SpinePreparation, SpineTaping, Stacking,

Table 6.37: Component Resource (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
Automation?	enumeration	Identifies dynamic and static components. When a Component is referenced from a binding process, @Automation modifies the scope of the Component that SHALL be bound. If @Automation = "Static", the individual Component elements that SHALL be bound are one instance of the referenced Component. If @Automation = "Dynamic", the individual Component elements that SHALL be bound are identified by Resource/ Part of this Component. Generating Resource/Part in automated imposition is defined in detail in: Section 5.4.8.1 Execution Model for Automated Imposition. Allowed value is from: Automation. Note: If @Automation = "Dynamic" and @PipeID is also present, details are specified in XJMF pipe messages. See ${ }^{\text {Section 9.3.5.1 Dynamic Pipes. If an }}$ IdentificationField/MetadataMap element is present, the details are controlled by the barcode that is represented by IdentificationField/MetadataMap.
CartonTopFlaps ?	XYPair	Size (F1,F2) (See \rightarrow Figure 6-10: Box packing) of the two top flaps of a carton or box. SHALL NOT be specified unless @ProductType = "Carton" or @ProductType = "Box".
Columns?	integer	Number of columns of images that are placed on a finished roll, such as by the Winding process. This value is typically used to describe rolls with multiple columns of printed labels.
Dimensions?	shape	The dimensions of the component. These dimensions MAY differ from the original size of the original product. For example, the dimensions of a folded sheet MAY be unequal to the dimensions of the sheet before it was folded. The dimension is always the bounding box around the Component. If not specified, a portrait orientation ($\mathrm{Y}>\mathrm{X}$) is assumed Note: It is crucial for enabling postpress to specify @Dimensions unless they really are unknown.
ContentRefs ?	IDREFS	Reference to Content that provides metadata related to this Component.
MaxHeat ?	float	Maximum temperature the Component can resist (in degrees centigrade). The default setting SHALL impose no restriction in terms of heat (e.g., fusers in electrophotographic process or shrink wrapping).
MediaRef ?	IDREF	Reference to the Media for the component.
Overfold ?	float	Expansion of the overfold of a Component. This attribute is needed for Inserting or other postpress processes.
OverfoldSide?	enumeration	Specifies the longer side of a folded component. Allowed value is from: - Side
ProductType?	NMTOKEN	Type of product that this component specifies. Values include those from: Appendix A.3.12 Product Types.
ProductTypeDetails ?	string	@ProductTypeDetails specifies additional details of the product or product part which may be site specific and may be human readable. @ProductType should be specified if @ProductTypeDetails is supplied. If @ProductType = "BlankBox" or @ProductType = "FlatBox", @ProductTypeDetails specifies a box type (e.g., \quad [ECMA], [FEFCO] or company internal box type standard).
ReaderPageCount?	integer	Total amount of individual reader pages that this Component contains.
SurfaceCount?	integer	Total amount of individual surfaces that this Component contains. Note: A sheet always has two surfaces regardless of the number of images or reader pages. In case of homogeneous Component elements, @SurfaceCount refers to surfaces with a size of Component/@Dimensions

Table 6.37: Component Resource (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
WindingResult?	integer	Orientation of the finished product on the roll. For an image, see Figure 6- 16: Orientation of the Finished Product on the Roll. The integers in the figure correspond to values specified by the labeling trade association, refer to [FINAT]. Note: The orientation and number of windings in a Winding process are mod- ified based on the value of @WindingResult.
IdentificationField *	element	IdentificationField associates bar codes or labels with this Component.

Figure 6-16: Orientation of the Finished Product on the Roll

6.19 Contact

Element describing a contact to a person or address. The @Externalld attribute in the parent Resource element SHALL be unique within the company.

Resource Properties

Resource referenced by: ApprovalParams/ApprovalPerson, ApprovalDetails, Content/ContentMetadata, CustomerInfo, DeliveryParams,
Table 6.38: Contact Resource

NAME	DATA TYPE	DESCRIPTION
ContactTypeDetails?	string	@ContactTypeDetails specifies the details of the contact's role or roles. If Part/@ContactType = "Employee", then @ContactTypeDetails SHALL define the list of roles that the employee fills. Values include: Apprentice - Employee that is in training ("Auszubildender" / "Auszubil- dende" / "Stift" in German). Assistant - Assistant operator. Craftsman - Trained employee ("Geselle" / "Facharbeiter" in German). CSR - Customer Service Representative Manager - Manager. Master - Highly trained employee ("Meister" in German). Operator - Operator. ShiftLeader - The leader of the shift. StandBy - Employee who is allocated to a specific task on demand.
CostCenterID?	NMTOKEN	Identifier of the cost center that this Contact belongs to if Part/@ContactType $=$ "Employee".
UserID?	string	User ID of user, as specified when logging into the operating system or into the submitting application.
Address?	element	Element describing the address.
ComChannel *	element	Communication channels such as phone number of email of the contact.
Company?	element	Company that this Contact is associated with.
Person?	element	Name of the contact person.

6.19.1 ComChannel

A communication channel to a person or company such as an email address, phone number or fax number.

Table 6.39: ComChannel Element

NAME	DATA TYPE	DESCRIPTION
ChannelType	NMTOKEN	Type of the communication channel. Values include: ComputerName Email - Email address. Fax - Fax machine. JMF - XJMF messaging channel. Mobile - Mobile phone. Phone - Telephone number. This SHOULD be restricted to land line phones. WWW - WWW home page or form.
ChannelUsage?	NMTOKENS	Communication channel usage. Values include: Business - Business purpose usage (e.g., office phone number, fax). Private - Private purpose usage (e.g., private phone number, fax, email). DayTime - Office hours in the time zone of the recipient. NightTime - Out-of-office hours in the time zone of the recipient. WeekEnd - Out-of-office hours in the time zone of the recipient.
Locator	string	Locator of this type of channel in a form, such as a phone number, a URL or an email address. If a URL is defined for the @ChannelType, it is RECOMMENDED to use the URL syntax specified in [[RFC2368] for "mailto" URLs, - [RFC3966] for "tel" URLs and \bullet [RFC3986] for URLs in general, as follows: Values include: "mailto:a@b.com" - instead of "a@b.com" if @ChannelType = "Email", "tel:+49-69-92058800" - if @ChannelType = "Phone" and "tel:+49.6151.155.299" - if @ChannelType = "Fax".

6.19.2 Company

Company defines the organization name and organizational units (ORG) of the organizational properties defined in - [vCard]. @CompanyID SHALL be globally unique across all companies.

Table 6.40: Company Element

NAME	DATA TYPE	DESCRIPTION
CompanyID?	NMTOKEN	An ID of the company. The @CompanyID attribute for each specified company SHALL be unique within the company (i.e., the company's database).
OrganizationName	string	Name of the organization or company (vCard: ORG:orgnam (e.g., ABC, Inc.)).
OrganizationalUnit $*$	text element	Describes the organizational unit (vCard: ORG:orgunit. For example, if two elements are present: 1.

6.19.3 Person

This element provides detailed information about a person. It also has the ability to specify different communication channels to this person. Use @ExternallD when a unique identifier for the Person is required. The structure of the element is derived from the vCard format, see \bullet [vCard]. It contains all of the same name subtypes ($\mathrm{N}:$) of the identification and the title of the organizational properties. The corresponding XML types of the vCard are quoted in the description field of the table below.

Table 6.41: Person Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
AdditionalNames ?	string	Additional names of the contact person. See \downarrow [vCard]N:other.
FamilyName?	string	The family name of the contact person. See \downarrow [vCard]N:family.
FirstName?	string	The first name of the contact person. See \downarrow [vCard]N:given.

Table 6.41: Person Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
JobTitle?	string	Job function of the person in the company or organization. See [vCard]TITLE.
Languages?	languages	List of languages related to the person, ordered by decreasing preference.
NamePrefix ?	string	Prefix of the name, can include title. See \downarrow [vCard]N:prefix.
NameSuffix ?	string	Suffix of the name. See \downarrow [vCard]N:suffix.
PhoneticFirstName?	string	Alternative spelling of a first name. Used (e.g., for pronunciation of Kanji (Japanese) names). See \quad [vCard]X-PHONETIC-FIRST-NAME.
PhoneticLastName?	string	Alternative spelling of a last name. Used (e.g., for pronunciation of Kanji (Japanese) names). See \quad [vCard]X-PHONETIC-LAST-NAME

6.20 Content

Resource Properties

Resource referenced by: RunList

Content defines the additional metadata of individual graphic elements.
Table 6.42: Content Resource (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
BinderySignatureIDs $?$	NMTOKENS	If specified, @BinderySignatureIDs SHALL list the BinderySignature/ @BinderySignatureID of all bindery signatures that this Content applies to.
ContentStatus?	NMTOKENS	Status of a single Content element. Values include those from: ${ }^{\prime}$ Table 6.43 ContentStatus Attribute Values.
ContentType?	NMTOKEN	Type of content. Values include those from:
HasBleeds? Table 6.44 ContentType Attribute Values.		

RESOURCES

Table 6.42: Content Resource (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
FileSpec *	element	Reference to dependent references such as fonts, external images, etc. Each FileSpec/@ResourceUsage SHOULD have one of the following values: Font - The file references a font. Image - The file references image data. PDL - The file references page definition language data such as PDF.
ImageCompression $?$	element	Specification of the image compression properties.
OCGControl *	element	ocGControl provides a list of the OCGs (layers) that SHALL be included or excluded. Any OCGs (layers) not listed in an OCGControl element SHALL fol- low the rules defined by the underlying PDL.
PositionObj *	element	Definition of the size and positioning of any child Content elements.
ScreenSelector?	element	Specification of the screening properties of the Content.

Table 6.43: ContentStatus Attribute Values

VALUE	DESCRIPTION
Accepted	The receiver acknowledged that the files are accessible for their destination.
Approved	Planned proofs have been approved.
BindingCompleted	All binding worksteps including packing of the job have been completed. Postpress worksteps are defined according to
BindingInProgress	At least one of the binding worksteps of the job is in progress status.
Deleted	Specifies that the content was deleted.
DigitalArtArrived	Digital content has been received.
PostPressCompleted	All postpress worksteps including packing of the job have been completed. Postpress worksteps are defined according to Section 5.6 Postpress Processes.
PostPressInProgress	At least one of the postpress worksteps of the job is in progress status.
PrePressCompleted	All prepress worksteps of the job have been completed. Prepress worksteps are defined according to $~$ Section 5.4 Prepress Processes. In conventional prepress, this is the case when all plates have been made.
PrePressInProgress	At least one of the prepress worksteps of the job is in progress status.
PressCompleted	All press worksteps of the job have been completed. Press worksteps are defined according to $~$ Section 5.5 Press Processes.
PressInProgress	At least one of the press worksteps of the job is in progress status.
Proofed	Planned proofs have been made.
ProofSent	Planned proofs sent to customer.
ShippingCompleted	Final product was delivered to the customer or distributors.
SurfaceAssigned	Final product is being shipped.

Table 6.44: ContentType Attribute Values (Sheet 1 of 2)

Table 6.44: ContentType Attribute Values (Sheet 2 of 2)

VALUE	DESCRIPTION
Article	The content represents a single article. Including headers, text bodies, photos etc.
Barcode	A barcode.
Composed	Combination of elements that define an element that is not bound to a document page.
Editorial	Defines this element to contain editorial matter (e.g., text, photos etc.).
Graphic	Line art.
IdentificationField	A general identification field excluding bar codes.
Image	Bitmap image.
Page	Representation of one document page.
Surface	Representation of an imposed surface.
Text	Formatted or unformatted text.

6.20.1 BarcodeProductionParams

BarcodeProductionParams describes of the specific parameters for barcode production.
Table 6.45: BarcodeProductionParams Element

NAME	DATA TYPE	DESCRIPTION
BarcodeReproPara ms?	element	Description of the formatting and reproduction parameters for barcode pro- duction.
IdentificationField?	element	Description of the barcode metadata.

6.20.2 ContentMetadata

ContentMetadata is a container for metadata pertaining to this Content resource.
Table 6.46: ContentMetadata Element

NAME	DATA TYPE	DESCRIPTION
ContactRefs ?	IDREFS	@ContactRef SHALL reference the Contacts that represent the various contact types that are responsible for this content.
ISBN ?	NMTOKEN	An International Standard Book Number, that allows for both 10 and 13 digit values. (see \downarrow [ISO2108:2005])
Title?	NMTOKEN	The title of the content.
Comment ?	element	If required, an abstract MAY be specified in Comment[@Name = "Abstract"].
GeneralID *	element	Additional metadata MAY be defined by adding GeneralID elements.

6.20.3 PositionObj

PositionObj describes the size and position of the Content.
Table 6.47: PositionObj Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
Anchor?	enumeration	@Anchor specifies the origin $(0,0)$ of the coordinate system in the unrotated Content. Allowed value is from: Anchor.

Table 6.47: PositionObj Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
CTM ?	matrix	Transformation matrix of the origin of Content as specified by @Anchor. Note: This is not necessarily the actual CTM that will position a given Content. The actual CTM SHALL be recalculated based on the values of @Anchor and @Size.
PageRange?	IntegerRange	Reader page index in the Content referenced by RefAnchor.
PositionPolicy?	enumeration	Specifies the level of freedom when applying the values specified in PositionObj. Allowed value is from: PositionPolicy
RelativeSize?	XYPair	Specifies the size of the unrotated and unscaled object, relative to the parent specified in RefAnchor.
RotationPolicy?	enumeration	Specifies the level of freedom when applying the values specified in PositionObj. Allowed value is from: PositionPolicy
Size?	XYPair	Specifies the size of the unrotated and unscaled object, in points.
SizePolicy?	enumeration	Specifies the level of freedom when applying the values specified in PositionObj. Allowed value is from: PositionPolicy
RefAnchor?	element	Reference to a Content that this Content is positioned relative to. If RefAnchor is not specified, PositionObj refers to the lower left of the first page specified in @PageRange.

6.21 ConventionalPrintingParams

ConventionalPrintingParams defines the device specific setup of the ConventionalPrinting process.

Resource Properties

Input of Processes: ConventionalPrinting
Table 6.48: ConventionalPrintingParams Resource

NAME	DATA TYPE	DESCRIPTION
Drying?	enumeration	The way in which ink is dried after a print run. Allowed value is from: $~$ Drying.
FirstSurface?	enumeration	Printing order of the surfaces on the sheet. Allowed value is from: Side
FountainSolution?	enumeration	State of the fountain solution module in the printing units. Allowed values are: On Off
ModuleDrying?	enumeration	The way in which ink is dried in individual modules. Allowed value is from: Drying.
Powder?	float	enumeration
SheetLay?	Lay of input media. Reference edge of where paper is placed in a feeder. Allowed value is from: $~$ SheetLay.	
Speed?	float	Maximum print speed in sheets/hour (sheet fed) or revolutions/hour (Web- Fed). Defaults to device specific full speed.
WorkStyle?	enumeration	The direction in which to turn the press sheet. Allowed value is from: WorkStyle.

6.22 CoverApplicationParams

CoverApplicationParams define the parameters for applying a cover to a book block.

Resource Properties

Intent Pairing:
Input of Processes:

BindingIntent

CoverApplication

Table 6.49: CoverApplicationParams Resource

NAME	DATA TYPE	DESCRIPTION
Glue *	element	Describes where and how to apply glue to the book block.
Score *	element	Describes where and how to score the cover. The sequence of Score elements SHALL specify the sequence in which the tool is applied.

6.22.1 Score

Table 6.50: Score Element

NAME	DATA TYPE	DESCRIPTION
Offset	float	Position of scoring given in the operation coordinate system.
Side	enumeration	Specifies the side from which the scoring tool works. Allowed values are: Fromlnside FromOutside

Figure 6-17: Parameters and coordinate system for cover application

Figure 6-18: Parameters and coordinate system for glue application

6.23 CreasingParams

CreasingParams define the parameters for creasing or grooving a sheet.

Resource Properties

Intent Pairing:
FoldingIntent
Input of Processes:
Creasing
Table 6.51: CreasingParams Resource

NAME	DATA TYPE	DESCRIPTION
Crease +	element	Each Crease element defines one crease line.

6.24 CustomerInfo

The CustomerInfo resource contains information about the customer who orders the job.
Note: Additional details about the customer can be found in Contact with Part/@ContactType = "Customer".
Resource Properties
Input of Processes:
Any Process
Table 6.52: CustomerInfo Resource

NAME	DATA TYPE	DESCRIPTION
CustomerID?	NMTOKEN	Customer identification used by the application that created the job. This is usually the internal customer number of the MIS system that created the job.
CustomerJobName?	string	The human readable descriptive name that the customer uses to refer to the job.
CustomerOrderID?	string	The internal order number in the system of the customer. This number is usually provided when the order is placed and then referenced on the order confirmation or the bill.
CustomerProjectID?	string	The internal project id in the system of the customer. This number MAY be provided when the order is placed and then referenced on the order confir- mation or the bill.

6.25 CuttingParams

CuttingParams describes the parameters of a Cutting process that uses either Cut elements or CutBlock elements as input. If CuttingParams is partitioned by @BlockName, Part/@BlockName SHALL specify the input CutBlock.
Resource Properties
Intent Pairing:

FoldingIntent, ShapeCuttingIntent

Input of Processes:
Cutting
Table 6.53: CuttingParams Resource

NAME	DATA TYPE	DESCRIPTION
SheetLay?	enumeration	Lay of the input Component. Allowed value is from: SheetLay.Note: @SheetLay does not modify the co- ordinate references of the Cutting process.
Cut*	element	Cut elements describe an individual cut. The cuts shall be performed in the same sequence as they occur in this CuttingParams. Cut elements SHALL NOT be specified if CutBlock elements are specified.
CutBlock *	element	These CutBlock elements describe the output cut blocks that SHALL be cut out of the input Component. CutBlock elements SHALL NOT be written if Cut ele- ments are specified. CuttingParams SHALL NOT be partitioned by
@BlockName values that match CutBlock/@BlockName.		

6.25.1 CutBlock

CutBlock specifies exactly one cut block on a sheet. The CutBlock SHALL be defined in the coordinate system of the input Component.

Table 6.54: CutBlock Element

NAME	DATA TYPE	DESCRIPTION
BinderySignatureIDs $?$	NMTOKENS	If specified, @BinderySignatureIDs SHALL list the BinderySignature/ @BinderySignatureID of all BinderySignatures that comprise this CutBlock.
BlockName	NMTOKEN	Name of the block. The output Component of the Cutting process SHALL be partitioned by Part/@BlockName. The values of Part/@BlockName shall match the value of this @BlockName
Box?	rectangle	Defines the position and size of the block relative to the parent Component coordinate system.
CutWidth?	float	Width in points of the u-shaped knife, saw blade, etc.

6.26 DeliveryParams

DeliveryParams provides information needed by a Delivery process. A Delivery process is the sending or receiving of one or more products to one or more delivery destinations. Delivery is also used to specify the scheduled transfer of digital assets.
Resource Properties
Input of Processes: Delivery
Table 6.55: DeliveryParams Resource (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
BuyerAccount?	string	Account ID of the buyer with the delivery service.
Earliest?	dateTime	@Earliest SHALL specify the earliest date and time after which the delivery is intended to be made.

RESOURCES

Table 6.55: DeliveryParams Resource (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
EarliestDuration?	duration	@EarliestDuration SHALL specify the earliest duration by which the delivery SHALL be made relative to the date and time that the order is ready for production.
Method ?	NMTOKEN	Specifies a delivery method. Values include: Courier CourierNoSignature - a delivery service that does not require receipt stamps at recipient's mailbox and/or mail room. This value covers the commonly used Japanese 'Mail bin' delivery service. Email ExpressMail InstantMessaging InterofficeMail Ground Local - The files are already in place. NetworkCopy - This includes LAN and VPN. Storage - The product is stored by the supplier.
Ownership?	enumeration	Point of transfer of ownership: Allowed values are: Origin - Ownership of goods is transferred upon leaving point of origin. Destination - Ownership is transferred upon receipt at destination.
Required ?	dateTime	@Required SHALL specify the date and time by which the delivery is intended to be made.
RequiredDuration?	duration	@RequiredDuration SHALL specify the time duration by which the delivery SHALL be made relative to the date and time that the order is ready for production.
TrackingID ?	string	The carrier's identifier for the delivery. The format of @TrackingID is determined by the carrier chosen to ship the products.
Transfer?	enumeration	Describes the direction and responsibility of the transfer. Allowed values are: BuyerToPrinterDeliver - The DeliveryParams describes an input to the job (e.g., a CD for inserting, a preprinted cover, etc.). In this case, the buyer delivers the merchandise to the printer. BuyerToPrinterPickup - The DeliveryParams describes an input to the job (e.g., a CD for inserting, a preprinted cover, etc.). In this case, the printer picks up the merchandise. PrinterToBuyerDeliver - The DeliveryParams describes an output of the job. In this case, the printer delivers the merchandise to the buyer. PrinterToBuyerPickup - The DeliveryParams describes an output of the job. In this case, the buyer picks up the merchandise.
Dropltem *	element	A delivery MAY consist of multiple products. Each Dropltem describes an individual Resource or Product that is part of this delivery.
FileSpec (DeliveryContents) ?	element	A FileSpec element that references a document that SHALL be printed and packaged together with the delivered items.
FileSpec (MailingList) ?	element	A FileSpec element pointing to a mailing list. The format of the referenced mailing list is implementation dependent.
FileSpec (RemoteURL) ?	element	A FileSpec element that specifies the remote location of a digital delivery.

6.26.1 Dropltem

Table 6.56: Dropltem Element

NAME	DATA TYPE	DESCRIPTION
Amount	integer	@Amount SHALL be present and specify the number of products or resources that comprise this Dropltem.
ItemRef	IDREF	@ItemRef SHALL reference the Resource, ResourceSet, Proofltem or ProductList/Product that represents the individual items to be delivered. If the Dropltem references a final product, @ItemRef SHALL reference a ProductList/Product.
TotalDimensions?	shape	Total dimensions in points of all individual items including packaging.
TotalVolume?	float	Total volume in liters of all individual items including packaging.
TotalWeight?	float	Total weight in gram of all individual items including packaging.
Unit?	NMTOKEN	Unit of measurement for the @Amount of the resource that is referenced by @ltemRef. Default value is from: Resource/@Unit

6.27 DevelopingParams

DevelopingParams specifies information about the chemical and physical properties of the developing and fixing process for film and plates. Includes details of preheating, postbaking and postexposure.

- Preheating is necessary for negative working plates. It hardens the exposed areas of the plate to make it durable
for the following developing process. The stability and uniformity of the preheat temperature influence the evenness of tints and the run length of the plate on press.
- Postbaking is an optional process of heating that is applied to most polymer plates to enhance the run length of the plate. A factor 5 to 10 can be gained compared to plates that are not postbaked.
- Postexposure is an optional exposure process for photopolymer plates to enhance the run length of the plate. A factor of 5 to 10 can be gained compared with plates that are not postexposed.

Resource Properties

Input of Processes: ImageSetting
Table 6.57: DevelopingParams Resource

NAME	DATA TYPE	DESCRIPTION
PreHeatTemp?	float	Temperature of the preheating process in ${ }^{\circ} \mathrm{C}$.
PreHeatTime?	duration	Duration of the preheating process.
PostBakeTemp?	float	Temperature of the postbaking process in ${ }^{\circ} \mathrm{C}$ @PostBakeTemp shall not be specified if @PostExposeTime is present.
PostBakeTime?	duration	Duration of the postbaking process. @PostBakeTime SHALL NOT be specified if @PostExposeTime is present.
PostExposeTime?	duration	Duration of the postexposing process. @PostExposeTime SHALL NOT be spec- ified if @PostBakeTime is present.

6.28 Device

Device describes the physical properties of the main device that executes an XJDF process. See Chapter 5 Processes. Examples are a press or a finishing machine. See Tool for a description of auxiliary devices such as fork lifts.

Resource Properties

Resource referenced by: AuditStatus, DeviceFilter, Devicelnfo, Queue, QueueFilter, DieLayout, DieLayoutProductionParams/ConvertingConfig, InkZoneCalculationParams, Layout

Table 6.58: Device Resource (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
CostCenterID ?	NMTOKEN	MIS cost center ID.
DescriptiveName?	string	Human readable description of the device.
DeviceClass?	NMTOKENS	Indicates the class of device. Multiple NMTOKENS SHALL be used to describe integrated devices with multiple classes. Values include those from: Appendix A.3.2 Device Classes.
DevicelD ?	NMTOKEN	Identifier of the device. @DeviceID SHALL be unique within the workflow. @DeviceID SHALL be the same over time for a specific device instance (i.e., SHALL survive reboots). If the device sends XJMF messages, this value SHALL also used for XJMF@DeviceID and @DeviceID of the specific messages.
DeviceType?	string	Manufacturer type ID, including a revision stamp. Type of the device. Used for grouping and filtering of devices
ICSVersions?	NMTOKENS	CIP4 Interoperability Conformance Specification (ICS) Versions that this Device complies with. Values include those from: JDF/@ICSVersions (${ }^{(}$Table 3.1 XJDF).
JDFVersions?	enumerations	Whitespace separated list of supported JDF and XJDF versions that this device supports. Allowed values are: 1.1-JDF 1.1 1.2 - JDF 1.2 1.3 - JDF 1.3 1.4 - JDF 1.4 1.5 - JDF 1.5 1.6 - JDF 1.6 2.0 - XJDF 2.0, this specification.
KnownLocalizations ?	languages	A list of all language codes supported by the device for localization. If not specified, then the device supports no localizations.
Manufacturer?	string	Manufacturer name.
ManufacturerURL ?	URL	Web site for manufacturer.
Packaging?	enumerations	List of packaging methods supported for job submission and job return with SubmitO्ueueEntry, ResubmitQ्ueueEntry and ReturnQ्ueueEntry. Allowed values are: Zip - Zip packaging of XJMF, XJDF and digital resources is supported. See - Section 9.7 XJDF Packaging for details. XML - unpackaged XML is supported.
PresentationURL ?	URL	@PresentationURL specifies a URL to a device-provided user interface for configuration, status, etc. For instance, if the device has an embedded web server, this is a URL to the configuration page hosted on that web server.
Revision ?	string	Hardware or software version of the Device. Note: @SerialNumber is independent of upgrades whereas @Revision SHOULD be modified when hardware or software is changed. Note: @AgentVersion is the version of the XJDF interpreter whereas @Revision applies to the hardware or software of the underlying $>$ Machine.
SerialNumber?	string	Serial number of the device.

Table 6.58: Device Resource (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
URLSchemes ?	NMTOKENS	List of schemes supported in for retrieving XJDF files. If not specified, the controller does not support retrieving XJDF files from remote URLs. Values include: file - The file scheme according to ftp - FTP (File Transfer Protocol) http - HTTP (Hypertext Transport Protocol) https - HTTPS (Hypertext Transport Protocol — Secure) and \bullet [RFC3986].
XJMFURL?	URL	URL of the device port that will accept XJMF messages. A controller that manages a device MAY specify its own @XJMFURL when responding to KnovunDevices messages.
IconList ?	element	List of locations of icons that can be used to represent the Device.
IdentificationField**	element	IdentificationField associates bar codes or labels with this Device.
Module*	element	Individual modules that are represented by this Device.

6.28.1 Icon

An Icon represents a device in the user interface.
Table 6.59: Icon Element

NAME	DATA TYPE	DESCRIPTION
BitDepth	integer	Bit depth of one color.
IconUsage?	enumerations	The DeviceInfo/@Status of the device that this Icon represents. If not speci- fied, the icon is independent of the status of the device. Allowed values are from: $~ D e v i c e S t a t u s ~$
Size	XYPair	Height and width of the icon in pixels.
FileSpec?	element	Reference to details of the icon data.

6.28.2 IconList

The IconList is a list of individual icon descriptions.
Table 6.60: IconList Element

NAME	DATA TYPE	DESCRIPTION
Icon +	element	Individual icon description.

6.28.3 Module

A Module represents a physical machine or part of a Device.
Table 6.61: Module Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
DescriptiveName?	string	Human readable description of the module.
Manufacturer?	string	Manufacturer name.
ManufacturerURL?	URL	Web site for manufacturer.
ModuleID	NMTOKEN	Identifier of the module. This is a unique identifier within the workflow. @ModuleID SHALL be the same over time for a specific Module instance (i.e., SHALL survive reboots). If multiple logical devices share a physical Module, @ModuleID SHALL be identical. @ModuleID SHOULD be used to specify machines that comprise a Device.

Table 6.61: Module Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
ModuleType?	NMTOKEN	@ModuleType provides a classification of the module. Modules with multiple functions SHOULD provide all appropriate values. If known, @ModuleType SHOULD be provided. Values include those from: • Appendix A.3.9 Module Types.
Revision?	string	Hardware or software version of the Module. See Device/@Revision.
SerialNumber?	string	Serial number of the Module.
IdentificationField *	element	IdentificationField associates bar codes or labels with this Module.

6.29 DieLayout

DieLayout represents a die layout described in an external file. This resource is also used as the input for the actual die making process and is also used in Stripping. The external file is by preference a $\boldsymbol{~ [D D E S 3] ~ f i l e . ~ T h e ~ u s a g e ~ o f ~ o t h e r ~ f i l e s ~}$ like CFF2, DDES2, DXF or proprietary formats is not excluded but MAY have a negative impact on interoperability.

Resource Properties

Resource referenced by: BinderySignature, ShapeCuttingParams
Input of Processes:
Output of Processes: DieDesign, DieLayoutProduction
Table 6.62: DieLayout Resource

NAME	DATA TYPE	DESCRIPTION
CutBox?	rectangle	A rectangle describing the bounding box of all cut lines in the DieLayout. This is sometimes referred to as the knife to knife dimensions of the DieLayout. If the position on the Media is not known, the lower left SHOULD be set to o 0.
CutLines?	NMTOKENS	Selects the die line separation identifiers from the file referenced by FileSpec. Additional details of the usage of the separations MAY be specified in the respective ResourceSet[@Name = "Color"].
DieSide?	enumeration	Determines the die side for which the DieLayout is made. Allowed values are: Up - the DieLayout is made with the knifes pointing upwards. Down - the DieLayout is made with the knifes pointing downwards.
MediaSide?	enumeration	Determines the printing side for which the DieLayout is made. Front corre- sponds to the outside of a box, Back corresponds to the inside of a box. Allowed value is from: Side
Rotated?	boolean	Indicates if some of the structural designs are oriented cross grain/flute in the layout.
Waste?	float	The percent of the material that is wasted. Inner waste (i.e., cut out windows are not included in the waste).
Device *	element	The devices for which this DieLayout was made (printing press and die cut- ter). Typically only the type of device would be used (e.g., the model of the die cutter).
RuleLength *	element	Elements describing the length of die rules for the different types of rules. Each RuleLength element describes the accumulated length of all rules of a certain type.
Media?	elemec ?	Reference to an external URL that represents the die. This is typically a CAD design file.
Station *	element	Media for which this DieLayout was intended. The Media description defines important design parameters as the type of Media, dimensions, grain direc- tion or flute direction.
Description of the stations in a DieLayout. One Station produces one shape.		

6.29.1 RuleLength

Elements describing the length of die rules for the different types of rules. Each RuleLength element describes the accumulated length of all rules of a certain type.

Table 6.63: RuleLength Element

NAME	DATA TYPE	DESCRIPTION
DDESCutType	integer	Type of rule. Values for @DDESCutType SHALL be between "0" and "999". These values correspond to the line type as defined in $~[D D E S 3]$.
Length	float	Accumulated length of the rules of this type in the DieLayout (pt).

6.29.2 Station

Description of an individual one up station in a DieLayout. One station produces one shape.
Table 6.64: Station Element

NAME	DATA TYPE	DESCRIPTION
BinderySignatureIDs $?$	NMTOKENS	If specified, @BinderySignatureIDs SHALL list the BinderySignature/ @BinderySignatureID of all BinderySignatures that are processed by this Station.
ShapeDefRef?	IDREF	If present, @ShapeDefRef SHALL reference a ShapeDef that defines the shape of the Station in the DieLayout.
StationName	NMTOKEN	The name of the 1-up design in the DieLayout. Multiple stations with the same @StationName MAY be specified.

6.30 DieLayoutProductionParams

Parameters for the die layout.
Resource Properties
Input of Processes: DieLayoutProduction
Table 6.65: DieLayoutProductionParams Resource

NAME	DATA TYPE	DESCRIPTION
Estimate?	boolean	Determines if the process SHALL run in estimate mode or not. When in esti- mate mode multiple solutions SHOULD be generated.
Position?	enumeration	The position of the DieLayout on the sheet. Allowed value is from: Anchor.
ConvertingConfig +	element	A ConvertingConfig element describes a range of sheet sizes that can be taken into account to create a new DieLayout. Typically a ConvertingConfig will cor- respond to a single combination of printing press and further finishing equipment such as die cutters.
RepeatDesc +	element	Step and repeat parameters for a set of ShapeDef.

6.30.1 RepeatDesc

The RepeatDesc element describes the layout specs for a ShapeDef.

Table 6.66: RepeatDesc Element

NAME	DATA TYPE	DESCRIPTION
AllowedRotate?	enumeration	Allowed methods to rotate structural designs in with respect to grain/flute. Allowed values are: None - No rotation at all. Grain -0° or 180° rotation. MinorGrain - device dependent small rotations that retain the general grain direction (e.g., $+/-10^{\circ}$). CrossGrain - Cross grain rotations (e.g., 90° are acceptable).
GutterX ?	float	Gutter between columns (see also @GutterX2)
GutterX2 ?	float	Secondary gutter between columns. When the @LayoutStyle = "Reverse2ndColumn", the gutter between columns $(2 n+1)$ and $(2 n+2)$ is @GutterX and between columns ($2 n+2$) and ($2 n+3$) is @Gutter $\times 2$. When @GutterX2 is not specified @GutterX2 = @GutterX. See Figure 6-25: RepeatDesc/@GutterX2 and @GutterY2: Secondary Gutters.
GutterY ?	float	Gutter between rows (see also @GutterY2).
GutterY2 ?	float	Secondary gutter between rows. When the @LayoutStyle = "Reverse2ndRow" the gutter between rows $(2 n+1)$ and $(2 n+2)$ is @GutterY and between rows $(2 n+2)$ and $(2 n+3) @ G u t t e r Y 2$. When @GutterY2 is not specified @GutterY2 = @GutterY. See \downarrow Figure 6-25: RepeatDesc/@GutterX2 and @GutterY2: Secondary Gutters.
LayoutStyle?	NMTOKENS	The allowed styles for the Layout Values include: StraightNest Reverse2ndRow Reverse2ndRowAligned Reverse2ndColumn Reverse2ndColumnAligned Note: For diagrams of the above values, see Figure 6-19: Basic Shape for RepeatDesc/@LayoutStyle Examples and the following five figures
OrderQuantity?	integer	The order quantity for the 1-up for which this layout will be optimized. This information SHALL be present when a Layout is being made for more than 1 ShapeDef.
UseBleed?	boolean	If true, the print bleed defined in the structural design SHALL be used to calculate the layout. If false, the outer cut SHALL be used.
ShapeDef	element	ShapeDef describing the 1-up structural design that SHALL to be stepped and repeated on the DieLayout.

The following figure shows the basic shape for subsequent figures. that relate to RepeatDesc.

Figure 6-19: Basic Shape for RepeatDesc/aLayoutStyle Examples

Figure 6-20: RepeatDesc/aLayoutStyle = "StraightNest"

In the following figure, 1-ups on even rows are rotated 180 degrees. Even rows are shifted horizontally and vertically to obtain optimal nesting.

Figure 6-21: RepeatDesc/aLayoutStyle = "Reverse2ndRow"

In the following figure, 1 -ups on even rows are rotated 180 degrees. Even rows are shifted vertically to obtain optimal nesting. The even rows are not shifted horizontally. (Left and right edges are aligned between rows)

Figure 6-22: RepeatDesc/aLayoutStyle = "Reverse2ndRowAligned"

In the following figure, 1 -ups on even columns are rotated 180 degrees. Even columns are shifted vertically and horizontally to obtain optimal nesting.

Figure 6-23: RepeatDesc/aLayoutStyle = "Reverse2ndColumn"

In the following figure, 1 -ups on even columns are rotated 180 degrees. Even columns are shifted horizontally to obtain optimal nesting. No vertical shifting of even columns is done (top and bottom edges are aligned between columns).

Figure 6-24: RepeatDesc/aLayoutStyle = "Reverse2ndColumnAligned"

In the following figure, @LayoutStyle = "Reverse2ndRow", @GutterY = "15", @GutterY2 = "0".

6.31 DigitalPrintingParams

DigitalPrintingParams contains details of the DigitalPrinting process.

6.31.1 Coordinate systems in DigitalPrinting

- Section 2.6 Coordinate Systems in XJDF defines the coordinate system for ConventionalPrinting and DigitalPrinting. Note that the paper feed direction of the idealized process is towards the X-axis which corresponds to bottom edge first.
Properties
Input of Processes: DigitalPrinting
Table 6.67: DigitalPrintingParams Resource (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
Collate ?	enumeration	Determines the sequencing of the printed when multiple copies are requested as output. Allowed values are: None - Do not collate. All copies of a sheet SHALL be printed prior to printing the next sheet. Sheet - Collate. All sheets in one document SHALL be printed in sequence prior to printing the next document.
ManualFeed?	boolean	Indicates whether the media will be fed manually.
PageDelivery?	enumeration	Indicates how pages SHALL be delivered to the output bin or finisher. Note: These values refer to the orientation of the entire stack being output from the press, not individual sheets. For example, "SameOrderFaceDown" means that the stack can be picked up and turned over to find the output sheets in the same order as the input RunList with the first page on top facing up. Allowed values are: FanFold - The output is alternating face-up, face down. SameOrderFaceUp - Order as defined by the RunList, with the "Front" sides of the media up and the first sheet on top. SameOrderFaceDown - Order as defined by the RunList, with the "Front" sides of the media down and the first sheet on the bottom. ReverseOrderFaceUp - Sheet order reversed compared to "SameOrderFaceUp", with the Front sides of the media up and the last sheet on top. ReverseOrderFaceDown - Sheet order reversed compared to "SameOrderFaceDown", with the Front sides of the media down and the last sheet on the bottom.
SheetLay?	enumeration	Lay of input media. Reference edge where paper is placed in feeder. Allowed value is from: - SheetLay.

Table 6.67: DigitalPrintingParams Resource (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
Sides ?	enumeration	Indicates whether the ByteMap SHALL be imaged on one or both sides of the media. If the RunList(Surface) input to DigitalPrinting is partitioned by @Side then the input RunList provides a binding of front and back surfaces to sheets. When a different value for this attribute is encountered, it SHALL force a new sheet. However, when the same value for this attribute is restated for consec- utive pages, it is the same as if that restatement was not present. Allowed values are: OneSidedBack OneSidedFront TwoSided Note: The orientation of the front pages relative to back pages SHOULD be completely defined in the explicit or implied imposition Layout.

6.32 EmbossingParams

EmbossingParams contains attributes and elements used in executing the Embossing process. Embossing can also be used to model a foil stamping process.

Resource Properties

Intent Pairing:	EmbossingIntent
Input of Processes:	Embossing

Table 6.68: EmbossingParams Resource

NAME	DATA TYPE	DESCRIPTION
ModuleID ?	NMTOKEN	Identifier of the embossing module in the press. See ConventionalPrintingParams.
Emboss +	element	One Emboss element is specified for each impression.

6.32.1 Emboss

Table 6.69: Emboss Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
Direction	enumeration	The direction of the image. Allowed value is from: EmbossDirection.
EdgeAngle?	float	The angle of a beveled edge in degrees. Typical values are an angle of: 30, 40, 45, 50 or 60 degrees. If @EdgeAngle is specified, @EdgeShape = "Beveled" SHALL be specified.
EdgeShape?	enumeration	The transition between the embossed surface and the surrounding media can be rounded or beveled (angled). Allowed values are: Rounded Beveled
EmbossingType	enumeration	Allowed value is from: EmbossType. BlindEmbossing - Embossed forms that are not inked or foiled. The color of the image is the same as the paper.
Braille - 6 dot Braille embossing.		
EmbossedFinish - The overall design or pattern impressed in laminated paper		
when passed between metal rolls engraved with the desired pattern. Pro-		
duced on a special embossing to create finishes such as linen.		

Table 6.69: Emboss Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
Face?	enumeration	Position of the embossing on the product. Allowed value is from: Face.
Height?	float	The height of the levels. This value specifies the vertical distance between the highest and lowest point of the stamp, regardless of the value of @Direction.
ImageSize?	XYPair	The size of the bounding box of one single image.
Position?	IDREF	Position of the lower left corner of the bounding box of the embossed image in the coordinate system of the surface of the Component that is selected by @Face.
ToolRef?	@ToolRef SHALL reference the Tool that is used to make the embossing described by this Emboss.	
IdentificationField?	element	If @EmbossingType = "Braille", IdentificationField SHALL describe the content of the Braille element.

6.33 EndSheetGluingParams

EndSheetGluingParams describes the attributes and elements used in executing the EndSheetGluing process.
EndSheetGluingParams SHOULD be partitioned by Part/@Side.

Resource Properties

Intent Pairing:	BindingIntent
Input of Processes:	EndSheetGluing

Table 6.70: EndSheetGluingParams Resource

NAME	DATA TYPE	DESCRIPTION
Glue	element	Description of the glue that is used to attach the end sheet to the cover.

Figure 6-26: Parameters and coordinate system used for end-Sheet gluing

The process coordinate system is defined as follows: The Y-axis is aligned with the binding edge of the book block. It increases from the registered edge to the edge opposite to the registered edge. The X -axis is aligned with the registered edge. It increases from the binding side to the face side opposite the binding side.

6.34 ExposedMedia

ExposedMedia represents a processed Media such as film or plate. The @ExternalID attribute in the parent Resource element SHALL be unique within the workflow.

Resource Properties

Input of Processes: Bending, ConventionalPrinting, DigitalPrinting, ImageSetting, PreviewGeneration, Varnishing
Output of Processes: Bending, ImageSetting
Table 6.71: ExposedMedia Resource

NAME	DATA TYPE	DESCRIPTION
MediaRef	IDREF	@MediaRef SHALL reference a Media that specifies details of the original media such as size.
PlateType?	enumeration	Specifies whether a plate is exposed or a dummy plate. Allowed values are: Exposed - The plate has been imaged. Dummy - Specifies a dummy plate that has not been imaged. Usually, dummy plates are only needed on newspaper/web presses or for Varnishing.
Polarity?	enumeration	@Polarity specifies the polarity of the image on the ExposedMedia. Allowed value is from: Polarity
PunchType?	NMTOKEN	Name of the registration punch scheme. See Bending. If not specified, no holes have been punched. Values include: Bacher Stoesser
Resolution?	XYPair	Resolution of the output.
IdentificationField *	element	IdentificationField associates bar codes or labels with this ExposedMedia.

6.35 FeedingParams

The parameters for any XJDF feeder processing device.

Resource Properties

 Input of Processes:
Feeding

Table 6.72: FeedingParams Resource

NAME	DATA TYPE	DESCRIPTION
Collatingltem *	element	Defines the collating sequence of the input Component(s). If a Collatingltem is not defined, then one Component in the order of input Resource list is con- sumed.
Feeder *	element	Defines the specifics of an individual Feeder. If a Component from the input resource list is not referenced from a Feeder in this list, a system defined Feeder will be used.

6.35.1 CollatingItem

Table 6.73: Collatingltem Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
Amount?	integer	Determines, how many consecutive items shall be consumed.

Table 6.73: Collatingltem Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
ComponentRef?	IDREF	$\begin{array}{l}\text { References one of the input components to the process to be (partially) con- } \\ \text { sumed by the Collatingltem element. This Component SHALL be an input of } \\ \text { the Feeding process. }\end{array}$
Orientation?	enumeration	$\begin{array}{l}\text { Named @Orientation of the Collatingltem relative to the input coordinate sys- } \\ \text { tem. For details see Table 2.1 Matrices and Orientation values for describing } \\ \text { the orientation of a Component. At most one of @ Orientation or } \\ \text { @Transformation SHALL be specified. If neither is specified, no transforma- } \\ \text { tion is applied. The transformation specified here is applied in addition to } \\ \text { orientation/transformation specified in the respective Resource. } \\ \text { Allowed value is from: Orientation. }\end{array}$
Transformation?	matrix	$\begin{array}{l}\text { Orientation of the Component respective to the input coordinate system. This } \\ \text { @Transformation specified here is applied in addition to orientation/transfor- } \\ \text { mation specified in the respective Resource. At most one of @Orientation and } \\ \text { @Transformation SHALL be specified. If neither is specified, no transforma- } \\ \text { tion is applied. }\end{array}$
$\begin{array}{l}\text { TransformationCont } \\ \text { ext? }\end{array}$	enumeration	$\begin{array}{l}\text { This parameter specifies the object, which SHALL be manipulated in orienta- } \\ \text { tion/transformation, and it is important to determine the sequence of stack } \\ \text { items after flipping. } \\ \text { Allowed values are: } \\ \text { Stackltem - Apply individually to the smallest element on the stack which can } \\ \text { be manipulated individually (e.g., to a single sheet in the case of a stack } \\ \text { of sheets). }\end{array}$
Component - Apply to each single element of a Collatingltem individually.		

Note: Most real world devices process stack items one by one, and hence will hardly ever support
@TransformationContext = "Collateltem". This requires some kind of buffer for the stack items belonging to a single collating item plus a flipping mechanism for Winding process.

6.35.2 Feeder

Table 6.74: Feeder Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
AlternatePositions?	IntegerList	Positions of alternate feeders including the feeder specified in @Position on a feeding chain. Alternate feeders share the load according to the policy defined in @FeederSynchronization. If not specified, it defaults to the value of @Position. @AlternatePositions SHALL be non-negative.
ComponentRef?	IDREF	References the Component that SHALL be loaded into this Feeder. This Component SHALL be an input of the Feeding process.
FeederSynchronizati on?	enumeration	Specifies the synchronization of multiple Feeder elements with identical Component elements: Allowed values are:
Alternate - The feeders specified in @Position SHALL alternate.		
Backup - This Feeder is the backup feeder for the Component in case of a mis-		
feed or malfunction. The priority of backup feeders SHALL be defined by		
their position in @AlternatePositions.		
Chain - This feeder is activated as soon as the feeder prior to it in the list is		
empty.		
Primary - This Feeder is the primary feeder for the Component.		

Table 6.74: Feeder Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
FeederType?	NMTOKEN	$\begin{array}{l}\text { Specifies the feeder type. } \\ \text { Values include: } \\ \text { AddOn - Add on feeder (e.g., CDs). } \\ \text { BookBlock - A feeder for book blocks. } \\ \text { Folding - A folding feeder that folds the input Component. } \\ \text { Gluing - A gluing feeder } \\ \text { Roll - Roll feeder for web processes. These are also known as unwinders. } \\ \text { Sheet - Single sheet feeder. } \\ \text { Signature - Single signature feeder. }\end{array}$
Loading?	NMTOKEN	$\begin{array}{l}\text { Specifies the feeder loading. } \\ \text { Values include: } \\ \text { Bundle - Stream feeder, using the output of the Bundling process. } \\ \text { FanFold - Automatic loading of fan fold media. } \\ \text { Manual - Manual loading of stacks } \\ \text { Online - Loaded by a gripper or conveyor. The "Online" value is also applicable } \\ \text { for @FeederType = "Roll". }\end{array}$
PrintRoll - Automatic loading of single products from a print roll, using the		
output of the Winding process.		

6.35.3 FeederQualityParams

The FeederQualityParams element defines the setup and policy for feeding quality control. It can be specified individually for each Feeder.
Table 6.75: FeederQualityParams Element

NAME	DATA TYPE	DESCRIPTION
BadFeedQuality?	enumeration	Defines the operation of the bad feed quality control. Allowed value is from: $~$ FeedQuality.
BadFeeds?	integer	Number of consecutive bad feeds until the device SHALL stop.
DoubleFeedQuality?	enumeration	Defines the operation of the double feed quality control. Allowed value is from:
DeedQuality.		

RESOURCES

6.36 FoldingParams

FoldingParams describes the folding parameters, including the sequence of folding steps. After each folding step of a folding procedure, the origin of the coordinate system SHALL be moved to the lower left corner of the intermediate folding product.
The specification of @SheetLay and reference edges (i.e., "Front", "Rear", "Left" and "Right") for the description of an operation (e.g., the positioning of a tool) is done by means of determined names as shown in Figure 6-27: Names of the reference edges of a Sheet in the FoldingParams Resource below. The order of the Crease, Cut, Fold and Perforate elements in \boldsymbol{T} Table 6.76 FoldingParams Resource shall specify the order of operations in the machine. Therefore any of the four element types MAY be specified in any order.

Figure 6-27: Names of the reference edges of a Sheet in the FoldingParams Resource

Resource Properties

Intent Pairing:	FoldingIntent
Input of Processes:	Folding

Table 6.76: FoldingParams Resource

NAME	DATA TYPE	DESCRIPTION
FoldCatalog?	NMTOKEN	Describes the type of fold according to the folding catalog in \downarrow Section A.3.4 Fold Catalogs.
FoldingDetails ?	NMTOKEN	@FoldingDetails is a system dependent descriptor of the folding. @FoldingDetails MAY be used to differentiate differing fold dimensions with the same general topology.
SheetLay?	enumeration	Lay of input media. Allowed value is from: - SheetLay.
FileSpec (CIP3) ?	element	Reference to a CIP3 file that contains folding instructions in the \rightarrow [CIP3 PPF] format. If FileSpec (CIP3) is specified, Crease, Cut, Fold and Perforate shall not be present.
Crease *	element	Defines one or more Crease lines.
Cut *	element	Cut elements describe an individual cut.
Fold *	element	Describes the folding operations in the sequence in which they are to be carried out. If both @FoldCatalog and Fold elements are specified, the Fold elements have precedence, and the @FoldCatalog specifies only the topology. For instance a cover-fold with a page size ratio of 0.52 to 0.48 would still be defined as an "F4-1".
Perforate *	element	Defines one or more Perforate lines. The order of Cut, Crease, Fold, Perforate specifies the sequence of operations in the folding machine.

6.37 FontPolicy

FontPolicy defines the policies that devices SHALL follow when font errors occur while PDL files are being processed. When fonts are referenced by PDL files but are not provided, devices SHALL provide one of the following two fallback behaviors:

1 The device provides a standard default font which is substituted whenever a font cannot be found.
2 The device provides an emulation of the missing font.
If neither fallback behavior is requested (i.e., both @UseDefaultFont and @UseFontEmulation are "false"), then the process SHALL fail if a referenced font is not provided.
Resource Properties
Input of Processes: Interpreting, Trapping
Table 6.77: FontPolicy Resource

NAME	DATA TYPE	DESCRIPTION
PreferredFont	NMTOKEN	The name of a font that SHALL be used as the default font for this job.
UseDefaultFont	boolean	If "true", the device SHALL resort to a default font if a font cannot be found. Note: This is the normal behavior of the PostScript interpreter, which defaults to Courier when a font cannot be found.
UseFontEmulation	boolean	If "true", the device SHALL emulate a requested font if a font cannot be found.

6.38 GluingParams

GluingParams define the parameters applying a generic line of glue to a component.

Resource Properties

Intent Pairing:
Input of Processes:

BindingIntent
Gluing

Table 6.78: GluingParams Resource

NAME	DATA TYPE	DESCRIPTION
GluingProductionID?	NMTOKEN	Defines a gluing scheme for production.
Glue *	element	Definition of one or more Glue line applications.

6.39 HeadBandApplicationParams

HeadBandApplicationParams specifies how to apply headbands in hard cover book production.
Resource Properties
Input of Processes: HeadBandApplication
Table 6.79: HeadBandApplicationParams Resource

NAME	DATA TYPE	DESCRIPTION
Length ?	float	Length of the carrier material of the head band along binding edge. If not specified the head band has the length of the book block. If both top and bottom head bands are specified in a partitioned ResourceSet (using Part/@Option), then: - If @Length is not specified, then both head bands SHALL be on one carrier which has the length of the book block. - If @Length is provided in only one of the partitions, then both head bands are on one carrier of the given length. - If @Length is provided in both partitions, then each head band is on a separate carrier of the given length.
Width ?	float	Width of the head bands and carrier.
Glue *	element	The carrier can be applied to the book block with glue. The coordinate system for the Glue is defined in the • Section 6.33 EndSheetGluingParams.

6.40 HoleMakingParams

HoleMakingParams specifies the shape and positions of holes in a Component.

Resource Properties

Intent Pairing: HoleMakingIntent

Input of Processes: HoleMaking
Table 6.80: HoleMakingParams Resource

NAME	DATA TYPE	DESCRIPTION
HolePattern +	element	Description of individual or lines of HolePattern elements.

6.41 ImageCompressionParams

ImageCompressionParams provides a set of controls that determines how images will be compressed.
Resource Properties
Input of Processes: PDLCreation
Table 6.81: ImageCompressionParams Resource

NAME	DATA TYPE	DESCRIPTION
ImageCompression +	element	Specifies how images SHALL be compressed. If multiple ImageCompression elements apply to the same images, the compressions SHALL be applied in sequential order.

6.42 ImageEnhancementParams

ImageEnhancementParams describes the controls for manipulating images.

Resource Properties

Input of Processes: ImageEnhancement
Table 6.82: ImageEnhancementParams Resource

NAME	DATA TYPE	DESCRIPTION
ImageEnhancement Op +	element	Each ImageEnhancementOp describes an individual enhancement operation. The XML order of ImageEnhancementOp elements is significant. Multiple ele- ments that apply to the same object SHALL be applied in that XML order.

6.42.1 ImageEnhancementOp

Table 6.83: ImageEnhancementOp Element

NAME	DATA TYPE	DESCRIPTION
Operation	NMTOKEN	Individual enhancement operation name. Values include: Sharpening - Image sharpening. Blurring - Image blurring. RedEyeRemoval - Automated removal of red eye artifacts in images. BestGuess - Best guess automated improvements based on image analysis.
OperationDetails?	string	enumeration
SourceObjects?	Additional details of the @Operation. The values are implementation specific. on. Allowed values are from: SourceObjects	

6.43 ImageSetterParams

ImageSetterParams specifies the settings for an imagesetter. Both filmsetter settings and platesetter settings are described with this resource.

Resource Properties

Input of Processes:
ImageSetting
Table 6.84: ImageSetterParams Resource

NAME	DATA TYPE	DESCRIPTION
AdvanceDistance?	float	Additional media advancement beyond the media dimensions on a web fed device.
BurnOutArea?	XYPair	Size of the burnout area. The area defined by @BurnOutArea is exposed, regardless of the size of the image. If not specified or "0 0", only the area defined by the image is exposed.
CenterAcross ?	enumeration	Specifies the axis around which a device SHALL center an image. Allowed value is from: Axis.
CutMedia?	boolean	Indicates whether or not to cut the media (Web-Fed).
ManualFeed?	boolean	Indicates whether the media will be fed manually.
MirrorAround?	enumeration	This attribute specifies the axis around which a device SHALL mirror an image. Allowed value is from: Axis.
Polarity?	enumeration	Definition of the polarity of the image. Allowed value is from: Polarity
RollCut?	float	Length of media to be cut off of a roll, in points.

6.44 Ink

Ink describes the ink, primer, toner or varnish that is applied to a substrate when printing or varnishing. Whereas Color describes the visual properties of a colorant, ink describes the physical material that is applied to the substrate. The default unit of measurement for Ink is @Unit = "g" (gram).
Resource Properties
Input of Processes:
ConventionalPrinting, DigitalPrinting, Varnishing
Table 6.85: Ink Resource

NAME	DATA TYPE	DESCRIPTION
InkType?	NMTOKENS	@InkType SHALL list specific ink type and qualities. e.g. @InkType = "Gloss Relief Varnish". Values include those from: • Appendix A.3.5 Ink and Varnish Coatings.
SpecificYield?	float	Weight per area at total coverage in g/m².
IdentificationField *	element	IdentificationField associates bar codes or labels with the container of this Ink.

6.45 InkZoneCalculationParams

InkZoneCalculationParams specifies the parameters for the InkZoneCalculation process.

Resource Properties

Input of Processes:
InkZoneCalculation
Table 6.86: InkZoneCalculationParams Resource (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
PrintableArea?	rectangle	Position and size of the printable area of the print cylinder in the coordinates of the Previev resource.
ZoneHeight?	float	The width of one zone in the feed direction of the printing machine being used.
Zones?	integer	The number of ink zones of the press.

Table 6.86: InkZoneCalculationParams Resource (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
ZonesY ?	integer	Number of ink zones in feed direction of the press.
ZoneWidth?	float	The width of one zone of the printing machine being used. The width of a zone SHOULD be the width of an ink slide.
Device?	element	Device provides a reference to the press that the InkZoneProfile is defined for and MAY be used to gather information about ink zone geometry.

6.46 InkZoneProfile

InkZoneProfile specifies ink zone settings that are specific to the geometry of the printing device being used.
InkZoneProfile elements are independent of the device details.
Resource Properties
Input of Processes: ConventionalPrinting
Output of Processes: InkZoneCalculation
Table 6.87: InkZoneProfile Resource

NAME	DATA TYPE	DESCRIPTION
ZoneHeight?	float	The width of one zone in the feed direction of the printing machine being used.
ZoneSettingsX	FloatList	Each entry of the @ZoneSettingsX attribute is the value of one ink zone. The first entry is the first zone, and the number of entries equals the number of zones of the printing device being used. Allowed values are in the range [0, 1] where o SHALL specify no ink and 1 SHALL specify 100\% coverage.
ZoneSettingsY?	FloatList	Each entry of the @ZoneSettingsY attribute is the value of one ink zone in Y direction. The first entry is the first zone, and the number of entries equals the number of zones of the printing device being used. Allowed values are in the range [0, 1] where o SHALL specify no ink and 1 SHALL specify 100\% cov- erage.
ZoneWidth	float	The width of one zone of the printing machine being used. Typically, the width of a zone is the width of an ink slide.

6.47 InsertingParams

InsertingParams specifies the parameters for the Inserting process. Figure 7.13 shows the various components involved in an inserting process, and how they interact.

Resource Properties

Intent Pairing:	AssemblingIntent
Input of Processes:	Inserting

Table 6.88: InsertingParams Resource (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
FinishedPage?	integer	Finished page number of the mother Component on which the child Component SHALL be placed. @FinishedPage SHALL NOT be specified unless @InsertLocation = "FinishedPage". Corresponds to Assemblinglntent/*/@Folio.
InsertLocation	enumeration	Where to place the "child" sheet. Allowed values are: Back FinishedPage - Place the child exactly onto the page specified in @FinishedPage. Front Overfold - Place onto the overfold side.

Table 6.88: InsertingParams Resource (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
Method?	enumeration	Inserting method. Allowed values are: BindIn - Apply glue to fasten the insert. Blowln - Loose insert.
Glue *	element	Array of all Glue elements. The coordinate system is defined by the mother Component.

Location of Inserts

The following graphics depict the various values of InsertingParams/@InsertLocation:
Table 6.89: Location of Inserts

FRONT	BACK	OVERFOLD	FINISHED PAGE
Child on "Front" of mother component - is used for fixed inserts (e.g., gluing of inserts and so forth on Signatures).	Child on "Back" of mother component - is used for fixed inserts (e.g., gluing of inserts on Signatures).	The mother component is opened at the overfold and the child is placed in the center of the of the mother. "Overfold" is used for loose inserts (e.g., inserts into newspapers).	Child on "FinishedPage" X of mother component - can be used for loose and fixed inserts.

6.48 InterpretingParams

InterpretingParams contains the parameters needed to interpret PDL pages. InterpretingParams itself is a generic resource that contains attributes that are relevant to all PDLs. PDL-specific details resources MAY be included as subelements of this generic resource. This specification defines one additional PDL-specific resource instance:
PDFInterpretingParams.
Resource Properties

Intent Pairing:
Input of Processes:

ContentCheckIntent

Interpreting

Table 6.90: InterpretingParams Resource (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
Center?	boolean	Indicates whether or not the finished page image SHALL be centered within the imagable area of the media. The @Center is ignored if FitPolicy/ @SizePolicy = "ClipToMaxPage" and clipping is specified.
FilmRef?	IDREF	Reference to film Media. This Resource provides a description of the physical media which will be marked. The physical characteristics of the media MAY affect decisions made during Interpreting.
MirrorAround?	enumeration	This attribute specifies the axis around which a RIP SHALL mirror an image. Note: This is mirroring in the RIP and not in the hardware of the output device. Allowed value is from: Axis.

Table 6.90: InterpretingParams Resource (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
PaperRef ?	IDREF	Reference to final paper Media. This Resource provides a description of the physical media which will be marked. The physical characteristics of the media MAY affect decisions made during Interpreting.
PlateRef?	IDREF	Reference to plate Media. This Resource provides a description of the physical media which will be marked. The physical characteristics of the media MAY affect decisions made during Interpreting.
Polarity ?	enumeration	The image SHALL be RIPed in the specified polarity. Note that this is a polarity change in the RIP and not a polarity change in the hardware of the output device. Allowed value is from: Polarity.
PrintQuality ?	enumeration	Generic switch for setting the quality of an otherwise inaccessible device. Allowed values are: High - Highest quality available on the printer. Normal - The default quality provided by the printer. Draft - Lowest quality available on the printer.
ProofPaperRef ?	IDREF	Reference to paper Media used for proofing. This Resource provides a description of the physical media which will be marked. The physical characteristics of the media MAY affect decisions made during Interpreting.
Scaling?	XYPair	A pair of positive real values that indicates the scaling factor for the page contents. Values between 0 and 1 specify that the contents are to be reduced, while values greater than 1 specify that the contents are to be expanded. This attribute is ignored if @FitToPage = "true". Any scaling defined in FitPolicy SHALL be applied after the scaling defined by this attribute.
ScalingOrigin ?	XYPair	A pair of real values that identifies the point in the unscaled PDL page that remains at the same position after scaling. This point is defined in the coordinate system of the PDL page. For example, the @ScalingOrigin of a PDL page with dimensions "300400" scaled from the PDL page center would be "150 200", regardless of the value of @Scaling.
FitPolicy?	element	Allows printing even if the size of the imagable area of the media does not match the requirements of the data.
InterpretingDetails ?	element	Container for interpreter-specific details.
ObjectResolution *	element	Indicates the resolution at which the PDL contents will be interpreted in DPI. These elements MAY be different from the ObjectResolution elements provided in RenderingParams.
PDFInterpretingPar ams ?	element	Details of interpreting for PDF.

6.48.1 InterpretingDetails

InterpretingDetails contains PDL-specific instructions for an interpreter.
Table 6.91: InterpretingDetails Element

NAME	DATA TYPE	DESCRIPTION
MinLineWidth?	float	If present, this attribute specifies the minimum width in points for PDL line objects. If a line is defined with a width smaller than this value it SHALL be adjusted to a line width equal to this value. Note: This attribute is useful for managing the consistency of thin lines across different digital printing systems that have varying imaging resolutions.

6.48.2 PDFInterpretingParams

Table 6.92: PDFInterpretingParams Element

NAME	DATA TYPE	DESCRIPTION
EmitPDFBG?	boolean	Indicates whether BlackGeneration functions SHALL be emitted.
EmitPDFHalftones?	boolean	Indicates whether halftones SHALL be emitted.
EmitPDFTransfers?	boolean	Indicates whether transfer functions SHALL be emitted.
EmitPDFUCR?	boolean	Indicates whether under color removal functions SHALL be emitted.
HonorPDFOverprint?	boolean	Indicates whether or not overprint settings in the file SHALL be honored. If "true", the setting for overprint SHALL be honored. If "false", it is expected that the device does not directly support overprint and that the PDF is preprocessed to simulate the effect of the overprint settings.
ICCColorAsDeviceCol or?	boolean	Indicates whether colors specified by ICC color spaces are to be treated as device colorants.
OCGIntent?	NMTOKEN	The value of @ocGIntent sets the intent for which OCGs SHALL be selected. Values include: Design - as described in $\stackrel{\text { [PDF1.6]. }}{ }$ View - as described in [PDF1.6].
OCGProcess?	NMTOKEN	The value of @OCGProcess sets the purpose for which the Interpreting process is being performed. This, in turn, sets which value from a relevant optional content usage dictionary SHALL be used to determine whether each OCG is included in the output. Values include: Export - PDF ExportState in the export subdictionary. Print - PDF PrintState in the print subdictionary View - PDF ViewState in the view subdictionary. Additional values are defined in \bullet [ISO19593-1:2016] or MAY be site specific.
OCGZoom?	float	The value of @ocGZoom sets the magnification that SHALL be assumed in comparisons with the zoom dictionary in a relevant optional content usage dictionary to determine whether each OCG is included in the RunList. A @OCGZoom value of 1.0 is assumed to be a magnification of 100%.
PrintPDFAnnotations ?	boolean	Indicates whether the contents of annotations on PDF pages SHALL be included in the output. This only refers to annotations that are set to print in the PDF file excluding trap annotations. Trap annotations are controlled with @PrintTrapAnnotations.
PrintTrapAnnotation s ?	boolean	Indicates whether the contents of trap annotations on PDF pages SHALL be included in the output.
TransparencyRender ingQuality?	float	Values are 0 to 1 . A value of o represents the lowest allowable quality; 1 represents the highest desired quality.
OCGControl *	element	OCGControl provides a list of the OCGs (layers) that are SHALL be explicitly included or excluded in the RunList. Any OCGs not listed in an OCGControl element SHALL follow the rules set by the referenced PDF.
ReferenceXObjPara ms?	element	Describes how the interpreter should handle PDF Reference XObjects.

6.48.3 ReferenceXObjParams

Table 6.93: ReferenceXObjParams Element

NAME	DATA TYPE	DESCRIPTION
Mode	NMTOKEN	Specifies how to handle a Reference XObject's reference. Values include: Ignore - the reference SHALL be ignored, and no content is imaged for that Reference XObject. If proxy content is supplied with the Reference XOb- ject, it SHALL be imaged. ResolveAlways - an attempt SHALL be made to resolve the reference, and image the graphics described by that reference. ResolvelfPDFX5 - an attempt SHALL be made to resolve the reference ONLY if the PDF file is a valid PDF/X-5 file, AND the referenced file passes the criteria stated in section 8.4 of ISO 15930-8 (PDF/X-5).
FileSpec (SearchPath) $*$	element	An ordered list of FileSpec elements that specify search paths to search when an XObject provides a relative file specification for its target file. If not speci- fied, then the directory that contains the PDF file being interpreted SHALL be searched, and SHALL NOT be searched recursively.

6.49 JacketingParams

Description of the setup of the jacketing machinery. Jacket height and width (1 and 4 in the Figure 6-28: Setup of the Jacketing Machinery) are specified within the Component that describes the jacket.

Figure 6-28: Setup of the Jacketing Machinery

Figure 6-29: Parameters and coordinate system for jacketing

Resource Properties
Intent Pairing: BindingIntent

Input of Processes: Jacketing
Table 6.94: JacketingParams Resource

NAME	DATA TYPE	DESCRIPTION
FoldingDistance?	float	Distance from the fold at @FoldingWidth to the other fold. If not specified, it defaults to width of the jacket minus two times @ FoldingWidth (symmetrical folds).
FoldingWidth	float	Definition of the dimension of the folding width of the front cover fold (see @FoldingWidth in the picture above). All other measurements are implied by the dimensions of the book.

6.50 LabelingParams

LabelingParams defines the details of the Labeling process.

Resource Properties

Input of Processes: Labeling
Table 6.95: LabelingParams Resource

NAME	DATA TYPE	DESCRIPTION
Application?	NMTOKEN	Application method of the label. Values include: Glue - Glued onto the component. Loose - Loosely laid onto the component. SelfAdhesive - Self adhesive label. Staple - Stapled onto the component.
Face?	enumeration	Position of the label on the bundle. Allowed value is from: \& Face.
Offset?	XYPair	Position of the lower-left-corner of the label after applying the rotation defined in Resource(Label)/@Orientation relative to the lower left corner of the component surface as defined by @Position.
FileSpec ?	element	A FileSpec element pointing to an address list. The format of the referenced mailing list is implementation dependent.

6.51 LaminatingParams

LaminatingParams specifies the parameters needed for laminating.

Resource Properties

Intent Pairing:	LaminatingIntent
Input of Processes:	Laminating

Table 6.96: LaminatingParams Resource (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
GapList?	FloatList	List of non-laminated gap positions in the X direction of the laminating tool in the coordinate system of the Component. The zero-based even entries define the absolute position of the start of a gap, and the odd entries define the end of a gap. If not specified, the complete area defined by @LaminatingBox is laminated.
LaminatingBox ?	rectangle	Area on the Component that SHALL be laminated.
LaminatingMethod?	enumeration	Laminating technology that SHALL be applied. Allowed values are: CompoundFoil DispersionGlue Fusing

Table 6.96: LaminatingParams Resource (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
ModuleID ?	NMTOKEN	Identifier of the laminating module in the press. See ConventionalPrintingParams.
NipWidth?	float	Width of the nip in points that SHALL be formed between the fusing rollers and the component in the Laminating process.
Temperature?	float	Temperature that SHALL be used in the Laminating process, in ${ }^{\circ}$ Centigrade.

6.52 Layout

The Layout is used both for fixed-layout and for automated printing.
Layout MAY be used to describe the exact details of a press sheet that is processed by an imposition engine to place marks and pages. The Layout resource is also a high-level description of how a Component SHALL be produced. This high level representation is typically produced by the MIS production planning module and consumed by a prepress workflow system.
Layout MAY specify how the surfaces of the BinderySignature elements of a job are placed onto press sheets.
Resource Properties
Input of Processes:
Output of Processes: Stripping
Table 6.97: Layout Resource (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
Automated?	boolean	If "true", the Imposition process is expected to perform automated imposition. Layout/@Automated SHALL be identical for all Layout elements of a ResourceSet.
FilmRef?	IDREF	Reference to film Media that SHALL provide a description of the physical media which will be marked.
InnermostShingling?	float	Relative creep compensation that SHALL be applied to the innermost part of the assembled booklet. A value of "1" SHALL specify 100\% creep compensa- tion. Shingling is perpendicular to the spine. Negative values go towards the spine. Values for pages between inner and outer SHALL be interpolated. Actual values of shingling are calculated by the system or operator. See Figure 6-30: Shingling for Stripping and •Figure 6-31: Shingling for Stripping - Details.
MaxCollect?	integer	Maximum number of sheets that SHALL be collected into a signature. @MaxCollect modifies the pagination when automated imposition is selected by splitting documents of the input RunList into smaller virtual documents that fill exactly one signature. Thus the ord counting within a Layout SHALL be restarted at 0 after @MaxCollect sheets. The distribution of signatures with less than @MaxCollect sheets within the final product is implementation dependent. Example: If 10 sheets are required and @MaxCollect=4, then 3-3-4, 4-4-2 or any permutations are possible. See also @MinCollect.
If not specified, all sheets SHALL be collected into one signature.		

Table 6.97: Layout Resource (Sheet 2 of 2)

NAME	DATA TYPE	\quad DESCRIPTION
$\begin{array}{l}\text { OutermostShingling } \\ \text { ? }\end{array}$	float	$\begin{array}{l}\text { Relative creep compensation that SHALL be applied to the outermost part of } \\ \text { the assembled booklet. A value of "1" SHALL specify 100\% creep compensa- } \\ \text { tion. Shingling is perpendicular to the spine. Negative values go towards the } \\ \text { spine. Values for pages between inner and outer SHALL be interpolated. } \\ \text { Actual values of shingling are calculated by the system or operator. See } \\ \text { Figure 6-30: Shingling for Stripping and } \\ \text { Stripping - Details. }\end{array}$
PaperRef ? 6-31: Shingling for		

Figure 6-30: Shingling for Stripping

Figure 6-31: Shingling for Stripping - Details

6.52.1 CIELABMeasuringField

Information about a color measuring field. The color is specified as CIE-L*a*b* value.
Table 6.98: CIELABMeasuringField Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
Center	XYPair	Position of the center of the color measuring field in the coordinates of the MarkObject that contains this mark. If the measuring field is defined within a ColorControlStrip, @Center refers to the rectangle defined by @Center and @Size of the ColorControlStrip.
CIELab	LabColor	L*a*b* color specification.
Diameter?	float	Diameter of the measuring field.
Percentages?	FloatList	Percentage values for each separation. The number of array elements SHALL match the number of separations.

Table 6.98: CIELABMeasuringField Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
ScreenRuling?	FloatList	Screen ruling values in lines per inch for each separation. The number of array elements SHALL match the number of separations.
ScreenShape?	string	Shape of screening dots.
Tolerance?	float	Tolerance in $\Delta \mathrm{E}$.

6.52.2 ColorControlStrip

ColorControlStrip describes a color control strip. The type of the color control strip is given in the @StripType attribute. The lower left corner of the control strip box is used as the origin of the coordinate system used for the definition of the measuring fields. It can be calculated using the following formula:

$$
\begin{aligned}
& x_{0}=x-\frac{w}{2} \cos (\varphi)+\frac{h}{2} \sin (\varphi) \\
& y_{0}=y-\frac{w}{2} \sin (\varphi)+\frac{h}{2} \cos (\varphi)
\end{aligned}
$$

Where:
$x=\mathrm{X}$ element of the @Center attribute
$y=$ Y element of the @Center attribute
$w=\mathrm{X}$ element of the @Size attribute
$h=$ Y element of the @Size attribute
$\varphi=$ Value of the @Rotation attribute
Table 6.99: ColorControlStrip Element

NAME	DATA TYPE	DESCRIPTION
Center?	XYPair	Position of the center of the color control strip in the coordinates of the MarkObject that contains this mark.
Rotation?	float	Rotation in degrees. Positive graduation figures indicate counter-clockwise rotation; negative figures indicate clockwise rotation.
Separations ?	NMTOKENS	Ordered list of separation identifiers that comprise the ColorControlStrip. If neither CIELABMeasuringField nor DensityMeasuringField are specified, the geometry is implied by the value of @StripType. Additional details of the col- orants should be provided in ResourceSet[@Name="Color"].
Size?	XYPair	Size, in points, of the color control strip.
StripType?	string	Type of color control strip. This attribute MAY be used for specifying a pre- defined, company-specific color control strip.
CIELABMeasuringFie ld *	element	Details of a CIELAB measuring field that is part of this ColorControlStrip.
DensityMeasuringFi eld $*$	element	Details of a density measuring field that is part of this ColorControlStrip.

6.52.3 Condition

The condition element defines the condition when a PageActivation, PageCondition or SheetActivation is active when processing a layout with @Automated = "true".
Table 6.100: Condition

NAME	DATA TYPE	DESCRIPTION
PartContext?	NMTOKENS	List of attribute names within Part that SHALL reset the context of the Part elements in this Condition. The Part elements in this Condition SHALL NOT contain any attributes that are in @PartContext. Example: @PartContext = "DocIndex" and Part/@RunIndex = "0". In this case
	@Runlndex is recalculated whenever @DocIndex evaluates to a different value. Note: Without @PartContext and no explicit Part/@DocIndex; @RunIndex would be evaluated in the context of the entire RunList.	

RESOURCES

Table 6.100: Condition

NAME	DATA TYPE	DESCRIPTION
Part +	element	This Condition SHALL evaluate to "true" whenever any RunList partition matches at least one of the Part elements.

6.52.4 ContentObject

ContentObject elements identify containers for page content on a surface. They SHALL be filled from the content RunList of the Imposition process.

6.52.5 CutMark

CutMark provides the means to position cut marks on the sheet. After printing, these marks can be used to adapt the theoretical block positions (as specified in CutBlock) to the real position of the corresponding blocks on the printed sheet.
Table 6.101: CutMark Resource

NAME	DATA TYPE	DESCRIPTION
MarkType	enumeration	Cut mark type. Allowed values are from: Table 6.102 MarkType Attribute Values.
Position	XYPair	Position of the logical center of the cut mark in the coordinates of the MarkObject that contains this mark. Note: The logical center of the cut mark does not always coincide with the center of the visible cut mark symbol.

Table 6.102: MarkType Attribute Values (Sheet 1 of 2)

VALUE	SYMBOL	DESCRIPTION
CrossCutMark		

Table 6.102: MarkType Attribute Values (Sheet 2 of 2)

VALUE	SYMBOL	DESCRIPTION
UpperRightCutMark	-	Corner at logical position.

6.52.6 DensityMeasuringField

DensityMeasuringField contains information about a density measuring field.
Table 6.103: DensityMeasuringField Element

NAME	DATA TYPE	DESCRIPTION
Center	XYPair	Position of the center of the density measuring field in the coordinates of the MarkObject that contains this mark. If the measuring field is defined within a ColorControlStrip, @Center SHALL refer to the rectangle defined by @Center and @Size of the ColorControlStrip.
Density	FloatList	Density value for each process color measured with filter. The sequence of colors shall be C M Y K.
Diameter	float	Diameter of the density measuring field.
DotGain	float	Percentage of dot gain.
Separation	NMTOKEN	Separation identifier that this DensityMeasuringField applies to. Additional details of the colorants should be provided in ResourceSet[@Name="Color"].
ToleranceBlack?	XYPair	Upper and lower black measurement limits (in density units).
ToleranceCyan?	XYPair	Upper and lower cyan measurement limits (in density units).
ToleranceDotGain?	XYPair	Upper and lower measurement limits (in\%).
ToleranceMagenta?	XYPair	Upper and lower magenta measurement limits (in density units).
ToleranceYellow?	XYPair	Upper and lower yellow measurement limits (in density units).

6.52.7 MarkObject

MarkObject elements identify containers for production marks on a surface. The PDL for the marks MAY exist prior to imposing. In this case the marks SHOULD be filled from the RunList (Marks) of the Imposition process. Marks MAY instead be specified in a manner that allows the imposition engine to generate the marks on the fly. An individual MarkObject represents the content data of the marks. The content data in individual MarkObject elements MAY contain multiple logical marks.
Table 6.104: MarkObject Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
ContentRef?	IDREF	@ContentRef refers to the ContentObject that shall define the scope of the RunList metadata that is used to evaluate Condition elements in this MarkObject.
CIELABMeasuringFie Ld *	element	Specific information about this kind of mark object. See below for informa- tion regarding dynamically generated marks.
ColorControlStrip *	element	Specific information about this kind of mark object. See below for informa- tion regarding dynamically generated marks.
CutMark *	element	Specific information about this kind of mark object. See below for informa- tion regarding dynamically generated marks.
RegisterMark *	element	Specific information about this kind of mark object. See below for informa- tion regarding dynamically generated marks.

Table 6.104: MarkObject Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
ScavengerArea *	element	Specific information about this kind of mark object. See below for informa- tion regarding dynamically generated marks.

6.52.8 PageActivation

PageActivation SHALL define when content SHALL be conditionally placed in its parent PlacedObject. Before placing page content from a RunList into a PlacedObject, PageActivation/Condition SHALL be evaluated in the context of the current partition of the RunList.

Table 6.105: PageActivation

NAME	DATA TYPE	DESCRIPTION
MaxDoc?	integer	If specified, all Part/@DocIndex values SHALL be calculated modulo @MaxDoc. Example: If @MaxDoc = "2" and Part/@DocIndex = "0",then every RunList entry with an even value of @DocIndex matches.
MaxSet?	integer	If specified, all Part/@SetIndex values SHALL be calculated modulo @MaxSet. Example: If @MaxSet = "2" and Part/@Set/ndex = "1",then every RunList entry with an odd value of @SetIndex matches.
Condition +	element	This PageActivation SHALL be applied when all Condition elements evaluate to true.

6.52.9 PageCondition

The PageCondition element defines restrictions on when content SHALL NOT be placed in its parent PlacedObject. Before placing content from a RunList into a PlacedObject the PageCondition/Condition elements SHALL be evaluated in the context of the current partition of the RunList, in which case the alternate content, if any, SHALL be placed in the PlacedObject. After skipping a restricted PlacedObject, the Imposition process SHALL then place the current content into the location defined by the next PlacedObject that consumes the same RunList. This corresponds to incrementing the effective @Ord value of the page in the RunList by 1, effectively incrementing the total number of pages of the RunList. If the next PlacedObject is also restricted then the process SHALL be repeated.

Table 6.106: PageCondition Element

NAME	DATA TYPE	DESCRIPTION
Condition +	element	This PageCondition SHALL be applied when all Condition elements evaluate to true.

Example 6.7: PageCondition

The following example shows how PageCondition can be used to force a chapter boundary to be on a specific page side. PlacedObject/PageCondition/Condition contains a Part element that evaluates to true whenever @RunIndex is 0, i.e the first page in the context of each chapter as specified by @PartContext.

Note: Chapters are represented as documents in this example.

```
<ResourceSet Name="Layout" Usage="Input">
    <Resource>
        <Part Side="Front"/>
        <Layout Automated="true">
            <PlacedObject CTM="1 0 0 1 0 0" Ord="0">
                <ContentObject/>
            </PlacedObject>
            <PlacedObject CTM="1 0 0 1 500 0" Ord="1">
                <ContentObject/>
                <PageCondition>
                    <Condition PartContext="DocIndex">
                        <Part RunIndex="0 0"/>
                    </Condition>
                </PageCondition>
            </PlacedObject>
        </Layout>
    </Resource>
</ResourceSet>
```


6.52.10 PlacedObject

PlacedObject elements describe any kind of marks or content on a surface. They SHALL contain exactly one of ContentObject or MarkObject that describes additional details of the page content or production mark that the PlacedObject represents.

Table 6.107: PlacedObject Element (Sheet 1 of 3)

NAME	DATA TYPE	DESCRIPTION
Anchor ?	enumeration	$\begin{array}{l}\text { Specifies the anchor point of the PlacedObject that SHALL remain in place on } \\ \text { the surface when the value of @TrimSize changes. @Anchor is specified in the } \\ \text { coordinate system of the PlacedObject prior to application of @ CTM. } \\ \text { Note: The @Anchor attribute is metadata used to identify to an imposition } \\ \text { generation utility a fixed anchor point reference to an abstract content page. } \\ \text { This may occur when a Layout resource is used as a template for that utility. } \\ \text { @Anchor SHALL have no effect on processing when a Layout resource is input } \\ \text { to the Imposition process. } \\ \text { Allowed value is from: Anchor. }\end{array}$
ClipBox?	rectangle	$\begin{array}{l}\text { Clipping rectangle in the coordinates of the @SurfaceContentsBox. @ClipBox } \\ \text { SHALL NOT be present if PlacedObject/@ClipBoxFormat is supplied. }\end{array}$
ClipPath?	PDFPath	$\begin{array}{l}\text { Clip path for the PlacedObject in the coordinates of the @SurfaceContentsBox } \\ \text { (lower left of @SurfaceContentsBox is used as reference zero point, same as } \\ \text { for @ClipBox). The actual clip region is the intersection of @clipBox and } \\ \text { @ClipPath or the intersection of @ClipBox and @SourceClipPath. Thus both clip } \\ \text { paths are applied sequentially and the resulting clip region is smaller than } \\ \text { each individual clip box or path. } \\ \text { @ClipPath and @SourceClipPath SHALL NOT be specified in the same }\end{array}$
PlacedObject. @ClipPath SHOULD be specified when both @ClipPath and		
@SourceClipPath are known because @ClipPath provides a more stable coordi-		
nate system (not sensitive to shifts caused by editing the page).		

Table 6.107: PlacedObject Element (Sheet 2 of 3)

NAME	DATA TYPE	DESCRIPTION
Ord?	integer	@Ord SHALL specify a zero-based reference to an index in the RunList. The index SHALL be incremented for every page in the referenced PDL. The @Ord value of the first page of a RunList SHALL have the value " 0 ". If Layout/@Automated = "true", @Ord MAY be a negative integer. In this case, the explicit @Ord for each iteration of the automated Layout SHALL be calculated by subtracting the appropriate number of @Ord values from the back of the document or the position in the document that is calculated from Layout/ @MaxCollect and Layout/@MinCollect. For details on automated Layout, see - Section 5.4.8 Imposition.
PositionRef?	IDREF	Reference to the Position that defines where this PlacedObject SHALL be located.
SourceClipPath ?	PDFPath	Clip path for the PlacedObject in the source coordinate system. @SourceClipPath is applied to the referenced source object in addition to any clipping that is internal to the object. Internal transformation of the source object (Rotation key in PDF, Orientation Tag in TIFF etc.) SHALL be applied prior to applying @SourceClipPath. @ClipPath and @SourceClipPath SHALL NOT be specified in the same PlacedObject. See Section 2.6.1.1 Source Coordinate Systems for definitions of source coordinate systems.
TrimCTM ?	matrix	The transformation matrix of the trim box to be applied to the object's referenced content in the coordinate system of @SurfaceContentsBox. Note that imposition programs that execute the Layout SHALL recalculate the @CTM in case the referenced content is replaced with new referenced content having different dimensions, otherwise the position of the content inside the trim box will shift. This recalculation is based on @Anchor, @TrimCTM, @TrimSize and trim box. Note: The @TrimCTM attribute may be used by an imposition generation utility when a Layout resource is used as a template for that utility. @TrimCTM SHALL have no effect on processing when a Layout resource is input to the Imposition process.
TrimSize ?	XYPair	The size of the object's trim box as viewed in the object source coordinates (@TrimCTM scaling and rotation NOT applied).@TrimSize is needed when replacing the object by a new object with a different dimension. When a Layout resource is input to the Imposition process, @TrimSize specifies the bounding box that SHALL be used for scaling and rotation when processing Layout/FitPolicy. Note: Recalculation of PlacedObject/@CTM is only necessary when the Stripping process or application needs to replace some pages from the provided RunList (using the Layout as a kind of imposition "template"). To ensure correct placement of a new page in the Layout, PlacedObject/@CTM recalculations SHOULD always be done according to PlacedObject/@TrimCTM and PlacedObject/@TrimSize. Together, these two attributes represent the trimming information of the imposition software page, which is not always the same as the original RunList page trimming information. Usage of both PlacedObject elements @TrimCTM and @TrimSize attributes will allow page replacements on any type of imposition Layout.
ContentObject ?	element	Details of the content. Exactly one of either ContentObject or MarkObject SHALL be present.
MarkObject ?	element	Details of the production mark. Exactly one of either ContentObject or MarkObject SHALL be present.
PageActivation?	element	PageActivation defines conditions on which page content SHALL be placed in the parent PlacedObject. If PageActivation is present, the page SHALL NOT be filled into that PlacedObject unless the RunList matches a partition specified in any of the PageActivation/Part elements. PageActivation SHALL only be present when Layout/@Automated = "true".

Table 6.107: PlacedObject Element (Sheet 3 of 3)

NAME	DATA TYPE	DESCRIPTION
PageCondition?	element	PageCondition defines conditions on which page content SHALL NOT be placed in the parent PlacedObject. If PageCondition is present, the page SHALL
NOT be filled into that PlacedObject if the RunList matches a partition speci- fied in any of the PageCondition/Part elements. PageCondition SHALL only be present when Layout/@Automated $=$ "true".		

6.52.11 Position

The Position element allows the aligned placement of a BinderySignature onto a Layout.
Figure 6-32: RelativeBox including margins

Table 6.108: Position Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
AbsoluteBox ?	rectangle	Absolute position, in points, of the display area of this BinderySignature on the front side of the Layout. The BinderySignature is placed onto the display area after applying the @Orientation transformation. The display area SHALL include the absolute margins defined by @MarginTop, @MarginBottom, @MarginLeft and @MarginRight. @AbsoluteBox overrides @RelativeBox if both are specified. If @AbsoluteBox is specified, it SHALL be used as is for all imposition calcula- tions.
BinderySignatureID?	NMTOKEN	If present, @BinderySignatureID SHALL reference a BinderySignature/../Part/ @BinderySignatureID which SHALL be placed onto the layout at this position. If @BinderySignatureID is not specified, individual pages SHALL be placed at this Position.
BlockName?	NMTOKEN	Identifies a CutBlock resulting from a Cutting process if the element specified by the Position is created by Cutting.
GangElementID?	NMTOKEN	If present, @GangElementID SHALL reference a GangElement element that was placed in this position by SheetOptimizing.
ID?	ID	Identifier of this Position. @ID SHALL be used to link PlacedObject elements to a Position.
MarginBottom?	float	Bottom margin, in points, to be left outside of the BinderySignature that this Position applies to. The coordinate system is defined by the front side of the Layout.
MarginLeft?	float	Left margin, in points, to be left outside of the BinderySignature that this Position applies to. The coordinate system is defined by the front side of the Layout.

Table 6.108: Position Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
MarginRight?	float	Right margin, in points, to be left outside of the BinderySignature that this Position applies to. The coordinate system is defined by the front side of the Layout.
MarginTop?	float	Top margin, in points, to be left outside of the BinderySignature that this Position applies to. The coordinate system is defined by the front side of the Layout.
Orientation?	enumeration	Named orientation describing the transformation of the orientation of the BinderySignature on the Layout. For details, see ? Table 2.1 Matrices and Orientation values for describing the orientation of a Component. Allowed value is from: Orientation.
RelativeBox?	rectangle	@RelativeBox is a rough definition of the general position of the display area of this BinderySignature on the front side of the Layout. The BinderySignature SHALL be placed onto the display area after applying the @Orientation trans- formation. The display area SHOULD include the absolute margins defined by @MarginTop, @MarginBottom, @MarginLeft and @MarginRight. @AbsoluteBox
overrides @RelativeBox if both are specified.		
If neither @AbsoluteBox nor @RelativeBox are specified, the full relative		
media box "0 0 1.0 1.0" SHALL be applied.		

6.52.12 RegisterMark

Defines a register mark, which can be used for setting up and monitoring color registration in a printing process. It can also be used to synchronize the sheet position in a paper path.

Table 6.109: RegisterMark Resource

NAME	DATA TYPE	DESCRIPTION
Center?	XYPair	Position of the center of the register mark in the coordinates of the MarkObject that contains this mark.
MarkType?	NMTOKENS	Type of RegisterMark. Values include: Arc Circle Cross
MarkUsage?	enumerations	Specifies the usage of the RegisterMark. Allowed values are: Color - The mark is used for separation color registration. PaperPath - The mark is used for paper path synchronization. Tile - The mark is used to mark the position of tiles.
Rotation?	float	Rotation in degrees. Positive values indicate counter-clockwise rotation; negative values indicate clockwise rotation.
Separations?	NMTOKENS	Set of separation identifiers to which the register mark is bound. Additional details of the colorants SHOULD be provided in ResourceSet[@Name="Color"].

6.52.13 ScavengerArea

ScavengerArea describes a scavenger area for removing excess ink from printed sheets. It is defined within a MarkObject of a surface.

Table 6.110: ScavengerArea Resource

NAME	DATA TYPE	DESCRIPTION
Center	XYPair	Position of the center of the scavenger area in the coordinates of the MarkObject that contains this mark.
Separations?	NMTOKENS	Set of separation identifiers to which the scavenger area is bound. Additional details of the colorants SHOULD be provided in ResourceSet[@Name="Color"].
Size?	XYPair	Size of the scavenger area.

6.52.14 SheetActivation

Table 6.111: SheetActivation Element

NAME	DATA TYPE	DESCRIPTION
Condition +	element	This SheetActivation shall be applied when all Condition elements evaluate to true for any ContentObject that is supplied on the unconditional Layout parti- tion that is currently active.

6.52.15 More about Layout

6.52.15.1 Partition Key Restrictions

If PlacedObject elements are placed onto a Layout, Part/@Side SHALL be specified.
All PlacedObject elements that are intended to be imaged on one surface SHALL be specified in one partition.

6.52.15.2 CTM Definitions

The following are explanations of the terms used in this section and beyond:

- Dimensions of object - The width and height of either the box defined to include all drawings for this file format, or the artificial box that includes these drawings for file formats that have no clearly defined box for this.
- Trim box of the object - A rectangle that is PDL-specific that indicates the area of the object that indicates the intended trimming area.

6.52.15.3 Finding the Trim Box of an Object

RunList/@SourceTrimBox always takes precedence over boxes defined inside the PDL. Make sure that RunList/ @SourceTrimBox is updated after replacing elements. The following is a list of names used for the real trim box in various file formats:

- PostScript (PS) - PageSize
- Encapsulated PostScript (EPS) - CropBox
- Portable Document Format (PDF) - TrimBox
- Raster files - entire area

If this information is not available, alternative sources for trim box information can include (but these boxes might not be correct in all cases):

- EPS - HiResBoundingBox then BoundingBox
- PDF - CropBox then MediaBox

6.52.15.4 Using Ord to Reference Elements in RunList Resources

PlacedObject/@Ord represents a reference to a logical page in a RunList. The index SHALL be incremented for every page of the RunList. The reference shall be calculated in the context of the ResourceSet. The following examples illustrate the usage of @Ord.

Example 6.8: RunList: Simple Multi-File RunList
This example specifies all pages contained in File1.pdf and File2.pdf. File 1 has 6 pages, file 2 has an unknown number of pages.

```
<XJDF xmlns="http://www.CIP4.org/JDFSchema_2_0" JobID="RunList" Types="Imposition">
    <ResourceSet Name="RunList" Usage="Input">
        <Resource>
                <Part Run="R1"/>
                <RunList NPage="6" Pages="0 5">
                <FileSpec URL="File:///File1.pdf"/>
                </RunList>
        </Resource>
        <Resource>
            <Part Run="R2"/>
            <RunList Pages="0 -1">
                    <FileSpec URL="File:///File2.pdf"/>
            </RunList>
        </Resource>
    </ResourceSet>
</XJDF>
```

Table 6.112: Example of Ord Attribute in PlacedObject Elements

| ORD | PAGE | ORD | FILE | PAGE | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | File1 | 0 | 1 | File1 | 1 |
| 2 | File1 | 2 | 3 | File1 | 3 |
| 4 | File1 | 4 | 5 | File1 | 5 |
| 6 | File2 | 0 | 7 | File2 | 1 |
| 8 | File2 | 2 | (n) | File2 | $(n-6)$ |

6.52.15.5 Calculating Ord values in automated imposition

If Layout/@Automated = "true", the values of @Ord SHALL be recalculated for every iteration of a sheet:

- Step 1: Calculate the number of pages that each sheet consumes. Each unique @Ord value consumes one page. Positive ord values consume pages from the front of the list and negative ord values consume pages from the back of the list.
- Step 2: Calculate the number of pages per signature by multiplying the number of pages per sheet with Layout/ @MaxCollect. If Layout/@MaxCollect is not specified, the number of signatures is 1 and all pages SHALL be collected into one signature.
- Step 3: Iterate over all signatures. The document reference to the list of pages is incremented by the number of pages that a signature consumes.
- Step 4: For each signature, iterate over all sheets in the signature, while maintaining the references to the front and back of the current list of pages.

Table 6.113: Example Calculating Ord values in automated Imposition
Given the following pre-existing conditions:
Layout/@MaxCollect = "3"
Number of pages in the RunList is 20

| SIGNATURE \# | SHEET \# | ORD
 VALUE | CALCULAT
 ED ORD | SIGNATURE \# | SHEET \# | ORD
 VALUE | CALCULAT
 ED ORD |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 12 |
| 0 | 0 | 1 | 1 | 1 | 0 | 1 | 13 |
| 0 | 0 | -2 | 10 | 1 | 0 | -2 | 18 |

Table 6.113: Example Calculating Ord values in automated Imposition
Given the following pre-existing conditions:
Layout/@MaxCollect = "3"
Number of pages in the RunList is 20

SIGNATURE \#	SHEET \#	ORD VALUE	CALCULAT ED ORD	SIGNATURE \#	SHEET \#	ORD VALUE	CALCULAT ED ORD
0	0	-1	11	1	0	-1	19
0	1	0	2	1	1	0	14
0	1	1	3	1	1	1	15
0	1	-1	9	1	1	-2	16
0	2	0	4		1	-1	17
0	2	1	5				
0	2	-1	7				
0							

6.53 LayoutElementProductionParams

LayoutElementProductionParams is needed for LayoutElementProduction. This resource contains detailed information about the type of RunList to be produced.

Resource Properties

Input of Processes: LayoutElementProduction
Table 6.114: LayoutElementProductionParams Resource

NAME	DATA TYPE	DESCRIPTION
ContentRefs?	IDREFS	@ContentRefs SHALL reference Content that provide metadata related to the output RunList. Note: The referenced Content elements MAY contain OCGControl elements that select the desired optional content from versioned PDF files.
ShapeDefRef?	IDREF	@ShapeDefRef SHALL reference a ShapeDef that represents the shape of the RunList to be produced.
FileSpec (DataList) $?$	element	References a data list containing record information for variable data pro- duction. The format of the referenced data is implementation specific.

RESOURCES

Example 6.9: LayoutElementProductionParams: Page Shape
The following example requests four pages with a trim size of A 4 and a 5 mm bleed
Note: 1417pts - 5 mm .

```
<XJDF xmlns="http://www.CIP4.org/JDFSchema_2_0"
    JobID="LayoutElementProduction" JobPartID="PageSize" Types="LayoutElementProduction">
    <ResourceSet Name="LayoutElementProductionParams" Usage="Input">
            <Resource>
            <LayoutElementProductionParams ContentRefs="Content_000005.1"/>
        </Resource>
    </ResourceSet>
    <ResourceSet Name="Content">
        <Resource ID="Content_000005.1">
            <Content ContentType=="Page" SourceClipBox="0 0 651.97 878.74" SourceTrimBox="14.17 14.17
595.28 850.39"/>
        </Resource>
    </ResourceSet>
    <ResourceSet Name="RunList" Usage="Output">
        <Resource>
            <RunList NPage="4"/>
        </Resource>
    </ResourceSet>
</XJDF>
```


Example 6.10: LayoutElementProductionParams: Label Shape

The following example requests a label shape with an explicit triangular cut path.

```
<XJDF xmlns="http://www.CIP4.org/JDFSchema_2_0"
    JobID="LayoutElementProduction" JobPartID="ShapeDef" Types="LayoutElementProduction">
    <ResourceSet Name="LayoutElementProductionParams" Usage="Input">
        <Resource>
            <LayoutElementProductionParams ShapeDefRef="ShapeDef_000005.1"/>
        </Resource>
    </ResourceSet>
    <ResourceSet Name="ShapeDef">
        <Resource ID="ShapeDef 000005.1">
            <ShapeDef>
                    <Shape CutPath="10 0 l" DDESCutType="101" ShapeType="Path"/>
            </ShapeDef>
        </Resource>
    </ResourceSet>
    <ResourceSet Name="RunList" Usage="Output">
        <Resource>
            <RunList NPage="1"/>
        </Resource>
    </ResourceSet>
</XJDF>
```


Example 6.11: LayoutElementProductionParams: Box Shape

The following example requests a box that is described by an external CAD file.

```
<XJDF xmlns="http://www.CIP4.org/JDFSchema_2_0"
    JobID="LayoutElementProduction" JobPartID="ShapeDef" Types="LayoutElementProduction">
    <ResourceSet Name="LayoutElementProductionParams" Usage="Input">
        <Resource>
            <LayoutElementProductionParams ShapeDefRef="ShapeDef_000005.1"/>
        </Resource>
    </ResourceSet>
    <ResourceSet Name="ShapeDef">
        <Resource ID="ShapeDef_000005.1">
            <ShapeDef>
                        <FileSpec URL="file://myserver/myshare/olive.dd3"/>
            </ShapeDef>
        </Resource>
    </ResourceSet>
    <ResourceSet Name="RunList" Usage="Output">
        <Resource>
            <RunList NPage="1"/>
        </Resource>
    </ResourceSet>
</XJDF>
```


6.54 LayoutShift

LayoutShift defines the parameters for separation dependent paper stretch compensation.
Resource Properties
Input of Processes: LayoutShifting

Table 6.115: LayoutShift Resource

| NAME | DATA TYPE | DESCRIPTION |
| :--- | :--- | :--- | :--- |
| ShiftPoint + | element | Description of separation dependent transformations for a given point on the
 Layout. |

6.54.1 ShiftPoint

Table 6.116: ShiftPoint Element

NAME	DATA TYPE	DESCRIPTION
CTM	matrix	@CTM that SHALL be applied to the separation after all other transforma- tions.
Position	XYPair	Point that this ShiftPoint applies to. Note: The interpolation algorithm between ShiftPoint positions is implemen- tation dependent.

RESOURCES

Example 6.12: LayoutShift

Example of modifying the absolute positions of the "Black" separation with ShiftPoint/@Position.

```
<XJDF JobID="n_001007" JobPartID="n_000002" Types="Product" xmlns="http://www.CIP4.org/
JDFSchema 2 0">
    <ResourceSet Name="Layout" Usage="Input">
        <Resource>
                <Part SheetName="Sheet1" Side="Front"/>
                <Layout>
                    <PlacedObject CTM="1 0 0 1 0 0" Ord="0">
                    <ContentObject/>
                    </PlacedObject>
                    <PlacedObject CTM="1 0 0 1 700 900" Ord="0">
                    <MarkObject/>
                    </PlacedObject>
                    <PlacedObject CTM="1 0 0 1 720 0" Ord="1">
                    <ContentObject/>
                    </PlacedObject>
                    <PlacedObject CTM="1 0 0 1 0 1000" Ord="2">
                    <ContentObject/>
                    </PlacedObject>
                    <PlacedObject CTM="1 0 0 1 720 1000" Ord="3">
                        <ContentObject/>
                </PlacedObject>
            </Layout>
        </Resource>
    </ResourceSet>
    <ResourceSet Name="LayoutShift" Usage="Input">
        <Resource>
            <Part Separation="Black" Side="Front"/>
            <LayoutShift>
                    <ShiftPoint CTM="1 0 0 1 3 3" Position="360 500"/>
                    <ShiftPoint CTM="1 0 0 1 3 5" Position="1800 500"/>
                    <ShiftPoint CTM="1 0 0 1 4 3" Position="360 1500"/>
                    <ShiftPoint CTM="1 0 0 1 4 5" Position="1800 1500"/>
                    <ShiftPoint CTM="1 0 0 1 5 3" Position="360 2500"/>
                    <ShiftPoint CTM="1 0 0 1 5 5" Position="1800 2500"/>
                    <ShiftPoint CTM="1 0 0 1 6 3" Position="360 3500"/>
                    <ShiftPoint CTM="1 0 0 1 6 5" Position="1800 3500"/>
            </LayoutShift>
        </Resource>
    </ResourceSet>
</XJDF>
```


6.55 LooseBindingParams

This Parameter describes the details of the LooseBinding process.

Resource Properties

Intent Pairing:	BindingIntent
Input of Processes:	LooseBinding

Table 6.117: LooseBindingParams Resource (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
BindingType	enumeration	Type of binding that is performed. Allowed values are: ChannelBinding - Metal clamps are used to bind sheets. CoilBinding - Metal wire, wire with plastic or pure plastic is used to fasten pre-punched sheets of paper, cardboard or other materials. CombBinding - Plastic insert wraps through pre-punched holes in the sub- strate. RingBinding - Pre-punched sheets are placed in a ring binder. StripBinding - Hard plastic strips are held together by plastic pins, which in turn are bound to the strips with heat.

Table 6.117: LooseBindingParams Resource (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
CoverMaterial ?	NMTOKEN	@CoverMaterial describes the binder materials used. Values include: Cardboard - Cardboard with no covering. ClothCovered - Cardboard with cloth covering. Plastic - Binder cover fabricated from solid plastic material (e.g., PVC). PlasticCovered - Cardboard with colored plastic covering.
HolePattern *	element	Details of the holes for binding. Values for HolePattern/@Pattern SHALL be taken from 1 Appendix G Hole Pattern Catalog and SHALL follow the conven- tions specified in $~$ Appendix G.1 Naming Scheme
ChannelBindingDeta ils?	element	ChannelBindingDetails specifies additional details for channel binding. ChannelBindingDetails SHALL NOT be specified unless @BindingType = "ChannelBinding".
CoilBindingDetails ?	element	CoilBindingDetails specifies additional details for coil binding. CoilBindingDetails SHALL NOT be specified unless @BindingType = "CoilBinding".
CombBindingDetails $?$	element	CombBindingDetails specifies additional details for comb binding. CombBindingDetails SHALL NOT be specified unless @BindingType = "CombBinding".
RingBindingDetails $?$	element	RingBindingDetails specifies additional details for ring binding. RingBindingDetails SHALL NOT be specified unless @BindingType = "RingBinding".
StripBindingDetails $?$	element	StripBindingDetails specifies additional details for strip binding. StripBindingDetails SHALL NOT be specified unless @BindingType = "StripBinding".

6.55.1 ChannelBindingDetails

- Figure 6-33: Parameters used for channel binding depicts the channel binding with a clamp.

Figure 6-33: Parameters used for channel binding

The symbols W, L and ClampD of Figure 6-33: Parameters used for channel binding are described by the attributes @ClampD and @ClampSize of the table below.

Table 6.118: ChannelBindingDetails Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
ClampD?	float	The distance of the clamp that was "pressed away" (see Figure 6-33: Parameters used for channel binding Parameters used for channel binding).
ClampSize?	shape	The shape size of the clamp. The first number of the shape data type corre- sponds to the clamp width W (see Figure 6-33: Parameters used for channel binding) which is determined by the final height of the block of sheets to be bound. The second number corresponds to the length L (see Figure 6-33: Parameters used for channel binding). The third corresponds to the spine length (not visible in Figure 6-33: Parameters used for channel binding). The spine length is perpendicular on the paper plane.

Table 6.118: ChannelBindingDetails Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
Cover ?	boolean	If "true" the clamp is inside of a preassembled cover.

6.55.2 CoilBindingDetails

Table 6.119: CoilBindingDetails Element

NAME	DATA TYPE	DESCRIPTION
CoilShape?	NMTOKEN	The shape of the wire coil binding. Allowed values are from: Appendix A.3.1 Comb and Coil Shapes.
Diameter?	float	Specifies the diameter of the comb to be produced. The diameter is deter- mined by the height of the block of sheets to be bound

6.55.3 CombBindingDetails

Table 6.120: CombBindingDetails Element

NAME	DATA TYPE	DESCRIPTION
CombShape?	NMTOKEN	The shape of the wire comb binding. Allowed value includes those from: Appendix A.3.1 Comb and Coil Shapes.
Diameter?	float	Specifies the diameter of the comb to be produced. The diameter is deter- mined by the height of the block of sheets to be bound
FlipBackCover?	boolean	The spine is typically hidden between the last page of the Component and the back cover. Flip the back cover after the wire was "closed" or keep it open. The latter makes sense if further processing is needed (e.g., inserting a CD) before closing the book.

6.55.4 RingBindingDetails

Table 6.121: RingBindingDetails Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
Diameter?	float	Specifies the diameter of the rings, in points.
RingMechanic?	boolean	If "true", a hand lever is available for opening.
RingShape?	NMTOKEN	@RingShape specifies the shape of the ring binder rings. Values include: Round Oval D-shape SlantD
RivetsExposed?	boolean	@RivetsExposed describes mounting of ring mechanism in binder case. If "true", the heads of the rivets are visible on the exterior of the binder. If "false", the binder covering material covers the rivet heads.
SpineWidth?	float	The spine width is determined by the final height of the block of sheets to be bound.

Table 6.121: RingBindingDetails Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
ViewBinder?	NMTOKEN	@ViewBinder specifies the details of clear vinyl outer-wrap types on top of a colored base wrap: Values include: Embedded - Printed material is embedded by sealing between the colored and clear vinyl layers during the binder manufacturing. Pocket - Binder is designed so that printed material can be inserted between the color and clear vinyl layers after the binder is manufactured.

6.55.5 StripBindingDetails

Table 6.122: StripBindingDetails Element

| NAME | DATA TYPE | DESCRIPTION |
| :--- | :--- | :--- | :--- |
| Length ? | float | The length of the pin is determined by the height of the pile of sheets to be
 bound. |

6.56 ManualLaborParams

ManualLaborParams describes the parameters to qualify generic manual work within graphic arts production. Additional Comment elements will generally be needed to describe the work in human readable form.

Resource Properties

Input of Processes: ManualLabor
Table 6.123: ManualLaborParams Resource

NAME	DATA TYPE	DESCRIPTION
LaborType	NMTOKEN	Type of manual labor that is performed. Values include: CarvePotato - Carve a potato for potato printing. CreateCoatingForm - Create a form to apply coatings during or after printing. EditArt - Unspecific art editing (for work on specific files LayoutElementProduction SHALL be used). EditMarks - Marks editing. EditTraps - Traps editing. ManageJob - General work on the job. PhoneCallToCustomer - Phone calls to ask/inform the customer. SeparateBlanks - Manual separation of blanks from a sheet after die cutting.

6.57 Media

Media represents the properties of a raw, unexposed printable surface such as a paper sheet, film or plate.
Note: When using a substrate such as paper for printing, Media represents the properties of that substrate, whereas Component represents the physical substrate itself.
Properties
Resource referenced by: DieLayout, ExposedMedia, InterpretingParams, Layout, Media/MediaLayers, RasterReadingParams
Intent Pairing:
Medialntent, HoleMakingIntent, ContentCheckIntent
Input of Processes: BoxPacking, Bundling, Embossing, ImageSetting, Laminating
Table 6.124: Media Resource (Sheet 1 of 5)

NAME	DATA TYPE	DESCRIPTION
BackBrightness?	float	Equivalent to @Brightness (see below), but applied to the back surface of the Media. If not specified, the value of @Brightness SHALL be applied to the front and back surfaces of the Media.

Table 6.124: Media Resource (Sheet 2 of 5)

NAME	DATA TYPE	DESCRIPTION
BackCoating?	enumeration	Identical to @Coating (see below), but applied to the back surface of the media. If not specified, the value of @Coating SHALL be applied to the front and back surfaces of the Media. Allowed value is from: Coating.
BackCoatingDetail ?	NMTOKEN	Identical to @CoatingDetail (see below), but applied to the back surface of the media. If not specified, the value of @CoatingDetail SHALL be applied to the front and back surfaces of the Media. Values include: Cast
BackGlossValue?	float	Gloss of the back surface of the media in gloss units as defined by [ISO8254-1:1999]. If not specified, the value of @GlossValue SHALL be applied to the front and back surfaces of the Media.
GarainDirection?	enumeration	Direction of the grain in the coordinate system of the Media. A value of "SameDirection" SHALL NOT be specified. Allowed value is from:
ate MediaDirection		

Table 6.124: Media Resource (Sheet 3 of 5)

NAME	DATA TYPE	DESCRIPTION
ImagableSide?	enumeration	Side of the chosen medium that can be marked. Allowed values are: Front Back Both Neither
InnerCoreDiameter?	float	Specifies the inner diameter of the core of a Roll, in points. See also @OuterCoreDiameter and @RollDiameter.
InsideLoss?	float	The inside loss of corrugated board material in microns [$\mu \mathrm{m}$]. Note: @InsideLoss + @OutsideGain NEED NOT be exactly equal to thickness.
ISOPaperSubstrate?	enumeration	@ISOPaperSubstrate SHALL specify the type of paper material defined in - [ISO12647-2:2013]. Allowed value is from: ISOPaperSubstrate.
LabColorValue?	LabColor	@LabColorValue is the CIELAB color value of the media, computed as specified in ${ }^{[T A P P I ~ T 527] . ~}$
MediaColorName?	enumeration	A name for the color. If more specific, specialized or site-defined media color names are needed, use @MediaColorNameDetails. Allowed value is from: NamedColor.
MediaColorNameDet ails ?	string	A more specific, specialized or site-defined name for the media color. If @MediaColorNameDetails is supplied, @MediaColorName SHOULD also be supplied. @MediaColorNameDetails SHOULD be used to specify specialized media properties such as holographic or transparent foils.
MediaQuality ?	string	Named quality description of the media. Media with the same properties except for @Dimensions SHOULD have the same value of @MediaQuality. For folding carton quality, multiple named quality description systems are in use (e.g., GC1, SBB, etc.). For an overview, see $>$ [Pro Carton].
MediaSetCount ?	integer	When the input media is grouped in sets, identifies the number of pieces of media in each set. For example, if the @MediaTypeDetails is "PreCutTabs", a @MediaSetCount of "5" would indicate that each set includes five tab sheets.
MediaType	enumeration	Describes the general type of the Media. Allowed value is from: * Appendix A.2.25 MediaType.
MediaTypeDetails ?	NMTOKEN	Additional details of the chosen medium. Values include those from: Appendix A.3.7 MediaTypeDetails.
MediaUnit ?	enumeration	Describes the format of the media as it is delivered to the device. Allowed values are: Continuous - Continuously connected sheets which can be fan folded. Roll - Continuous web on a reel. Sheet - Individual cut sheets.
Opacity ?	enumeration	The opacity of the media. See @OpacityLevel to specify the degree of opacity for any of these values. Allowed value is from: Opacity.
OpacityLevel ?	float	Normalized TAPPI opacity (Cn), as defined and computed in - [ISO2471:1998]. Refer also to \bullet [TAPPI T519] for calculation examples.
OuterCoreDiameter?	float	Specifies the outer diameter of the core of a Roll, in points. See also @InnerCoreDiameter and @RollDiameter.
OutsideGain?	float	The outside gain of corrugated board material in microns [$\mu \mathrm{m}$].

RESOURCES

Table 6.124: Media Resource (Sheet 4 of 5)

NAME	DATA TYPE	DESCRIPTION
PlateTechnology?	enumeration	Exposure technology of the plates. Allowed values are: FlexoAnalogSolvent FlexoAnalogThermal FlexoDigitalSolvent FlexoDigitalThermal FlexoDirectEngraving InkJet - Exposure with inkjet technology. Note that @Coating = "Inkjet" specifies inkjet specific coating of paper or transparency Media, not of plates. Thermal - Thermal exposure UV - Ultraviolet exposure Visible - Visible light exposure
Polarity?	enumeration	Polarity of the chosen medium. Allowed value is from: P Polarity
PrintingTechnology?	NMTOKEN	Describes the printing technology that the media or coatings on the media are intended for or optimized for. Values include those from: - Appendix A.3.10 Printing Technologies.
RecycledPercentage ?	float	The percentage, between 0 and 100, of recycled material that the media SHALL contain.
ReliefThickness?	float	The thickness of the relief, measured in microns [$\mu \mathrm{m}$]. The floor thickness can be calculated as (@Thickness - @ReliefThickness). See Figure 6-35: Relief and Floor Thickness for a Flexo Plate or Flexo Sleeve.
RollDiameter ?	float	Specifies diameter of a roll, in points. See also @InnerCoreDiameter and @OuterCoreDiameter.
ShrinkIndex?	XYPair	Specifies the ratio of the media linear dimension after shrinking to prior shrinking. The X value specifies index in the major shrink axis, whereas the Y value specifies the index in the minor shrink axis. Used to describe shrink wrap media.
Sleevelnterlock?	NMTOKEN	The type of interlock (or notch) to use for a flexo sleeve. Values include those from: Figure 6-36: Types of Interlocks for Flexo Sleeve.
StockType?	NMTOKEN	@StockType defines the base size when calculating North American or Japanese paper weights. See •Section C Media Weight for details including predefined values.
Texture?	NMTOKEN	The texture of paper media. Values include: Antique - Rougher than vellum surface. Calendared - Extra smooth or polished, uncoated paper. IPP:Coarse - Generic value for coarse finish. IPP:Fine - Generic value for fine finish. Glossy - Glossy media. Linen - Texture of coarse woven cloth. Matte - Matte media. IPP:Medium - Generic value for finish that is neither IPP:Fine nor IPP:Coarse. Smooth - Generic term for smooth paper. Stipple - Fine pebble finish. Vellum - Slightly rough surface. Note: Values of the form IPP:xxx are provided for mapping to IPP.
Thickness?	float	The thickness of the chosen medium, measured in microns [$\mu \mathrm{m}$]. Note: Thickness is often referred to as caliper.

Table 6.124: Media Resource (Sheet 5 of 5)

NAME	DATA TYPE	DESCRIPTION
Weight?	float	Weight of the chosen medium, measured in grams per square meter $\left[\mathrm{g} / \mathrm{m}^{2}\right]$. See $~$ Appendix C Media Weight for details on converting anachronistic paper weights to $\mathrm{g} / \mathrm{m}^{2}$.
Certification *	element	Certification SHALL specify a paper certification level that the paper fulfills.
HolePattern *	element	List of holes in the Media.
IdentificationField *	element	IdentificationField associates bar codes or labels with this Media.
MediaLayers ?	element	MediaLayers describes the layer structure of media such as corrugated or self adhesive materials.
TabDimensions ?	element	Specifies the dimensions of the tabs when @MediaTypeDetails = "TabStock", "PreCutTabs" or "FullCutTabs". Note: See BindingIntent/Tabs (Table 4.21 Tabs Element) (rather than Medialntent) for how tabbed media is specified in product intent.

Figure 6-34: Paper Roll with some Roll-specific Information

Figure 6-35: Relief and Floor Thickness for a Flexo Plate or Flexo Sleeve

Figure 6-36: Types of Interlocks for Flexo Sleeve ${ }^{a}$

a. The dimensions in the figure are specified in mm.

6.57.1 TabDimensions

Specifies the size and placement of tabs in a bank and in a set of tab stock.
Table 6.125: TabDimensions Element

NAME	DATA TYPE	DESCRIPTION
TabEdge ?	enumeration	Indicates which edge of the media has tabs. Sets the coordinate system for @TabOffset, @TabExtensionDistance, and @TabWidth. Allowed value is : Edge.
TabExtensionDistanc e?	float	The positive distance in points that the tab extends beyond the body of the other media. Note: Same as BindingIntent/Tabs/@TabExtensionDistance. Note: This value is always included in the value of the overall extent of the Media defined by Media/@Dimension. See \downarrow Figure 6-37: Diagram of a Single Bank of Tabs.
TabOffset?	float	Specifies the magnitude of the distance in points from the two corners to the edge of the first "tab pitch" point of the first tab in the bank along the @TabEdge. This distance is the same on both ends of the bank of tabs. See - Figure 6-37: Diagram of a Single Bank of Tabs.
TabSetCollationOrde r ?	NMTOKEN	Collation order of media provided in sets. Applicable to sets of pre-cut tabs. See Figure 6-37: Diagram of a Single Bank of Tabs. Values include those from: * Table 6.126 TabSetCollationOrder Attribute Values.
TabsPerBank ?	integer	Specifies the number of equal-sized tabs in a single bank if all positions were filled. Note: Banks can have tabs only in some of the possible positions. Note: Same as BindingIntent/Tabs/@TabsPerBank. Media/@MediaSetCount specifies the number of tabs per set. A set can consist of one or more banks. If Media/@MediaSetCount is not an even multiple of @TabsPerBank, the last bank in each set is partially filled.
TabWidth ?	float	The width along the @TabEdge of each tab as measured along the mid-line of the tab. Each tab is centered within a space called the "tab pitch". See - Figure 6-37: Diagram of a Single Bank of Tabs.

Table 6.126: TabSetCollationOrder Attribute Values

VALUE	DESCRIPTION	EXAMPLE
Forward	First tab is towards top of stack.	
Reverse	First tab is toward bottom of stack.	

Figure 6-37: Diagram of a Single Bank of Tabs

RESOURCES

6.57.2 More about Media

6.57.2.1 Inside Loss and Outside Gain

Inside loss and outside gain: dimensional values used in the mechanical design phase of a box.
Note: IL + OG is not exactly equal to thickness. Thickness is most often referred to as caliper.
Figure 6-38: Inside Loss, Outside Gain

6.57.2.2 Corrugated Media

Corrugated material consists of multiple sheets of paper (called liners) with fluted material in between. For background information on corrugated media, see $>$ [Corrugated Packaging]. Corrugated media comes in different variants.

- Number of layers:
- single face (1 liner, 1 flute),
- single wall (2 liners, 1 flute),
- double wall (3 liners, 2 flutes),
- triple wall (4 liners, 3 flutes)
- Flute size and frequency: A, B, C, E, F flute. See \bullet [Corrugated Packaging].

Example 6.13: Media: Corrugated

The following example describes single wall corrugated media with two liners and a "B" type flue.

```
<XJDF xmlns="http://www.CIP4.org/JDFSchema_2_0" JobID="Converting"
    JobPartID="Corrugated" Types="ConventionalPrinting">
    <ResourceSet Name="Media" Usage="Input">
        <Resource>
            <Media Dimension="2834.64566929 1984.2519685" InsideLoss="1000"
                MediaType="CorrugatedBoard" MediaTypeDetails="SingleWall"
                OutsideGain="1380" Thickness="2382">
                    <MediaLayers>
                            <Media MediaType="Paper" Weight="190"/>
                            <Media Flute="B" FluteDirection="XDirection" MediaType="Paper"
                                    MediaTypeDetails="Flute" Weight="180"/>
                            <Media MediaType="Paper" Weight="180"/>
                    </MediaLayers>
            </Media>
        </Resource>
    </ResourceSet>
</XJDF>
```

6.57.2.3 Self adhesive Media

Self adhesive media is described as a MediaLayers element with nested Media and Glue elements.

Example 6.14: Media: Self Adhesive

The following example describes labels with removable glue on a 60 gram base.

```
<XJDF xmlns="http://www.CIP4.org/JDFSchema_2_0" JobID="Converting"
    JobPartID="Corrugated" Types="ConventionalPrinting">
    <ResourceSet Name="Media" Usage="Input">
        <Resource>
            <Media Dimension="1190.5511811 0" MediaType="SelfAdhesive"
                MediaUnit="Roll" Thickness="900">
                <MediaLayers>
                    <Media MediaType="Paper" Weight="90"/>
                    <Glue AreaGlue="true" GlueType="Removable"/>
                    <Media MediaType="Paper" Weight="60"/>
                </MediaLayers>
            </Media>
        </Resource>
    </ResourceSet>
</XJDF>
```


6.57.2.4 Flexo Plate Media

A sample of a Flexo plate with dimensions of $900 \mathrm{~mm} \times 1200 \mathrm{~mm}$, a base of 177 microns and a total thickness of 1143 microns.
A raw plate can contain several separations from multiple jobs. The real printing dimensions can only be determined when all elements of the mounting process are known: circumference of the sleeve on which the flat plate will be mounted, thickness of the mounting tape, thickness of base and thickness of the photopolymer.

Example 6.15: Media: Flexo Plate

```
<XJDF xmlns="http://www.CIP4.org/JDFSchema_2_0" JobID="Flexo"
    JobPartID="Plate" Types="ConventionalPrinting">
    <ResourceSet Name="Media" ProcessUsage="Plate" Usage="Input">
        <Resource Brand="FlexoBrand">
            <Part Separation="Black"/>
            <Media Dimension="2551.18110236 3401.57480315" MediaType="Plate"
                PlateTechnology="FlexoDigitalThermal" ReliefThickness="500" Thickness="1143">
                        <MediaLayers>
                        <Media MediaType="Plate" MediaTypeDetails="FlexoPhotoPolymer" Thickness="966"/>
                        <Media MediaType="Plate" MediaTypeDetails="FlexoBase" Thickness="177"/>
                </MediaLayers>
            </Media>
        </Resource>
    </ResourceSet>
</XJDF>
```


6.57.2.5 Flexo Sleeve Media

The Flexo sleeve has dimensions of $500 \times 250 \mathrm{~mm}$, a base of 1249 microns and a total thickness of 2810 microns. The sleeve dimensions are identical to printing dimensions (no distortion).

```
Example 6.16: Media: Flexo Sleeve
<XJDF xmlns="http://www.CIP4.org/JDFSchema_2_0" JobID="Flexo"
    JobPartID="Sleeve" Types="ConventionalPrinting">
    <ResourceSet Name="Media" ProcessUsage="Plate" Usage="Input">
        <Resource Brand="FlexoBrand">
            <Part Separation="Black"/>
            <Media Dimension="1417.32283465 708.66141732" MediaType="Sleeve"
                PlateTechnology="FlexoDigitalSolvent" ReliefThickness="500" Thickness="2810">
                <MediaLayers>
                            <Media MediaType="Sleeve" MediaTypeDetails="FlexoPhotoPolymer" Thickness="1570"/>
                            <Media MediaType="Sleeve" MediaTypeDetails="FlexoBase" Thickness="1249"/>
                </MediaLayers>
            </Media>
        </Resource>
    </ResourceSet>
</XJDF>
```


6.58 MiscConsumable

The MiscConsumable resource is intended for cost accounting, inventory control and availability scheduling of supplies used in the production workflow where a more detailed parameterization of the resource is not necessary. MiscConsumable is SHOULD not be used to describe resources that are already more specifically defined in XJDF such as Ink, Media, Pallet, RegisterRibbon or UsageCounter.
MiscConsumable resources MAY appear as inputs to any XJDF process. The default unit for amounts of MiscConsumable is countable objects.
Certain types of MiscConsumable elements such as MiscConsumable[@Type = "WasteContainer"] are typically "consumed" by being filled. The sense of the @Amount attribute for such resources shall be the quantity of unused or empty waste containers that are available. If @Unit is a volume, distance or weight instead of countable objects, such @Amount will still represent the remaining unused capacity of the waste container.

Resource Properties

Input of Processes: Any Process
Table 6.127: MiscConsumable Resource

NAME	DATA TYPE	DESCRIPTION
Color?	enumeration	@Color specifies the machine readable color of the consumable. Allowed value is from: NamedColor.
ColorDetails ?	string	@ColorDetails specifies additional details of the color of the consumable which MAY be site specific and MAY be human readable. @Color SHOULD be specified if @ColorDetails is supplied.
Type	NMTOKEN	Identifies the type of MiscConsumable (machine-readable). A human-read- able description of the consumable SHOULD also be supplied in Resource@DescriptiveName. Additional machine readable details MAY be pro- vided in @TypeDetails. Values include those from: : Table 6.128 Type Attribute Values.
TypeDetails?	NMTOKEN	Additional details of the consumable such as material.
IdentificationField *	element	IdentificationField associates bar codes or labels with this MiscConsumable.

Table 6.128: Type Attribute Values

VALUE	DESCRIPTION
BackReinforcement	Strip of material that is used to reinforce the spines of a hard cover book.
BlisterPack	Air filled filler material used for packing boxes.

Table 6.128: Type Attribute Values

VALUE	DESCRIPTION
DigitalMedia	Digital media represents removable digital media such as thumb drives or removable disk. Examples values for @TypeDetails include: CD - Compact disk. DVD SDCard - A memory card, e.g. from a digital camera. USBDrive - A USB attached disk drive.
Developer	Chemicals used in filmsetters and platesetters.
Electricity	Electrical energy. Typically monitored for CO 2 tracking. Measured in kWh.
FuserOil	Silicon Oil
Gas	Natural Gas. Typically monitored for CO2 tracking. Measured in m3.
Glue	
Grommet	Specifies an eyelet-like shape placed in a hole.
Hardener	Glue hardener used to two part glues.
Headband	Head band for a hard cover book.
MountingTape	Mounting tape used for a sleeve in Flexo printing.
Paper	Unprinted paper used for packing boxes.
PaperBand	
Paperclips	
PaperWrap	
PlasticBand	
RegistrationRibbon	
RubberBand	
ShrinkWrap	
Staples	
Strap	Straps are used in a Strapping process. S
Styrofoam	Styrofoam used for packing boxes.
Thread	Thread used for ThreadSealing or ThreadSewing.
WasteContainer	Waste toner bottle.
Wire	Bulk wire used for forming staples or other binding.

6.59 Nodelnfo

The Nodelnfo resource contains information about planned scheduling. It allows MIS to plan, schedule and invoice jobs or job parts.

Resource Properties
 Input of Processes: Any Process

Table 6.129: NodeInfo Resource (Sheet 1 of 2)

RESOURCES

Table 6.129: NodeInfo Resource (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
DueLevel?	enumeration	Description of the severity of a missed deadline. Allowed values are: Trivial - Missing the deadline has minor or no consequences. Penalty - Missing the deadline incurs a penalty. JobCancelled - The job is cancelled if the deadline is missed.
End?	dateTime	Date and time at which the process is scheduled to end.
FirstEnd?	dateTime	Earliest date and time at which the process SHALL end.
FirstStart?	dateTime	Earliest date and time at which the process SHALL begin.
JobPriority?	integer	The scheduling priority for the node where 100 is the highest and 0 is the lowest. If one or more of the deadline oriented attributes (e.g., @FirstStart or @LastEnd) is specified, such attribute(s) SHALL be honored before considering @JobPriority. The priority from XJDF (QueueSubmissionParams/@Priority or ModifyQueueEntryParams/@Priority) SHALL take precedence over NodeInfo/ @JobPriority.
LastEnd?	dateTime	Latest date and time at which the process SHALL end. This is the deadline to which @DueLevel refers.
LastStart?	dateTime	Latest date and time at which the process SHALL begin.
NaturalLang?	language	Language selected for human readable communication. If not specified, the operating systems language SHOULD be used.
Personalld ?	NMTOKEN	Resource/@ExternallD of the Contact that represents the employee this is responsible for processing this XJDF.
SetupDuration?	duration	Estimated duration of the setup phase of the process.
Start?	dateTime	Date and time of the planned process start.
Status?	enumeration	Identifies the status of an individual part of the XJDF. Allowed value is from: NodeStatus.
StatusDetails?	NMTOKEN	Machine readable description of the status that provides details beyond the enumerative values given by @Status. Values include those from: • Appendix A.3.14 Status Details.
TotalDuration ?	duration	Estimated total duration of the process, including setup and cleanup.
GangSource *	element	If present, each GangSource SHALL represent the source jobs that are being processed as a gang job.
MISDetails?	element	Definition how the costs for the execution of this node SHALL be charged.

6.60 Pallet

A Pallet represents the pallet used in packing goods.

Resource Properties

Input of Processes:
Table 6.130: Pallet Resource

NAME	DATA TYPE	DESCRIPTION
PalletType	NMTOKEN	Type of pallet used. Values include: 2Way - Two-way entry. 4Way - Four-way entry. Euro800x600 - 800x600mm according to 15146-4 (equals half Euro pallet). Euro800x1200 - 800x1200mm according to DIN EN 13698-1 (equals Euro pallet). Euro1000x1200 - 1000x1200mm according to DIN EN 13698-2 (flat pallet). Euro1200x1200 - 1200x1200mm no norm, but in use in the field.
Size?	XYPair	Describes the length and width of the pallet, in points (e.g., 3500 3500). If not specified, the size is defined by @PalletType.
IdentificationField*	element	IdentificationField associates bar codes or labels with this Pallet.

6.61 PalletizingParams

PalletizingParams defines the details of Palletizing. Details of the actual pallet used for Palletizing can be found in the Pallet resource that is also an input of the Palletizing process.

Resource Properties

Input of Processes: Palletizing
Table 6.131: PalletizingParams Resource

NAME	DATA TYPE	DESCRIPTION
LayerAmount ?	IntegerList	Ordered number of input components in a layer. The first number is the first layer on the bottom. If there are more layers than entries in the list, counting restarts at the first entry.
MaxHeight?	float	Maximum height of a loaded pallet in points.
MaxWeight?	float	Maximum weight of a loaded pallet in grams.
Overhang?	XYPair	Overhang in χ and y direction on each side.
OverhangOffset?	XYPair	Overhang offset if overhang is not centered.
Pattern?	NMTOKEN	Name of the palletizing pattern. Used to store a predefined pattern that defines the layers and positioning of individual component on the pallet.

6.62 PDLCreationParams

PDLCreationParams describes the details of generating the supported output PDL types used in the PDLCreation process.

Resource Properties

Input of Processes: PDLCreation
Table 6.132: PDLCreationParams Resource

NAME	DATA TYPE	DESCRIPTION
MimeType	string	This resource identifies the MIME type associated with this output file for- mat. For example "application/pdf".
FontParams?	element	Fontparams describes how fonts SHALL be handled when creating PDL.
PDFCreationDetails $?$	element	PDF specific Resource element for the output. It SHALL NOT be specified unless @MimeType = "application/pdf".
PSCreationDetails?	element	Postscript specific Resource element for the output. SHALL NOT be specified unless @MimeType = "application/postscript".

6.62.1 AdvancedParams

Table 6.133: AdvancedParams Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
AllowPSXObjects ?	boolean	If "false", PostScript XObjects SHALL not be created.
AllowTransparency?	boolean	If "flase", transparency SHALL not be present in the PDF.
AutoPositionEPSInfo ?	boolean	If "true", the process SHALL automatically resize and center information from EPS source files on the page. (EPS source only)
EmbedJobOptions?	boolean	If "true", the PDF settings used to create the PDF SHALL be embedded in the PDF.
EmitDSCWarnings ?	boolean	If "true", warning messages about questionable or incorrect DSC comments MAY appear during the processing of the source PostScript file. (PostScript source only)
LockDistillerParams ?	boolean	If "true", any PDFCreationDetails settings configured by the source content (e.g., with setdistillerparams in a PostScript source document) SHALL be ignored. If "false", each parameter defined in the source document SHALL override that set in the XJDF.
ParseDSCCommentF orDocInfo?	boolean	If "true", the process SHALL parse the DSC comments in a PostScript source file and extracts the document information. This information SHALL be recorded in the info dictionary of the PDF file.
ParseDSCComments ?	boolean	If "true", the process SHALL parse the DSC comments in a PostScript source document for any information that might be helpful for converting the file or for information that is to be stored in the PDF file. If "false", the process SHALL treat the DSC comments as pure PS comments and SHALL ignore them. (PostScript source only)
PassThroughJPEGIm ages?	boolean	If "true", JPEG images SHALL be passed through without recompressing them.
PreserveCopyPage?	boolean	If "true", the copypage operator of PostScript Level 2 SHALL be maintained. If "false", the PostScript Level 3 definition of copypage operator SHALL be used. In PostScript Levels 1 and 2, the copypage operator transmits the page contents to the current output device (similar to showpage). However, copypage does not perform many of the re-initializations that showpage does. Many PostScript Level 1 and 2 programs used the copypage operator to perform such operations as printing multiple copies and implementing forms. These programs produce incorrect results when interpreted using the Level 3 copypage semantics. This attribute provides a mechanism to retain Level 2 compatibility for this operator. (PostScript source only)
PreserveEPSInfo?	boolean	If "true", the EPS information in a PostScript source file SHALL be preserved and SHALL be stored it in the resulting PDF file. (PostScript source only)
PreserveHalftoneInf o?	boolean	If "true", the halftone screen information (frequency, angle and spot function) SHALL be passed into the PDF file. If "false", halftone information SHALL not be passed on.
PreserveOPICommen ts?	boolean	If "true", Open Prepress Interface (OPI) low resolution images SHALL be encapsulated as a form and information for locating the high resolution images SHALL be preserved.
PreserveOverprintSe ttings ?	boolean	If "true", value of the setoverprint operator SHALL be passed through to the PDF file. Otherwise, overprint SHALL be ignored.
TransferFunctionInfo ?	enumeration	Determines how transfer functions are handled. Allowed values are: Preserve - Transfer functions are passed into the PDF file. Remove - Transfer functions are ignored. They are neither applied to the color values nor passed into the PDF file. Apply - Transfer functions are used to modify the data that are written to the PDF file, instead of writing the transfer function itself to the file.

Table 6.133: AdvancedParams Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
UCRandBGInfo ?	enumeration	Determines whether the under-color removal and black-generation parame- ters from the source document (e.g., the arguments to the PostScript com- mands setundercolorremoval and setblackgeneration) SHALL be passed into the PDF file. Allowed values are: Preserve - The arguments SHALL be passed into the PDF file. Remove - The arguments SHALL be ignored.
UsePrologue?	boolean	If "true", the process SHALL append a PostScript prologue file before begin- ning of the job and append a PostScript epilog file after the end the job. Such files are used to control the PostScript environment for the conversion pro- cess. The expected location and allowable contents for these files is defined by the process implementation. (PostScript source only)

6.62.2 FontParams

This element describes how fonts are handled when converting PostScript or other PDL files to PDF.
Table 6.134: FontParams Element

NAME	DATA TYPE	DESCRIPTION
AlwaysEmbed?	NMTOKENS	@AlwaysEmbed specifies a list of one or more names of fonts that SHALL be embedded in the PDL. Each name SHALL be the PostScript language name of the font. Font names SHALL NOT occur in both the @AlwaysEmbed and @NeverEmbed lists.
EmbedAllFonts?	boolean	If "true", specifies that all fonts, except those in the @NeverEmbed list, SHALL be embedded in the PDL.
MaxSubsetPct?	integer	If the percentage of glyphs used from a font is below the value of @MaxSubsetPct, then a subset of the font SHALL be embedded in the PDL.
NeverEmbed?	NMTOKENS	@NeverEmbed specifies a list of one or more names of fonts that SHALL NOT be embedded in the PDL and SHALL NOT be considered for subsetting. Each name SHALL be the PostScript language name of the font. Font names SHALL NOT occur in both the @AlwaysEmbed and @NeverEmbed lists.

6.62.3 PDFCreationDetails

This element contains the parameters that control the conversion any PDL to PDF documents.
Some descriptions below mention attributes or structures in specific source formats, such as PostScript. Appropriate equivalent actions should be taken when converting from other source formats that have equivalent attributes or structures. A small number of s apply only to PostScript sources.

Table 6.135: PDFCreationDetails Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
AllowJBIGZGlobals ?	boolean	If "true", JBIG2 compressed images MAY share a single global dictionary in the resulting PDF file instead of a dictionary per image.
ASCII85EncodePages $?$	boolean	If "true", binary streams (e.g., page contents streams, sampled images, and embedded fonts) SHALL be ASCII85-encoded, resulting in a PDF file that is almost pure ASCII. If "false", they NEED NOT be encoded, resulting in a PDF file that can contain substantial amounts of binary data.

Table 6.135: PDFCreationDetails Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
AutoRotatePages ?	enumeration	Allows the device to try to orient pages based on the predominant text orientation. If the source is PostScript, this attribute is only used if the file does not contain "\%\%ViewingOrientation", "\%\%PageOrientation" or "\%\%Orientation" DSC comments. If the file does contain such DSC comments, it honors them. "\%\%ViewingOrientation" takes precedence over others, then "\%\%PageOrientation", then "\%\%Orientation". Allowed values are: None - Turns @AutoRotatePages off. All - Takes the predominant text orientation across all pages and rotates all pages the same way. PageByPage - Does the rotation on a page-by-page basis, rotating each page individually. Useful for documents that use both portrait and landscape orientations.
Binding ?	enumeration	Determines how the printed pages would be bound. Allowed values are: Left - for left binding. Right - for right binding.
CompressPages?	boolean	Enables compression of pages and other content streams like forms, patterns and Type 3 fonts. If "true", use Flate compression.
DefaultRenderingInt ent?	enumeration	Selects the rendering intent for the current job. Allowed value is from: RenderingIntent. Note: See the Portable Document Format Reference Manual for more information on rendering intent.
DetectBlend?	boolean	Enables or disables blend detection. If "true" and if @PDFVersion is 1.3 or higher, then blends will be converted to smooth shadings.
DoThumbnails?	boolean	If "true", thumbnails are created.
InitialPageSize?	XYPair	Defines the initial page dimensions, in points, that will be used to set MediaBox. This will be overridden by any page size attribute found in the source document, such as the PostScript PageSize page device parameter. The use of this attribute is strongly encouraged when processing EPS files (\%\%BoundingBox comments do not override @InitialPageSize).
InitialResolution ?	XYPair	Defines the initial horizontal and vertical resolution, in dpi. This will be overridden by any resolution attribute found in the source document, such as the PostScript HWResolution page device parameter. The use of this attribute is strongly encouraged when processing EPS files.
Optimize?	boolean	If "true", the PDF file SHALL be optimized for size. See $>$ [PDF1.6] for more information on optimization.
OverPrintMode?	integer	Controls the overprint mode strategy of the job. Set to "0" for full overprint or "1" for non-zero overprint. For more information, see $>$ [Adb-TN5044].
PDFVersion?	NMTOKEN	Specifies the version number of the PDF file produced. Values include all legal version designators (e.g., 1.2, 1.5, 2.0).
AdvancedParams?	element	Advanced parameters which control how certain features of PDF are handled.
PDFXParams?	element	PDF/X parameters.
ThinPDFParams?	element	Parameters that control the optional content or form of PDF files that SHALL be created.

6.62.4 PDFXParams

Parameters for generating PDF/X files. Note that TrimBox, BleedBox, output intent and the Trapped state may be provided by the use of the pdfmark operator in a PostScript source file.

Table 6.136: PDFXParams Element

NAME	DATA TYPE	DESCRIPTION
PDFXBleedBoxtoTrim BoxOffset?	rectangle	If the BleedBox entry is not specified in the page object of the source document, BleedBox SHALL be set to PDF TrimBox with offsets. All numbers SHALL be greater than or equal to 0.0. PDF BleedBox will be completely outside PDF TrimBox.
PDFXCheck?	NMTOKENS	List of PDF/X versions that the output SHALL be compliant with. Values include: X1a - see the PDF/X-1a standard \bullet [ISO15930-1:2001]. X3 - see the PDF/X-3 standard $\stackrel{\text { [ISO15930-3:2002]. }}{ }$ X4 - see the PDF/X-4 standard [ISO15930-7:2010]. X5 - see the PDF/X-5 standard \rightarrow [ISO15930-8:2010].
PDFXCompliantPDFO nly?	boolean	If "true", PDF document SHALL be produced only if PDF/X compliance tests are passed.
PDFXNoTrimBoxErro r ?	boolean	If "true" and both TrimBox and ArtBox entries are not specified in the page object of the source document, the condition SHALL be reported as an error.
PDFXSetBleedBoxTo MediaBox ?	boolean	If "true" and the BleedBox entry is not specified in the page object of the source document, BleedBox SHALL be set to MediaBox.
PDFXTrapped ?	enumeration	If a source document does not specify a Trapped state, then the value provided here SHALL be used. The value "Unknown" SHALL be used for workflows requiring 1) that the document specify a Trapped state and 2) that compliance checking fail if Trapped is not present in the document. Allowed values are: Unknown false true Note: "Unknown" is prohibited in PDF/X files.
PDFXTrimBoxToMedi aBoxOffset?	rectangle	If both the TrimBox and ArtBox entries are not specified in the page object of the source document, TrimBox SHALL be set to MediaBox with offsets. All numbers SHALL be greater than or equal to 0.0. The TrimBox SHALL be completely inside MediaBox.
FileSpec (ReferenceOutputPr ofile) ?	element	An ICC profile that describes the reference output conditions.

6.62.5 PSCreationDetails

This Parameter specifies a set of configurable options that can be used by processes that generate PostScript files.
Some descriptions below mention attributes or structures in specific source formats, such as PDF. Appropriate equivalent actions should be taken when converting from other source formats that have equivalent attributes or structures. A small number of parameters apply only to PDF sources.

Font controls are applied in the following order:
1 @IncludeBaseFonts
2 @IncludeEmbeddedFonts
3 @IncludeType1Fonts
4 @IncludeType3Fonts
5 @IncludeTrueTypeFonts
6 @IncludeCIDFonts

RESOURCES
For example, an embedded Type-1 font follows the rule for embedded fonts, not the rule for Type- 1 fonts. In other words, if @IncludeEmbeddedFonts is "true", and @IncludeType1Fonts is "false", embedded Type-1 fonts would be included in the PostScript stream.

Table 6.137: PSCreationDetails Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
BinaryOK?	boolean	If "false", binary data SHALL NOT be included in the PostScript stream.
BoundingBox?	rectangle	It is used for BoundingBox DSC comment in @CenterCropBox calculations and for PostScript's setpageDevice.
CenterCropBox ?	boolean	If "true", the CropBox from the source document SHALL be centered on the page when the CropBox is smaller than MediaBox.
GeneratePageStrea ms?	boolean	If "true", the process SHALL emit individual streams of data for each page in the RunList.
IgnoreAnnotForms?	boolean	If "true", annotations that contain a PDF XObject form SHALL be ignored. (PDF source only).
IgnoreBG ?	boolean	If "true", the BG, BG2 parameters in the PDF ExtGState dictionary, and the operand of any calls to the PostScript setblackgeneration operator SHALL be ignored.
IgnoreColorSeps?	boolean	If "true", images for Level-1 separations SHALL be ignored.
IgnoreDSC?	boolean	If "true", DSC (Document Structuring Conventions) SHALL be ignored.
IgnoreExternStream Ref?	boolean	If a PDF image resource uses an external stream and @lgnoreExternStreamRef = "true", code that points to the external file SHALL be ignored. (PDF source only).
IgnoreHalftones?	boolean	If "true", any halftone screening in the source file SHALL be ignored.
IgnoreOverprint?	boolean	OP parameters in a source PDF ExtGState dictionary setoverprint in a source PostScript file, etc. SHALL be ignored
IgnorePageRotation ?	boolean	If "true", a "concatenation" provided at the beginning of each page that orients the page so that it is properly rotated SHALL be ignored. Used when emitting EPS.
IgnoreRawData?	boolean	If "true", no unnecessary filters SHALL be added when emitting image data.
IgnoreSeparablelma gesOnly?	boolean	If "true", and if emitting EPS, only CMYK and gray images SHALL be ignored.
IgnoreShowPage?	boolean	If "true", save-and-restore showpage in PostScript files SHALL be ignored.
IgnoreTransfers?	boolean	TR, TR2 parameters in a source PDF ExtGState dictionary, settransfer and setcolortransfer in a source PostScript file, etc. SHALL be ignored.
IgnoreTTFontsFirst?	boolean	If "true", TrueType fonts SHALL be ignored before any other fonts.
IgnoreUCR?	boolean	UCR, UCR2 parameters in a source PDF ExtGState dictionary SHALL be ignored, setundercolorremoval in a source PostScript file SHALL be ignored, etc.
IncludeBaseFonts?	enumeration	Determines when to embed the base fonts. The base fonts are "Symbol" and the plain, bold, italic and bold-italic faces of "Courier", "Times", and "Helvetica". Allowed value is from: IncludeResources.
IncludeCIDFonts?	enumeration	Determines when to embed CID fonts. Allowed value is from: IncludeResources.
IncludeEmbeddedFo nts?	enumeration	Determines when to embed fonts in the document that are embedded in the source file. This attribute overrides the @IncludeType1Fonts, @IncludeTrueTypeFonts and @IncludeCIDFonts attributes. Allowed value is from: IncludeResources.

Table 6.137: PSCreationDetails Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
IncludeOtherResourc es ?	enumeration	Determines when to include all other types of resources in the file. Allowed value is from: IncludeResources.
IncludeProcSets?	enumeration	Determines when to include ProcSets in the file. Allowed value is from: IncludeResources.
IncludeTrueTypeFont s?	enumeration	Determines when to embed TrueType fonts. Allowed value is from: - IncludeResources.
IncludeType1Fonts?	enumeration	Determines when to embed Type-1 fonts. Allowed value is from: IncludeResources.
IncludeType3Fonts?	enumeration	Determines when to embed Type-3 fonts. It is included here to complete the precedence hierarchy. It has only one value. Allowed values are: IncludeOncePerPage
OutputType?	enumeration	Describes the kind of output to be generated. Allowed values are: PostScript EPS
PSLevel ?	integer	Number that indicates the PostScript level. Values include "1", "2" or "3".
Scale?	float	Number that indicates the wide-scale factor of documents. Full size = "100".
SetPageSize?	boolean	(PostScript Levels 2 and 3 only) If "true", sets page size on each page automatically. For PDF source, use MediaBox for outputting PostScript files and CropBox for EPS.
SetupProcsets?	boolean	If "true", indicates that if ProcSets are included, the init/term code SHALL also be included.
ShrinkToFit?	boolean	If "true", the page SHALL be scaled to fit the printer page size. This field SHALL override scale.
SuppressCenter?	boolean	If "true", suppresses automatic centering of page contents whose crop box is smaller than the page size.
SuppressRotate?	boolean	If "true", suppresses automatic rotation of pages when their dimensions are better suited to landscape orientation. More specifically, the application that generates the PostScript compares the dimensions of the page. If the width is greater than the height, then pages are not rotated if @SuppressRotate = "true". On the other hand, if @SuppressRotate = "false", the orientation of each source page (e.g., as set by the PDF Rotate key) is honored, regardless of the dimensions of the pages (as defined by the MediaBox attribute).
TTasT42 ?	boolean	If including TrueType fonts, converts to Type-42 instead of Type-1 fonts when @TTasT42 = "true".
UseFontAliasNames ?	boolean	If "true", font alias names SHALL be used when printing with system fonts.

6.62.6 ThinPDFParams

Table 6.138: ThinPDFParams Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
FilePerPage?	boolean	If "true", the process SHALL generate 1 PDF file per page.
SidelineEPS ?	boolean	If "true", embedded EPS files in PostScript source documents SHALL not be converted but SHALL be stored in external files in the same location as the PDF itself. (PostScript source only)

Table 6.138: ThinPDFParams Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
SidelineFonts?	boolean	If "true", font data MAY be stored in external files during PDF generation.
Sidelinelmages?	boolean	If "true", image data MAY be stored in an external stream during the PDF Generation phase. Note: This prevents large amounts of image data from having to be passed through all phases of the code generation process.

6.63 PerforatingParams

PerforatingParams define the parameters for perforating a sheet.

Resource Properties

Intent Pairing:
Input of Processes:

FoldingIntent

Perforating

Table 6.139: PerforatingParams Resource

NAME	DATA TYPE	DESCRIPTION
Perforate +	element	Defines one or more Perforate lines.

6.64 PreflightParams

The PreflightParams resource specifies the tests for the Preflight process to run.

Resource Properties

Input of Processes: LayoutElementProduction, Preflight
Table 6.140: PreflightParams Resource

NAME	DATA TYPE	DESCRIPTION
FileSpec?	element	File that describes the preflight actions in a computer-readable, non-XJDF format.
PreflightTest *	element	Descriptions of individual tests.

6.64.1 PreflightTest

PreflightTest describes an individual preflight test.
Table 6.141: PreflightTest Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
Action ?	enumeration	Action that SHOULD be taken whenever this test fails. Allowed value is from: • Action.
DescriptiveName?	string	Human readable description of this preflight test.
Severity?	enumeration	Severity of a failure of the test in order of most severe to least severe are: Allowed value is from: Severity. Note: If not specified, an implementation MAY generate PreflightCheck/ @Severity based on the details of test.
TestClass?	NMTOKEN	General area of the preflight test. Values include: Resolution - Tests that check low resolution graphics. Font - Tests that check font integrity. Colorspace - Tests that check color space violations. PageFormat - Tests that detect invalid page sizes or page boxes. FileFormat - Tests that detect incorrect file format compliancy.
TestID?	NMTOKEN	System dependent preflight test identifier

Table 6.141: PreflightTest Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
GeneralID *	element	Detailed individuals of the PreflightTest. The values of GeneralID/@IDUsage and GenerallD/@IDValue are system dependent.

6.65 PreflightReport

The PreflightReport resource describes the results of the preflight tests specified in PreflightParams.

Resource Properties

Output of Processes: Preflight
Table 6.142: PreflightReport Resource

NAME	DATA TYPE	DESCRIPTION
ErrorCount?	integer	The count of errors that were encountered while preflighting.
WarningCount?	integer	The count of warnings that were encountered while preflighting.
FileSpec ?	element	References a human readable preflight report.
PreflightCheck*	element	List of individual preflight results.

6.65.1 PreflightCheck

PreflightCheck describes an individual preflight occurrence or set of similar occurrences. These occurrences MAY be distributed over multiple pages of the document that was preflighted.
Table 6.143: PreflightCheck Element

NAME	DATA TYPE	DESCRIPTION
Action?	enumeration	Action that has been taken. Allowed value is from: Action.
Count?	integer	The total number of occurrences of this PreflightCheck.
Pages?	IntegerList	A o-based index of pages in the document where one or more errors of the type specified by this PreflightCheck occurred.
Severity?	enumeration	Severity of the PreflightCheck. If the Preflight process is described in detail with PreflightTest elements that include PreflightTest/@Severity, then this SHALL be a copy of the appropriate PreflightTest/@Severity. Allowed value is from: Severity.
TestID?	NMTOKEN	System dependent error identifier. If the Preflight process is described in detail with PreflightTest elements, then this SHALL be a copy of the appro- priate PreflightTest/@Test/D.
TestClass?	General area of the preflight check. If the Preflight process is described in detail with PreflightTest elements, then this SHALL be a copy of the appro- priate PreflightTest/@TestClass. Allowed values are from PreflightTest/@TestClass	
Comment?	element	Human readable description of this preflight check.
GeneralID*	element	Detailed individual parameters of the PreflightTest. The values of GeneralID/ @IDUsage and GeneralID/@IDValue are system dependent.

6.66 Preview

The preview of the content of a surface. It can be used for the calculation of the ink coverage (Part/@PreviewType= "Separation") or as a visual representation of what is currently processed in a device (Part/@PreviewType= "Viewable" or Part/@PreviewType= "ThumbNail"). When the preview is of Part/@PreviewType= "Separation" or Part/@PreviewType=
"SeparationRaw", a gray value of "0" represents full ink, while a value of "255" represents no ink (for more information, see DeviceGray color model chapter 4.8.2 of the PostScript Language Reference Manual) ${ }^{\text {[PS] }}$

Resource Properties

Input of Processes:
Output of Processes:

Any Process, InkZoneCalculation
PreviewGeneration

Table 6.144: Previev Resource

NAME	DATA TYPE	DESCRIPTION
Compensation?	enumeration	Compensation of the image to reflect the application of transfer curves to the image. Allowed value is from:
CTM ? Compensation.		

6.67 PreviewGenerationParams

Parameters specifying the size and the type of the preview.
Resource Properties
Input of Processes: PreviewGeneration
Table 6.145: PreviewGenerationParams Resource

NAME	DATA TYPE	DESCRIPTION
AspectRatio ?	enumeration	Policy that defines how to define the preview size if the aspect ratio of the source and preview are different. @AspectRatio SHALL NOT be specified unless @Size is also specified. Allowed values are: CenterMax - Keep the aspect ratio and preview @Size, and center the image so that the preview has missing pixels at both sides of the larger dimen- sion. CenterMin - Keep the aspect ratio and preview @Size, and center the image so that the preview has blank pixels at both sides of the smaller dimension. Crop - Keep the aspect ratio, and modify the preview size so that the image fits into a bounding rectangle defined by @Size. Expand - Keep the aspect ratio, and modify the preview size so that the smaller image dimension is defined by @Size.
Ignore - Fill the preview completely, keeping @Size, even if this requires		
modifying the aspect ratio.		

6.68 QualityControlParams

QualityControlParams defines the set of parameters for the quality control process. The specific measurement conditions are defined in specialized subelements such as BindingQualityParams. Parameters for QualityControl MAY also be referenced by providing a FileSpec. Parameters for QualityControl in XML SHOULD be provided as subelements of the parent Resource in a separate namespace. Examples include [ISO17972-1:2015] for color measurement data.
Resource Properties
Input of Processes:
QualityControl
Table 6.146: QualityControlParams Resource

NAME	DATA TYPE	DESCRIPTION
SampleInterval ?	integer	Interval in number of samples between tests.
TimeInterval ?	duration	Time interval between individual tests.
BindingQualityPara ms?	element	Specification of the binding quality measurements.
FileSpec?	element	Location of an external file that contains details of the quality control setup.

6.68.1 BindingQualityParams

The set of parameters in BindingQualityParams identifies how the quality of the binding is verified.

6.68.1.1 Pull test

In the pull test (sheet pulling test), a single sheet is subjected to slowly increasing tensile loading until it comes away
from the glue film or the material breaks down. The load increases constantly during the automatic test procedure. It is applied evenly along the whole length of the glued seam.
Note: That is why the pull test is also described as a static test method.

6.68.1.2 Flex test

The page flex test (page turning test) is used more and more rarely in quality checking, not least because it takes a long time. In the page flex test a sheet is moved back and forth under varying tensile loads, usually at $1 \mathrm{~N} / \mathrm{cm}$, until it pulls out of the glue film, with the number of to and fro movements being measured automatically.
Note: As this test procedure involves a rapid turning movement, the flex test is called a dynamic test procedure.
Table 6.147: BindingQualityParams Element

NAME	DATA TYPE	DESCRIPTION
FlexValue ?	float	Flex quality parameter measured in [N/cm].
PullOutValue?	float	Pull out quality parameter measured in [N/cm].

6.69 QualityControlResult

This set of parameters returns results of a QualityControl process. The QualityControlResult defines the set of results from the quality control process. The specific measurements are returned in specialized subelements such as
BindingQualityParams. QualityControl results may also be referenced by providing a FileSpec. QualityControl measurement results in XML SHOULD be provided as subelements of the parent Resource in a separate namespace. Examples include - [ISO17972-1:2015] for color measurement data.

Resource Properties

Output of Processes:
QualityControl
Table 6.148: QualityControlResult Resource (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
End ?	dateTime	Date and time of the end of the measurement. If not specified, the value of @Start is applied.
Failed ?	integer	Total number of failed measurements.
Passed?	integer	Total number of passed measurements.
Start?	dateTime	Date and time of the start of the measurement.

Table 6.148: QualityControlResult Resource (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
BindingQualityMeas urement *	element	Individual measurement results of binding quality.
FileSpec?	element	Location of an external file that contains details of the quality control mea- surement.

6.69.1 BindingQualityMeasurement

Table 6.149: BindingQualityMeasurement Element

NAME	DATA TYPE	DESCRIPTION
FlexValue ?	float	Flex quality parameter given in $[\mathrm{N} / \mathrm{cm}]$.
PullOutValue?	float	Pull out quality parameter given in $[\mathrm{N} / \mathrm{cm}]$.

6.70 RasterReadingParams

This set of parameters specifies the details for RasterReading.
Resource Properties
Input of Processes: RasterReading
Table 6.150: RasterReadingParams Resource (Sheet 1 of 2)

NAME	DATA TYPE	\quad DESCRIPTION
Center?	boolean	Indicates whether or not the finished page image SHALL be centered within the imagable area of the media. @Center SHALL NOT be specified if FitPolicy/ @SizePolicy = "ClipToMaxPage".
FilmRef?	IDREF	Reference to film Media. This resource provides a description of the physical media which will be marked. The physical characteristics of the media MAY affect decisions made during RasterReading.
MirrorAround?	enumeration	This attribute specifies the axis around which a raster reader SHALL mirror an image. Allowed value is from: Axis.
PaperRef?	IDREF	Reference to final paper Media. This resource provides a description of the physical media which will be marked. The physical characteristics of the media MAY affect decisions made during RasterReading.
PlateRef?	IDREF	Reference to plate Media. This resource provides a description of the physical media which will be marked. The physical characteristics of the media MAY affect decisions made during RasterReading.
Polarity?	enumeration	The image SHALL be RIPed in the polarity specified. Note that this is a polar- ity change in the RIP and not a polarity change in the hardware of the output device. Allowed value is from: • Polarity.
ProofPaperRef ?	IDREF	Reference to paper Media used for proofing. This resource provides a descrip- tion of the physical media which will be marked. The physical characteristics of the media MAY affect decisions made during RasterReading.
Scaling?	XYPair	A pair of positive real values that indicates the scaling factor for the page contents. Values between o and 1 specify that the contents SHALL be reduced, while values greater than 1 specify that the contents SHALL be expanded. @Scaling SHALL NOT be specified if FitPolicy/@SizePolicy = "FitToPage". This attribute is ignored if @FitToPage = "true". Any scaling defined in FitPolicy SHALL be applied after the scaling defined by this attribute.

Table 6.150: RasterReadingParams Resource (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
ScalingOrigin?	XYPair	A pair of real values that identify the point in the unscaled page that SHALL become the origin of the new, scaled page image. This point is defined in the coordinate system of the unscaled page. If not specified, and scaling is requested, the @ScalingOrigin defaults to "0 0"
FitPolicy?	element	Allows printing even if the size of the imagable area of the media does not match the requirements of the data. This replaces the deprecated @FitToPage attribute.

6.71 RenderingParams

This set of parameters identifies how the Rendering process SHALL operate. Specifically, these parameters define the expected output of the RunList that the Rendering process creates.
Resource Properties
Intent Pairing:
Input of Processes: Rendering
Table 6.151: RenderingParams Resource

NAME	DATA TYPE	DESCRIPTION
BandHeight?	integer	Height of output bands expressed in lines. For a frame device, the band height is simply the full height of the frame.
BandOrdering?	enumeration	Indicates whether output buffers are generated in "BandMajor" or "ColorMajor" order. Allowed values are: BandMajor - The position of the bands on the page is prioritized over the color. ColorMajor - All bands of a single color are played in order before progressing to the next plane. This is only possible with non-interleaved data.
BandWidth?	integer	integer
ColorantDepth ?	Width of output bands, in pixels. Number of bits per colorant. Determines whether the output is bitmaps or bytemaps.	
Interleaved?	boolean	If "true", the resulting colorant values SHALL be interleaved. @BandOrdering SHALL NOT be specified if @Interleaved = "true".
MimeType?	string	@MimeType identifies the MIME type associated with this output file format. For example "application/pdf".
AutomatedOverPrin tParams?	element	Controls for overprint substitutions. Defaults to no automated overprint gen- eration.
ObjectResolution *	element	Elements which define the resolutions to render the contents at. More than one element MAY be used to specify different resolutions for different @SourceObjects types. If no ObjectResolution is specified, the value is implied from the input data.
TIFFFormatParams $?$	element	Parameters specific for creating TIFF files.

6.71.1 TIFFEmbeddedFile

Table 6.152: TIFFEmbeddedFile Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
TagNumber	integer	Tag number of the specified tag (e.g., 34675 (decimal) for an ICC profile or 700 for XMP).

Table 6.152: TIFFEmbeddedFile Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
TagType	integer	The type of the tag as defined in \bullet [TIFF6]. This will usually be 1 (BYTE) or 7 (UNDEFINED).
FileSpec	element	Reference to the file that SHALL be embedded.

6.71.2 TIFFFormatParams

Table 6.153: TIFFFormatParams Element

NAME	DATA TYPE	DESCRIPTION
ByteOrder?	enumeration	Byte order of the TIFF file. Allowed values are: II - Low byte first. MM - high byte first. Note: The identifier values have been selected to match the identifier with the same purpose within the TIFF file itself.
Interleaving?	integer	How the components of each pixel are stored. The values are taken from TIFF tag 284-PlanarConfiguration: Allowed values are: 1 - "Chunky" format, which is pixel interleaved. 2 - "Planar" format, which is strip interleaved.
RowsPerStrip?	integer	The number of image scan lines per strip, encoded in the TIFF file as RowsPerStrip. This attribute is ignored if @Segmentation! = "Stripped". The default, when not known, is set by the processing system with the exception that when converting from ByteMap to TIFF, ByteMap/ @BandHeight is the default.
Segmentation ?	enumeration	How the image data are segmented. Allowed values are: SingleStrip - all data are included in one segment. This is encoded in the TIFF file by setting @RowsPerStrip to a number equal to or larger than the number of pixel rows in the image. Stripped - Data are segmented into strips. Tiled - Data are segmented into tiles.
SeparationNameTag ?	integer	When color separations are stored in individual TIFF files it is often useful to mark each with the name of the colorant that it represents, but there is no universally accepted way to do this. In order to avoid the need for explicit Partitioning, the tag to be used to encode the separation name (as a string) can be entered here as the TIFF tag number. If the same TIFF tag number is also supplied as a TIFFtag subelement, then the TIFFtag element takes priority over @SeparationNameTag. The tag SHOULD only be put in the resulting TIFF files if the name of the separation is known. The default of "270" is the "TIFF" ImageDescription tag.
TileSize?	XYPair	Two integers. The X value provides width of tiles, and the Y value provides height of tiles. @TileSize SHALL NOT be specified unless @Segmentation = "Tiled".
WhitelsZero ?	boolean	When writing monochrome or gray scale files, this flag indicates whether the data SHALL be written as "WhitelsZero" or "BlacklsZero".
TIFFEmbeddedFile *	element	Files to be embedded within the created TIFF file. These might include an ICC profile, XMP data, etc.
TIFFtag *	element	Specific tag values for inclusion in the TIFF file.

6.71.3 TIFFtag

Table 6.154: TIFFtag Element

NAME	DATA TYPE	DESCRIPTION
BinaryValue?	hexBinary	If the type of the tag is UNDEFINED, then @BinaryValue is used to encode the data
IntegerValue?	IntegerList	If the type of the tag is BYTE, SHORT, LONG, SBYTE, SSHORT or SLONG, then @IntegerValue is used to encode that data
NumberValue?	FloatList	If the type of the tag is RATIONAL, SRATIONALor FLOAT, then @NumberValue is used to encode that data
StringValue?	string	If the type of the tag is ASCII, then @StringValue is used to encode the data.
TagNumber	integer	Tag number of the specified tag (e.g., 270 (decimal) for ImageDescription).
TagType	integer	The type of the tag as defined in \bullet [TIFF6] (1 = BYTE, 2 = SHORT, etc.).

Exactly one of @IntegerValue, @NumberValue, @StringValue or @BinaryValue SHALL be present, depending on the type of the TIFF tag to be carried. TIFFtag elements SHALL NOT be used for any tags related to the image data and its encoding (ImageWidth, Compression, etc.). TIFFtag elements MAY include informational tags such as OPIProxy, ImageID, Copyright, DateTime, ImageDescription, etc.

6.72 RunList

A RunList defines one or more printable logical documents or document sets that MAY be defined in one or more external physical PDL or image files. It retains the properties of the original documents, e.g. the pages of a set of documents with ordered pages that is described by a RunList are ordered.
RunList allows structuring of multiple pages into documents. Multiple documents that have a joint context may be grouped into sets. The following table provides a mapping of pages, documents and sets for common PDL types.

6.72.1 Referencing pages of a RunList from a Layout

The Layout resource in Imposition process references individual pages in a RunList by index in Layout/@Ord. The index SHALL be calculated in the context of the current document and set of a RunList.

6.72.2 Filtering parts of a RunList

The partition keys: Part/@DocIndex, Part/@RunIndex, Part/@SetIndex and Part/@SheetIndex are provided to select subsets of a RunList without modifying the indexes of selected pages for purposes of calculating @Ord values in imposition. These keys SHALL be provided in the ResourceSet/@Usage="Output" of the process that requires filtering, e.g. for selective reprint of a set of pages, sheets, documents or document sets.
The following example illustrates how the first of two pages of r 1 (@RunIndex = "0") and the second of eight pages of r2(@RunIndex = "3") are mapped to the second and third position of a RunList.

RESOURCES

Example 6.17: Filtering Parts of a RunList

```
<ResourceSet Name="RunList" Usage="Input">
    <Resource>
        <Part Run="r1"/>
        <RunList NPage="2"/>
    </Resource>
    <Resource>
        <Part Run="r2"/>
        <RunList NPage="8"/>
    </Resource>
</ResourceSet>
<ResourceSet Name="RunList" Usage="Output">
    <Resource>
        <Part RunIndex="0 3"/>
        <RunList/>
    </Resource>
</ResourceSet>
```

Resource Properties

Resource referenced by: Input of Processes:

Layout/SheetActivation

ColorCorrection, ColorSpaceConversion, DigitalPrinting, ImageSetting, Imposition, Interpreting, LayoutElementProduction, LayoutShifting, PDLCreation, Preflight, PreviewGeneration, RasterReading, Rendering, Screening, Separation, ShapeDefProduction, Stripping, Trapping
Output of Processes: ColorCorrection, ColorSpaceConversion, Imposition, Interpreting, LayoutElementProduction, LayoutShifting, PDLCreation, RasterReading, Rendering, Screening, Separation, Stripping, Trapping
Table 6.155: RunList Resource (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
Automation?	enumeration	Identifies dynamic and static RunList elements. Generating Resource/Part in automated imposition is defined in detail in: Section 5.4.8.1 Execution Model for Automated Imposition. This structure SHALL be retained in the RunList description. Allowed value is from: Automation. Note: If @Automation = "Dynamic" and @PipeID is also present, details are specified in XJMF pipe messages. See \bullet Section 9.3.5.1 Dynamic Pipes.
ClipPath ?	PDFPath	Path that describes the outline of the RunList that SHALL be clipped. The default case is that there is no clip path. @ClipPath, @SourceClipBox, PlacedObject/@SourceClipPath and PlacedObject/@ClipBox, if supplied, SHALL be concatenated.
ContentRefs ?	IDREFS	Ordered list of IDs of Content elements. Content elements provide Metadata related to the product to be published.
Docs?	IntegerList	Zero-based list of document indices in a multi-document file in the context of @Sets.
EndOfDocument?	boolean	If "true", the last page in the RunList is the last page of an Instance Document. If the RunList references a PDL that supports internal Instance Documents, @EndOfDocument SHALL be the value that is defined in the PDL. The implied default value of @EndOfDocument = "false", except for the last RunList Resource with the same explicit or calculated value of Part/@SetIndex, which has an implied default value of @EndOfDocument = "true".
EndOfSet?	boolean	If "true", the last page in the RunList is the last page of a set of Instance Documents. If the RunList references a PDL that supports internal sets, @EndOfSet SHALL be the value that is defined in the PDL. The implied default value of @EndOfSet = "false", except for the last RunList Resource, which has an implied default value of @EndOfSet = "true".

Table 6.155: RunList Resource (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
FinishedPages ?	integer	Number of finished page surfaces that one PDL page of this RunList refers to. This attribute SHOULD be used when cover spreads or imposed sheets that contain more than one reader page per PDL page are provided.
LogicalPage?	integer	The logical page number of the first page in a RunList. It defaults to "1" plus the last page of the previous sibling RunList Partition. If the RunList resource is the first Partition, @LogicalPage defaults to "0". @LogicalPage SHALL NOT be specified lower than the highest calculated value of @LogicalPage of a previous partition.
NPage?	integer	Total number of pages (placed object slots) that are defined by the RunList. If @NPage is not specified, it defaults to all pages in the referenced PDL. If the RunList describes multiple instance documents or document sets, @NPage refers to the total number of pages in all Instance Documents and sets. A RunList with @NPage specified always refers to @NPage pages, regardless of the number of pages of the referenced PDL.
OrdType?	enumeration	@OrdType SHALL specify the usage of this RunList element in the context of an Imposition process. Allowed values are: Content - This RunList specifies a set of pages that have content associated. @NPage SHOULD be specified. Insert - This RunList specifies a set of pages that will be inserted from an external feeder. @NPage SHALL be specified. Reservation - This RunList specifies a set of pages that have no content associated. @NPage SHALL be specified.
Pages?	IntegerRange	Zero-based list of indices in the pages in the context of @Docs and @Sets. @Pages need not be in document order. If neither @Pages or @NPage is specified, all pages in the PDL referred to by the RunList are selected.
Sets?	IntegerRange	Zero-based list of Document Set indices in a multi-Document Sets file specified by the RunList resource. If not present, all Document Sets are selected.
SourceBleedBox ?	rectangle	A rectangle that describes the bleed area of the element that SHALL be included. This rectangle is expressed in the source coordinate system of the object.
SourceClipBox?	rectangle	A rectangle that defines the region of the element that SHALL be included. This rectangle is expressed in the source coordinate system of the object.
SourceMediaBox?	rectangle	The MediaBox of the RunList.
SourceTrimBox?	rectangle	A rectangle that describes the intended trimmed size of the element to be included. This rectangle is expressed in the source coordinate system of the object.
ByteMap?	element	Describes the page or stream of pages. At most one of ByteMap or FileSpec SHALL be specified. If none of ByteMap or FileSpec are specified, the RunList specifies empty content.
FileSpec?	element	URL plus metadata about the physical characteristics of a file representing the RunList. If not present, then only metadata is known but not the content file.
MetadataMap *	element	Describes the mapping of Metadata in a RunList to partition keys. MetadataMap SHOULD NOT be specified unless @Automation = "Dynamic".

RESOURCES

6.72.3 Pages, Documents and Sets for common PDL types

The following table defines the mapping of RunList structures to commonly used PDLs.
Table 6.156: Pages, Documents and Sets for common PDL types

PDL	PAGES	DOCUMENTS	SETS	REMARKS
Post- Script	-	-	PostScript is a single document PDL	
PDF	Page in pages tree	-	-	Regular PDF including PDF/X is a single document PDL.
PDF/VT	Page in pages tree	Any DPart Descendant below the Set	And DPart record as defined by RecordLevel	A Record as defined by Record- Level SHALL be mapped to a Set.
PPML	PAGE elements	DOCUMENT elements	DOCUMENT_SET/JOB elements	

6.72.4 Band

Table 6.157: Band Element

NAME	DATA TYPE	DESCRIPTION
Height?	integer	Height in pixels of the band.
Width?	integer	Width in pixels of the band

6.72.5 ByteMap

A ByteMap represents a raster of image data. This data MAY have multiple bits per pixel, MAY represent a varying set of color planes, and MAY be interleaved. A Bitmap is a special case of a ByteMap in which each pixel is represented by a single bit per color.

Table 6.158: ByteMap Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
BandOrdering?	enumeration	Identifies the precedence given when ordering the produced bands. @BandOrdering SHALL be specified for non-interleaved data and SHALL be ignored for interleaved data if specified. Allowed values are: BandMajor - The position of the bands on the page is prioritized over the color. ColorMajor - All bands of a single color are played in order before progressing to the next plane. This is only possible with non-interleaved data.
FrameHeight?	integer	Height of the overall image that MAY be broken into multiple bands.
FrameWidth ?	integer	Width of overall image that MAY be broken into multiple columns.
Halftoned?	boolean	Indicates whether or not the data has been halftoned e.g. in a previous Screening process.
Interleaved?	boolean	If "true", the data are interleaved or chunky. Otherwise the data are non-interleaved or planar.
PixelColorants ?	NMTOKENS	Ordered list of separation identifiers containing information about which colorants are represented. Additional details of the colorants should be provided in ResourceSet[@Name="Color"].
PixelDepth ?	integer	Number of bits per pixel for each colorant.
PixelSkip?	integer	Number of bits to skip between pixels of interleaved data.
Resolution?	XYPair	Output resolution of the ByteMap in dpi.

Table 6.158: ByteMap Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
Band?	element	Description of the structure of the bands or tiles containing raster data.

Example 6.18: RunList: Unstructured Single-File RunList

The order in which the RunList elements appear in the XML document is significant. Note: The @Run partition key has a string value, which MAY be non-numeric. Below is an example of simple unstructured single-file RunList. This example specifies all pages contained in "/in/colortest.pdf".

```
<XJDF xmlns="http://www.CIP4.org/JDFSchema_2_0" JobID="RunList" Types="Imposition">
    <ResourceSet Name="RunList" Usage="Input">
        <Resource>
            <RunList Pages="0 -1">
                <FileSpec URL="File:///in/colortest.pdf"/>
            </RunList>
        </Resource>
    </ResourceSet>
</XJDF>
```


6.73 ScreeningParams

ScreeningParams specifies the parameters of the Screening process.

Resource Properties

Intent Pairing:	ContentCheckIntent,
Input of Processes:	Screening

Table 6.159: ScreeningParams Resource

NAME	DATA TYPE	DESCRIPTION
IgnoreSourceFile?	boolean	If @IgnoreSourcefile $=$ "true", the screen settings (e.g., setscreen, setcol- orscreen and sethalftone) specified in the source files SHALL NOT be applied.
ScreenSelector +	element	List of screen selectors. A screen selector is included for each separation, including a default specification. ScreenSelector SHALL contain the complete set of Parameters for a given screening operation.

6.74 SeparationControlParams

SeparationControlParams provides the controls needed to separate composite color files.

Resource Properties

Intent Pairing:
Input of Processes: Separation
Table 6.160: SeparationControlParams Resource

NAME	DATA TYPE	DESCRIPTION
AutomatedOverPrin tParams?	element	Controls for overprint substitutions.

6.75 ShapeCuttingParams

ShapeCuttingParams defines the details of the ShapeCutting process.
Resource Properties
Intent Pairing: ShapeCuttingIntent

Table 6.161: ShapeCuttingParams Resource

NAME	DATA TYPE	DESCRIPTION
DeliveryMode?	enumeration	Allowed values are: FullSheet - The output of the die-cutter SHALL be complete sheets. The blanks are kept in place with nicks. Front waste (gripper margin) SHALL NOT be removed. RemoveGripperMargin - The output of the die-cutter SHALL be complete sheets. The blanks are kept in place with nicks. Front waste (gripper mar- gin) SHALL be removed. SeparateBlanks - The output of the die-cutter SHALL be blanks that have been removed from the sheets.
DieLayoutRef?	IDREF	Reference to a DieLayout containing the reference of an external file describ- ing the cutting and other paths.
ModuleID?	NMTOKEN	Identifier of the shape-cutting module in a multi-function device such as a printing press.
SheetLay?	enumeration	Lay of input media. Reference edge of where the sheets are placed in the feeder. Allowed value is from: SheetLay.
Shape $*$	element	Details of each individual cut shape.

6.76 ShapeDef

A structural design describing a 2D surface with paths that describe different finishing operations like cutting, creasing, perforation, etc. In the case of box production this resource is a description of the unprinted blank box as it will be available after die cutting and blanking and before folding. A ShapeDef is defined either by an external file (FileSpec) describing the structural design or a collection of PDFPaths contained in Shape elements.

Resource Properties

Resource referenced by: DieLayout/Station, LayoutElementProductionParams
Input of Processes:
Output of Processes: ShapeDefProduction
Table 6.162: ShapeDef Resource (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
Area?	float	The net area of the shape after cutting in m^{2}.
CutBox?	rectangle	A rectangle describing the bounding box of all cut lines. This is sometimes referred to as the knife to knife dimensions of a blank box.
CutLines?	NMTOKENS	Selects the die line separation identifiers from the file referenced by FileSpec. Additional details of the usage of the separations MAY be specified in the respective ResourceSet[@Name = "Color"].
Dimensions?	shape	Width x, height y and depth z coordinates of the open 3D shape. For a box, these are the outer dimensions of the opened and potentially filled box (e.g., for palletizing of the final products). Note: Compare with @FlatDimensions.
FlatDimensions?	shape	Width x, height y and depth z coordinates of the flat 3D shape. For a box, these are the outer dimensions of the glued flat box (e.g., for palletizing of the boxes prior to filling). This corresponds to Component/@Dimensions of the output of the BoxFolding process. Note: Compare with @Dimensions.
FluteDirection?	enumeration	Intended direction of the flute for this design in the coordinate system defined by @CutBox. This information SHALL be taken into account by the DieLayoutProduction process to give the ShapeDef the correct orientation on the sheet. Allowed value is from:

Table 6.162: ShapeDef Resource (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
GrainDirection?	enumeration	Intended direction of the grain for this design in the coordinate system defined by @CutBox. This information SHALL be taken into account by the DieLayoutProduction process to give the ShapeDef the correct orientation on the sheet. Allowed value is from: MediaDirection.
MediaRef?	IDREF	Reference to a Media resource for which this structural design was intended for. The Media description defines important design parameters as the type of Media, thickness, inside loss, outside gain, etc.
MediaSide?	enumeration	Determines the printing side for which the DieLayout is made. Front corre- sponds to the outside of a box, Back corresponds to the inside of a box. Allowed value is from:, Side Note: Folding carton is usually cut from the outside (Front), corrugated from the inside (Back).
ResourceWeight?	float	element
FileSpec?	The weight of the shape after cutting (g).	
The FileSpec of the structural design file. The format of this file may be a		
vendor specific format, a standard [DDES3], less well specified but com-		
monly used formats like CFF2 or DXF or even a PDF or EPS file. FileSpec and		
Shape are mutually exclusive.		

6.77 ShapeDefProductionParams

Parameters for the structural design.

Resource Properties

Input of Processes:
ShapeDefProduction
Table 6.163: ShapeDefProductionParams Resource

NAME	DATA TYPE	DESCRIPTION
ObjectModel *	element	A 3D model of the objects that need to be packed.
ShapeTemplate?	element	A structural template sometimes called a parametric structural design. Given a set of parametric values a structural template can be instantiated to an actual structural design.

6.77.1 ObjectModel

Table 6.164: ObjectModel Element

NAME	DATA TYPE	DESCRIPTION
Dimensions?	shape	Width x, height y and depth z values for the bounding box of the object.
FileSpec?	element	The filespec of the 3D model of the objects that needs to be packed. The for- mat of this file MAY be a vendor specific format or a standard 3D format like VRML or PDF (U3D).

RESOURCES

6.77.2 ShapeDimension

Table 6.165: ShapeDimension Element

NAME	DATA TYPE	DESCRIPTION
Usage	string	@Usage specifies the name of the ShapeDimension. Values Include: D - Depth L- Length W - Width
Value	float	@Value specifies the length of the ShapeDimension in points.

6.77.3 ShapeTemplate

ShapeTemplate describes a structural template which is also referred to as a parametric structural design.
Table 6.166: ShapeTemplate Element

NAME	DATA TYPE	DESCRIPTION
InnerDimensions?	shape	Width x, height y and depth z coordinates of the 3D shape. For a box these are the inner dimensions.
Name?	NMTOKEN	The name of a parametric structural design or CAD template.
Standard?	NMTOKEN	The name of the standard this template belongs to (e.g., FEFCO, ECMA or the name of a company internal standard).
FileSpec?	element	The FileSpec of the parametric structural design.
ShapeDimension *	element	ShapeDimension elements define additional parametric values of the ShapeTemplate.

The three Figures below show shapes specified by a ShapeTemplate with each named variable represented by a ShapeDimension element •Example 227 ShapeTemplate for Figure 6-39: ShapeTemplate Example 1 below illustrates the encoding of L,D and W using ShapeDimension:

Example 6.19: ShapeTemplate for Figure 6-39: ShapeTemplate Example 1

```
<XJDF xmlns="http://www.CIP4.org/JDFSchema_2_0" JobID="n_001010"
    JobPartID="n_000006" Types="ShapeDefProduction">
    <ResourceSet Name="ShapeDefProductionParams" Usage="Input">
        <Resource DescriptiveName="Box123">
            <ShapeDefProductionParams>
                    <ShapeTemplate
                            InnerDimensions="283.46456693 566.92913386 850.39370079" Standard="ECMA">
                        <ShapeDimension Usage="L" Value="1440"/>
                    <ShapeDimension Usage="W" Value="720"/>
                    <ShapeDimension Usage="D" Value="1440"/>
                    </ShapeTemplate>
                </ShapeDefProductionParams>
        </Resource>
    </ResourceSet>
</XJDF>
```

Figure 6-39: ShapeTemplate Example 1

Figure 6-40: ShapeTemplate Example 2

Figure 6-41: ShapeTemplate Example 3

6.78 SheetOptimizingParams

Parameter resource that parametrizes the SheetOptimizing process.
Resource Properties
Input of Processes:
SheetOptimizing
Table 6.167: SheetOptimizingParams Resource (Sheet 1 of 2) (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
ConvertingConfig +	element	Specification of the device configurations for destination sheet sizes.

Table 6.167: SheetOptimizingParams Resource (Sheet 2 of 2) (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
GangElement +	element	Each GangElement describes an individual product or product part that SHALL be placed completely on a gang form. If an individual product MAY be distributed over multiple separate gangs (e.g., cover and body with different paper), it SHALL be represented as multiple gang elements.

6.78.1 GangElement

A GangElement describes an individual product or product part (e.g., product cover) that is a candidate for placement on a printed sheet.
Table 6.168: GangElement Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
BinderySignatureIDs ?	NMTOKENS	If specified, @BinderySignatureIDs SHALL list Part/@BinderySignatureID of all BinderySignatures that are candidates for this GangElement.
CollapseBleeds ?	boolean	If single page GangElement that has a bleed in a solid color is ganged in block pattern, the bleed between the GangElement elements may not be required. If "true", the bleed margin between the instances of GangElement elements SHOULD be removed.
Dimension ?	XYPair	The GangElement block size including trims and bleeds of the element to be ganged. SHALL NOT be specified if @NPage is specified. If GangElement/ Layout or @PageDimension is specified @Dimension SHALL NOT be specified.
DueDate?	dateTime	The latest date and time the GangElement needs to be included on a gang. The gang engine SHOULD use a combination of @DueDate and @Priority to decide which GangElement elements to place on a gang.
ExternalID ?	NMTOKEN	The product ID in (e.g., a web to print system).
FillPriority ?	integer	If non-zero the ganging engine is requested to fill any left over space on the sheet with this GangElement elements even if this would lead to over production of the GangElement elements. GangElement elements with a higher priority take precedence over GangElement elements with a lower priority.
GangElementID	NMTOKEN	An identifier of the GangElement that is unique within the context of the workflow. @GangElementID SHALL be copied to the output Layout/Position/ @GangElementID to indicate which GangElements have been included in the results of the SheetOptimizing process.
GrainDirection ?	enumeration	The allowed grain direction of the paper with respect to the GangElement. @GrainDirection is specified in the context of the page. If no page context exists, then @GrainDirection references the entire rectangle. Allowed value is from: MediaDirection.
GroupCode?	NMTOKEN	Code specifying a group of products. GangElement elements with the same group code MAY be ganged together in a vertical column on the sheet, whereas GangElement elements with different @GroupCode values SHOULD NOT be grouped. This attribute MAY be used to prevent GangElement elements with different colors, ink densities or other incompatible properties to be placed in vertical columns printing on an offset press.
Jobld?	NMTOKEN	The original @Jobld of the element to be ganged.
MaxQuantity ?	integer	The maximum number of printed (fold) sheets that may be produced by the gang, including finishing waste.
MediaRef?	IDREF	Reference to a Media resource whose characteristics SHALL be met in the gang.
MinQuantity?	integer	The minimum number of printed (fold) sheets that SHALL be produced by the gang, including finishing waste.

Table 6.168: GangElement Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
NPage?	integer	The total number of pages of the GangElement. If GangElement/Layout is specified, then @NPage shall not be specified. If @NPage is specified, the number and size of the fold sheets / BinderySignature elements is decided by the ganging engine.
NumberUp?	XYPair	The number up that SHALL be placed on the gang in a single block. If Y is zero, then X SHALL specify the total number-up requested without specifying a specific number in X or Y direction.
OneSheet?	NMTOKEN	Control how this GangElement SHOULD be placed on ganged sheets. Values include: Any - Place on any sheet that is generated. GangElementID - Keep all blocks with this @GangElementID on one sheet. JobID - Keep all GangElement elements with the same @JobID on the same sheet.
OrderQuantity	integer	The number of printed (fold) sheets to produce, including finishing waste.
PageDimension?	XYPair	The page size, including trims and bleeds, of the element to be ganged. @PageDimension SHALL NOT be specified if @NPage is NOT specified. If GangElement/Layout or @Dimension is specified @PageDimension SHALL NOT be specified.
Priority?	integer	All GangElement elements with a @Priority = "100" SHALL be included in the gang. GangElement elements with a @Priority less than 100 MAY be included in the gang, and SHOULD be included in descending @Priority order.
RotationPolicy ?	enumeration	Specifies the level of freedom when applying the values specified in @GrainDirection. Allowed value is from: PositionPolicy.
SeparationListBack?	NMTOKENS	@SeparationListBack SHALL specify the list of separation identifiers that are required for the back side of the product. MAY include varnish. Additional details of the colorants SHOULD be provided in ResourceSet[@Name="Color"].
SeparationListFront	NMTOKENS	@SeparationListFront shall specify the list of separation identifiers that are required for the front side of the sheet. MAY include varnish. Additional details of the colorants SHOULD be provided in ResourceSet[@Name="Color"].
RunListRef?	IDREF	Reference to the content data for this GangElement. If this RunList refers to a structured PDL with multiple document instances such as recipient records in PDF/VT, then this GangElement represents multiple individual sections. These sections SHALL be positioned using the same rules that would apply if each document instance were referenced by an individual GangElement. All Document instances referenced by an individual GangElement SHALL be processed in one gang.

6.79 ShrinkingParams

ShrinkingParams provides the parameters for the Shrinking process in shrink wrapping.
Resource Properties
Input of Processes: Shrinking
Table 6.169: ShrinkingParams Resource

NAME	DATA TYPE	DESCRIPTION
ShrinkingMethod?	enumeration	Specifics of the shrinking method for shrink wrapping. Allowed values are: ShrinkCool ShrinkHot
Temperature?	float	Shrining temperature in ${ }^{\circ}$ Centigrade.

6.80 SpinePreparationParams

SpinePreparationParams describes the preparation of the spine of book blocks for hard and soft cover book production (e.g., milling and notching).

Resource Properties

Intent Pairing: BindingIntent
Input of Processes: SpinePreparation
Table 6.170: SpinePreparationParams Resource

NAME	DATA TYPE	DESCRIPTION		
MillingDepth?	float	Milling depth, in points. This describes the total cut-off of the spine, regard- less of the technology used to achieve this goal.		
NotchingDepth?	float	Notching depth relative to the leveled spine, in points. If not specified, no notching SHALL be performed.		
NotchingDistance?	float	Notching distance, in points.		
Operations?	NMTOKENS	List of operations that SHALL be applied to the spine. Duplicate entries SHALL specify a sequence of identical operations. The order of operations is significant. Values include those from:		
StartPosition? Appendix A.3.13 Spine Operations.				Wloat
:---				
float				

Figure 6-42: Parameters and coordinate systems for the SpinePreparation Process

6.81 SpineTapingParams

SpineTapingParams define the parameters for taping a strip tape or kraft paper to the spine of a book block.
Resource Properties

Intent Pairing:	BindingIntent
Input of Processes:	SpineTaping

Table 6.171: SpineTapingParams Resource (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
HorizontalExcess?	float	Taping spine excess on each side. The tape is assumed to be centered between left and right.

Table 6.171: SpineTapingParams Resource (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
HorizontalExcessBac $k ?$	float	Horizontal excess of back if tape is not centered
StripLength?	float	Length of strip material along binding edge. If not defined, the default case is that the @StripLength be equivalent to the length of the spine.
TopExcess?	float	Top spine taping excess. This value MAY be negative.
Glue *	element	Describes where and how to apply glue to the book block.

Figure 6-43: Parameters and coordinate system for the SpineTaping Process

6.82 StackingParams

Settings for the Stacking process. A stack of components might be uneven and unstable, due to variations in thickness across each component. The thickness variations might be caused by folding, binding or inserted components. A stack might be split into layers, with successive layers rotated by 180° to compensate for the unevenness ($\stackrel{\text { Figure 6-44: }}{ }$ Stacking Layers).

Figure 6-44: Stacking Layers

If the thickest part is on an edge (e.g., a book binding), the components might be offset to separate the thick parts. Layer compensation and offsetting can be combined as in the following examples of pile patterns (\downarrow Figure 6-45: Pile Patterns).

Figure 6-45: Pile Patterns

Table 6.172: Parameters in Stacking

PILE PATTERN	STANDARDAMOUNT	LAYERAMOUNT	COMPENSATE	DISJOINTING/ GOFFSET
1	6	6	true	00
2	6	1	true	00
3	6	1	false	$\times 0$
4	6	1	true	$\times 0$
5	6	3	true	00
6	6	3	true	$\times 0$
7	3			

If the number of components is not evenly divisible by @StandardAmount or the number of components in a bundle is not evenly divisible by @LayerAmount, there will be a remainder, yielding one or more odd-count stacks or layers. By default, the odd-count stack or layer size can contain as few as one component. This might exceed equipment cycle times, and flimsy components (newspapers) might cause problems with downstream equipment such as strappers. @MinAmount and @MaxAmount control the minimum and maximum size of odd-count stacks and layers. The following figures show the odd count handling for bundles and layers.

Figure 6-46: Odd count handling for a Bundle

Figure 6-47: Odd count handling for a Layer

Resource Properties
Input of Processes:
Stacking
Table 6.173: StackingParams Resource (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
BundleType?	enumeration	@BundleType specifies the Bundleltem/@BundleType of the items that shall be counted as an individual item for Stacking. Allowed values are from: BundleType.
Compensate?	boolean	180 degree rotation applied to successive layers to compensate for uneven stacking. If @LayerAmount = @StandardAmount, there is one layer, and effec- tively no compensation.
LayerAmount?	IntegerList	Ordered number of products in a layer. The first number is the first @LayerAmount, etc. If there are more layers than entries in the list, counting restarts at the first entry. The sum of all entries is typically an even divisor of @StandardAmount. When not specified, the default case is that the value of
@LayerAmount equals the value of @StandardAmount.		

Table 6.173: StackingParams Resource (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
StackAmount?	integer	Specifies the maximum sheet count before switching to the next stacker in the list of @OutputBin values.
StackCompression?	boolean	If @StackCompression = "true", the stack is compressed before push out.
StandardAmount?	integer	Number of products in a standard stack.
UnderLays?	IntegerList	Number of underlay sheets at each layer. The first value is underneath the bottom layer, the next value above the bottom layer and so forth. If more lay- ers than values are specified, counting restarts at the o position of @UnderLays. If less layers than values are specified, all underlay sheets that are not adjacent to a layer SHALL be ignored.
Disjointing?	element	Details of the offset or shift applied to successive layers or documents to sep- arate the thicker portions of components, for example, offsetting the spines of hardcover books.

6.82.1 Disjointing

Disjointing describes how individual items as specified by @BundleType are separated from one another on a stack.
Table 6.174: Disjointing Element

NAME	DATA TYPE	DESCRIPTION
Amount?	integer	The number of components that are shifted in @Direction simultaneously. The @Units attribute specifies the type of the component counted by this attribute. See @Units for more details.
Direction?	enumeration	Offset-shift action for the first component. A component can be offset to one of two positions-left or right. Allowed values are: Alternate - The position of the first component of a new job is opposite to the position of the previous component and subsequent components are each offset to alternating positions. For example, if the last item in the stack was positioned to the right then the subsequent items will be positioned to the left, right, left, right and so on. Left - The first component of a new job is on the left, and subsequent com- ponents are each offset to alternating positions. None - Do not offset consecutive components. The position of all compo- nents is the same as the position of the previous component. Right - The first component of a new job is on the right, and subsequent components are each offset to alternating positions.
Offset?	XYPair	Offset dimension in X and Y dimensions that separates the components.

6.82.2 InsertSheet

InsertSheet resources define device generated sheets which SHALL be produced along with the job. InsertSheet elements include separator sheets, error sheets, accounting sheets and job sheets. The information provided on the sheet depends on the type of sheet.

Table 6.175: InsertSheet Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
IsWaste?	boolean	Specifies whether the InsertSheet is waste. If "true", the InsertSheet SHALL be discarded when finishing the document.

RESOURCES

Table 6.175: InsertSheet Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
SheetFormat?	NMTOKEN	Identifies that device dependent information SHALL be included on the InsertSheet. @SheetFormat MAY specify site dependent or customer dependent values. Values include: Blank - Empty sheet. Brief - Site specific sheet with minimal information. Full - Site specific sheet with maximum information. Standard - Site specific sheet with default information.
SheetType	enumeration	Identifies the type of sheet. Allowed values are: AccountingSheet - A sheet that reports accounting information for the job. ErrorSheet - A sheet that reports errors for the job. JobSheet - A sheet that delimits the job. SeparatorSheet - A sheet that delimits pages, sections, copies or instance documents of the job.
SheetUsage	enumeration	Indicates where this InsertSheet SHALL be produced and inserted into the set of output pages. Allowed values are from: $~$ Table 6.176 SheetUsage Attribute Values.
StripMark *	element	StripMark provides formatting and content for the InsertSheet.

Table 6.176: SheetUsage Attribute Values

VALUE	DESCRIPTION
Header	Valid for @SheetType = "JobSheet" or "SeparatorSheet". The sheet is produced at the beginning of the job (for "JobSheet"), or at the beginning of each copy of each instance document (for "SeparatorSheet"), or is appended before the current Component. Contents for the sheet SHALL be drawn from the StripMark elements.
Interleaved	Valid for @SheetType = "SeparatorSheet". The sheet is produced after each page (e.g., used to insert sheets under transparencies). Contents for the sheet SHALL be drawn from the StripMark elements.
InterleavedBefore	Valid for @SheetType = "SeparatorSheet". The sheet is produced before each page (e.g., used to insert sheets before transparencies). Contents for the sheet SHALL be drawn from the StripMark elements.
OnError	Valid for @SheetType = "ErrorSheet". The sheet is produced at the end of the job only when an error or warning occurs.
Slip	Valid for @SheetType = "SeparatorSheet". The sheet is produced between each copy of each instance document. Contents for the sheet SHALL be drawn from the StripMark elements.
SlipCopy	Valid for @SheetType = "SeparatorSheet". The sheet is produced between each copy of the job, which is defined to be when the complete RunList has been consumed. Contents for
the sheet SHALL be drawn from the StripMark elements.	

6.83 StaticBlockingParams
 StaticBlockingParams defines the details of StaticBlocking.

Resource Properties

Input of Processes:
StaticBlocking
Table 6.177: StaticBlockingParams Resource
NAME DATA TYPE DESCRIPTION

No attributes defined

6.84 StitchingParams

StitchingParams provides the parameters for the Stitching process. The process coordinate system is defined as follows:

- The X-axis is aligned with the second registered edge, and it increases from the binding edge to the face edge.
- The Y-axis is aligned with the spine and increases from the first registered edge to the edge opposite to the registered face edge.
Note: The stitches are applied from the front in the figures describing the stitching coordinate system.
Figure 6-48: Parameters and coordinate system used for saddle stitching

Figure 6-49: Parameters and coordinate system used for Stitching

Figure 6-50: Stitching Coordinate System for StitchOrigin Values

Resource Properties
 Intent Pairing:
 BindingIntent
 Stitching

Table 6.178: StitchingParams Resource (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
Angle?	float	Angle of stitch in degree. The angle increases in a counterclockwise direction. Horizontal = "0", which means that it is parallel to the X-axis of the operation coordinate system. Defaults to the system-specified value which MAY vary depending on other attributes set in this resource. If @StitchType = "Saddle", @Angle SHALL NOT be specified.
NumberOfStitches?	integer	@NumberOfStitches specifies the number of stitches.

Table 6.178: StitchingParams Resource (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
Offset ?	float	Distance between stitch and binding edge. If @StitchType = "Saddle", @Offset SHALL NOT be specified.
StapleShape?	enumeration	Specifies the shape of the staples to be used. Allowed value is from: StapleShape. Note: Representations of the values are displayed in Figure A-1: Staple shapes.
StitchOrigin?	enumeration	Defines the origin of @StitchPositions. For an illustration of the values, see - Figure 6-50: Stitching Coordinate System for StitchOrigin Values. Allowed values are: TrimBoxCenter TrimBoxJogSide UntrimmedJogSide
StitchPositions?	FloatList	Array containing the stitch positions. The center of the stitch SHALL be specified, and the number of entries SHALL match the number given in @NumberOfStitches.
StitchType?	enumeration	Specifies the type of the Stitching operation. Allowed values are: Corner - Stitch in the corner that is at the clockwise end of the reference edge. For example, to stitch in the upper right corner set Resource/ @Orientation = "Rotate90". Saddle - Stitch on the middle fold which is on the saddle. Side - Stitch along the reference edge. For example, to stitch in the top, set Resource/@Orientation = "Rotate90".
StitchWidth ?	float	Width of the stitch to be used.
TightBacking?	enumeration	Definition of the geometry of the back of the product. See BlockPreparationParams/@TightBacking in $\operatorname{section~} 6.7$ BlockPreparationParams for details. Allowed value is from: * TightBacking.
WireGauge?	float	Gauge of the wire to be used.
FileSpec (CIP3) ?	element	Reference to a CIP3 file that contains stitching instructions in the [CIP3 PPF] format.

6.85 StrappingParams

StrappingParams defines the details of Strapping.

Resource Properties

Input of Processes: Strapping
Table 6.179: StrappingParams Resource (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
StrappingType	enumeration	Strapping pattern. Allowed values are: Single - One strap. Double - Two parallel single straps. Cross - Two crossed straps. DoubleCross - Two cross straps that strap each side of a box.

RESOURCES

Table 6.179: StrappingParams Resource (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
StrapPositions?	FloatList	Positions of the Straps beginning from the origin of the coordinate system (bottom side) increasing from minimum to maximum in points. Each Strap is defined by a 3-tuple of which two values SHALL be o. The non-zero value specifies the variable coordinate. For instance, two parallel straps shifted along the y-axis are specified as "0 y100 y2 0" (see Figure 6-51: Strapped Bundle and F Figure 6-52: Strapped Bundle with Sub-bundles). A centered cross strap in the x-y plane would be specified as " $x / 2000 y / 200$, which specifies one strap in the x-plane and another in the y-plane.

Figure 6-51: Strapped Bundle

Figure 6-52: Strapped Bundle with Sub-bundles

6.86 ThreadSealingParams

ThreadSealingParams provides the parameters for the ThreadSealing process.

Resource Properties

Intent Pairing:	BindingIntent
Input of Processes:	ThreadSealing

Table 6.180: ThreadSealingParams Resource

NAME	DATA TYPE	DESCRIPTION
BlindStitch?	boolean	A value of "true" specifies a blind stitch after the last stitch.
ThreadLength ?	float	Length of one thread.
ThreadPositions?	FloatList	Array containing the y-coordinate of the center positions of the thread.
ThreadStitchWidth?	float	Width of one stitch.
SealingTemperature $?$	integer	Temperature needed for sealing thread and sheets together, in degrees centi- grade.

6.87 ThreadSewingParams

ThreadSewingParams provides the parameters for the ThreadSewing process. It MAY also specify a gluing application, which would be used principally between the first and the second or the last and the last sheet but one. A gluing application might also be necessary if different types of paper are used.
The process coordinate system is defined as follows: The Y-axis is aligned with the binding edge. It increases from the registered edge to the edge opposite to the registered edge. The X -axis is aligned with the registered edge. It increases from the binding edge to the edge opposite to the binding edge (i.e., the product front edge).

Figure 6-53: Parameters and coordinate system used for thread sewving

Figure 6-54: Parameters and coordinate system used for side sewving

Resource Properties
Intent Pairing:
BindingIntent
Input of Processes:
ThreadSewing
Table 6.181: ThreadSewingParams Resource (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
BlindStitch?	boolean	A value of "true" specifies a blind stitch after the last stitch.
GlueLineRefSheets?	IntegerList	@GlueLineRefSheets contains the indices of the loose parts of the input Component resources to which gluing is applied. The index starts with o. @GlueLineRefSheets SHALL NOT be specified unless Glue is defined.
NeedlePositions?	FloatList	Array containing the y-coordinate of the needle positions. The number of entries SHALL match the number specified in @NumberOfNeedles.
NumberOfNeedles?	integer	Specifies the number of needles to be used.

Table 6.181: ThreadSewingParams Resource (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
Offset?	float	Specifies the distance between the stitch and the binding edge. Used only for side stitching.
Sealing?	boolean	A value of "true" specifies thermo-sealing.
SewingPattern?	enumeration	Sewing pattern. Allowed values are: Normal Staggered CombinedStaggered Side - Side sewing.
ThreadThickness?	float	Thread thickness.
Glue *	element	Gluing parameters.

6.88 Tool

A Tool defines a generic tool that MAY be customized for a given job (e.g., an embossing stamp) or an auxiliary device such as a fork lift. See also Device for description of the primary device that executes a process. The manufacturing process for the tool is not described within XJDF.

Resource Properties

Resource referenced by: EmbossingParams/Emboss
Input of Processes: Any Process, Embossing, ShapeCutting
Output of Processes: DieMaking
Figure 6-55: Roll Stand

NAME	DATA TYPE	DESCRIPTION
ToolType?	NMTOKEN	Type of the tool. Values include: Braille - embossing tool for blind script. CentralStripper - The center tool of the stripper tool set. Stripping means removing small parts of waste in between blanks. ChangingCuttingBlock - a changeable part for a tool set (CutDie). Used for cut- ting of optional shapes like windows, stars, etc. It is not a part of tool set. Described in MIS with an own @ExternallD. CounterDie - The lower tool of the die-cut pair with the counter (female) parts for the creases. CutDie - The upper tool of the die-cut pair with the actual cutting and creas- ing knifes. EmbossingCalendar EmbossingStamp FrontWasteSeparator - The tool to remove gripper margin from the sheet. LowerBlanker - The lower tool of the blanker pair (blanking means separating blanks). LowerStripper - The lower tool of the stripper toolset. RollStand - A roll stand is a storage tool for Components. Components are rolled onto a roll stand with the Winding process.
ToolSet - The value "ToolSet" is used when the @ExternallD refers not to a sin-		
gle tool, but to a set of matching tools that are used in the process (e.g.,		
when @ExternallD is a single stock item number in the MIS for a tool set		
consisting of a "CutDie" and a "CounterDie").		

6.89 TransferCurve

TransferCurve elements specify the characteristic curve of transfer of densities between systems and the relation between the various process coordinate systems. For more details on transfer curves and their usage, refer to the CIP3 PPF specification at: [CIP3 - PPF]

Resource Properties
Input of Processes: All Processes
Table 6.183: TransferCurve Resource

NAME	DATA TYPE	DESCRIPTION
CTM ?	matrix	@CTM SHALL define the transformation of the coordinate system in the device, relative to the Layout coordinate system as defined by Part/ @TransferCurveName. Note: In JDF 1.x, CTM is applied relative to the prior coordinate system in the list of @Name values whereas in XJDF CTM always applies relative to the Layout coordinate system.
Curve?	Transfer- Function	The density mapping curve for this TransferCurve.

6.90 TrappingParams

TrappingParams provides a set of controls that are used to generate traps that are used to avoid misregistration. These parameters MAY vary for different colorants so that TrappingParams MAY be partitioned by Part/@Separation.

Resource Properties
Input of Processes:
Table 6.184: TrappingParams Resource

NAME	DATA TYPE	DESCRIPTION
ImageInternalTrappi $n g ?$	boolean	If "true", the planes of color images are trapped against each other. If "false", the planes of color images are not trapped against each other.
ImageMaskTrapping $?$	boolean	Controls trapping when the image contains a stencil mask. A stencil mask is a monochrome image in which each sample is represented by a single bit. The stencil mask is used to paint in the current color: image samples with a value of "1" are marked, samples with a value of "0" are not marked. When "false", none of the objects covered by the clipped bounding box of the stencil mask are trapped. No traps are generated between the stencil mask and objects that the stencil mask overlays. No traps are generated between objects that overlay the stencil mask and the stencil mask. For all other objects, normal trapping rules are followed. Two objects on top of the stencil mask that overlap each other might generate a trap, regardless of the value of this parameter. When "true", objects are trapped to the stencil mask, and to each other.
ImageTolmageTrapp ing?	boolean	If "true", traps are generated along a boundary between images. If "false", this kind of trapping is not implemented.
ImageToObjectTrapp ing?	boolean	If "true", images are trapped to other objects. If "false", this kind of trapping is not implemented.
MinimumBlackWidth $?$	float	Specifies the minimum width, in points, of a trap that uses black ink. Allow- able values are those greater than or equal to zero.
StepLimit?	float	A non-negative number. Specifies the smallest step needed in the color value of a colorant to trigger trapping at a given boundary. If the higher color value at the boundary exceeds the lower value by an amount that is equal or greater than the larger of o.05 or @StepLimit times
the lower value (low + max (@StepLimit * low, o.05)), then the edge is a can-		
didate for trapping. The value o.05 is set to avoid trapping light areas in		
vignettes.		

6.91 TrimmingParams

TrimmingParams provides the parameters for the Trimming process.
The process coordinate system is defined as follows:

- The X-axis is aligned with the registered edge. It increases from the binding edge to the face edge.
- The Y-axis is aligned with the binding edge. It increases from the registered edge to the face edge opposite to the registered edge.

Figure 6-56: Parameters and coordinate system used for trimming

Resource Properties

Input of Processes:
Trimming
Table 6.185: TrimmingParams Resource

NAME	DATA TYPE	DESCRIPTION
Height?	float	Height of the trimmed product.
TrimCover?	enumeration	Specifies the covers to be trimmed. Covers containing flaps are generally not trimmed. Allowed values are: Back - Trim back cover only Both - Trim front and back cover Front - Trim front cover only Neither - Do not trim cover.
TrimmingOffset?	float	Amount to be cut at bottom side.
Width?	float	Width of the trimmed product.

6.92 UsageCounter

Many devices use counters to track equipment utilization or work performed, such as impressions produced or variable data documents generated. UsageCounter represents a type of equipment or software usage that is tracked by the value of a usage counter used by a device to count work performed. See $>$ Section 6.1.2 PartAmount. Default units are "countable objects". See •Section 1.9.1 Units.

Resource Properties
Input of Processes:
Any Process
Table 6.186: UsageCounter Resource

NAME	DATA TYPE	DESCRIPTION		
CounterTypes?	NMTOKENS	$\begin{array}{l}\text { This attribute indicates the types of usage being counted by the } \\ \text { UsageCounter. } \\ \text { Values include: } \\ \text { Insert - Post fuser inserter. } \\ \text { OneSided - Includes one sided counts. } \\ \text { TwoSided - Includes two sided counts. } \\ \text { NormalSize - Includes normal size counts. } \\ \text { LargeSize - Includes large size counts. } \\ \text { Black - Includes black colorant only counts. } \\ \text { Color - Includes one or more non-black, non-highlight color colorants } \\ \text { counts. } \\ \text { Blank - Includes entirely blank counts. } \\ \text { HighlightColor - Includes highlight colorant counts. }\end{array}$		
Scope	enumeration	$\begin{array}{l}\text { The scope of this usage counter. } \\ \text { Allowed values are: } \\ \text { Lifetime - count since machine last had a firmware reset. SHALL NOT be } \\ \text { specified when UsageCounter is used as a resource in an XJDF ticket. }\end{array}$		
PowerOn - count since the machine was powered on. SHALL NOT be specified				
when UsageCounter is used as a resource in an XJDF ticket.			$]$	Job - count in the context of one XJDF.
:---				

6.93 VarnishingParams

VarnishingParams provides the parameters of a Varnishing process.
Resource Properties
Input of Processes: Varnishing
Table 6.187: VarnishingParams Resource

NAME	DATA TYPE	DESCRIPTION
ModuleID?	NMTOKEN	Identifier of the varnishing module in the press.
ModuleType?	enumeration	The type of module used to apply the Varnish. Allowed values are: PrintModule - The Varnish is applied in a printing unit CoatingModule - The Varnish is applied in a specialized coating unit
VarnishArea?	enumeration	Area to be varnished. @VarnishArea specifies the requirements for ExposedMedia. Allowed values are: Full - The entire Media surface SHALL be varnished. Spot - Only parts of the Media surface SHALL be varnished.
VarnishMethod?	enumeration	Method used for varnishing. Allowed values are: Blanket - The Varnishing is performed in a dedicated coating module. An ExposedMedia that references a Media/@MediaType = "Blanket" MAY be specified. Plate - The Varnishing is performed in a print module or a dedicated coating module. An ExposedMedia that references a Media/@MediaType = "Plate" SHOULD be specified.
Independent - No additional ExposedMedia is required. This method MAY be		
used to specify varnishing in a digital press.		

6.94 VerificationParams

VerificationParams provides the parameters of a Verification process.

Resource Properties

Input of Processes:
Verification
Table 6.188: VerificationParams Resource

NAME	DATA TYPE	DESCRIPTION
Tolerance?	float	Ratio of tolerated verification failures to the total number of tests. $0.0 "=$ no failures allowed, " $1.0 "=$ all test MAY fail.

6.95 WebInlineFinishingParams

WebInlineFinishingParams specifies the parameters for web inline finishing equipment using the Weblnlinefinishing process.

Resource Properties

Input of Processes: WebInlineFinishing
Table 6.189: WebInlineFinishingParams Resource

NAME	DATA TYPE	DESCRIPTION
FolderProduction *	element	Specifies the Folder setup for newspaper presses:
ProductionPath?	element	ProductionPath describes the paper path that is used through the press and describes exactly one particular product which has to be produced.

6.95.1 FolderProduction

Table 6.190: FolderProduction Element

NAME	DATA TYPE	DESCRIPTION
ModuleID?	NMTOKEN	Identifies a particular folder module to be used. @ModuleID SHALL match Device/Module/@ModuleID.
ProductionType?	enumeration	Indicates whether the product is collected or not. Allowed values are: Collect NonCollect

6.95.2 ProductionPath

Table 6.191: ProductionPath Resource

NAME	DATA TYPE	DESCRIPTION
ProductionPathID?	NMTOKEN	Identification of the entire production path. The @ProductionPathID SHALL be unique within the machine.

6.96 WindingParams

The parameters for the Winding process.
Resource Properties
Input of Processes: Winding
Table 6.192: WindingParams Resource (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
Copies?	integer	Number of copies in one column that SHOULD be placed on a finished roll. At most one of @Copies, @Diameter or @Length SHOULD be specified.
Diameter?	float	Outer diameter in points of the finished roll. At most one of @Copies, @Diameter or @Length SHOULD be specified.

Table 6.192: WindingParams Resource (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
Fixation?	NMTOKEN	Method specifying how the Component is attached to the core. Values include: DoubleSidedTape - Tape with adhesive on both sides. Glue Label - One of the output Component resources (self-adhesive labels) is used. None - No fixation is used. SingleSidedTape - Tape with adhesive on one side.
Length?	float	Length in points of the Component to be placed on a finished roll. At most one of @Copies, @Diameter or @Length SHOULD be specified.

6.97 WrappingParams

WrappingParams defines the details of Wrapping. Details of the material used for Wrapping can be found either in the MiscConsumable or Component (Wrapper) resources that are also an input of the Wrapping process.
Resource Properties
Input of Processes: Wrapping
Table 6.193: WrappingParams Resource

NAME	DATA TYPE	
WrappingKind	enumeration	@WrappingKind specifies the wrapping method. Allowed values are: Band - The components are wrapped with a band. The material of the band is typically paper, plastic or rubber. LooseWrap - The wrap is loose around the component. ShrinkWrap - The wrap is shrunk around the component.

7 Messaging

A workflow is a dynamic set of interacting Controllers and Devices. For the workflow to run efficiently, these Controllers and Devices need to communicate and interact in a well defined manner. Whereas XJDF will typically be submitted to a Device and only be returned after the process has been executed, XJMF messages MAY be exchanged at any time. Typical use cases for XJMF include but are not limited to:

- System bootstrapping and setup
- Dynamic status, resource usage and error tracking for jobs and devices
- Pipe control
- Device setup and job changes
- Queue handling and job submission

This chapter specifies the XML structure of XJMF. For details of the exchange protocol and data packaging, see $\operatorname{section}$ 9.5 XJDF and XJMF Interchange Protocol and Section 9.7 XJDF Packaging

7.1 XJMF Root

XJMF and XJDF have inherently different structures. In order to allow immediate identification of messages, XJMF uses the unique name XJMF as its own root-element name. XJMF elements SHALL contain one or more messages that provide more detailed information.

Table 7.1: XJMF Element

NAME	DATA TYPE	DESCRIPTION
xmlns	URI	XJDF supports use of XML namespaces. The XJDF namespace SHALL be declared. The value that applies to XJMF that adhere to this specification is "http://www.CIP4.org/XJDFSchema_2_0". For details on using namespaces in XML, see $>$ [XMLNS].
Header	element	Header SHALL provide information about the sender of the XJMF package. If the sender is a proxy controller that forwards information from multiple devices, XJMF/Header SHALL provide information about the proxy controller. See also Message/Header.
<message elements> +	element	One or more messages SHALL be provided. For a list of message element types that are defined in XJMF, see $\boldsymbol{\text { Section }} 7.3$ List of All XJMF Messages. The recipient SHALL process the messages in XML order.
<foreign namespace message elements>*	element	Any message elements in a foreign namespace. Foreign namespace extensions SHOULD NOT duplicate functionality of existing XJDF messages. These elements MAY occur interleaved between messages in the XJDF namespace

7.1.1 Message

The following table describes the contents of a message. A message is an abstract data type. Section 7.3 List of All XJMF Messages provides a list of all message element instances.

Table 7.2: Message

NAME	DATA TYPE	DESCRIPTION
Header	element	Header SHALL provide information about the original sending device of the individual message. Header SHALL be the first element in a Message, regard- less of the aphabetical ordering of any other elements. The information in Header SHALL NOT be modified if the message is passed through a proxy controller. See also XJMF/Header.

MESSAGING

7.1.2 Header

Header SHALL provide information about the sender of an audit, message or XJMF. The information in Message/Header and AuditXXX/Header SHALL NOT be modified and SHALL represent the status of the original message or audit if the message is passed through a proxy controller. The information in XJMF/Header SHALL be modified to represent the status of the proxy controller if the message is passed through a proxy controller.
The Header element shall be the first element in any Audit or Message as shown in those tables.
Table 7.3: Header

NAME	DATA TYPE	DESCRIPTION
AgentName?	string	The name of the application that generated the parent message or XJMF. Both the company name and the product name MAY appear, and SHOULD be consistent between versions of the application.
AgentVersion?	string	The version of the application that generated the parent message or XJMF. The format of the version string MAY vary from one application to another, but SHOULD be consistent for an individual application.
Author?	string	Human readable description of the employee that entered the message. XJMF/Header/@Author SHOULD NOT be specified.
DeviceID ?	NMTOKEN	Unique identifier of the sender.
ICSVersions?	NMTOKENS	CIP4 Interoperability Conformance Specification (ICS) Versions that the sender complies with. Value format is: <ICS Name>_L<ICS Level>-<ICS Version>.
ID?	ID	Identifies the parent message. Messages or audits that reference the parent message or audit of this Header SHALL refer to it from @PreviousRef.
Personalld ?	NMTOKEN	Machine readable identifier of the employee that entered the message. XJMF/Header/@PersonalID SHOULD NOT be specified.
refid ?	NMTOKEN	@refID SHALL identify a message that the parent of this Header responds to. If the parent is a Response, this shall be Header/@ID of the initiating Ouery or Command. If the parent is a Signal, this shall be Header/@ID of the initiating Query. Note: The data type is NMTOKEN because the referenced Header/@ID need not be in the same XML document.
Time	dateTime	Date and time when the message was generated.

7.2 XJMF Message Families

A message belongs to one of four message families. These families are Query, Command, Signal and Response. An explanation of each family is provided in the following sections. Message families are abstract data types, Section 7.3 List of All XJMF Messages provides a list of all message family element instances.

7.2.1 Query

A Query is an abstract message that retrieves information from a receiver without changing the state of that receiver. For details of XJMF handshaking, see - Section 9.6 XJMF Handshaking.
The following table shows the content of a Query message: .
Table 7.4: Query

NAME	DATA TYPE	DESCRIPTION
Header	element	See Message/Header.
Subscription?	element	A subscription is a request for a persistent channel. If present, Subscription SHALL be specified after Header and prior to any other elements in a Ouery. Any other elements in the Query will then be alphabetically ordered in the normal way. For details of creating and managing persistant channels see - Section 9.6.3 Managing Persistent Channels.

7.2.1.1 Subscription

A Subscription specifies the target URL for signals and optionally, additional details of the persistent channel. See - Section 9.6.2 Subscribing for Signals for details.

Table 7.5: Subscription Element

NAME	DATA TYPE	DESCRIPTION
ChannelMode?	enumerations	Specifies reliability of persistent channel, and whether it is required or just preferred. Ordered list, with most preferred channel mode first. If none of the provided values of @ChannelMode are supported by the con- sumer of the subscription, the Response should indicate @ReturnCode 111, which is "Subscription request denied". Allowed value is from: ChannelMode Note: See Signal/@ChannelMode.
Languages?	languages	List of languages selected for human readable communication. If not speci- fied, the operating system language SHOULD be used. If multiple languages are specified, the second and further languages SHOULD only be used for providing additional localized Comment elements. Messages SHALL NOT be sent multiple times for the same event.
RepeatTime?	float	Requests an update Signal every @RepeatTime seconds. If specified, the Signal SHALL be generated periodically independent of any other trigger conditions. @RepeatTime SHALL NOT override any Signals triggered by a change of sta- tus. Signals triggered by a status change SHALL be sent regardless of the value of @RepeatTime. A sender MAY restart counting for @RepeatTime based Signals whenever it sends a Signal to the same subscription.
URL	URL	URL of the persistent channel receiving end. The protocol of the Subscription is specified by the scheme of @URL.

7.2.2 Command

A Command is syntactically equivalent to a Query, but rather than simply retrieving information, it is an abstract message that causes a state change in the receiver. For details of XJMF handshaking, see $\operatorname{Section~9.6~XJMF~Handshaking.~The~}$ following table contains the contents of a Command message.
Table 7.6: Command Family

NAME	DATA TYPE		DESCRIPTION
Header	element	See Message/Header.	

7.2.3 Signal

A Signal is an abstract message element that a receiver of a Query with a subscription SHALL asynchronously send whenever the conditions specified in the Subscription are true.
Note: Signals are typically sent from a device to a controller. For details of XJMF handshaking, see $>$ Section 9.6 XJMF Handshaking. For details of setting up subscriptions for Signals, see $\stackrel{\text { Section 9.6.2 Subscribing for Signals. The follow- }}{ }$ ing table shows the contents of a Signal.

Table 7.7: Signal Family

NAME	DATA TYPE	DESCRIPTION
ChannelMode?	enumeration	Specifies reliability of the signal. Allowed value is from: ChannelMode
Header	element	See Message/Header.

7.2.4 Response

A Response is a message that a Receiver SHALL synchronously send to a sender as a response to a message. For details of XJMF handshaking, see $>$ Section 9.6 XJMF Handshaking. .
The following table shows the content of a Response message.

Table 7.8: Response Family

NAME	DATA TYPE	DESCRIPTION
ReturnCode?	integer	@ReturnCode summarizes the result of the response. The value "0" indicates success. @ReturnCode SHALL be provided if an error occurred. For predefined values see Appendix B Return Values. Note: Additional values MAY be specified in ICS documents.
Header	element	See Message/Header.
Notification?	element	Additional information including textual description of the return code. The Notification element SHOULD be provided if the @ReturnCode is greater than 0. See Section 7.10 Notification.

7.3 List of All XJMF Messages

The following table provides a list of all message element types.
Table 7.9: List of XJMF Messages (Sheet 1 of 2)

MESSAGES	DESCRIPTION
CommandForceGang ResponseForceGang	A gang is forced to execute.
QueryGangStatus ResponseGangStatus	The status of a gang is queried.
QueryKnownDevices ResponseKnownDevices SignalKnownDevices	Returns information about the devices that are controlled by a controller.
QueryKnownnMessages ResponseKnownMessages	Returns a list of all messages that are supported by the controller.
QueryKnownnSubscriptions ResponseKnownSubscriptions SignalKnownnSubscriptions	Returns a list of active persistent channels.
CommandModifyQueueEntry ResponseModifyQueueEntry	Modifies the properties of one or more QueueEntry elements.
QueryNotification ResponseNotification SignalNotification	Used to signal events due to any activities of a device, operator, etc. Generally sent as signals. QueryNotification allows subscriptions for SignalNotification messages.
CommandPipeControl ResponsePipeControl	All pipe related commands are implemented using the PipeControl message.
QueryQueueStatus ResponseQueueStatus SignalQueueStatus	Returns the Queue elements that describe a queue or set of queues.
CommandRequestQueueEntry ResponseRequestQueueEntry	A new job is requested by the device. This message is used to signal that a device has processing resources available.
CommandResource QueryResource ResponseResource SignalResource	Queries and/or modifies XJDF resources that are used by a device, such as device settings. This message can also be used to query the level of consumables in a device.
CommandResubmitQueueEntry ResponseResubmitQueueEntry	Replaces a queue entry without affecting the entry's parameters. CommandResubmitQueueEntry is used, for example, for late changes to a submitted XJDF.

Table 7.9: List of XJMF Messages (Sheet 2 of 2)

MESSAGES	DESCRIPTION
CommandReturnQueueEntry ResponseReturnQueueEntry	Returns a job that had been submitted with a SubmitQueueEntry to the controller that originally submitted the job.
CommandShutDown ResponseShutDown	Shuts down a device.
QueryStatus ResponseStatus SignalStatus	Queries or signals the general status of a device, controller or job.
CommandStopPersistentChannel ResponseStopPersistentChannel	Closes a persistent channel.
CommandSubmitQueueEntry ResponseSubmitQueueEntry	Submits an XJDF to a queue in order to be executed.
CommandWakeUp ResponseWakeUp	Wakes up a device that is in standby mode.

7.4 ForceGang

The ForceGang message forces all the selected QueueEntry [@Status = "Waiting"] elements that belong to a gang (as specified below) to be executed, even though the device dependent queue entry collecting algorithm might not be completed. A QueueEntry belongs to a gang if QueueEntry/@GangName is included in the list of GangCmdFilter/@GangNames.

7.4.1 CommandForceGang

Table 7.10: CommandForceGang Message

NAME	DATA TYPE	DESCRIPTION
Header	element	See Message/Header.
GangCmdFilter	element	Defines the gang(s) to be force executed.

7.4.1.1 GangCmdFilter

7.4.2

Table 7.11: GangCmdFilter Element

OBJECT TYPE	ELEMENT NAME	DESCRIPTION
GangNames?	NMTOKENS	A list of @GangName values of the gang(s) being queried.
Policy?	enumeration	The policy with which the elements in the gang SHALL be processed. Allowed values are: All - All elements in a given gang SHALL be processed. Optimized - As many elements in a given gang as can be processed without unnecessary waste SHOULD be processed. The algorithm for selecting the respective elements is implementation dependent and SHOULD take priority and scheduling data into account.

MESSAGING

7.4.3 ResponseForceGang

Table 7.12: ResponseForceGang Message

NAME	DATA TYPE	DESCRIPTION
ReturnCode?	integer	See Response/@ReturnCode.
Header	element	See Message/Header.
Notification?	element	See Response/Notification.

7.5 GangStatus

GangStatus returns a description of the gang(s). Details are specified in GangInfo Element.

7.5.1 QueryGangStatus

Table 7.13: QueryGangStatus Message

NAME	DATA TYPE	\quad DESCRIPTION
Header	element	See Message/Header.
Subscription?	element	See Query/Subscription.
GangQuFilter?	element	Defines a filter for the gang(s) that are queried. If GangQuFilter is not sup- plied, all gangs are queried.

7.5.1.1 GangQuFilter

7.5.2

Table 7.14: GangQuFilter Element

| NAME | DATA TYPE | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| GangNames? | NMTOKENS | @GangName of the gang(s) being queried. |

7.5.3 ResponseGangStatus

Table 7.15: ResponseGangStatus Message

NAME	DATA TYPE	DESCRIPTION
ReturnCode?	integer	See Response/@ReturnCode.
Header	element	See Message/Header.
Notification?	element	See Response/Notification.
GangInfo *	element	Describes the status of the gang(s).

7.5.3.1 GangInfo

Details of the gang are specified in GangInfo elements.
Table 7.16: GangInfo Element

NAME	DATA TYPE	DESCRIPTION
Amount?	double	Quantity of QueueEntry items that are currently waiting to be executed. If the device specifies amount in a unit other than countable objects, such as m^{2}, @Amount shall be specified in units of the device.
GangName	NMTOKEN	Name of the gang.

7.5.4 SignalGangStatus

Table 7.17: SignalGangStatus Message

NAME	DATA TYPE	DESCRIPTION
ChannelMode?	enumeration	Allowed value is from: ChannelMode Note: See Signal/@ChannelMode.
Header	element	See Message/Header.
Ganglnfo $*$	element	Describes the status of the gang(s).

7.6 KnownDevices

The KnownDevices query message requests information about the devices that are controlled by a controller. If a high level controller controls lower level controllers, it SHOULD also list the devices that are controlled by these. The response is a list of Device elements. . Example 255 KnownDevices Response shows the response from a press controller that controls two physical presses.

Example 7.1: KnownDevices Response

```
<XJMF xmlns="http://www.CIP4.org/JDFSchema_2_0">
    <Header DeviceID="VeggieController" ID="l_000002" Time="2017-04-01T01:02:03+02:00"/>
    <ResponseKnownDevices ReturnCode="0">
        <Header DeviceID="VeggieController" ID="R1"
            Time="2017-04-01T01:02:03+02:00" refID="Q1"/>
        <Device DeviceID="dev1" DeviceType="ACME Linda potato press V16-12" XJMFURL="http://
acmepotato1:1234/xjmfurl"/>
            <Device DeviceID="dev2"
                DeviceType="ACME Baldrick turnip press V42-66" XJMFURL="http://acmeturnip1:1234/xjmfurl"/>
            <!-- One Device element for each known device follows here -->
    </ResponseKnownDevices>
</XJMF>
```


7.6.1 QueryKnownDevices

Table 7.18: QueryKnownDevices Message

NAME	DATA TYPE	DESCRIPTION
Header	element	See Message/Header.
Subscription?	element	See Query/Subscription.
DeviceFilter?	element	Refines the list of devices queried. If not specified, a list of all known devices SHALL be returned.

7.6.1.1 DeviceFilter

The DeviceFilter Element refines the list of Devices that are requested to be returned. Only Devices that match all parameters of one of the Device Resources specified in the DeviceFilter Element are included.

Table 7.19: DeviceFilter Element

NAME	DATA TYPE	DESCRIPTION
DeviceDetails?	enumeration	Refines the level of provided information about the Device. Allowed values are: Brief - Provide only Device/@DeviceID. Modules - Module elements SHALL be provided if the device has modules. Full - Provide maximum available device information including all Module and Device descriptions.

MESSAGING

7.6.2 ResponseKnownDevices

Table 7.20: ResponseKnownDevices Message

NAME	DATA TYPE	DESCRIPTION
ReturnCode?	integer	See Response/@ReturnCode.
Header	element	See Message/Header.
Notification?	element	See Response/Notification.
Device *	element	Each Device SHALL represent one of the known devices.

7.6.3 SignalKnownDevices

Table 7.21: SignalKnownDevices Message

NAME	DATA TYPE	DESCRIPTION
ChannelMode?	enumeration	Allowed value is from: ChannelMode Note: See Signal/@ChannelMode.
Header	element	See Message/Header.
Device *	element	Each Device SHALL represent one of the known devices.

7.7 KnownMessages

The KnownnMessages Query message returns a list of all message types that are supported by the controller.

7.7.1 QueryKnownMessages

Table 7.22: QueryKnownMessages Message

NAME	DATA TYPE	DESCRIPTION
Header	element	See Message/Header.
Subscription?	element	See Query/Subscription.

7.7.2 ResponseKnownMessages

Table 7.23: ResponseKnownMessages Message

NAME	DATA TYPE	DESCRIPTION
ReturnCode?	integer	See Response/@ReturnCode.
Header	element	See Message/Header.
Notification?	element	See Response/Notification.
MessageService *	element	Each MessageService shall specify one supported message.

7.7.2.1 MessageService

The response is a list of MessageService elements. Each MessageService SHALL specify one explicit message type that is supported by the device.
Table 7.24: MessageService Element

NAME	DATA TYPE	DESCRIPTION
ResponseModes?	enumerations	Specifies the supported synchronous Response or Signal channel modes with which the receiver can reply to a Query. @ResponseModes SHALL NOT be specified unless @Type specifies a Query message. Allowed values are: FireAndForget - The response to the message is implemented as a persistent channel Signal with Signal/@ChannelMode="FireAndForget". Reliable - The response to the message is implemented as a persistent chan- nel Signal with Signal/@ChannelMode="Reliable". Response - The response to the message is implemented as a synchronous Response.
Type	NMTOKEN	Name of the supported message element, e.g. QueryKnovvnMessages.
URLSchemes?	enumerations	List of schemes supported for the message defined by this MessageService. Allowed values are: http - HTTP (Hypertext Transport Protocol) https - HTTPS (Hypertext Transport Protocol - Secure)

Example 7.2: KnownMessages Response

The following is an example of a ResponseKnownnMessages.

```
<XJMF xmlns="http://www.CIP4.org/JDFSchema_2_0">
    <Header DeviceID="DeviceID" ID="l 000002" Time="2017-04-01T01:02:03+02:00"/>
    <ResponseKnownMessages ReturnCode="0">
        <Header DeviceID="DeviceID" ID="R1" Time="2017-04-01T01:02:03+02:00" refID="Q1"/>
        <MessageService ResponseModes="Response" Type="QueryKnownMessages"/>
        <MessageService ResponseModes="FireAndForget Reliable" Type="QueryStatus"/>
        <MessageService Type="CommandSubmitQueueEntry"/>
        <MessageService Type="ResponseReturnQueueEntry"/>
    </ResponseKnownMessages>
</XJMF>
```


7.8 KnownSubscriptions

The KnownnSubscriptions XJMF enables controllers to query devices for a list of active persistent channels.

7.8.1 QueryKnownSubscriptions

Table 7.25: QueryKnownSubscriptions Message

NAME	DATA TYPE	DESCRIPTION
Header	element	See Message/Header.
Subscription?	element	See Query/Subscription.
SubscriptionFilter?	element	Refines the query for known messages. If not specified, list all supported message types.

7.8.1.1 SubscriptionFilter

The SubscriptionFilter element is a filter to limit the list of SubscriptionInfo elements that are returned in the KnownSubscriptions response.
Table 7.26: SubscriptionFilter Element

NAME	DATA TYPE	DESCRIPTION
DeviceID?	NMTOKEN	Only SubscriptionInfo elements for subscriptions from devices or controllers with a matching @DeviceID attribute SHALL be returned.
URL?	URL	URL of the receiving controller. This SHALL be identical to the Subscription/ @URL that was used to create the persistent channel. Only SubscriptionInfo elements with a matching value of SubscriptionInfo/@URL SHALL be returned.

7.8.2 ResponseKnownSubscriptions

Table 7.27: ResponseKnownSubscriptions Message

NAME	DATA TYPE	DESCRIPTION
ReturnCode?	integer	See Response/@ReturnCode.
Header	element	See Message/Header.
Notification?	element	See Response/Notification.
SubscriptionInfo *	element	One SubscriptionInfo SHALL be provided for each active persistent channel that is selected by QueryKnovnSubscriptions/SubscriptionFilter.

7.8.3 SignalKnownSubscriptions

Table 7.28: SignalKnownnSubscriptions Message

NAME	DATA TYPE	DESCRIPTION
ChannelMode?	enumeration	Allowed value is from: ChannelMode Note: See Signal/@ChannelMode.
Header	element	See Message/Header.
SubscriptionInfo *	element	One SubscriptionInfo SHALL be provided for each active persistent channel that is selected by QueryKnovnSubscriptions/SubscriptionFilter.

7.9 ModifyQueueEntry

ModifyQueueEntry modifies the state or position of one of more QueueEntry elements that are selected by QueueFilter. @Operation specifies the operation that SHALL be applied to the selected queue entries.
See also ResubmitQueueEntry command for modifications of the underlying XJDF without modifying the queues.

7.9.1 CommandModifyQueueEntry

Table 7.29: CommandModifyQueueEntry Message

NAME	DATA TYPE	DESCRIPTION
Header	element	See Message/Header.
ModifyQueueEntryP arams	element	ModifyQueueEntryParams defines the selected queue entries and the opera- tion to be performed.

7.9.1.1 ModifyQueueEntryParams

Table 7.30: ModifyQueueEntryParams Element

NAME	DATA TYPE	DESCRIPTION
GangName ?	NMTOKEN	Name of the gang that all QueueEntry items selected by the QueueFilter SHALL be moved to. @GangName SHALL NOT be specified unless @Operation = "SetGang". If @Operation = "SetGang" and @GangName is not specified, the selected OueueEntry items SHALL be removed from its current gang.
NextQQeueEntryID?	NMTOKEN	QueueEntry/@QueueEntryID of the queue entry that SHALL be positioned directly behind the queue entries that are selected by QueueFilter. If more than one QueueEntry is selected, the ordering of these elements in the resulting queue is implementation dependent. Not more than one of @NextOueueEntryID, @PrevQueueEntryID @Position or @Priority SHALL be specified. @NextQueueEntryID SHALL NOT be specified unless @Operation="Move".
Operation	enumeration	The operation that SHALL be preformed on the queue entries that are selected by QueueFilter. Allowed value is from: • Table 7.31 Operation Attribute Values.
Position?	integer	Position in the queue where the queue entries that are selected by QueueFilter SHALL be moved to. Note: The position is based on the queue before modification. Thus if a queue entry is moved back in the queue, its final position is one lower than specified in @Position. If more than one QueueEntry is selected, the ordering of these elements in the resulting queue is implementation dependent. Not more than one of @NextQueueEntryID, @PrevQueueEntryID, @Position or @Priority SHALL be specified. @Positon SHALL NOT be specified unless @Operation="Move".
PrevQueueEntryID?	NMTOKEN	ID of the queue entry that SHALL be positioned directly in front of the entry. If more than one QueueEntry is selected, the ordering of these elements in the resulting queue is implementation dependent. Not more than one of @NextQueueEntryID, @PrevOueueEntryID @Position or @Priority SHALL be specified. @PrevQueueEntryID SHALL NOT be specified unless @Operation="Move".
Priority ?	integer	New priority of the QueueEntry elements that are selected by QueueFilter. Priority is a number from 0 to 100 , where " 0 " $=$ lowest priority and " 100 " = maximum priority. If more than one QueueEntry is selected, the ordering of these elements in the resulting queue is implementation dependent. Not more than one of @NextQueueEntryID, @PrevQueueEntryID @Position or @Priority SHALL be specified. @Priority SHALL NOT be specified unless @Operation="Move".
QueueFilter	element	This QueueFilter selects the QueueEntry elements that the operation SHALL be applied to.

Table 7.31: Operation Attribute Values (Sheet 1 of 2)

VALUE	
Abort	The QueueEntry elements selected by Queuefilter SHALL be aborted and remain in the Queue with QueueEntry/@Status = "Aborted". ProcessRun/@EndStatus and Nodelnfo/
	@Status of the XJDF that represents the queue entry SHALL be set to "Aborted" and the XJDF SHALL be delivered to the URL as specified by QueueSubmissionParams/ @ReturnJMF.

Table 7.31: Operation Attribute Values (Sheet 2 of 2)

VALUE	DESCRIPTION
Complete	The QueueEntry elements selected by QueueFilter SHALL be stopped and remain in the Queue with QueueEntry/@Status = "Completed". ProcessRun/@EndStatus and Nodelnfo/ @Status of the XJDF that represents the queue entry SHALL be set to "Completed" and the XJDF SHALL be delivered to the URL as specified by QueueSubmissionParams/ @ReturnJMF.
Hold	If QueueEntry/@Status is "Waiting", QueueEntry/@Activation SHALL be set to "Held". The "Hold" Operation SHALL NOT be applied to QueueEntry elements with a @Status other than "Waiting" or an @Activation other than "Active". If @GangPolicy is other than "NoGang", a held QueueEntry retains its respective gang data but SHALL NOT influence execution of other QueueEntry elements that are in the gang.
Move	The position of the QueueEntry elements selected by QueueFilter SHALL be modified. The position of a QueueEntry SHALL NOT be modified unless @Status = "Waiting" or @Status = "Held". QueueEntry elements can either be set to a specific position within the Oueue or positioned next to an existing QueueEntry. QueueEntry/@Priority SHALL be set to the value of QueueEntry/@Priority of the entry that precedes it, after it has been repo- sitioned.
Remove	The QueueEntry elements selected by QueueFilter SHALL be removed from the queue. The Remove operation SHALL NOT be applied if QueueEntry [@Status = "Running" or @Status = "Suspended"].
Resume	The QueueEntry elements selected by QueueFilter shall be resumed. If QueueEntry/ @Activation = "Held", QueueEntry/@Activation SHALL be set to "Active" If QueueEntry/ @Status = "Suspended", QueueEntry/@Status SHALL be set to "Running". If @GangPolicy is other than "NoGang", a resumed QueueEntry joins its respective gang.
SetGang	QueueEntry/@GangName of the items selected by QueueFilter shall be set to the value of @GangName. The "SetGang" operation shall not be applied unless @Status = "Waiting".
Suspend	The QueueEntry elements selected by OueueFilter SHALL be suspended if its QueueEntry/ @Status is "Running". Its OueueEntry/@Status is set to "Suspended". Whether other queue entries can be run while the queue entries remain suspended depends on implementa- tion. The "Suspend" Operation Command message has no effect on QueueEntry elements with a @Status other than "Running".

7.9.2 ResponseModifyQueueEntry

Table 7.32: ResponseModifyQueueEntry Message

NAME	DATA TYPE	DESCRIPTION
ReturnCode?	integer	See Response/@ReturnCode. In case of at least one failure due to an incorrect QueueEntry/@Status, @ReturnCode SHALL be set to a non-zero value that SHOULD be in the range of 105-116. See \downarrow Table B.1 Return codes for XJMF for details.
Header	element	See Message/Header.
Notification?	element	See Response/Notification.
QueueEntry *	element	Describes the selected QueueEntry elements after the command has been executed.

Example 7.3: Resuming a Queue Entry

The following examples illustrate the Command and Response sequence to resume a previously held QueueEntry with @JoblD="j1".

```
<XJMF xmlns="http://www.CIP4.org/JDFSchema 2 0">
    <Header ID="l 000002" Time="2017-04-01T01:0
    <CommandModifyQueueEntry>
        <Header ID="R1" Time="2017-04-01T01:02:03+02:00" refID="C1"/>
        <ModifyQueueEntryParams Operation="Resume">
            <QueueFilter JobID="j1"/>
        </ModifyQueueEntryParams>
    </CommandModifyQueueEntry>
</XJMF>
<XJMF xmlns="http://www.CIP4.org/JDFSchema_2_0">
    <Header DeviceID="DeviceID" ID="l 000002" Time="2017-04-01T01:02:03+02:00"/>
    <ResponseModifyQueueEntry ReturnCode="0">
        <Header DeviceID="DeviceID" ID="R1" Time="2017-04-01T01:02:03+02:00" refID="C1"/>
        <QueueEntry Activation="Active" JobID="j1" QueueEntryID="QE1" Status="Waiting"/>
    </ResponseModifyQueueEntry>
</XJMF>
```


7.10 Notification

Notification messages are generally sent as Signals. QueryNotification is defined to allow subscriptions for Notification messages. Notification elements are also used to signal usual events due to any activities of a device, operator, etc. (e.g., scanning a bar code).
7.10.1 QueryNotification

Table 7.33: QueryNotification Message

NAME	DATA TYPE	DESCRIPTION
Header	element	See Message/Header.
Subscription?	element	See Query/Subscription.
NotificationFilter?	element	Defines the types of Notification elements that SHALL be signaled.

7.10.1.1 NotificationFilter

Table 7.34: NotificationFilter Element

NAME	DATA TYPE	DESCRIPTION
Classes?	enumerations	Defines the set of Notification/@Class to be queried/subscribed for. Default behavior: All Notification classes are subscribed to. Allowed values are from: Severity.
MilestoneTypes?	NMTOKENS	Matching Milestone types SHALL be returned and/or subscribed to. Default value is: all supported @MilestoneType values. Values include those from: Appendix A.3.8 Milestones.

7.10.2 ResponseNotification

Table 7.35: ResponseNotification Message

NAME	DATA TYPE	DESCRIPTION
ReturnCode?	integer	See Response/@ReturnCode.
Header	element	See Message/Header.
Notification?	element	Notification that describes the event. See Notification, and also Response/ Notification.

7.10.3 SignalNotification

Table 7.36: SignalNotification Message

NAME	DATA TYPE	DESCRIPTION
ChannelMode?	enumeration	Allowed value is from: ChannelMode Note: See Signal/@ChannelMode.
Header	element	See Message/Header.
Notification	element	Notification that describes the event. See Section 7.10 Notification.

7.11 PipeControl

CommandPipeControl modulates a flow of resources in a pipe. The type of pipe operation SHALL be specified in PipeParams/@Operation. A pipe describes the consumption of a resource (by a consuming device) that commences when some lesser quantity of the resource becomes available without having to wait for the production device to complete production of the entire quantity.
See $\stackrel{\text { Section }}{ }$ 9.3.5 Overlapping Processing for a more detailed discussion regarding the use of \bullet PipeControl messages

7.11.1 CommandPipeControl

Table 7.37: CommandPipeControl Message

NAME	DATA TYPE	DESCRIPTION
Header	element	See Message/Header.
PipeParams	element	Details of the PipeControl message.

7.11.1.1 PipeParams

Table 7.38: PipeParams Element

NAME	DATA TYPE	DESCRIPTION
JobID	NMTOKEN	Specifies XJDF/@JobID of the process at the receiving end.
JobPartID?	NMTOKEN	Specifies XJDF/@JobPartID of the process at the receiving end.
Operation	enumeration	@Operation specifies whether the flow is being pushed or pulled. Allowed values are: Close: The PipeControl is a request to the other end of a dynamic pipe that the sender of this message needs no further Resources or will produce no further Resources through the pipe.
Pause: The PipeControl is a request to the other end of a dynamic pipe that the		
sender of this message can currently not process Resources through the		
pipe.		
Pull - The PipeControl is a request to the Producer to create resources by the		
Consumer of the resources.		
Push - The PipeControl is a notification to the Consumer that resources have		
been created by the Producer of the resources.		

7.11.2 ResponsePipeControl

ResponsePipeControl/@ReturnCode SHALL be set to o if the CommandPipeControl has been accepted by the receiver. If not successful the @ReturnCode SHALL be set to one of the codes shown in • Appendix B Return Values.
@ReturnCode="0" only specifies that the CommandPipeControl has been received and can be processed. Any problems that occur during processing of the resources and lead to an interruption of the pipe SHALL be communicated with the appropriate CommandPipeControl messages.
Table 7.39: ResponsePipeControl Message

NAME	DATA TYPE	DESCRIPTION
ReturnCode?	integer	See Response/@ReturnCode.
Header	element	See Message/Header.
Notification?	element	See Response/Notification.

7.12 QueueStatus

QueueStatus returns a description of the current state of a Queue.
7.12.1 QueryQueueStatus

Table 7.40: QueryQueueStatus Message

NAME	DATA TYPE	DESCRIPTION
Header	element	See Message/Header.
Subscription?	element	See Query/Subscription.
QueueStatusParams	element	QueueStatusParams defines a filter for the QueueStatus message.

7.12.1.1 QueueStatusParams

Table 7.41: QueueStatusParams Element

NAME	DATA TYPE	DESCRIPTION
UpdateGranularity?	enumeration	Specifies whether all or only the updated QueueEntry elements should be included in the Queue. Allowed value is from: Appendix A.2.41 UpdateGranularity. Note: The first instance of a Signal shall result in the Queue describing all jobs.
QueueFilter?	element	Filter that filters the QueueEntry elements that SHALL be returned in the responses Queue.

7.12.2 ResponseQueueStatus

Table 7.42: ResponseQueueStatus Message

NAME	DATA TYPE	DESCRIPTION
ReturnCode?	integer	See Response/@ReturnCode.
Header	element	See Message/Header.
Notification?	element	See Response/Notification.
Queue?	element	Describes the status of the queue.

7.12.3 SignalQ्ueueStatus

Table 7.43: SignalQQueueStatus Message

NAME	DATA TYPE	DESCRIPTION
ChannelMode?	enumeration	Allowed value is from: ChannelMode Note: See Signal/@ChannelMode.
Header	element	See Message/Header.
Queue	element	Describes the status of the queue.

7.12.4 Queue

Table 7.44: Queue Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
MaxQueueSize?	integer	The maximum number of QueueEntry elements excluding QueueEntry[@Status = "Completed" or QueueEntry[@Status = "Aborted"] Ele- ments that can be contained in the Queue.
QueueSize?	integer	The total number of QueueEntry elements that are in the Queue regardless of the settings in the QueueFilter. Thus the value of @QueueSize may be higher than the number of QueueEntry elements.

Table 7.44: Queue Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
UpdateGranularity ?	enumeration	Specifies whether all or only the updated QueueEntry elements should be included in the Queue. Allowed value is from: Appendix A.2.41 UpdateGranularity. Note: The first instance of a Signal shall result in the Queue describing all jobs.
QueueEntry *	element	Each queue entry that was selected by QueueFilter SHALL be provided as an individual QueueEntry element. The entries SHALL be ordered in the sequence they have been or will be executed, beginning with the running entries, fol- lowed by the waiting entries, highest QueueEntry/@Priority first, which are then followed by the completed entries, sorted beginning with the youngest QueueEntry/@EndTime. A QueueEntry is not automatically deleted when executed or aborted, but rather it remains in the Queue and its @Status is changed to "Completed" or "Aborted" accordingly.

7.13 RequestQueueEntry

This command requests a new queue entry from a potential submitting controller. The actual submission is still handled by CommandSubmitQueueEntry.
Note: This command is emitted from the device that is represented by the queue to a controller or device and not to the queue, as is the case with most other queue handling commands.
Whereas XJDF generally assumes a "Push" workflow, where a controller or MIS assigns a task to a given device, RequestQueueEntry allows a "Pull" workflow to be implemented, where a device with free processing capabilities dynamically requests a new task.

7.13.1 CommandRequestQ्ueueEntry

Table 7.45: CommandRequestQ्ueueEntry Message

NAME	DATA TYPE	DESCRIPTION
Header	element	See Message/Header.
RequestQueueEntry Params	element	Defines the specifics for the requested Job.

7.13.1.1 RequestQueueEntryParams

Table 7.46: RequestQueueEntryParams Element

NAME	DATA TYPE	DESCRIPTION
Activation?	enumeration	Specifies the activation of the requested QueueEntry. Allowed value is from: • Activation.
JobID?	NMTOKEN	@JobID of the requested QueueEntry.
JobPartID?	NMTOKEN	@JobPartID of the requested QueueEntry.
QueueURL	URL	URL of the Queue device that is requesting the QueueEntry and will accept Queue manipulation messages.
Part *	element	Partition parts of the requested QueueEntry.

7.13.2 ResponseRequestQ्ueueEntry

The response to this message contains no element that is special for this message.
Table 7.47: ResponseRequestQueueEntry Message (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
ReturnCode?	integer	See Response/@ReturnCode.

Table 7.47: ResponseRequestQueueEntry Message (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
Header	element	See Message/Header.
Notification?	element	See Response/Notification.

7.14 Resource

The Resource message can be a Command message or a Query message to modify or to query XJDF resources.QueryResource retrieves information about the resources without modifying them, whereas CommandResource modifies those settings within the resource that is specified.

7.14.1 QueryResource

The QueryResource message retrieves information about resources and can be made selective by specifying a ResourceQuParams element. QueryResource can be used to retrieve information about either job-specific or global devices resources.

Table 7.48: QueryResource Message

NAME	DATA TYPE	DESCRIPTION
Header	element	See Message/Header.
Subscription?	element	See Query/Subscription.
ResourceQuParams	element	Specifies the Resources queried.

7.14.1.1 ResourceQ्uParams

Table 7.49: ResourceQuParams Element

NAME	DATA TYPE	DESCRIPTION
ExternalID?	NMTOKEN	Resource/@ExternalID of the resource that is queried.
JobID?	NMTOKEN	XJDF/@JobIDfor which resource information is being queried. If no @JobID is specified, the request applies to the currently running process or global resources, depending on the value of @Context. @JobID SHALL NOT be specified if QueryResource/Subscription is present.
JobPartID?	NMTOKEN	XJDF/@JobPartID for which resource information is being queried. If no @JobPartID is specified, all resources related to @JobID are queried. @JobPartID SHALL NOT be specified if @JobID is absent. @JobPartID SHALL NOT be specified if QueryResource/Subscription is present.
QueueEntryID?	NMTOKEN	QueueEntry/@QueueEntryID of the process that is currently being executed. If @QueueEntryID is specified, @JobID, @JobPartID and Part SHALL NOT be spec- ified. If none of @JobID, @JobPartID, Part or @QueueEntryID are specified, ResourceQuParams applies to all Jobs.@QueueEntryID SHALL NOT be specified if QueryResource/Subscription is present.
ResourceDetails?	enumeration	Refines the level of information provided about the resources. Allowed values are: Brief - ResourceInfo/ResourceSet SHALL NOT contain the explicit resource elements as requested by @ResourceName.
Full - Resourcelnfo/ResourceSet SHALL contain the explicit resource ele-		
ments as requested by @ResourceName.		

Example 7.4: Resource Query about Paper

The following is an example of an MIS sending a QueryResource to another MIS to get information on all paper known by the press:

```
<XJMF xmlns="http://www.CIP4.org/JDFSchema_2_0">
    <Header ID="l_000002" Time="2017-04-01T01:02:03+02:00"/>
    <QueryResource>
        <Header ID="Q1" Time="2017-04-01T01:02:03+02:00"/>
        <ResourceQuParams ResourceDetails="Full" ResourceName="Media" Scope="Allowed"/>
    </QueryResource>
</XJMF>
```


MESSAGING

Example 7.5: Resource Response about Paper

The following is an example of a Resource Response to the previous QueryResource

```
<XJMF xmlns="http://www.CIP4.org/JDFSchema_2_0">
    <Header DeviceID="DeviceID" ID="l_000002" Time="2017-04-01T01:02:03+02:00"/>
    <ResponseResource>
        <Header DeviceID="DeviceID" ID="R1" Time="2017-04-01T01:02:03+02:00" refID="Q1"/>
        <ResourceInfo Scope="Allowed">
            <ResourceSet Name="Media">
                    <Resource DescriptiveName="Paper # 1" ExternalID="ID_1">
                    <Media Dimension="595.27559055 822.04724409" Weight="80"/>
                    </Resource>
                    <Resource DescriptiveName="Paper # 2" ExternalID="ID 2">
                            <Media Dimension="595.27559055 822.04724409" Weight="100"/>
                    </Resource>
                    <!-- One Resource element for each paper follows here -->
            </ResourceSet>
        </ResourceInfo>
    </ResponseResource>
</XJMF>
```


7.14.2 CommandResource

The CommandResource message is used to modify or create global device databases such as media catalogs or lists of known machine operators.
Table 7.50: CommandResource Message

NAME	DATA TYPE	DESCRIPTION
Header	element	See Message/Header.
ResourceCmdParam s	element	Specifies the resources to be modified.

7.14.2.1 ResourceCmdParams

Table 7.51: ResourceCmdParams Element

NAME	DATA TYPE	DESCRIPTION		
UpdateMethod	enumeration	$\begin{array}{l}\text { Method how the ResourceSet SHALL be updated. } \\ \text { Allowed values are: } \\ \text { Complete - Any resource selected by a Part SHALL be completely overwritten } \\ \text { with the matching Resource from the ResourceSet in this message. Any } \\ \text { Resource not selected by a Part SHALL not be modified. } \\ \text { CompleteSet - The entire ResourceSet selected by this command SHALL be } \\ \text { replaced by the ResourceSet this message contains. }\end{array}$		
Incremental - Any Resource selected by a Part SHALL be incrementally				
updated with values from the matching Resource of the ResourceSet in				
this message whereby all items shall be added to the original Resource,				
replacing any previously existing matching items. Individual items not				
matched SHALL not be modified or removed.			$\}$	Remove - Any Resource selected by Part shall be completely removed from
:---				
the ResourceSet. All other Resources shall not be modified or removed.				
RemoveSet - The entire ResourceSet selected by this message SHALL be				
removed.				

Example 7.6: Resource Command: Uploading a list of paper Media

The following is an example of an MIS uploading a paper catalog to a device.

```
<XJMF xmlns="http://www.CIP4.org/JDFSchema_2_0">
    <Header ID="l_000002" Time="2017-04-01T01:\overline{02:03+02:00"/>}
    <CommandResource>
        <Header ID="C1" Time="2017-04-01T01:02:03+02:00"/>
        <ResourceCmdParams UpdateMethod="Incremental">
            <ResourceSet Name="Media">
                    <Resource DescriptiveName="Paper # 1" ExternalID="ID_1">
                        <Media Dimension="595.27559055 822.04724409" Weight="80"/>
                    </Resource>
                    <Resource DescriptiveName="Paper # 2" ExternalID="ID_2">
                        <Media Dimension="595.27559055 822.04724409" Weight="100"/>
                    </Resource>
                    <!-- One Resource element for each paper to upload follows here -->
            </ResourceSet>
        </ResourceCmdParams>
    </CommandResource>
</XJMF>
```


7.14.3 ResponseResource

When responding to QueryResource, ResponseResource returns a Resourcelnfo that contains the queried information concerning the resources.
Table 7.52: ResponseResource Message

NAME	DATA TYPE	DESCRIPTION
ReturnCode?	integer	See Response/@ReturnCode. If ResourceInfo/ResourceSet is empty because the selective query parameters of the ResourceQuParams lead to a null selection of the known device or job resources, then @ReturnCode SHALL be one of 103 (@JobID unknown), 104 (@JobPartID unknown) or 108 (empty list) and SHOULD be flagged as a warning with Notification[@Class="Error"]. When responding to an unsuccessful CommandResource, the value of @ReturnCode SHALL be set to "140" (CommandResource rejected). If the data could only be partially updated ResponseResource@ReturnCode SHALL be "141" See • Appendix B Return Values.
Header	element	See Message/Header.
Notification?	element	See Response/Notification.
Resourcelnfo *	element	Response to a CommandResource: Exactly one Resourcelnfo shall be specified and SHALL contain information about the ResourceSet after modification. Response to a QueryResource: One ResourceInfo SHALL be specified for each ResourceSet that matches the QueryResource and SHALL contain information about the ResourceSet.

7.14.3.1 Resourcelnfo

Resourcelnfo SHALL specify the current state of a ResourceSet after any applicable modifications have been applied.

Table 7.53: ResourceInfo Element

NAME	DATA TYPE	DESCRIPTION		
CommandResult?	enumeration	$\begin{array}{l}\text { Result of a CommandResource. } \\ \text { Allowed values are: } \\ \text { Rejected - the CommandResource was not applied to this ResourceSet. } \\ \text { Removed - An existing ResourceSet was removed completely by a } \\ \text { ResourceSet specified in ResourceCmdParams. } \\ \text { New - A new ResourceSet with the values specified in ResourceCmdParams } \\ \text { was created. }\end{array}$		
Merged - Values from the ResourceSet in ResourceCmdParams were merged				
into an existing ResourceSet. See the Resourcelnfo/ResourceSet for the				
merged result.			$\}$	Replaced - An existing ResourceSet was replaced completely by a ResourceSet
:---				
specified in ResourceCmdParams.				

7.14.4 SignalResource

SignalResource returns a Resourcelnfo that contains the information concerning the subscribed resources.
Table 7.54: SignalResource Message (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
ChannelMode?	enumeration	Allowed value is from: ChannelMode Note: See Signal/@ChannelMode.
PreviousRef?	NMTOKEN	Reference to Header/@ID of a prior SignalResource that has been updated by this SignalResource. If @PreviousRef is specified, the contents of the prior SignalResource are effectively overridden and SHOULD not be used for calcu- lating total costs.

Table 7.54: SignalResource Message (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
Header	element	See Message/Header.
ResourceInfo *	element	ResourceInfo SHALL contain information concerning the subscribed resources.

Example 7.7: Resource Signal about Consumed Resources

The following is an example of a Resource Signal used to report the consumption of paper Media.

```
<XJMF xmlns="http://www.CIP4.org/JDFSchema_2_0">
    <Header DeviceID="DeviceID" ID="I_000002" Time="2017-04-01T01:02:03+02:00"/>
    <SignalResource>
        <Header DeviceID="DeviceID" ID="S1" Time="2017-04-01T01:02:03+02:00" refID="Sub1"/>
        <ResourceInfo JobID="Job1" JobPartID="Printing" Scope="Job">
            <ResourceSet Name="Media" Usage="Input">
            <Resource ExternalID="MIS-ID">
                    <AmountPool>
                        <PartAmount Amount="4500" Waste="66">
                        <Part LotID="Lot1"/>
                            </PartAmount>
                                    <PartAmount Amount="2200" Waste="22">
                                    <Part LotID="Lot2"/>
                                    </PartAmount>
                    </AmountPool>
                        <Part SheetName="S1"/>
            </Resource>
            </ResourceSet>
        </ResourceInfo>
    </SignalResource>
</XJMF>
```


7.15 ResubmitQueueEntry

A QueueEntry is resubmitted to a queue using the ResubmitQueueEntry message. This allows late changes to be made to an XJDF without affecting QueueEntry elements and their positions in a Queue. Resubmission modifies the XJDF with information specified in ResubmissionParams/@URL. If QueueEntry/@Status is neither "Waiting" nor "Held", resubmitting a queue entry MAY fail because a Device NEED NOT implement ResubmitQueueEntry for running queue entries.
Note: See the ModifyQueueEntry command to modify the QueueEntry without modifying the underlying XJDF job.
7.15.1 CommandResubmitQ्ueueEntry

Table 7.55: CommandResubmitQueueEntry Message

NAME	DATA TYPE	DESCRIPTION
Header	element	See Message/Header.
ResubmissionParam s	element	Defines the Job resubmission.

7.15.1.1 ResubmissionParams

ResubmissionParams provides details of the QueueEntry resubmission. The value of ResubmissionParams/ @UpdateMethod determines how the QueueEntry modification SHALL be applied.
Devices NEED NOT support @UpdateMethod = "Incremental" with variable XJDF/@JobPartID. This feature allows MIS to provide complex workflows to production workflow systems that are capable of managing multiple devices.

Table 7.56: ResubmissionParams Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
QueueEntryID	NMTOKEN	QueueEntry/@QueueEntryID of the QueueEntry that is resubmitted SHALL match QueueEntry/@QueueEntryID of the queue entry to be replaced.

Table 7.56: ResubmissionParams Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
UpdateMethod	enumeration	Method of how the QueueEntry SHALL be updated. Allowed values are: Complete - The QueueEntry SHALL be completely replaced by the XJDF that is referenced by @URL.
Incremental - The QueueEntry SHALL be incrementally updated by the values		
of the XJDF that is referenced by @URL. All traits of the referenced XJDF		
are optional and only values that are explicitly specified in the referenced		
XJDF SHALL be modified. If XJDF/@JobPartID of the referenced XJDF is		
identical to XJDF/@JobPartID of the originally submitted XJDF or an XJDF		
that has be resubmitted with ResubmissionParams/@UpdateMethod =		
"Incremental", then the process step that is identified by XJDF/@JobID and		
XJDF/@JobPartID SHALL be modified. Otherwise a new process step		
SHALL be submitted to the Device.		

7.15.2 ResponseResubmitQQueueEntry

Table 7.57: ResponseResubmitQueueEntry Message

NAME	DATA TYPE	DESCRIPTION
ReturnCode?	integer	See Response/@ReturnCode.
Header	element	See Message/Header.
Notification?	element	See Response/Notification.

7.16 ReturnQ्ueueEntry

The ReturnQueueEntry message returns an XJDF that had been submitted with a SubmitQueueEntry to the controller that originally submitted the XJDF.
Note: This command is sent from the device to a controller and not from controller to device as is the case with most other queue handling commands.
If the XJDF has been enhanced by submitting additional process XJDFs with different XJDF/@JobPartlD using the ResubmitQueueEntry command, then only the primary XJDF SHALL be returned. The audit elements of the process XJDFs SHALL be copied into XJDF/AuditPool of the primary XJDF. Each such audit element SHALL contain a copy of XJDF/ @JobPartID.
7.16.1 CommandReturnQueueEntry

Table 7.58: CommandReturnQueueEntry Message

NAME	DATA TYPE	DESCRIPTION
Header	element	See Message/Header.
ReturnQueueEntryP arams	element	Defines the job being returned from device to controller after processing is completed or aborted.

7.16.1.1 ReturnQueueEntryParams

The URL Attribute specifies the location where the XJDF file to be submitted can be retrieved by the Controller. The scheme of the URL Attribute (such as "file", "http" or "cid") defines the retrieval method to be used to retrieve the XJDF.

Table 7.59: ReturnQueueEntryParams Element

NAME	DATA TYPE	DESCRIPTION
QueueEntryID	NMTOKEN	QueueEntry/@QueueEntryID of the returned queue entry.
URL	URL	Location of the XJDF that represents the final state of the QueueEntry to be returned. URL SHALL NOT reference a directory.

7.16.2 ResponseReturnQueueEntry

Table 7.60: ResponseReturnQueueEntry Message

NAME	DATA TYPE	DESCRIPTION
ReturnCode?	integer	See Response/@ReturnCode.
Header	element	See Message/Header.
Notification?	element	See Response/Notification.

7.17 ShutDown

The ShutDown Command message shuts down a Controller or Device. A Device SHALL use the Status message if it signals its own shutdown.

7.17.1 CommandShutDown

Table 7.61: CommandShutDown Message

NAME	DATA TYPE	DESCRIPTION
Header	element	See Message/Header.
ShutDouvnCmdPara ms?	element	Defines the details of a shutdown.

7.17.1.1 ShutDownCmdParams

Table 7.62: ShutDownCmdParams Element

NAME	DATA TYPE	DESCRIPTION
ShutDownType?	enumeration	Defines the device shutdown method. Allowed values are: StandBy - The device is set to standby mode. It can be restarted using a CommandV/VakeUp XJMF message. Devicelnfo/@StatusDetails SHOULD be "StandBy". If the device requires a CommandVakeUp XJMF prior to accept- ing new jobs, Devicelnfo/@Status SHALL be "Down", else it SHALL be "Idle". Full - Completely shut down the device. It is no longer accessible via XJMF after the shutdown.

MESSAGING

7.17.2 ResponseShutDown

Table 7.63: ResponseShutDown Message

NAME	DATA TYPE	DESCRIPTION
ReturnCode?	integer	See Response/@ReturnCode.
Header	element	See Message/Header.
Notification?	element	See Response/Notification.

7.18 Status

The Status message queries the general status of a device or a controller and the status of jobs associated with this device or controller. No job context is needed to issue a Status message. The response contains one or more Devicelnfo elements, which contain the device specific information and which MAY contain other JobPhase elements that in turn contain the job specific information .

7.18.1 QueryStatus

Table 7.64: QueryStatus Message

NAME	DATA TYPE	DESCRIPTION
Header	element	See Message/Header.
Subscription?	element	See Query/Subscription.
StatusQuParams?	element	Refines the query to include various aspects of the Device and Job states.

7.18.1.1 StatusQuParams

StatusQuParams is a filter that defines the job context for which information SHALL be returned in the response.
Table 7.65: StatusQuParams Element

NAME	DATA TYPE	DESCRIPTION
QueueEntryID?	NMTOKEN	@QueueEntryID of the queue entry that is being queried. If @QueueEntryID is not specified, information SHALL be provided for all jobs (that are currently active) and job independent status. @QueueEntryID SHALL NOT be specified if QueryStatus/Subscription is present.

7.18.2 ResponseStatus

Table 7.66: ResponseStatus Message

NAME	DATA TYPE	DESCRIPTION
ReturnCode?	integer	See Response/@ReturnCode.
Header	element	See Message/Header.
Notification?	element	See Response/Notification.
Devicelnfo?	element	Devicelnfo describes details of the actual device status.

7.18.2.1 Devicelnfo

The response message returns a Devicelnfo element for the queried device. Header/@DeviceID SHALL specify the device that DeviceInfo describes.
Table 7.67: DeviceInfo Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
CounterUnit?	NMTOKEN	The unit of the @ProductionCounter, the @TotalProductionCounter and numerator unit of @Speed. The default unit is the default unit defined by XJDF for the output resource of the node executed by the device. For example, in case of a sheet-fed printer, it is the number of sheets; in case of a web printer, it is the length of printed web in meters. Values include those from: • Table 1.6 Units Used in XJDF.
HourCounter?	duration	The total integrated time (life time) of device operation in hours.
IdleStartTime?	dateTime	@IdleStartTime SHALL specify the time when the device switched to a @Status = "Idle" or @Status = "Offline" or @Status = "NonProductive". @IdleStartTime SHALL NOT be specified if @Status = "Production" or @Status = "Stopped".
Modulelds ?	NMTOKENS	List of individual modules that are in use independent of a job. @ModuleIDs SHALL not be specified for modules that are specified in JobPhase/@Module.
PowerOnTime?	dateTime	Date and time when the device was switched on.
ProductionCounter?	float	The current machine production counter. This counter can be reset. Typically, it starts counting at power-on time. The reset of this counter MAY be signaled by a Notification [@Class="Event",@Type ="CounterReset"] message (see Section 8.23.1 Event).
Speed?	float	The current machine speed. @Speed is defined in the same units as @ProductionCounter per hour.
Status	enumeration	@Status describes the overall status of the device. Allowed value is from: DeviceStatus.
StatusDetails ?	NMTOKEN	String that defines the device state more specifically. Values include those from: Appendix A.3.14 Status Details.
TotalProductionCoun ter?	float	The current total machine production counter since the machine was produced.
Activity *	element	Device and operator activities that are related to the device and are unrelated to a specific job.
FileSpec (CurrentSchema) ?	element	Reference to an XML schema in XSD format \downarrow [XMLSchema] that describes the present limitations of the device that can be used without operator intervention. The referenced XML schema SHALL use the XJDF namespace to describe elements and attributes that are defined in the XJDF namespace.

Table 7.67: Devicelnfo Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
FileSpec (Schema)?	element	Reference to an XML schema in XSD format the global limitations of the device including those that can only be used with operator intervention. The referenced XML schema SHALL use the XJDF namespace to describe elements and attributes that are defined in the XJDF namespace.
JobPhase *	element	Each JobPhase SHALL describe the actual status of jobs in the device. All jobs that are active on the device SHALL be specified. No JobPhase elements SHALL be present if @Status = "Idle" or @Status = "Offline". Multiple JobPhase elements specify that multiple job phases are active simul- taneously on the device.

7.18.2.2 Activity

Activity Elements allow tracking of device and operator tasks.
Table 7.68: Activity Element

NAME	DATA TYPE	DESCRIPTION
ActivityID?	NMTOKEN	ID of the activity being performed. This ID is unique, site specific and internal to the MIS.
ActivityName?	string	Name of the activity being performed.
PersonalID?	NMTOKEN	MIS identifier of the employee that performs the activity.
StartTime?	dateTime	Date and time that the employee started the activity. This value MAY remain the same in multiple messages.

7.18.3 JobPhase

JobPhase represents the actual state of a job. Any amounts specified in JobPhase are cumulated amounts since @StartTime. The main difference between a JobPhase element within an XJMF message and an AuditStatus is that a JobPhase reflects a snapshot of the current job status whereas AuditStatus reflects a time span bordered by two (sub-) status transitions.

If Part elements are specified, all attributes in JobPhase apply only to the specified parts.
Table 7.69: JobPhase Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
Amount?	float	Total actual amount of good production that the process defined in this JobPhase produced since @StartTime. If @ Waste is also specified, the value SHALL be without waste. The unit MAY be specified in the @CounterUnit attribute of the parent element DeviceInfo.
CostCenterID?	NMTOKEN	The cost center that this JobPhase job is currently being charged to.
DeadLine?	enumeration	Scheduling state of the job. Allowed values are: InTime - The job or job part will probably not miss the deadline. Warning - The job or job part could miss the deadline. Late - The job or job part will miss the deadline. Note: For more details on scheduling, see Nodelnfo.
JobID	NMTOKEN	XJDF/@JobID of the process that is executing.
JobPartID?	NMTOKEN	XJDF/@JobPartID of the process that is executing.

Table 7.69: JobPhase Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
QueueEntryID?	NMTOKEN	If the job was submitted to a Queue and the @QueueEntryID is known, this attribute SHOULD be provided.
RestTime?	duration	Estimated duration of time to finishing processing.
StartTime?	dateTime	Time when execution of the node that is described by this JobPhase has been started, defined by the transition of Nodelnfo/@Status from "Waiting" to any active value.
Status	enumeration	@Status SHALL specify the NodeInfo/@Status of the process during this JobPhase. Allowed value is from: NodeStatus
StatusDetails ?	NMTOKEN	Machine readable description that defines the job state more specifically. Values include those from: Appendix A.3.14 Status Details.
Waste?	float	Total actual amount of waste that the process defined in this JobPhase pro- duced since @StartTime. The unit MAY be specified in the @CounterUnit attri- bute of the parent element Devicelnfo.
Activity *	element	Device and operator activities that are related to a specific job or job phase.
GangSource *	element	If present, each GangSource SHALL represent the source jobs that are being processed as a gang job by this QueueEntry.
MISDetails?	element	Definition how the costs for this JobPhase are to be charged.
Part *	element	Part SHALL define which parts are currently being processed. The values should be a subset of ResourceSet/@Name="Nodelnfo"/Resource/Part of the XJDF that is processed during this JobPhase. For details on partitions, see $\operatorname{Section~9.3.3~Partial~Processing~of~XJDF~with~}$ Partitioned ResourceSets.

7.18.4 SignalStatus

Table 7.70: SignalStatus Message

NAME	DATA TYPE	DESCRIPTION
ChannelMode?	enumeration	Allowed value is from: ChannelMode Note: See Signal/@ChannelMode.
PreviousRef?	NMTOKEN	Reference to Header/@ID of a prior SignalStatus that has been updated by this SignalStatus. If @PreviousRef is specified, the contents of the prior SignalStatus are effectively overridden and SHOULD not be used for calculat- ing total costs.
Header	element	See Message/Header.
DeviceInfo	element	Devicelnfo describes details of the actual device status.

Example 7.8: Status Signal

Example of a status Signal for a phase switch from setup to running. The Signal was sent at the phase switch at 17:00. The "Setup" phase started at 16:00 and the "Inprogress" phase is ongoing.

```
<XJMF xmlns="http://www.CIP4.org/JDFSchema_2_0">
    <Header DeviceID="DeviceID" ID="l 000002" Time="2017-04-01T01:02:04+02:00"/>
    <SignalStatus>
        <Header DeviceID="DeviceID" ID="S1" Time="2017-04-01T17:00:00+02:00" refID="Sub1"/>
        <DeviceInfo Status="Production">
            <JobPhase JobID="j1" JobPartID="p1"
                StartTime="2017-04-01T16:00:00+02:00" Status="Setup"/>
        </DeviceInfo>
    </SignalStatus>
    <SignalStatus>
        <Header DeviceID="DeviceID" ID="l_000004" Time="2017-04-01T01:02:04+02:00"/>
        <DeviceInfo Status="Production">
            <JobPhase JobID="j1" JobPartID="p1"
                StartTime="2017-04-01T17:00:00+02:00" Status="InProgress"/>
        </DeviceInfo>
    </SignalStatus>
</XJMF>
```


7.19 StopPersistentChannel

The StopPersistentChannel command message unregisters a listening controller from a persistent channel. No more signal messages are sent to the controller once the command has been issued. A certain subset of signals MAY be addressed for unsubscription by specifying a StopPersChParams element.

7.19.1 CommandStopPersistentChannel

Table 7.71: CommandStopPersistentChannel Message

NAME	DATA TYPE	DESCRIPTION
Header	element	See Message/Header.
StopPersChParams	element	Specifies the persistent channel and the message types to be unsubscribed.

7.19.1.1 StopPersChParams

StopPersChParams provides a filter that selects persistent channels that SHALL be unregistered.
Table 7.72: StopPersChParams Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
ChannelID?	NMTOKEN	Header/@refID of the persistent channel to be deleted. @ChannelID specifies the Header/@ID of the Query message (identical to the Header/@refID of the Signal message).

Table 7.72: StopPersChParams Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
MessageType?	NMTOKEN	@MessageType SHALL match the local element name (i.e. without namespace prefix) of the Signal elements that SHALL be unregistered.
URL?	URL	URL of the receiving controller. This SHALL be identical to the Subscription/ @URL that was used to create the persistent channel.

7.19.2 ResponseStopPersistentChannel

Table 7.73: ResponseStopPersistentChannel Message

NAME	DATA TYPE	DESCRIPTION
ReturnCode?	integer	See Response/@ReturnCode.
Header	element	See Message/Header.
Notification?	element	See Response/Notification.
SubscriptionInfo?	element	One SubscriptionInfo element SHALL be returned for every persistent channel that was removed.

7.20 SubmitQ्ueueEntry

SubmitQueueEntry initially submits a QueueEntry to a Device. Modifications to a QueueEntry can be applied by using the ResubmitQueueEntry or ModifyO्ueueEntry command. QueueSubmissionParams provides the parameters of the submission.
ResponseSubmitQueueEntry/QueueEntry/@QueueEntryID SHALL be unique within the Device. A new @QueueEntryID SHALL be generated for each SubmitQueueEntry.

7.20.1 CommandSubmitQueueEntry

Table 7.74: CommandSubmitQueueEntry Message

NAME	DATA TYPE	DESCRIPTION
Header	element	See Message/Header.
QueueSubmissionPa rams	element	Defines the Job submission.

7.20.1.1 QueueSubmissionParams

The job submission can contain queue-ordering attributes equivalent to those used by the "Move" @Operation of the ModifyQueueEntry messages. @ReturnJMF may specify the location where the modified XJDF shall be sent after the job is completed or aborted.
The @URL attribute specifies the location where the queue controller can retrieve the XJDF file to be submitted.
Table 7.75: QueueSubmissionParams Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
Activation?	enumeration	Activation of the submitted QueueEntry. Allowed value is from: Activation.
GangName?	NMTOKEN	Name of the gang for the job. If @GangName is specified, the QueueEntry SHOULD be executed together with other QueueEntry elements that share a common value of @GangName. If @GangName is not known, the receiving device MAY either return an error 131 or create the gang with @GangName on the fly.
GangPolicy?	enumeration	Ganging policy for the QueueEntry. Allowed value is from: GangPolicy

Table 7.75: QueueSubmissionParams Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
NextQueueEntryID?	NMTOKEN	QueueEntry/@QueueEntryID of the queue entry that SHALL be positioned directly behind the entry. At most one of @NextQueueEntryID, @PrevQueueEntryID or @Priority SHALL be specified.
PrevQueueEntryID?	NMTOKEN	QueueEntry/@QueueEntryID of the queue entry that SHALL be positioned directly in front of the entry. At most one of @NextQueueEntryID, @PrevQueueEntryID or @Priority SHALL be specified.
Priority?	integer	Number from o to 100, where "0" = lowest priority and "100" = maximum pri- ority. At most one of @NextQueueEntryID, @PrevOueueEntryID or @Priority SHALL be specified. Note that QueueSubmissionParams/@Priority is not the same as Nodelnfo/ @JobPriority. QueueSubmissionParams/@Priority specifies the priority in the context of the device queue whereas Nodelnfo/@JobPriority specifies the prior- ity of the task in general. QueueSubmissionParams/@Priority MAY be modified due to additional scheduling information (e.g., Nodelnfo/@FirstStart). QueueSubmissionParams/@Priority and ModifyOueueEntryParams@Priority
SHALL take precedence over Nodelnfo/@JobPriority.		

URL with "http" Scheme

In this example, the queue controller retrieves the file with a standard HTTP get command from a host that MAY be remote.

Example 7.9: SubmitQ्ueueEntry Command with "http" Scheme

```
<xJMF xmlns="http://www.CIP4.org/JDFSchema_2_0">
    <Header ID="l_000002" Time="2017-04-01T01:02:04+02:00"/>
    <CommandSubmitQueueEntry>
        <Header ID="C1" Time="2017-04-01T01:02:04+02:00"/>
        <QueueSubmissionParams URL="http://jobserver.xjdf.org?job1"/>
    </CommandSubmitQueueEntry>
</XJMF>
```


7.20.2 ResponseSubmitOQueueEntry

Table 7.76: ResponseSubmitQ्ueueEntry Message

NAME	DATA TYPE	DESCRIPTION
ReturnCode?	integer	See Response/@ReturnCode.
Header	element	See Message/Header.
Notification?	element	See Response/Notification.
QueueEntry?	element	Provides the queue entry of the submitted job. QueueEntry SHALL be specified if the submission was successful and SHALL be omitted in case the submis- sion was rejected.

7.21 WakeUp

The WakeUp Command message activates a Controller or Device that has been in stand-by mode. All QueueEntry elements SHALL have an @Activation = "Held" and SHALL be explicitly resumed with a ModifyQueueEntry with a "Resume" operation. A Device SHALL use the Status message to signal its own awakening.

7.21.1 CommandWakeUp

Table 7.77: CommandWakeUp Message

NAME	DATA TYPE	
Header	element	See Message/Header.

7.21.2 ResponseWakeUp

Table 7.78: ResponseWakeUp Message

NAME	DATA TYPE	DESCRIPTION
ReturnCode?	integer	See Response/@ReturnCode.
Header	element	See Message/Header.
Notification?	element	See Response/Notification.

8 Subelements

The elements in this chapter are subelements that can occur in multiple elements. They are not specific resource elements and are therefore never directly linked to processes.

8.1 Address

Definition of an address. The structure is derived from the vCard format. The corresponding vCard fields are quoted in the table.

Element Properties

Element referenced by: Contact, Person
Table 8.1: Address Element

NAME	DATA TYPE	DESCRIPTION
City?	string	City or locality of the Address (vCard: ADR:locality).
CivicNumber?	string	@CivicNumber SHALL specify the street number of the street address. If @CivicNumber is specified, it SHALL NOT be included in @Street.
Country?	string	Country code of the Address (vCard: ADR:country).
CountryCode?	NMTOKEN	Country of the Address. Values include those from: $~[I S O 3166-1: 1997] ~$
PostalCode?	string	Zip code or postal code of the Address (vCard: ADR:pcode).
PostBox?	string	Post office address (vCard: ADR:pobox. For example: P.O. Box 101).
Region?	string	State or province of the Address (vCard: ADR:region).
Street?	text element	Extended address (vCard: ADR:extadd. For example: Suite 245).
ExtendedAddress ?	Street of the Address (vCard: ADR:street). @Street SHALL include the name of the street and SHOULD include the street number unless the street number is specified separately in @CivicNumber.	

8.2 ApprovalPerson

ApprovalPerson specifies the details of person who is responsible for signing an approval.

Element Properties

Element referenced by: ApprovalDetails, ApprovalParams
Table 8.2: ApprovalPerson Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
ApprovalRole?	enumeration	Role of the ApprovalPerson. Allowed values are: Approvinator - The decision of this approver immediately overrides the deci- sions of the other approvers and ends the approval cycle. The "Approvinator" NEED NOT sign for the approval to become valid. Informative - The approver is informed of the Approval Process, but the approval is still valid, even without his approval. Obligated - The approver SHALL sign the approval.
ApprovalRoleDetails $?$	string	Additional details on the @ApprovalRole. @ApprovalRole SHOULD be specified if @ApprovalRoleDetails is provided.

Table 8.2: ApprovalPerson Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
ContactRef	IDREF	Additional details of the person who SHALL sign the approval. The referenced Contact SHALL contain a Part/@ContactType="Approver".

8.3 AutomatedOverPrintParams

AutomatedOverPrintParams provides controls for the automated selection of overprinting of black text or graphics.

Element Properties

Element referenced by: RenderingParams, SeparationControlParams
Table 8.3: AutomatedOverPrintParams Element

NAME	DATA TYPE	DESCRIPTION
$\begin{array}{l}\text { KnockOutCMYKWhite } \\ ?\end{array}$	boolean	$\begin{array}{l}\text { If @KnockOutCMYKWhite="true", graphic objects defined in DeviceCMYK, } \\ \text { where all colorant values are <0.001 SHALL be knocked out, even when set to } \\ \text { overprint and when the PDF overprint mode is set to } 1 .\end{array}$
$\begin{array}{l}\text { OverPrintBlackLineAr } \\ t ?\end{array}$	boolean	$\begin{array}{l}\text { Indicates whether overprint SHALL be set to "true" for black line art (i.e., vec- } \\ \text { tor elements other than text). If "true", overprint of black line art is applied } \\ \text { regardless of any values in the PDL. }\end{array}$
LineArtBlackLevel?	float	$\begin{array}{l}\text { A value between 0.0 and 1.0 which indicates the minimum black level for the } \\ \text { stroke or fill colors that cause the line art to be set to overprint. } \\ \text { @LineArtBlackLevel SHALL NOT be specified unless }\end{array}$
@OverPrintBlackLineArt="true"		

8.4 BarcodeCompParams

BarcodeCompParams specifies the technical compensation parameters for barcodes.

Element Properties

Element referenced by: BarcodeReproParams
Table 8.4: BarcodeCompParams Element

NAME	DATA TYPE	DESCRIPTION
CompensationProces s	enumeration	Process that is bar width spread SHALL be compensated for. Allowed values are: Printing Platemaking
CompensationValue	float	The width of the bars SHALL be reduced by this amount in micron to compensate for technical spread.

8.5 BarcodeReproParams

BarcodeReproParams specifies the reproduction parameters for barcodes.

Element Properties

Element referenced by: Content/BarcodeProductionParams, Layout/StripMark
Table 8.5: BarcodeReproParams Element

NAME	DATA TYPE	DESCRIPTION
BearerBars?	enumeration	Indicates the policy how to generate bearer bars. (ITF). Allowed values are: None TopBottom Box BoxHMarks
Height?	float	@Height SHALL specify the height (Y direction) of the bars of a linear barcode in the PDL.
Magnification?	float	The magnification factor that linear barcodes SHALL be scaled with. Example: @Magnification > 1 requests thicker lines in the barcode in the re- sulting PDL.
Masking?	enumeration	Indicates the properties of the mask around the graphical content of the bar- code that masks out all underlying graphics. Allowed values are: None - No masking, the barcode is put on top of underlying graphics. WhiteBox - An area of the underlying graphics SHALL be masked out (the white box) and the barcode SHALL be put on top of this masked area. The area of the white box SHALL be the box enclosing all artwork of the bar- code, excluding optional human readable text. The box SHALL enclose bearer bars, quiet zones and non-optional human readable text (UPC and EAN barcodes).
BarcodeCompParam		
s * element	float	The Y size in micron of an element of a 2D barcode (e.g., PDF417). For DATA- MATRIX, Y dimension MAY be omitted (X dimension = Y dimension).
SHALL be the sum of all BarcodeCompParams/@CompensationValue.		

8.6 Certification

Certification specifies the certification properties of paper.

Element Properties

Element referenced by: Medialntent, Media
Table 8.6: Certification Element (Sheet 1 of 2)

NAME	data type	description
Claim ?	string	Name of the certification as defined by the issuing organization. Values include: FSC 100\% FSC Mix 70\% FSC Mix Credit FSC Recycled 85\% FSC Recycled Credit PEFC nn\% PEFC Certified PEFC Recycled
Identifier?	string	Certification identification number as defined by the issuing organization.

Table 8.6: Certification Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
Organization?	NMTOKEN	Identifier of the issuing organization: Values include: FSC - Forest Stewardship Council PEFC - The Programme for the Endorsement of Forest Certification IFCC - Sustainable Forest Management Requirements CFCC - China's National Forest Certification System

8.7 Comment

The Comment element can be used to provide human readable text
Element Properties
Element referenced by: XJDF, ResourceSet, Notification, ContentMetadata, PreflightCheck
Table 8.7: Comment Element

NAME	DATA TYPE	DESCRIPTION
Author?	string	Human readable text that identifies the person who created the Comment. See also @PersonallD.
Externall ${ }^{\text {? }}$	NMTOKEN	Identification that is used to reference the Comment.
Language?	language	Human readable language of the Comment.
Personalld ?	NMTOKEN	Machine readable identifier of the employee that entered the comment. When the Comment is created by a person with a known Contact/@UserID, then @PersonalID SHOULD contain the value of Contact/@UserID. See also @Author.
TimeStamp?	dateTime	Describes the date and time when the Comment was created.
Type?	NMTOKEN	@Type specifies the usage of a comment. Values include: DeviceText - Human readable description created by the Device that provides details beyond the value of @StatusDetails. The "DeviceText" value SHOULD only be specified in Notification/Comment/@Type. Instruction - Message to the operator that contains information regarding the processing of the Job. The "Instruction" value SHOULD only be specified in XJDF/Comment/@Type. JobDescription - Description of the Job. The "JobDescription" value SHOULD only be specified in XJDF/Comment/@Type. See also CustomerInfo/ @CustomerJobName in $\operatorname{Section~6.24~CustomerInfo.~}$ OperatorText - Message from the operator that contains information regarding the processing of the Job. The "OperatorText" value SHOULD only be specified in Notification/Comment/@Type. Orientation - Description of the orientation of a Resource. The"Orientation" value SHOULD only be specified in Resource/Comment/@Type or ResourceSet/Comment/@Type.
	text	Body of the comment. Note that whitespace is preserved only as generic whitespace in XML. Applications that display comments to the user SHOULD maintain whitespace.

Example 8.1: Multi-line Comment

The following example shows a multi-line comment with whitespace.

```
<Comment Type="Instruction">Multiline text
    with white space
and empty lines
</Comment>
```


8.8 ConvertingConfig

The ConvertingConfig element describes a range of sheet sizes that can be used for optimizing a die layout in DieLayoutProduction or a press sheet for SheetOptimizing.

Element Properties

Element referenced by: DieLayoutProductionParams, SheetOptimizingParams
Table 8.8: ConvertingConfig Element

NAME	DATA TYPE	DESCRIPTION
MarginBottom ?	float	The bottom margin for positioning the layout on the sheet.
MarginLeft?	float	The left margin for positioning the layout on the sheet.
MarginRight?	float	The right margin for positioning the layout on the sheet.
MarginTop?	float	The top margin for positioning the layout on the sheet.
SheetHeightMax ?	float	The maximum Sheet height (pt).
SheetHeightMin?	float	The minimum Sheet height (pt).
SheetWidthMax ?	float	The maximum Sheet width (pt).
SheetWidthMin?	float	element
Device *	The minimum Sheet width (pt). corresponding to this configuration. Typically only the type of Device would be used (e.g., the model of the die cutter). If multiple Devices are specified, then the other attributes in this element SHALL apply to a production configuration that uses all specified Devices.	
Media *	element	Reference to zero or more Media elements that are candidates for optimiza- tion. Note: Media allows a media database savvy consumer to loop over an explicit list of known materials rather than providing results based on a range of di- mensions only.

8.9 Crease

Crease defines an individual crease line on a component.
Element Properties
Element referenced by:
CreasingParams, FoldingParams
Table 8.9: Crease Element

NAME	DATA TYPE	DESCRIPTION
Depth?	float	Depth of the crease, measured in microns $[\mu \mathrm{m}]$.
StartPosition?	XYPair	Starting position of the tool.
WorkingDirection?	enumeration	Direction from which the tool is working. Allowed value is from: WorkingDirection.
WorkingPath?	XYPair	Working path of the tool beginning at @StartPosition.

8.10 Cut

Cut describes one straight cut with an arbitrary tool.

Element Properties
Element referenced by:
Table 8.10: Cut Element

NAME	DATA TYPE	DESCRIPTION
CutWidth?	float	Width in points of u-shaped knife, saw blade, etc.
StartPosition?	XYPair	Starting position of the tool.
WorkingDirection?	enumeration	Direction from which the tool is working. Allowed value is from: WorkingDirection.
WorkingPath?	XYPair	Working path of the tool beginning at @StartPosition.

8.11 FileSpec

Specification of a file or a set of files. If a single FileSpec instance specifies a set of files, it SHALL do so using the @FileFormat and @FileTemplate attributes to specify a sequence of URLs. Otherwise, each FileSpec instance specifies a single file.

Element Properties

Element referenced by

ApprovalDetails, Color, Color/FileSpec, ColorCorrectionParams, ColorCorrectionParams/ ColorCorrectionOp, ColorSpaceConversionOp, ColorSpaceConversionParams, Device/IconList/ Icon, DieLayout, ExposedMedia, LayoutElementProductionParams, Preview, QualityControlResult, RunList, ShapeDef, ShapeDefProductionParams/ObjectModel, ShapeDefProductionParams/ShapeTemplate

Table 8.11: FileSpec Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
CheckSum ?	hexBinary	$\begin{array}{l}\text { Checksum of the file being referenced using the RSA MD5 algorithm. The data } \\ \text { type was chosen as hexBinary to accommodate the 128 bit output of the MD5 } \\ \text { algorithm. The @CheckSum SHALL be calculated from the entire file, not just } \\ \text { parts of the file. }\end{array}$
Encoding?	NMTOKEN	$\begin{array}{l}\text { Encoding or code page of the file contents. } \\ \text { Values include those from: • [iana-character sets]. }\end{array}$
FileFormat?	string	$\begin{array}{l}\text { A formatting string used with the @FileTemplate Attribute to define a } \\ \text { sequence of URLs in a batch Process, each of which has the same semantics } \\ \text { as the @URL Attribute. } \\ \text { Allowed values are from: Appendix E String Generation. } \\ \text { Constraint: if neither @URL nor @UID is present, both @FileFormat and } \\ \text { @FileTemplate SHALL be present, unless the Resource is a pipe. If either @URL or } \\ \text { @UID is specified, then @FileFormat and @FileTemplate SHALL NOT be specified. }\end{array}$
FileSize?	integer	$\begin{array}{l}\text { Size of the file in bytes. }\end{array}$
FileTemplate?	NMTOKENS	$\begin{array}{l}\text { A template, used with @FileFormat, to define a sequence of URLs in a batch } \\ \text { Process, each of which has the same semantics as the @URL Attribute. } \\ \text { Constraint: if neither @URL nor @UID is present, both @FileFormat and } \\ \text { @fileTemplate SHALL be present, unless the Resource is a pipe. }\end{array}$
Allowed values are from: Appendix E String Generation.		

Table 8.11: FileSpec Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
OverwritePolicy?	enumeration	Policy that specifies the policy to follow when a file already exists and the FileSpec is used in an output resource. Allowed values are: Overwrite - Overwrite the old file. RenameNew - Rename the new file. RenameOld - Rename the old file. NewVersion - Create a new file version. Only valid when the FileSpec references a file on a version aware file system. OperatorIntervention - Present a dialog to an operator. Abort - Abort the process without modifying the old file.
Password?	string	Password or decryption key that is needed to read the file contents. Note: Since this password string is not encrypted, it SHOULD only be passed around within a protected environment.
ResourceUsage?	NMTOKEN	If this specification specifies FileSpec(ResourceUsage) in the name column of an element table, then FileSpec@ResourceUsage SHALL be provided. See - Table 1.3 Template for Element Descriptions for details. Note: @ResourceUsage is generally required if an element contains more than one FileSpec subelement.
SearchDepth?	integer	Used when FileSpec refers to a directory to specify the maximum directory depth that will be recursively searched. o specifies this directory only, -1 specifies an unlimited search.
UID ?	NMTOKEN	Internal ID of the referenced file. The @UID SHALL be unique within the workflow. The value of @UID is dependent on the type of file that is referenced: - PDF - Variable unique identifier in the ID field of the PDF file's trailer. - ICC Profile - The Profile ID in bytes 84-99 of the ICC profile header. - Others - Format specific. Constraint: If neither @URL nor @UID is present on an input FileSpec, and neither @FileFormat nor @FileTemplate is present, the referencing Resource SHALL be a pipe. If either @URL or @UID is specified, then @FileFormat and @FileTemplate SHALL NOT be specified.
URL ?	URL	Location of the file specified as either an absolute URI or a relative URI. If neither @URL nor @UID is present on an input FileSpec, and neither @FileFormat nor @FileTemplate is present, the referencing Resource SHALL be a pipe. If either @URL or @UID is specified, then @FileFormat and @FileTemplate SHALL NOT be specified. See $>$ [RFC3986] for the syntax and examples. For the "file" URL scheme see also \rightarrow [RFC1738].
UserFileName?	string	A user-friendly name which can be used to identify the file. MAY be used by a controller to identify a file on a device without knowing the file's internal location.
Disposition ?	element	Indicates what the device SHOULD do with the file when the process that uses this FileSpec completes. If not specified the file specified by this FileSpec SHOULD NOT be deleted by the device.

8.11.1 Disposition

This element describes how long the digital asset that is referenced by the FileSpec SHOULD be maintained by a device. The device SHALL perform an action defined by Disposition/@DispositionAction when a "disposition time" occurs. Disposition time is defined as either:

- @Until <= "Disposition time" <= @Until + @ExtraDuration
- ProcessCompleteTime + @MinDuration <= "Disposition time" <= ProcessCompleteTime + @MinDuration
+ ExtraDuration

Table 8.12: Disposition Element

NAME	DATA TYPE	DESCRIPTION
DispositionAction?	enumeration	Allowed values are: Delete - The asset SHALL be deleted when disposition time occurs. Archive - The asset SHALL be archived when disposition time occurs.
ExtraDuration?	duration	Indicates the maximum duration that the device SHALL retain the asset after the time specified by @MinDuration or @Until. If @ExtraDuration, @MinDuration and @Until are all unspecified, the asset MAY be retained for a system specified time.
MinDuration?	duration	Indicates the minimum duration that the device SHOULD retain the asset after the process that uses the asset completes. @MinDuration SHALL NOT be specified if @Until is present.
Priority?	integer	Value between o and 100 that specifies the order in which assets SHALL be deleted or archived when the values of @ExtraDuration, @MinDuration and @Until cannot be honored (e.g., when local storage runs low). Assets with @Priority = "0" SHALL be deleted first.
Until?	dateTime	Indicates an absolute point in time when the Device or application SHOULD discard the asset. @Until SHALL NOT be specified if @MinDuration is present.

8.12 FitPolicy

This Element specifies how to fit content into a receiving container (e.g., a page onto a ContentObject of an imposed sheet). See the description of each reference to FitPolicy to determine what the context-specific "content" is and what the "receiving container" is.
Element Properties
Element referenced by: ImageSetterParams, InterpretingParams, Layout, RasterReadingParams
Table 8.13: FitPolicy Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
ClipOffset?	XYPair	Defines the offset (position) of the imaged area in the non-rotated source image when @SizePolicy is "ClipToMaxPage". The values "0.0 0.0" mean that the imaged area starts at the lower left point of the receiving container. If absent, the imaged area SHALL be taken from the center of the source image.
GutterPolicy?	enumeration	Allows printing of NUp grids even if the media size does not match the requirements of the data. Allowed values are: Distribute - The gutters can grow or shrink to the value specified in @MinGutter. Fixed - The gutters are fixed.
MinGutter?	XYPair	Minimum width in points of the horizontal and vertical gutters formed between rows and columns of pages of a multi-up sheet layout. The first value specifies the minimum width of all horizontal gutters and the second value specifies the minimum width of all vertical gutters.
RotatePolicy?	enumeration	Specifies the policy for the Device to automatically rotate the content to opti- mize the fit of the content to the receiving container. Allowed values are:
NoRotate - Do not rotate.		
RotateOrthogonal - Rotate by 90ㅇ in either direction.		
RotateClockwise - Rotate clockwise by 90․		
RotateCounterClockwise - Rotate counterclockwise by 90 ${ }^{\circ}$.		

Table 8.13: FitPolicy Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
SizePolicy?	enumeration	Allows printing even if the container size does not match the requirements of the data. Allowed values are: ClipToMaxPage - The page contents SHALL be clipped to the size of the con- tainer. The printed area is either centered in the source image if no @ClipOffset key is given, or from that position which is determined by @ClipOffset.
Abort - Emit an error and abort printing. FitToPage - The page contents SHALL be scaled up or down to fit the con- tainer. The aspect ratio SHALL be maintained. Reduce ToFit - The page contents SHALL be be scaled down but not scaled up to fit the container. The aspect ratio SHALL be maintained. Tile - the page contents SHALL be be split into several tiles, each tile SHALL be printed on its own surface.		

8.13 Fold

Fold describes an individual folding operation of the Component.
Element Properties
Element referenced by: FoldingIntent, BinderySignature, FoldingParams, Layout
Table 8.14: Fold Element

NAME	DATA TYPE	DESCRIPTION
From	enumeration	Edge from which the page SHALL be folded. Allowed values are: Front Left
To	enumeration	Direction in which it SHALL be folded. Allowed values are: Up - Upwards; corresponds to a valley fold with the left/bottom side coming over the opposite side. Down - Downwards; corresponds to a mountain or peak fold with the left/ bottom side coming under the opposite side.
Travel?	float	Distance of the reference edge relative to @From.

8.14 GangSource

GangSource provides source job information about a BinderySignature that is placed on a gang form.

Element Properties

Element referenced by: JobPhase, QueueFilter, QueueEntry, NodeInfo
Table 8.15: GangSource Element

NAME	DATA TYPE	DESCRIPTION
BinderySignatureID?	NMTOKEN	If present, @BinderySignatureID SHALL reference the BinderySignature that this GangSource represents.
Copies	integer	@Copies SHALL specify the number of copies of the BinderySignature that are required.
JobID	NMTOKEN	@JobID SHALL reference XJDF/@JobID of the individual job that describes the processing prior to and after printing and cutting the gang sheet.

8.15 GeneralID

GeneralID describes a generic identifier. The name or usage of the identifier is specified in GeneralID/@IDUsage and the specific value of the variable is specified in GeneralID/@IDValue. The data type is specified in GeneralID/@DataType.

Although GeneralID could technically be used to describe arbitrary proprietary data, this is strongly discouraged as it is non interoperable. Proprietary extensions SHOULD be avoided if possible, or if absolutely required, they MAY be implemented in proprietary namespaces.

Element Properties
Element referenced by: XJDF, ResourceSet, Product, Resource, Content/ContentMetadata, PreflightParams/ PreflightTest, PreflightReport/PreflightCheck
Table 8.16: GeneralID Element

NAME	DATA TYPE	DESCRIPTION		
DataType ?	enumeration	Data type of the variable. Allowed values are: boolean dateTime duration float integer NamedFeature - This GeneralID represents a NamedFeature as defined in Section 3.1.2.1 Specifying NamedFeatures with GeneraliD. NMTOKEN string		
IDUsage	NMTOKEN	Usage of the GeneralID. IDValue string		Value of the GeneralID. The data type of the value SHALL correspond to
:---				
GenerallD/@DataType.				

8.16 Glue

This element provides the information to determine where and how to apply glue.
All positions and paths are specified relative to the center of the glue application tool.

Element Properties

Element referenced by: AssemblingIntent/Bindln, AssemblingIntent/StickOn, BoxFoldingParams, CaseMakingParams, EndSheetGluingParams, GluingParams/Glue, HeadBandApplicationParams, InsertingParams, ThreadSewingParams, MediaLayers
Table 8.17: Glue Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
AreaGlue?	boolean	Specifies that this Glue SHOULD cover the complete width of the Component it is applied to.
GlueLineWidth?	float	Width of the glue line in points. If not specified, the default behavior depends on the value of @AreaGlue: If @AreaGlue = "true", then the implied width is the width of the Component. If @AreaGlue = "false", then the implied width is the system dependent glue line width.
GlueRef?	IDREF	Reference to a MiscConsumable that represents the physical glue.
GlueType?	enumeration	Glue type. Allowed values are: ColdGlue - Any type of glue that needs no heat treatment. Hotmelt - Hotmelt EVA (Ethyl-Vinyl-Acetate-Copolymere) Permanent - Any glue that is designed not to be removed. PUR - Polyurethane Removable - Any glue that is designed to be removed.

Table 8.17: Glue Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
GluingPattern?	FloatList	Glue line pattern defined by the length of a glue line segment (1st Element, 3rd and all odd elements of the list of values) and glue line gap (2nd Element, 4th and all even elements of the list of values). A solid line SHALL be expressed by the pattern (1 0). @GluingPattern SHALL contain an even number of entries. If the total length of @GluingPattern is less than @WorkingPath, the pattern restarts after the last gap. If the total length of @aluingPattern is larger than @WorkingPath, the pattern SHALL be clipped at the end.
GluingTechnique?	enumeration	When Glue is specified in the context of hard cover binding, then @GluingTechnique specifies the technique of gluing operation. Allowed values are: SpineGluing SideGluingFront SideGluingBack
MeltingTemperature	integer	Temperature needed for melting the glue, in degrees centigrade. @MeltingTemperature SHALL NOT be specified unless @GlueType="Hotmelt" or
StartPosition?	XYPair	enumeration
WorkingDirection?	enirection from which the Glue should be applied to the Component.	
Allowed value is from: Face.		

8.17 HolePattern

The HolePattern element describes a pattern of one or more holes.
HolePattern MAY be used to describe line hole punching which generates a series of holes with identical distance (pitch) running parallel to the edge of a web, which is mainly used to transport paper through continuous-feed printers and finishing devices (form processing). The final product typically is a web with two lines of holes, one at each edge of the web. The distance between holes within each line of holes is identical (constant pitch). In case of line hole punching @Center applies to the initial hole and @Extent applies to each hole individually.
Note: For dealing with the default case of @HoleCount (i.e., when not supplied), intelligent systems MAY take into consideration physical properties such as the length of the binding edge or distance of holes to the paper edges to calculate the appropriate number of holes. For production of the holes and selection/production of the matching binding element, the "system specified" values SHALL match 100\% between the HoleMaking and the process for obvious reasons.

Element Properties

Element referenced by: HoleMakingParams
Table 8.18: HolePattern Element

NAME	DATA TYPE	DESCRIPTION
Center	XYPair	Position of the center of the hole relative to the Component coordinate sys- tem. For more information, see •Section 5.6.19 HoleMaking.
CenterReference	enumeration	Defines the reference coordinate system for @Center. Allowed values are: TrailingEdge - Physical coordinate system of the component. RegistrationMark - The center is relative to a registration mark.
Extent	XYPair	Size (Bounding Box) of each hole, in points. If @Shape is "Round", only the first entry of @Extent SHALL be evaluated and SHALL define the hole diame- ter.

Table 8.18: HolePattern Element

NAME	DATA TYPE	DESCRIPTION
HoleCount ?	IntegerList	@HoleCount specifies the number of consecutive holes and spaces. The first entry defines the number of holes, the second entry defines the number of spaces, and consecutive entries alternately define holes (h) and spaces (s), for instance: "2 2 2" = "h h s sh h". "0 333 3" = "s s shhhs s shhh". Note: @HoleCount is typically applied to patterns with @Pattern whose enumeration values begin with a "P", "W" or "C" in • Table G. 1 Naming Scheme for Hole Patterns
Pattern ?	NMTOKEN	Predefined hole pattern. Allowed values is from: Section G Hole Pattern Catalog
Pitch ?	XYPair	If @Pitch is specified, this HolePattern represents a line of holes. @Pitch represents the distance between the centers of two adjacent holes.
ReferenceEdge ?	enumeration	The edge of the Component relative to where the holes SHALL be placed. Allowed values are: Left Right Top Bottom Pattern - Specifies that the reference edge implied by the value of @Pattern in - Section G Hole Pattern Catalog
Reinforcement?	NMTOKEN	@ Reinforcement specifies how a hole shall be reinforced. Values include: Grommet Note: Additional details of the reinforcement MAY be supplied in a MiscConsumable with MiscConsumable/@Type="Grommet"
Shape	enumeration	Shape of the hole. Allowed values are: Elliptic Round Rectangular

8.18 IdentificationField

This Resource contains information about a mark on a document (e.g., a bar code) used for OCR-based verification purposes or document separation.

Element Properties

Element referenced by:

Table 8.19: IdentificationField Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
BoundingBox?	rectangle	Box that provides the boundaries of the mark that indicates where the IdentificationField is placed. If the IdentificationField is specified in a Layout, the coordinate system SHALL be defined by the StripMark containing the Identificationfield. If no Layout context is available, the origin of the coordinate system SHALL be defined as the lower left corner of the resource surface that @Position specifies when the specified surface is viewed in its natural orientation. Each item in the list below specifies a value of @Position and the corner that is the origin for the specified value when the viewer is positioned in front of the front surface. For example, when @Position = "Left", the origin is the bot-tom-back corner of left surface when viewed from the front surface of the resource and lower-left corner when viewed from the left surface. - "Front" - Bottom left corner - "Left" - Bottom back corner - "Back" - Bottom right corner - "Right" - Bottom front corner - "Top" - Front left corner - "Bottom" - Back left corner If no @BoundingBox is defined and the Identificationfield is specified - outside the context of a Layout, the complete visible surface SHALL be scanned for an appropriate bar code. - within the context of a Layout, the implied @BoundingBox SHALL be specified by the position of the StripMark. Note: @BoundingBox is used only as metadata when searching or scanning IdentificationField elements and not used when generating IdentificationField elements in a LayoutElementProduction process.
Encoding?	enumeration	Encoding of the information. Allowed values are: ASCII - Plain-text font. Barcode - Any bar code. Braille - Braille text. RFID - Radio Frequency Identification tag.
EncodingDetails?	NMTOKEN	Details about the encoding type. An example is the bar code scheme. Values include those from: * Table 8.20 EncodingDetails Attribute Values.
Format?	regExp	Regular expression that defines the expected format of the expression (e.g., the number of digits, alphanumeric or numeric). Note that this field MAY also be used to define constant fields (e.g., the end of document markers or packaging labels). If not specified, any expression is valid. Exactly one of @Format, @Value or the pair @ValueFormat and @ValueTemplate SHALL be specified.
Orientation?	matrix	Orientation of the contents within the Identificationfield. The coordinate system is defined in the system of the Sheet or component where the IdentificationField resides. The @Orientation is used only as metadata when searching or scanning IdentificationField Elements and not used when generating IdentificationField Elements in a LayoutElementProduction Process.
Position ?	enumeration	Position with respect to the instance document or Resource to which the resource refers. Allowed value is from: Face.

Table 8.19: IdentificationField Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
Purpose?	enumeration	Purpose defines the usage of the field. Allowed values are: Label - Used to mark a product or component. Separation - Used to separate documents. Verification - Used for verification of documents.
PurposeDetails?	NMTOKEN	More detail about the usage of the barcode. Values include: Productldentification - End product identification (e.g., scanning in the super market).
Value?	string	Fixed value of the IdentificationField (e.g., on a label). Exactly one of @Format, @Value or the pair @ValueFormat and @ValueTemplate SHALL be specified.
ValueFormat?	string	A formatting string used with @ValueTemplate to define fixed and/or variable content of barcodes or text. Allowed values are from: Appendix E String Generation. Constraint: exactly one of @Format, @Value or the pair @ValueFormat and @ValueTemplate SHALL be specified.
ValueTemplate?	NMTOKENS	A list of values used with @ValueFormat to define fixed and/or variable content of barcodes or text. If MetadataMap Elements are present, MetadataMap/ @Name SHALL be included in @ValueTemplate to select the data from the MetadataMap. Allowed values are from: Appendix E String Generation. Constraint: exactly one of @Format, @Value or the pair @ValueFormat and @ValueTemplate SHALL be specified.
BarcodeDetails ?	element	Additional specification for complex barcodes.
ExtraValues?	element	Additional values encoded in the IdentificationField.
MetadataMap *	element	Describes the mapping of metadata that is encoded in an IdentificationField to partition keys. Note: This allows for automated selective finishing based on bar codes.

The following list provides a sample of Barcode encoding details. Values that are not present in this list MAY be valid in an XJDF workflow.
Table 8.20: EncodingDetails Attribute Values (Sheet 1 of 2)

VALUE	DESCRIPTION	VALUE	DESCRIPTION
BOBST		ITF_14	
BrailleASCII	A binary representation for 6 dot Braille messages. See $\stackrel{\text { Braille] }}{ }$	ITF_6	
BrailleUnicode	A binary representation for Braille messages. See • [Unicode Braille Patterns]	ITF_16	
CODABAR		KURANDT	
CODABAR_Tradional		LAETUS_PHARMA	
CODABLOCK		MSI	
CODABLOCK_F		NDC_HRI	
Code128		PARAF	
Code25		Plessey	
Code39		PDF417	

Table 8.20: EncodingDetails Attribute Values (Sheet 2 of 2)

VALUE	DESCRIPTION	VALUE	DESCRIPTION
Code39_Extended		PZN	
EAN	includes Bookland_EAN and ISSN.	QR	
EAN_13		RSS_14	
EAN_8		RSS_14_Stacked	
EAN_Coupon		$\begin{aligned} & \text { RSS_14_Stacked_Om } \\ & \text { nidir } \end{aligned}$	
EAN_128		RSS_14_Truncated	
HIBC_Code39		RSS_Limited	
HIBC_Code128		RSS_Expanded	
HIBC_Code39_2		RSS_Expanded_Stac ked	
HIBC_CODABLOCK_F		UPC_A	
HIBC_QR		UPC_Coupon	
HIBC_DATAMATRIX		UPC_E	
Interleave25		UPC_SCS	

8.18.1 BarcodeDetails

Table 8.21: BarcodeDetails Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
BarcodeVersion ?	NMTOKEN	The version of a barcode. Values include those from: Table 8.24 BarcodeVersion Values - for HIBC_DATAMATRIX. Values include those from: * Table 8.25 BarcodeVersion Values - for QR barcodes.
ErrorCorrectionLevel ?	NMTOKEN	Error correction level for barcodes having a separately definable error correction level. Each value can be used only for certain values of IdentificationField/ @EncodingDetails. Values include: PDF417_EC_0 - for @EncodingDetails = "PDF417" PDF417_EC_1 - for @EncodingDetails = "PDF417" PDF417_EC_2 - for @EncodingDetails = "PDF417" PDF417_EC_3 - for @EncodingDetails = "PDF417" PDF417_EC_4 - for @EncodingDetails = "PDF417" PDF417_EC_5 - for @EncodingDetails = "PDF417" PDF417_EC_6 - for @EncodingDetails = "PDF417" PDF417_EC_7 - for @EncodingDetails = "PDF417" PDF417_EC_8 - for @EncodingDetails = "PDF417" QR_EC_L - for @EncodingDetails = "QR" QR_EC_M - for @EncodingDetails = "QR" QR_EC_Q - for @EncodingDetails = "QR" QR_EC_H - for @EncodingDetails = "QR"
XCells ?	integer	The number of cells in x direction of a matrix barcode. For "DATAMATRIX" this field can be omitted since @BarcodeVersion already defines this. For "PDF417" this is the number of codewords/row.

Table 8.21: BarcodeDetails Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
YCells ?	integer	The number of cells in y direction of a matrix barcode For "DATAMATRIX" this field can be omitted since @BarcodeVersion already defines this. For "PDF417" this is the number of rows.

8.18.2 ExtraValues

Table 8.22: ExtraValues Element

NAME	DATA TYPE	DESCRIPTION
Usage	NMTOKEN	The usage of the value. Values include: Supplemental - UPC supplemental 2/5 digit symbology CompositeCode - This is applicable for barcodes like RSS-14 that have an optional composite code part. Coupon - The additional message for the EAN128 part of a UPC or EAN cou- pon.
Value	string	Additional value of the IdentificationField as specified in @Usage.

8.18.3 Usage of barcode Attributes

The following table specifies whether the Attributes @Height, @Magnification and @Ratio are applicable for a given barcode type that is specified by @EncodingDetails.

Table 8.23: Usage of Barcode Attributes for Certain Barcode Types (Sheet 1 of 2)

ENCODINGDETAILS VALUES (BARCODE TYPES)	HEIGHT	MAGNIFICATION	RATIO
Code25 Code39 Code39_Extended Interleave25 MSI Plessey	Used	Used	Used
CODABAR Code128 EAN_13 EAN_8 EAN_128 HIBC_Code39 HIBC_Code128 ITF_14 ITF_16 NDC_HRI PARAF UPC_A UPC_E UPC_SCS UPC_SCS	Used	Used	Not used
BOBST KURANDT LAETUS_PHARMA	Used	Not used	Not used

Table 8.23: Usage of Barcode Attributes for Certain Barcode Types (Sheet 2 of 2)

ENCODINGDETAILS VALUES (BARCODE TYPES)	HEIGHT	MAGNIFICATION	RATIO
RSS_14 RSS_14_Stacked RSS_14_Stacked_Omnidir RSS_14_Truncated RSS_Limited RSS_Expanded RSS_Expanded_Stacked	Not used	Used	Not used
PZN			

The following table specifies valid values of BarcodeDetails/@BarcodeVersion for a barcode:
Table 8.24: BarcodeVersion Values - for HIBC_DATAMATRIX

DM_8_by_18	VALUES		
DM_8_by_32	DM_16_by_16	DM_26_by_26	DM_72_by_72
DM_10_by_10	DM_16_by_48	DM_32_by_32	DM_80_by_80
DM_12_by_12	DM_18_by_18	DM_40_by_40	DM_88_by_88
DM_12_by_26	DM_20_by_20	DM_44_by_44	DM_96_by_96
DM_12_by_36	DM_22_by_22	DM_48_by_48	DM_104_by_104
DM_14_by_14	DM_24_by_24	DM_52_by_52	DM_120_by_120
			DM_132_by_132

The following table specifies valid values of BarcodeDetails/@BarcodeVersion for a QR barcode.
Table 8.25: BarcodeVersion Values - for QR barcodes

VALUES							
QR_1	QR_6	QR_11	QR_16	QR_21	QR_26	QR_31	QR_36
QR_2	QR_7	QR_12	QR_17	QR_22	QR_27	QR_32	QR_37
QR_3	QR_8	QR_13	QR_18	QR_23	QR_28	QR_33	QR_38
QR_4	QR_9	QR_14	QR_19	QR_24	QR_29	QR_34	QR_39
QR_5	QR_10	QR_15	QR_20	QR_25	QR_30	QR_35	QR_40

Example 8.2: Barcode

The following example illustrates the description of a barcode in a LayoutElementProduction process.

```
<XJDF xmlns="http://www.CIP4.org/JDFSchema_2_0"
    JobID="LayoutElementProduction" JobPartID="Barcode" Types="LayoutElementProduction">
    <ResourceSet Name="LayoutElementProductionParams" Usage="Input">
        <Resource>
            <LayoutElementProductionParams ContentRefs="Content_000005.1"/>
        </Resource>
    </ResourceSet>
    <ResourceSet Name="Content">
        <Resource ID="Content_000005.1">
            <Content ContentType="Page">
                    <BarcodeProductionParams>
                        <BarcodeReproParams Height="73.5" Magnification="1">
                            <BarcodeCompParams CompensationProcess="Printing" CompensationValue="10"/>
                    </BarcodeReproParams>
                    <IdentificationField Encoding="Barcode"
                            EncodingDetails="EAN_13" Purpose="Label"
                            PurposeDetails="ProductIdentification" Value="0123456789128"/>
                </BarcodeProductionParams>
            </Content>
        </Resource>
    </ResourceSet>
</XJDF>
```


8.19 ImageCompression

ImageCompression specifies image compression properties of individual types of images.

Element Properties

Element referenced by: Content, ImageCompressionParams
Table 8.26: ImageCompression Element (Sheet 1 of 3)

NAME	DATA TYPE	DESCRIPTION
AntiAliaslmages ?	boolean	If "true", anti-aliasing is permitted on images. If "false", anti-aliasing is not permitted. Anti-aliasing increases the number of bits per component in downsampled images to preserve some of the information that is otherwise lost by downsampling. Anti-aliasing is only performed if the image is actually downsampled and if @ImageDepth has a value greater than the number of bits per color component in the input image.
AutoFilterlmages ?	boolean	SHALL NOT be specified unless @Encodelmages is "true". This Attribute is not used if @ImageType = "Monochrome". If "true", the filter defined by @lmageAutoFilterStrategy is applied to photos and the "FlateEncode" filter is applied to screen shots. If "false", the @ImageFilter compression method is applied to all images.
ConvertImagesTolnd exed?	boolean	If "true", the application converts images that use fewer than 257 colors to an indexed color space for compactness. This Attribute is used only when @ImageType = "Color".
DCTQuality ?	float	A value between 0 and 1 that indicates "how much" the Process SHALL compress images when using a "DCTEncode" filter. 0.0 means "do as loss-less compression as possible." 1.0 means "do the maximum compression possible."
Downsamplelmages ?	boolean	If "true", sampled color images are downsampled using the resolution specified by @lmageResolution. If "false", downsampling is not carried out and the image resolution in the PDF file is the same as that in the source file.
Encodelmages ?	boolean	If "true", images are encoded using the compression filter specified by the value of the @lmageFilter key. If "false", no compression filters are applied to sampled images.

Table 8.26: ImageCompression Element (Sheet 2 of 3)

NAME	DATA TYPE	DESCRIPTION
ImageAutoFilterStrat egy?	NMTOKEN	Selects what image compression strategy to employ if passing through an image that is not already compressed. Values include: JPEG - Lossy JPEG compression for low-frequency images and lossless Flate compression for high-frequency images. JPEG2000 - Lossy JPEG2000 compression for low-frequency images and lossless JPEG2000 compression for high-frequency images.
ImageDepth ?	integer	Specifies the number of bits per component in the downsampled image when @Downsamplelmages = "true". If not specified, the downsampled image has the same number of bits per sample as the original image.
ImageDownsampleT hreshold?	float	Sets the image downsample threshold for images. This is the ratio of image resolution to output resolution above which downsampling can be performed. The following short examples provide a hypothetical configuration: To use @ImageDownsampleThreshold, set the following Attributes to the values indicated: @ImageResolution = 72 @lmageDownsampleThreshold = 1.5 The input image would not be downsampled unless it has a resolution greater than $(72 * 1.5)=108 \mathrm{dpi}$
ImageDownsampleT ype?	enumeration	Downsampling algorithm for images. Allowed values are: Average - The program averages groups of samples to get the new downsampled value. Bicubic - The program uses bicubic interpolation on a group of samples to get a new downsampled value. Subsample - The program picks the middle sample from a group of samples to get the new downsampled value.
ImageFilter?	NMTOKEN	Specifies the compression filter to be used for images. Ignored if @AutoFilterlmages = "true" or if @Encodelmages = "false". Values include: CCITTFaxEncode - Used to select CCITT Group 3 or 4 facsimile encoding. SHALL NOT be specified unless @ImageType = "Monochrome". DCTEncode - Used to select JPEG compression. FlateEncode - Used to select zip compression. JBIGZEncode - Used to select JBIG2 encoding. SHALL NOT be specified unless @ImageType="Monochrome". JPEG2000 - Used to select JPEG2000/Wavelet compression. LZWEncode - LZW Compression. PackBits - A simple byte-oriented run length scheme.
ImageResolution ?	float	Specifies the minimum resolution for downsampled color images in dots per inch. This value is used only when @Downsamplelmages = "true". The application downsamples only images that are above that resolution to that actual resolution.
ImageType?	enumeration	Specifies the kind of image that SHALL be manipulated. Allowed values are: Color Grayscale Monochrome
JPXOQuality?	integer	Specifies the image quality. Valid values are greater than or equal to one (1) and less than or equal to 100 . One (1) means lowest quality (highest compression), 99 means visually lossless compression, and 100 means numerically lossless compression.
CCITTFaxParams?	element	The equivalent of the PostScript Rows and BlackIs1 parameters, which are implicit in the raster data to be compressed.

Table 8.26: ImageCompression Element (Sheet 3 of 3)

NAME	DATA TYPE	DESCRIPTION
DCTParams ?	element	Provides the equivalents of the PostScript Columns, Rows and Colors Attri- butes, which are assumed to be implicit in the raster data to be compressed.
FlateParams ?	element	The equivalent of the PostScript Columns, BitsPerComponent and Colors parameters, which are implicit in the raster data to be compressed.
JBIG2Params?	element	Provides the JBIG2 compression parameters.
JPEG2000Params ?	element	Provides the JPEG2000 compression parameters.
LZVWParams?	element	The equivalent of the PostScript Columns, BitsPerComponent and Colors parameters, which are implicit in the raster data to be compressed

8.19.1 CCITTFaxParams

Table 8.27: CCITTFaxParams Element

NAME	DATA TYPE	DESCRIPTION
EncodedByteAlign ?	boolean	A flag indicating whether the CCITTFaxEncode filter SHALL insert an extra o bits before each encoded line so that the line begins on a byte boundary.
EndOfBlock?	boolean	A flag indicating whether the CCITTFaxEncode filter SHALL append an end- of-block pattern to the encoded data
EndOfLine?	boolean	A flag indicating whether the CCITTFaxEncode filter SHALL prefix an end- of-line bit pattern to each line of encoded data.
$K ?$	integer	An integer that selects the encoding scheme to be used. < 0 - Pure two-dimensional encoding (Group 4, TIFF Compression = 4) = 0 - Pure one-dimensional encoding (Group 3, 1-D, TIFF Compression $=2)$ >0 - Mixed one- and two-dimensional encoding (Group 3, 2-D, TIFF Com- pression = 3), in which a line encoded one-dimensionally MAY be fol- lowed by at most K - 1 lines encoded two-dimensionally
Uncompressed?	boolean	A flag to indicate whether the file generated MAY use uncompressed encod- ing when advantageous.

8.19.2 DCTParams

Table 8.28: DCTParams Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
ColorTransform ?	enumeration	Color transformation algorithm. Allowed values are: None - Colors SHALL NOT be transformed. YUV - RGB raster values SHALL be transformed to YUV before encoding and from YUV to RGB after decoding. If four channels are present CMYK val- ues SHALL be transformed to YUVK before encoding and SHALL be trans- formed from YUVK to CMYK after decoding. Automatic - "YUV" for 3-channel raster data, "None" otherwise. Note: YUV is equivalent to YCbCr in TIFF terminology.
HSamples?	IntegerList	A sequence of horizontal sampling factors. If present, one entry SHALL be provided per color channel in the raster data. If not specified, the implied default is "1" for every channel.
HuffTable?	FloatList	Huffman tables for DC and AC components. If present, there SHALL be at least one HuffTable element for each color channel.
QFactor?	float	A scale factor that SHALL be applied to the elements of @QuantTable.
QuantTable?	FloatList	Quantization tables. If present, there SHALL be one @QuantTable entry for each color channel.

Table 8.28: DCTParams Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
VSamples?	IntegerList	A sequence of vertical sampling factors. If present, one entry SHALL be pro- vided per color channel in the raster data. If not specified, the implied default is "1" for every channel.

When the DCTParams element is a subelement of ImageCompression used in a Rendering process to generate TIFF files, YUV is equivalent to YCbCr in TIFF terminology. The HSamples and VSamples values are used to set YCbCrSubSampling or CIELabSubSampling. This means that they are only relevant for data supplied as Lab, or data where @ColorTransform is "YUV"; that the first element SHALL be 1 in each case; that the fourth element SHALL be 1 where CMYK data is to be compressed; and that the second and third elements SHALL equal each other.

8.19.3 FlateParams

Table 8.29: FlateParams Element

NAME	DATA TYPE	DESCRIPTION
Predictor?	integer	A code that selects the predictor function: Note: On 1X PNG predictors, these values select the specific PNG predictor function(s) to be used, as indicated above. When decoding the predictor function SHALL be explicitly encoded in the incoming data. Values include: 1 - No predictor (normal encoding or decoding). 2 - TIFF Predictor 2. 10 - PNG predictor, None function. 11 - PNG predictor, Sub function. 12 - PNG predictor, Up function. 13 - PNG predictor, Average function. 14 - PNG predictor, Path function. 15 - PNG predictor in which the encoding filter SHALL automatically choose the optimum function separately for each row.

8.19.4 JBIG2Params

Table 8.30: JBIG2Params Element

NAME	DATA TYPE	DESCRIPTION
JBIG2Lossless ?	boolean	If "true" requires JBIG2 compressed images to retain the exact representation of the original image without loss.

8.19.5 JPEG2000Params

Table 8.31: JPEG2000Params Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
CodeBlockSize?	integer	The nominal code block width and height. The value SHALL be a power of 2.
LayerRates?	FloatList	Compression bit ratio for each layer. If specified, there SHALL be the same number of values in this list as @LayersPerTile in ascending order. Small values correspond to maximum compression and 1.0 corresponds to no compression (lossless). If available, @LayerRates SHOULD be supplied.
LayersPerTile?	integer	Specifies the number of quality layers per tile at the same resolution.
NumResolutions?	integer	The number of resolution levels that SHALL be encoded in the file.

Table 8.31: JPEG2000Params Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
ProgressionOrder?	enumeration	Per tile progression order. Allowed values are: LRCP - layer-resolution-component-position progressive (i.e., rate scalable).
		RLCP - Resolution-layer-component-position progressive (i.e., resolution Scalable). RPCL - Resolution-position-component-layer progressive. PCRL - Position-component-resolution-layer progressive. CPRL - Component-position-resolution-layer progressive.
TileSize?	XYPair	The width and height of each encoding tile. If not specified the image SHALL be encoded as a single tile.

8.19.6 LZWParams

Table 8.32: LZWParams Element

NAME	DATA TYPE	DESCRIPTION
EarlyChange?	integer	A code indicating when to increase the code word length. The TIFF specification can be interpreted to imply that code word length increases are postponed as long as possible. However, some existing implementations of LZW increase the code word length one code word earlier than necessary. The PostScript language supports both interpretations. If @EarlyChange is "0", code word length increases are postponed as long as possible. If it is "1", they occur one code word early.
Predictor?	integer	A code that selects the predictor function: Note: On 1X PNG predictors, these values select the specific PNG predictor function(s) to be used, as indicated above. When decoding the predictor function SHALL be explicitly encoded in the incoming data. Values include: 1 - No predictor (normal encoding or decoding). 2 - TIFF Predictor 2. 10 - PNG predictor, None function. 11 - PNG predictor, Sub function. 12 - PNG predictor, Up function. 13 - PNG predictor, Average function. 14 - PNG predictor, Path function. 15 - PNG predictor in which the encoding filter SHALL automatically choose the optimum function separately for each row.

8.20 MediaLayers

MediaLayers contains an ordered list of subelements. Each subelement describes an individual layer of a layered Media such as self-adhesive labels or corrugated boards. The first layer in MediaLayers SHALL specify the front layer of the Media until the last layer, which SHALL define the back. The Glue and Media subelements MAY therefore be specified in any order and NEED NOT be specified in the lexical order as specified in \bullet Table 8.33 MediaLayers Element below.

Element Properties

Element referenced by: Medialntent, Media
Table 8.33: MediaLayers Element

NAME	DATA TYPE	DESCRIPTION
Glue *	element	Each Glue SHALL specify a glue layer of a layered Media. The value of Glue/ @AreaGlue SHALL be "true".
Media *	element	Each Media SHALL describe an individual layer of a layered Media.

8.21 MetadataMap

MetadataMap allows metadata embedded in PDL files or barcodes that are represented by IdentificationField to be assigned to partition key values. If MetadataMap is defined in a RunList, the metadata SHALL be extracted from the PDL as follows: each MetadataMap element SHALL be evaluated for each node (Set, Document, Page, etc.) of the PDL document structure. For XML based PDL files an XPath expression SHALL be evaluated relative to the XML node that defines each node in the document hierarchy. For non-XML based PDLs a PDL specific mapping of the XPath to the PDL document structure SHALL be used instead and the value assignment SHALL be performed on the derived XML for the PDL file.
If MetadataMap is defined in an IdentificationField, then IdentificationField/@ValueTemplate SHALL provide a list of variables that can be further processed in MetadataMap/@ValueTemplate.

Element Properties

Element referenced by: IdentificationField, RunList
Table 8.34: MetadataMap Element

NAME	DATA TYPE	DESCRIPTION
Name	NMTOKEN	@Name defines the partition key that SHALL be filled with the value that is calculated from @ValueFormat and @ValueTemplate. See • Table 6.6 Part Element.
ValueFormat	string	Formatting value for combining values from @ValueTemplate. Allowed values are from: Appendix E String Generation.
ValueTemplate	NMTOKENS	Arguments for combining extracted values. The argument names SHALL match the values of Expr/@Name, be defined in the parent IdentificationField/ @ ValueTemplate or be predefined in Appendix E String Generation.
Expr *	element	Exactly one Expr element with a matching @Name SHALL be specified for each variable in @ValueTemplate that is NOT defined in the parent IdentificationField/@ValueTemplate and NOT defined in •Table E. 1 Predefined variables used in @XXXTemplate. Expr SHALL NOT be specified in an IdentificationField/MetadataMap.

8.21.1 Expr

Expr elements define how the variables that are specified in @ValueTemplate SHALL be extracted from the parent RunList.

Table 8.35: Expr Element

NAME	DATA TYPE	DESCRIPTION
Name	NMTOKEN	Name of this Expr. The value extracted from @Path SHALL be used to evalu- ate the parent @ValueTemplate.
Path	XPath	The value specified by this path SHALL be assigned to Expr/@Name. If the XPath points to an element, then an implied XPath text() function SHALL be executed.

SUBELEMENTS

Example 8.3: RunList/MetadataMap

In the following example, the MetadataMap element maps the data in/doc/record/Geschlecht and /doc/record/Status in the document to Part/@Metadata. The calculated Part/@Metadata is then used to select the appropriate color and quality of the paper Component.

```
<ResourceSet Name="RunList" Usage="Input">
    <Resource>
        <RunList>
            <FileSpec URL="file://host/file/data.pdf"/>
            <MetadataMap Name="MetaData" ValueFormat="%s_%s" ValueTemplate="gender status">
                    <Expr Name="gender" Path="/doc/record/Geschlecht"/>
                    <Expr Name="status" Path="/doc/record/Status"/>
            </MetadataMap>
        </RunList>
    </Resource>
</ResourceSet>
<ResourceSet Name="Component" Usage="Input">
    <Resource ExternalID="BlueGoodPaper">
        <Part Metadata="Mann_Platin"/>
        <Component/>
    </Resource>
    <Resource ExternalID="BlueCheapPaper">
        <Part Metadata="Mann(.)*"/>
        <Component/>
    </Resource>
    <Resource ExternalID="PinkGoodPaper">
        <Part Metadata="Frau_Platin"/>
        <Component/>
    </Resource>
    <Resource ExternalID="PinkCheapPaper">
        <Part Metadata="Frau_(.)*"/>
        <Component/>
    </Resource>
</ResourceSet>
```


8.22 MISDetails

MISDetails is a container for MIS related information.

Element Properties

Element referenced by: AuditStatus, AuditResource, ResourceCmdParams, ResourceInfo, PipeParams, JobPhase, Nodelnfo

Table 8.36: MISDetails Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
Complexity?	float	Complexity of the task specified by this XJDF in a range from 0.0 to 1.0. Note: The interpretation of values is implementation dependent. Values include: $0.0-$ The job is simple and therefore reduced setup and waste or higher speeds are possible.
0.5 - The job is of standard complexity and therefore standard setup and		
waste or normal speeds are possible.		
1.0 - The job is complex and therefore more setup and waste or lower speeds		
are possible.		

Table 8.36: MISDetails Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION		
WorkType?	enumeration	$\begin{array}{l}\text { Definition of the work type for this MISDetails (i.e., whether or not this } \\ \text { MISDetails relates to originally planned work, an alteration or rework). } \\ \text { Allowed values are: }\end{array}$		
Original - Standard work that was originally planned for the job.				
Alteration - Work done to accommodate change made to the job.				
Rework - Work done due to unforeseen problem with original work (bad				
plate, resource damaged, etc.).			$]$	WorkTypeDetails?
:---				
NMTOKEN				
Machine readable of the details of the work type for this MISDetails (i.e., why the work was done). Values include: CustomerRequest - The customer requested change(s) requiring the work. EquipmentMalfunction - Equipment used to produce the Resource malfunc- tioned; Resource needs to be created again. InternalChange - Change was made for production efficiency or other internal reason. ResourceDamaged - A Resource needs to be created again to account for a damaged Resource (damaged plate, etc.). UserError - Incorrect operation of equipment or incorrect creation of Resource requires creating the Resource again.				

8.23 Notification

This element contains information about individual events that occurred during processing. For a detailed discussion of event properties, see $>$ Section 9.3.8 Error Handling.

Element Properties

Element referenced by: AuditNotification, Response, ResponseForceGang, ResponseGangStatus, ResponseKnowvnDevices, ResponseKnowvnMessages, ResponseKnownnSubscriptions, ResponseModifyOQueueEntry, ResponseNotification, SignalNotification, ResponsePipeControl, ResponseQueueStatus, ResponseRequestQueueEntry, ResponseResource, ResponseResubmitQ्ueueEntry, ResponseReturnQueueEntry, ResponseShutDown, ResponseStatus, ResponseStopPersistentChannel, ResponseSubmitQueueEntry, ResponseWakeUp

Table 8.37: Notification Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
Class	enumeration	Class of the notification. Allowed values are from: $~$ Severity.
JobID?	NMTOKEN	@JobID that this Notification applies to.
JobPartID?	NMTOKEN	@JobPartID that this Notification applies to.
ModuleID?	NMTOKEN	@ModuleID of the Module that this Notification relates to.
QueueEntryID?	NMTOKEN	@QueueEntryID of the QueueEntry during which this Notification was gener- ated.
Comment *	element	A Comment element contains a verbose, human-readable description of the Notification. If multiple Comment elements occur, they SHALL have different Comment/@Language values.
Event?	element	See Event element below. Not more than one of Event and Milestone SHALL be specified.
Milestone ?	element	See Milestone element below. Not more than one of Event and Milestone SHALL be specified.
Part *	element	Describes which parts of a process this Notification belongs to. If Part is not specified for a Notification, it refers to all parts.

Table 8.37: Notification Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
<foreign name- space elements $>^{*}$	element	Any elements in a foreign namespace. Foreign namespace extensions SHOULD NOT duplicate functionality of XJDF.

8.23.1 Event

This element provides additional information for common events.
Table 8.38: Event Element

NAME	DATA TYPE	DESCRIPTION
EventID	string	Internal Event ID of the application that emits the event.
EventValue?	string	Additional user defined value related to this event.

8.23.2 Milestone

In addition to the concrete XJMF feedback with respect to process status (see $>$ Section 7.18 Status) and available/consumed resources (see Section 7.14 Resource), many actors in the workflow want to track certain overall milestones concerning the entire job across all resources and processes in order to display this to the operator. Sometimes the XJMF recipients cannot determine these milestones from the detailed $\mathbf{X J D F} / \mathbf{X J M F}$, therefore a more abstract representation of job status is described by Milestone events.
Note: that Milestone elements usually refer to events involving multiple objects, although the Milestone/@MilestoneType is specified as a singular. The scope of the Milestone is defined by the parent Notification element.
Table 8.39: Milestone Element

NAME	DATA TYPE	DESCRIPTION
MilestoneType	NMTOKEN	Type of Milestone. Values include those from: Appendix A.3.8 Milestones.
TypeAmount ?	integer	Indication of how many elements have been processed (if the milestone refers to certain resources) (e.g., number of pages proofed, number of differ- ent printed sheets (not the cumulative amount)).

8.24 ObjectResolution

ObjectResolution defines a resolution depending on @SourceObjects data types.

Element Properties

Element referenced by: InterpretingParams, RenderingParams
Table 8.40: ObjectResolution Element

NAME	DATA TYPE	DESCRIPTION
AntiAliasing?	NMTOKEN	Indicates the anti-aliasing algorithm that the Device SHALL apply to the ren- dered output images. An anti-aliasing algorithm causes lines and curves to appear smooth which would otherwise have a jagged appearance, especially at lower resolutions such as 300 dpi and lower. Values include: AntiAlias - Anti-aliasing SHALL be applied. The algorithm is system specified. None - Anti-aliasing SHALL NOT be applied.
Resolution	XYPair	enumeration
SourceObjects?	Identifies the class(es) of incoming graphical objects to render at the speci- fied resolution. Allowed value is from: SourceObjects.	

8.25 OCGControl

OCGControl defines the policy for including or excluding layers that are encoded as 'Optional Content Groups' (OCGs) in PDF.

The order of OCGControl elements SHALL have no effect; the Z-order of graphic elements that make up each optional content group (the term layer is misleading in this regard) within the PDF file SHALL define the drawing order of those graphic elements.
Any preferences recorded in OCGs within the PDF file as to whether that OCG SHOULD be displayed or not SHALL be ignored if that OCG is referenced from an OCGControl element.
The state of all OCGs explicitly referenced from OCGControl elements SHALL be set before determining the state of any remaining OCGs.
Note: All controls for OCGs in XJDF address OCGs directly, and not Optional Content Member Dictionaries (OCMDs do not have unique names).
Note: [PDF1.6] does not state that all OCGs SHALL have unique names. It is therefore possible for a single PDF file to contain multiple OCGs with the same name. When OCGControl/@OCGName refers to multiple OCGs in a file, they will all be explicitly included or excluded together.

Element Properties

Element referenced by: Content, PDFInterpretingParams
Table 8.41: OCGControl Element

NAME	DATA TYPE	DESCRIPTION
IncludeOCG	boolean	Defines whether the optional content group(s) identified by @OCGName are to be included in the RunList. If "true", then the layer SHALL be included. If "false", it SHALL NOT. The contents stream of excluded OCGs SHALL still be interpreted so that changes to CTM, etc., are acted on. The objects drawn in excluded OCGs SHALL NOT be rendered.
oCGName?	string	The name of the optional content group(s) that SHALL be included or excluded. Exactly one of @OCGName or @ProcStepsGroup SHALL be present. Note: The the @Name attribute of an optional content group entry is encoded as a PDF text string, and @OCGName is encoded with the Unicode variant iden- tified in the XJDF file header; names SHALL be re-encoded as necessary for comparison.
ProcStepsGroup?	NMTOKEN	An OCG is selected, if @ProcStepsGroup matches the value of GTS_ProcSteps- Group in the GTS_Metadata dictionary of the OCG of a PDF that complies with • [ISO19593-1:2016].
ProcStepsType?	NMTOKEN	If specified, an OCG is selected, if @ProcStepsType matches the value of GTS_ProcStepsType in the GTS_Metadata dictionary of the OCG of a PDF that complies with speciSO19593-1:2016]. @ProcStepsType SHALL NOT be

8.26 Perforate

Perforate describes one perforated line.
Element Properties
Element referenced by: FoldingParams, PerforatingParams
Table 8.42: Perforate Element

NAME	DATA TYPE	DESCRIPTION
Depth?	float	Depth of the perforation, in microns [$\mu \mathrm{m}]$.
StartPosition?	XYPair	Starting position of the tool.
TeethPerDimension?	float	Number of teeth in a given perforation extent in teeth/point. MicroPerfora- tion is defined by specifying a large number of teeth (@TeethPerDimension > 1000).
WorkingDirection?	enumeration	Direction from which the tool is working. Allowed value is from: WorkingDirection.
WorkingPath?	XYPair	Working path of the tool beginning at @StartPosition.

8.27 QueueEntry

The QueueEntry element contains metadata for a single item in a device's queue.

SUBELEMENTS

Element Properties
Element referenced by: ResponseModifyQueueEntry, ResponseQueueStatus/Queue, ResponseSubmitQ्ueueEntry
Table 8.43: QueueEntry Element

NAME	DATA TYPE	DESCRIPTION
Activation?	enumeration	Specifies the activation of the QueueEntry. Allowed value is from: - Activation.
EndTime?	dateTime	Date and time when processing of the QueueEntry has been ended.
GangName ?	NMTOKEN	Name of the gang that this OueueEntry belongs to. @GangName SHALL be specified, if the QueueEntry is a candidate member of a gang Job.
GangPolicy?	enumeration	Ganging policy for the QueueEntry. Allowed value is from: GangPolicy
Jobld ?	NMTOKEN	The @Jobld of the XJDF process.
JobPartld?	NMTOKEN	The @JobPartlD of the XJDF process.
Priority?	integer	Priority of the QueueEntry. Values are 0-100. A value of " 0 " is the lowest priority, while " 100 " is the highest priority.
QueueEntryID	NMTOKEN	Identifier of a QueueEntry. This ID SHALL be generated by the queue owner. @QueueEntryID SHALL be unique in the context of a Queue
StartTime?	dateTime	Date and time when processing of the QueueEntry has been started.
Status	enumeration	Specifies the status of the requested OueueEntry. @Status SHALL be identical to the Nodelnfo/@Status of the underlying XJDF. Allowed value is from: NodeStatus.
StatusDetails?	NMTOKEN	@StatusDetails provides additional details on the status of the QueueEntry. Values include those from: Appendix A.3.14 Status Details.
SubmissionTime?	dateTime	Date and time when the entry was submitted to the queue.
FileSpec (Preview) ?	element	This FileSpec MAY be used to provide a visualization of the QueueEntry. FileSpec(Preview) SHOULD reference an image format such as PNG or JPEG.
GangSource *	element	If present, each GangSource SHALL represent the source jobs that are being processed as a gang job by this QueueEntry.
Part *	element	Describes which parts of a job were submitted to the queue. This shall be a copy of ResourceSet[@Name="Nodelnfo"]/Resource/Part.

8.28 QueueFilter

The QueueFilter element defines a filter that selects QueueEntry elements in a Queue. The supplied elements of the QueueFilter define a matching criteria that is a logical "and". Only QueueEntry elements that match all restrictions specified by the QueueFilter SHALL be selected.

Element Properties
Element referenced by: CommandModifyQueueEntry/ModifyQueueEntryParams, QueryQueueStatus/ QueueStatusParams

Table 8.44: QueueFilter Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
FirstEntry?	NMTOKEN	@QueueEntryID of the first QueueEntry that this QueueFilter applies to. Only QueueEntry elements that are behind this (including this) QueueEntry in the current queue sorting SHALL be selected
GangNames?	NMTOKENS	Gang names of the QueueEntry elements to be returned. If not specified, there is no filtering on QueueEntry/@GangName.

Table 8.44: QueueFilter Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
JoblD ?	NMTOKEN	Return only QueueEntry elements with specified @JobID. If not specified, there is no filtering on QueueEntry/@Jobld.
JobPartID?	NMTOKEN	Return only QueueEntry elements with specified @JobPartID. If not specified, there is no filtering on QueueEntry/@JobPartID.
LastEntry?	NMTOKEN	@QueueEntryID of the last QueueEntry that this QueueFilter applies to. Only QueueEntry elements that are in front of this (including this) QueueEntry in the current queue sorting SHALL be selected
MaxEntries ?	integer	Maximum number of QueueEntry elements to provide in the Queue element. If not specified, fill in all matching QueueEntry elements.
MaxPriority ?	integer	Only QueueEntry elements with a @Priority lower than or equal to the value of @MaxPriority SHALL be provided in the Queue element. If not specified, there is no @Priority upper bound on candidates.
MinPriority ?	integer	Only QueueEntry elements with a @Priority higher than or equal to the value of @MinPriority SHALL be provided in the Queue element. If not specified, there is no @Priority lower bound on candidates.
NewerThan?	dateTime	Only QueueEntry elements with a @SubmissionTime newer than or equal to @NewerThan SHALL BE provided in the Queue element. If not specified, there is no dateTime upper bound on candidates.
OlderThan ?	dateTime	Only QueueEntry elements with a @SubmissionTime older than or equal to @OlderThan SHALL BE provided in the Queue element. If not specified, there is no dateTime lower bound on candidates.
QueueEntryIDs?	NMTOKENS	Defines an explicit list of queue entries. If not specified, all entries in the Queue are considered.
StatusList?	enumerations	Only QueueEntry elements with a @Status matching one of the entries in @StatusList SHALL be returned. If not specified, there is no filtering on QueueEntry/@Status. Allowed values are from: NodeStatus.
GangSource *	element	If present only QueueEntry elements that contain a GangSource element that matches at least one of these GangSource elements SHALL be selected.
Part *	element	Only QueueEntry elements with all specified Part elements SHALL BE returned. If not specified, there is no filtering on QueueEntry/Part.

8.29 RefAnchor

RefAnchor describes the relative position with respect to a related element in a layout. Depending on the value of @AnchorType, it specifies either a parent element or a sibling element.

Element Properties

Element referenced by: Content/PositionObj, Layout/StripMark
Table 8.45: RefAnchor Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
Anchor	enumeration	@Anchor specifies the origin $(0,0)$ of the vector specified in the rotated coor- dinate system of the related layout element. Allowed value is from: Anchor.

Table 8.45: RefAnchor Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
AnchorType	enumeration	Role of this RefAnchor. Allowed values are: Parent - The layout element referenced by this RefAnchor is a parent. This layout element is transformed with the parent. Sibling - The layout element referenced by this RefAnchor is a sibling. Both layout elements share a common parent. The parent of this layout ele- ment SHALL be specified as the RefAnchor of the first child in the chain of siblings.
rRef	IDREF	Reference to a layout element that this layout element is positioned relative to. This shall be one of Layout/@ID, StripMark/@ID or Position/@ID.

8.30 RegisterRibbon

Description of register ribbons. For the register ribbon, the length SHALL be specified. There are two parameters, as shown in Figure 8-1: RegisterRibbon lengths and coordinate system for BlockPreparation:

Element Properties

Element referenced by: BindingIntent/HardCoverBinding, BlockPreparationParams
Table 8.46: RegisterRibbon Element

NAME	DATA TYPE	DESCRIPTION
LengthOverall ?	float	Overall length of the register ribbon (i.e., @VisibleLength + HiddenLength in Figure 8-1: RegisterRibbon lengths and coordinate system for BlockPreparation). Note: "HiddenLength" is not an attribute.
Material ?	string	Material of the register ribbon.
RibbonColor?	enumeration	@RibbonColor specifies the machine readable color of ribbon. Allowed value is from: NamedColor.
RibbonColorDetails?	string	A more specific, specialized or site-defined name for the color. If @RibbonColorDetails is supplied, @RibbonColor SHOULD also be supplied.
RibbonEnd?	NMTOKEN	End of the Ribbon. Values include: Cut CutSealed Knot SealedOffset - The ribbon is sealed a distance from the cut.
VisibleLength ?	float	Length of the register ribbon which will be seen when opening the book. See Figure 8-1: RegisterRibbon lengths and coordinate system for BlockPreparation.

Figure 8-1: RegisterRibbon lengths and coordinate system for BlockPreparation

8.31 ScreenSelector

Description of screening for a selection of source object types and separations.

Element Properties

Element referenced by: ColorSpaceConversionOp, Content, ScreeningParams
Table 8.47: ScreenSelector Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
Angle?	float	Specifies the first angle of the screen when AM screening is used, otherwise @Angle is ignored.
DotSize?	float	Specifies the dot size of the screen, in microns [pm], when FM screening (@ScreeningType = "FM" or "Adaptive") is used.
Frequency?	float	Specifies the halftone screen frequency in lines per inch (lpi) of the screen when AM screening is used, otherwise @Frequency is ignored. With some screens, frequency can change as a function of gray level. In this case, the @Frequency value is interpreted for a midtone (50\%) gray level.
ScreeningFamily?	string	Vendor specific screening family name.
ScreeningType?	enumeration	General type of screening. Allowed values are: Adaptive AM - Can be line or dot. See @SpotFunction. ErrorDiffusion FM - Includes all stochastic screening types. HybridAM-FM HybridAMLine-dot
Separation?	NMTOKEN	The separation identifier that this ScreenSelector SHALL apply to. Additional details of the colorants should be provided in ResourceSet[@Name="Color"].
SourceFrequencyMa $x ?$	float	Specifies the maximum line frequency of screens which SHALL be matched from the source file when screen matching is to be done. Note that this is a filter that selects on which objects to apply this ScreenSelector.
SourceFrequencyMin $?$	float	Specifies the minimum line frequency of screens which SHALL be matched from the source file when screen matching is to be done. Note that this is a filter that selects on which objects to apply this ScreenSelector.
SourceObjects?	enumeration	Identifies the class(es) of incoming graphical objects on which to use the selected screen. Allowed value is from: sourceObjects.

Table 8.47: ScreenSelector Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
SpotFunction?	NMTOKEN	Specifies the spot function of the screen when AM screening is used. In general, it is common for a spot function to change its shape as a function of gray level. Response to these spot function names MAY be implementationdependent. These example names are the same as the spot function names defined in PDF. Values include: Round Diamond Ellipse EllipseA InvertedEllipseA EllipseB EllipseC InvertedEllipseC Line LineX LineY Square Cross Rhomboid DoubleDot InvertedDoubleDot SimpleDot InvertedSimpleDot CosineDot Double InvertedDouble

8.32 Shape

Element Properties

Element referenced by:
Table 8.48: Shape Resource

NAME	DATA TYPE	DESCRIPTION
CutBox ?	rectangle	Specification of a rectangular window.
CutOut?	boolean	If "true", the inside of a specified shape SHALL be removed. If "false", the out- side of a specified shape SHALL be removed. An example of an inside shape is a window. An example of an outside shape is a shaped greeting card.
CutPath?	PDFPath	Specification of a complex path.
DDESCutType?	integer	Type of cut or perforation used. Values include: a number between "0" and "g99" corresponding to a line type as defined in Note: A value of 101 corresponds to a cut line.
ShapeDepth ?	float	Depth of the shape cut, measured in microns [$\mu \mathrm{m}$]. If not specified, the shape SHALL be completely cut.
ShapeType	enumeration	Describes any precision cutting other than hole making. Allowed values are: Path Rectangular Round RoundedRectangle - Rectangle with rounded corners.
TeethPerDimension ?	float	Number of teeth in a given perforation extent, in teeth/point. MicroPerfora- tion is defined by specifying a large number of teeth (n > 1000).

8.33 StripMark

The StripMark element specifies automatically generated production marks. Strip marks are generally converted to explicit MarkObject elements during the Stripping process.

Element Properties

Element referenced by: Layout, StackingParams/InsertSheet
Table 8.49: StripMark Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
AbsoluteHeight?	float	Absolute height of the StripMark in points.
AbsoluteWidth?	float	Absolute width of the StripMark in points.
Anchor?	enumeration	Origin of the mark coordinate system. Allowed value is from: Anchor.
Font?	NMTOKEN	The name of the font that SHALL be used for the StripMark. Values include: Courier Helvetica Helvetica-Condensed Times-Roman
FontSize?	float	The size of the font that SHALL be used for the StripMark, in points.
HorizontalFitPolicy?	enumeration	How to modify the mark to fit into the horizontal space that is provided for the StripMark prior to rotation. Allowed value is from: - FitPolicy.
ID?	ID	Identifier of the StripMark. Used for internal references within the Layout.
MarkName ?	NMTOKEN	Name of the mark that SHALL be marked on the Layout. Values include those from: Table 8.50 MarkName Attribute Values.
Offset?	XYPair	Position of the anchor of this StripMark relative to RefAnchor/@Anchor as defined by @Anchor and RefAnchor/@Anchor.
Orientation?	enumeration	Orientation of this StripMark in the coordinate system of the related object defined by RefAnchor. Allowed value is from: Orientation.
RelativeHeight?	float	Height relative to the height of the related object defined by RefAnchor of this StripMark.
RelativeWidth ?	float	Width relative to the width of the related object defined by RefAnchor of this StripMark.
StripMarkDetails ?	string	More detailed information about the StripMark. Example: If @MarkName="Set" or @MarkName="TabMark" then @StripMarkDetails is a name to refer to a proprietary or site specific set of marks.
VerticalFitPolicy?	enumeration	Policy of how to modify the mark to fit into the vertical space that is provided for the StripMark prior to rotation. Allowed value is from: * FitPolicy.
BarcodeReproPara ms?	element	Description of the formatting and reproduction parameters for dynamically generated barcodes.
FillMark*	element	Specifies marks that define a fill layer, e.g., for backlit displays.
IdentificationField *	element	Contents of barcodes.
JobField?	element	Details of automatically generated text marks. JobField SHOULD NOT be specified unless @MarkName ="JobField", @MarkName ="TabMark" or @MarkName = "WaterMark".

SUBELEMENTS

Table 8.49: StripMark Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
RefAnchor	element	Reference to an element that defines the coordinate system that this mark SHALL be placed relative to.

Table 8.50: MarkName Attribute Values

VALUE	DESCRIPTION
BleedMark	
CenterMark	
CIELABMeasuringField	
CollationMark	
ColorControlStrip	
ColorRegisterMark	
CutMark	
DensityMeasuringField	
FillMark	Background fill (e.g., for backlit display).
FoldMark	
GrommetMark	Mark that describes marks for grommets (e.g., for banners). Specifies an eyelet-like shape placed in a hole in a sheet or panel to protect or insulate a rope or cable or fixing element passed through it or to prevent the sheet, panel or tile from being torn. Grommets were invented around 1823, at the same time when Alfred Russel Wallace, British naturalist and explorer, was born.
IdentificationField	
JobField	
PaperPathRegisterMark	
RegisterMark	
ScavengerArea	
Set	Specifies to use a MarkSet (file containing multiple marks). The name of the MarkSet MAY be passed in @StripMarkDetails.
TabMark	TabMark specifies automatically generated data for tab blocks.
TrimMark	
WaterMark	A faint design imaged onto the surface during the printing process typically for protection and imaging as a lighter background to text or images.

8.33.1 FillMark

Table 8.51: FillMark Element (Sheet 1 of 2)

NAME	DATA TYPE	DESCRIPTION
KnockoutBleed?	float	Bleed in points that the fill SHALL grow into (positive values) from the knockout area. Note: This attribute implies the same bleed for all separations.

Table 8.51: FillMark Element (Sheet 2 of 2)

NAME	DATA TYPE	DESCRIPTION
KnockoutRefs?	IDREFS	Reference to the PlacedObject, Position or StripMark elements that SHALL not be filled by this FillMark. The knockout boundaries are defined by the value of @KnockoutSource.
KnockoutSource	enumeration	Definition of the source of the knockout from the referenced PlacedObject elements. Allowed values are: ClipPath - Use the clip path as defined by the referenced PlacedObject/ @ClipPath.
SourceClipPath - Use the clip path as defined by the referenced PlacedObject/ @SourceClipPath.		
TrimBox - Use the clip path as defined by the referenced PlacedObject/		
@TrimCTM and PlacedObject/@TrimSize.		

8.33.2 MarkColor

Definition of the separations used to fill a dynamic mark.
Table 8.52: MarkColor Element

NAME	DATA TYPE	DESCRIPTION
Name	string	Identifier of the separation. Additional details SHOULD be specified in ResourceSet[@Name = "Color"].
Tint	float	Value from 0 (not used) to 1 (100\% tint) of the Separation specified in @Name.

8.33.3 JobField

A JobField is a mark object that specifies the details of a job. JobField elements are also referred to as slug lines.
Table 8.53: JobField Element

NAME	DATA TYPE	DESCRIPTION
JobFormat?	string	A formatting string used with @JobTemplate to generate a string. Allowed values are from: Appendix E String Generation.
JobTemplate?	NMTOKENS	A list of values used with @JobFormat to generate a string. Allowed values are from: Appendix E String Generation.

Figure 8-2: Anchor with No Scaling and Rotation of 90° Clockwise
Anchor position:
DeviceMark/@Anchor $=$
"BottomCenter"
Surface Origin

Figure 8-3: Anchor with 1.5 Scaling and Rotation of 90° Clockwise

8.34 SubscriptionInfo

A SubscriptionInfo element describes the details of existing subscriptions.

Element Properties

Element referenced by: ResponseKnownSubscriptions, SignalKnowunSubscriptions, ResponseStopPersistentChannel
Table 8.54: SubscriptionInfo Element

NAME	DATA TYPE	DESCRIPTION
ChannelID	NMTOKEN	@ChannelID specifies the ID of the Query message that initiated the Subscription. @ChannelID SHALL match Header/@refID of all Signal that com- prise this persistent channel.
DeviceID?	NMTOKEN	@DeviceID of the controller that subscribed for the persistent channel. @DeviceID SHALL match @DeviceID of the query that subscribed for this per- sistent channel.
MessageType	NMTOKEN	@MessageType SHALL match the local element name (i.e. without namespace prefix) of the Signals that comprise this persistent channel.
Subscription	element	The Subscription element that describes the persistent channel.

9 Building a System

$A>$ Device SHALL be able to consume the inputs and produce the outputs for each process type it is able to execute.

9.1 Queue Support

In XJMF, a controller or device is assumed to have one input queue that accepts and manages queue entries by responding to CommandSubmitQ्ueueEntry, CommandResubmitQueueEntry and CommandModifyQueueEntry. Queue entries SHALL be returned to the submitting controller using a CommandReturnQueueEntry. Similarly, ReturnQueueEntry messages "cascade" back up through each level. If a machine supports multiple queues, it SHALL be represented by multiple logical devices in XJDF. In other words, a device SHALL NOT have more than one queue. The simple case of a device with no queue that supports pending jobs can be mapped to a queue with either no QueueEntry element or with one QueueEntry element where @Status = "InProgress". XJMF supports simple handling of priority queues. The following assumptions are made:

- Queues support priority.
- Priority SHALL only be changed if QueueEntry/@Status = "Waiting".
- A queue MAY round priorities to the number of supported priorities, which MAY be one, indicating no priority handling.
- Priority is described by an integer from o to 100. Priority 100 defines a job that SHOULD pause another job that is in progress and commence immediately. If a device does not support the pausing of running jobs, it SHOULD queue a priority 100 job after the last pending priority 100 job.
- Queue entries SHALL be unambiguously identified by QueueEntry/@QueueEntryID.
- A controller or device MAY analyze an XJDF that is submitted its queue either at submission or at execution time. A queue MAY treat an XJDF as a closed envelope that is passed on to the device without checking. The behavior is implementation dependent.

9.1.1 Queue Entry ID Generation

Queue entries are identified by the QueueEntry/@QueueEntryID attribute, which the queue's device SHALL generate when it receives the submitted job, and which SHALL be returned in the ResponseSubmitO्ueueEntry. @QueueEntryID SHALL uniquely identify an entry within the scope of one queue. An implementation is free to choose the algorithm that generates @QueueEntryID values.

9.2 Status Transitions

A process that is represented by an XJDF will go through various states during its life time as is described in Figure 91: Life Cycle of a Process and Queue Entry. These states are defined in detail in Nodelnfo/@Status.
Note: The process or queue entry NEED NOT go through all phases such as "Setup" or "Cleanup" explicitly if the device does not physically support these phases. In this case the phases as described in \mid Figure 9-1: Life Cycle of a Process and Queue Entry MAY be skipped and processing SHALL continue with the next supported phase.

Figure 9-1: Life Cycle of a Process and Queue Entry

9.3 Execution Model

The processing model of XJDF is based on a producer/consumer model. Devices that process XJDF act both as producers and consumers of resources.

9.3.1 Determining Executable XJDF

In order to determine which parts of an XJDF can be executed, the controller or device SHALL use the following procedures.

1 The controller or device SHOULD select one or more partitions with NodeInfo/@NodeStatus="Waiting" taking into account the scheduling attributes in Nodelnfo.
2 The controller or device SHOULD determine if no ResourceSet[@Usage="Input"]/Resource/ @Status="Unavailable" for the selected partition.

9.3.2 Serial Processing

The simplest process sequence is serial processing. In serial processing, the controller sends an XJDF to a device and waits until the first XJDF has been completely processed before sending a subsequent XJDF with the same @JobID to the same or a different device.

9.3.3 Partial Processing of XJDF with Partitioned ResourceSets

Some processes apply to multiple parts such as multiple sheets or plates. The structure of ResourceSet [@Name="Nodelnfo"] SHALL define the sequencing of the process steps. The device SHALL process all work steps that are explicitly specified in NodeInfo Resources.
If a device is only capable of performing more granular worksteps than the Nodelnfo partition structure requires, the device MAY split the execution into multiple work steps. For instance, a non-perfecting press MAY process a request for a duplex sheet in two runs - one for front and one for back.

9.3.4 Parallel Processing

Some processes are independent of one another and therefore it is possible to execute them in parallel. Examples are prepress of individual pages prior to impositioning or printing of individual sheets prior to binding. In parallel processing, the controller sends an XJDF to one device and does not wait until the first XJDF has been processed before sending a subsequent XJDF with the same @JoblD to a different device or to the same device if it is capable of processing multiple work steps simultaneously, e.g. a multi-threaded raster image processor.

9.3.5 Overlapping Processing

Some processes, e.g. a long print run, take a long time to complete while constantly creating intermediate output that is already available for processing by a subsequent process prior to completion of the initial process. In overlapping processing, the controller sends an XJDF to the initial device and does not wait until the first XJDF has been processed before sending a subsequent XJDF that describes the next process step of the same job to a different device. The subsequent device MAY begin processing as soon as the initial device has produced sufficient resources for the subsequent device. The communication between the devices SHOULD use CommandPipeControl messages. If this is technically not feasible, out of band communication such as a pallet of printed paper that was delivered by a fork lift MAY be used as process control.
ResourceSet/Dependent provides information to setup a pipe. Any ResourceSet MAY be defined as a pipe resource by specifying Dependent/@PipeProtocol.
The following figure shows NodeInfo/@Status and the level of the exchange resource R2 for two processes where the producing process P1 produces more output than the consuming process P2 can consume.
Dependent/@XJMFURL - SHALL specify the URL that receives CommandPipeControl XJMF messages.
Dependent@PipeProtocol - SHALL specify the protocol used to control the pipe.
Figure 9-2: Example of Status and resource amount in case of Overlapping Processing

Figure 9-4: Example of status transitions in case of overlapping Processing

9.3.5.1 Dynamic Pipes

In addition to abstractly declaring pipe properties, XJMF provides the CommandPipeControl message that allow dynamic control of pipes. Dynamic pipes can be used to model situations where the amount of resources is not known beforehand but becomes known during processing. An example of this behavior is a long press run where new plates are needed during a press run because of quality deterioration. The exact point in time where quality becomes unacceptable is not predetermined and might even vary from separation to separation.
Another usage of dynamic pipes is linking the output of a variable data print job to various components. Examples include a pipe describing the RunList that links the RIP to a print engine or a pipe describing the Component that links the

BUILDING A SYSTEM

printer to finishing equipment or individual finishing devices. In this case, the RunList and Component are templates that are logically expanded in increments by the CommandPipeControl messages.
Dependent/@PipeURL specifies the recipient of CommandPipeControl messages. Depending on the values of the Dependent/@PipeProtocol attribute, the following actions are possible.

"XJMFPull":

The consumer initiates the pipe by sending an CommandPipeControl/PipeParams/@Operation="Pull" message to its @PipeURL. The consumer MAY request new resources by sending CommandPipeControl/PipeParams/
@Operation="Pull" messages. If the producer is incapable of fulfilling CommandPipeControl/PipeParams/ @Operation="Pull" messages for other reasons (such as a malfunction), it SHOULD send an CommandPipeControl/ PipeParams/@Operation="Pause" message to the consumer. Once the producer is again capable of supplying (e.g. the malfunction has been removed), it SHOULD send an CommandPipeControl/PipeParams/@Operation="Push" message to the consumer to inform the consumer that it can commence sending @Operation="Pull" messages. The consumer SHOULD send a CommandPipeControl/PipeParams/@Operation="Close" message to the producer if the consumer does not require any further resources.
"XJMFPush":
The producer initiates the pipe by sending an CommandPipeControl/PipeParams/@Operation="Push" message to its @PipeURL. The producer MAY dispatch new resources by sending CommandPipeControl/PipeParams/ @Operation="Push" messages. If the consumer is incapable of fulfilling CommandPipeControl/PipeParams/ @Operation="Push" requests for other reasons (such as a malfunction), it SHOULD send a CommandPipeControl/ PipeParams/@Operation="Pause" message to the producer. Once it is again ready to consume resources (e.g. the malfunction has been removed), it SHOULD send an CommandPipeControl/PipeParams/@Operation="Pull" to inform the producer that it can commence sending CommandPipeControl/PipeParams/@Operation="Push" messages. The producer SHOULD send a CommandPipeControl/PipeParams/@Operation="Close" message to the consumer if the producer cannot provide any further resources.
Dynamic pipes are initially dormant and SHALL be activated by an explicit request. If Dependent/@PipeProtocol = "XJMF", dynamic pipe requests MAY be initiated by either end of the pipe. As soon as the pipe has been initiated, actions that are required by the implied @PipeProtocol ("XJMFPush" or "XJMFPull") SHALL be applied. For example, a print process might notify an off-line finishing process when a certain amount is ready by sending a CommandPipeControl/PipeParams/ @Operation="Push" message, or the printing process might request a new plate by sending a CommandPipeControl/ PipeParams/@Operation="Pull" message.

9.3.5.2 Comparison of Non-Dynamic and Dynamic Pipes

Each Dependent element between non-dynamic pipes provides the pipe definitions for the process to which the Dependent element belongs. Therefore, many processes can link to the same pipe to enable parallel processing. In contrast, dynamic pipes provide a URL address to control a process. In the case of dynamic pipes, no master controller is needed to control the pipe. Control is accomplished by sending pipe messages. If pipe resources are linked to multiple consumers or producers, such as two finishing lines that consume the output of one press one palette at a time, it is up to implementation to ensure consistency of the processes.

9.3.5.3 Metadata in Pipe Messages

PipeParams/ResourceSet can contain metadata that is required by the recipient of the message. This metadata SHALL be specified as partition keys in ResourceSet/Resource/Part and additional details MAY be specified as the actual contents of the ResourceSet. Partition key metadata provides a mechanism to retain context in large variable data jobs without requiring completely expanded ResourceSets with potentially thousands of Resource elements in the XJDF.

A typical example of partition key metadata is Part/@DocIndex, Part/@RunIndex and Part/@Side to uniquely identify the context of a surface image that is sent from a RIP to a digital press.

9.3.6 Approval, Proofing, Quality Control and Verification

In many cases, it is desirable to ensure that an executed process or set of processes have been executed completely and/ or correctly. In the graphic arts industry this is often accomplished by generating proofs and signing approvals. XJDF defines the approval process and the verification processes by using an ApprovalDetails that MAY be specified as an input ResourceSet in any process.
The Approval, QualityControl and Verification processes accept any ResourceSet as input. These processes output a ResourceSet of the same type as the input ResourceSet and an ApprovalDetails ResourceSet. For hard copy proofing, a DigitalPrinting process generates the hard proof which is input to an Approval process. For soft proofing, a Rendering or PDLCreation process generates the soft proof which is input to an Approval process.
XJDF provides a QualityControl process to verify that the output of a process fulfills certain quality criteria. QualityControl differs from the Verification process, which verifies the completeness of a given ResourceSet.

9.3.7 Gang Jobs

XJMF provides a mechanism to specify groups of QueueEntry elements within a queue that are processed together in a gang. A job is submitted to a gang by specifying QueueSubmissionParams/@GangPolicy. The details of how individual job parts are ganged are device specific. CommandForceGang allows gang to be released to a device and QueryGangStatus provides information about the currently known gangs. For a description of planned job ganging, see also Section 5.4.21 SheetOptimizing.

9.3.8 Error Handling

Error handling is an implementation-dependent feature of XJDF-based systems. AuditPool provides a container where errors that occur during the execution of an XJDF SHOULD be logged as AuditNotification elements. Notification elements MAY also be sent in XJMF SignalNotification messages. The content of the Notification element is described in \rightarrow Table 8.37 Notification Element. For a list of predefined error codes, see \boldsymbol{A} Appendix B Return Values.

9.3.8.1 Classification of Notifications

Notification elements are classified by the @Class attribute. Every workflow implementation SHALL associate a @Class with all events on an event-by-event basis. For values, see Notification/@Class in Table 8.37 Notification Element.

9.3.8.2 Event Description

A description of the event SHOULD be given in the Notification/Comment element, which SHALL be specified for the Notification with @Class = "Information", "Warning", "Error" or "Fatal". For example, after a process is aborted, error information describing a device error SHOULD be logged in the Comment element of the Notification element. If phase times are logged, the AuditStatus element or SignalStatus message that logged the transition to the "Aborted" state MAY also contain a local Comment element that describes the cause of the process abortion. AuditStatus and AuditNotification elements MAY be specified as subelements of the AuditPool, which is described in Section 3.4 AuditPool and Audit.

9.3.8.3 Error Handling via Messaging (XJMF)

An XJMF with a SignalNotification message SHOULD be sent through all persistent channels that subscribed events of class "Error". In order to receive notifications, SignalNotification XJMF signals SHALL be subscribed for by using the standard subscription mechanisms described in $\stackrel{\text { Section 9.6.3 Managing Persistent Channels.. }}{\text { M }}$

9.4 Specifying Complex Processing

There are occasions where a controller might need to provide details of multiple individual processes to a controller such as a prepress workflow system or production control system in the context of an individual job. This can be achieved by submitting an initial XJDF with SubmitQueueEntry and submitting the individual process XJDF with a ResubmitQueueEntry as follows:
The controller SHALL submit an XJDF with a new XJDF/@JobID. This XJDF SHOULD have a value of XJDF/@Types that contains "Product" and SHOULD provide an XJDF/ProductList that completely describes the desired products.
Additional processes SHALL be supplied by sending one or more ResubmitQueueEntry XJMF. These messages SHALL reference a process XJDF where the value of XJDF/@JobID is identical to the primary XJDF/@JoblD and the value of XJDF/ @JobPartID is different from the value of the primary XJDF/@JobPartID.
XJDF/ResourceSet specifies the respective resource in the context of the submitted process XJDF. ResourceSet elements SHALL be identified by ResourceSet/@ExternallD. Thus two ResourceSet elements in two XJDF elements with the same ResourceSet/@ExternalID represent the same physical objects. ResourceSet/@ID NEED NOT be maintained over multiple XJDF instances. XJDF/ResourceSet/Dependent elements MAY be specified to explicitly setup process dependencies.

9.4.1 Referencing Multiple XJDF in a Directory

If QueueSubmissionParams/@URL of the original XJDF references a directory, then all contained files with an extension of ".xjdf" SHALL be processed in lexically sorted ascending order. the first entry is processed as a logical
SubmitQueueEntry and the second and further entries are processed as logical ResubmitQueueEntry commands.
The first two digits of the file names of the XJDF files in the directory SHOULD begin with a numerical character, i.e a character in the range ' 0 ' to ' 9 ' in order to ensure a well defined lexical ordering.

9.5 XJDF and XJMF Interchange Protocol

XJDF and XJMF SHOULD be exchanged. over a network by using http $\boldsymbol{~ [R F C 2 6 1 6] ~ o r ~ h t t p s . ~}$
Controllers and devices SHOULD provide insecure http without a TLS layer for better interoperability. Controllers and devices MAY provide hot folders or other file based mechanisms for exchange of XJDF or XJMF for debugging and prototyping purposes.
Note: It is strongly discouraged to design a production workflow based on hot folders.

BUILDING A SYSTEM

9.5.1 HTTP Port

XJMF messaging does not specify a standard port.

9.5.2 HTTP Request Method

A sender SHALL use an HTTP Post request to transmit an XJMF that contains XJMF queries, XJMF commands and XJMF signals to an HTTP server.
The contents SHALL be placed in the body of the http request. See • Section 9.7 XJDF Packaging below for details of XJMF packaging.

The receiver SHALL place the XJMF containing XJMF response messages in the body of the response to the HTTP post. The receiver SHALL package response messages as raw XML

The body of an HTTP response to an XJMF that contains only XJMF signals that are not defined as reliable (@ChannelMode != "Reliable") MAY be empty

9.5.3 HTTPS-Based Protocol - TLS

Secure XJMF has no additional requirements in addition to standard TLS • [RFC5246].
Note: Since controllers and devices will typically implement the http client interface and the http server interface, sender and receiver will need to provide certificates and maintain the chain of trust to verify that the certificates are valid.

9.6 XJMF Handshaking

This section describes the actions and appropriate reactions in a communication between controllers and devices using XJMF.

9.6.1 Single Query/Command Response Communication

The handshaking mechanisms for queries and commands are identical. The sender SHALL send a Query message or Command message to the receiver. The receiver SHALL parse the Query message or Command message and SHALL synchronously return an appropriate Response to the sender. @refID SHALL be set to the value of @ID of the message from the sender. If the incoming message could not be parsed, the response SHALL be a ResponseNotification.

9.6.1.1 XJMF Error Handling

If a command message, query message, or a signal message is not successfully handled, a processor SHALL reply with a response that SHALL contain a non-zero @ReturnCode from Appendix B Return Values and that SHOULD contain a Notification element that SHOULD provide additional details of the error.
The response messages contain a @ReturnCode attribute. @ReturnCode defaults to 0, which indicates that the response is successful. In case of success and in responses to commands an informational Notification element (@Class = "Information") MAY be provided. In case of a warning, error or fatal error, the @ReturnCode is greater than 0 and indicates the kind of error committed. In this case, a Notification element SHOULD be provided. Error codes are defined in - Appendix B Return Values.

Example 9.1: Response with Notification Element

The following example uses a Notification element to describe an error:

```
<XJMF xmlns="http://www.CIP4.org/JDFSchema_2_0">
    <Header DeviceID="DeviceID" ID="l 000002" Time="2017-05-09T21:04:52+02:00"/>
    <ResponseModifyQueueEntry ReturnCode="5">
        <Header DeviceID="DeviceID" ID="R1" Time="2017-05-09T21:04:52+02:00" refID="C1"/>
        <Notification Class="Error">
            <Comment>StartJob unsuccessful - Device does not handle resume</Comment>
        </Notification>
    </ResponseModifyQueueEntry>
</XJMF>
```

Figure 9-3: Interaction of Messages with a Subscription

Query with Subscription

9.6.2 Subscribing for Signals

Queries SHALL be subscribed by including a Subscription element that defines the details of the subscription. The receiver of the subscription SHALL initially send a response message containing only @ReturnCode and any appropriate Notification elements to the sender. The receiver of the subscription SHALL send XJMF signals whenever the conditions that were specified in the subscription element are met. Such a subscribed query that requests multiple signals is referred to as a "persistent channel".
Note: The sender and receiver roles for signals are reversed compared with the initial subscription.
If a controller that does not support persistent channels is queried to set up a persistent channel, it SHALL answer the query message with a response message and set the @ReturnCode to "111".
The following examples illustrate the subscription handshake for SignalStatus including the first signal.

Example 9.2: Status Subscription

The following QueryStatus subscription requests a time trigger SignalStatus every thirty seconds.

```
<XJMF xmlns="http://www.CIP4.org/JDFSchema 2 0">
    <Header DeviceID="TestSender" ID="l_000002'" Time="2017-06-04T17:00:53-04:00"/>
    <QueryStatus>
        <Header DeviceID="TestSender" ID="Status1" Time="2017-06-04T17:00:00-04:00"/>
        <Subscription RepeatTime="30" URL="http://MIS:1234/xjmfurl"/>
        <StatusQuParams/>
    </QueryStatus>
</XJMF>
```


Example 9.3: Status Subscription Response

The following ResponseStatus to the subscription above is empty and @ReturnCode = "0" defines success.

```
<XJMF xmlns="http://www.CIP4.org/JDFSchema_2_0">
    <Header DeviceID="TestSender" ID="l_000002" Time="2017-06-04T17:00:55-04:00"/>
    <ResponseStatus ReturnCode="0">
        <Header DeviceID="TestSender" ID="l_000003"
            Time="2017-06-04T17:00:00-04:00" r
    </ResponseStatus>
</XJMF>
```


BUILDING A SYSTEM

Example 9.4: Status Subscription Signal

The following SignalStatus is a simple signal status by a device that is currently producing.

```
<XJMF xmlns="http://www.CIP4.org/JDFSchema_2_0">
    <Header DeviceID="DeviceID" ID="l_000002" Time="2017-06-04T17:00:54-04:00"/>
    <SignalStatus>
        <Header DeviceID="DeviceID" ID="S1" Time="2017-06-04T17:00:00-04:00" refID="Status1"/>
        <DeviceInfo Status="Production">
            <JobPhase JobID="j1" JobPartID="p1"
                    StartTime="2017-06-04T17:00:00-04:00" Status="InProgress"/>
        </DeviceInfo>
    </SignalStatus>
</XJMF>
```


9.6.3 Managing Persistent Channels.

A controller MAY request information about currently active subscriptions by sending a QueryKnownnSubscriptions to a device. A controller SHOULD NOT send a new Subscription if a matching Subscription is already in place in the device. If the device does not support QueryKnownSubscriptions, the controller MAY create a new Subscription. A device that receives a Subscription of the same type to the same URL SHOULD replace the existing Subscription with the new Subscription.

A controller SHOULD remove persistent channels that are no longer evaluated by sending a
CommandStopPersistentChannel to a device.
Persistent channels SHOULD be maintained even when a device is powered off and powered on again.

9.6.4 Signal Handshaking

JMF signal messages that were subscribed with Subscription/@ChannelMode = "FireAndForget" SHALL NOT be resent in case they were not successfully delivered to the signal subscriber. In case of success, the subscriber SHALL send an HTTP response with an empty body If an error occurred, the receiver SHOULD return an error response message as defined in , Section 9.6.1.1 XJMF Error Handling.

9.6.5 Reliable Signalling

JMF signal messages that were subscribed with Subscription/@ChannelMode = "Reliable" SHALL be resent in case they were not successfully delivered to the signal subscriber. If the receiver does not respond to the reliable signal, the sender SHALL retry the reliable signal. If a response is received with a @ReturnCode value other than zero, then the signal message SHOULD be retried, unless the sender determines that resending the message is not useful in an implementation specific manner. For instance, a heartbeat signal that is triggered by Subscription/@RepeatTime MAY be replaced by the following signal if no information that is required for job costing is lost.

Figure 9-4: Example of Reliable Signaling

9.6.5.1 12.3.4.1 Sequence of Signals

Signals SHALL be sent in the order that the underlying event that triggered the signal occurred. Thus subsequent signals that occurred after a signal that was in error and needs to be resent SHALL NOT be sent until either the offending signal has been successfully resent or the offending signal has been discarded.

9.6.6 Deleting Persistent Channels

A persistent channel SHALL be deleted by sending a StopPersistentChannel command message, as described in Section 7.19 StopPersistentChannel.

9.6.7 XJMF Bootstrapping

XJMF currently provides no mechanism for initial device discovery. Thus the URL of an XJMF device needs to be provided to a controller outside of XJMF. Once the XJMF URL is known, a controller SHOULD follow the steps below:

Known message discovery

1a Controller sends QueryKnownnMessages to device.
The controller SHOULD query for known messages and refrain from sending unknown messages, including messages specified in this section.
1b Device sends ResponseKnowvnMessages to controller.
The device SHOULD respond with a list of known messages.

Device discovery

2a Controller sends QueryKnouvnDevices to device. If the device is a workflow controller, the controller MAY query for additional known lower-level devices that the device wishes to publish. The controller SHOULD apply this bootstrapping procedure defined in this section to all lower level devices that are supplied in the ResponseKnownDevices.

2b Device sends ResponseKnownDevices to controller.
The device SHOULD respond with a list of known lower-level devices.

Subscription discovery

3a Controller sends QueryKnownSubscriptions to device. If the controller intends to subscribe for signals from the device, the controller SHOULD query for a list of existing subscriptions. The controller SHOULD NOT resubscribe for existing subscriptions.
3b Device sends ResponseKnownnSubscriptions to controller. The device SHOULD respond with a list of known subscriptions.

9.6.8 Device / Controller Selection

XJMF defines the KnownnDevices query message to find controllers and devices. The information provided by this query can be used by a controller to infer the appropriate routing for an XJDF.

9.7 XJDF Packaging

An XJMF MAY be transferred with no additional packaging. Alternatively, an XJMF and its referenced digital assets MAY be combined into a single zip package consisting of:

- a single XJMF message,
- the XJDF job tickets to which it refers, and
- the digital assets to which the XJMF and XJDF job tickets refer.

XJMF messages that do not refer to XJDF or external digital assets SHOULD NOT be packaged as zip. Digital assets that are not included in the zip package MAY be referenced. Multiple XJMF messages SHALL NOT be packaged in one zip package.

9.7.1 MIME Types and File Extensions

The following MIME types and extensions SHOULD be used when storing XJDF or XJMF as files or when a MIME type is required, e.g. when setting the http Content-Type header.:
Table 9.1: MIME Types and File Extensions

MIME TYPE	EXTENSION	USAGE
application/ vnd.cip4-xjdf+xml	xjdf	Unpackaged XJDF.
application/ vnd.cip4-xjmf +xml	xjmf	Unpackaged XJMF.

Table 9.1: MIME Types and File Extensions

MIME TYPE	EXTENSION	USAGE
application/ vnd.cip4-xjdf+zip	xjdf.zip	Zip packaged XJDF. A double extension of .xjdf.zip SHOULD be used.
application/ vnd.cip4-xjmf+zip	xjmf.zip	Zip packaged XJMF. A double extension of .xjmf.zip SHOULD be used.

9.7.2 ZIP Packaging

Zip is a de facto industry standard for packaging and compressing data. Directory structures can be encoded in a zip package. For details see \bullet [ZIP].

9.7.2.1 Identifying the Root XJMF.

The root XJMF SHALL be named root.xjmf and SHALL reside in the root directory of the zip package.

9.7.2.2 Referencing Digital Assets within a ZIP Package.

Referenced digital assets that reside in the zip package, for instance those that are referenced with @URL, SHALL be referenced as local URLs. The current URL for calculating local URLs SHALL be the root of the zip package, regardless of the location of the referring XJDF within the zip package.
Digital assets other than the root.xjmf MAY be placed in a directory tree structure within the zip file.

9.7.2.3 ZIP File Name Encoding

All file and directory names in a zip package SHALL be encoded in UTF-8.
Note: Zip allows any encoding but provides no method to declare the encoding.

9.8 Job Modification

While jobs are waiting for execution in a queue or even during execution of a job, circumstances may arise that require modifications to that job. XJDF enables modifications to jobs using the ModifyQueueEntry and ResubmitQ्ueueEntry messages.
Note: Although the XJDF mechanisms for modifying jobs are fairly simple, the underlying physical changes may make modifications difficult or even impossible. The actual implementation of changes is always device dependent, and controllers SHOULD always expect modification requests to fail and process failure appropriately.

9.8.1 Rescheduling with ModifyQueueEntry

ModifyQueueEntry is designed to allow rescheduling of jobs without changing any parameters of the XJDF. Typical use cases for ModifyQueueEntry are:

- Reordering the sequence of execution to optimize setup times by running similar jobs in sequence;
- Suspending a running job so that a rush job can be processed before the current job is completed;

9.8.2 Modifying Jobs

ResubmitOueueEntry is designed to modify the details of the underlying sets of XJDF for a job. Jobs can be modified in a number of different ways. These are differentiated by ResubmissionParams/@UpdateMethod and the related XJDF/ @JobPartID
Table 9.2: Modifying Job Parameters (Sheet 1 of 2)

RESUBMISSION- PARAMS/ @UPDATE- METHOD	XJDF/ @JOBPARTI D	

Table 9.2: Modifying Job Parameters (Sheet 2 of 2)

RESUBMISSION- PARAMS/ @UPDATE- METHOD	XJDF/ @JOBPARTI D	
Incremental	new	A new process step is requested. Details SHALL be supplied in the referenced XJDF.
Delete	known	The job parameters that are explicitly supplied in the referenced XJDF SHALL be removed. If no XJDF is provided, the entire process step described by @JobPartlD SHALL be removed.

Typical use cases for ResubmitQueueEntry are:

- Change the number of copies requested;
- Change the number or details of physical inks required for printing;
- Change content data such as number of pages or page size;
- Change the details of the physical substrate to print on;
- Change binding or other finishing options;
- Select a different device with differing properties, e.g. sheet size, to optimize utilization of multiple devices.

9.8.2.1 Referencing values for incremental update

The following section describes how to reference data when ResubmissionParams/@UpdateMethod = "Incremental" or ResubmissionParams/@UpdateMethod = "Remove". The algorithms shown here are illustrated assuming an internal XJDF model but this is purely for illustration and no assumption is made about the actual implementation.
As a general rule, elements and attributes within XJDF SHALL be addressed by searching elements and attributes with matching XPath results. Attributes with a data type of ID or IDREF SHALL be ignored when calculating XPaths because IDs MAY be regenerated dynamically and are only valid within the scope of a single XML document.

9.8.2.1.1 Finding the correct XJDF to update

An XJDF SHALL match if the values of XJDF/@JobID and XJDF/@JobPartID are both identical.

9.8.2.1.2 Finding the correct Resource to update

A ResourceSet SHALL match if the values of ResourceSet/@Name, ResourceSet/@ProcessUsage and ResourceSet/@Usage are all identical.
Once a matching ResourceSet has been found, a child resource SHALL match if all Resource/Part elements match. A part matches if all attribute values are identical. The ordering of the Resource/Part elements is not significant.

9.8.2.2 Updating values

If ResubmissionParams/@UpdateMethod = "Incremental" then all attribute values and element text SHALL be replaced with the attribute values defined in the XJDF that is referenced by @URL. If the ancestors of a given attribute do not exist, they SHALL be appropriately created.

9.8.2.3 Removing values

If ResubmissionParams/@UpdateMethod = "Remove" then all resources that are found according to $>$ Section 9.8.2.1.2 Finding the correct Resource to update SHALL be removed. If a ResourceSet with no child resource elements is provided, then the entire ResourceSet SHALL be removed.
The following example of a referenced XJDF removes the VarnishingParams Resource for the sheet with @SheetName = "Body":

```
<XJDF xmlns="http://www.CIP4.org/JDFSchema_2_0"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
    <ResourceSet Name="VarnishingParams">
            <Resource>
                <Part SheetName="Body"/>
            </Resource>
        </ResourceSet>
</XJDF>
```


BUILDING A SYSTEM

9.8.3 Examples for Job Modification

The following examples are valid but simplified examples of change orders. Real life examples will typically contain additional details.

9.8.3.1 Rescheduling

The following example reschedules the planned start of a process.

```
<XJDF xmlns="http://www.CIP4.org/JDFSchema_2_0" JobID="ChangeOrder"
    JobPartID="Reschedule" Types="Folding">
    <ResourceSet Name="NodeInfo" Usage="Input">
        <Resource>
            <Part SheetName="Sheet1"/>
            <NodeInfo Start="2017-04-01T17:00:00+02:00"/>
        </Resource>
    </ResourceSet>
</XJDF>
```


9.8.3.2 Changing Amount

The following example updates the requested amount of sheet1 to 4000 .

```
<XJDF xmlns="http://www.CIP4.org/JDFSchema_2_0" JobID="ChangeOrder"
    JobPartID="Amount" Types="Folding">
    <ResourceSet Name="Component" Usage="Output">
        <Resource>
            <AmountPool>
                <PartAmount Amount="4000"/>
            </AmountPool>
            <Part SheetName="Sheet1"/>
        </Resource>
    </ResourceSet>
</XJDF>
```


9.8.3.3 Adding a color separation

The following example adds a color separation "Acme ColorBook 42" to sheets with @SheetName = "sheet1".

```
<XJDF xmlns="http://www.CIP4.org/JDFSchema_2_0" JobID="ChangeOrder"
    JobPartID="AddColor" Types="ConventionalPrinting">
    <ResourceSet Name="NodeInfo" Usage="Input">
        <Resource>
            <Part SheetName="Sheet1"/>
            <NodeInfo/>
        </Resource>
    </ResourceSet>
    <ResourceSet Name="Media">
        <Resource ID="Media_000004.1">
            <Media MediaType="Plate"/>
        </Resource>
    </ResourceSet>
    <ResourceSet Name="ExposedMedia" Usage="Input">
        <Resource>
            <Part Separation="Spot1" SheetName="Sheet1" Side="Front"/>
            <ExposedMedia MediaRef="Media 000004.1"/>
        </Resource>
    </ResourceSet>
    <ResourceSet Name="Color" Usage="Input">
        <Resource>
            <Part Separation="Spot1"/>
            <Color ActualColorName="Acme ColorBook 42" CMYK="0.2 0.3 0.4 0.1"/>
        </Resource>
    </ResourceSet>
    <ResourceSet Name="Ink" Usage="Input">
        <Resource Brand="Acme Ink 42">
            <Part Separation="Spot1"/>
            <Ink InkType="Ink"/>
        </Resource>
    </ResourceSet>
    <ResourceSet Name="ColorantControl" Usage="Input">
        <Resource>
            <Part SheetName="Sheet1" Side="Front"/>
            <ColorantControl ColorantOrder="Cyan Magenta Yellow Black Spot1" ColorantParams="Cyan
Magenta Yellow Black Spot1"/>
        </Resource>
    </ResourceSet>
</XJDF>
```


9.8.3.4 Selecting a Device

The following example changes the device to Folder2.

```
<XJDF xmlns="http://www.CIP4.org/JDFSchema_2_0" JobID="ChangeOrder"
    JobPartID="Device" Types="Folding">
    <ResourceSet Name="NodeInfo" Usage="Input">
        <Resource>
            <Part SheetName="Sheet1"/>
            <NodeInfo Start="2017-04-01T17:00:00+02:00"/>
        </Resource>
    </ResourceSet>
    <ResourceSet Name="Device" Usage="Input">
        <Resource>
            <Part SheetName="Sheet1"/>
            <Device DeviceID="Folder2"/>
        </Resource>
    </ResourceSet>
</XJDF>
```


BUILDING A SYSTEM

9.8.3.5 Modifying the selected paper

The following example changes the paper weight to $120 \mathrm{~g} / \mathrm{m}^{2}$ for sheet1.

```
<XJDF xmlns="http://www.CIP4.org/JDFSchema_2_0" JobID="ChangeOrder"
    JobPartID="Paper" Types="ConventionalPrinting">
    <ResourceSet Name="Component" Usage="Input">
        <Resource>
            <AmountPool>
                <PartAmount Amount="4000"/>
            </AmountPool>
            <Part SheetName="Sheet1"/>
            <Component MediaRef="Media_000005.1"/>
        </Resource>
    </ResourceSet>
    <ResourceSet Name="Media">
        <Resource ID="Media 000005.1">
            <Media MediaType="Paper" Weight="120"/>
        </Resource>
    </ResourceSet>
</XJDF>
```

9.8.3.6 Adding an offline varnishing step

The following example adds a varnishing step including the description of the blanket and varnish.

```
<XJDF xmlns="http://www.CIP4.org/JDFSchema_2_0" JobID="ChangeOrder"
    JobPartID="AddVarnish" Types="Varnishing">
    <ResourceSet Name="NodeInfo" Usage="Input">
        <Resource>
            <Part SheetName="Sheet1"/>
            <NodeInfo/>
        </Resource>
    </ResourceSet>
    <ResourceSet Name="Media">
        <Resource ID="Media 000004.1">
            <Media MediaType="Blanket"/>
        </Resource>
    </ResourceSet>
    <ResourceSet Name="ExposedMedia" Usage="Input">
        <Resource>
            <Part Separation="Var" SheetName="Sheet1" Side="Front"/>
            <ExposedMedia MediaRef="Media_000004.1"/>
        </Resource>
    </ResourceSet>
    <ResourceSet Name="Color" Usage="Input">
        <Resource>
            <Part Separation="Varnish"/>
            <Color ActualColorName="Acme Gloss Varnish"/>
        </Resource>
    </ResourceSet>
    <ResourceSet Name="Ink" Usage="Input">
        <Resource Brand="Acme Gloss Varnish">
            <Part Separation="Varnish"/>
            <Ink InkType="Gloss Varnish"/>
        </Resource>
    </ResourceSet>
    <ResourceSet Name="VarnishingParams" Usage="Input">
        <Resource>
            <Part SheetName="Sheet1" Side="Front"/>
            <VarnishingParams VarnishMethod="Blanket"/>
        </Resource>
    </ResourceSet>
    <ResourceSet Name="Device" Usage="Input">
        <Resource DescriptiveName="Offline Acme varnishiner">
            <Part SheetName="Sheet1" Side="Front"/>
            <Device DeviceID="Var_1"/>
        </Resource>
    </ResourceSet>
</XJDF>
```


9.9 Use of XML Schema for Capability Descriptions

Individual devices will never implement the entire XJDF specification. Meaningful communication between a controller and a device is only possible if the controller is aware of the limitations of the device.
XJDF does not provide a proprietary method to define device capabilities. Since XJDF is an XML dialect, standard XML tools such as XML schema \quad [XMLSchema] SHOULD be used to declare the supported features of a device.
CIP4's schema for XJDF provides functionality to define the supported individual values of any attributes in XML. It currently does not provide conditional constraints for values that depend on the value of other attributes within the XJDF. This limitation is seen as acceptable for the benefit of using standard XML tools and may be addressed in a future version of this specification.
CIP4 provides schema for the entire XJDF specification and reduced schema for ICS documents. Vendors are encouraged to provide XML schemas that define the supported XJDF features of their devices.
Device schema for XJDF SHALL use the XJDF namespace for standard XJDF features.

A Data Types and Values

This appendix lists a number of commonly used XJDF data types and structures and their XML encoding.
All of the XJDF types are derived from XML schema types that are defined in "XML Schema Part 2 - Datatypes", see - [XMLSchema], either by extension, use of lists or by restriction.

A. 1 XJDF Data Types

All XJDF data values are described in the following table.
Table A.1: XJDF Data Types (Sheet 1 of 2)

XJDF DATATYPE	XML SCHEMA DATATYPE	derivation	DESCRIPTION
boolean	xsd:boolean	Restriction	String literals only are permitted. Numeric values "0" and "1" SHALL NOT be used.
CMYKColor	xsd:float	Restricted list	The list SHALL contain four values, each in the range of [0...1.0]. A value of 0.0 specifies no ink and a value of 1.0 specifies full ink. The sequence of colors SHALL be "C M Y K".
date	xsd:date	None	
dateTime	xsd:dateTime	None	
duration	xsd:duration	None	
float	xsd:float	None	
FloatList	xsd:float	List	A list of float values.
hexBinary	xsd:hexBinary	None	
ID	xsd:ID	None	
IDREFS	xsd:IDREFS	None	
integer	xsd:integer	None	
IntegerList	xsd:integer	List	A list of integer values.
IntegerRange	xsd:integer	Restricted list	The list SHALL contain two values representing a range of values.
LabColor	xsd:float	Restricted list	The list SHALL contain exactly three values in the sequence "Lab". The value of L is restricted to a range of [0..100]; a and b are unbounded. Note: Values of type LabColor are used to specify absolute Lab colors. The Lab values are normalized to a light of D50 and an angle of 2 degrees as specified in \rightarrow [CIE 15:2004] and [ISO13655:1996]. This corresponds to a white point of $\mathrm{X}=0.9642, \mathrm{Y}=1.0000$ and $\mathrm{Z}=0.8249 \mathrm{in}$ CIEXYZ color space.
language	xsd:language	None	
languages	xsd:language	List	A list of language values.

Table A.1: XJDF Data Types (Sheet 2 of 2)

XJDF DATATYPE	XML SCHEMA DATATYPE	DERIVATION	DESCRIPTION
matrix	xsd:float	Restricted list	The list SHALL contain six values representing the sequence "abcd Tx Ty". The variables Tx and Ty describe distances, which are defined in points. For more details see \boldsymbol{D} Section 2.6.3 Coordinate System Transformations.
NMTOKEN	xsd:NMTOKEN	None	Note: NMTOKEN values MAY begin with any non whitespace character, including numerical characters.
NMTOKENS	xsd:NMTOKENS	None	
PDFPath	xsd:string	Restriction	Values of type PDFPath are encoded as a string that conforms to a sequence of PDF path operators. Note: PDF operators are limited to those described in "Path Construction Operators" in [PDF1.6].
rectangle	xsd:float	Restricted list	The list SHALL contain four values representing "llx lly urx ury".
regExp	xsd:normalizedString	None	
RGBColor	xsd:float	Restricted list	The list SHALL contain three values representing the sequence "r g b". A value of 0.0 SHALL specify no intensity (black) and a value of 1.0 SHALL specify full intensity.
shape	xsd:float	Restricted list	The list SHALL contain three values representing the sequence "width height depth" which is the same as "xy $z^{\prime \prime}$.
string	xsd:normalizedString	Restriction	The length of the string SHALL NOT exceed 1023 characters. In order to enable fixed length storage of strings in databases, string values SHALL NOT be longer than 1023 characters. Note: Tabs, linefeeds etc are not valid characters.
TransferFunction	xsd:float	Restricted list	The list SHALL contain an even number of values representing a sequence of " $\mathrm{x}_{0} \mathrm{y}_{0} \mathrm{x}_{1} \mathrm{y}_{1} \ldots \mathrm{x}_{\mathrm{n}} \mathrm{y}_{\mathrm{n}}$ " pairs. See - Section A.1.1 TransferFunction.
URI	xsd:anyURI	None	Note: Values of type URI represent a Uniform Resource Identifier, as defined in [RFC3986]. Note: The URI data typed is represented as an Internationalized Resource Identifier (IRI) as defined in - [RFC3987].
URL	xsd:anyURI	None	Note: Values of type URI represent a Uniform Resource Identifier, as defined in [RFC3986]. Note: The URI data typed is represented as an Internationalized Resource Identifier (IRI) as defined in - [RFC3987]. Note: Some characters in a URL SHALL be escaped and all characters MAY be escaped by encoding their UTF-8 representation into a '\%' followed by the double digit hex representation of the character. The list of characters that SHALL be encoded is dependent on the URL scheme. Nonescaped characters SHALL be encoded in the encoding of the containing XJDF document.
XPath	xsd:token	None	Note: Values of type XPath represent an XPath expression as described in $\boldsymbol{\text { [XPath }}$.
XYPair	xsd:float	Restricted list	The list SHALL contain two values representing the sequence "xy".

A.1.1 TransferFunction

Values of type TransferFunction are functions that have a one-dimensional input and output. In XJDF, they are encoded as a simple kind of sampled functions and used to describe transfer curves of image transfer processes from one medium to the next (e.g., film to plate, or plate to press).
A transfer curve consists of a series of XY pairs where each pair consist of the stimuli (X) and the resulting value (Y). To calculate the result of a certain stimuli, the following algorithms SHALL be applied:

1 If $\mathrm{x}<=$ first stimuli, then the result is the y value of the first xy pair.
2 If $x>=$ the last stimuli, then the result is the y value of the last $x y$ pair.
3 Search the interval in which x is located.
4 Return the linear interpolated value of x within that interval.

A. 2 Enumerations

This section contains tables each with a closed set of values for an enumeration/enumerations type. If there are any implications to the order of the values this will be detailed in the description, otherwise no order is implied.
The values in the closed sets are encoded as a restriction of xsd:NMTOKEN.

A.2.1 Action

Action specifies what action if any to take as a result of a particular event.
Table A.2: Action Enumeration Values

ENUMERATION VALUE	COMMENT
Abort	Abort the ongoing activity and do not proceed with any other further activity.
Continue	Continue with the present activity. Details SHOULD be logged.
Repair	Repair the condition before proceeding with the activity. Details SHOULD be logged. Note: The actions required to perform the repair are system specified.

A.2.2 Activation

Activation SHALL specify the activation of a QueueEntry.
The values in \rightarrow Table A. 3 Activation Enumeration Values are ordered from least to most active.
Table A.3: Activation Enumeration Values

ENUMERATION VALUE	COMMENT
Informative	The QueueEntry is for information only. If a QueueEntry is "Informative", it SHALL NOT be processed. Queue entries with @Activation = "Informative" will generally be sent to an operator console for preview but are still completely under the control of an external controller.
Held	The QueueEntry has been held and SHALL NOT be processed until its @Activation is changed to "Active". The transition to "Active" MAY be triggered with a CommandModifyQueueEntry/@Action = "Resume".
Active	The QueueEntry is active and SHALL be processed regularly.
PendingReturn	Indicates that the QueueEntry has been processed but the has not yet been successfully returned to the respective controller.
Removed	The QueueEntry has been removed. This @Activation SHALL NOT be provided unless Queue/@UpdateGranularity = "ChangesOnly".

A.2.3 Anchor

Anchor specifies the 9 anchor points of a rectangle.
Table A.4: Anchor Enumeration Values

ENUMERATION VALUE	
TopLeft	
TopCenter	
TopRight	
CenterLeft	
Center	
CenterRight	
BottomLeft	
BottomCenter	
BottomRight	

A.2.4 Automation

Automation specifies how complete an item is.
Table A.5: Automation Enumeration Values

ENUMERATION VALUE	COMMENT
Dynamic	The item is incomplete and should be completed automatically.
Static	The item is complete.

A.2.5 Axis

Axis specifies the notional line around which an operation, such as mirroring, SHALL be performed.
Table A.6: Axis Enumeration Values

ENUMERATION VALUE	
Both	TOMMENT
FeedDirection	The operation is performed around the feed direction axis.
MediaWidth	The operation is performed around the media width axis.
None	No operation is to be performed.

A.2.6 BinderMaterial

BinderMaterial specifies the material that SHALL be used for loose binding.
Table A.7: BinderMaterial Enumeration Values
ENUMERATION VALUES COMMENT

ColorCoatedSteel	Coated steel.
Plastic	Any kind of plastic.
Steel	Plain steel

A.2.7 BundleType

BundleType specifies the type of items that are bundled.
Table A.8: BundleType Enumeration Values

ENUMERATION VALUES	COMMENT
BoundSet	Stack of components that are bound together.
Box	Convenience packaging that is not envisioned to be protection for shipping.
Carton	Protection packaging typically used for shipping.
CollectedStack	Components collected on a saddle, e.g. as a result of the Collecting process.
CompensatedStack	Loose stack of compensated components.
Product	An individual product.
Pallet	Rolled components on a print roll.
Roll	Multiple individual items printed on one sheet.
Sheet	Loose stack of equally stacked components.
Stack	Strapped stack of equally stacked components.
StrappedStack	Strapped stack of compensated components.
StrappedCompensatedStac k	
WrappedBundle	

A.2.8 ChannelMode

ChannelMode specifies the reliability mode of a message channel.
Table A.9: ChannelMode Enumeration Values

ENUMERATION VALUES	
FireAndForget	The receiver of the signal MAY respond using an XJMF response message.
Reliable	Indicates that the signal is the result of a subscription where reliable signaling was specified. The receiver of the signal SHALL respond using an XJMF response message.

A.2.9 Coating

Coating specifies the coating of a substrate.
Table A.10: Coating Enumeration Values

ENUMERATION VALUE	COMMENT
Coated	A coating of a system specified type.
Gloss	A glossy coating.
Matte	A matte coating.
None	No coating.
Satin	A coating between gloss and matte.

A.2.10 Compensation

Compensation specifies how a process SHALL to apply transfer curve compensation.
Table A.11: Compensation Enumeration Values

ENUMERATION VALUES	COMMENT
Film	Compensated until film exposure.
None	No compensation.
Plate	Compensated until plate exposure.
Press	Compensated until press.

A.2.11 DeviceStatus

DeviceStatus specifies the state of a device.
Table A.12: DeviceStatus Enumeration Values

ENUMERATION VALUE	COMMENT
Idle	No job is being processed and the device is accepting new jobs.
Production	At least one job is in a productive status on the device, i.e. $\mathbf{X J D F} / @$ Status="Setup", "Running" or "Cleanup"
Offline	The device is switched off or the machine can not be accessed.
Stopped	At least one job is in a productive status on the device, i.e. XJDF/@Status="Setup", "Running" or "Cleanup", and the device has been stopped and requires attention. This sta- tus indicates some kind of break as long as execution has not been aborted.
NonProductive	The device is not doing productive work but rather doing something like maintenance or running a test job.

A.2.12 Drying

Drying specifies the method employed to dry an item.
Table A.13: Drying Enumeration Values

ENUMERATION VALUE	COMMENT
Heatset	Heatset dryer.
IR	Infrared dryer.
Off	No dryer is used.
On	The device's default drying unit is used.
UV	Ultraviolet dryer.

A.2.13 Edge

Edge specifies the edge of an object.
Table A.14: Edge Enumeration Values

enumeration values

COMMENT

Bottom	Bottom edge of a sheet or product.
Left	Left edge of a sheet or product.
Right	Right edge of a sheet or product.
Top	Top edge of a sheet or product.

A.2.14 EmbossDirection

EmbossDirection specifies type and direction of embossing.
Table A.15: EmbossDirection Enumeration Values

ENUMERATION VALUES	COMMENT
Both	Both debossing and embossing using one stamp.
Depressed	Debossing only.
Flat	The embossing foil is applied flat. Used for foil stamping.
Raised	Embossing only.

A.2.15 EmbossType

EmbossType specifies the type of embossing required.
Table A.16: EmbossType Enumeration Values

ENUMERATION VALUES	COMMENT
BlindEmbossing	Embossed forms are not inked or foiled. The color of the image is the same as the sub- strate.
Braille	Six dot braille embossing.
FoilEmbossing	Combines embossing and foil stamping in a single operation.
FoilStamping	Uses a heated die to place a metallic or pigmented image from coated foil on to the sub- strate.

A.2.16 Face

Face specifies the location on a three dimensional object, e.g. Component
Table A.17: Face Enumeration Values

ENUMERATION VALUE	
Back	COMMENT
Bottom	Bottom of a product
Front	Front side of a sheet or product
Left	Left side of a product, e.g. the spine of a left bound book.
Right	Right side of a product, e.g. the spine of a right bound book.
Top	Top of a product

A.2.17 FeedQuality

FeedQuality specifies the quality of an object is to be evaluated.
Table A.18: FeedQuality Enumeration Values (Sheet 1 of 2)

ENUMERATION VALUES	
Check	Check the quality and register.
NotActive	Quality control is not active.
StopNoWaste	Check the quality and register. The consuming device SHALL stop after the predefined number of consecutive errors. The error SHALL be corrected e.g. manually.
StopWaste	Check the quality and register. The object failing the test SHALL be waste. The consum- ing device SHALL stop after the predefined number of consecutive errors. The error SHALL be corrected e.g. manually.

Table A.18: FeedQuality Enumeration Values (Sheet 2 of 2)

ENUMERATION VALUES

COMMENT

Waste

The object failing the test SHALL be waste.

A.2.18 FitPolicy

FitPolicy specifies how an object should be manipulated to enable it to fit into a given area.
Note: The 'given direction' in the following text is derived from the attributes context, i.e. for @HorizontalFitPolicy this would be horizontal.

Table A.19: FitPolicy Enumeration Values

ENUMERATION VALUES	COMMENT
NoRepeat	The object is neither resized nor repeated. If it is bigger that the given area then it SHALL be clipped.
RepeatToFill	The object SHALL be placed in the requested position. It SHALL then repeated in the given direction, allowing clipping to occur, until all the allocated space is filled.
RepeatUnclipped	The object SHALL be placed in the requested position. It SHALL then repeated in the given direction, without clipping, to fill as much of the allocated space as possible.
StretchToFit	The object SHALL be stretched along the given direction to entirely fill the allocated space. Note: If used in isolation this can result in distortion of the object's aspect ratio.
UndistortedScaleToFit	The object SHALL be resized to fit in the given direction. Note: For the orthogonal direction this may result in either the object being clipped or the object not filling the allocated space.

A.2.19 GangPolicy

GangPolicy specifies how multiple jobs SHALL be ganged.
Table A.20: GangPolicy Enumeration Values
ENUMERATION VALUES

COMMENT

Gang	The job SHALL be ganged and MAY be submitted to the device.
GangAndForce	The job SHALL be ganged and SHALL be submitted to the device.
NoGang	The job SHALL NOT be ganged.

A.2.20 Glue

Glue specifies the type of glue to be used.
Table A.21: Glue Enumeration Values

ENUMERATION VALUES	
ColdGlue	
Hotmelt	
PUR	Polyurethane rubber.

A.2.21 IncludeResources

IncludeResources specifies how fonts SHALL be embedded.
Table A.22: IncludeResources Enumeration Values (Sheet 1 of 2)

ENUMERATION VALUES

COMMENT

IncludeNever	Never embed fonts.
IncludeOncePerDoc	Embed once per document.

Table A.22: IncludeResources Enumeration Values (Sheet 2 of 2)

IncludeOncePerPage	Embed once per page.

A.2.22 ISOPaperSubstrate

ISOPaperSubstrate specifies a print substrate according to [ISO12647-2:2013].
Note: See $\boldsymbol{*}$ Section C. 3 Paper Grade for a mapping to the paper grade values defined in \bullet [ISO12647-2:2004].
Table A.23: ISOPaperSubstrate Enumeration Values

ENUMERATION VALUE	COMMENT
PS1	Premium Coated
PS2	Improved Coated
PS3	Standard Coated Glossy
PS4	Standard Coated Matte
PS5	Wood-free Uncoated
PS6	Super Calendered
PS7	Improved Uncoated
PS8	Standard Uncoated

A.2.23 MappingSelection

MappingSelection specifies how a device should construct a color.
Table A.24: MappingSelection Enumeration Values

ENUMERATION VALUE	COMMENT
UsePDLValues	Use color values specified in the PDL. See \bullet [ColorPS]
UseLocalPrinterValues	Use the device's best local mapping.
UseProcessColorValues	Use the values define in the associated process.

A.2.24 MediaDirection

MediaDirection specifies a preferred orientation of a characteristic of Media such as grain or flute.
Table A.25: MediaDirection Enumeration Values

ENUMERATION VALUE	COMMENT
Any	No restrictions apply to alignment of the media property.
SameDirection	The media property SHALL be aligned along the same axis of the coordinate system for all items.
XDirection	The media property SHALL be aligned along the X-axis of the coordinate system.
YDirection	The media property SHALL be aligned along the Y-axis of the coordinate system.

A.2.25 MediaType

MediaType specifies the general type of media to be used.
Table A.26: MediaType Enumeration Values

enumeration value	comments
Blanket	A blanket used for varnishing.
CorrugatedBoard	
Disc	CD or DVD disc to be printed on.
EmbossingFoil	
Film	
Foil	Gravure cylinder.
GravureCylinder	Reusable direct imaging cylinder in a press.
ImagingCylinder	
LaminatingFoil	Something other than a media defined by this table.
Other	Unprinted paper. Includes single layer cardboard.
Paper	Used for screen printing.
Plate	
Screen	
SelfAdhesive	Flexo sleeve.
ShrinkFoil	
Sleeve	
Textile	
Transparency	
Vinyl	

A.2.26 NamedColor

NamedColor specifies a machine readable definition of a color. For a list of allowed values see \bullet [Color Names].

A.2.27 NodeStatus

NodeStatus specifies the state of a process or queue entry that is required to execute a given task.
Table A.27: NodeStatus Enumeration Values (Sheet 1 of 2)

Aborted	Indicates that the process executing the XJDF has been aborted, which means that exe- cution will not be resumed again.
Cleanup	The process represented by this node is currently being cleaned up.
Completed	Indicates that the node or queue entry has been executed correctly, and is finished.
InProgress	The node is currently executing.
Setup	The process represented by this node is currently being set up.
Stopped	Execution has been stopped. If a job is "Stopped", running can be resumed later. This status can indicate a break, a apause, maintenance or a breakdown - in short, any pause that does not lead the job to be aborted.

Suspended	Execution has been stopped. If a job is "Suspended", running will be resumed later. Unlike "Stopped" this status indicates that the job has been taken off the device to exe- cute another job or perform some other action that is not related to this job. When resumed, the job MAY go into @Status="Setup" before changing to "InProgress" again. The value "Suspended" is also used to describe iterations. In an iterative environment, "Suspended" specifies that at least one iteration cycle has completed but additional iter- ation cycles MAY still occur. In this use case, @StatusDetails SHOULD be set to
"IterationPaused"	

A.2.28 Opacity

Opacity specifies the opacity of a resource.
Table A.28: Opacity Enumeration Values

ENUMERATION VALUE	COMMENT
Opaque	The media or resource is opaque and does not transmit light under normal incident lighting conditions.
Translucent	The media or resource is translucent. For example, translucent material can be used for back lit viewing.
Transparent	The media or resource is transparent.

A.2.29 Orientation

Orientation specifies the orientation of a Resource. For details see $~$ Table 2.1 Matrices and Orientation values for describing the orientation of a Component.

Table A.29: Orientation Enumeration Values

ENUMERATION VALUE	EQUIVALENT TRANSFORMATION MATRIX	COMMENT
Rotate 0	$1 \begin{array}{llllll}1 & 0 & 0 & 1 & 0 & 0\end{array}$	No Action
Rotate90		90° Counterclockwise Rotation
Rotate180	$\begin{array}{lllllll}-1 & 0 & 0 & -1 & w\end{array}$	180° Rotation
Rotate270	$\begin{array}{lllllll}0 & -1 & 1 & 0 & 0 & w\end{array}$	270° Counterclockwise Rotation
Flip0	$\begin{array}{lllllll}1 & 0 & 0 & -1 & 0 & h\end{array}$	Flip around X
Flip90	$\begin{array}{cccccc}0 & -1 & -1 & 0 & h\end{array}$	90° Counterclockwise Rotation + Flip around X
Flip180	$\begin{array}{llllll}-1 & 0 & 0 & 1 & w & 0\end{array}$	180° Rotation + Flip around X
Flip270	$\begin{array}{llllll}0 & 1 & 1 & 0 & 0 & 0\end{array}$	270° Counterclockwise Rotation + Flip around X

Note: In the transformation matrix above, ' h ' and ' w ' refer to the height and width of the object being transformed.

A.2.30 Polarity

Polarity specifies whether a given image SHALL be color inverted.
Table A.30: Polarity Enumeration Values

ENUMERATION VALUE	
Negative	The image is color-inverted.
Positive	The image is not color-inverted

A.2.31 PositionPolicy

PositionPolicy specifies the level of freedom when applying placement or positioning values.
Table A.31: Policy Enumeration Values

ENUMERATION VALUE	COMMENT
Exact	The values SHALL be followed precisely.
Free	The values are used as guidance and MAY be modified by the designer.

A.2.32 RenderingIntent

RenderingIntent specifies the rendering intent that SHALL be applied when rendering the selected object. Values are defined in • [ICC.1], File Format for Color Profiles.
Table A.32: RenderingIntent Enumeration Values

ENUMERATION VALUE	
Saturation	
Perceptual	
RelativeColorimetric	
AbsoluteColorimetric	The rendering intent is dependent on the color space. The dependencies are implemen- tation specific.
ColorSpaceDependent	

A.2.33 Scope

Scope specifies the availability of features or resources in a device.
Table A.33: Scope Enumeration Values

ENUMERATION VALUES	COMMENT
Allowed	The feature is potentially available but currently not available without operator inter- vention.
Job	The feature is currently available within the scope of a job.
Present	The feature is currently available without operator intervention.

A.2.34 Severity

Severity specifies the severity of an error.
Note: This table is not ordered alphabetically - it is ordered by increasing level of severity.
Table A.34: Severity Enumeration Values

ENUMERATION VALUES	
Event	COMMENT
Information	Informational event worthy of being logged.
Warning	A minor error. The executing device is able to repair the condition and continue.
Error	A significant error. Operator intervention is required to allow the device to continue.
Fatal	A fatal error. The device has aborted the operation and cannot continue.

A.2.35 SheetLay

SheetLay specifies the reference edge where media or components are placed in a device.
Table A.35: SheetLay Enumeration Values

ENUMERATION VALUE	COMMENT
Center	The media is placed in the center. This is most commonly used in web devices.
Left	The media is placed so that it is guided on the left.
Right	The media is placed so that it is guided on the right.

A.2.36 Side

Side specifies which side is to be used for an action.
Table A.36: Side Enumeration Values

ENUMERATION VALUES	
Back	The back surface.
Front	The front surface.

A.2.37 Sides

Sides specifies the sides of the media or product that SHALL be imaged.
Table A.37: Sides Enumeration Values

ENUMERATION VALUE	COMMENT
OneSided	Page contents SHALL be imposed on the front side.
OneSidedBack	Page contents SHALL be imposed on the back side.
TwoSidedHeadToFoot	Page contents SHALL be imposed on the front and back sides of media sheets so that the head (top) of the front backs up to the foot (bottom) of the back.
TwoSidedHeadToHead	Page contents SHALL be imposed on the front and back sides so that the head (top) of page contents backs up to each other.

A.2.38 SourceObjects

SourceObjects specifies the class of a graphical object. Multiple tokens specify that the action that is filtered by

- SourceObjects applies to all of the listed classes.

Table A.38: SourceObjects Enumeration Values

```
ENUMERATION VALUES COMMENT
```

ImagePhotographic	Contone images.
ImageScreenShot	Images largely comprised of rasterized vector art.
LineArt	Vector objects other than text.
SmoothShades	Gradients and blends.
Text	Text objects.

A.2.39 StapleShape

StapleShape specifies the required shape of the finished staple used for Stitching.
Table A.39: StapleShape Enumeration Values (Sheet 1 of 2)

Table A.39: StapleShape Enumeration Values (Sheet 2 of 2)
ENUMERATION VALUES

ClinchOut	
Crown	
Eyelet	
Overlap	

Figure A-1: Staple shapes

A.2.40 TightBacking

TightBacking specifies the required geometry for the back of a book block.
Note: This table is not ordered alphabetically - it is ordered by the pressure required; lowest first.
Table A.40: TightBacking Enumeration Values

ENUMERATION VALUES	COMMENT
Round	Rounding way.
RoundBacked	Rounding way, backing way.
Flat	A flat backing - no tight backing is applied.
FlatBacked	Backing way.

A.2.41 UpdateGranularity

UpdateGranularity specifies which QueueEntry items in a Queue are to be included in any action.
Table A.41: Update Granularity Enumeration Values

ENUMERATION VALUES	COMMENT
All	All QueueEntry elements SHOULD be included.
ChangesOnly	Only those QueueEntry elements that have new information since the action should be included.

A.2.42 Usage

Usage specifies how a resource SHALL be used by a process.
Table A.42: Usage Enumeration Values
ENUMERATION VALUES COMMENT

Input	The resource SHALL be used as an input.
Output	The resource SHALL be used as an output.

A.2.43 WorkingDirection

WorkingDirection specifies the direction of an action or of the application of a resource.
Table A.43: WorkingDirection Enumeration Values

ENUMERATION VALUES	
Bottom	FOMMENT
Top	From above.

A.2.44 WorkStyle

WorkStyle specifies the style of working in a sheet fed press. It is defined in the press coordinate system, where the sheet moves parallel to the Y axis. In the simple case of a single unrotated page per surface this implies that a flip around the Y -axis (WorkAndTurn, WorkAndBack) will result in head to head images for the back side, whereas a flip around the Xaxis (WorkAndTumble) will result in head to foot images.
Table A.44: WorkStyle Enumeration Values

ENUMERATION VALUE	COMMENT
Simplex	No turning.
WorkAndBack	This @WorkStyle describes the printing on both sides of the substrate with different images or plate sets. After the first run the side lays are altered by flipping the sheet along the Y-axis and thus retaining the front lays.
WorkAndTurn	This @WorkStyle describes the printing on both sides of the substrate with the same images or plate set on each side. After the first run the side lays are altered by flipping the sheet along the Y-axis and thus retaining the front lays. Note: "WorkAndTurn" is generally used in conventional sheetfed printing to save plates. One half of the plate is imaged with the front side of the final image and the other half is imaged with the back side of the final image.
WorkAndTumble	This @WorkStyle describes the printing on both sides of the substrate. After the first run the front lay is altered by flipping the sheet along the X-axis and thus retaining the side lays. Note: "WorkAndTumble" may be used in conventional sheetfed printing to save plates. One half of the plate is imaged with the front side of the final image and the other half is im- aged with the back side of the final image. Note: "WorkAndTumble" is the most common @workStyle for perfecting, in which case two different images or plate sets are required for front and back.
WorkAndTwist	The sheets are twisted 18o degrees before the second run is performed so that the front lay and the side lay both change. The surface to be imaged is the same at both runs. Each run prints only part of the surface. The plate (set) stays in the machine. This @WorkStyle is used for saving plate or film material. It is no longer a common
@WorkStyle.	

A. 3 Preferred String and NMTOKEN Values

This section contains the preferred values for items of type string or NMTOKEN. Although these types are open lists the values in these tables SHOULD be used where possible.

A.3.1 Comb and Coil Shapes

When specifying the shape of a comb or coil for LooseBinding, values from the following table are recommended.
Table A.45: Comb and Coil Shapes (Sheet 1 of 2)

VALUE	DESCRIPTION
Single	Each "tooth" is made with one wire
SingleCalendar	Each "tooth" is made with one wire and an extension for hanging the bound product is provided in the center.
Twin	The shape of each "tooth" is made with a double wire (e.g., Wire-O®).

Table A.45: Comb and Coil Shapes (Sheet 2 of 2)

VALUE	DESCRIPTION
TwinCalendar	The shape of each "tooth" is made with a double wire and an extension for hanging the bound product is provided in the center.

A.3.2 Device Classes

CIP4 supports many device classes. The following values SHOULD be used when filling Device/@DeviceClass.
Table A.46: Device Classes (Sheet 1 of 2)

VALUE	DESCRIPTION
CaseMaker	A case maker produces the hard case for books. See $\stackrel{\text { Section 5.6.5 CaseMaking. }}{ }$
Cutter	A cutter can be used either to cut sheet blocks from a sheet fed press or to 'slit' a ribbon from a web fed press. See Section 5.6.10 Cutting.
DieCutter	A die cutter can be used to cut shapes from printed sheet blocks, e.g. windows in envelopes. See $\stackrel{\text { Section 5.6.27 ShapeCutting. }}{ }$
EndsheetFeeder	An end sheet feeder adds end sheets to a cover prior to binding. See - Section 5.6.14 Feeding.
FilmSetter	A film setter creates a printable image on film. See ${ }^{-}$Section 5.4.7 ImageSetting.
Folder	A folder can be used to fold the output from either sheet or web fed presses. See $\stackrel{\text { Section }}{ }$ 5.6.15 Folding.
Gatherer	A gatherer can be used to collect sheet into piles. See Section 5.6.16 Gathering.
GathererBinder	A gatherer binder can be used to collect sheet into collated piles that are then bound. See $\stackrel{\text { Section 5.6.16 Gathering and } ~ \text { Section 5.6.24 LooseBinding. }}{ }$
Hardcover	This device creates a hard cover. See $\stackrel{\text { Section 5.6.5 CaseMaking. }}{ }$
HardcoverBookLine	This device combines multiple processes to create and apply a hard cover to a block that it creates from a set of pages. See Section 5.6.1 BlockPreparation, Section 5.6.5 CaseMaking, Section 5.6.6 CasingIn, Section 5.6.7 Collecting, Section 5.6.8 CoverApplication, Section 5.6.13 EndSheetGluing, Section 5.6.16 Gathering, Section 5.6.17 Gluing, Section 5.6.18 HeadBandApplication, Section 5.6.21 Jacketing, Section 5.6.29 SpinePreparation and $\stackrel{\text { Section }}{ }$ 5.6.30 SpineTaping.
HolePuncher	A hole puncher can be used to stamp or drill a number of holes, usually in a block of pages. See , Section 5.6.19 HoleMaking.
Inserter	An inserter can be used to insert a component within another component. See , Section 5.6.20 Inserting.
IntegratedDigitalPrinter	A digital printer that has additional post press capabilities, such as folding or binding. See Section 5.5.2 DigitalPrinting.
Jacketer	A jacketer wraps a bound book with a folded jacket. See Section 5.6.21 Jacketing.
MultipleWebConventionalPr ess	A multiple web conventional press. See Section 5.5.1 ConventionalPrinting.

VALUE	DESCRIPTION
PerfectBinder	This device combines multiple processes to create perfect bound books. See Section 5.6.1 BlockPreparation, Section 5.6.5 CaseMaking, Section 5.6.6 CasingIn, Section 5.6.7 Collecting, Section 5.6.8 CoverApplication, Section 5.6.13 EndSheetGluing, Section 5.6.16 Gathering, Section 5.6.17 Gluing, Section 5.6.18 HeadBandApplication, Section 5.6.21 Jacketing, Section 5.6.29 SpinePreparation and $\stackrel{\text { Section }}{ }$ 5.6.30 SpineTaping.
PerfectBinderLine	This device combines multiple processes to create perfect bound books. See Section 5.6.1 BlockPreparation, Section 5.6.5 CaseMaking, Section 5.6.6 CasingIn, Section 5.6.7 Collecting, Section 5.6.8 CoverApplication, Section 5.6.13 EndSheetGluing, Section 5.6.16 Gathering, Section 5.6.17 Gluing, Section 5.6.18 HeadBandApplication, Section 5.6.21 Jacketing, Section 5.6.29 SpinePreparation and $\stackrel{\text { Section }}{ }$ 5.6.30 SpineTaping.
PlateSetter	A film setter creates a printable image on a plate suitable for conventional printing. See $\stackrel{\text { Section 5.4.7 ImageSetting. }}{ }$
PrintingPress	Any type of printing press See \bullet Section 5.5.1 ConventionalPrinting and \bullet Section 5.5.2 DigitalPrinting.
Scanner	A scanner is used to describe the manual process of producing machine readable image data from pre printed documents. See - Section 5.3.3 ManualLabor.
SheetFedConventionalPress	A standard sheet fed conventional press. See Section 5.5.1 ConventionalPrinting.
SheetFedDigitalPrinter	A standard sheet fed digital press. See - Section 5.5.2 DigitalPrinting.
SingleWebConventionalPre ss	A single web conventional press. See Section 5.5.1 ConventionalPrinting.
Stacker	A stacker can be used to create a pile or bundle of components suitable for delivery. See - Section 5.6.31 Stacking.
Stitcher	A stitcher can be used to stitch a number of sheets together into a block and may also add a cover. See $\stackrel{\text { Section 5.6.33 Stitching. }}{ }$
ThreadSewer	A thread sewer can be used to sew a number of sheets together into a block. See \bullet Section 5.6.36 ThreadSewing.
Trimmer	A trimmer can be used to reduce a block to the required size, e.g. for subsequent hard cover biding. See , Section 5.6.37 Trimming.
WebDigitalprinter	A single web digital press. See - Section 5.5.2 DigitalPrinting.
WideFormatPrinter	A wide format printer can be used to create large printed products such as banners. See $\stackrel{\text { Section 5-5.2 DigitalPrinting. }}{ }$

A.3.3 Flute Types

Values of this type define the required flute type (size and frequency) for corrugated media.
Although the classification of flutes using a letter code "A", "B", etc., are used very frequently (e.g., in the specification of the order for a box), there seems to be no agreement on the exact numerical specification of those categories.

Slightly varying numbers for flute size and frequency can be found between regions (European versus US) and between vendors. See [Corrugated Packaging].
Table A.47: Corrugated Media Flute Types

VALUE	DESCRIPTION
A	33 ± 3 flutes/foot, 108 ± 10 flutes/meter.
B	47 ± 3 flutes/foot, 154 ± 1 oflutes/meter.
C	39 ± 3 flutes/foot, 128 ± 10 flutes/meter.
E	90 ± 4 flutes/foot, 295 ± 13 flutes/meter.
F	125 ± 4 flutes/foot, 420 ± 13 flutes/meter.

A.3.4 Fold Catalogs

Value format is: "Fn- i " where " n " is the number of finished pages and " i " is either an integer, which identifies a particular fold or the letter "X", which identifies a generic fold (e.g., "F6-2" describes a Z-fold of 6 finished pages, and "F6X" describes a generic fold with 6 finished pages).

Fold catalog describes a type of fold according to the folding catalog in \bullet Figure A－2：Fold Catalog Part 1 and \downarrow Figure A－ 3：Fold Catalog Part 2．In case of any ambiguity，the folding notation SHALL take precedence over the graphic illustration in the aforementioned figures．

Figure A－2：Fold Catalog Part 1

F2－1	F4－1 2×1	F4－2 2×1	F6－1 3×1	F6－2 3×1
	$\uparrow^{1 / 2}$	$\downarrow_{1 / 2}$	$\uparrow 1 / 3 \downarrow 1 / 3$	$\downarrow_{1 / 3} \uparrow^{1 / 3}$
	$\begin{gathered} \text { F8-1 } \\ \hline \\ \hline \\ \hline \end{gathered}$	$\begin{gathered} \text { F8-2 } \\ \\ \hline \end{gathered}$		
			$\boldsymbol{\uparrow}^{1 / 5} \boldsymbol{\downarrow}^{1 / 5} \boldsymbol{\uparrow}{ }^{1 / 5} \boldsymbol{\downarrow}_{1 / 5}$	$\boldsymbol{\uparrow}^{4 / 5} \boldsymbol{\downarrow}_{1 / 5} \boldsymbol{\downarrow}_{1 / 5} \boldsymbol{\downarrow}_{1 / 5}$
			$\boldsymbol{\uparrow}^{1 / 2} \boldsymbol{\downarrow}^{1 / 6} \boldsymbol{\uparrow}^{1 / 6}$	$\uparrow_{1 / 2} \boldsymbol{\downarrow}_{1 / 6} \boldsymbol{\downarrow}_{1 / 6}$
	个1／6 $\boldsymbol{\downarrow}^{1 / 6}$ 个1／6 $\boldsymbol{\downarrow}^{1 / 6}$ 个1／6		个 $2 / 3$ 个 $1 / 3+\uparrow 1 / 2$	
$$	$\begin{array}{c\|c\|c\|} \hline \text { F12-11 } & 3 \times 2 \\ \begin{array}{\|l\|l\|l\|} \hline & 3 \\ \hline & & \\ \hline \end{array} & & \\ \hline \end{array}$ $\uparrow 1 / 3+\uparrow 1 / 2+\uparrow 1 / 3$	$\text { F12-12 } 2 \times 3$ $\boldsymbol{\uparrow}^{1 / 2+\uparrow^{2 / 3} \downarrow_{1 / 3}}$	$\boldsymbol{\uparrow}^{1 / 2+\boldsymbol{\uparrow}^{1 / 3} \text { 个 } 1 / 3}$	$\text { F12-14 } \quad 2 \times 3$ $\uparrow^{1 / 2}+\boldsymbol{\uparrow}^{1 / 3} \boldsymbol{\psi}_{1 / 3}$
	$\uparrow 1 / 2 \boldsymbol{\downarrow}^{1 / 4}$ 个1／8	$$	$\boldsymbol{\uparrow}^{1 / 2} \boldsymbol{\uparrow}_{1 / 4} \boldsymbol{\downarrow}_{1 / 8}$	个 $1 / 2$ 个 $1 / 4 \boldsymbol{\uparrow}^{1 / 8}$
	$\boldsymbol{\uparrow}^{1} / 2+\boldsymbol{\uparrow} 1 / 2+\mathbf{N}^{1 / 4}$	$\boldsymbol{\uparrow}^{1 / 2}+\boldsymbol{\uparrow} 1 / 2+\boldsymbol{\psi}_{1 / 4}$	$$	
$$	$\boldsymbol{\uparrow}^{1 / 4} \boldsymbol{\downarrow}^{1 / 4} \uparrow 1 / 4+\uparrow 1 / 2$	个 $1 / 4$ 个 $1 / 4 \uparrow 1 / 4+\uparrow 1 / 2$	$\text { F16-13 } \quad 2 \times 4$ $\boldsymbol{\uparrow}^{1 / 2}+\boldsymbol{\uparrow}^{1 / 2} \boldsymbol{\downarrow}^{1 / 4}$	$\text { F16-14 } 2 \times 4$ $\boldsymbol{\uparrow}_{1 / 2}+\boldsymbol{\uparrow}^{1 / 2} \boldsymbol{\uparrow}^{1 / 4}$

Figure A-3: Fold Catalog Part 2

A.3.5 Ink and Varnish Coatings

When specifying coating types, such as ink or varnish, values from the following table are recommended.
Table A.48: Ink and Varnish Coatings (Sheet 1 of 2)

Table A.48: Ink and Varnish Coatings (Sheet 2 of 2)

VALUE	DESCRIPTION
Dull	Attribute of the ink.
Gloss	A glossy coating.
Ink	Any generic ink.
Inkjet	Ink.
Latex	Liquid that is similar to ink.
Matte	A matte coating.
Primer	A coating that is applied beneath the image.
Relief	Attribute of the ink.
RubResistant	Attribute of the ink.
Satin	A coating between Gloss and Matte.
Silicone	Liquid that is similar to ink.
Toner	Liquid that is similar to ink.
UV	Ultra violet cured polymers.
Varnish	Unpigmented ink.
WaterResistant	Attribute of the ink.

A.3.6 Input Tray and Output Bin Names

Part/@Location MAY be used to specify a location within a device (e.g., a paper tray). When specifying input paper trays (indicated with "I") and/or output bins (indicated with "O"), the following values for Part/@Location SHOULD be used.
Table A.49: Input Tray and Output Bin Names (Sheet 1 of 2)

VALUE	1/0	DESCRIPTION
AnyLargeFormat	IO	The location that holds larger format media with one dimension larger than 11 inches. The media dimensions SHALL be specified.
AnySmallFormat	IO	The location that holds smaller format media. The media dimensions SHALL be specified.
AutoSelect	IO	The location that the device selects based on the Media specification.
Booklet	O	The bin where the device places booklets.
Bottom	IO*	The bin that, when facing the device, can best be identified as 'bottom'.
BypassTray	I	The input tray used to handle odd or special papers. MAY be used to specify the input tray that is used for inserts sheets that are not to be imaged.
BypassTray-N	I	The input tray used to handle odd or special papers. MAY be used to specify the input tray that is used for inserts sheets that are not to be imaged. $\mathrm{N}=$ ' 1 ', ' 2 ', , ..
Continuous	IO	The location to handle continuous media (i.e., continuously connected sheets).
Disc	IO	The location to handle CD or DVD discs to be printed on.
Disc-N	IO	The location to handle CD or DVD discs to be printed on. $\mathrm{N}=$ ' 1 ', '2', ...
Envelope	IO	The location to handle envelopes.
Envelope-N	IO	The location to handle envelopes. $\mathrm{N}=$ ' 1 ', '2', ...
Front	IO*	The location that, when facing the device, can best be identified as 'front.'

Table A.49: Input Tray and Output Bin Names (Sheet 2 of 2)

VALUE	I/O	DESCRIPTION
InsertTray	I	The input tray that can best be identified as 'insert tray.' Used to specify the input tray that is used for inserts sheets (insert sheets are never imaged).
InsertTray-N	I	The input tray that can best be identified as 'insert tray-1', 'insert tray-2', ... etc. Used to specify the input tray that is used for inserts sheets (insert sheets are never imaged).
LargeCapacity	IO	The bin that can best be identified as the 'large capacity' bin (in terms of the number of sheets) with respect to the device.
LargeCapacity-N	IO*	The location that can best be identified as the 'large capacity-1', 'large- capacity-2', .. etc., input tray (in terms of the number of sheets) with respect to the device.
Left	IO*	The bin that, when facing the device, can best be identified as 'left.'
Mailbox-N	I	The job will be output to the bin that is best identified as "Mailbox \#1", "Mail- box \#2", etc.
Middle	IO*	The bin that, when facing the device, can best be identified as "middle".
PostMarkerlnserter	IO*	The input tray that is downstream of the marking engine and allows the user to pass media through a non-marking paper path for covers and/or inserts.
Rear	IO	The bin that, when facing the device, can best be identified as "rear".
Right	IO	The bin that, when facing the device, can best be identified as "right".
Roll	The location to handle web-fed media.	
Roll-N	"Stacker \#2", etc.	

A.3.7 MediaTypeDetails

MediaTypeDetails specifies additional details of the media to be used.
Table A.50: MediaTypeDetails Types (Sheet 1 of 2)

VALUE	DESCRIPTION
Aluminum	Conventional or CTP press plate.
Backlit	Any media that is designed to be illuminated from the back side.
Cardboard	CD disc to be printed on.
CD	Cloth; e.g., for a hard cover book case.
Cloth	Continuously connected sheets of an opaque material. Which edge is connected is not Cpecified.
Continuous	Continuously connected sheets of an opaque material connected along the long edge.
ContinuousShort	Continuously connected sheets of an opaque material connected along the short edge.
DoubleWall	Double wall corrugated board
DryFilm	

Table A.50: MediaTypeDetails Types (Sheet 2 of 2)

VALUE	DESCRIPTION
DVD	DVD disc to be printed on.
EndBoard	End board used in the Bundling process.
Envelope	Envelopes that can be used for conventional mailing purposes.
EnvelopePlain	Envelopes that are not preprinted and have no windows.
EnvelopeWindow	Envelopes that have windows for addressing purposes.
EnvelopeWindowLeft	Envelopes that have windows on the left for addressing purposes.
EnvelopeWindowRight	Envelopes that have windows on the right for addressing purposes.
FlexoBase	For the base layer of flexo plates.
FlexoPhotoPolymer	For the photopolymer layer of flexo plates.
Flute	Flute layer of a corrugated board
FullCutTabs	Media with a tab that runs the full length of the medium so that only one tab is visible extending out beyond the edge of non-tabbed media.
ImageSetterPaper	Contact paper as replacement for film.
Labels	Label stock (e.g., a sheet of peel-off labels).
Leather	Leather; e.g., for a hard cover book case.
Letterhead	Separately cut sheets of an opaque material including a letterhead.
MultiLayer	Form medium composed of multiple layers which are preattached to one another (e.g., for use with impact printers).
MultiPartForm	Form medium composed of multiple layers not preattached to one another; each sheet might be drawn separately from an input source.
Photographic	Separately cut sheets of an opaque material to produce photographic quality images.
Polyester	Conventional or CtP press plate.
PreCutTabs	Media with tabs that are cut so that more than one tab is visible extending out beyond the edge of non-tabbed media.
ScrimBanner	Specific type of vinyl.
SingleFace	Single face corrugated board.
SingleWall	Single wall corrugated board.
Stationery	Separately cut sheets of an opaque material, includes generic paper.
TabStock	Media with tabs, either precut or full-cut.-
Tractor	Tractor feed with holes.
Transparency	Separately cut sheets of a transparent material.
TripleWall	Triple wall corrugated board
WallPaper	Details of Paper.
WetFilm	Conventional photographic film.

A.3.8 Milestones

The following table defines a list of values that are valid for QueryNotification/NotificationFilter/@MilestoneTypes and Milestone/@MilestoneType.

Note: Milestones usually refer to events involving multiple objects, although the Milestone/@MilestoneType is specified as a singular. The scope of the Milestone is defined by the parent Notification element.
Table A.51: Milestone Types

VALUE	DESCRIPTION
BindingCompleted	All binding worksteps including packing of the job have been completed. Postpress worksteps are defined according to $\boldsymbol{~ S e c t i o n ~ 5 . 6 ~ P o s t p r e s s ~ P r o c e s s e s . ~}$
BindingInProgress	At least one of the binding worksteps of the job is in progress status.
Delivered	The files were delivered to the destination.
DigitalArtArrived	Digital content has been received.
JobCompletedSuccessfully	Job completed successfully.
JobCompletedWithErrors	Job completed with errors.
JobCompletedWithWarning s	Job completed with warnings.
PageApproved	Planned page proofs have been approved.
PageCompleted	Pages are ready (no further page processing or page proofing required).
PageProofed	Planned page proofs have been made.
PostPressCompleted	All postpress worksteps including packing of the job have been completed. Postpress worksteps are defined according to $\stackrel{\text { Section 5.6 Postpress Processes. }}{ }$
PostPressInProgress	At least one of the postpress worksteps of the job is in progress status.
PrePressCompleted	All prepress worksteps of the job have been completed. Prepress worksteps are defined according to \quad Section 5.4 Prepress Processes. In conventional prepress, this is the case when all plates have been made.
PrePressInProgress	At least one of the prepress worksteps of the job is in progress status.
PressCompleted	All press worksteps of the job have been completed. Press worksteps are defined according to Section 5.5 Press Processes.
PressInProgress	At least one of the press worksteps of the job is in progress status.
ProofSent	Planned proofs sent to customer.
ShippingCompleted	Final product was delivered to the customer or distributors.
ShippingInProgress	Final product is being shipped.
SurfaceApproved	Planned imposition proofs have been approved.
SurfaceAssigned	Surfaces have their corresponding pages assigned (e.g., could be proofed).
SurfaceCompleted	Planned surfaces are ready (i.e., plates could be made).
SurfaceProofed	Planned imposition proofs have been made.

A.3.9 Module Types

The following tables provide lists of individual Module/@ModuleType values.
Table A.52: Module Types for Conventional Printing (Sheet 1 of 2)

VALUE	DESCRIPTION
CoatingModule	Unit for coatings, for example, full coating of varnish.
Delivery	Delivery module, unit for gathering the printed sheets.
Drier	Module for drying the previously printed color or varnish.

Table A.52: Module Types for Conventional Printing (Sheet 2 of 2)

VALUE	DESCRIPTION
ExtensionModule	Unit for extending the distance between modules, for example to increase the distance between the last printing module and the delivery module.
Feeder	Feeder module, feeds the device with paper.
Imaging	Imaging module in a direct to plate machine.
Numbering	Numbering unit.
PerfectingModule	Unit for perfecting, reversing device.
PrintModule	Unit for printing a color. Describes one cylinder and one side.

Table A.53: Module Types for Postpress (Sheet 1 of 2)

VALUE	DESCRIPTION
BlockPreparer	The block preparer prepares the book block for a hardcover book. See Section 5.6.1 BlockPreparation.
BoxFolder	The box folder folds and glues blanks into folded boxes for packaging. See Section 5.6.2 BoxFolding.
CaseMaker	The case maker produces the hard case for books. See Section 5.6.5 CaseMaking.
Caser	The caser joins the hard cover book case and the book block. (Casingln). See Section 5.6.6 CasingIn.
EndSheetGluer	Transport chain or conveyer to transport gathered / collected product.
Feeder	The end sheet gluer merges the front-end sheet, the book block and the back-end sheet together. See
Section 5.6.13 EndSheetGluing.	

Table A.53: Module Types for Postpress (Sheet 2 of 2)

VALUE	DESCRIPTION
SpineTaper	The spine taper applies a tape strip to the spine of a book block. See Section 5.6.30 SpineTaping.
Strapper	The strapper straps a bundle of products. See \vee Section 5.6.34 Strapping.
ThreadSealer	The thread sealer sews and seals a signature at the spine. See \vee Section 5.6.35 ThreadSealing.
ThreadSewer	The thread sewer sews all signatures of a book block together. See \vee Section 5.6.36 ThreadSewing.

Table A.54: Module Types for Digital Printing

VALUE	DESCRIPTION
FarmPrinter	Individual printer in a printer farm of printers.
Fuser	Fuser module - fuses the toner onto the media.
Marker	Marker module, excluding in-line finishing.
Unpacker	Module that receives and unpacks the zip package and fetches the XJDF if it is refer- enced from the XJMF.
ReferencedDataCollector	Module that fetches data referenced from the XJDF and MAY include data referenced from the PDL. Does not include accepting zip, unpacking zip, or fetching the XJDF itself.
RIP	Raster image processor module.

Table A.55: Module Types for Web Printing

VALUE	DESCRIPTION
ChillUnit	Chill unit that chills down the heated printed paper.
ImprintUnit	Printing unit that allows changing plates during production run, doing imprints.
PrintUnit	A print unit consists of multiple print module units.
RemoisteningModule	Module that can be used for high gloss varnish, remoistened glue, rub-off ink or encap- sulated fragrances. The remoistening module is located between last printing unit and dryer.
UVCoater	The UV-Coater module applies UV-varnish with subsequent drying in a UV-dryer.

Table A.56: Module Types for Folding (Sheet 1 of 2)

VALUE	DESCRIPTION
CrossCutter	Cuts the web / ribbon n-times into sheets and transports the sheets to inline postpress- equipment
Delivery	Delivers the printed and/or folded sheets out of the folder
Folder	Module for cutting the collected ribbons into sheets, in some cases collecting these sheets, and folding the sheets (quarter and cross folds)
Former	Module for gathering ribbons and in most instances doing the first fold of the ribbons (quarter fold).

Table A.56: Module Types for Folding (Sheet 2 of 2)

VALUE	DESCRIPTION
GluingAndSofteningModule	Consists multiple heads, spread out in the press for gluing or/and softening of ribbons or folded sheets
MoebiusDeinfinitizer	Used to resolve the infinite loops caused by printing on interleaving surfaces of Möbius banded webs.
PerforatingModule	Module for doing cross, longitudinal or diagonal perforations and die cuts on a web. Module is placed between chill unit and folder.
PlanoModule	The plano module cuts the web / ribbon into sheets and stacks the sheets to a pile
PloughFoldModule	The plough fold module does a quarter fold to ribbons or webs, mostly found in front of a folder module
Rewinder	Rewinds the printed web to a roll.
RibbonCompensator	Controls the web / ribbons in running direction regarding the cross cut
Slitter	Module for cutting in machine direction
Stitcher	Stitches folded sheets together
Superstructure	Module in which a web will be cut into ribbons and these will be moved to the correct position for folding.
TurnerBar	Turns the front side of a web to the back side and vice versa.
TurnerBarUnit	Turns the front side of a web to the back side and vice versa in a separate unit.

Table A.57: Module Types for Packing

VALUE	DESCRIPTION
BundlingModule	The bundling module is used for bundling components
LabelingModule	The labeling module is used for labeling a bundle.
PalletizingModule	The palletizing module collects the bundles on a pallet. See Section 5.6.25 Palletizing.
Stacker	Stacks the component to a pile. See Section 5.6.31 Stacking.
Trimmer	Trims the component to its final size. See \vee Section 5.6.37 Trimming.

A.3.10 Printing Technologies

The following table defines a list of values that are valid for indicating the intended printing technology to be used.
Table A.58: Printing Technologies (Sheet 1 of 2)

VALUE	DESCRIPTION
DyeSublimation	For digital printing.
Electrostatic	For digital printing.
Flexo	For conventional printing.
Gravure	For conventional printing.
InkJet	For digital printing.
Laser	For digital printing.
Latex	Specific type of inkjet.

Table A.58: Printing Technologies (Sheet 2 of 2)

VALUE	DESCRIPTION
Offset	For digital printing and conventional printing.
Screen	For conventional printing.
Thermal	For digital printing.
UV	For digital printing.

A.3.11 PrintStandard Characterization Data Sets

PrintStandard specifies the reference name of a characterization data set. There are research and trade associations (such as Fogra, IDEAlliance, WAN-IFRA, JPMA, ICC) who provide characterization data sets for standard printing conditions. Most reference names of standard printing conditions are registered with the ICC see \rightarrow [Characterization Data]. Official reference names SHALL be taken if a standard printing condition exists. Custom or device dependent reference names MAY be provided if no official standard printing condition is available.
Note: In digital printing, PrintStandard will typically be used to specify the selected internal color model that defines the device specific use of colorants such as light cyan or additional gamut colors.
Note: Whereas PrintStandard defines a media independent characterization data set, Part/@PrintCondition defines a characterization data set that is applied to a specific setup including paper selection and screening setup.
Table A.59: PrintStandard Values

PRINTSTANDARD NAME	PROVIDER	DESCRIPTION
FOGRA51	FOGRA	Valid for FOGRA51 based profiles such as "PSO Coated v3"
CGATS21-2-CRPC5	International Color Con- sortium	Valid for CGATS21-2-CRPC5 based profiles such as "SWOP2013C3-CPRC5"

A.3.12 Product Types

Table A.60: Product Types (Sheet 1 of 2)

VALUE	DESCRIPTION
BackCover	
BlankBox	Cut, unfolded box, input for folder-gluer.
BlankSheet	A sheet with connected blanks after a die cutting.
BlankWeb	A web with connected blanks after a die cutting.
Body	Generic content inside of a cover.
Book	Body with a cover and a spine.
BookBlock	Body with a cover without a spine (typically stapled).
BookCase	Convenience packaging that is not envisioned to be protection for shipping.
Booklet	A single folded sheet.
Box	Protection packaging for shipping.
Brochure	
BusinessCard	A single sheet covering a side of a print product.
Carton	

Table A.60: Product Types (Sheet 2 of 2)

VALUE	DESCRIPTION
CoverLetter	A letter accompanying another print product.
EndSheet	Endsheet for hard cover books.
Envelope	
FlatBox	A folded and glued blank (not opened). Output from a box folder-gluer.
FlatWork	Non-bound, non-folded products or products that only have packaging folds.
FrontCover	
Insert	A product part intended to be inserted into a print product.
Jacket	Hard cover case jacket.
Label	
Leaflet	A single unfolded sheet.
Letter	
Map	
Media	Unprinted media.
Newspaper	A newspaper-product.
Notebook	A book or block with a set of identical or similar pages, e.g. a writing tablet, where all page fronts have identical content, and all page backs have identical content.
Pallet	Loaded pallet of boxes, cartons or Component resources.
Postcard	
Poster	
Proof	Any kind of proof that visualizes the intended output of a print process. Proof SHOULD NOT be specified for a product as defined in $\stackrel{\text { Section 4.1.1 Product. }}{ }$
ResponseCard	A self mailer to respond to an offer.
Section	
SelfMailer	A document to be sent via the post without an additional envelope.
Spine	The binding spine of a hard cover book.
Stack	Stacked Component.
WrapAroundCover	A single cover sheet containing the front cover, spine and back cover.

A.3.13 Spine Operations

Table A.61: Spine Operations (Sheet 1 of 2)

VALUE	DESCRIPTION
Brushing	Brushes away dust from the spine to improve the binding quality.
FiberRoughing	The fibers of the paper on the spine are exposed without the risk of glazing the paper coating. This optimizes the spine preparation considering paper and adhesive types.
Leveling	After milling the spine, any uneven areas are leveled to achieve an even surface.
Milling	Cuts off part of the spine so the spine is not too even. A rough texture of the fibers is assured. This creates ideal conditions for stable anchoring of the sheets in the glue.

VALUE	DESCRIPTION
Notching	This gives a clamping effect on the spine which is desirable for some products.
Sanding	Is used for voluminous book papers.
Shredding	Produces a relatively smooth surface. Further operations like "Notching", "Leveling", "FiberRoughing", "Sanding" or "Brushing" are necessary.
Brushing	Brushes away dust from the spine to improve the binding quality.

A.3.14 Status Details

The @StatusDetails attribute refines the concept of a job status to be job specific or a device status to be device specific. The following tables define individual @StatusDetails values and maps them to the appropriate job specific state Nodelnfo/@Status, QueueEntry/@Status or device specific state DeviceInfo/@Status.
Localized user data SHOULD be specified in @DescriptiveName or Comment elements.

A.3.14.1 Status Details for Generic Devices

Table A.62: Status Details Mapping for Generic Devices ${ }^{\text {a }}$ (Sheet 1 of 3)

STATUSDETAILS	NODEINFO/ @STATUS	DEVICEINFO/ eSTATUS	DESCRIPTION
AbortedBySystem	Aborted	Stopped	The job is being or has been aborted by the device.
BreakDown	Stopped	Offline	Breakdown of the device, repair needed.
Calibrating	Setup	Production	The device is calibrating, either manually or automatically.
ControlDeferred	-	Offline	The machine is not accessible by the device.
CoverOpen	Stopped	Stopped	One or more covers on the device are open.
DocumentAccessError	Aborted	Stopped	The device could not access one or more documents passed by reference.
DoorOpen	Stopped	Stopped	One or more doors on the device are open.
Failure	Stopped	Stopped	Failure of the device. Requires some maintenance in order to restart the device. "Failure" has specialized subcategories: "PaperJam", "DoubleFeed", "BadFeed", "BadTrim", "ObliqueSheet", "IncorrectComponent", "IncorrectThickness".
Good	InProgress	Production	Production of products in progress, good copy counter is on, waste copy counter is off.
HeldForPipe	-	Stopped	When @Status is "PendingReturn", QueueEntry is not returned on purpose, commands PipeControl or ModifyQueueEntry are possible
Idling	Stoppe	Production	Device is running, but no products are produced or consumed. Good and waste copy counter are off.
InputTrayMissing	Stopped	Stopped	One or more input trays are not in the device.
InterlockOpen	Stopped	Stopped	One or more interlock devices on the printer are unlocked.
IterationPaused	Suspended	Production	"Suspended" specifies that at least one iteration cycle has completed but additional iteration cycles MAY still occur.
JobCanceledByOperator	Aborted	Production	The job was canceled by the device operator using "Abort" @Operation of ModifyQueueEntry or means local to the device.
JobCanceledByUser	Aborted	Production	The job was canceled by the owner of the job using "Abort" @Operation of ModifyQueueEntry.
JobCompletedSuccessfull y	Completed	Production	The job completed successfully.
JobCompletedWithErrors	Completed	Production	The job completed with errors (and possibly warnings too).
JobCompletedWithWarnin gs	Completed	Production	The job completed with warnings.
JobHeld	Waiting	Production	The device held the job that had been waiting (by performing a "HoldQueueEntry" @Operation of ModifyQueueEntry request on a waiting QueueEntry).
JobHeldOnCreate	Waiting	Production	The job was submitted to the queue with the QueueSubmissionParams/@Activation = "Held".
JobIncoming	Waiting	Production	The device is retrieving/accepting document data.

Table A.62: Status Details Mapping for Generic Devices ${ }^{a}$ (Sheet 2 of 3)

STATUSDETAILS	NODEINFO/ @STATUS	DEVICEINFO/ @STATUS	DESCRIPTION
JobMissResources	Waiting Running	Stopped	When @Status is "Waiting" or "Running", QueueEntry waits for resources to become available to process further
JobReadyForStart	Waiting Running	Stopped	When is @Status "Waiting" or "Running", QueueEntry is ready and waits for (manual) start event to process further
JobResuming	Waiting	Production	The device is in the process of moving the job from a suspended condition to a candidate for processing ("Resume" @Operation of ModifyQueueEntry).
JobScheduling	Waiting	Production	The device is scheduling the job for processing.
JobStreaming	InProgress	Production	Same as "Joblncoming" with the specialization that the device is processing the document data as it is being received (that is, the job data is not being spooled, but rather is being processed in chunks by the output device and is being imaged during reception).
JobSuspended	Suspended	Production	The device suspended the job that had been processing (e.g., by performing a "Suspend" @Operation of ModifyOQueueEntryrequest on a running QueueEntry) and other jobs can be processed by the device.
JobSuspending	InProgress	Production	The device is in the process of moving the job from a processing condition to a suspended condition where other jobs can be processed.
JobUserInputRequired	Waiting Running	Stopped	When @Status is "Waiting" or "Running", QueueEntry is not producible and waits for user input required to process further (e.g., missing parameters, decisions, etc.)
Maintenance	Stopped	Stopped	General maintenance of the device.
MissResources	Stopped	Stopped	Production has been stopped because resources are missing or unavailable. Waits for new resources; subcategory of "Pause".
MovingToPaused	InProgress	Production	The device has been paused, but the machine(s) are taking an appreciable time to stop.
OutputAreaFull	Stopped	Stopped	One or more output areas are full (e.g., tray, stacker, collator).
OutputTrayMissing	Stopped	Stopped	One or more output trays are not in the device.
PaperJam	Stopped	Stopped	Media jam in the device; subcategory of "Failure".
Pause	Stopped	Stopped	Machine paused; restart is possible.
PendingReturn	Cleanup	Production	When @Status is "Cleanup", QueueEntry is currently returning
ProcessingToStopPoint	InProgress	Production	The requester has issued an "Abort" @Operation of ModifyQueueEntry request or the device has aborted the job, but is still performing some actions on the job until a specified stop point occurs or job termination/cleanup is completed.
QueuedToRun	Waiting	Stopped	When @Status is "Waiting" QueueEntry is queued to run and waits for device to become available (idle) to process further
Repair	Stopped	Offline	The device is being repaired after a break down.

Table A.62: Status Details Mapping for Generic Devices ${ }^{a}$ (Sheet 3 of 3)

STATUSDETAILS	NODEINFO/ @STATUS	DEVICEINFO/ @STATUS	DESCRIPTION
Running	Running	Production	When @Status is "Running", QueueEntry is processing
ShutDown	Stopped	Offline	Machine stopped (can be switched off), restart requires a run up.
SizeChange	Setup	Production	Changing setup for media size.
StandBy	-	Idle	The device has been switched into power save mode and is still accepting new jobs.
StandyBy	-	Offline	The device has been switched into power saving mode and cannot process jobs without prior intervention such as CommandV/VakeUp.
WaitForApproval	Stopped	Stopped	Production has been stopped because a necessary approval is still missing, subcategory of "Pause".
WarmingUp	Setup	Production	Device is warming up after power up or power saver mode wake-up.
Waste	InProgress	Production	Production of products in progress, good copy counter is off, waste copy counter is on.
WasteFull	Stopped	Stopped	The device waste receptacle is full.

a. The column NodeInfo/@Status also applies to JobPhase/@Status and QueueEntry/@Status.
A.3.14.2 StatusDetails for Printing Devices

Table A.63: StatusDetails Mapping for Printing Devices

STATUSDETAILS	NODEINFO/ aSTATUS	DEVICEINFO/ aSTATUS	DESCRIPTION
BlanketChange	Stopped	Stopped	Changing of blankets; subcategory of "Maintenance".
BlanketWash	Cleanup	Production	Washing of the blanket; subcategory of "WashUp".
CleaningInkFountain	Cleanup	Production	Cleaning of the ink fountain; subcategory of "WashUp".
CylinderWash	Cleanup	Production	Washing of impression cylinders; subcategory of "WashUp".
DampeningRollerWash	Cleanup	Production	Washing of the dampening roller; subcategory of "WashUp".
FormChange	Setup	Production	In conventional printing, changing of plates.
InkRollerWash	Cleanup	Production	Washing of the inking roller; subcategory of "WashUp".
PlateWash	Cleanup	Production	Washing of the plate; subcategory of "WashUp".
Processing	InProgress	Production	Other productive processing (RIP, etc.) is taking place but no final output is being produced. All input data has arrived (not "InProgress"/"JobStreaming" nor
"Waiting"/"Joblncoming").			

A.3.14.3 StatusDetails for Postpress Devices

Table A.64: StatusDetails Mapping for Postpress Devices

STATUSDETAILS	NODEINFO/ @STATUS	DEVICEINFO/ @STATUS	DESCRIPTION
BadFeed	Stopped	Stopped	Bad feed on a feeder; subcategory of "Failure".
BadTrim	Stopped	Stopped	Bad trimmed components; subcategory of "Failure".
DoubleFeed	Stopped	Stopped	Double feeds on a feeder; subcategory of "Failure".
IncorrectComponent	Stopped	Stopped	Incorrect components on a feeder; subcategory of "Failure".
IncorrectThickness	Stopped	Stopped	Incorrect thickness of components; subcategory of "Failure".
ObliqueSheet	Stopped	Stopped	Oblique sheets on components; subcategory of "Failure". Oblique sheets are sheets or signatures which are not properly aligned within a pile (e.g., on a gathering or collecting chain).

B Return Values

The following list defines the standard ReturnCode for messaging. Return code values are integers. Error Messages below 100 are reserved for protocol errors. Error messages above 100 are used for Device and Controller errors and error messages above 200 for Job and pipe specific errors.

Table B.1: Return codes for XJMF (Sheet 1 of 2)

RETURNCODE	DESCRIPTION
0	Success.
1-99	Protocol errors.
1	General error.
2	Internal error.
3	XML parser error (e.g., if a zip file is sent to an a device that does not support zip packaging).
4	XML validation error.
5	Query Message/Command Message not implemented.
6	Invalid parameters.
7	Insufficient parameters.
8	Device not available (Controller exists but not the Device or queue).
9	Message incomplete.
10	Message service is busy.
13	Reliable Signals not supported. Subscription denied.
14	Subscription denied. An identical subscription already exists.
100-199	Device and controller errors.
100	Device not running.
101	Device incapable of fulfilling request (e.g., a RIP that has been asked to cut a sheet).
102	Cannot execute the XJDF.
103	@ Jobld not known by Controller.
104	@JobPartID not known by Controller.
105	Queue entry not in queue.
106	Queue request failed because the queue entry is already executing.
107	The queue entry is already executing. Late change is not accepted.
108	Selection or applied filter results in an empty list.
109	Selection or applied filter results in an incomplete list. A buffer cannot provide the complete list queried for.
110	Queue request of a Job submission failed because the requested completion time of the Job cannot be fulfilled.

Table B.1: Return codes for XJMF (Sheet 2 of 2)

RETURNCODE	DESCRIPTION
111	Subscription request denied.
112	Queue request failed because the Queue is "Closed" or "Blocked" and does not accept new entries.
113	Queue entry is already in the resulting status.
114	QueueEntry/@Status is already "Completed" or "Aborted" and therefore does not accept changes.
115	Queue entry is not running.
116	Queue entry already exists. Used when a QueueEntry with identical @JobID, @JobPartID and Part already exists.
120	Cannot access referenced URL. URI Reference cannot be resolved. Used when a referenced entity (e.g., a XJDF in a SubmitQueueEntry cannot be found).
121	Unknown DeviceID. No Device is known with the Deviceld specified.
130	Ganging is not supported. A gang Job has been submitted to a queue that does not support ganging.
131	GangName not known. A Job has been submitted with an unknown GangName.
140	Resource Command rejected.
141	Resource Command partially rejected.
200-...	Job and pipe specific errors.
200	Invalid Resources.
201	Insufficient Resource parameters.
202	PipelD unknown.
203	(Unused).
204	(Unused).
205	Pipe request failed because the Pipe is closed and does not accept new requests.

C Media Weight

In North America and Japan, each grade of paper has one basic size used to compute its basis weight per ream. For example, Bond basic size is $17^{\prime \prime} \times 22^{\prime \prime}$ and Shiroku-ban basic size is $788 \mathrm{~mm} \times 1091 \mathrm{~mm}$.

C. 1 North American Media Weight

In North America, a paper's basis weight is the weight of five hundred Sheets of its basic size. For example, if five hundred $25^{\prime \prime} \times 38^{\prime \prime}$ Sheets of offset paper weigh 60 pounds, it is called 60 \# offset. Paper mills outside of North America use the metric system to designate paper weight. The basis weight of foreign papers is grams per square meter (g/m2) known as the Sheet's grammage. Papers made to metric standards don't convert to basis weights familiar to North Americans. For example, $100 \mathrm{~g} / \mathrm{m} 2$ equals a basis weight of 67.5 . Following is the English/grammage conversion formula:
Basis Weight (lb.) x (1406.5 / Square inches in basic size) = grams per square meter
For example, the grammage of 65 lb . cover stock when the cover is 20×26 can be calculated as follows:
$65 \times(1406.5 /(20 \times 26))=65 \times 2.70=176 \mathrm{~g} / \mathrm{m}^{2}$
The following table defines the basic sizes and the factor that @USWeight is multiplied by to calculate @Weight for various stock types. Stock type is specified in Media/@StockType or Medialntent / @StockType.

Table C.1: Conversion Factor from Basis Weight (lbs) to Weight ($\mathrm{g} / \mathrm{m}^{2}$)

STOCK TYPE	BASIS SIZE IN INCHES	CONVERSION FACTOR	EQUIVALENT
Bond	17×22	3.76	"Ledger", "Manifold"
Book	25×38	1.48	"Bible", "Coated", "Offset", "Text"
Bristol	$22 \frac{1}{2} \times 28 \frac{1}{2} 2$	2.19	
Cover	20×26	2.70	
Index	$251 / 2 \times 301 / 2$	1.81	"Tag"
Newsprint	24×36	1.63	

In the following table, the right columns of each column pair list common basis weights for North American papers while the left columns list their corresponding grammage. The rows are ordered by grammage. Basis weights for bond, book, cover and other grades of papers are computed using different basic sizes, so the progression of weights down the right columns is untidy.

Table C.2: Grammage Equivalents for Common (US) Basis Weights (Sheet 1 of 2)

GRAMMAGE (G/ M ${ }^{\mathbf{2}}$)	BASIS WEIGHT	GRAMMAGE (G/ ${ }^{\mathbf{2}}$)	BASIS WEIGHT
30	20\# Book	150	40\# Ledger
34	9\# Manifold	152	60\# Cover
36	24\# Book	163	90 \# Index
44	30\# Book	163	100 \# Tag
45	12\# Manifold	175	80\# Bristol
49	13\# Bond	176	65\# Cover
49	33\# Book	178	120\# Book
52	35\# Book	197	90\# Bristol
59	40\# Book	199	110\# Index

Table C.2: Grammage Equivalents for Common (US) Basis Weights (Sheet 2 of 2)

GRAMMAGE (G/ $\mathrm{M}^{\mathbf{2}}$)	BASIS WEIGHT	GRAMMAGE (G/ M ${ }^{\mathbf{2}}$)	BASIS WEIGHT
60	16\# Bond	204	125\# Tag
67	45\# Bond	216	80\# Cover
74	50\# Book	219	100\# Bristol
75	20\# Bond	244	150\# Tag
81	55\# Book	253	140\# Index
89	60\# Book	263	120\# Bristol
90	24\# Bond	270	100\# Cover
104	70\# Book	285	175\# Tag
105	28\# Ledger	307	140\# Bristol
108	40\# Cover	307	170\# Index
118	80\# Book	325	200\# Tag
120	32\# Ledger	350	160\# Bristol
133	90\# Book	352	130\# Cover
135	36\# Ledger	394	180\# Bristol
135	50\# Cover	398	220\# Index
147	67\# Bristol	407	250\# Tag
148	100\# Book	438	200\# Bristol
		488	300\# Tag

C. 2 Japanese Media Weight

In Japan, a paper's basis weight is the weight of 1000 Sheets of its basic size and ream weights are given in kg.
The following table is originally published by EDS Inc., Editorial \& Design Services see $>$ [Japanese Paper Sizes]. For more help with grammage and basis weight conversion, see also $>$ [Grammage Conversion].
Following is the Japanese/grammage conversion formula:
Basis Weight (kg) / Basic Size $\left(\mathrm{m}^{2}\right)=$ grams per square meter
For example, the grammage of 70 kg Shiroku-ban stock when the size is 0.788×1.091 can be calculated as follows:
$70 /(0.788 \times 1.091)=81.4 \mathrm{~g} / \mathrm{m}^{2}$

In the table below，trade－sheet size is given in mm．
Table C．3：Japanese Media Weight

STOCK TYPE	$\begin{aligned} & \text { SHIROKU-BAN } \\ & 788 \times 1091 \end{aligned}$	$\begin{aligned} & \text { JIS B-BAN } \\ & 765 \times 1085 \end{aligned}$	$\begin{aligned} & \text { KIKU-BAN } \\ & 636 \times 939 \end{aligned}$	$\begin{aligned} & \text { JIS A-BAN } \\ & 625 \times 880 \end{aligned}$	GRAMMAGE $\left(G / M^{2}\right)$
上質紙 Joushitsushi	40	－－	－－	－－	46.5
	45	－－	31	20.5	52.3
	55	53	38	35	64.0
	70	67.5	48.5	44.5	81.4
	90	－－	62.5	47.5	104.7
	110	－－	71.5	70.5	127.9
	135	－－	93.5	80.5	157.0
	180	－－	－－	－－	209.3
中質紙 Chuushitsushi	－－	45	－－	30	54.2
	－－	55	－－	36.5	66.3
アート紙 Aatoshi	73	70.5	50.5	46.5	84.9
	90	87	62.5	57.5	104.7
	110	106	76.5	70.5	127.9
	135	130.5	93.5	86.5	157.0
マシンコート紙 Mashinkootoshi	63	61	－－	－－	73.3
	68	65.6	47	43.5	79.1
	73	70.5	50.5	46.5	84.9
	90	87	62.5	57.5	104.7
	110	106	76.5	70.5	127.9
	135	130.5	93.5	86.5	157.0
アートポスト紙 Aatoposutoshi	180	－－	125	－－	209.3
	200	－－	139	－－	232.6
	220	－－	153	－－	255.0

＊The following describes the five stock types in the above table：

- 上質紙 Joushitsushi（＂top－quality paper＂）contains 100\％chemical pulp；
- 中質紙 Chuushitsushi（＂medium－quality paper＂）contains a minimum of 70% chemical pulp；
- アート紙Aatoshi（＂art paper＂）is machine coated paper，available in top quality and medium quality（Joushitsu and Chuushitsu）；
－マシンコート紙 Mashinkootoshi（＂machine coated paper＂），also called Kootoshi（コート紙），is machine coated paper given only a thin coat of clay；
－アートポスト紙 Aatoposutoshi（＂art－post paper＂）is cover stock coated on one side．

C． 3 Paper Grade

－［ISO12647－2：2004］provides a rough classification of paper with 5 classes，which is generally referred to as paper grade．［ISO12647－2：2013］was updated in 2013 and a new set of 8 standard papers was defined that are more appropri－
ate for paper types that are used today. The following table provides a rough and non-normative translation between the two standard sets:

Table C.4: Translation of Paper grades between [IS012647-2:2004] and [IS012647-2:2013]

IS012647-2:2013		PRESS		IS012647-2:2004
ID	TYPE	GRADE		
PS1	Premium Coated	Sheet	1	Gloss coated
PS2	Improved Coated	Web	3	Gloss coated, web
PS3	Standard Coated Glossy	Web	3	Gloss coated, web
PS4	Standard Coated Matte	Web	2	Matte coated
PS5	Wood free Uncoated	Sheet	4	Uncoated white
PS6	Super Calendered	Web	4	Uncoated white
PS7	Improved Uncoated	Web	4	Uncoated white
PS8	Standard Uncoated	Web	$4 / 5$	Uncoated white/yellowish

D Media Size

The following table defines a set of named media sizes as defined by $>$ [PPD].

Implementation Remark

Since media sizes may be real numbers, comparison of media sizes SHOULD take into account certain rounding errors. For example, different media sizes SHOULD be considered equal when all numbers are the same within a range of 5 points.

D. 1 Architectural Paper Sizes

Table D.1: Architectural Paper Sizes

MEDIA SIZE	SIZE IN POINTS	MILLIMETERS	SIZE IN INCHES
ArchA	648×864	228.6×304.8	9×12
ArchB	864×1296	304.8×457.2	12×18
ArchC	1296×1728	457.2×609.6	18×24
ArchD	1728×2592	609.6×914.4	24×36
ArchE	2592×3456	914.4×1219.2	36×48
ArchE1	2160×3024	762.0×1066.8	30×42
ArchE2	1872×2736	660.4×965.2	26×38
ArchE3	1944×2808	685.8×990.6	27×39

D. 2 Business Card Sizes

Table D.2: Business Card Sizes

MEDIA SIZE	SIZE IN POINTS	MILEIMETERS	SIZE IN INCHES
BusinessCard_Japan	156×258	55×91	2.2×3.6
BusinessCard_UK	156×241	55×85	2.2×3.3
BusinessCard_US	145×252	51×89	2.0×3.5

D. 3 International A Paper Sizes

These sizes are defined by ISO standards, including $\boldsymbol{~ [I S O 2 1 6 : 2 0 0 7] ~ a n d ~ b y ~ J I S ~ s t a n d a r d s ~} \boldsymbol{\bullet}$ [JIS P0138:1998] except where noted.

Table D.3: International A Paper Sizes (Sheet 1 of 2)

| MEDIA SIZE | | SIZE IN POINTS | MILLIMETERS |
| :--- | :---: | :---: | :---: | SIZE IN INCHES

Table D.3: International A Paper Sizes (Sheet 2 of 2)

MEDIA SIZE	SIZE IN POINTS	$\begin{gathered} \text { SIZE IN } \\ \text { MILLIMETERS } \end{gathered}$	SIZE IN INCHES
A2	1191×1684	420×594	16.54×23.39
A3	842×1191	297×420	11.69×16.54
A3Extra ${ }^{\text {a }}$	913×1262	322×445	12.67×17.52
A4	595×842	210×297	8.27×11.69
A4Extra ${ }^{\text {a }}$	667×914	235.5×322.3	9.27×12.69
A4Plus ${ }^{\text {a }}$	595×936	210×330	8.27×13
A4Tab ${ }^{\text {a }}$	638×842	225×297	8.86×11.69
A5	420×595	148×210	5.83×8.27
A5Extra ${ }^{\text {a }}$	492×668	174×235	6.85×9.25
A6	297×420	105×148	4.13×5.83
A7	210×297	74×105	2.91×4.13
A8	148×210	52×74	2.05×2.91
A9	105×148	37×52	1.46×2.05
A10	73×105	26×37	1.02×1.46

a. Non-standard ISO size variations.

D. 4 International B Paper Sizes

These sizes are defined by ISO standards, including $>$ [ISO216:2007] and by JIS standards $>$ [JIS P0138:1998].
Table D.4: International B Paper Sizes

| MEDIA SIZE | | SIZE IN POINTS | MILLIMETERS |
| :--- | :---: | :---: | :---: | SIZE IN INCHES

D. 5 International C Envelope Sizes

These sizes are defined by ISO standards, including [ISO216:2007].
Table D.5: International C Envelope Sizes

MEDIA SIZE	SIZE IN POINTS	MILLIMETERS	SIZE IN INCHES
C0	2599×3676	917×1297	36.1×51.1
C1	1837×2599	648×917	25.5×36.1
C2	1298×1837	458×648	18.0×25.5
C3	918×1298	321×458	12.8×18.0
C4	649×918	229×324	9.0×12.8
C5	459×649	162×229	6.4×9.0
C6	323×459	114×162	4.5×6.4
C7	230×323	81×114	3.2×4.5
C8	162×230	57×81	2.2×3.2
C9	113×162	40×57	1.6×2.2
C10	79×113	28×40	1.1×1.6

D. 6 RA and SRA Paper Sizes

Table D.6: RA and SRA Paper Sizes

MEDIA SIZE	SIZE IN POINTS	MILLIMETERS	SIZE IN INCHES
	2438×3458	860×1220	33.9×48.0
RA1	1729×2438	610×860	24.0×33.9
RA2	1219×1729	430×610	16.9×24.0
RA3	865×1219	305×430	12.0×16.9
RA4	609×865	215×305	8.5×12.0
SRA0	1814×2551	900×1280	35.4×50.4
SRA1	1276×1814	640×900	25.2×35.4
SRA2	907×1276	350×640	17.7×25.5
SRA3	638×907	225×320	12.6×17.7
SRA4			8.9×12.6

D. 7 US ANSI Paper Sizes

Table D.7: US ANSI Paper Sizes (Sheet 1 of 2)

MEDIA SIZE	SIZE IN POINTS	MILLIMETERS	SIZE IN INCHES
AnsiA $^{\text {a }}$	612×792	215.9×279.4	8.5×11

Table D.7: US ANSI Paper Sizes (Sheet 2 of 2)

MEDIA SIZE	SIZE IN POINTS	MILLIMETERS	SIZE IN INCHES
AnsiB ${ }^{\text {b }}$	792×1224	279.4×431.8	11×17
AnsiC	1224×1584	431.8×558.8	17×22
AnsiD	1584×2448	558.8×863.6	22×34
AnsiE	2448×3168	863.6×1117.6	34×44

a. Equivalent to US Letter.
b. Equivalent to US Ledger \& Tabloid.

D. 8 US Paper Sizes

Table D.8: US Paper Sizes

MEDIA SIZE	SIZE IN POINTS	MILLIMETERS	SIZE IN INCHES
HalfLetter	396×612	139.7×215.9	5.5×8.5
Letter $^{\mathrm{a}}$	612×792	215.9×279.4	8.5×11
Legal	612×1008	215.9×355.6	8.5×14
JuniorLegal	360×576	127.0×203.2	5.0×8.0
LedgerTabloid ${ }^{\text {b }}$	792×1224	279.4×431.8	11.0×17.0

a. Equivalent to ANSI A.
b. Equivalent to ANSI B.

E String Generation

XJDF specifies a set of @XXXFormat @XXXTemplate pairs that allow dynamic generation of strings.
The function defined when using the attributes @XXXFormat and @XXXTemplate is based on the standard C printf() func-
 Predefined variables used in @XXXTemplate.

Table E.1: Predefined variables used in $\begin{aligned} & \text { XXXXTemplate (Sheet } 1 \text { of 2) }\end{aligned}$

NAME	'C' LANGUAGE DATATYPE	DESCRIPTION
<a Partition Key>	string	Any partition key that is an attribute of Part - see table • Table 6.6 Part Element.
ActualAmount	float	Actual amount of the product that was produced.
Amount	float	Planned amount of the product that was produced.
Customerid	string	CustomerInfo/@CustomerID.
CustomerName	string	Contact/@Preson of the customer contact. The sequence and selection of attributes is system dependent.
Date	string	Current @Date in ${ }^{\text {c [ISO8601:2004] format. }}$
DevicelD	string	Device/@ID of the device that produced the output.
DeviceName	string	Device/@DescriptiveName of the device that produced the output.
EndTime	string	Actual end time of the job.
Error	string	List of errors that happened during the job. The formatting of errors is system dependent.
ErrorStats	string	Statistics on errors that happened during execution. The formatting of error statistics is system dependent.
ExposedMediaName	string	Resource/@DescriptiveName of the plate that is being imaged.
GeneralID:XXX	string	GeneralID/@IDValue of a GeneralID[@IDUsage = "XXX"]. For example if @Format = "\%i" and @Template= "GeneralID:foo" then for: <GeneralID IDUsage="foo" IDValue="1"/> the extracted value is 1 .
Generated	string	System generated string, for example a file name.
Input	string	Local file name of the input file. A value of input SHALL NOT be specified for a FileSpec that describes an input file.
Jobld	string	XJDF/@JobID of the job.
JobName	string	XJDF/@DescriptiveName of the job that is being processed.
jobPartIDJobPartID	string	XJDF/@JobPartID of the job.
MediaBrand	string	Resource/Media/@Brand of the media that is being printed.
MoonPhase	string	Phase of the moon at the @StartTime of the job.
Operator	string	Contact/@Person that describes the operator. The sequence and selection of attributes is system dependent.

Table E.1: Predefined variables used in $\begin{aligned} & \text { XXXXTemplate (Sheet } 2 \text { of 2) }\end{aligned}$

NAME	LANGUAGE DATATYPE	DESCRIPTION
OperatorText	string	Text from the operator as defined in Comment[@Type = "OperatorText"].
PrintQuality	string	The value of InterpretingParams/@PrintQuality.
ProoferProfileName	string	The value of ColorSpaceConversionParams/FileSpec/@UserFileName of the ColorSpaceConversion process that is used for proofing.
PressProfileName	string	The value of ColorSpaceConversionParams/FileSpec/@UserFileName of the ColorSpaceConversion process that is used for final output on the press.
Resolution	int	The value of ObjectResolution/@Resolution.
ResolutionX	int	The first (X) value of ObjectResolution/@Resolution.
ResolutionY	string	The first (Y) value of ObjectResolution/@Resolution.
ScreeningFamily	string	Actual start time of the job.
StartTime	string	Current @Time in [ISO8601:2004] format.
Time	int	Value of RunList/@NPage of the current document.
TotalPagesInDoc	string	Warnings that happened during the job. Warnings don't lose information in the resulting job, while errors do. The formatting of warnings is system dependent.
Warning		

Example E.1: aFileTemplate and aFileFormat

With @JoblD="j001" and a RunList defining 2024 created files, this example will iterate over all created files and place them into:

```
"file://myserver/next/j001/m0000.pdf"
"file://myserver/next/j001/m2023.pdf"
<RunList>
    <FileSpec FileFormat="file://myserver/next/%s/m%4.i.pdf"
        FileTemplate="JobID DocIndex" MimeType="application/pdf"/>
</RunList>
```


F Pagination Catalog

This appendix provides a set of diagrams that explain how pages are arranged in groups when preparing to print on the surfaces of large sheets. The diagrams show a wide range of folding patterns to be used before binding. The folding patterns are specified in the XJDF Fold Catalog (see \downarrow Figure A-2: Fold Catalog Part 1 and \downarrow Figure A-3: Fold Catalog Part 2) which describes how to paginate single-sheet bindery signatures

F. 1 How to interpret the diagrams

F.1.1 Legend

This appendix describes the structure and arrangement of bindery signatures into pagination schemes, which divide sheet surfaces into grids of rectangular areas to be filled by appendix pages during imposition process. These arrangements are the consequence of manipulations made on the sheets by folding, trimming and binding them in order to make booklets ready for assembly.
This appendix uses diagrams to describe the pagination schemes. Each diagram shows a side of an unfolded sheet, illustrating how it is divided into "signature cells". All cells are usually of the same size, allowing the entire sheet to be divided into equal portions, with each portion covering the whole area between surrounding folds. A signature cell is the space that "receives" a single document page and surrounding margins that are part of the gutters.
Each cell shown in the diagram displays how to orient the document page that is to be imposed there, and specifies the index of the page to be imposed. This means that the resulting booklet will have pages that are properly ordered and properly oriented in the product reader view, according to the default values defined in the this [XJDF] specification.

Note: In contrast to the usual convention in this specification that all indices are 'zero' based, the page numbering in the diagrams in this appendix are 'one' based for readability.
The diagrams also show the pagination to be used when pages are flowed in reverse order because of different binding options, see Section F.1.3 Modifying the Pagination Schemes with BindingOrientation.
Figure F-1: Legend for Interpreting Diagrams

- Folding sequences are described using the same notation found in \downarrow Section A.3.4 Fold Catalogs.

F.1.2 Meaning of a Pagination Scheme

The diagrams in $\stackrel{\text { Section F. } 2 \text { Pagination Diagrams show the configuration of the page cells that occurs when the bindery }}{ }$ signature is specified using BinderySignature/@FoldCatalog.

The pagination indexes shown in the diagram correspond to the imposition order, starting with 1 , up to the number of pages in a booklet. This index does not correspond to the actual page numbers that will be imposed on the sheets, unless a finished product is made of a single booklet and the first page is numbered " 1 ". These numbers specify the order that pages are imposed into signature cells, from an array of pages associated to a booklet.
When multiple BinderySignatures are assembled together, the imposition indexes have to be translated into numbers referring to the list of source document pages. This is calculated using Assembly/@Order and, if specified, AssemblySection/@BinderySignatureID.
The numbers and page orientation shown in the diagram correspond to the finished product view in reader's perspective.

F.1.3 Modifying the Pagination Schemes with BindingOrientation

The attribute BinderySignature/@BindingOrientation may be set to indicate that the reference corner is displaced. This manipulation is not made on the folded sheet. Only the "virtual" corner is changed, after edges had been identified. This means that the edges that are recognized as "binding" and "jog" are found at new places on the folded sheet, changing the location of the spine, head, face and foot on the booklet before pagination can be applied.
This @BindingOrientation attribute is very special because it has two default values, depending on the type of signature being defined: "Flip0" for single-row grids (no closed head), "Rotate0" for all other grids. This particularity reflects common practice of recognizing the jog edge to be at the top of signatures without closed heads.
The diagrams in $\stackrel{\text { Section F. } 2 \text { Pagination Diagrams are based on these default values. }}{\text { Se }}$
Important note: When a page is rotated 90° (clockwise or counterclockwise), this rotation is made inside the signature cell. The cell itself is not rotated because the folding operation remains the same. This means that the aspect ratio of the page must have been designed accordingly. Observe this situation in the examples in the next section.

F.1.4 Examples of applying BindingOrientation

The following examples describe the default orientation and pagination of BinderySignature depending on @BindingOrientation.
Note: The orientation of the final fold is defined in the production coordinate system. The binding side of the final product always defaults to left and is modified by @BindingOrientation regardless of whether the final fold in production is horizontal or vertical.

F.1.4.1 Signature with Horizontal final folds

The examples below show how to read the diagrams after applying @BindingOrientation. Each diagram shows the pagination of the lay-side diagram defined for fold catalog F8-7 for a given @BindingOrientation.
Table F.1: Original Diagram

Rotate 0			

Table F.2: Signatures with horizontal final folds

F.1.4.2 Signature with Vertical Binding Edges

The examples below show how to read the diagrams after applying the transformations explained previously. Each diagram is an interpretation of the lay-side diagram defined for fold catalog F12-11, indicating the scheme name above it.

Table F.3: Original Diagram

F. 2 Pagination Diagrams

Table F.5: Pagination Diagrams (Sheet 1 of 33)

XJDF FOLD CATALOG	$\begin{aligned} & \text { GRID } \\ & \text { SIZE } \end{aligned}$		FRONT SIDE (LAY SIDE)
FOLDING SEQUENCE			BACK SIDE (NON-LAY SIDE)
F2-1	1 x 1		
(no fold)			

XJDF FOLD	GRID
CATALOG	SIZE

fOLDING SEQUENCE
BACK SIDE (NON-LAY SIDE)

F4-1	2x1	T T 2 3 3 2
$\uparrow^{1 / 2}$		T \top 4 1 1
F4-2	2x1	T 4 T 1 1 1
$\downarrow^{1 / 2}$		T T 2 3 3 2
F6-1	3x1	T T 5 4 1 2 3
$\uparrow^{1 / 3} \downarrow^{1 / 3}$		T T T 2 3 6 5 4 1
F6-2	3x1	T T T 1 4 5 6 3 2
$\downarrow^{1 / 3} \uparrow^{1 / 3}$		
F6-3	3x1	T T T 3 2 5 4 5
$\uparrow^{1 / 4} \uparrow^{1 / 2}$		\top T T 6 1 4 1 6 3

XJDF FOLD	GRID
CATALOG	SIZE

fOLDING SEQUENCE
BACK SIDE (NON-LAY SIDE)

F6-4	3x1	T T T 3 2 5 4 5 2
$\uparrow^{1 / 3} \uparrow^{1 / 3}$		T \square T 6 1 4 1 6 3
F6-5	3x1	T T T 2 5 4 2 3
$\uparrow^{2 / 3} \downarrow^{1 / 3}$		T T \top 3 6 1 4 1 6 -
F6-6	3x1	T T T 2 5 4 5 2 3
$\uparrow^{3 / 4} \downarrow^{1 / 4}$		T T T 3 6 1 4 1 6 -
F6-7	3x1	
$\uparrow^{1 / 4} \downarrow^{1 / 4}$		T T T 2 3 6 5 4 1
F6-8	3x1	T T T 6 3 2 1 4 5
$\uparrow^{2 / 3} \uparrow^{1 / 3}$		7 T T 1 4 4 6 5

XJDF FOLD	GRID
CATALOG	SIZE

FOLDING SEQUENCE
BACK SIDE (NON-LAY SIDE)

F8-1	4x1	T T T T 6 3 2 7 3 6 7 2
$\uparrow^{1 / 2} \uparrow^{1 / 4}$		T T T T 8 1 4 5 1 8 5 4
F8-2	4x1	T T T T 2 7 6 3 7 2 3 6
$\uparrow^{1 / 2} \downarrow^{1 / 4}$		T T T \top 4 5 8 1 5 4 1 8
F8-3	4×1	T T T T 2 3 6 7 6 3 2
$\uparrow^{1 / 4} \downarrow^{1 / 4} \uparrow^{1 / 4}$		T T T 8 5 4 1 1 4 5 8
F8-4	4x1	T T T T 3 2 7 6 6 7 2 3
$\uparrow^{1 / 4} \uparrow^{1 / 2} \downarrow^{1 / 4}$		T T T T 5 8 1 4 4 1 8 5
F8-5	4x1	T T T T 4 5 2 7 7 4 7 2
$\uparrow^{1 / 4} \uparrow^{1 / 4} \uparrow^{1 / 4}$		T 8 T T T 1 6 3 1 8 3 6

XJDF FOLD	GRID
CATALOG	SIZE

FOLDING SEQUENCE
BACK SIDE (NON-LAY SIDE)

F8-6	4x1	T T T T 2 7 4 5 2 5 4
$\uparrow^{3 / 4} \downarrow^{1 / 4} \downarrow^{1 / 4}$		T T T T 6 3 8 1 3 6 1 8
F8-7	2x2	
$\uparrow^{1 / 2}+\uparrow^{1 / 2}$		
F10-1	5x1	T T T T T 9 8 5 4 1 2 3 6 7 10
$\uparrow^{1 / 5} \downarrow^{1 / 5} \uparrow^{1 / 5} \downarrow^{1 / 5}$		T T T T T 2 3 6 7 10 9 8 5 4 1
F10-2	5x1	T T T T T 2 9 4 7 6 9 2 7 4 5
$\uparrow^{4 / 5} \downarrow^{1}$	$\downarrow^{1 / 5}$	T T T T T 5 8 3 10 1 6 3 8 1 10

XJDF FOLD CATALOG	$\begin{aligned} & \text { GRID } \\ & \text { SIZE } \end{aligned}$	FRONT SIDE (LAY SIDE)
FOLDING SEQUENCE		BACK SIDE (NON-LAY SIDE)
F10-3	5x1	T T T T T 2 9 8 3 6 2 3 8 5
$\uparrow^{2 / 5} \downarrow^{2 / 5} \uparrow^{1 / 5}$		T T T T T 5 4 7 10 1 6 7 4 1 10
F12-1	6x1	T T T T T T 2 11 10 3 6 7 2 3 10 7 6
$\uparrow^{1 / 3} \downarrow^{1 / 3} \uparrow^{1 / 6}$		T T T T T T 8 5 4 9 12 1 5 8 9 4 1 12
F12-2	6x1	T T T T T T 10 3 2 11 8 5 3 10 11 2 5 8
$\uparrow^{1 / 3} \uparrow^{1 / 3} \downarrow^{1 / 6}$		T T T \top T T 6 7 12 1 4 9 6 1 12 9 4
F12-3	6x1	T T T T T T 10 7 2 3 6 11 3 6 11 10 7 2
$\uparrow^{1 / 2} \downarrow^{1 / 6} \uparrow^{1 / 6}$		T T T T T T 12 5 4 1 8 9 1 8 9 12 5 4
F12-4	6x1	T T T T T T 2 11 6 7 10 3 3 6 11 10 7 2
$\uparrow^{1 / 2} \downarrow$		T T T T T T 4 9 8 5 12 1 8 9 12 5 4

XJDF FOLD	GRID
CATALOG	SIZE

FOLDING SEQUENCE
BACK SIDE (NON-LAY SIDE)

F12-5	6x1	T T T T T T 7 2 11 10 3 6 6 11 2 3 10 7
$\uparrow^{1 / 2} \downarrow^{1 / 3} \uparrow^{1 / 6}$		T T T T T T 5 4 9 12 1 8 8 9 4 1 12 5 -
F12-6	6x1	T T T T T T 2 3 6 7 10 11 10 7 6 3 2
$\begin{gathered} \uparrow^{1 / 6} \downarrow^{1 / 6} \uparrow^{1 / 6} \\ \downarrow^{1 / 6} \uparrow^{1 / 6} \end{gathered}$		T T T T T T 12 9 8 5 4 1 1 4 5 8 9 12
F12-7	3x2	
$\uparrow^{1 / 3} \downarrow^{1 / 3}+\uparrow^{1 / 2}$		
F12-8	3x2	
$\uparrow^{2 / 3} \uparrow^{1 / 3}+\uparrow^{1 / 2}$		

XJDF FOLD	GRID
CATALOG	SIZE

FOLDING SEQUENCE

XJDF FOLD	GRID
CATALOG	SIZE

F12-12	2x3	
$\uparrow^{1 / 2}+\uparrow^{2 / 3} \downarrow^{1 / 3}$		
F12-13	2x3	
$\uparrow^{1} / 2+$		

XJDF FOLD CATALOG	$\begin{aligned} & \text { GRID } \\ & \text { SIZE } \end{aligned}$	FRONT SIDE (LAY SIDE)			
folding Sequence		BACK SIDE (NON-LAY SIDE)			
F12-14	2x3				
$\uparrow^{1 / 2}+\uparrow^{1 / 3} \downarrow^{1 / 3}$					
F14-1	7x1	T T T 13 12 9 2 3	T T 8 5 7 10	1 \mid 4 11 1 14	
$\begin{aligned} & \uparrow^{1 / 7} \downarrow^{1 / 7} \uparrow^{1 / 7} \\ & \downarrow^{1 / 7} \uparrow^{1 / 7} \downarrow^{1 / 7} \end{aligned}$					
F16-1	8x1	T T T T T T T T 10 7 2 15 14 3 6 11 7 10 15 2 3 14 11 6			
$\uparrow^{1 / 2} \downarrow^{1 / 4} \uparrow^{1 / 8}$		T T T 12 5 4 5 12 13	T T 13 16 4 1 $------~$		
F16-2	8x1	T T T 2 15 10 15 2		T T 11 14 6 3	[T
$\boldsymbol{T}^{1 / 2} \downarrow^{1 / 4} \downarrow^{1 / 8}$					

XJDF FOLD	GRID
CATALOG	SIZE

FOLDING SEQUENCE
BACK SIDE (NON-LAY SIDE)

F16-3	8x1	T T T T T T T T 6 11 14 3 2 15 10 7 11 6 3 14 15 2 7 10							
$\uparrow^{1 / 2}$		T 8 9 .--	1 9 8	16	1 16 -	4 13	13	T 12 5	5

F16-4	8×1

| T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 16 | 1 | 8 | 9 | 12 | 5 | 4 | 13 |
| 1 | 16 | 9 | 8 | 5 | 12 | 13 | 4 |
| | | | | | | | |

F16-5 8x1	T T T T T T T 16 13 12 9 8 5 4 1 1 1 4 5 8 9 12 13 16
$\begin{gathered} \downarrow^{1 / 8} \uparrow^{1 / 8} \downarrow^{1 / 8} \uparrow^{1 / 8} \\ \downarrow^{1 / 8} \uparrow^{1 / 8} \downarrow^{1 / 8} \end{gathered}$	T T T T T T T T 2 3 6 7 10 11 14 15 15 14 11 10 7 6 3 2
F16-6 4x2	
$\uparrow^{1 / 2}+\uparrow^{1 / 2}+\uparrow^{1 / 4}$	

XJDF FOLD	GRID
CATALOG	SIZE

F16-7	4x2	
$\uparrow^{1 / 2}+\uparrow^{1 / 2}+\downarrow^{1 / 4}$		
F16-8	4x2	
$\uparrow^{1 / 2}+\downarrow^{1 / 2}+\downarrow^{1 / 4}$		
F16-9	4x2	
$\uparrow^{1 / 2} \downarrow$		

XJDF FOLD	GRID
CATALOG	SIZE

F16-10	4x2	
$\uparrow^{1 / 2} \uparrow^{1 / 4}+\uparrow^{1 / 2}$		
F16-11	4x2	
$\uparrow^{1 / 4} \downarrow^{1 / 4} \uparrow^{1 / 4}+\uparrow^{1 / 2}$		
F16-12	4x2	
$\uparrow^{1 / 4} \uparrow^{1 / 4}$	$\uparrow^{1 / 2}$	

XJDF FOLD	GRID
CATALOG	SIZE

F16-13

XJDF FOLD	GRID
CATALOG	SIZE

XJDF FOLD	GRID
CATALOG	SIZE

F20-1	5×2

XJDF fold CATALOG	$\begin{aligned} & \text { GRID } \\ & \text { SIZE } \end{aligned}$	FRONT SIDE (LAY SIDE)
folding Sequence		BACK SIDE (NON-LAY SIDE)
F24-4	6x2	
$\uparrow^{1 / 3} \downarrow^{1 / 3} \downarrow^{1 / 6}+\uparrow^{1 / 2}$		
F24-5	6x2	
$\uparrow^{1 / 3} \uparrow^{1 / 3} \downarrow^{1 / 6}+\uparrow^{1 / 2}$		
F24-6	6x2	
$\begin{gathered} \uparrow^{1 / 6} \\ \downarrow^{1 / 6} \end{gathered}$		

XJDF FOLD GRID CATALOG SIZE	FRONT SIDE (LAY SIDE)
FOLDING SEQUENCE	BACK SIDE (NON-LAY SIDE)
F24-7 6x2	
$\uparrow^{1 / 3}+\uparrow^{1 / 2}+\uparrow^{1 / 3} \downarrow^{1 / 6}$	

FRONT SIDE (LAY SIDE)

F24-9	
$\uparrow^{2} / 3 \uparrow^{1 / 3}+\uparrow^{1 / 2} \downarrow^{1 / 4}$	
F24-10 3x4	
$\uparrow^{1 / 3} \uparrow^{1 / 3}+\uparrow^{1 / 2} \downarrow^{1 / 4}$	

XJDF FOLD GRID CATALOG SIZE	FRONT SIDE（LAY SIDE）
folding sequence	BACK SIDE（NON－LAY SIDE）
F24－11 4x3	\top T \top T 6 19 18 7 19 6 7 18 $z \tau$ ε τ $\varepsilon 乙$ ε $z 乙$ $\varepsilon 乙$ $乙$ \perp \perp \perp \perp \top \top \top \top 10 15 14 11 10 10 11 14
$\uparrow^{1 / 2}+\uparrow^{2} / 3 \downarrow^{1 / 3}+\uparrow^{1 / 4}$	
F28－1 7×2	
$\begin{gathered} \boldsymbol{\uparrow}_{7}^{1 / 7} \downarrow^{1 / 7} \boldsymbol{\uparrow}^{1 / 7} \downarrow^{1 / 7} \\ \boldsymbol{\uparrow}^{1 / 7} \downarrow^{1 / 7}+\boldsymbol{\uparrow}^{1 / 2} \end{gathered}$	
F32－1 16x1	
$\uparrow^{1 / 2} \downarrow^{1 / 4} \uparrow^{1 / 8} \downarrow^{1 / 16}$	

F32-2 8x2	
$\uparrow^{1 / 2} \downarrow^{1 / 4}+\uparrow^{1 / 2}+\uparrow^{1 / 8}$	
F32-3 8x2	
$\uparrow^{1 / 2} \downarrow^{1 / 4}+\uparrow^{1} / 2+\downarrow^{1 / 8}$	

FRONT SIDE (LAY SIDE)

F32-4 4×4	
$\begin{aligned} & \boldsymbol{}^{1} / 2+\boldsymbol{\top}^{1} / 2+ \\ & \boldsymbol{\tau}^{1} / 4+\boldsymbol{\top}^{1} / 4 \end{aligned}$	
F32-5 4x4	
$\begin{aligned} & \uparrow^{1} / 2+\uparrow^{1} / 2+ \\ & \downarrow^{1} / 4+\downarrow^{1 / 4} \end{aligned}$	

FRONT SIDE (LAY SIDE)

XJDF FOLD	GRID
CATALOG	SIZE

F32-8 4×4	
$\begin{gathered} \uparrow^{1} / 2 \downarrow^{1 / 4}+ \\ \boldsymbol{\uparrow}^{1 / 2} \downarrow^{1 / 4} \end{gathered}$	

XJDF FOLD	GRID
CATALOG	SIZE

F32-9

XJDF FOLD	GRID
CATALOG	SIZE

F36－2	6x3	$\left[\begin{array}{c}\text {－－－－－} \\ \varepsilon 乙 \\ \hline 1 \\ \hline\end{array}\right.$	----1 ¢ +1 +1	¿－－－－ Sl +1	－－－－－1 č 乙 +1 1	----1 81 +1	61 81 +
		T 26 11	T 11 26	T 10 27	T 27 10	7 30 7	T 7 30
			ç $乙$ \perp	$\stackrel{\downarrow}{\text { ¢ }}$ \perp \perp		1 1 -1 1	1ε 9 1 \perp
$\begin{gathered} \uparrow^{1 / 3} \downarrow^{1 / 3}+\uparrow^{1 / 3} \\ \downarrow^{1 / 3}+\uparrow^{1 / 6} \end{gathered}$			－－－ 0 0 +	－－－－ L +	---1 1 91 +		
		1 8 29 $-\ldots$	1 1 29 8	1 1 9	1 9 28 -	T 12 25 -C	T 25 12
		$\|$z¢ $-\cdots$ 1	c． 乙 +	$\stackrel{\downarrow}{\varepsilon}$－ +	¢ $¢$ \dagger \perp	9ε \downarrow +	- 9ε +1

F40－1	5x4		∞	$\mid-$		FF－－－－－＞
		$\vdash \mathbb{N}$ ¢	$\stackrel{\sim}{\omega} \stackrel{\omega}{\omega}$	$1 ⿻ 上 丨^{\circ} \mathrm{C}$	¢ $\sim_{\sim}-1 \mid$	$1-8=$
		$\vdash{ }_{-\infty}$	${ }_{\omega} \omega_{\infty}-\backslash$	$\bigcirc{ }^{\circ} \mathrm{O}$	\checkmark－-1	－${ }^{\circ}$
		L°	$\begin{array}{\|cc\|} \hline & \omega-1 \end{array}$	$1-\cos$	$\geq \vee-1$	1－
$\begin{gathered} \uparrow^{1 / 5} \downarrow^{1 / 5} \uparrow^{1 / 5} \\ \downarrow^{1 / 5}+\uparrow^{1 / 2} \downarrow^{1 / 4} \end{gathered}$		－$-\cdots-\cdots \mid$	$\vdash \cdots$	～ぃ－－－－－－	－－－－－－	No－－－－－－1
		水	$1 \sim_{\sim}^{\infty} \stackrel{\square}{\circ}$	${ }^{\circ}$ O ${ }_{\text {c }}$	－${ }_{\text {d }}$	$8 \sim$
		ow	$\vdash \mathscr{m}_{\infty}$	\cdots－	$1 \hat{m}^{+}$	－${ }^{\text {b }}$
		：	$1 ⿻ 上 丨^{\circ}$	\＆ 0 O \dagger	－－	－-7

XJDF FOLD	GRID
CATALOG	SIZE

F48-1

F48-2 4×6	
$\boldsymbol{N}^{1 / 4} \boldsymbol{\downarrow}^{1 / 4} \boldsymbol{N}^{1 / 4}$ $+\boldsymbol{\uparrow}^{1 / 3} \downarrow^{1 / 3} \boldsymbol{N}^{1 / 6}$	

BACK SIDE (NON-LAY SIDE)

XJDF FOLD	GRID	FRONT SIDE (LAY SIDE)
CATALOG	SIZE	
FOLDING SEQUENCE	BACK SIDE (NON-LAY SIDE)	

F64-2 8x	
$\begin{gathered} \uparrow^{1 / 4} \downarrow^{1} / 4 \uparrow^{1 / 4} \\ +\uparrow^{1} / 4 \downarrow^{1 / 4} \uparrow^{1 / 4}+\uparrow^{1 / 8} \end{gathered}$	

G Hole Pattern Catalog

The following table defines the specifics of the predefined holes in HoleMakingParams and HoleMakingIntent.

Notes:

1 All patterns are centered on the sheet along the reference edge.
2 Reference edge is always defined relative to a portrait orientation of the medium, regardless of the orientation of the printed image or processing path.
3 The pattern axis offset is always specified relative to the reference edge.
4 The default pattern axis offset is always specified in points.
5 Thumbcuts are available in various standard shapes (labeled "No. N " where N is minimally ranging from 2..7). "No. 3" seems to be the most widely used.
6 Single thumbcuts appear always in the center of the reference edge.
7 Oval shape holes actually look sometimes more like rectangular holes with rounded corners.
8 Generic hole types are dependent on the geographical area where the device is used.

Sources:

1 [PWGFINMIB]

G. 1 Naming Scheme

Table G.1: Naming Scheme for Hole Patterns

NAME	DESCRIPTION
General	<m\|i>: m = metric (millimeter is used), i = imperial (inch, where 1 inch $=25.4 \mathrm{~mm}$)
Ring Binding	R<\#holes><m\|i>-<variant> Example: R2m-DIN = RingBind, 2 hole, metric, DIN
Plastic Comb	P<pitch><m\|i>-<shape>-<\#thumbcuts>t Example: P16:9m-round-0t = Plastic Comb, 9/16" pitch (16:9), round, no thumbcut
Wire Comb	W<pitch><m\|i>-<shape>-<\#thumbcuts>t Example: W2:1i-square-1t = Wire Comb, 1/2" pitch (2:1), square, one thumbcut
Coil/Spiral	C<pitch><m\|i>-<shape>-<\#thumbcuts>t Example: C 9.5 m -round-ot = Coil, 9.5 mm , round, no thumbcut
Special	S<\#holes> Example: S1-generic

G. 2 Ring Binding - Two Hole

Table G.2: Hole Details for R2 Series (Sheet 1 of 2)

$\begin{aligned} & \text { HOLE } \\ & \text { PATTERN } \\ & \text { ID } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \mathrm{S} \\ & \mathrm{H} \\ & \mathrm{~A} \\ & \mathrm{P} \\ & \mathrm{E} \end{aligned}$	HOLE EXTENT	PATTERN GEOMETR Y	PATTERN AXIS OFFSET	XJDF DEFAULT PATTERN AXIS OFFSET	$\begin{aligned} & \mathrm{E} \\ & \mathrm{D} \\ & \mathrm{G} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \\ & \mathrm{~T} \\ & \mathrm{E} \end{aligned}$	SOURCE
R2-generic	Generic request of a 2-hole pattern	\bigcirc	$\begin{aligned} & 5-13 \\ & \mathrm{~mm} \\ & 0.2-0.51^{\prime \prime} \end{aligned}$	N/A	$\begin{aligned} & 4.5-13 \\ & \mathrm{~mm} \\ & 0.18-0.51^{\prime \prime} \end{aligned}$	$\begin{aligned} & 34.02 \\ & (\cong 12 \mathrm{~mm}) \end{aligned}$	Left	See note (8)	N/A
R2m-DIN	DIN 2-hole MIB: 6 = twoHoleDIN and $10=$ twoHoleMetric	0	5.5 ± 0.1 mm	$\begin{aligned} & 80 \pm 0.1 \\ & \mathrm{~mm} \end{aligned}$	7 or 11 ± 0.3 mm 7 mm for blocks of <= 15 mm thick	$\begin{aligned} & 31.18 \\ & (\cong 11 \mathrm{~mm}) \end{aligned}$	Left	A4 and A5	$\begin{aligned} & \text { DIN } \\ & \text { 5005:1991 } \\ & \text { DIN } \\ & \text { 821:1973 } \end{aligned}$
R2m-ISO	ISO 2-hole MIB: 6 = twoHoleDIN and 10 = twoHoleMetric		$\begin{aligned} & 6 \pm 0.5 \\ & \mathrm{~mm} \end{aligned}$	80 ± 0.5 mm	$12 \pm 1 \mathrm{~mm}$ Australian Standard AS P5- $1969: 10 \pm 1$ mm	$\begin{aligned} & 34.02 \\ & (\cong 12 \mathrm{~mm}) \end{aligned}$	Left	Also used in Japan	$\begin{aligned} & \text { ISO } \\ & 838: 1974 \\ & \text { (E) } \end{aligned}$
R2m-MIB	Printer Finishing MIB twoHoleDIN and twoHoleMetric		5-8 mm	80 ± 0.5 mm	$4.5-13$ mm	$\begin{aligned} & 31.18 \\ & (\cong 11 \mathrm{~mm}) \end{aligned}$	Left		Printer Finishing MIB
R2i-US-a	US 2-hole, Variant A MIB: 4 = twoHoldUSTop and 12 = twoHoleUSSide		$\begin{aligned} & 0.2- \\ & 0.32 " \end{aligned}$	$2.75{ }^{\prime \prime}$	0.18-0.51"	$\begin{aligned} & 29.25 \\ & \left(\cong 13 / 32^{\prime \prime}\right) \end{aligned}$	Left for letter Top for led- ger		Printer Finishing MIB

Table G.2: Hole Details for R2 Series (Sheet 2 of 2)

$\begin{aligned} & \text { HOLE } \\ & \text { PATTERN } \\ & \text { ID } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \mathrm{S} \\ & \mathrm{H} \\ & \mathbf{A} \\ & \mathrm{P} \\ & \mathrm{E} \end{aligned}$	HOLE EXTENT	PATTERN GEOMETR Y	PATTERN AXIS OFFSET	XJDF DEFAULT PATTERN AXIS OFFSET	$\begin{aligned} & \mathrm{E} \\ & \mathrm{D} \\ & \mathrm{G} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathbf{0} \\ & \mathrm{~T} \\ & \mathrm{E} \end{aligned}$	SOURCE
R2i-US-b	US 2-hole, Variant B		$\begin{aligned} & 0.2-0.5^{\prime \prime} \\ & \text { Default: } \\ & 5 / 16^{\prime \prime} \\ & \\ & \text { Typical: } \\ & 1 / 4^{\prime \prime}, \\ & 9 / 32^{\prime \prime}, \\ & 11 / 32^{\prime \prime} \\ & 3 / 8^{\prime \prime}, \\ & 13 / 32^{\prime \prime} \\ & 1 / 2^{\prime \prime} \end{aligned}$	$6{ }^{\prime \prime}$	$0.25^{\prime \prime}+1 / 2$ diameter Range: $\begin{aligned} & 6 / 16^{\prime \prime}-1 / \\ & 2^{\prime \prime} \end{aligned}$	$\begin{aligned} & 29.25 \\ & \left(\cong 13 / 32^{\prime \prime}\right) \end{aligned}$	Left		

G. 3 Ring Binding - Three Hole

Table G.3: Hole Details for R3 Series

$\begin{aligned} & \text { HOLE } \\ & \text { PATTERN } \\ & \text { ID } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \mathrm{S} \\ & \mathrm{H} \\ & \mathbf{A} \\ & \mathbf{P} \\ & \mathrm{E} \end{aligned}$	HOLE EXTENT	PATTERN GEOMETR Y	PATTERN AXIS OFFSET	XJDF DEFAULT PATTERN AXIS OFFSET	$\begin{aligned} & \mathbf{E} \\ & \mathbf{D} \\ & \mathbf{G} \\ & \mathbf{E} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \\ & \mathrm{~T} \\ & \mathrm{E} \end{aligned}$	SOURCE
R3-generic	Generic request of a 3-hole pattern.	\bigcirc	$\begin{aligned} & 5-13 \\ & \mathrm{~mm} \\ & 0.2-0.51^{\prime \prime} \end{aligned}$	N/A	$\begin{aligned} & 4.5-13 \\ & \mathrm{~mm} \\ & 0.18-0.51^{\prime \prime} \end{aligned}$	$\begin{aligned} & 29.25 \\ & \left(\cong 13 / 32^{\prime \prime}\right) \end{aligned}$	Left	See note (8).	N/A
R3i-US	US 3-hole MIB: $5=$ threeHoleUS		standard: 5/16" Range: 0.2-0.5" Typical: 1/4", 9/32", 11/32", 3/8", 13/32", 1/2"	4.25 "	$\begin{aligned} & 0.25^{\prime \prime}+1 / 2 \\ & \text { diameter } \\ & \text { range: } \\ & 6 / 16^{\prime \prime}-1 / \\ & 2^{\prime \prime} \end{aligned}$	$\begin{aligned} & 29.25 \\ & \left(\cong 13 / 32^{\prime \prime}\right) \end{aligned}$	Left		Printer Finishing MIB

G. 4 Ring Binding - Four Hole

Table G.4: Hole Details for R4 Series (Sheet 1 of 2)

$\begin{aligned} & \text { HOLE } \\ & \text { PATTERN } \\ & \text { ID } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \mathrm{S} \\ & \mathrm{H} \\ & \mathrm{~A} \\ & \mathrm{P} \\ & \mathrm{E} \end{aligned}$	HOLE EXTENT	PATTERN GEOMETR Y	PATTERN AXIS OFFSET	XJDF DEFAULT PATTERN AXIS OFFSET	$\begin{aligned} & \mathrm{E} \\ & \mathrm{D} \\ & \mathrm{G} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \\ & \mathrm{~T} \\ & \mathrm{E} \end{aligned}$	SOURCE
R4-generic	Generic request of a 4-hole pattern.	O	$\begin{aligned} & 5-13 \\ & \mathrm{~mm} \\ & 0.2-0.51^{\prime \prime} \end{aligned}$	N/A	$\begin{aligned} & 4.5-13 \\ & \mathrm{~mm} \\ & 0.18-0.51^{\prime \prime} \end{aligned}$	$\begin{aligned} & 31.18 \\ & (\cong 11 \mathrm{~mm}) \end{aligned}$	Left	See note (8).	N/A
$\begin{aligned} & \text { R4m-DIN- } \\ & \text { A4 } \end{aligned}$	DIN 4-hole for A4	0	5.5 ± 0.1 mm	80 ± 0.1 mm	7 or 11 ± 0.3 mm 7 mm for blocks of 15 mm or less	$\begin{aligned} & 31.18 \\ & (\cong 11 \mathrm{~mm}) \end{aligned}$	Left	A4	$\begin{aligned} & \text { DIN } \\ & \text { 5005:1991 } \\ & \text { DIN } \\ & 821: 1973 \end{aligned}$
$\begin{aligned} & \text { R4m-DIN- } \\ & \text { A5 } \end{aligned}$	DIN 4-hole for A5	0	5.5 ± 0.1 mm	$\begin{aligned} & 45-65-45 \\ & \mathrm{~mm} \end{aligned}$	7 or 11 ± 0.3 mm 7 mm for blocks of 15 mm or less	$\begin{aligned} & 31.18 \\ & (\cong 11 \mathrm{~mm}) \end{aligned}$	Left	A5	$\begin{aligned} & \text { DIN } \\ & \text { 5005:1991 } \end{aligned}$
R4mswedish	Swedish 4-hole MIB: $11=$ swedish4Hole		$5-8 \mathrm{~mm}$	$\begin{aligned} & 21-70-21 \\ & \mathrm{~mm} \end{aligned}$	4.5-13 mm	$\begin{aligned} & 31.18 \\ & (\cong 11 \mathrm{~mm}) \end{aligned}$	Left for A4 Top for A3	$\begin{aligned} & \text { A4, } \\ & \text { A3 } \end{aligned}$	Printer Finishing MIB

Table G.4: Hole Details for R4 Series (Sheet 2 of 2)

$\begin{aligned} & \text { HOLE } \\ & \text { PATTERN } \\ & \text { ID } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \mathrm{S} \\ & \mathrm{H} \\ & \mathrm{~A} \\ & \mathrm{P} \\ & \mathrm{E} \end{aligned}$	HOLE EXTENT	PATTERN GEOMETR Y	PATTERN AXIS OFFSET	XJDF DEFAULT PATTERN AXIS OFFSET	$\begin{aligned} & \mathrm{E} \\ & \mathrm{D} \\ & \mathrm{G} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathbf{0} \\ & \mathrm{~T} \\ & \mathrm{E} \end{aligned}$	SOURCE
R4i-US	US 4-hole		$0.2-0.5^{\prime \prime}$ Standard: 5/16" Typical: $1 / 4^{\prime \prime}$ 9/32", 11/32"', 3/8", 13/32", 1/2"	$\begin{aligned} & 1.375-4.25- \\ & 1.375^{\prime \prime} \end{aligned}$	$0.25^{\prime \prime}+1 / 2$ diameter Range: $\begin{aligned} & 6 / 16^{11}-1 / \\ & 2^{11} \end{aligned}$	$\begin{aligned} & 29.25 \\ & \left(\cong 0.25^{\prime \prime}+\right. \\ & 1 / 2 \times 5 / 16^{\prime \prime} \\ & = \\ & \left.13 / 32^{\prime \prime}\right) \end{aligned}$	Left		

G. 5 RingBinding - Five Hole

Table G.5: Hole Details for R5 Series

$\begin{aligned} & \text { HOLE } \\ & \text { PATTERN } \\ & \text { ID } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \mathrm{S} \\ & \mathrm{H} \\ & \mathbf{A} \\ & \mathrm{P} \\ & \mathrm{E} \end{aligned}$	HOLE EXTENT	PATTERN GEOMETR Y	PATTERN AXIS OFFSET	XJDF DEFAULT PATTERN AXIS OFFSET	$\begin{aligned} & \mathrm{E} \\ & \mathrm{D} \\ & \mathrm{G} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \\ & \mathrm{~T} \\ & \mathrm{E} \end{aligned}$	SOURCE
R5-generic	Generic request of a 5-hole pattern.	\bigcirc	$\begin{aligned} & 5-13 \\ & \mathrm{~mm} \\ & 0.2-0.51^{\prime \prime} \end{aligned}$	N/A	$\begin{aligned} & 4.5-13 \\ & \mathrm{~mm} \\ & 0.18-0.51^{\prime \prime} \end{aligned}$	$\begin{aligned} & 29.25 \\ & \left(\cong 13 / 32^{\prime \prime}\right) \end{aligned}$	Left	See note (8).	N/A
R5i-US-a	US 5-hole, Variant A MIB: 13 = fiveHoleUS	O	$\begin{aligned} & 0.2- \\ & 0.32 " \end{aligned}$	$\begin{aligned} & 2-2.25- \\ & 2.25-2^{\prime \prime} \end{aligned}$	0.18-0.51'	$\begin{aligned} & 29.25 \\ & \left(\cong 13 / 32^{\prime \prime}\right) \end{aligned}$	Left for letter Top for led- ger		Printer Finishing MIB
R5i-US-b	US 5-hole, Variant B		$\begin{aligned} & 0.2-0.5^{\prime \prime} \\ & \text { std: } 5 / 16^{\prime \prime} \\ & \text { typ: } 1 / 4^{\prime \prime}, \\ & 9 / 32^{\prime \prime}, 11 / \\ & 32^{\prime \prime}, 3 / \\ & 8^{\prime \prime}, 13 / \\ & 32^{\prime \prime}, 1 / 2^{\prime \prime} \end{aligned}$	$\begin{aligned} & 0.75-3.5- \\ & 3.5-0.75{ }^{\prime \prime} \end{aligned}$	$\begin{aligned} & 0.25^{\prime \prime}+1 / 2 \\ & \text { diameter } \\ & 0.375-0.5^{\prime \prime} \end{aligned}$	$\begin{aligned} & 29.25 \\ & \left(\cong 0.25^{\prime \prime}+\right. \\ & 1 / 2 \times 5 / 16^{\prime \prime} \\ & = \\ & \left.13 / 32^{\prime \prime}\right) \end{aligned}$	Left		
R5i-US-c	```Combination of R2i-US-a and R3i-US```		$\begin{aligned} & 0.2-0.5^{\prime \prime} \\ & \text { std: } 5 / 16^{\prime \prime} \\ & \text { typ: } 1 / 4^{\prime \prime}, \\ & 9 / 32^{\prime \prime}, 11 / \\ & 32^{\prime \prime}, 3 / \\ & 8^{\prime \prime}, 13 / \\ & 32^{\prime \prime}, 1 / 2^{\prime \prime} \end{aligned}$	$\begin{aligned} & 1.25-3-3- \\ & 1.25^{\prime \prime} \end{aligned}$	$\begin{aligned} & \hline 0.25^{\prime \prime}+1 / 2 \\ & \text { diameter } \\ & 0.375-0.5^{\prime \prime} \end{aligned}$	$\begin{aligned} & 29.25 \\ & \left(\cong 0.25^{\prime \prime}+\right. \\ & 1 / 2 \times 5 / 16^{\prime \prime} \\ & = \\ & \left.13 / 32^{\prime \prime}\right) \end{aligned}$	Left		

G. 6 Ring Binding - Six Hole

Table G.6: Hole Details for R6 Series (Sheet 1 of 2)

$\begin{aligned} & \text { HOLE } \\ & \text { PATTERN } \\ & \text { ID } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \mathrm{S} \\ & \mathrm{H} \\ & \mathrm{~A} \\ & \mathrm{P} \\ & \mathrm{E} \end{aligned}$	HOLE EXTENT	PATTERN GEOMETR Y	PATTERN AXIS OFFSET	XJDF DEFAULT PATTERN AXIS OFFSET	$\begin{aligned} & \mathrm{E} \\ & \mathrm{D} \\ & \mathrm{G} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & 0 \\ & \mathrm{~T} \\ & \mathrm{E} \end{aligned}$	SOURCE
R6-generic	Generic request of a 6-hole pattern.	\bigcirc	$\begin{aligned} & 5-13 \\ & \mathrm{~mm} \\ & 0.2-0.51^{\prime \prime} \end{aligned}$	N/A	$\begin{aligned} & 4.5-13 \\ & \mathrm{~mm} \\ & 0.18-0.51^{\prime \prime} \end{aligned}$	$\begin{aligned} & 31.18 \\ & (\cong 11 \mathrm{~mm}) \end{aligned}$	Left for A4/ A5 Top for A3	See note (8).	N/A
R6m-4h2s	Norwegian 4-hole (round) mixed with 2 slots (rectangular) MIB: 16 = norweg6Hole	H: S:	Holes: 5 - 8 mm Slots: 10 x 5.5 mm	4 holes/2 slots Pattern: H- H-S-S-H- H 64-18.5- 75-18.5-64 mm	4.5-13 mm	$\begin{aligned} & 31.18 \\ & (\cong 11 \mathrm{~mm}) \end{aligned}$	Left for A4 Top for A3		Printer Finishing MIB

Table G.6: Hole Details for R6 Series (Sheet 2 of 2)

$\begin{aligned} & \text { HOLE } \\ & \text { PATTERN } \\ & \text { ID } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \mathrm{S} \\ & \mathrm{H} \\ & \mathrm{~A} \\ & \mathrm{P} \\ & \mathrm{E} \end{aligned}$	HOLE EXTENT	PATTERN GEOMETR Y	PATTERN AXIS OFFSET	XJDF DEFAULT PATTERN AXIS OFFSET	$\begin{aligned} & \mathrm{E} \\ & \mathrm{D} \\ & \mathrm{G} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathbf{0} \\ & \mathrm{~T} \\ & \mathrm{E} \end{aligned}$	SOURCE
$\begin{aligned} & \text { R6m-DIN- } \\ & \text { A5 } \end{aligned}$	DIN 6-hole for A5	0	5.5 ± 0.1 mm	$\begin{aligned} & 37.5-7.5^{-} \\ & 65-7.5- \\ & 37.5 \mathrm{~mm} \end{aligned}$	7 or 11 ± 0.3 mm 7 mm for blocks of <= 15 mm thick	$\begin{aligned} & 31.18 \\ & (\cong 11 \mathrm{~mm}) \end{aligned}$	Left	Only used with A5	$\begin{aligned} & \text { DIN } \\ & 5005: 1991 \end{aligned}$

G. 7 Ring Binding - Seven Hole

Table G.7: Hole Details for $R 7$ Series

$\begin{aligned} & \text { HOLE } \\ & \text { PATTERN } \\ & \text { ID } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \mathrm{S} \\ & \mathrm{H} \\ & \mathrm{~A} \\ & \mathrm{P} \\ & \mathrm{E} \end{aligned}$	HOLE EXTENT	PATTERN GEOMETR Y	PATTERN AXIS OFFSET	XJDF DEFAULT PATTERN AXIS OFFSET	$\begin{aligned} & \mathrm{E} \\ & \mathrm{D} \\ & \mathrm{G} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & 0 \\ & \mathrm{~T} \\ & \mathrm{E} \end{aligned}$	SOURCE
R7-generic	Generic request of a 7-hole pattern.	0	$\begin{aligned} & 5-13 \\ & \mathrm{~mm} \\ & 0.2-0.51 \text { " } \end{aligned}$	N/A	$\begin{aligned} & 4.5-13 \\ & \mathrm{~mm} \\ & 0.18-0.51^{\prime \prime} \end{aligned}$	$\begin{aligned} & 29.25 \\ & \left(\cong 13 / 32^{\prime \prime}\right) \end{aligned}$	Left for letter Top for led- ger	See note (8).	N/A
R7i-US-a	US 7-hole, Variant A MIB: 14 = sevenHoleUS	0	$\begin{aligned} & 0.2- \\ & 0.32^{\prime \prime} \end{aligned}$	$\begin{aligned} & 1-1-2.25- \\ & 2.25-1-1^{\prime \prime} \end{aligned}$	0.18-0.51'	$\begin{aligned} & 29.25 \\ & \left(\cong 13 / 32^{\prime \prime}\right) \end{aligned}$	Left for letter Top for ledger		Printer Finishing MIB
R7i-US-b	US 7-hole, Bell/AT\&T Systems. Combination of R3i-US, R4i-US, R5i-US-b		$\begin{aligned} & \text { o.2-0.5" } \\ & \text { std: } 5 / 16^{\prime \prime} \\ & \text { typ: } 1 / 4^{\prime \prime}, \\ & 9 / 32^{\prime \prime}, 11 / \\ & 32^{\prime \prime}, 3 / \\ & 8^{\prime \prime}, 13 / \\ & 32^{\prime \prime}, 1 / 2^{\prime \prime} \end{aligned}$	$\begin{aligned} & 0.75-1.375- \\ & 2.125- \\ & 2.125- \\ & 1.375-0.75 \text { " } \end{aligned}$	$\begin{aligned} & 0.25^{\prime \prime}+1 / 2 \\ & \text { diameter } \\ & 0.375-0.5^{\prime \prime} \end{aligned}$	$\begin{aligned} & 29.25 \\ & \left(\cong 0.25^{\prime \prime}+\right. \\ & 1 / 2 \times 5 / 16^{\prime \prime} \\ & = \\ & \left.13 / 32^{\prime \prime}\right) \end{aligned}$	Left for letter Top for led- ger		
R7i-US-c	US 7-hole, Variant C		$\begin{aligned} & \text { o.2-0.5"' } \\ & \text { std: } 5 / 16^{\prime \prime} \\ & \text { typ: } 1 / 4^{\prime \prime}, \\ & 9 / 32^{\prime \prime}, 11 / \\ & 32^{\prime \prime}, 3 / \\ & 8^{\prime \prime}, 13 / \\ & 32^{\prime \prime}, 1 / 2^{\prime \prime} \end{aligned}$	$\begin{aligned} & 1.25-0.875- \\ & 2.125- \\ & 2.125- \\ & 0.875-1.25^{\prime \prime} \end{aligned}$	$\begin{aligned} & 0.25^{\prime \prime}+1 / 2 \\ & \text { diameter } \\ & 0.375-0.5^{\prime \prime} \end{aligned}$	$\begin{aligned} & 29.25 \\ & \left(\cong 13 / 32^{\prime \prime}\right) \end{aligned}$	Left for letter Top for led- ger		

G. 8 Ring Binding - Eleven Hole

Table G.8: Hole Details for R11 Series

$\begin{aligned} & \text { HOLE } \\ & \text { PATTERN } \\ & \text { ID } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \mathrm{S} \\ & \mathrm{H} \\ & \mathrm{~A} \\ & \mathrm{P} \\ & \mathrm{E} \end{aligned}$	HOLE EXTENT	PATTERN GEOMETR Y	PATTERN AXIS OFFSET	XJDF DEFAULT PATTERN AXIS OFFSET	$\begin{aligned} & \mathbf{E} \\ & \mathbf{D} \\ & \mathbf{G} \\ & \mathbf{E} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathbf{O} \\ & \mathrm{~T} \\ & \mathrm{E} \end{aligned}$	SOURCE
R11m-7h4s	7-hole(round) mixed with 4 slots (rectangular) MIB: $15=$ mixed7H4S	H: S:	Holes: 5 - 8 mm Slots: 12 x 6 mm	7 holes/ 2slots Pattern: H- S-H-H-S- $\mathrm{H}-\mathrm{S}-\mathrm{H}-\mathrm{H}-$ S-H 15-25-23- 20-37-37- 20-23-25- 15 mm	4.5-13 mm	$\begin{aligned} & 31.18 \\ & (\cong 11 \mathrm{~mm}) \end{aligned}$	Left for A4 Top for A3		Printer Finishing MIB

G. 9 Plastic Comb Binding

Table G.9: Hole Details for P Series

$\begin{aligned} & \text { HOLE } \\ & \text { PATTERN } \\ & \text { ID } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \mathrm{S} \\ & \mathrm{H} \\ & \mathrm{~A} \\ & \mathrm{P} \\ & \mathrm{E} \end{aligned}$	HOLE EXTENT	PATTERN GEOMETR Y	PATTERN AXIS OFFSET	XJDF DEFAULT PATTERN AXIS OFFSET	$\begin{aligned} & \mathrm{E} \\ & \mathrm{D} \\ & \mathrm{G} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathbf{0} \\ & \mathrm{~T} \\ & \mathrm{E} \end{aligned}$	SOURCE
P16_9i- rect-0t	US spacing, no thumbcut MIB: 9 = nineteenHoleUS A4: 21 Hole Letter: 19 Hols		$\begin{aligned} & 5 / 16^{\prime \prime} \times 1 / \\ & 8^{\prime \prime} \\ & (8 \times 3.2 \\ & \mathrm{mm}) \end{aligned}$	9/16"	3/16"	$\begin{aligned} & 13.54 \\ & \left(\cong 0.188^{\prime \prime}\right) \end{aligned}$	Left		Printer Finishing MIB
P12m-rect- Ot	European spacing, no thumbcut		$7 \times 3 \mathrm{~mm}$	12 mm	4.5 mm	$\begin{aligned} & 12.76 \\ & (\cong 4.5 \mathrm{~mm}) \end{aligned}$	Left		

G. 10 Wire Comb Binding

Wire comb binding uses twenty three holes for pages of A4 size, and twenty one holes for pages of letter size
Table G.10: Hole Details for W Series

$\begin{aligned} & \text { HOLE } \\ & \text { PATTERN } \\ & \text { ID } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \mathrm{S} \\ & \mathrm{H} \\ & \mathbf{A} \\ & \mathbf{P} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { HOLE } \\ & \text { EXTENT } \end{aligned}$	PATTERN GEOMETR Y	$\begin{aligned} & \text { PATTERN } \\ & \text { AXIS } \\ & \text { OFFSET } \end{aligned}$	XJDF DEFAULT PATTERN AXIS OFFSET	$\begin{aligned} & \mathrm{E} \\ & \mathrm{D} \\ & \mathrm{G} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathbf{O} \\ & \mathrm{~T} \\ & \mathrm{E} \end{aligned}$	SOURCE
W2_1i-round-Ot	2:1, round, no thumbcut MIB: $8=$ twentyTwoHoleUS A4: 23 Hole Letter: 21 Hole		0.2 - 0.32" std: 1/4" Europe typ: 6 or 6.4 mm	1/2"	$3 \mathrm{~mm}+1 / 2$ diameter 0.318 $0.438^{\prime \prime}$ Europe: 6 6.2 mm	$\begin{aligned} & 17.50 \\ & \left(\cong 0.243^{\prime \prime}\right) \end{aligned}$	Left		Printer Finishing MIB
W2_1i- square-0t	2:1, square, no thumbcut A4: 23 Hole Letter: 21 Hole		0.2 - 0.32" std: 1/4" Europe typ: 6 or 6.4 mm	1/2"	$\begin{aligned} & 3 \mathrm{~mm}+1 / 2 \\ & \text { diameter } \\ & 0.318- \\ & 0.4388^{\prime \prime} \\ & \text { Europe: } 6- \\ & 6.2 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 17.50 \\ & \left(\cong 0.243^{\prime \prime}\right) \end{aligned}$	Left		
W3_1i- square-0t	3:1, square, no thumbcuts A4: 34 Hole A5: 24 Hole Letter: 32 Hole		$\begin{aligned} & 5 / 32 \times 5 / \\ & 32^{\prime \prime} \\ & (4 \times 4 \\ & \mathrm{mm}) \end{aligned}$	1/3"	0.2"	$\begin{aligned} & 14.40 \\ & \left(\cong 0.2^{\prime \prime}\right) \end{aligned}$	Left		

G. 11 Coil and Spiral Binding

Table G.11: Hole Details for C Series

$\begin{aligned} & \text { HOLE } \\ & \text { PATTERN } \\ & \text { ID } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \mathrm{S} \\ & \mathrm{H} \\ & \mathrm{~A} \\ & \mathrm{P} \\ & \mathrm{E} \end{aligned}$	HOLE EXTENT	PATTERN GEOMETR Y	PATTERN AXIS OFFSET	XJDF DEFAULT PATTERN AXIS OFFSET	$\begin{aligned} & \mathrm{E} \\ & \mathrm{D} \\ & \mathrm{G} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathbf{0} \\ & \mathrm{~T} \\ & \mathrm{E} \end{aligned}$	SOURCE
C9.5m-round-0t	9.5 mm , round, no thumbcut MIB: 17 - metric26Hole and 18 - metric30Hole A4: 30 Hole A3: 30 Hole JIS: 26 Hole B4: 26 Hole B5: 26 Hole	\bigcirc	$5-8 \mathrm{~mm}$	9.5 mm	4.5-13 mm	$\begin{aligned} & 31.18 \\ & (\cong 11 \mathrm{~mm}) \end{aligned}$	Left for A4/ JIS B5 Top for A3/ JIS B4		Printer Finishing MIB

G. 12 Special Binding

Table G.12: Hole Details for S Series

$\begin{aligned} & \text { HOLE } \\ & \text { PATTERN } \\ & \text { ID } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \mathrm{S} \\ & \mathrm{H} \\ & \mathrm{~A} \\ & \mathrm{P} \\ & \mathrm{E} \end{aligned}$	HOLE EXTENT	PATTERN GEOMETR Y	PATTERN AXIS OFFSET	XJDF DEFAULT PATTERN AXIS OFFSET	$\begin{aligned} & \mathrm{E} \\ & \mathrm{D} \\ & \mathrm{G} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \\ & \mathrm{~T} \\ & \mathrm{E} \end{aligned}$	SOURCE
S-generic	Generic request of a hole pattern with an arbitrary or unknown number of holes (e.g., an inline shotgun).	-	$\begin{aligned} & 5-13 \\ & \mathrm{~mm} \\ & 0.2-0.51 \text { " } \end{aligned}$	N/A	N/A	N/A	Any		N/A
S1-generic	Generic request of a hole pattern with 1 hole.		$\begin{aligned} & 5-13 \\ & \mathrm{~mm} \\ & 0.2-0.51^{\prime \prime} \end{aligned}$	N/A	N/A	N/A	Any		N/A

H References

Throughout this specification references to other documents are indicated by short symbolic names inside square brackets, (e.g., \quad IICC.1]). Implementers need to read and conform to such referenced documents when implementing a part of this specification with such a reference. The reader is directed to this Document References section to find the full title, date, source and availability of all such references.
Table H.1: References (Sheet 1 of 8)

TERM	DEFINITION
[Adb-TN5044]	Adobe Technical note 5044 Date: 24 May 1996 Produced by: Adobe Systems Inc. Available at: $\frac{\text { http://partners.adobe.com/public/developer/en/ps/sdk/ }}{5044 . \text { ColorSep_Conv.pdf }}$
[Braille]	Six dot Braille representation of the ASCII character set Date: Available at: https://en.wikipedia.org/wiki/Braille_ASCII
[Unicode Braille Patterns]	Unicode Braille patterns Date: Produced by: The Unicode Consortium Available at: http://www.unicode.org/charts/PDF/ U2800.pdf\#search=\%22braille\%20unicode\%22
[CCIR601-2]	CCIR Recommendation 601-2 Encoding Parameters of Digital Television for Studios, 1990, Volume XI - Part 1, Broadcasting Service (Television), pp. 95-104. Date: 1990 Produced by: International Telecommunication Union Available at: International Telecommunication Union, General Secretariat - Sales Section, Place des Nations, CH-1211 Geneva 20 (Switzerland)
[CIE 15:2004]	CIE 15:2004 Colorimetry, 3rd Edition. Date: 2004 Produced by: Commission Internationale de l'Eclairage International (CIE) Available at: http://www.cie.co.at
[CIP3 - PPF]	CIP3 Print Production Format (PPF) Date: 1 June 1998 Version: CIP3 PPF Specification 3.0 Produced by: CIP4 Organization Available at: https://confluence.cip4.org/display/PUB/PPF
[Characterization Data]	CMYK Characterization Data Date: Version: Produced by: International Color Consortium Available at: http://www.color.org/chardata/drsection1.xalter
[Color Names]	Recognized color keyword names Date: 16 August 2011 Version: SVG (1.1) Second Edition Produced by: World Wide Web Consortium (W3C) Available at: https://www.w3.org/TR/SVG/types.html\#ColorKeywords

Table H.1: References (Sheet 2 of 8)

TERM	DEFINITION
[ColorPS]	Color Separation Conventions for PostScript Language Programs Technical Note \#5044 Date: $\quad 24$ May 1996 Produced by: Adobe Systems Inc. Available at: http://partners.adobe.com/asn/developer/pdfs/tn/5044.ColorSep_Conv.pdf
[Corrugated Packaging]	Corrugatged packaging Date: Produced by: Corrugated Packaging Alliance Available at: http://cpc.corrugated.org/
[DDES3]	Graphic technology - Prepress digital data exchange - Diecutting data (DDES3) Date: Revised 2013 Produced by: ANSI® IT8.6-2002 Available at: \quad http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+IT8.62002+(R2013).
[ECMA]	ECMA Code of Folding Carton Styles Date: Produced by: European Carton Makers Association Available at: http://www.ecma.org/download/orderformpublications.pdf
[FEFCO]	FEFCO European Federation of Corrugated Board Manufacturers Date: Produced by: European Federation of Corrugated Board Manufacturers Available at: http://www.fefco.org
[FINAT]	Trade Association for the Self-Adhesive and Labeling Industry Web site: http://www.finat.com
[Grammage Conversion]	Basis Weight and Grammage Conversion Tables. Date: Produced by: EDS Inc. Editorial \& Design Services. Available at: http://www.edsebooks.com/paper/grammage.html
[iana-character sets]	IANA Registry of Character Set names Available at: https://www.iana.org/assignments/character-sets/character-sets.xhtml
[iana-mt]	IANA Registry of MIME Media Types Available at: http://www.iana.org/assignments/media-types
[ICC.1]	Specification ICC.1:2004-10 File Format for Color Profiles, Version 4.2.0.0 Date: 2004 Produced by: International Color Consortium (ICC) Available at: http://www.color.org/icc_specs2.xalter
[IEEE754]	IEEE 754-1985 Standard for Binary Floating-Point Arithmetic Date: 1985 Produced by: IEEE Available at: http://grouper.ieee.org/groups/754/
[ifra]	IfraTrack Specification Ifra Special Report 6.21.2, Version 2.0 Date: June 1998 Produced by: Ifra Available at: http://www.ifra.com/

TERM	DEFINITION
[ISO5-3:1995]	ISO 5-3:1995 Photography -- Density measurements -- Part 3: Spectral conditions. Date: 1995 Produced by: ISO Available at: http://www.iso.ch/iso/en/prods-services/ISOstore/store.html
[ISO5-4:1995]	ISO 5-4:1995 Photography -- Density measurements -- Part 4: Geometric conditions for reflection density. Date: 1995 Produced by: ISO Available at: http://www.iso.ch/iso/en/prods-services/ISOstore/store.html
[ISO216:2007]	ISO 216:2007 Writing paper and certain classes of printed matter -- Trimmed sizes -- A and B series. Date: 1975 Produced by: ISO Available at: http://www.iso.ch/iso/en/prods-services/ISOstore/store.html
[ISO269:1985]	ISO 269:1985 Correspondence envelopes -- Designation and sizes Date: 1985 Produced by: ISO Available at: http://www.iso.ch/iso/en/prods-services/ISOstore/store.html
[ISO2108:2005]	ISO 2108:2005 Information and documentation -- International standard book number (ISBN). Date: 2005 Produced by: ISO Available at: http://www.iso.ch/iso/en/prods-services/ISOstore/store.html
[ISO2470:1999]	ISO 2470:1999 Paper, board and pulps -- Measurement of diffuse blue reflectance factor (ISO brightness. Date: 1999 Produced by: ISO Available at: \quad http://www.iso.ch/iso/en/prods-services/ISOstore/store.html
[ISO2471:1998]	ISO 2471:1998 Paper and board—Determination of opacity (paper backing)—Diffuse reflectance method. Date: 1998 Produced by: ISO Available at: http://www.iso.ch/iso/en/prods-services/ISOstore/store.html
[ISO2846-1:1997]	ISO 2846-1:1997 Graphic technology - Colour and transparency of ink sets for four-colour-printing - Part 1: Sheet-fed and heat-set web offset lithographic printing. Date: 1997 Produced by: ISO Available at: http://www.iso.ch/iso/en/prods-services/ISOstore/store.html
[ISO3166-1:1997]	ISO 3166-1:1997 Codes for the representation of names of countries and their subdivisions -- Part 1: Country codes. Date: 1997 Produced by: ISO Available at: http://www.iso.ch/iso/en/prods-services/ISOstore/store.html

Table H.1: References (Sheet 4 of 8)

TERM	DEFINITION
[ISO8254-1:1999]	ISO 8254-1:1999 Paper and board -- Measurement of specular gloss -- Part 1: 75 degree gloss with a converging beam, TAPPI method Date: 1999 Produced by: ISO Available at: http://www.iso.ch/iso/en/prods-services/ISOstore/store.html
[ISO8601:2004]	ISO 8601:2004 Data elements and interchange formats - Information interchange - Representation of dates and times. $\begin{array}{ll}\text { Date: } & 2004 \\ \text { Produced by: } & \text { ISO }\end{array}$ Produced by: ISO Available at: http://www.iso.ch/iso/en/prods-services/ISOstore/store.html
[ISO12647-2:2004]	ISO 12647-2:2004 Graphic technology - Process control for the production of half-tone colour separations, proof and production prints - Part 2: Offset lithographic processes. Date: 2004 Produced by: ISO Available at: http://www.iso.ch/iso/en/prods-services/ISOstore/store.html
[ISO12647-2:2013]	ISO 12647-2:2013 Graphic technology - Process control for the production of half-tone colour separations, proof and production prints - Part 2: Offset lithographic processes. Date: 2013 Produced by: ISO Available at: http://www.iso.ch/iso/en/prods-services/ISOstore/store.html
[ISO13655:1996]	ISO 13655:1996 Graphic technology -- Spectral measurement and colorimetric computation for graphic arts images. Date: 1996 Produced by: ISO Available at: http://www.iso.ch/iso/en/prods-services/ISOstore/store.html
[ISO15930-1:2001]	$\begin{aligned} & \text { ISO 15930-1:2001 } \\ & \text { Graphic technology - Prepress digital data exchange - Use of PDF - Part 1: Complete exchange } \\ & \text { using CMYK data (PDF/X-1 and PDF/X-1a). } \\ & \begin{array}{l} \text { Date: } \quad 2001 \\ \text { Produced by: ISO } \\ \text { Available at: } \\ \text { http://www.iso.ch/iso/en/prods-services/ISOstore/store.html } \end{array} \end{aligned}$
[ISO15930-3:2002]	ISO 15930-3:2002 Graphic technology - Prepress digital data exchange - Use of PDF - Part 3: Complete exchange suitable for colour-managed workflows (PDF/X-3). Date: 2002 Produced by: ISO Available at: http://www.iso.ch/iso/en/prods-services/ISOstore/store.html
[ISO15930-7:2010]	```ISO 15930-7:2010 Graphic technology - Prepress digital data exchange - Use of PDF - Complete exchange suitable for colour-managed workflows (PDF/X-4). Date: 2010 Produced by: ISO Available at: http://www.iso.ch/iso/en/prods-services/ISOstore/store.html```

TERM	DEFINITION
[ISO15930-8:2010]	ISO 15930-8:2010 Graphic technology - Prepress digital data exchange - Use of PDF - Complete exchange suitable for colour-managed workflows (PDF/X-5). Date: 2010 Produced by: ISO Available at: http://www.iso.ch/iso/en/prods-services/ISOstore/store.html
[ISO17972-1:2015]	$\begin{aligned} & \text { ISO 17972-1:2015 } \\ & \text { Graphic technology -- Colour data exchange format -- Part 1: Relationship to CxF3 (CxF/X) } \\ & \text { Date: } \quad 2015 \\ & \text { Produced by: } \\ & \text { ISO } \\ & \text { Available at: } \\ & \text { http://www.iso.ch/iso/en/prods-services/ISOstore/store.html } \end{aligned}$
[ISO19593-1:2016]	```ISO 19593-1:2016 Graphic technology -- Use of PDF to associate processing steps and content data -- Part 1: Processing steps 2016 Date: 2016 Produced by: ISO Available at: http://www.iso.ch/iso/en/prods-services/ISOstore/store.html```
[Japanese Paper Sizes]	Japanese Papers for Printing. Metric measurements and inch equivalents. Date: Produced by: EDS Inc. Editorial \& Design Services. Available at: http://www.edsebooks.com/paper/jpaper.html
[JDF15]	Job Definition Format 1.5 Date: 2013 Produced by: International Cooperation for Integration of Processes in Prepress, Press and Postpress (CIP4) Available at: http://www.cip4.org
[JIS P0138:1998]	JIS P 0138:1998 Writing paper and certain classes of printed matter -- Trimmed sizes -- A and B series. Date: 1998 Produced by: JIS Available at: http://www.webstore.jsa.or.jp/webstore Note: If not available try via web search of the title
[K\&R]	C Programming Language , by Brian W. Kernighan and Dennis M. Ritchie Second Edition Date: March 22, 1988 Produced by: Prentice Hall Available at: Book only - ISBN 0131103628
[PDF1.6]	PDF reference : Adobe portable document format version 1.6 / Adobe Systems Incorporated. Version 1.6 Date: November 2004 Produced by: Addison-Wesley Available at: http://partners.adobe.com/public/developer/pdf/index_reference.html
[PNG]	Portable Network Graphics Second edition Date: 17 March 2006 Produced by: World Wide Web Consortium (W3C) Available at: http://www.w3.org/Graphics/png

TERM	DEFINITION
[PPD]	Adobe PostScript Printer Description File Format Specification Version 4.3 Date: 9 February 1996 Produced by: Adobe Systems Inc. Available at: https://www-cdf.fnal.gov/offline/PostScript/5003.PPD_Spec_v4.3.pdf
[Pro Carton]	European Association of Carton and Cartonboard manufacturers. Date: - Produced by: Pro Carton Available at: http://www.procarton.com/publications-news/publications/
[PS]	PostScript Language Reference (Redbook) Third Edition Date: Produced by: Adobe Systems, Inc. Available at: http://partners.adobe.com/asn/developer/pdfs/tn/PLRM.pdf
[PWGFINMIB]	Printer Finishing MIB (draft-ietf-printmib-finishing-16.txt — work in progress.) Date: February 2003 Produced by: Internet Engineering Task Force (IETF), Network Working Group Available at: https://datatracker.ietf.org/public/pidtracker.cgi Note: IETF Internet-Drafts have a six month life-time. See above link for latest version.
[RFC1738]	```RFC 1738 Uniform Resource Locators (URL) Date: }199 Produced by: Internet Engineering Task Force (IETF), Network Working Group Available at: http://www.rfc-editor.org/rfcsearch.html```
[RFC1766]	RFC 1766 Tags for the Identification of Languages, by H. Alvestrand. Date: March 1995 Produced by: Internet Engineering Task Force (IETF), Network Working Group Available at: http://www.rfc-editor.org/rfcsearch.html
[RFC2046]	RFC 2046 Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types, by Freed, N. and Borenstein, N. (Updated by RFC2646) Date: November 1996 Produced by: Internet Engineering Task Force (IETF), Network Working Group Available at: http://www.rfc-editor.org/rfcsearch.html
[RFC2368]	RFC 2368 The mailto URL scheme by P. Hoffman, L. Masinter and J. Zawinski. Date: July 1998 Produced by: Internet Engineering Task Force (IETF), Network Working Group Available at: http://www.rfc-editor.org/rfcsearch.html
[RFC2616]	RFC 2616 Hypertext Transfer Protocol - HTTP/1.1 Date: June 1999 Produced by: Internet Engineering Task Force (IETF), Network Working Group Available at: http://www.rfc-editor.org/rfcsearch.html

TERM	DEFINITION
[RFC3966]	RFC 3966 The tel URI for Telephone Numbers by H. Schulzrinne Date: December 2004 Produced by: Internet Engineering Task Force (IETF), Network Working Group Available at: http://www.rfc-editor.org/rfcsearch.html
[RFC3986]	FC 3986 Uniform Resource Identifier (URI): Generic Syntax by T. Berners-Lee, R. Fielding and L. Masinter Date: January 2005 Produced by: Internet Engineering Task Force (IETF), Network Working Group Available at: http://www.rfc-editor.org/rfcsearch.html
[RFC3987]	RFC 3987 Internationalized Resource Identifiers (IRIs), by M. Duerst and M. Suignard Date: January 2005 Produced by: Internet Engineering Task Force (IETF), Network Working Group Available at: http://www.rfc-editor.org/rfcsearch.html
[RFC5246]	RFC 5246 The Transport Layer Security (TLS) Protocol Version 1.2, by T. Dierks and E. Rescorla Date: August 2008 Produced by: Internet Engineering Task Force (IETF), Network Working Group Available at: http://www.rfc-editor.org/rfcsearch.html
[TAPPI T480]	TAPPI T480 Specular Gloss of Paper and Paperboard at 75 Degrees, Test Method T 519 om-99 Date: Produced by: TAPPI Available at: http://www.tappi.org
[TAPPI T519]	TAPPI T519 Diffuse Opacity of Paper (d/o paper backing), Test Method T 519 om-o2 Date: Produced by: TAPPI Available at: http://www.tappi.org
[TAPPI T527]	TAPPI T527 Color of Paper and Paperboard (d/o, C/2), Test Method T 527 om-02 Date: Produced by: TAPPI Available at: http://www.tappi.org
[TAPPI T560]	TAPPI T560 CIE Whiteness and Tint of Paper and Paperboard (Using d/o ${ }^{\circ}$, Diffuse Illumination and Normal Viewing), Test Method T 560 wd-03 Date: Produced by: TAPPI Available at: http://www.tappi.org
[TIFF6]	TIFF Revision 6.0 Date: June 1992 Produced by: Adobe Systems, Inc. Available at: http://partners.adobe.com/asn/tech/tiff/specification.jsp
[TIFFPS]	Adobe Photoshop TIFF Technical Notes Date: March 2002 Produced by: Adobe Systems, Inc. Available at: http://partners.adobe.com/asn/tech/tiff/specification.jsp

TERM	DEFINITION
[truetypefont]	TrueType font file and TrueType Open specification Date: August 1995 Produced by: Microsoft Corporation Available at: http://www.microsoft.com/typography/specs/
[vCard]	Standard file format for electronic business cards. Date: N/A Produced by: Versit Consortium Refer to : https://en.wikipedia.org/wiki/VCard
[XML]	Extensible Markup Language (XML) 1.0 (Fifth Edition) Version (W3C Recommendation of 26 November 2008) Date: 26 November 2008 Produced by: World Wide Web Consortium (W3C) Available at: http://www.w3.org/TR/2008/REC-xml-20081126/
[XMLNS]	Namespaces in XML 1.0 (Third Edition) Version (W3C Recommendation of 8 December 2009) Date: 8 December 2009 Produced by: World Wide Web Consortium (W3C) Available at: http://www.w3.org/TR/2009/REC-xml-names-20091208/
[XPath]	XML Path Language (XPath) 2.0 (Second Edition) Version W3C Recommendation 14 December 2010 Date: $\quad 14$ December 2010 Produced by: World Wide Web Consortium (W3C) Available at: http://www.w3.org/TR/2010/REC-xpath20-20101214/
[XMLSchema]	XML Schema Part o+1+2: Primer, Structures and Datatypes Version (W3C Recommendation of 28 Oct 2004) Date: 28 October 2004 Produced by: World Wide Web Consortium (W3C) XML Schema working group Available at: http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/ http://www.w3.0rg/TR/2004/REC-xmlschema-1-20041028/ http://www.w3.0rg/TR/2004/REC-xmlschema-2-20041028/
[ZIP]	File compression and archiving Version W3C Recommendation 14 December 2010 Date: 1 October 2014 Produced by: PKWARE Inc. Available at: https://support.pkware.com/display/PKZIP/APPNOTE

I List of Figures

Figure 2-1 Standard coordinate system 15
Figure 2-2 Relation between Resource and process coordinate systems 15
Figure 2-3 Transforming a point (example) 18
Figure 4-1 Roll-up Display 36
Figure 4-2 Structure of a normal hardcover book 41
Figure 4-3 Structure of a padded hardcover book 41
Figure 4-4 Structure of a book with GlueProcedure = "SideOnly" (Layflat) 45
Figure 5-1 Worst case scenario for area coverage calculation 71
Figure 5-2 Overview of Web Printing 78
Figure 5-3 Bundle Creation 82
Figure 5-4 Bundle Transport 82
Figure 5-5 Combined Process with Feeding Process 87
Figure 5-6 Input Components 87
Figure 5-7 Output Component 87
Figure 5-8 Gathering 88
Figure 5-9 Parameters and coordinate system used for Inserting 90
Figure 6-1 BinderySignature Trims 112
Figure 6-2 Definition of margins in SignatureCell 114
Figure 6-3 Tightbacking for Block Preparation 115
Figure 6-4 Rounding and Backing for Block Preparation 115
Figure 6-5 Folding examples for some values of BoxFoldAction/aAction 118
Figure 6-6 BoxFoldingType Attribute for values of Type00, Type01 and Type02 118
Figure 6-7 BoxFoldingType Attribute for values of Type03, Type04 and Type10 118
Figure 6-8 BoxFoldingType Attribute for values of Type 11, Type12 and Type13 119
Figure 6-9 BoxFoldingType Attribute for values of Type15 and Type20 119
Figure 6-10 Box packing 121
Figure 6-11 Packaging Process Coordinate System 122
Figure 6-12 BundlingParams Coordinate System 124
Figure 6-13 CaseMakingParams 124
Figure 6-14 Parameters and coordinate system for Casingln 125
Figure 6-15 Component - terms and definitions 137
Figure 6-16 Orientation of the Finished Product on the Roll 139
Figure 6-17 Parameters and coordinate system for cover application 145
Figure 6-18 Parameters and coordinate system for glue application 146
Figure 6-19 Basic Shape for RepeatDesc/aLayoutStyle Examples 155
Figure 6-20 RepeatDesc/aLayoutStyle = "StraightNest" 155
Figure 6-21 RepeatDesc/aLayoutStyle = "Reverse2ndRow" 156
Figure 6-22 RepeatDesc/aLayoutStyle = "Reverse2ndRowAligned" 156
Figure 6-23 RepeatDesc/aLayoutStyle = "Reverse2ndColumn" 157
Figure 6-24 RepeatDesc/aLayoutStyle = "Reverse2ndColumnAligned" 157
Figure 6-25 RepeatDesc/aGutterX2 and @GutterY2: Secondary Gutters 158
Figure 6-26 Parameters and coordinate system used for end-Sheet gluing 160
Figure 6-27 Names of the reference edges of a Sheet in the FoldingParams Resource 164
Figure 6-28 Setup of the Jacketing Machinery 172
Figure 6-29 Parameters and coordinate system for jacketing 172
Figure 6-30 Shingling for Stripping 176
Figure 6-31 Shingling for Stripping - Details 176
Figure 6-32 RelativeBox including margins 183
Figure 6-33 Parameters used for channel binding 191
Figure 6-34 Paper Roll with some Roll-specific Information 197
Figure 6-35 Relief and Floor Thickness for a Flexo Plate or Flexo Sleeve 197
Figure 6-36 Types of Interlocks for Flexo Sleeve 198
Figure 6-37 Diagram of a Single Bank of Tabs 199
Figure 6-38 Inside Loss, Outside Gain 200
Figure 6-39 ShapeTemplate Example 1 227
Figure 6-40 ShapeTemplate Example 2 228
Figure 6-41 ShapeTemplate Example 3 228
Figure 6-42 Parameters and coordinate systems for the SpinePreparation Process 231
Figure 6-43 Parameters and coordinate system for the SpineTaping Process 232
Figure 6-44 Stacking Layers 232
Figure 6-45 Pile Patterns 233
Figure 6-46 Odd count handling for a Bundle 233
Figure 6-47 Odd count handling for a Layer 234
Figure 6-48 Parameters and coordinate system used for saddle stitching 237
Figure 6-49 Parameters and coordinate system used for Stitching 238
Figure 6-50 Stitching Coordinate System for StitchOrigin Values 238
Figure 6-51 Strapped Bundle 240
Figure 6-52 Strapped Bundle with Sub-bundles 240
Figure 6-53 Parameters and coordinate system used for thread sewing 241
Figure 6-54 Parameters and coordinate system used for side sewing 241
Figure 6-55 Roll Stand 242
Figure 6-56 Parameters and coordinate system used for trimming 245
Figure 8-1 RegisterRibbon lengths and coordinate system for BlockPreparation 313
Figure 8-2 Anchor with No Scaling and Rotation of 90° Clockwise 318
Figure 8-3 Anchor with 1.5 Scaling and Rotation of 90 Clockwise 318
Figure 9-1 Life Cycle of a Process and Queue Entry 322
Figure 9-2 Example of Status and resource amount in case of Overlapping Processing 323
Figure 9-3 Interaction of Messages with a Subscription 327
Figure 9-4 Example of Reliable Signaling 328
Figure A-1 Staple shapes 350
Figure A-2 Fold Catalog Part 1 355
Figure A-3 Fold Catalog Part 2 356
Figure F-1 Legend for Interpreting Diagrams 383

J List of Tables

Table 1.1 CIP4 XJDF/XJMF Schema Locations 4
Table 1.2 Cardinality Symbols 6
Table 1.3 Template for Element Descriptions 7
Table 1.4 Glossary 7
Table 1.5 Conformance Terminology 9
Table 1.6 Units Used in XJDF 10
Table 2.1 Matrices and Orientation values for describing the orientation of a Component 16
Table 2.2 Coordinate Transformation Examples 18
Table 3.1 XJDF 21
Table 3.2 Category Attribute Values 22
Table 3.3 ProductList Element 23
Table 3.4 ResourceSet Element 24
Table 3.5 Dependent Element 25
Table 3.6 Alignment of Audits and Messages 26
Table 3.7 AuditPool Element 26
Table 3.8 AuditCreated Element 26
Table 3.9 AuditNotification Element 27
Table 3.10 AuditProcessRun Element 27
Table 3.11 ProcessRun Element. 27
Table 3.12 AuditResource Element 28
Table 3.13 AuditStatus Element. 30
Table 4.1 Product Element 33
Table 4.2 Intent Element 34
Table 4.3 Product Intent Elements 35
Table 4.4 AssemblingIntent Element 35
Table 4.5 Assemblyltem Element. 36
Table 4.6 BindIn Element. 36
Table 4.7 Blowin Element 36
Table 4.8 StickOn Element 37
Table 4.9 BindingIntent Element 38
Table 4.10 BindingType Attribute Values 39
Table 4.11 AdhesiveNote Element. 39
Table 4.12 EdgeGluing Element. 40
Table 4.13 HardCoverBinding Element 40
Table 4.14 LooseBinding Element. 41
Table 4.15 CoilBinding 43
Table 4.16 CombBinding 43
Table 4.17 RingBinding 43
Table 4.18 SaddleStitching Element 44
Table 4.19 SideStitching Element 44
Table 4.20 SoftCoverBinding Element 44
Table 4.21 Tabs Element 45
Table 4.22 ThreadSewing Element 45
Table 4.23 ColorIntent Element 46
Table 4.24 SurfaceColor Element. 46
Table 4.25 ContentCheckIntent Element 47
Table 4.26 PreflightItem Element 47
Table 4.27 Proofltem Element 47
Table 4.28 EmbossingIntent Element. 48
Table 4.29 Embossingltem Element 48
Table 4.30 FoldingIntent Element 49
Table 4.31 HoleMakingIntent Element 49
Table 4.32 LaminatingIntent Element 49
Table 4.33 LayoutIntent Element. 50
Table 4.34 Medialntent Element 51
Table 4.35 ProductionIntent Element. 53
Table 4.36 ShapeCuttingIntent Element 53
Table 4.37 ShapeCut Element 53
Table 4.38 VariableIntent Element 54
Table 5.1 Generic Input ResourceSets. 58
Table 5.2 Approval - Input Resources 58
Table 5.3 Approval - Output Resources. 59
Table 5.4 Delivery - Input Resources 59
Table 5.5 Delivery - Output Resources 59
Table 5.6 ManualLabor - Input Resources 60
Table 5.7 ManualLabor - Output Resources. 60
Table 5.8 QualityControl - Input Resources. 61
Table 5.9 QualityControl - Output Resources 61
Table 5.10 Verification - Input Resources 61
Table 5.11 Verification - Output Resources 61
Table 5.12 Bending - Input Resources 62
Table 5.13 Bending - Output Resources. 62
Table 5.14 ColorCorrection - Input Resources. 62
Table 5.15 ColorCorrection - Output Resources 62
Table 5.16 ColorSpaceConversion - Input Resources 63
Table 5.17 ColorSpaceConversion - Output Resources 63
Table 5.18 DieDesign - Input Resources 63
Table 5.19 DieDesign - Output Resources 63
Table 5.20 DieLayoutProduction - Input Resources 64
Table 5.21 DieLayoutProduction - Output Resources 64
Table 5.22 ImageEnhancement - Input Resources 65
Table 5.23 ImageEnhancement - Output Resources 65
Table 5.24 ImageSetting - Input Resources. 65
Table 5.25 ImageSetting - Output Resources 65
Table 5.26 Imposition - Input Resources 65
Table 5.27 Imposition - Output Resources 66
Table 5.28 InkZoneCalculation - Input Resources. 67
Table 5.29 InkZoneCalculation - Output Resources 67
Table 5.30 Interpreting - Input Resources 68
Table 5.31 Interpreting - Output Resources 68
Table 5.32 LayoutElementProduction - Input Resources 68
Table 5.33 LayoutElementProduction - Output Resources 68
Table 5.34 LayoutShifting - Input Resources 69
Table 5.35 LayoutShifting - Output Resources 69
Table 5.36 PDLCreation - Input Resources 69
Table 5.37 PDLCreation - Output Resources 69
Table 5.38 Preflight - Input Resources 70
Table 5.39 Preflight - Output Resources 70
Table 5.40 PreviewGeneration - Input Resources. 71
Table 5.41 PreviewGeneration - Output Resources 72
Table 5.42 RasterReading - Input Resources 72
Table 5.43 RasterReading - Output Resources 72
Table 5.44 Rendering - Input Resources 72
Table 5.45 Rendering - Output Resources 73
Table 5.46 Screening - Input Resources 73
Table 5.47 Screening - Output Resources. 73
Table 5.48 Separation - Input Resources 73
Table 5.49 Separation - Output Resources 74
Table 5.50 ShapeDefProduction - Input Resources 74
Table 5.51 ShapeDefProduction - Output Resources 74
Table 5.52 SheetOptimizing - Input Resources 75
Table 5.53 SheetOptimizing - Output Resources 75
Table 5.54 Stripping - Input Resources 76
Table 5.55 Stripping - Output Resources 76
Table 5.56 Trapping - Input Resources 77
Table 5.57 Trapping - Output Resources 77
Table 5.58 ConventionalPrinting - Input Resources 78
Table 5.59 ConventionalPrinting - Output Resources 79
Table 5.60 DigitalPrinting - Input Resources 79
Table 5.61 DigitalPrinting - Output Resources 80
Table 5.62 Varnishing - Input Resources 80
Table 5.63 Varnishing - Output Resources 80
Table 5.64 BlockPreparation - Input Resources. 81
Table 5.65 BlockPreparation - Output Resources 81
Table 5.66 BoxFolding - Input Resources 81
Table 5.67 BoxFolding - Output Resources 81
Table 5.68 BoxPacking - Input Resources 81
Table 5.69 BoxPacking - Output Resources 82
Table 5.70 Bundling - Input Resources 82
Table 5.71 Bundling - Output Resources 83
Table 5.72 CaseMaking - Input Resources 83
Table 5.73 CaseMaking - Output Resources 83
Table 5.74 CasingIn - Input Resources 83
Table 5.75 Casingln - Output Resources 83
Table 5.76 Collecting - Input Resources 84
Table 5.77 Collecting - Output Resources. 84
Table 5.78 CoverApplication - Input Resources 84
Table 5.79 CoverApplication - Output Resources 84
Table 5.80 Creasing - Input Resources 85
Table 5.81 Creasing - Output Resources 85
Table 5.82 Cutting - Input Resources 85
Table 5.83 Cutting - Output Resources 85
Table 5.84 DieMaking - Input Resources 85
Table 5.85 DieMaking - Output Resources 86
Table 5.86 Embossing - Input Resources 86
Table 5.87 Embossing - Output Resources 86
Table 5.88 EndSheetGluing - Input Resources 86
Table 5.89 EndSheetGluing - Output Resources 87
Table 5.90 Feeding - Input Resources 87
Table 5.91 Feeding - Output Resources 88
Table 5.92 Folding - Input Resources. 88
Table 5.93 Folding - Output Resources 88
Table 5.94 Gathering - Input Resources 88
Table 5.95 Gathering - Output Resources. 89
Table 5.96 Gluing - Input Resources 89
Table 5.97 Gluing - Output Resources 89
Table 5.98 HeadBandApplication - Input Resources 89
Table 5.99 HeadBandApplication - Output Resources. 89
Table 5.100 HoleMaking - Input Resources 90
Table 5.101 HoleMaking - Output Resources 90
Table 5.102 Inserting - Input Resources 90
Table 5.103 Inserting - Output Resources. 91
Table 5.104 Jacketing - Input Resources 91
Table 5.105 Jacketing - Output Resources 91
Table 5.106 Labeling - Input Resources. 91
Table 5.107 Labeling - Output Resources 91
Table 5.108 Laminating - Input Resources 92
Table 5.109 Laminating - Output Resources 92
Table 5.110 LooseBinding - Input Resources 93
Table 5.111 LooseBinding - Output Resources. 93
Table 5.112 Palletizing - Input Resources 93
Table 5.113 Palletizing - Output Resources 94
Table 5.114 Perforating - Input Resources 94
Table 5.115 Perforating - Output Resources. 94
Table 5.116 ShapeCutting - Input Resources 94
Table 5.117 ShapeCutting - Output Resources. 94
Table 5.118 Shrinking - Input Resources 95
Table 5.119 Shrinking - Output Resources. 95
Table 5.120 SpinePreparation - Input Resources 95
Table 5.121 SpinePreparation - Output Resources 95
Table 5.122 SpineTaping - Input Resources 95
Table 5.123 SpineTaping - Output Resources 96
Table 5.124 Stacking - Input Resources. 96
Table 5.125 Stacking - Output Resources 96
Table 5.126 StaticBlocking - Input Resources 96
Table 5.127 StaticBlocking - Output Resources 96
Table 5.128 Stitching - Input Resources 97
Table 5.129 Stitching - Output Resources. 97
Table 5.130 Strapping - Input Resources 97
Table 5.131 Strapping - Output Resources 97
Table 5.132 ThreadSealing - Input Resources 97
Table 5.133 ThreadSealing - Output Resources 98
Table 5.134 ThreadSewing - Input Resources. 98
Table 5.135 ThreadSewing - Output Resources 98
Table 5.136 Trimming - Input Resources 98
Table 5.137 Trimming - Output Resources 99
Table 5.138 WebInlineFinishing - Input Resources 99
Table 5.139 WebInlineFinishing - Output Resources 99
Table 5.140 Winding - Input Resources 99
Table 5.141 Winding - Output Resources 99
Table 5.142 Wrapping - Input Resources 100
Table 5.143 Wrapping - Output Resources 100
Table 6.1 Resource Element 101
Table 6.2 AmountPool Element. 102
Table 6.3 PartAmount Element. 103
Table 6.4 PartWaste Element 103
Table 6.5 WasteDetails Attribute Values 103
Table 6.6 Part Element 104
Table 6.7 ApprovalDetails Resource 108
Table 6.8 ApprovalParams Resource 108
Table 6.9 Assembly Resource 108
Table 6.10 AssemblySection Element 109
Table 6.11 BendingParams Resource 110
Table 6.12 BinderySignature Resource 110
Table 6.13 SignatureCell Element 112
Table 6.14 BlockPreparationParams Resource 115
Table 6.15 BoxFoldingParams Resource 115
Table 6.16 BoxFoldAction Element 117
Table 6.17 Action Attribute Values 117
Table 6.18 BoxPackingParams Resource 120
Table 6.19 Bundle Resource 121
Table 6.20 Bundleltem Element 121
Table 6.21 BundlingParams Resource. 123
Table 6.22 CaseMakingParams Resource 125
Table 6.23 CasingInParams Resource. 125
Table 6.24 Color Resource 126
Table 6.25 DeviceNColor Element 128
Table 6.26 Diecutting Data (DDES3) 128
Table 6.27 ColorantControl Resource 129
Table 6.28 ColorantAlias Element 130
Table 6.29 Sample output for different values of ProcessColorModel, ColorantParams and ColorantOrder elements. 130
Table 6.30 DeviceNSpace Element 131
Table 6.31 ColorCorrectionParams Resource 131
Table 6.32 ColorCorrectionOp Element 131
Table 6.33 ColorSpaceConversionParams Resource 132
Table 6.34 ColorSpaceConversionOp Element 133
Table 6.35 SourceCS Attribute Values. 134
Table 6.36 Mapping of SourceCS enumeration values to color spaces in the most common input file formats 135
Table 6.37 Component Resource 138
Table 6.38 Contact Resource 139
Table 6.39 ComChannel Element 140
Table 6.40 Company Element 140
Table 6.41 Person Element 140
Table 6.42 Content Resource 141
Table 6.43 ContentStatus Attribute Values 142
Table 6.44 ContentType Attribute Values 142
Table 6.45 BarcodeProductionParams Element. 143
Table 6.46 ContentMetadata Element 143
Table 6.47 PositionObj Element 143
Table 6.48 ConventionalPrintingParams Resource 144
Table 6.49 CoverApplicationParams Resource 145
Table 6.50 Score Element 145
Table 6.51 CreasingParams Resource 146
Table 6.52 CustomerInfo Resource 146
Table 6.53 CuttingParams Resource 147
Table 6.54 CutBlock Element 147
Table 6.55 DeliveryParams Resource 147
Table 6.56 DropItem Element 149
Table 6.57 DevelopingParams Resource 149
Table 6.58 Device Resource 150
Table 6.59 Icon Element 151
Table 6.60 IconList Element 151
Table 6.61 Module Element. 151
Table 6.62 DieLayout Resource 152
Table 6.63 RuleLength Element 153
Table 6.64 Station Element 153
Table 6.65 DieLayoutProductionParams Resource 153
Table 6.66 RepeatDesc Element 154
Table 6.67 DigitalPrintingParams Resource. 158
Table 6.68 EmbossingParams Resource 159
Table 6.69 Emboss Element 159
Table 6.70 EndSheetGluingParams Resource 160
Table 6.71 ExposedMedia Resource. 161
Table 6.72 FeedingParams Resource 161
Table 6.73 CollatingItem Element 161
Table 6.74 Feeder Element 162
Table 6.75 FeederQualityParams Element 163
Table 6.76 FoldingParams Resource 164
Table 6.77 FontPolicy Resource. 165
Table 6.78 GluingParams Resource 165
Table 6.79 HeadBandApplicationParams Resource 165
Table 6.80 HoleMakingParams Resource 166
Table 6.81 ImageCompressionParams Resource 166
Table 6.82 ImageEnhancementParams Resource 166
Table 6.83 ImageEnhancementOp Element 166
Table 6.84 ImageSetterParams Resource. 167
Table 6.85 Ink Resource 167
Table 6.86 InkZoneCalculationParams Resource 167
Table 6.87 InkZoneProfile Resource 168
Table 6.88 InsertingParams Resource 168
Table 6.89 Location of Inserts 169
Table 6.90 InterpretingParams Resource 169
Table 6.91 InterpretingDetails Element 170
Table 6.92 PDFInterpretingParams Element 171
Table 6.93 ReferenceXObjParams Element 172
Table 6.94 JacketingParams Resource 173
Table 6.95 LabelingParams Resource. 173
Table 6.96 LaminatingParams Resource 173
Table 6.97 Layout Resource 174
Table 6.98 CIELABMeasuringField Element 176
Table 6.99 ColorControlStrip Element 177
Table 6.100 Condition 177
Table 6.101 CutMark Resource 178
Table 6.102 MarkType Attribute Values 178
Table 6.103 DensityMeasuringField Element 179
Table 6.104 MarkObject Element 179
Table 6.105 PageActivation. 180
Table 6.106 PageCondition Element 180
Table 6.107 PlacedObject Element 181
Table 6.108 Position Element. 183
Table 6.109 RegisterMark Resource 184
Table 6.110 ScavengerArea Resource 185
Table 6.111 SheetActivation Element 185
Table 6.112 Example of Ord Attribute in PlacedObject Elements 186
Table 6.113 Example Calculating Ord values in automated Imposition 186
Table 6.114 LayoutElementProductionParams Resource 187
Table 6.115 LayoutShift Resource 189
Table 6.116 ShiftPoint Element 189
Table 6.117 LooseBindingParams Resource 190
Table 6.118 ChannelBindingDetails Element 191
Table 6.119 CoilBindingDetails Element 192
Table 6.120 CombBindingDetails Element. 192
Table 6.121 RingBindingDetails Element 192
Table 6.122 StripBindingDetails Element 193
Table 6.123 ManualLaborParams Resource 193
Table 6.124 Media Resource 193
Table 6.125 TabDimensions Element 198
Table 6.126 TabSetCollationOrder Attribute Values 199
Table 6.127 MiscConsumable Resource 202
Table 6.128 Type Attribute Values 202
Table 6.129 NodeInfo Resource. 203
Table 6.130 Pallet Resource 205
Table 6.131 PalletizingParams Resource 205
Table 6.132 PDLCreationParams Resource 205
Table 6.133 AdvancedParams Element 206
Table 6.134 FontParams Element. 207
Table 6.135 PDFCreationDetails Element 207
Table 6.136 PDFXParams Element 209
Table 6.137 PSCreationDetails Element 210
Table 6.138 ThinPDFParams Element 211
Table 6.139 PerforatingParams Resource 212
Table 6.140 PreflightParams Resource 212
Table 6.141 PreflightTest Element 212
Table 6.142 PreflightReport Resource 213
Table 6.143 PreflightCheck Element 213
Table 6.144 Preview Resource 214
Table 6.145 PreviewGenerationParams Resource 214
Table 6.146 QualityControlParams Resource 215
Table 6.147 BindingQualityParams Element. 215
Table 6.148 QualityControlResult Resource. 215
Table 6.149 BindingQualityMeasurement Element 216
Table 6.150 RasterReadingParams Resource 216
Table 6.151 RenderingParams Resource 217
Table 6.152 TIFFEmbeddedFile Element. 217
Table 6.153 TIFFFormatParams Element 218
Table 6.154 TIFFtag Element 219
Table 6.155 RunList Resource. 220
Table 6.156 Pages, Documents and Sets for common PDL types 222
Table 6.157 Band Element 222
Table 6.158 ByteMap Element 222
Table 6.159 ScreeningParams Resource 223
Table 6.160 SeparationControlParams Resource 223
Table 6.161 ShapeCuttingParams Resource 224
Table 6.162 ShapeDef Resource 224
Table 6.163 ShapeDefProductionParams Resource 225
Table 6.164 ObjectModel Element 225
Table 6.165 ShapeDimension Element 226
Table 6.166 ShapeTemplate Element 226
Table 6.167 SheetOptimizingParams Resource 228
Table 6.168 GangElement Element 229
Table 6.169 ShrinkingParams Resource. 230
Table 6.170 SpinePreparationParams Resource. 231
Table 6.171 SpineTapingParams Resource 231
Table 6.172 Parameters in Stacking. 233
Table 6.173 StackingParams Resource 234
Table 6.174 Disjointing Element 235
Table 6.175 InsertSheet Element 235
Table 6.176 SheetUsage Attribute Values 236
Table 6.177 StaticBlockingParams Resource 237
Table 6.178 StitchingParams Resource 238
Table 6.179 StrappingParams Resource. 239
Table 6.180 ThreadSealingParams Resource 240
Table 6.181 ThreadSewingParams Resource 241
Table 6.182 Tool Resource 243
Table 6.183 TransferCurve Resource 243
Table 6.184 TrappingParams Resource 244
Table 6.185 TrimmingParams Resource 245
Table 6.186 UsageCounter Resource 246
Table 6.187 VarnishingParams Resource 246
Table 6.188 VerificationParams Resource. 247
Table 6.189 WebInlineFinishingParams Resource 247
Table 6.190 FolderProduction Element 247
Table 6.191 ProductionPath Resource. 247
Table 6.192 WindingParams Resource 247
Table 6.193 WrappingParams Resource. 248
Table 7.1 XJMF Element. 249
Table 7.2 Message 249
Table 7.3 Header 250
Table 7.4 Query 250
Table 7.5 Subscription Element. 251
Table 7.6 Command Family 251
Table 7.7 Signal Family 251
Table 7.8 Response Family 252
Table 7.9 List of XJMF Messages 252
Table 7.10 CommandForceGang Message 253
Table 7.11 GangCmdFilter Element 253
Table 7.12 ResponseForceGang Message 254
Table 7.13 QueryGangStatus Message 254
Table 7.14 GangQuFilter Element 254
Table 7.15 ResponseGangStatus Message 254
Table 7.16 GangInfo Element 254
Table 7.17 SignalGangStatus Message 255
Table 7.18 QueryKnownDevices Message 255
Table 7.19 DeviceFilter Element. 255
Table 7.20 ResponseKnownDevices Message. 256
Table 7.21 SignalKnownDevices Message 256
Table 7.22 QueryKnownMessages Message 257
Table 7.23 ResponseKnownMessages Message 257
Table 7.24 MessageService Element 257
Table 7.25 QueryKnownSubscriptions Message 258
Table 7.26 SubscriptionFilter Element 258
Table 7.27 ResponseKnownSubscriptions Message. 258
Table 7.28 SignalKnownSubscriptions Message 258
Table 7.29 CommandModifyQueueEntry Message 259
Table 7.30 ModifyQueueEntryParams Element 259
Table 7.31 Operation Attribute Values. 259
Table 7.32 ResponseModifyQueueEntry Message. 261
Table 7.33 QueryNotification Message 262
Table 7.34 NotificationFilter Element. 262
Table 7.35 ResponseNotification Message 262
Table 7.36 SignalNotification Message 262
Table 7.37 CommandPipeControl Message 263
Table 7.38 PipeParams Element 263
Table 7.39 ResponsePipeControl Message 263
Table 7.40 QueryQueueStatus Message 264
Table 7.41 QueueStatusParams Element 264
Table 7.42 ResponseQueueStatus Message 264
Table 7.43 SignalQueueStatus Message 264
Table 7.44 Queue Element 264
Table 7.45 CommandRequestQueueEntry Message 265
Table 7.46 RequestQ्ueueEntryParams Element 265
Table 7.47 ResponseRequestQueueEntry Message 265
Table 7.48 QueryResource Message 266
Table 7.49 ResourceQuParams Element 267
Table 7.50 CommandResource Message 268
Table 7.51 ResourceCmdParams Element 268
Table 7.52 ResponseResource Message 269
Table 7.53 Resourcelnfo Element. 270
Table 7.54 SignalResource Message 270
Table 7.55 CommandResubmitQueueEntry Message 271
Table 7.56 ResubmissionParams Element 271
Table 7.57 ResponseResubmitQueueEntry Message 272
Table 7.58 CommandReturnQ्ueueEntry Message 273
Table 7.59 ReturnQueueEntryParams Element 273
Table 7.60 ResponseReturnQueueEntry Message. 273
Table 7.61 CommandShutDown Message 273
Table 7.62 ShutDownCmdParams Element 273
Table 7.63 ResponseShutDown Message 274
Table 7.64 QueryStatus Message 274
Table 7.65 StatusQuParams Element 274
Table 7.66 ResponseStatus Message 275
Table 7.67 DeviceInfo Element 275
Table 7.68 Activity Element 276
Table 7.69 JobPhase Element. 276
Table 7.70 SignalStatus Message 278
Table 7.71 CommandStopPersistentChannel Message 278
Table 7.72 StopPersChParams Element. 278
Table 7.73 ResponseStopPersistentChannel Message 279
Table 7.74 CommandSubmitQueueEntry Message 279
Table 7.75 QueueSubmissionParams Element. 279
Table 7.76 ResponseSubmitQueueEntry Message 280
Table 7.77 CommandWakeUp Message 281
Table 7.78 ResponseWakeUp Message 281
Table 8.1 Address Element 283
Table 8.2 ApprovalPerson Element 283
Table 8.3 AutomatedOverPrintParams Element 284
Table 8.4 BarcodeCompParams Element 284
Table 8.5 BarcodeReproParams Element 285
Table 8.6 Certification Element. 285
Table 8.7 Comment Element 286
Table 8.8 ConvertingConfig Element 287
Table 8.9 Crease Element 287
Table 8.10 Cut Element. 288
Table 8.11 FileSpec Element 288
Table 8.12 Disposition Element. 290
Table 8.13 FitPolicy Element 290
Table 8.14 Fold Element 291
Table 8.15 GangSource Element 291
Table 8.16 GeneralID Element 292
Table 8.17 Glue Element 292
Table 8.18 HolePattern Element 293
Table 8.19 IdentificationField Element 295
Table 8.20 EncodingDetails Attribute Values 296
Table 8.21 BarcodeDetails Element 297
Table 8.22 ExtraValues Element 298
Table 8.23 Usage of Barcode Attributes for Certain Barcode Types 298
Table 8.24 BarcodeVersion Values - for HIBC_DATAMATRIX 299
Table 8.25 BarcodeVersion Values - for QR barcodes 299
Table 8.26 ImageCompression Element 300
Table 8.27 CCITTFaxParams Element 302
Table 8.28 DCTParams Element 302
Table 8.29 FlateParams Element 303
Table 8.30 JBIG2Params Element. 303
Table 8.31 JPEG2000Params Element. 303
Table 8.32 LZWParams Element 304
Table 8.33 MediaLayers Element 304
Table 8.34 MetadataMap Element 305
Table 8.35 Expr Element 305
Table 8.36 MISDetails Element 306
Table 8.37 Notification Element 307
Table 8.38 Event Element 308
Table 8.39 Milestone Element 308
Table 8.40 ObjectResolution Element 308
Table 8.41 OCGControl Element. 309
Table 8.42 Perforate Element 309
Table 8.43 QueueEntry Element 310
Table 8.44 QueueFilter Element 310
Table 8.45 RefAnchor Element 311
Table 8.46 RegisterRibbon Element 312
Table 8.47 ScreenSelector Element. 313
Table 8.48 Shape Resource 314
Table 8.49 StripMark Element 315
Table 8.50 MarkName Attribute Values. 316
Table 8.51 FillMark Element 316
Table 8.52 MarkColor Element 317
Table 8.53 JobField Element 317
Table 8.54 SubscriptionInfo Element 319
Table 9.1 MIME Types and File Extensions 329
Table 9.2 Modifying Job Parameters 330
Table A. 1 XJDF Data Types 337
Table A. 2 Action Enumeration Values 339
Table A. 3 Activation Enumeration Values 339
Table A. 4 Anchor Enumeration Values 340
Table A. 5 Automation Enumeration Values 340
Table A. 6 Axis Enumeration Values 340
Table A. 7 BinderMaterial Enumeration Values 340
Table A. 8 BundleType Enumeration Values 341
Table A. 9 ChannelMode Enumeration Values 341
Table A. 10 Coating Enumeration Values. 341
Table A. 11 Compensation Enumeration Values 342
Table A. 12 DeviceStatus Enumeration Values 342
Table A. 13 Drying Enumeration Values 342
Table A. 14 Edge Enumeration Values 342
Table A. 15 EmbossDirection Enumeration Values 343
Table A. 16 EmbossType Enumeration Values 343
Table A. 17 Face Enumeration Values 343
Table A. 18 FeedQuality Enumeration Values 343
Table A. 19 FitPolicy Enumeration Values 344
Table A. 20 GangPolicy Enumeration Values. 344
Table A. 21 Glue Enumeration Values 344
Table A. 22 IncludeResources Enumeration Values 344
Table A. 23 ISOPaperSubstrate Enumeration Values. 345
Table A. 24 MappingSelection Enumeration Values 345
Table A. 25 MediaDirection Enumeration Values. 345
Table A. 26 MediaType Enumeration Values 346
Table A. 27 NodeStatus Enumeration Values 346
Table A. 28 Opacity Enumeration Values 347
Table A. 29 Orientation Enumeration Values 347
Table A. 30 Polarity Enumeration Values 347
Table A. 31 Policy Enumeration Values 348
Table A. 32 RenderingIntent Enumeration Values 348
Table A. 33 Scope Enumeration Values 348
Table A. 34 Severity Enumeration Values 348
Table A. 35 SheetLay Enumeration Values. 349
Table A. 36 Side Enumeration Values 349
Table A. 37 Sides Enumeration Values. 349
Table A. 38 SourceObjects Enumeration Values 349
Table A. 39 StapleShape Enumeration Values 349
Table A. 40 TightBacking Enumeration Values. 350
Table A. 41 Update Granularity Enumeration Values 350
Table A. 42 Usage Enumeration Values 350
Table A. 43 WorkingDirection Enumeration Values 351
Table A. 44 WorkStyle Enumeration Values 351
Table A. 45 Comb and Coil Shapes. 351
Table A. 46 Device Classes 352
Table A. 47 Corrugated Media Flute Types. 354
Table A. 48 Ink and Varnish Coatings 356
Table A. 49 Input Tray and Output Bin Names 357
Table A. 50 MediaTypeDetails Types 358
Table A. 51 Milestone Types. 360
Table A. 52 Module Types for Conventional Printing 360
Table A. 53 Module Types for Postpress. 361
Table A. 54 Module Types for Digital Printing 362
Table A. 55 Module Types for Web Printing 362
Table A. 56 Module Types for Folding 362
Table A. 57 Module Types for Packing 363
Table A. 58 Printing Technologies 363
Table A. 59 PrintStandard Values 364
Table A. 60 Product Types 364
Table A. 61 Spine Operations 365
Table A. 62 Status Details Mapping for Generic Devices 367
Table A. 63 StatusDetails Mapping for Printing Devices 370
Table A. 64 StatusDetails Mapping for Postpress Devices 370
Table B. 1 Return codes for XJMF 371
Table C. 1 Conversion Factor from Basis Weight (lbs) to Weight (g/m2) 373
Table C. 2 Grammage Equivalents for Common (US) Basis Weights 373
Table C. 3 Japanese Media Weight 375
Table C. 4 Translation of Paper grades between [ISO12647-2:2004] and [ISO12647-2:2013]. 376
Table D. 1 Architectural Paper Sizes 377
Table D. 2 Business Card Sizes 377
Table D. 3 International A Paper Sizes 377
Table D. 4 International B Paper Sizes. 378
Table D. 5 International C Envelope Sizes 379
Table D. 6 RA and SRA Paper Sizes 379
Table D. 7 US ANSI Paper Sizes 379
Table D. 8 US Paper Sizes 380
Table E. 1 Predefined variables used in @XXXTemplate 381
Table F. 1 Original Diagram 384
Table F. 2 Signatures with horizontal final folds 384
Table F. 3 Original Diagram 385
Table F. 4 Signatures with vertical final folds 385
Table F. 5 Pagination Diagrams 385
Table G. 1 Naming Scheme for Hole Patterns 420
Table G. 2 Hole Details for R2 Series 420
Table G. 3 Hole Details for R3 Series 422
Table G. 4 Hole Details for R4 Series 422
Table G. 5 Hole Details for R5 Series. 424
Table G. 6 Hole Details for R6 Series 424
Table G. 7 Hole Details for R7 Series. 426
Table G. 8 Hole Details for R11 Series 426
Table G. 9 Hole Details for P Series 427
Table G. 10 Hole Details for W Series 427
Table G. 11 Hole Details for C Series 428
Table G. 12 Hole Details for S Series 428
Table H. 1 References 429

